

1

Ghidra Lab Guide

hodl.exe

DETAILED ANALYSIS

What is the address of the main() function?

Navigate to the entry function to access the entry point of the program. Look for a function call that has 3 arguments

and returns an exit code which is used as an argument to exit_. This is tricky because the decompilation incorrectly

displays zero arguments to the main function. You can find the arguments using the Listing view (disassembly).

Figure 1: FUN_00401540 returns unaff_ESI which is used in _exit

First identify the call to _exit, then click the middle mouse button to highlight all instances of the variable that

serves as an argument to _exit. Work upwards and identify the variable is returned by FUN_00401540. Now select

the line with the function call and follow the arrow in the disassembly to identify the function call. Notice three

arguments are pushed on the stack prior to the call.

Figure 2: Disassembly shows 3 values pushed on the stack prior to function call

hi
de
01
.i
r

2

Double-click on FUN_401540 and examine the function. It does not look like a library function and it includes

suspicious malware behavior, such as connecting to the network and modifying the registry. Rename the function

to main (lowercase ‘L’ is the shortcut).

Figure 3: main function includes registry and network API calls

What registry values are set by the main() function? What are they set to?

Examine the first call to RegOpenKeyA. The first argument, 0x80000001, represents the root key. Right-click and

select “Set Equate” (shortcut ‘e’). Start typing HKEY to filter the possible options based on the common prefix (from

the documentation). The only option is HKEY_CURRENT_USER. Select that to replace the constant with its symbolic

representation.

hi
de
01
.i
r

3

Figure 4: "Set Equate" menu with HKEY typed to filter by common prefixFigure

Figure 5: RegOpenKeyA call site with symbolic constant applied

Consider the second argument to RegOpenKeyA, s_SOFTWARE\Microsoft\Windows\Curre_004131ec, which

represents the subkey. This is a pointer to a string in global memory. Double-click on the name to follow the pointer

to the data location. Hover over the name to view the full contents.

Figure 6: Data stored at 0x4131ec with entire string displayed

Consider the third argument, &local_c, which receives the handle to the opened key. Rename this variable to

something like hKey_RunOnce.

Figure 7: Registry API call sides with handle variable renamed

Middle-click on hKey_RunOnce to see its use throughout the function. It is the first argument to the next function

call, RegSetValueExA. The second argument to RegSetValueExA is s_SysReqClient_00413220. Follow the

pointer to see that it is another pointer to a string – SysReqClient. This represents the value written to the subkey

we already analyzed. The third argument, local_414, represents the data written to that value. Middle-click on

local_414 to see its context.

Figure 8: local_414 is used in two API calls

hi
de
01
.i
r

4

It is used 2 lines above as the second argument to GetModuleFileNameA, which means it points to the current

module name (if the first argument to GetModuleFileNameA is zero the current module is considered). Rename

local_414 to current_module_name.

Figure 9: API sequence with current_module_name labeled

It can now be deduced that the first registry change is to write the current module name (the malware) to

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\SysReqClient, which

causes the malware to be started automatically on the next system start.

Similar tactics can be used to analyze the second registry change. Set the Equate for 0x80000001 to

HKEY_CURRENT_USER and examine the to determine the root key, subkey, and value. Follow local_8414 to

determine the data.

Figure 10: local_8414 is used in three API functions

local_8414 contains the expanded environment string %TEMP%\srcupdate.exe. This is the path that receives the

data downloaded via URLDownloadToFileA. The file is downloaded from crimestaging.mandiant.com.

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\SysReqUpdate is set to the

file path %TEMP%\srcupdate.exe, which is where the data is saved from crimestaging.mandiant.com.

What URL is requested within the main() function and what does it do with

the response?

This is answered in the previous question.

Without examining function 4011F0, describe as best you can the

overall logic of this function (401290).

Navigate to FUN_00401290. It consists of six calls to FUN_004011f0, each taking a pointer to global memory as an

argument.

hi
de
01
.i
r

5

Figure 11: FUN_00401290 consists of repeated calls to FUN_004011f0

Follow each of the global pointers to better understand the arguments. Start with the first call - double-click on

PTR_DAT_004131cc.

Figure 12: PTR_DAT_004131cc points to a global variable, DAT_004130c0

This is a global variable. Double-click on DAT_004130c0 to view the contents.

Figure 13: DAT_004130c0 is an array of bytes

It is a seemingly random array of bytes with a NULL byte at the end. Follow the other function calls and see that

each argument is a pointer to a random-looking byte array.

Since FUN_004011f0 always takes data that appears to be decoded as an argument, we can suspect that it is a

data decoding routine. That means FUN_00401290 is likely a routine for decoding a group of data.

Reverse engineer function 4011F0. What does this function do?

The variable local_8 appears in this function 7 times. Middle-click on it.

hi
de
01
.i
r

6

Figure 14: local_8 points to the global variable passed as the function argument

Notice that local_8 is set to param_1 which is the function argument, which is likely encoded data. Rename

local_8 to something like data_in. This for loop iterates through each element in data_in (each byte in the array)

and XORs it with 0xCC. This is a decoding routine. Rename it to xor_decode_cc.

Figure 15: xor_decode_cc after analysis

Describe and/or give an example of the decoded data.

Navigate to the first input to xor_decode_cc, PTR_DAT_004131cc. Follow the global variable to DAT_004130c0.

Highlight all the bytes except the NULL, right-click, and select “Copy Special” then choose “Byte String”.

Figure 16: Copy the global array contents

hi
de
01
.i
r

7

Paste the result into CyberChef. Add the recipes “From Hex” and XOR. Set the XOR key to 0xCC. The decoded

string is bitcoin.

Figure 17: Use CyberChef to decode the data

Repeat this process for all the pointers referenced in FUN_00401290. Rename the global variables to reflect the

strings to which they point. If you rename the variable, the outer pointer is automatically updated, so you can just

keep your Listing view at the area where all the byte arrays are grouped together and decode each array without

navigating back to FUN_00401290.

The strings appear to represent cryptocurrency wallet type, wallet file, and folder location. For example: bitcoin -

wallet.dat - %APPDATA%\Bitcoin.

Rename FUN_00401290 to something like decode_coin_data.

Figure 18: decode_coin_data after analysis

hi
de
01
.i
r

8

What is param_3 (the third parameter to FUN_00401000) used for?

First navigate into FUN_0040100 and rename FUN_004032e6 to malloc and rename FUN_004032cb to free. Middle-

click on param_3. Notice it is used as the first argument to CreateFileA which represents the filename to be

opened. Rename param_3 to lpFileName.

Figure 19: Third parameter to FUN_00401000 is used as filename in CreateFileA

What is param_2 (the second parameter to FUN_00401000) used for?

Middle-click on param_2. It is used as the first argument to ExpandEnvironmentStringsA. This function resolves

environment variables from within a string and writes the new string to the second argument, which in this case is

stack0xffff7fec. This is used to resolve the path of the coin location string, for example: %APPDATA%\Bitcoin

becomes C:\Users\user\AppData\Roaming\Bitcoin. Rename param_2 to location_string. Unfortunately,

Ghidra does not allow stack0xffff7fec to be renamed, since the odd variable name is an indication that Ghidra

faltered in its stack analysis and does not fully understand where the stack variable is located. Middle-click on

stack0xffff7fec to see its use.

Figure 20: Variable named stack0xfffffec is used to set current directory to coin path

It is used as the argument to SetCurrentDirectoryA, which sets the current directory to the address of the

cryptocurrency path.

What data is read by the call to ReadFile()?

The first argument to ReadFile is local_8 which contains the return value from CreateFileA. Rename this to

hFile. Review the entire function. First it navigates to the cryptocurrency directory, then it opens the cryptocurrency

hi
de
01
.i
r

9

file, then it reads the file. The file data is stored the in second argument to ReadFile, local_10. Rename it to

file_data.

Figure 21: CreateFile returns a handle which is used for ReadFile. ReadFile saves data in file_data

This data may be cryptocurrency wallet contents.

What does this function do with the data it reads from the file?

Middle-click on file_data and observe that it is used as the second argument to FUN_00401110. While considering

this function call, identify the other two arguments. Looking back at the calls to FUN_00401000, we know that

param_1 is the cryptocurrency type (ex. bitcoin). Rename param_1 to coin_type. Middle-click on local_14. It is

the fourth argument to ReadFile which represents how many bytes are read. Rename it to lpNumberOfBytesRead.

Figure 22: FUN_00401110 takes coin type, file data, and data length arguments

Navigate into FUN_00401110 and rename the function parameters to reflect this analysis.

Figure 23: Function prototype for FUN_00401110 with parameters renamed

The data read from the file is passed to FUN_00401110.

hi
de
01
.i
r

10

Examine the first function called in FUN_00401110. What does this function

do and what data is it operating on?

The first non-API function called is xor_decode_cc, which we already analyzed. The argument is

PTR_DAT_004313e8. Follow the pointer to DAT_00413188 and follow that to the byte array. Decode it using the

method used previously. Rename DAT_00413188 to reflect the decode string, crime.mandiant.com. Also observe

the return value from xor_decode_cc is pbVar2 which points to the decoded data. Rename that to

ptr_crime.mandiant.com.

Figure 24: String decoding call returns pointer to decoded string

What host does this function communicate to?

Middle-click on ptr_crime.mandiant.com. It is used as the second argument to InternetConnectA which

represents the host name of the internet server. crime.mandiant.com is the host in question.

What protocol does this function use to communicate?

Consider the second argument to HttpOpenRequestA, DAT_004132d0. Follow the pointer and observe the bytes at

0x4132d0.

Figure 25: Data at 0x4132d0 is array of bytes in ASCII range so is likely a string

It looks like a string so right-click on DAT_004132d0 and select Data - TerminatedCString to define it as a string.

Figure 26: Setting string data type automatically renames the variable

Go back to the function call and observe that the second argument to HttpOpenRequestA is the string POST. The

protocol is HTTP and the request type is POST.

What data does this function send to the remote host?

Consider the arguments to HttpSendRequestA.

hi
de
01
.i
r

11

Figure 27: HttpSendRequestA sends file_data, which is the coin file contents

The third argument, which we have renamed to file_data, represents the buffer to send over HTTP. file_data

contains the data read from the cryptocurrency file.

Rename FUN_00401110 to send_file_data. Review FUN_00401000 – you can now rename it to

read_coin_file_and_send_data.

Go back to main and review your progress – much of the program functionality is now apparent.

Based on the API functions used in function 4012F0, what data does this

function appear to be reading and manipulating?

Navigate to FUN_004012f0 and review the API calls.

hi
de
01
.i
r

12

Figure 28: High level view of FUN_004012f0

Without looking at the function arguments you can deduce the functionality. The API calls are related to listening
for clipboard data, getting clipboard contents, copying memory, and setting the clipboard data. Based on this it
can be deduced it is harvesting clipboard data, altering it, or both.

hi
de
01
.i
r

13

The first function called is a function that we have encountered many

times during this lab, what is it and what data is it operating on? What is

its result (decoded)?

The first function called is xor_decode_cc. The argument is PTR_DAT_004131e4. Follow the pointer and decode as

before. The decoded string is 1Nc74pWpEZ73CNmQviecrny0WrnqRhwnlY. Rename the inner pointer to

1Nc74pWpEZ73CNmQviecrny0WrnqRhwnlY.

Figure 29: Renaming the global variable updates the pointer name

What this function do? (Hint: Bitcoin wallet addresses often begin with 1

or 3 and are 34 digits long)

Start by identifying the parameters for FUN_00412f0. The documentation at https://docs.microsoft.com/en-

us/windows/win32/learnwin32/writing-the-window-procedure indicates the argument usage.

Figure 30: WindowProc function prototype

Rename the four parameters to match this prototype.

Figure 31: Parameters renamed to match prototype

Middle click on uMsg to see its usage. It is compared to 1, 2, and 0x31d. The documentation indicates that Windows

message constants use the WM_ prefix. Select the first constant, 1, right-click, and select “Set Equate”. Type WM_ to

filter the options and select WM_CREATE. Repeat the process for each usage of uMSG.

hi
de
01
.i
r

https://docs.microsoft.com/en-us/windows/win32/learnwin32/writing-the-window-procedure
https://docs.microsoft.com/en-us/windows/win32/learnwin32/writing-the-window-procedure

14

Figure 32: Message constants with Equates applied

Middle-click on hMem to see what happens with the harvested clipboard data when a CLIPBOARDUPDATE message

is received.

Figure 33: hMem usage

hMem points to the clipboard contents. GlobalLock returns a pointer to the same contents into pcVar1. The contents

are copied via __strdup, so ultimately pcVar1 ends up pointing to the string from the clipboard. Rename pcVar1

to clipboard_contents.

The next code block only executes if the conditions are met related to the clipboard contents.

Figure 34: Conditions required to proceed to malicious code block

By dereferencing the string, it is accessing the first character of the string and comparing it to 1 or 3. It is also

comparing the length of the string to 0x22, which is 34 in decimal (you can replace the hex with decimal by right-

clicking the number and choosing the desired data type. The string is then compared to

hi
de
01
.i
r

15

1Nc74pWpEZ73CNmQviecrny0WrnqRhwnlY. In summary, if the string begins with 1 or 2, is 34 characters long, and

is not 1Nc74pWpEZ73CNmQviecrny0WrnqRhwnlY, then the code executes.

Middle-click on hMem_00 and consider the following sequence.

Figure 35: hMem_00 usage

GlobalAlloc allocates memory and returns a pointer to the memory in hMem_00. GlobalLock returns another

pointer to the same memory in _Dst. memcpy copies the data from _Src, which you can see is a pointer to

1Nc74pWpEZ73CNmQviecrny0WrnqRhwnlY, into _Dst. SetClipboardData sets the clipboard contents to hMem_00

which now contains 1Nc74pWpEZ73CNmQviecrny0WrnqRhwnlY, so the clipboard is set to

1Nc74pWpEZ73CNmQviecrny0WrnqRhwnlY.

The function listens for clipboard usage. If the clipboard contents match the format of a cryptocurrency wallet ID,

they are replaced with the attacker’s wallet ID, 1Nc74pWpEZ73CNmQviecrny0WrnqRhwnlY.

Rename the function to replace_clipboard_wallet_IDs. Rename FUN_00401490 to

msg_pump_replace_clipboard_wallet_IDs.

Reverse engineer the remainder of the functionality in main() after the call to

401490. Describe the behavior and effect of this code.

The next function call is FUN_00401230. Consider the function contents.

Figure 36: FUN_00401230 contains nested for loops

hi
de
01
.i
r

16

This is a nested for loop. Each for loop has an index variable. The first one, local_8, starts at 0 and increments to

4. Rename it to idx_4. The second variable, local_c, increments to 3. Rename it to idx_3.

Figure 37: for loops with indices renamed

These loops are accessing a two-dimensional array of data. The outer loop accesses an index into the outer array,

and for each of those, the inner loop accesses three items in the inner array. In code it may look like this:

array[4][3]. In other words, the array is a 4X3 matrix with 12 total entries.

We can confirm this theory by examining the argument to xor_decode_cc, PTR_DAT_0041319c. Follow the pointer

to DAT_00413000. Consider the data here.

Figure 38: Array of global variables

hi
de
01
.i
r

17

This is an array of global variables. Each item in the array is a DWORD – a memory address.

Consider the first item in the first column of the first row, DAT_00413000. Decode the string (binance) and rename

the inner pointer. Go back one level to the array of pointers and consider which will be next in the loops.

Figure 39: Calculate the array indices for each iteration

In the first loop iteration, idx_4 is 0 and idx_3 is 0, so the array index accessed is 0. In the second iteration, idx_4

is 0 and idx_3 is 1. That resolves to [0 * 3 + 1], which is 1. So, the next pointer accessed in the pointer array is

the second entry. The next item accessed is [0 * 3 + 2], which is 2. The next iteration would reset idx_3 and

increment idx_4, so [1 * 3 + 0], or 3. All told the array accesses are:

1,2,3

4,5,6

7,8,9

10,11,12

This is how we know it is a two-dimensional 4X3 array. Decode the strings for each of the pointers in the array.

binance coinmgmt.db %APPDATA%\Binance\Local\Acct

bither account.db %APPDATA%\Bither\profile

solar_wallet wallet.dat %APPDATA%\Solar

electrum dbx.db %APPDATA\Electrum\wallet

After decoding you can see that the strings in the matrix are organized as shown above. Like before, the format is

coin name, coin filename, coin file path. Rename FUN_00401230 to decode_coin_data_2 and go back to main.

Figure 40: for loop that accesses array rows

Rename local_8 to idx_4 to reflect its use as a loop index. Notice how it accesses the matrix. Refer to the table

above to see that the first argument is the coin name, the second is the file name, and the third is the file path. We

hi
de
01
.i
r

18

already analyzed read_coin_file_and_send_data so we know that it will read each of the files from the

associated path and send them to the remote server.

Summarize as succinctly as you can: what does this program do?

It steals cryptocurrency wallet files and sends them to a web server using HTTP, then it attempts to steal Bitcoin by

intercepting the Windows clipboard, replacing wallet addresses with a fixed address.

List all discovered Host and Network Indicators from this malware

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\SysReqClient

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\SysReqUpdt

%TEMP%\srcupdate.exe

http://crimestaging.mandiant.com/update/srclient/update.exe

http://crime.mandiant.com/

hi
de
01
.i
r

