

1

Basic Static Analysis Lab Solution and Guide

shadyrabbit.exe

SHORT ANSWERS

Is the sample packed? How can you tell?

The sample is packed. See DETAILED ANALYSIS section for details.

Is there anything interesting or unique about the structure of this PE?

The unpacked binary has a modified PE in the resource section, XIN.

List any potential host-based indicators of this malware.

From strings, "Global\SiShen %d" could be a possible Mutex or Event. Strings such as

"%SystemRoot%\System32\svchost.exe -k netsvcs" and references to

system\currentcontrolset\services suggest the malware may install a service.

List any potential network-based indicators of this malware.

"Mozilla/4.0 (compatible)" is likely an HTTP User-Agent

Repeat your static analysis on the embedded binary – what indicators can

you extract from this PE?

The dropped DLL seems to have some interesting strings that could be imports such as ServiceMain, solo, and

soloInstall.

What might this program (shadyrabbit) do?

The program appears to be a dropper which contains an embedded payload. The payload may be installed as a

service. The payload may be a backdoor which communicates with a Command and Control (C2) server via HTTP.

See DETAILED ANALYSIS for more details.

hi
de
01
.i
r

2

DETAILED ANALYSIS

Is the sample packed? How can you tell?

Open the file in "CFF Explorer". Observe "File Info" which indicates UPX.

Figure 1: "CFF Explorer" "File Info" indicates UPX

For additional verification, observe section names which also indicate UPX. Observe the UPX0 section has "Raw

Size" 0 and "Virtual Size" 0x11000 which suggests data can be decompressed and/or decoded at runtime.

Figure 2: Section Headers – section names consistent with UPX

For even further verification, observe the "Import Directory". There are not many imports, and there is only a single

import for six of the seven imported DLLs. This is a common packing technique used to load the libraries without

exposing the actual functions. The functions imported within kernel32.dll are related to dynamic run-time linking

and memory allocation which further indicates packing.

hi
de
01
.i
r

3

Figure 3: Imports indicate packing

There are more tools to detect packing, such as PEiD and DIE, but UPX packing is evident. Unpacking can be

performed within "CFF Explorer" or by using the command line UPX utility. In "CFF Explorer" navigate to "UPX

Utility", select Unpack, and save the file. Alternatively, use the command "upx -d input_filename -o

output_filename.

Figure 4: Unpacking with UPX via command line

Is there anything interesting or unique about the structure of this PE?

Observe the "Section Headers" in "CFF Explorer". The .rsrc (resource) section is disproportionally large

(0x19000). The total unpacked size is 118784 bytes (0x1D000) – so by dividing the .rsrc size by the total

(0x1D000/0x19000), it is confirmed that the .rsrc section comprises 86% of the entire unpacked binary!

hi
de
01
.i
r

4

Figure 5: Section headers - .rsrc section is disproportionally large

Navigate to "Resource Editor", expand the XIN directory, and observe the resource 101. It looks like a PE file but it

is missing the signature MZ at the beginning of the file. Extract the file by right clicking on the resource and selecting

"Save Resource (Raw)".

Figure 6: "Resource Editor" - save resource binary to disk

Repair the resource by adding the missing signature. Open the file in "010 Editor" and type MZ in the ASCII section,

or "4D 5A" in the hex area, then save the file.

Figure 7: "010 Editor" - Repair missing MZ signature

hi
de
01
.i
r

5

Open the repaired file in "CFF Explorer". If the file is a valid PE, "CFF Explorer" should be able to parse it properly.

Examine the "File Type", "File Info" and "PE Size" fields to confirm.

Figure 8: "CFF Explorer" – Top image is invalid PE, bottom image is repaired/valid PE

List any potential host-based indicators of this malware

Run FLOSS on the unpacked shadyrabbit binary ("floss input_filename > output_filename"). The output

includes the strings from the dropper and from the embedded payload. Some abridged samples of strings analysis:

PE file format artifacts. These are usually common and not useful (.Solo is potentially unique)

!This program cannot be run in DOS mode.
Rich
.text
`.Solo
`.rdata
@.data
.rsrc
@.reloc

Incidental byte sequences misinterpreted as strings

^][Y
.PQV
^][Y
_^][d
$SUVW

hi
de
01
.i
r

6

_^]2
_^]2

Imports. When they appear together towards the beginning of the file, they are likely part of the import table and

can be analyzed with "CFF Explorer" and ignored here.

CreateEventA
CloseHandle
TerminateThread
GetProcAddress
LoadLibraryA
WaitForSingleObject
SetEvent

C++ runtime artifacts. These are common.

??2@YAPAXI@Z
??3@YAXPAX@Z
__CxxFrameHandler
memmove
ceil
_ftol

Some relevant strings. This list is not exhaustive; there are many potentially relevant strings. Searching online can

be helpful if a string appears interesting and more context is required.

solo
WinSta0\Default
%s\SHELL\OPEN\COMMAND
system\cURRENTcONTROLsET\sERVICES\%s
soloInstall
DeleteFileA
epyT
system\cURRENTcONTROLsET\sERVICES\
Game Over!Good luck!
Http/1.1 403 Forbidden
<body><h1>403 Forbidden</h1></body>
HTTP/1.0 200 OK
Eternal Update
aPPLICATIONS\IEXPLORE.EXE\SHELL\OPEN\COMMAND
System
ytiruceS
noitacilppA
Host
Hotkey
.DEFAULT\Keyboard Layout\Toggle
SYSTEM\CurrentControlSet\Control\Terminal Server\Wds\rdpwd\Tds\tcp
SYSTEM\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp
PortNumber
SYSTEM\CurrentControlSet\Control\Terminal Server\RDPTcp
fDenyTSConnections
SYSTEM\CurrentControlSet\Services\TermService
Start
SYSTEM\CurrentControlSet\Services\TermDD

hi
de
01
.i
r

7

TSEnabled
SYSTEM\CurrentControlSet\Control\Terminal Server
ShutdownWithoutLogon
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon
EnableAdminTSRemote
Installer
SOFTWARE\Policies\Microsoft\Windows
Enabled
netcache
SOFTWARE\Microsoft\Windows\CurrentVersion
\\.\PHYSICALDRIVE0
CONNECT
POST
HEAD
GET
http://
%s:\Documents and Settings\Local Server
winlogon.exe
taskkill /f /t /im LiveUpdate36O.exe
mouse_event
\CMD.EXE
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/
roup1
Mozilla/4.0 (compatible)
https://
~MHz
HARDWARE\DESCRIPTION\System\CentralProcessor\0
tfg4h98dfh
Global\SiShen %d
winsta0
CVideoCap

Potential host-based indicators include registry and file paths (highlighted in yellow) and a possible mutex or event

(highlighted in pink).

List any potential network-based indicators of this malware

Strings highlighted in green suggest network capability - specifically the HTTP protocol. "Mozilla/4.0

(compatible)" may represent an HTTP User-Agent.

Repeat your static analysis on the embedded binary – what indicators can

you extract from this PE?

Run FLOSS on the extracted payload. The output includes the strings previously analyzed. Remember that the

embedded resource/payload was large compared to the rest of the file, so it can be deduced that the strings analysis

performed so far is mostly related to the payload, and the indicators from the previous questions are actually part

of the embedded binary.

What might this program (shadyrabbit) do?

Examine the payload in "CFF Explorer". The "File Info" field indicates the file is a DLL.

hi
de
01
.i
r

8

Figure 9: "File Info" indicates DLL

This can be confirmed by navigating to "File Header" – Characteristics and reviewing the flag "File is a DLL"

hi
de
01
.i
r

9

Figure 10: "File Header" - Characteristics flag indicates DLL

Now examine the "Export Table" – there is a single export named solo.

hi
de
01
.i
r

10

Figure 11: "Export Directory" - solo export

Run capa on the payload (capa <filename>).

hi
de
01
.i
r

11

Figure 12: capa output reveals many capabilities

There are many different capabilities. You can run capa in verbose mode (capa filename -vv >

output_filename) to learn more about each capability. capa displays each rule that produced each capability

output. One example from verbose output which maps imports to capabilities:

hi
de
01
.i
r

12

Figure 13: capa verbose mode example includes rule details

In summary, shadyrabbit.exe appears to be a dropper that writes a DLL to disk. shadyrabbit.exe includes

service-related imports and strings that suggest it may install the DLL as a service. The payload appears to be a

fully-featured backdoor that communicates with an unknown Command and Control (C2) server via HTTP.

hi
de
01
.i
r

