

John Greg

• Husband
• Father
• red team stuff
• maple syrup
• BJJ
• AD lover
• WinDbg

• Husband
• Father
• red team stuff
• running long

distances
• oysters

Agenda

Day 1
• Terraform/range
• Compilers
• How EDRs work
• Defeating string detection
• system calls
• Detecting the EDR
• Unhooking the EDR
• P-Invoke/D-Invoke
• .NET obfuscation
• AMSI Bypass
• ETW
• CobaltStrike IOCs

Day 2
• Process Injection
• Malleable C2 Profile
• CS BOF
• Attacking other AV/EDR Products
• Dumping LSASS in 2022
• Your Final Binary

Lab Environment
You will build it with our Terraform script

Machines in Use
§ Windows Dev Box
§ Sophos Intercept X EDR Box
§ Windows Defender Box
§ Kali Attacker
§ Cylance EDR Box
§ Crowdstrike EDR Box
§ ATP Windows Box
§ Guacamole server
§ CS Ubuntu server

Exe vs DLL Primer

§ Both are ‘PE’ files
§ Exes get their own address space
§ Exes can live independently
§ Exes -> int main
§ DLLs -> DllMain
§ DLLs provide a calling process with some functionality
§ DLLs cannot live independently
§ Loader reserves space for DLL
§ DLL needs to export at least one function

PE Compilation
§ clang/LLVM
§ clang++
§ gcc
§ g++
§ cl.exe (MSVC)
§ mingw-64

tooling

cl.exe Compiler Flags (executable)
§ Case sensitive
§ Controls the MSVC C/C++ compilers/linkers
§ The compiler produces an object file, linker produces an executable

Compiling an executable with cl.exe
cl.exe /nologo /Ox /MT /W0 /GS- /DNDEBUG /Tp beacon.cpp /link /OUT:beacon.exe /SUBSYSTEM:CONSOLE /MACHINE:x64

/nologo = suppresses display of sign-on banner
/Ox = maximizing for speed
/MT = multi-threaded
/W0 or /w = suppresses all warnings
/GS- = suppressing buffer overflow warnings
/DNDEBUG = not in debug mode
/Tp = specifies a C++ source code file name
/link = telling the linker to link
/OUT: = binary name
/SUBSYSTEM:CONSOLE = specifies the env for the executable
/MACHINE:x64 = specify the target platform

cl.exe Compiler Flags (DLL)
§ Case sensitive
§ Controls the MSVC C/C++ compilers/linkers
§ The compiler produces an object file, linker produces a DLL

Compiling a DLL with cl.exe
cl.exe /D_USRDLL /D_WINDLL spam.cpp /MT /link /DLL /OUT:spam.dll

Easy mode
cl.exe /LD spam.cpp

/D = a preprocessor definition
/D_USRDLL = a macro that allows us to distinguish between application and target DLLs
/D_WINDLL = make a dLL
/MT = multi-threaded
/Tp = specifies a C++ source code file name
/link = telling the linker to link
/DLL = build a DL
/OUT: = DLL name
/LD = creates a dynamic link library

clang/LLVM

LLVM

• used for writing compilers
• created in 2003 by Chris Lattner (Apple employee)
• back end for clang, Rust, Swift, and C++
• turns source code into machine code
• converts the source code into an intermediary called IR (intermdediate representation
• IR primitives, unlike assembly, are independent of any machine architecture
• compile once, run on MIPS, ARM, x86, x64, etc

clang/clang++
clang.exe spam.c – o spam.exe

gcc/g++/mingw-w64

gcc
§ GNU C Compiler
§ standard compiler for Linux

mingw-w64
§ software development environment for creating Microsoft Windows PE applications
§ includes gcc/g++ and clang/clang++
§ Can compile PE files (Windows) inside Linux

PE Primer

2 main sections
§ Header
§ Sections

§ .text (code)
§ resources
§ data

What is Cobalt Strike?

Mission: Close the gap between penetration testing tools and advanced malware.

Vision: Relevant and credible adversary simulations that:
-produce battle-hardened security analysts
-drive objective and meaningful security advances
-educate security professionals and decision makers on advanced tactics

“blue sets the stage with a defense posture and context, red demonstrates how a thinking and adaptive
adversary would work within that context, blue uses that feedback from red to make their ideas and
strategies stronger. red looks at those changes and gives feedback again.”

-Raphael Mudge on red teaming

Malleable C2 Profile – Why?

A domain-specific language to give you control over the indicators in the Beacon payload
-Network traffic
-In-memory content, characteristics, and behavior
-Process injection behavior

Malleable C2 Profile Auxilliary Section

sample_name – used for profile management
host_stage – ‘false’ for stageless and ‘true’ for staged
jitter – setting jitter as a percentage on the sleep time of a beacon
pipename – default name for named pipes
sleeptime – default is 60000 (1 minute)
ssh_banner – banner that shows for ssh beacons
ssh_pipename – pipe name for ssh beacons
data_jitter – enables the operator to append data
useragent – sets User-Agent string

Malleable C2 Profile HTTP Config Section

set headers – sets http headers between beacon and CS server
trust_x_forwarded_for – use if your CS teamserver is behind a redirector (it should be)
block_useragents – helpful for blocking specific user agents that you don’t want touching your server
allow_useragents – whitelisting of specific user agents that can connect to the team server

Malleable C2 Profile TLS Certificate

3 options:
- none
- self-signed
- signed by trusted authority

Malleable C2 Profile Client/Server Interactions

set uri – the URI your beacon will call back to (hard-coded)
client - specifies info sent by the beacon
metadata – cookies can be set, C2 data can be hidden here
server – details how the server responds to C2 traffic

Malleable C2 Profile Post Exploitation

spawnto_x86/spawnto_x64 – specifying the process to be hollowed out so your beacon can live inside

obfuscate – scrambles the content of the post-exploitation DLLs in a OPSEC-safe manner

smartinject – allows DLLs to bootstrap in a new process with same-arch using LoadLibrary and
GetProcAddress

amsi_disable – tells powerpick and execute-assembly to
patch AmsiScanBuffer before loading .NET/powershell

keylogger – uses GetAsyncKeyState API to observe keystrokes

Threadhint – allows multi-threaded DLLs to spawn threads with spoofed start address

Malleable C2 Profile Process Injection

set allocator – memory allocation method: VirtulAlloc or NtMapViewofSection

min_alloc – minimum memory allocation size when injecting content

startrwx|userwx – sets memory permissions as initial RWX and final as WX

transform-x86|transform-x64 – transform injected content to throw static
detection

Malleable C2 Profile PI Methods

CreateThread – local process injection

CreateRemoteThread – vanilla remote injection (same user and arch)

NtQueueApcThread – early bird PI method using suspended processes

RtlCreateUserThread – uses RWX shellcode for x86 -> x64 injection

SetThreadContext – suspended processes

Malleable C2 Profile Memory Indicators
stomppe – ask ReflectiveLoader to stomp MZ, PE, and e_lfanew values after loading
beacon payload

name – exported name of the beacon DLL

cleanup – ask beacon to free memory from the Reflective DLL that created it

checksum –default is zero, checksum value in beacon’s PE header

compile_time – sets the time that the PE was compiled

entry_point – EntryPoint in the beacon’s PE header

image_size_x86| image_size_x64 – SizeofImage value in beacon’s PE header

rich_header – meta-information inserted by the compiler

transform-x86|transform-x64 – transforms the beacon’s reflective DLL stage

Curious Case of the BOF

• single-file C programs that must include “beacon.h” in the same directory

• limited to Windows APIs, internal beacon APIs and custom functions

• no linking involved, not an exe
• replace ‘main’ with ‘go’ for entry point
• every single function must be imported

• one action and done, not for long-running jobs (use reflective DLL for those)

• executes inside your beacon, no fork n’ run here

• must use inline-execute

Curious Case of the BOF
• normal C functions cannot be used, you’ll get a linking error

• use CS version

• Windows APIs must be declared, there is no Import Address Table

BOF Compilation

Labs: CS and CS BOF’s

EDR Primer

Signature Detection – hash-based static detection

Entropy – randomness (Shannon’s Entropy algorithm)

Sandboxing – program runs in virtual appliance

Active Protection - custom dll loaded, certain APIs hooked

Event Tracing – reactive component

Modes – Block and Monitor

Signature Detection
Defeating static scanning in-memory by using encoders/cryptors

MD5/SHA1 hashes of:
• file
• byte sequence

2 methods of bypassing signatures based on bytes in the binary
§ reverse engineer the scanning engine or signature db
§ chunking the binary into small pieces to discover the trigger bytes
§ append junk data to the file

Endpoint Sandbox

• Endpoint sand box, not network sandbox

• EDR products will run the binary in a virtual machine

• Windows APIs are inspected

• EDR products do not scrutinize Windows APIs equally

• Some Windows APIs cannot be virtualized successfully

• sandbox only has so much time – cannot be a risk to the business

• trade-off is time vs security

• we need to make the malware analysts’ life hell

IAT/EAT Primer

Sandbox checks the IAT of the binary
Check Windows APIs
Looks for commonly abused APIs, ie MiniDumpWriteDump
Check your binary’s strings with IDA, CFF Explorer, strings.exe

CFF Explorer (MiniDumpWriteDump)

IDA (MiniDumpWriteDump)

Define the Problem

EDRs inspect the IAT for commonly-abused Windows APIs

Lab 5: Dynamic Resolution in (C)

§ Use GetProcAddress and LoadLibrary to resolve an API at runtime.

#include <Windows.h>

int main() {
//dynamically resolve an API at runtime, this will get the memory address for MiniDumpWriteDump
FARPROC MiniDumpWriteDump = GetProcAddress(LoadLibrary("Dbghelp.dll"), "MiniDumpWriteDump");
printf("0x%p\n", MiniDumpWriteDump);

return 0;
}

Revealing Strings

Lab 6: Hiding Strings

§ Feel free to use whatever programming language you want
§ Your generator should take in a string and output a char array
§ This is the goal

§ For example:

char charset[] = "1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.";

int main() {
DWORD greg[] = {16,27,14,16};

}

TA2541
obfuscated strings in VBS

char array that builds ‘something’

Lab 7: Combing dynamic API Resolution With String
Obfuscation

You can call any Windows API in your code, in the example in your lab guide sticks with the dbghelp.dll/MiniDumpWriteDump combo that we’ve been
using in class.

Payload Encoding/Encryption

Encoding vs Encryption

Encoding: Base64

Encryption: AES256, XOR

The Dangers of Encoding

• Encoding requires that you leave memory the allocated memory in RWX mode
• red flag for EDR products

• encoded shellcode contains a stub that decodes and writes back to the same memory region

• VirtualProtect API must be used to change memory permissions
• will show up in the IAT/strings

XOR Encryption for hiding strings

Another method of hiding strings of commonly used Windows APIs

uses encryption method
DOES NOT INCREASE ENTROPY

requires the following:
• plaintext
• key
• decrypt function

Malicious samples have an entropy of over 7.2,
whereas normal software has an entropy of 4.8 to
7.2. In 30% of malicious samples, the entropy will be
close to 8, whereas only 1% of harmless code will
have this value. More than half of malicious samples
will have an entropy of more than 7.2, but only one
out of every ten normal programs will have this level
of entropy. - kleiton0x7e

Lab 8: XOR Encrypting Function Calls

Sandbox Evasion - WHY?

Why don’t we want our binary or payload to be able to run in a sandbox?

Possible Sandbox Evasion Checks

• Check process list for certain running apps
• Check if box is domain-joined
• Check displays or hardware
• Check if user is an admin
• Check screen size
• Check for mouse movement
• Check disk space
• Gotchas!

• sandboxes can move the cursor
• sandboxes have started hooking SleepEx API
• NetGetJoinInformation for checking domain is a loud API
• sandbox can be domain joined

Fun in the
Sandbox

Building guard rails into your implant for sandbox evasion
More time consuming and resource intensive than signature-based

Lab 9: bypassing sandbox detection

1. Write a sandbox execution check to determine if a computer is joined to a specific domain

Note: Stay away from NetGetJoinInformation, it sends RPC calls to the DC. You’re essentially asking the DC for information about
yourself.

We recommend using the GetUserNameExA structure (API) to perform some reconnaissance on target box and grab domain
-check MSDN, you’ll have to include a specific library. [in, out] means you’ll have to pass a pointer to the size

This parameter may be useful when writing your domain check!

EDR Active Protection

Signature Detection – hash-based static detection

Sandboxing – program runs in virtual appliance

Active Protection - custom dll loaded, certain APIs hooked

Event Tracing – reactive component

Modes – Block and Monitor

Lab 10: Finding the custom DLL

We’re going to be using vanilla remote process injection technique using the normal process injection Windows API stack

• OpenProcess -> NtOpenProcess
• VirtualAllocEx -> NtAllocateVirtualMemory
• WriteProcessMemory -> NtQueryVirtualMemory
• CreateRemoteThread -> NtDuplicateObject (this one is a but squirrely to get to)

EDR Active Protection
Walkthrough/talk-through of an EDR loading a custom DLL

Unhooking the EDR

1. Automate the finding of hooks use hook_finder64
2. Verify the hooks manually
3. Find all APIs called by program /w API Monitor
4. Unhook and inject into remote process

Lab 11: Unhooking Sophos EDR

Turn process injection protection back on in the Sophos Admin portal!

DLL Proxying

DLL Proxying - Why?

persistence – your DLL will fire every time the application executes

privilege escalation – hijack a process that runs with SYSTEM privs

stealth – AV/EDR is not good at detecting DLLs

MITRE ATT&CK
Persistence -> Hijack Execution Flow -> DLL Sideloading T1574.002
Priv Esc -> Hijack Execution Flow -> DLL Sideloading
Defensive Evasion -> Hijack Execution Flow -> DLL Sideloading

https://attack.mitre.org/techniques/T1574/002/

DLL vs EXE
executables (exes) are separate programs that can be loadedinto memory as an indpendent process

DLLs (dynamic link libraries) PE modules that are loaded into an existing process and cannot live
independently in memory

Source Code Difference
DLL - DllMain function and external function
Exe – main function

human readable CPU readable

Compiling DLLs

using g++.exe
• g++.exe -Wall -DBUILD_DLL -g -c dll_stuff.c -o dll_stuff.o
• g++.exe -shared -Wl,--dll dll_stuff.o -o dll_stuff.dll -luser32

using cl.exe
• cl.exe /D_USRDLL /D_WINDLL dll_stuff.cpp /MT /link /DLL /OUT:dll_stuff.dll

test with rundll32.exe
rundll32.exe dllstuff.dll,<exported function>

DLL Search Order
Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs

DLL Hijack Requirements
• writeable directory

• (Anything in C:\Windows requires admin privs)
• users can write to their AppData folder

• must have exports from legitimate dll in our malware’ exports
• binary must execute our DLL before legitimate execution in DLL Search Order

Hunting for Opportunities
AccessEnum for determining write access

A user’s AppData folder is writeable by that user

Hunting for DLL Hijacking Opportunities
Filter for the following:
• Process Name is < binary.exe>
• Results contains “NAMENOTFOUND”
• Path ends with “dll”
• Operation is “CreateFile”

Dumping Exports from Legitimate DLL

we got gendef.exe to work 0% of the time

Testing
• Remember that DLLs cannot run as standalone programs
• Testing can be completed with rundll32.exe

• testing exported functions needs to be called (RunMe)

popping calc from Notepad++’s updater

Lab 12: DLL Proxying

The Rise of .NET

“.NET includes a large class library called Framework Class Library and provides language
interoperability across several programming languages” –Microsoft

• a bunch of APIs that do the heavy lifting for you

• C#, F#, Powershell, IronPython

• .NET Framework is specific to Windows
• .NET Core is cross platform
• open-source version for Mac is called Mono

• .NET runtime for C# is the CLR. Think of this like JVM for Java
• you have to install OpenJDK 11 for Cobalt Strike to run

.NET Requirements

The CLR (Common Language Runtime) for your program’s target .NET Framework major version must
be installed on a computer for it to successfully run that application

• .NET Framework projects are backwards compatible , but not always forwards compatible

• .NET assemblies are not backwards/forwards compatible at execution time, it’s required to match
the binary’s .NET Framework version to that of the target!!

.NET Requirements
• This does not mean that your .NET assembly is required match the exact version of the target’s

.NET Framework version.
• The CLR (Common Language Runtime) runs the assembly, it’s required to match!

• There was not a CLR 3. If you want a granular listing of .NET Framework -> CLR translations, visit
this site: https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/versions-and-
dependencies

Assembly.Load() and other .NET Features

• Dynamic code execution in memory – we can load other .NET assemblies dynamically at runtime
• excellent for post-exploitation

• we can pass an entire .NET assembly as an argument and use the Assembly.Load method for
execution

• .NET API – direct access to several Windows/Active Directory components

• Platform Invoke – easy use of unmanaged libraries and their functions
• ex: this is how we would call VirtualAlloc within a .NET language

• “Any CPU” Option – you can build one assembly that can target x86 and x64 Windows boxes

An Assembly Is Not Real A Binary

Platform Invoke – Why?

Dynamic Invoke – Why?

Dynamic Invoke – Dynamically invoke unmanaged code from memory or disk

• the change from Platform Invoke is HOW we are executing our code

• eliminate commonly abused APIs from the IAT in the .NET assembly

• avoids API hooking

• avoids module load events

• hide code in locations where it would normally exist

.NET Assembly Obfuscation

This man simply obfuscates his .NET assemblies so
that he doesn’t have to manually bypass AMSI and
ETW

.NET Obfuscation

• Theres so many!
• Legitimate developers use these tools
• not all built-in .NET methods can be renamed and still be functionable
• GUI or CLI – modifies the assembly based on a XML template file
• AMSI can be tested offline

• unless a custom AMSI provider is used
• Dynamic Invoke (DInvoke) can be used to replace static Platform Invoke (PInvoke) calls

• this adds more code and will need additional obfuscation

Visual Studio Gotchas

• By default, debugging information is set to on in VS
• This will give the blue team the full path of your .NET assembly

ConfuserEx Gotchas

• ConfuserEx IOCs
• ConfuserEx watermark = ‘Confused by...”
• remove control flow and reference proxy obfuscation – increases the assembly size
• CSharp project GUID and AssemblyInfo.cs are never obfuscated by ConfuserEX

• YARA rules will get you
unconfused Seatbelt

Confused Seatbelt Confused Seatbelt

ConfuserEx Gotchas

unconfused confused

Lab 13: .NET Assembly Obfuscation

1. Use ConfuserEx to obfuscate a .NET binary
• it doesn’t have to be Seatbelt

2. Drop your .NET assembly into DotPeek
• Find the ConfuserEx IOCs

• extra mile – roll your own .NET obfuscator
• Samuel Wong -> https://github.com/BinaryScary/NET-Obfuscate/blob/master/NET-Obfuscate/Program.cs

Anti-Malware Scan Interface (AMSI)

• Windows component that scans arbitrary text or files for known bad strings and malicious URLs
• included in the .NET runtime log sources in the CLR
• will not inspect a real binary

• Windows components that integrate into AMSI
• Powershell 4+
• VBScript and JScript
• VDA and XLM Macros

• Options are to patch or bypass via obfuscation

AMSI Architecture

AMSI Architecture (continued)

AMSI Bypass Obfuscation Method

https://amsi.fail/ won’t work ‘out-of-the-box’

https://amsi.fail/

AmsiScanBuffer Return Values

0 = invalid arguments

1 = non-malicious

32768 = malicious

https://docs.microsoft.com/en-us/windows/win32/api/amsi/ne-amsi-amsi_result

Lab14: AMSI Bypass

Walk through building an AMSI bypass form scratch (IDA)

Event Tracing Windows

kernel-mode Windows protection mechanism – typically more challenging to bypass than AMSI
• traces and logs system events
• can still be bypassed in userland within the process

ETW can be used to detect commonly abused .NET methods
• Assembly.Load
• Platform Invoke calls (OpenProcess + VirtualAlloc + CreateRemoteThread)
• CompileAssemblyFromSource

Event Tracing Windows

3 main components
• Controllers
• Providers
• Consumers

These are event traces

Patching ETW in Memory

• shut down the syscall for NtTraceEvent
• reference WKL blog

Lab 15: ETW Bypass

Cobalt Strike IOCs

Know your tools

• most of the functionality is in the beacon
• if you can invoke function, it’s in TaskBeacon.class
• heavy vanilla mimikatz usage

• load the cobaltstrike.jar file into JD-GUI

• Search for %COMSPEC% - this is cmd.exe

• mimikatz is used all over the place

• spawn method (fork and run functionality)

Cobalt Strike Mimikatz Usage

Cobalt Strike Fork and Run

• Cobalt Strike will spawn a sacrificial remote process
• inject it into and perform some post exploitation action in the remote process
• process dies when action is completed

• most of the functionality is in the beacon
• if you can invoke function, it’s in TaskBeacon.class
• heavy vanilla mimikatz usage

• load the cobaltstrike.jar file into JD-GUI

• Search for %COMSPEC% - this is cmd.exe

• mimikatz is used all over the place

%COMSPEC% is cmd.exe

Remember that EDRs have introspection into the command line

Day 2

What is Process Injection?

Process injection is a method of executing arbitrary code in the address space of a separate live
process. Running code in the context of another process may allow access to the process's
memory, system/network resources, and possibly elevated privileges.

• Ok, so we have all heard about injecting into processes, so what. Why is this important?
• Red Team talk about Process Injection techniques.
• What should the blue team be looking for?

Windows Process Injection

• Processes must have a running thread
• A process is just a management object which

contains the required resources to execute a
program

• Look at the diagram and picture how would you
inject into a process!

• There are over 15+ process injection methods
that have been used over the past 10 years

Process Injection Basics

What do we need to know about Process Injection to be successful?

• Process Threads
• Process Memory
• Handles
• Tokens
• Privileges
• Integrity
• Windows API Calls

Do I really need to know all of this to inject into a process?

• Yes, we all copy and run code
that we have no understanding of.

• This can be looked at bad or
good.

• We all started somewhere!!

• Don’t run code on production
that you don’t understand!

Process Injection Techniques

What are the top 10 process injection techniques?

• DLL Injection
• PE Injection
• Remote Thread Injection
• Process Hollowing
• Process Doppelganging
• APC Queue
• EarlyBird
• Set Windows Hook Injection
• Thread Execution Hijack
• Atom Bombing

Process Injection High Level Topics

What are we actually injecting into a process?

• Shellcode
• Executables
• DLL’s
• .NET Applications

You need to define your goal! What am I trying to do here?

• Each engagement is different!
• Each server and workstation will react different when on an engagement!
• Do I even need to inject shellcode into another process?

When PI is Required

• Establish alternate C2 channel
• do you really want to have only one beacon?

• Escape from ephemeral process
• ssh, putty, browser, etc

• Change working context
• you need to download stage 2...from msbuild.exe?

Process Injection Red Team

Red Team Goals

• Do I need to run Bloodhound and bypass AV?
• Is AV picking up .NET injection?
• Can I even get a payload on disk?
• What is the risk of a remote process injection compared to starting my own?
• You need to adapt and stop using commonly detected techniques. Its time to

write your own stuff!

Local Process injection can help here! You can inject into a running process that you
are already sitting in!

Process Injection Blue Team

Blue Team Goals

• Do I have a way to monitor processes today for process injection?
• Do we have any logging to monitor for abusive Windows API calls?
• Sysmon can be a huge help for Blue Teams.
• The Windows event log picks up 85% of all process injection techniques in some

fashion.
• You will need to build rules and TTP’s out for some process injection methods

that are hard to detect.

The Hard Truth: Every AV/EDR can be bypassed with a process injection method!

Process Injection - CreateRemoteThread

• Simple local process injection into memory
• Can load shellcode easily into a local process
• Remote process injection is also possible with CreateRemoteThread
• We can use C, C++, or .NET to achieve injection with CreateRemoteThread

Red Teams:
• What type of detection events would be generated by local process injection vs

remote process injection using CreateRemoteThread?

Blue Teams:
• How would you go about detecting local and remote process injection? Is this

easy to do?

Process Injection - CreateRemoteThread

What's required to inject shellcode into a process?
• Get PID
• Get Handle
• Create Memory Buffer
• Write Shellcode to Memory Buffer
• Create Thread and Execute Shellcode
CreateRemoteThread APIs:
• OpenProcess
• VirtualAllocEx
• WriteProcessMemory
• CreateRemoteThread
Is it really this simple?

Process Injection - CreateRemoteThread

Process Injection - CreateRemoteThread

Process Injection – Process Hollowing
What is Process Hollowing?
• Process hollowing is commonly performed by creating a process in a suspended

state then unmapping/hollowing its memory, which can then be replaced with
malicious code.

• Executable code is removed during a process creation and is then replaced with
malicious code

• Allows us to run a full executable inside another executable but makes it look
like a normal process such as notepad.exe

• Process Hollowing is just a fancy name for a container holding code inside a
process

Process Injection – Process Hollowing

• Why use Process Hollowing?
• Benefits of Process Hollowing as a red team?
• Loading full executables into a suspended process, no need for shellcode here
• Process Hollowing is used by malware and is still currently seen in the wild
• Can we detect Process Hollowing? How would you do this?
• Do this technique really bypass AV/EDR products in 2022?

Process Injection – Process Hollowing
Important Items:
• Create Legit Process in suspended state
• Remap memory of created process
• Copy over executable code
• Update entry point and memory

registers
• start process which executes malware

code

Process Injection – Process Hollowing

Red Team Thoughts
• Most POC’s require a payload already to be on disk, is this worth the risk?
• Old exploits such as Juicy Potato targeting server 2012 could be used here
• Can’t inject shellcode but can start a process, maybe the way to go?
• At some point during an engagement, you will need a payload on disk!
• How can I make this undetectable by AV/EDR?
Blue Team Thoughts
• This should be easy to detect right?
• Process Tampering only happens when bad guys do bad things?
• Does your SOC or security team log process tampering?
• Sysmon can be used here to detect this type of attack!

Process Injection – Process Hollowing

Process Injection – Process Hollowing

Process Injection – Early Bird
What is Process Injection Early Bird?
• Involves creating a suspended process in which malicious code can be written

and executed before the process' entry point (and potentially subsequent anti-
malware hooks) via an APC.

• Another injection technique that creates a process in a suspended state
• Memory is allocated and shellcode is copied over. Standard Windows API’s used!
• APC routine is set and points to the shellcode, then is queued to main thread
• Thread is resumed and shellcode is executed!

Process Injection – Early Bird
A brand-new process injection technique that was found in the wild!
Red Team:
• QueueUserAPC call is used and is not usually hooked by AV/EDR
• We can inject shellcode/EXE’s directly into a suspended process
• Thread based start of shellcode, currently most AV/EDR do not pick this up!
Blue Team:
• Hard to detect but its possible
• Attackers are starting legit signed Microsoft processes and injecting into them
• Lots of false positives in Sysmon and other products

Process Injection – Early Bird

CreateRemoteThread APIs:
• CreateProcess
• VirtualAllocEx
• WriteProcessMemory
• QueueUserAPC
• ResumeThread

Seems simple for a technique that can bypass AV/EDR in 2022?

Process Injection – Early Bird

Labs 16 – 18

Start the labs!

If you need help, please message us or ask!

Attacking Other AV/EDR Products

If you want to execute arbitrary code on an endpoint during a penetration test, red team, or assumed
breach, chances are you’ll have to evade some kind of antivirus solution. AV engines use two
detection methods to identify malicious code – signature-based and behavior-based detection.

Behavior-based detection
Behavior-based detection involves analyzing what code does when it executes and determining if
that behavior is indicative of malicious behavior. Examples of a behavioral detection would be
identifying the use of process hollowing or the use of CreateRemoteThread for DLL injection.

Signature-based detection
Signature-based detection involves looking for static signatures that match known-bad code.
Examples of signature-based detection include matching file hashes to known malware and matching
strings within the potential malware

Attacking Other AV/EDR Products

What are some ways we can bypass?

• Code Packing and encryption
• Code mutation
• Stealth techniques
• Killing or blocking network traffic to central AV servers
• Obfuscation

Attacking Other AV/EDR Products

Do we even need to bypass AV or EDR?

• Stopping AV? In this possible in 2022?
• Disable AV with debugger?
• Uninstall AV?
• Execute from a UNC path or USB?
• Execute from a alt data stream?
• Executing from outside the host system? What??

What are we doing here?

Please yell out and tell the
class!

What are we doing here?

Attacking Other AV/EDR Products

Attacking Other AV/EDR Products

Digital Certificates
In modern windows operating systems code signing technology is used to assist users to recognize
trusted binaries from untrusted. Native binaries are signed through the use of digital certificates
which contain information about the publisher, the private key which is embedded and the public
key.
The Authenticode signature can be used to segregate signed PowerShell scripts and binaries from
unsigned.

Attacking Other AV/EDR Products

Is this real or fake?

Attacking Other AV/EDR Products

Metadata
Some antivirus companies are relying on the digital signatures and metadata in order to identify
malicious files. Therefore, antivirus detection rate against a non-legitimate binary that is using a valid
certificate and metadata from a trusted entity will be decreased.

Attacking Other AV/EDR Products

Do you see the Original
filename in the properties?

Dumping LSASS

