
A hunter’s methodology V5.0 1

🔫
A hunter’s methodology V5.0
The rat is out of the bag as they say. We all know I love main application hacking
because it precludes broad scope hacking but how exactly do you go about this?

First of all, I am going to refer to

Setting Up Burp Suite

This article will contain the basis for my vulnerability and bug hunting. I always start with
doing this before even exploring the application. But what do I explore and click?

1. Exploration and enumeration
First of all, I want to make sure I have clicked on every button, link, and endpoint that I
can find but even before I do that, I read the manual. Yes, it might seem strange but the
manuals are goldmines, my friends. They tell you exactly what you can and can not do
and in this war of today, information is power!

Yes, you are right, we are at war. A cybercriminal is also on a warpath and so should we
be with the big difference that we don’t have to go to jail for it! We all know that no good
wars are even won without good preparation and a well-planned out strategy but before
you can even start planning, you need information in the form of documentation,
manuals, and FAQ pages. Make sure you open every single piece of functionality the
manual speaks of and skip no steps.

Especially if the manual tells me I can not do something security related, I will be sure to
look into that. You’d be surprised at the dumb stuff you can find by doing this while
others simply skip it.

I will also try to investigate the JS files to look for any potential endpoints I might have
missed and even consult waybackmachine (yes the actual website, not the tool). This all
serves a purpose as I want to get my site tree in burp suite as full as possible.

https://www.notion.so/Setting-Up-Burp-Suite-34588e6454724fb685b9797aa8706244

A hunter’s methodology V5.0 2

Whenever you register though, make sure to enter the following text into every single
input field where it is allowed:

‘”`>${7*7}

This will test for:

SQLi

CSTI

SSTI

XSS in 3 different contexts

And the beauty is that if you enter this for a name for example, and that name is used
later on in the application, you are auto-testing those parts of the application. This is the
lazy method though and might miss a lot.

1. Investigating parameters
Now that my site tree is filled up, I want to start with investigating the parameters on
their own, I can easily do this by going into burp and filtering to only show my
parameterized requests but remember this will not show parameters that are part
of the URL (For example /invoices/123 contains a parameter 123 which is an
identifier. THIS WILL BE FILTERED OUT). I will have specific things I am looking out
for and they have to do with a base level knowledge of most exploits.

So what am I looking for? First and foremost, anything business logic related. Dates I
can mess with where I should not, Ordering negative quantities of items, Re-applying
coupons, … anything I can think of that is related to the functionality of the site and that
is why it is so important to get to know it first. I do not joke when I say that it can take
me up to a week to get very well acquainted with a system.

You never want to dive straight into hacking because hacking means you use something
in a way it is not intended to be used but you have to know the intended use first.
Besides, it’s easier to automate some of the more technical vulnerabilities while the
more functional ones like business logic are much harder. This is an advantage for us.

A hunter’s methodology V5.0 3

2. What are we looking for?

Identifiers
For example, id=1 or invoiceId=123 - We are testing for IDORs here. Try changing the
identifiers. Make sure you look for the more obscure identifiers, for example by looking
into files as well or URLs.

Sometimes you might encounter a UUID which seems like a random string of numbers
and letters but don’t be discouraged, you can still look for IDORs but make sure you can
also find an endpoint that lists all the identifiers, for example, “GET /users” might show
all the userIDs if that is a UUID.

https://www.youtube.com/watch?
v=hN19l9T7Uws&list=PLd92v1QxPOpqFO4bcV3tGEJgPsNtJycDV

Privileged endpoints
Sometimes we can find endpoints such as /admin/getUsers.php or even when we are
just logged out, we might be able to play with the requests that require you to log in to
the application. Of course, when you are not logged in, you should not be able to send
requests successfully when they require authentication.

We have to test any endpoints that require a login but we also have to test any
admin/higher privilege user’s endpoints with a lower privilege level user.

https://www.youtube.com/watch?
v=wCqKY3iHXuc&list=PLd92v1QxPOppEqAGjWmAkUehr5dIUIj5g

CSRF tokens
A CSRF token is a protection mechanism that is meant to prevent attackers from simply
being able to copy the input forms you have and hosting them on their own site while
making a request to your site. This might not seem so dangerous at first but imagine if
someone could trick you into clicking a button that says anything and after clicking that,
they change your email and before you know it, you will have lost your account with no
way to recover!

Here are some common CSRF bypasses:

https://www.youtube.com/watch?v=hN19l9T7Uws&list=PLd92v1QxPOpqFO4bcV3tGEJgPsNtJycDV
https://www.youtube.com/watch?v=wCqKY3iHXuc&list=PLd92v1QxPOppEqAGjWmAkUehr5dIUIj5g

A hunter’s methodology V5.0 4

Check if the token is present on any form it should be — ONLY Create, Update and
Delete forms after a login page should have a CSRF token

Server checks if the token length is correct

Server checks if the parameter is there

The server accepts an empty parameter

The server accepts responses without a CSRF token

The token is not session bound

You can test these by changing the CSRF parameter in a request and seeing if it still
gets accepted.

https://www.youtube.com/watch?
v=ImqLlFMQrwQ&list=PLd92v1QxPOppWJoLDAvH4uAgOj3IrqEOU

URLs
Whenever I see a URL, several alarm bells go ringing, I can see potential for several
vulnerability types, for example LFI and RFI come to mind but also SSRF.

https://www.youtube.com/watch?v=Y_RNGl5snKM

https://www.youtube.com/watch?v=LF8s-x1QMlY

Here are some common LFI/RFI bypasses:

Using // to bypass

/\ to bypass

\\

%00 to bypass (null byte)

@ to bypass

URL encoding

double encodings

For SSRF check the following:

SSRF against server itself

https://www.youtube.com/watch?v=ImqLlFMQrwQ&list=PLd92v1QxPOppWJoLDAvH4uAgOj3IrqEOU
https://www.youtube.com/watch?v=Y_RNGl5snKM
https://www.youtube.com/watch?v=LF8s-x1QMlY

A hunter’s methodology V5.0 5

SSRF against other servers on the network

I might also try and look for open redirects. Here are some common bypassed for that:

evil.com/expected.com

Javascript openRedirects

Hidden link open redirects

Using // to bypass

https:evil.com (browser might correct this, filter might not catch it)

/\ to bypass

%00 to bypass (null byte)

@ to bypass

Parameter pollution (adding the same parameter twice)

https://www.youtube.com/watch?v=qpgzTuBHGPA&t=77s

Uploading of images - SVG
SVG images are basically just XML files that describe what the image should look like.
As you may know, XML opens the door for potential XXE vulnerabilities.

https://www.youtube.com/watch?
v=MlJMeAobSxA&list=PLd92v1QxPOpq80iuGE0woKTxGNVdO_fFg

Check: SVG files (images), DOCX/XLSX, SOAP, anything XML that renders

Actions: Blind SSRF, file exfiltration, command exec

SOAP Requests
Since a soap request is nothing more than an XML request in it’s core, this is the ideal
candidate to go looking for XXE possibilities.

https://www.youtube.com/watch?
v=MlJMeAobSxA&list=PLd92v1QxPOpq80iuGE0woKTxGNVdO_fFg

Check: SVG files (images), DOCX/XLSX, SOAP, anything XML that renders

Actions: Blind SSRF, file exfiltration, command exec

http://evil.com/expected.com
https://www.youtube.com/watch?v=qpgzTuBHGPA&t=77s
https://www.youtube.com/watch?v=MlJMeAobSxA&list=PLd92v1QxPOpq80iuGE0woKTxGNVdO_fFg
https://www.youtube.com/watch?v=MlJMeAobSxA&list=PLd92v1QxPOpq80iuGE0woKTxGNVdO_fFg

A hunter’s methodology V5.0 6

Potential queries
I am by far no expert in SQLi but I will still look for it on every parameter of which I
suspect it is used in query and I will test for verbose SQLi but also blind SQLi. I don’t
have many tricks for you here friends, just the following:

‘“ to trigger an SQLi error in every parameter

Run SQLmap to finish the PoC

JWT tokens
JWT tokens are very important authorisation mechanisms and they should be checked
thoroughly. I recommend at least trying the following:

Checking if None-signing algorithm is allowed

Checking if Secret is leaked somewhere

Checking if Server never checks secret (aka we can enter any secret and it will be
accepted)

Checking if Secret is easily guessable or brute-forceable

https://www.youtube.com/watch?v=_gmcIi6LVCg

Unmapped object properties
This might seem like a strange one but something, a user can have a property
“isAdmin” and we can see this when we request GET /userSettings.php for example but
there is no parameter in the application to edit this. Well, my friends, there is nothing
stopping us from adding these kinds of properties to our POST /userSettings.php or
PUT /userSettings.php requests.

XSS
I would not be called the XSS Rat if I did not have some tips for you here. First of all, in
every single input field, try to get reflection of your value on the page. If you get
reflection, check in what context it is reflected and craft your attack vector based on this.

‘“`> into every input field, the moment you register and start using the
application

https://www.youtube.com/watch?v=_gmcIi6LVCg

A hunter’s methodology V5.0 7

Enter a random value into every parameter and look for reflection

See what context reflection is in

Craft attack vector based on context
— JS
— HTML
— HTML tag attribute
— …
— Url encode
— HTML entities
— Capital letters
— BASE64 encode payload

CSP might be active
— Try bypasses
— See what is active and where script can be gotten from
— Encode them in base64
— Mascarade script as data

https://www.youtube.com/watch?v=5r4E4EJwNo0&t=1s

Admin panels
Whenever I see a login panel or an admin panel, the first thing I will try to do is content
discovery and try to find an endpoint that is not protected by the login screen. This will
sometimes happen on custom authentication modules.

Try headers on 403 pages

X-Originating-IP: 127.0.0.1

X-Forwarded-For: 127.0.0.1

X-Forwarded: 127.0.0.1

Forwarded-For: 127.0.0.1

X-Remote-IP: 127.0.0.1

X-Remote-Addr: 127.0.0.1

X-ProxyUser-Ip: 127.0.0.1

X-Original-URL: 127.0.0.1

Client-IP: 127.0.0.1

True-Client-IP: 127.0.0.1

https://www.youtube.com/watch?v=5r4E4EJwNo0&t=1s

A hunter’s methodology V5.0 8

Cluster-Client-IP: 127.0.0.1

X-ProxyUser-Ip: 127.0.0.1

Host: localhost

Easy username/pass

Directory brute forcing for unprotected pages

Content discovery

Template injections (CSTI/SSTI)
Template injections are becoming more and more prevalent and we can easily check for
them by looking at the versions of the templating engines or just entering ${7*7} into
every parameter and if you get something like 7777777 or 49, you know you might have
a template injection and you need to look into this.

https://www.youtube.com/watch?v=thUHg-2ci4E

${7*7}

If resolves, what templating engine

Try exploit by looking at manuals
— URL encode special chars ({}*)
— HTML entities
— Double encodings

Captcha bypasses
To bypass captcha’s I also have a few general tips for you. We all know that annoying
captcha thing that pops up every now and again, well it has gone through many phases
and all of them have known possible bypasses:

Try to change request method

Remove the captcha param from the request

leave param empty

Fill in random value

x. General tips

https://www.youtube.com/watch?v=thUHg-2ci4E

A hunter’s methodology V5.0 9

Read the JS files! I can not stress this enough!

It takes more than 8 hours to get to know an application well. Save the hacking for
when you know what you are doing or supposed to be doing.

Waybackmachine is not the only internet archive

You can look for smaller bug bounty platforms such as bugbounty.jp for example

If you don’t find anything, keep looking! It takes on average over 400 hours for a
hunter to find their first bug.

Don’t panic, bug bounties is not for money and not for finding bugs. It’s to have fun.
To do what YOU want to do. Not being bound by coverage guarantees, just
freedom. So cool!

http://bugbounty.jp/

