
CSRF

DAY 04

⌛ 20 min

Build It Yourself

AGENDA

2

❏ Introduction
❏ Make a connection
❏ Let's create a CSRF
❏ Let's hack it
❏ Let's secure it

🧊 Step 1: Generate the token

🧊 Now add the token to the form

❏ Try to hack it
❏ So what is the solution?
❏ Tips
❏ Resources

3

🧊 Introduction

 In this practical guide, you will be building a banking

application. You are creating the money transfer form and

it has a recipient and amount field. This is very

oversimplified and in most cases, you will notice banks

add extra security measures such as requiring the user to

re-enter their password when making a transaction and

the use of MFA

(Multi-factor authentication).

In our example, an attacker will be able to emulate the

form on his own website first before we try to put a stop to

it.

4

🎯 FTP connection: hackxpert.com

🧊 User: Training

🧊 Password: test

🎯 Create a new file on the server

 📌 Use “nickname.php” for example “rat.php” where the nickname can be

anything, as long as you can copy and paste it

Make a connection

⚠ 🚨 THE SERVER GETS ERASED EVERY 24 HOURS

5

🧊 Let's create a CSRF

📌 Enter the following code in

your file and upload it to the

server.

6

Let’s hack it

Now we are going to surf to our page at hackxpert.com/Training/YOURFILE.php
and try to create a CSRF PoC. There are several tools such as burp suite pro's
CSRF PoC creator but for the free option I always prefer:

🎯 https://security.love/CSRF-PoC-Genorator/

We know it's a POST request from the part:
<form action=YOUR_FILE.php method="POST">

so that should be the easy part

7

🧊 The rest we can figure out in the developer console, so go to inspect the page:

📌 Go to the network tab and

submit the form again but
only after going to the
n e t w o r k t a b b e c a u s e
otherwise you request will
not be captured.

📌 Here in the "request

header" section, you can find
the content type

8

📌 And in the payload tab we can find the parameters we need.

📌 Let's fill these in but remember that in our tool, we need to enter parameter=value not parameter:value like

 chrome is displaying here.

9

📌 The URI is simply the value of where the original page resides that the attacker wants to emulate

📌 Now download the PoC, open it from our PC or webserver, click the button and you should see on your

training file that a transfer was executed that came from an attacker.

10

📌 Now let's make it even spookier, since you have

that HTML file for the PoC anyway, try to hide the
input fields and simply display a text like "click here
to win a million $$$"

11

let’s secure it
 🎯 Step 1: Generate the token

12

🎯Now add the token to the form

 📌We usually add these tokens in a hidden field so let's do that here

as well:

13

📌 Here you can see a new

field:

Which will contain our token when

the PHP page is rendered.

<input name="token" id="token"
value="<?php echo
$_SESSION['CSRF_TOKEN']; ?>"
hidden>

14

🧑💻 So what is the solution?

❏ So now that we have a CSRF token, it should be secure right?
Try the same method of hacking the system as we tried before
with the PoC generator. It works right? Why?

🧑💻Try to hack it

❏ Of course, you still need to check if the CSRF token is

valid so change the code as follows:

15

📌 You can notice the new

IF clause around the action

of making a transaction.

T h i s i s p r o p e r C S R F

protection but things can

still go wrong, this is why I

urge you to look at the tips.

TIPS

16

❏ CSRF can go wrong if there is no token where one is needed, this is the most
❏ overlooked issue because testing existing things is easy but realizing something is
❏ not there when it should be is hard. Use automated tooling to check all the forms
❏ with creating, update or delete actions except for registration forms and things
❏ where a user is not logged in yet.
❏ Use a hash comperating function because a normal comperator (such as ==) might
❏ open you up to type mismatching attacks
❏ Always use 1 central CSRF generator and validator you include in all pages
❏ Check the full parameter and not just part of it

Resources

17

❏ https://security.love/CSRF-PoC-Genorator/
❏ https://portswigger.net/burp/documentation/desktop/functions/

generate-csrf-poc
❏ https://owasp.org/www-community/attacks/csrf
❏ https://cheatsheetseries.owasp.org/cheatsheets/Cross-
❏ Site_Request_Forgery_Prevention_Cheat_Sheet.html

