
JWT 1

💚
JWT

Introduction
JWT or JSON web tokens are widely used these days for authorization purposes so it 
pays off to learn about what JWT’s entail and how we can abuse them. In essence, it all 
may seem simple but simplicity is often the killer of good judgment and the devil is in the 
details. Let’s explore this wonderful way of authorising users and you will soon see that 
JWT attacks are an essential tool in any hackers toolbelt.

JWT.io
To analyze, debug and play with JWT tokens in general, we can write our own very 
simply JWT encoder and decoder in python (https://pyjwt.readthedocs.io/en/stable/) but 
it’s still easier to simply use a WebClient and that is where JWT.io comes into play.

Introduction
JWT.io

Header
Body
Key

Common exploits
Hashing algorithm none
JWT manipulation
Token sidejacking
Weak token secret
Longlasting tokens

Conclusion

https://pyjwt.readthedocs.io/en/stable/
http://jwt.io/


JWT 2

A visit to the website shows us an example of JWT. This allows us to see that it’s 
nothing more than a combination of JSON strings in an encoded form. 

The structure is always as follows: “header.body.key”

Header
It all starts with the header which is used to describe what encryption algorithm is being 
used. Several popular options exist and most of them require a key as well. 

Body
The body of a JWT usually describes certain properties of a user, for example, the 
location of a user which might authorize them to access geo-locked content. This can 
be anything and usually contains some juicy information we might want to change to 
test the authorization module.

Key



JWT 3

The last part of the JWT is the key and this is the most important part because if you get 
this wrong, the server will never accept your JWT but if you are able to get the key and 
encode the value that is equally a very bad problem. 

Common exploits

Hashing algorithm none
One very common exploit that is slowly going away thankfully is when the server 
accepts JWT tokens with the header that indicated the use of no key. This will allow us 
to easily forge any token we want. 

JWT manipulation
Sometimes, user controlled values end up in a JWT token. This should never ever be 
the case but since some application abuse JWT tokens for authentication rather than 
authorization, we can still play with the contents of the JWT by changing the username 
to something that interrupts the current JWT structure and insert our own. This means 
we might be able to change values and make ourselves admin or even login as other 
users if the system is built in a bad way.

i.e.

{ 
 "username":"attack", 
 "isAdmin":"false" 
} 
 
Might turn into 
{ 
 "username":"attack", 
 "isAdmin":"false" 
} 
 "isAdmin":"false" 
}

And no that is not a type but by inserting the username attack”, "isAdmin":"false"} we 
might be able to do serious harm.



JWT 4

Token sidejacking
This exploit is basically intercepting the token/key and using it to sign a valid JWT. This 
can be very basic like a leaked token on the source code of a website.

This can be prevented and we will get more into that into another article.

Weak token secret
Of course just like with any key, this one is vulnerable to being weak and easy to brute 
force so pick a solid key and make sure it does not leak. 

Longlasting tokens
Normally, every token contains an expiration field. Usually it’s called “exp” but it might 
be called something different. Make sure the server actually disregards any JWTs that 
are no longer valid. 

Conclusion
While the attack surface on JWT is not massive, it does offer some ways we could 
potentially exploit our target and now you know what to do next time you find the JWT 
signing key 🙂


