

Control Flow Statements in Python

Shouke Wei, Ph.D. Professor

Email: shouke.wei@gmail.com

Objective
If Conditional Statement
While Loop
For Loop

1. Conditional Statement
if…elif…else are conditional statements, which

provide you with the particular conditions to execute code
helps automate the decision making process

1.1 If condition
if condition:
 expression

the simplest form to make a decision based on whether the condition is true or not

In [3]:

1.2 if-else condition
if condition:
 expression 1
else:
 expression 2

adds an additional step in the decision-making process
The beginning of an if-else statement operates similar to a simple if statement; however,

if the condition is false, instead of printing nothing, the indented expression under else will be printed
An example:

n is an even number

n = 296
if n % 2 == 0: # true
 print('n is an even number')

In []:

1.3 if-elif-else condition
The most complex of these three conditions
there are several conditions

if condition:
expression 1
elif condition:
expression 2
.
.
.
else:
express n

you can place as many elif conditions as necessary between the if condition and the else condition ```

In []:

2. The While Loops

2.1 while loop
while <condition>:
 <statement(s)>

Execute a set of statements as long as a condition is true, e.g.

In [5]:

2.2 The while-else loops

9
8
7
6
5
4
3
2
1
0

n = 287
if n % 2 = 0: # true
 print('n is a even number') # true
else: # not true
 print('n is a odd number')

saleFruit = ['Apple','Orange','Melon','Grape']
stockFruit = ['Apple','Orange','Melon','Grape']

check if banana is on sale or in storehouse
if 'Banana' in saleFruit:
 print('Banana is selling.')
elif 'Banana' in stockFruit:
 print('Banana is in the storehouse')
else:
 print('Banana is out of stock!')

num = 10

while num > 0:
 num -= 1 # num = num -1
 print(num)

while <condition>:
 <statement(s)>

else:
 <additional_statement(s)>

The else statement will run a block of code once the condition is no longer true, e.g.

In []:

2.3 The while-if-else loops

In [6]:

2.4 The break statement
The break statement will stop the loop even if the while condition is still true, e.g.

In [1]:

2.5 The Continue Statement
The continue statement we can stop the current iteration, and continue with the next

Please input a word with the first letter of b: yes
Sorry. It is not correct. Please guess it again.
Please input a word with the first letter of b: but
Sorry. It is not correct. Please guess it again.
Please input a word with the first letter of b: big
Great! You got it.

2
3
4

n = 1
while n < 7:
 n += 1 # n = n + 1
 print(n)
else:
 print("n is no longer less than 7")

guess the number

word = ' '
while word != 'big':
 word = input('Please input a word with the first letter of b: ')
 if word == 'big':
 print('Great! You got it.')
 else:
 print('Sorry. It is not correct. Please guess it again.')

n = 1

while n < 7:
 n +=1
 print(n)

 if n == 4:
 break

In [2]:

3. For Loops

3.1 For Loops
A for loop is used for iterating over a sequence (a list, a tuple, a dictionary, a set, or a string)

for iterating_var in sequence:
statements

In [7]:

3.2 The break Statement
The break statement stops the loop before it would finish looping through all the items

In [8]:

Exit the loop when item is "Orange", which includes Orange
The following example also exit the loop when item is "Orange", but "Orange" is not printed

2
3
5
6
7

Apple
Cherry
Orange
Melon
Banana
Grape

Apple
Banana
Cherry
Orange

n = 1

while n < 7:
 n +=1

 if n == 4:
 continue
 print(n)

fruitList = ['Apple','Cherry','Orange','Melon','Banana', 'Grape']

for items in fruitList:
 print(items)

fruitList = ['Apple','Banana','Cherry','Orange','Melon', 'Grape']

for items in fruitList:
 print(items)

 if items == 'Orange':
 break

In [9]:

3.3 The Continue Statement
The continue statement stops the current iteration of the loop, and continue with the next
It works as skiping an item

In [10]:

3.4 range() function
returns a sequence of numbers, starting from 0 by default, and increments by 1 (by default), and ends at a specified
number

In [12]:

it is possible to specify the starting value by adding a parameter: range(2, 6), which means values from 2 to 6 (but not
including 6):

In [13]:

it is possible to specify the increment value by adding a third parameter: range(2, 30, 3):

Apple
Banana
Cherry

Apple
Banana
Cherry
Melon
Grape

0
1
2
3
4
5

2
3
4
5

fruitList = ['Apple','Banana','Cherry','Orange','Melon', 'Grape']

for items in fruitList:

 if items == 'Orange':
 break
 print(items)

fruitList = ['Apple','Banana','Cherry','Orange','Melon', 'Grape']

for items in fruitList:
 if items == 'Orange':
 continue
 print(items)

range(6) # not the values of 0 to 6, but the values 0 to 5

for n in range(6):
 print(n)

for n in range(2, 6):
 print(n)

In [14]:

3.5 Else in for loops
The else keyword in a for loop specifies a block of code to be executed when the loop is finished

In [15]:

If the loop breaks, the else block is not executed.

In [16]:

3.6 Nested Loops
A nested loop is a loop inside a loop
The "inner loop" will be executed one time for each iteration of the "outer loop"

In [19]:

2
4
6
8

Apple
Banana
Cherry
Orange
Melon
Grape
This is the end!

Apple
Banana
Cherry

Red Apple
Red Banana
Red Cherry
Big Apple
Big Banana
Big Cherry
Sweet Apple
Sweet Banana
Sweet Cherry

for n in range(2,10,2):
 print(n)

fruitList = ['Apple','Banana','Cherry','Orange','Melon', 'Grape']

for items in fruitList:
 print(items)

else:
 print("This is the end!")

fruitList = ['Apple','Banana','Cherry','Orange','Melon', 'Grape']

for items in fruitList:

 if items == 'Orange':
 break
 print(items)

else:
 print("This is the end!")

attributeList = ['Red','Big','Sweet']
fruitList = ['Apple','Banana','Cherry']

for x in attributeList:
 for y in fruitList:
 print(x, y)

