
9/23/20

1

Modern Webapp Penetration Testing

Hands-on Doing.

Brian (BB) King - @BBhacKing

1

1

Day 3 Recap

• Encoding information: context matters
• SQL Injection: less common, still a great example of injection
• Credential attacks: more about policy than web dev, but still
• NoSQL doesn’t mean No Injection

2

2

Reporting
Otherwise you’re just playing around.

3

3

9/23/20

2

The Purpose, Again

• To Make Things Better
• To Make Computering Safer for Regular People

4

4

The Pentester’s Role

• Be the security “expert”
• Know how webapps work
• Know how and why wepapps fail

• Security: just one of many worthwhile goals
• Security: not true/false

• Communicate clearly
• Some kind of report

5

5

The Report Tells A Story

• They know how it’s meant to work.
• Tell them how it actually worked.

• Attacks that worked
• Attacks that failed

6

6

9/23/20

3

Screenshots Illustrate Your Story

• Illustrate, Don’t Decorate

7

7

Illustrate, Don’t Decorate

8

8

Illustrate, Don’t Decorate

9

9

9/23/20

4

Illustrate, Don’t Decorate

10

10

Coerce Your Browser Into Helping You

11

11

Illustrate, Don’t Decorate

12

12

9/23/20

5

Illustrate, Don’t Decorate

13

13

Illustrate, Don’t Decorate

14

14

A Good Screenshot Is

Helpful AND
• Relevant
• Adds Useful Information
• Accurate AND

Clear
• Legible
• Directs Viewer’s Attention
• Precise

15

15

9/23/20

6

Screenshot Decisions

• Entire browser window, or …
• Plain screenshot, or …
• Text too small to read, or …
• Text too large to ignore
• Just the viewport, or …

• Crop to important part
• Something to direct attention
• Relevant text in image about the

same size as body text around it.
• URL always included

16

16

Thoughtful Composition

17

17

Thoughtful Contrast

18

18

9/23/20

7

Thoughtful Contrast

https://twitter.com/mubix/status/1272657499917815808

19

19

Thoughtful Words

• Explain clearly to “yourself, two years ago”
• Make it obvious how to reproduce the behavior

• Include prerequisites
• Include breadcrumbs or similar as needed

• Stick to the facts
• Don’t blame. Not even passively.

20

20

Attacking JSON Web Tokens

So much to practice in one small thing.

21

21

9/23/20

8

JSON Web Tokens Are...

These things:

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9.eyJp
c3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogI
mh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ
.dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

22

22

JSON Web Tokens Are...

These things...

23

23

Not All Input Looks Like Input

24

24

9/23/20

9

JSON Web Tokens Are...

"...a compact, URL-safe means of representing claims to be
transferred between two parties.

The claims in a JWT are encoded as a JSON object that is
used as the payload of a JSON Web Signature (JWS) structure or as the
plaintext of a JSON Web Encryption (JWE) structure, enabling the claims
to be digitally signed or integrity protected with a Message
Authentication Code (MAC) and/or encrypted."

-- "Abstract" - RFC 7519 - May, 2015
25

25

JSON

• JSON: Javascript Object Notation
• Key:Value pairs separated by commas.
• Values can be strings, arrays, objects.
{"menu": {

"id": "file",
"value": "File",
"popup": {

"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}

]}}}
https://json.org/example.html

26

26

JSON Web Tokens Contain...

JOSE Header: {"typ":"JWT",
"alg":"HS256"}

Payload: {"iss":"joe",

"exp":1300819380,

"role":"customer"}

JOSE:
JSON
Object ...
Signing and
Encryption

Payload:
"the claims"

27

27

9/23/20

10

JSON Web Tokens Are...

Base64url encoded, concatenated, signed...

base64url(header)

.

base64url(payload)

.

base64url(signature)

28

28

Base64 vs Base64URL Encoding

To convert a Base64 string to a Base64URL string...

+ becomes -

/ becomes _

= becomes nothing (i.e. padding is removed)

29

29

Clues

Base64 of JWT often begins with eyJ0eXAi or eyJhbGci
$ echo -n 'eyJ0eXAi' | base64 -d

{"typ"

$ echo -n '{"alg"' | base64

eyJhbGci

...and a dot in the first 40 - 60 characters or so...

30

30

9/23/20

11

Aside... Why Base64?

NOT to protect information from malice.

Base64 does not do that.
Base64 ONLY makes them "URL-Safe".

31

31

Three Parts: Header, Payload, Signature

Header Says Two Main Things:

1. This is a JWT

2. The signature was computed with this algorithm.

32

32

Three Parts: Header, Payload, Signature

Payload may say a few standard things...

iss: issuer sub: subject

iat: issued at exp: expires at

nbf: "not before" (start date)

33

33

9/23/20

12

Three Parts: Header, Payload, Signature

Payload may say ... literally anything else

username?

email address?

role?

permissions?

password?

34

34

Three Parts: Header, Payload, Signature

Signature is ... a digital signature

(...of the encoded header and payload, using the algorithm
named in the header)

35

35

Common Use: Federated
Authentication and Authorization

36

36

9/23/20

13

Often: HTTP "Authorization" Header

Remember this?

37

37

Aside... one "obvious" reason for base64

JSON can have newlines.

HTTP headers can't.

38

38

RFCs of Interest
7519: JWT (...Tokens)
7518: JWA (...Algorithms)
7515: JWS (...Signatures)
7516: JWE (...Encryption)

39

39

9/23/20

14

Most JWTs are JWSes...

Encoded, not encrypted.

...therefore readable. Always.

40

40

Most JWTs are JWSes...

A good signature allows tampering to be detected.

Signing algorithm is part of the header

...therefore attacker-controllable. ...Always.

41

41

Most JWTs are JWSes...

So...

Servers need to be careful.

More "bouncer" than "concierge"

42

42

9/23/20

15

1. Do Not Trust User Input

2. Everything is User Input

43

43

How Many Issues in the OWASP Top Ten?

1. Injection
2. Broken Authentication
3. Sensitive Data Exposure
4. XML External Entities
5. Broken Access Control
6. Security Misconfiguration
7. Cross-Site Scripting
8. Insecure Deserialization
9. Using … Known Vulnerabilities
10. Insuff. Logging and Monitoring

1. Malicious Input
2. Unexpected Input
3. Sensitive Data Exposure
4. Malicious Input
5. Malicious / Unexpected Input
6. Unexpected Input
7. Malicious Input
8. Malicious Input
9. Malicious input
10. Insuff. Logging and Monitoring

44

44

How Many Issues in the OWASP Top Ten?

1-2: Unexpected User Input

3: Sensitive Data Exposure (leaks)

4-9: Unexpected User Input

10. Insufficient Logging & Monitoring

45

45

9/23/20

16

Signature Algorithms (RFC 7518)...

3.1. "alg" (Algorithm) Header Parameter Values for JWS

"alg" Value Digital Signature or MAC Algorithm Implementation Req'ts

HS256 HMAC using SHA-256 Required

RS256 RSASSA-PKCS1-v1_5 using SHA-256 Recommended

none No digital signature or MAC performed Optional

46

46

That "none" option looks dangerous...

3.6. Using the Algorithm "none"

JWSs MAY also be created that do not provide integrity protection.

Such a JWS is called an Unsecured JWS. An Unsecured JWS uses the

"alg" value "none" and is formatted identically to other JWSs, but MUST use

the empty octet sequence as its JWS Signature value.

Recipients MUST verify that the JWS Signature value is the empty octet sequence.

If it's empty...
...how do you know it's an octet sequence?

"Resistance to tampering"

47

47

RFC 7518 (J.W. Algorithms)
The "none" algorithm is optional!

😃

48

48

9/23/20

17

Signature Algorithms (RFC 7519)

8. Implementation Requirements

This section defines which algorithms and features of this
specification are mandatory to implement. . . .

Of the signature and MAC algorithms specified in JSON Web
Algorithms [JWA], only HMAC SHA-256 ("HS256") and "none"
MUST be implemented by conforming JWT implementations.

49

49

RFC 7519 (JWT):
The "none" algorithm is required.

🤕

50

50

JWT's Stance on Privacy

12. Privacy Considerations

A JWT may contain privacy-sensitive information. When this
is the case, measures MUST be taken to prevent disclosure of
this information to unintended parties.

... [Encrypt the JWT and/or use TLS] ...

Omitting privacy-sensitive information from a JWT is the
simplest way of minimizing privacy issues.

https://tools.ietf.org/html/rfc7519#section-12
51

51

9/23/20

18

Encrypt the JWT and/or use TLS

52

52

JWS's Stance on Security

(A JWS is the kind of JWT you normally see: one whose claims are not encrypted)

10. Security Considerations27

10.1. Key Entropy and Random Values27

10.2. Key Protection ...28

10.3. Key Origin Authentication28

10.4. Cryptographic Agility28

10.5. Differences between Digital Signatures and MACs28

10.6. Algorithm Validation29

10.7. Algorithm Protection29

10.8. Chosen Plaintext Attacks30

10.9. Timing Attacks ...30

10.10. Replay Protection30

10.11. SHA-1 Certificate Thumbprints30

10.12. JSON Security Considerations31

10.13. Unicode Comparison Security Considerations31

Keep it secret

Keep it safe

Cryptography
Is Hard

53

53

...leaving us with...

No privacy protections in a JWT (JWS)

The "none" algorithm disables signing completely

The "none" algorithm is ... required? optional? ...both?

Attacks, then:

1. Information disclosure (just decode the payload)

2. Potential for forgery (if the "none" algorithm is supported)

3. Cracking (guess the "secret" if 1 & 2 don't work)
54

54

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515

9/23/20

19

On Cracking...

● HMAC only as secure as the secret.

● JWT is self-contained.

● Sample code uses bad examples.

● Guess all day long on your own system.

55

55

On Cracking...

● Wordlist suggestion: “secrets” from example code

● https://github.com/BBhacKing/jwt_secrets

● Collected from all 97 projects linked at https://jwt.io/

● See also:
● https://github.com/wallarm/jwt-secrets/

● Longer list, less focused

56

56

Lab #13:
JWT: Information Disclosure
JWT: Forge a JWT

57

57

https://github.com/BBhacKing/jwt_secrets
https://jwt.io/

9/23/20

20

User Secrets in Juice Shop

1. Find a JWT in Juice Shop

2. Decode it. Find what’s inside.

• Try several tools: how do they differ?

3. Forge a JWT.

58

58

User Secrets in Juice Shop

1. Log in as your user

2. Notice this exists: http://localhost:3000/rest/user/whoami

3. Send "whoami" request to Repeater & re-send it

4. Trim out extra junk to simplify (which JWT is the important one?)

5. Decode (CyberChef, Burp Decoder, etc): Look at the payload -
anything interesting?

6. Decide what you might do with that information alone.

59

59

User Secrets in Juice Shop

6. Decide what you might do with the decoded information.

7. Try the ”JOSEPH” Extension’s “signature exclusion” attack.

8. Then: create a forged JWT that Juice Shop accepts.

60

60

http://localhost:3000/rest/user/whoami

9/23/20

21

Lab #13 Complete:
Forge a JWT

61

61

What's Your
Takeaway from
the Lab?

62

62

WebSockets

Not really HTTP, but not really anything else, either

63

63

9/23/20

22

WebSockets...

● Enable bi-directional messages between clients and servers
● Allow servers to send things not explicitly requested
● Free browsers from having to poll for server-side changes

"...can be used for a variety of web applications: games, stock tickers,
multiuser applications with simultaneous editing, user interfaces
exposing server-side services in real time, etc."

https://tools.ietf.org/html/rfc6455

64

64

WebSockets...

● Follows the "origin model"
○ Same basis as the "Same Origin Policy" browsers rely on

● Scheme in URLs is ws:// or wss://
● Request headers

○ Connection: Upgrade
○ Upgrade: websocket
○ Sec-WebSocket-Version: 13
○ Sec-WebSocket-Key (16-byte random nonce, base64 encoded)
○ Origin: http://example.com

65

65

Opening Handshake, from RFC 6455

66

66

9/23/20

23

Opening Handshake, from Juice Shop

67

67

WebSocket Security

HTTP Response Header "Sec-WebSocket-Accept" is...

sec-websocket-key from the request

with a constant RFC-specified GUID appended

SHA-1 hash

Base64 Encode
base64(sha1(vOBHS/qD8tr+2rfJjBmFjg==258EAFA5-E914-47DA-95CA-
C5AB0DC85B11))

Yields this: HyFbyYrOmKmb+sw/EEVdSTLh9gQ=
68

68

WebSocket Security

Server knows it's a legit client because of the Origin request header.

...unless it's not a browser

Client knows it's talking to legit server because the client provided the
randomness that's part of the web-socket-accept header in the
response...

Wait.

69

69

9/23/20

24

WebSocket Security

● To the RFC!

10.1 Non-Browser Clients:

While this protocol is intended to be used by scripts in web pages, it
can also be used directly by hosts ... [which can] ... send fake |Origin|
header fields... Servers should therefore be careful about assuming
that they are talking directly to scripts from known origins and must
consider that they might be accessed in unexpected ways. In
particular, a server should not trust that any input is valid.

https://tools.ietf.org/html/rfc6455#section-10.170

70

WebSocket Security

● To the RFC!

10.1 Non-Browser Clients, cont'd:

EXAMPLE: If the server uses input
as part of SQL queries, all input text
should be escaped before being passed
to the SQL server, lest the server be
susceptible to SQL injection.

71

71

WebSocket

• Not different enough from HTTP to be ”hard”
• Just need the right tools

72

72

9/23/20

25

Lab #14:
Abuse a Web Socket

73

73

Abuse a WebSocket

• Find the client-directed message that shows the banners.
• Trigger a banner for a challenge you didn’t earn

• …or make it say anything you can use to your advantage

74

74

Lab #14 Complete:
Abuse a Web Socket

75

75

9/23/20

26

Review...
● To the RFC!

10.5 WebSocket Client Authentication:

This protocol doesn't prescribe any particular way that servers can
authenticate clients during the WebSocket handshake. The
WebSocket server can use any client authentication mechanism
available to a generic HTTP server, such as cookies, HTTP
authentication, or TLS authentication.

Did you see any cookies or authentication in the WebSocket history?

76

76

What's Your
Takeaway from
the Lab?

77

77

Webapp Pentesting
is

Advanced "Paying Attention"
...once you know what to look for.

78

78

9/23/20

27

Lab:
Choose Your Own Adventure.

79

79

"There is never enough time.
Thank you for yours."

-- Dan Geer

80

80

