
Directory brute forcing 1

⚙
Directory brute forcing

Introduction
When we talk about directory brute forcing we are in essence trying to guess the
directories of our target's webserver. We know that there is a webserver running and we
might even have access to certain pages like /login.php which is guarding some juicy
loot or we might just see that there is an IIS server running and we want to explore it
some more. Whatever the case may be, we can approach this issue using several
attack strategies.

This is something that we always do automated as trying to guess possibly millions of
directories and check them manually can take quite a while as you might imagine. You
might also be able to image that if i ask you to check 10 directories that it would take
you a lot less time than checking 100000 directories. I bring this to your imagination
because even though it's normal and logical, the same goes for automated scanners.
The quality of your wordlist will determine the quality of your results but the same is true
for the length of your wordlist determining the runtime of your attack.

Attack strategies

Introduction
Attack strategies

Non recursive vs recursive scanning
Content discovery
Size does matter
Single target vs a list of targets
Parameter fuzzing, content discovery or directory brute forcing? HELP!
vHost brute forcing

Tools
BURP SUITE PRO: Burp suite content discovery
Wfuzz

Directory brute forcing 2

Non recursive vs recursive scanning
It does not matter what we want to fuzz, whether it be directories, content or even
vhosts, when we scan non recursively, we are referring to whether or not the crawler
should follow the links that it finds.

The crawler is the robot that will make the requests that we set it up to create based on
our wordlists.

In non recursive scanning we do not allow this crawler to follow any links at all. We want
the crawler to only make the requests that we tell it to and if it find a link we want the
crawler to ignore that link.

Recursive scanning however will allow the crawler to follow these links that it finds. In
recursive crawling we can also set the depth which will determine how deep the crawler
will follow those links. Sometimes the crawler might follow a link and find even more
links on that page, we can set it up to follow those links or just got 1 level deep.

Content discovery
When we talk about content discovery we can either talk about adding content
discovery to our methodology or only doing file discovery. We can also do this
recursively or non-recursively but whatever option we pick, the type of content we are
looking for will also play a factor in the runtime of our tools. If you are looking for image
files for example, you might be looking for JPG files but you might also want to add
PNG and GIF to the mix which will triple the runtime of our tools since it has to check
every request three times.

When we fuzz for content discovery we can fuzz for several different things. I
recommend that you have a specialised wordlist for every type of content because
ofcourse fuzzing for pictures will probably require a different wordlist than fuzzing for
documents.

Pictures (jpg,png,gif,...)

Scripts (js)

Documents (xls,xlsx,doc,docx,pdf,...)

Files/endpoints (asp, aspx, php , ...)

Use your imagination!

Directory brute forcing 3

Size does matter
We've talked about runtime several times before in this document and that has a
reason. Runtime is going to be one of the determening factors of a succesful attack. You
can't have a good directory brute force if it runs for 6 years! So you might be wondering,
okay what wordlist exactly do i use uncle? I say pick one but make it count!

heilla/SecurityTesting

Contribute to heilla/SecurityTesting development by creating an
account on GitHub.

https://github.com/heilla/SecurityTesting/blob/master/wordlists/C
ollection%20of%20wordlists.md

Make sure you pick a list that fits your target and if you can't find one then maybe you
should make one.

There will be a video included in the course on what wordlists that i use.

Single target vs a list of targets
Some of these tools will allow us to check a whole list of URLs and do directory brute
forcing on that list instead just checking one target at a time. Even if the tool we use
does not allow us to do this, a simple command can be all that it takes to feed a list to
our tool instead of a single URL.

In this case, we really need to make sure our wordlists are not too big because every
single scan will be repeated and increase the scantime. I do not recommend this and i
recommend only doing targetted directory brute forcing attacks. Especially on slow
computers this will be a huge hassle to complete and we do not want to frustrate
ourselves any more than we need to.

Parameter fuzzing, content discovery or directory brute
forcing? HELP!
Besides the already known options of content discovery and directory brute forcing,
there is also an option to perform parameter fuzzing. If you think about it, all that we are
doing is just replacing a certain value in a URL up to this point, for example we can take
this URL as input

https://github.com/heilla/SecurityTesting/blob/master/wordlists/Collection%20of%20wordlists.md

Directory brute forcing 4

https://example.com/FUZZ

And i can then replace the word FUZZ with every single word from my list and make the
request. This can be either directories or files if i append a file extensions:

https://example.com/FUZZ.php

But what this also allows us to do is replace a certain GET parameter or POST value
from our request with a value from our list:

https://example.com/index.php?FUZZ=1

And yes ladies and gentlemen, it can get even stranger, we can fuzz subdomains:

https://FUZZ.example.com/

vHost brute forcing
vHost stands for virtual host. Virtual hosts are when multiple web applications are run on
the same webserver. This is often done to save on having to setup and buy a seperate
server but it is not recommended at all, this has never been a valid reason to let anyone
stop them to from doing anything though and as you can imagine it does happen in
production environments.

An example of this can be when a company decides to host the production server and
the UAT server on the same webserver but on a different vhost.

testing.google.com

www.google.com

Tidofjgdfg.hogfdpigdf.com

it doesn't matter as long as they all resolve to the same IP adress, it means they are
configured in the /etc/hosts file of that host. I only mention them briefly in this course as i

Directory brute forcing 5

think they are not as big of a security issue as people make them out to be in most
situations as long as the seperation of flows is handled properly but there might be
others that differ from this opinion.

Tools

BURP SUITE PRO: Burp suite content discovery
Burp suite pro users have a range of engagement tools available to them, one of them
and a very important one for that matter would be the content discovery tool. This is one
of the most sophisticated spiders i ever found and it's the one i use most, however it is
limited to content and directory brute forcing, it can not fuzz parameters.

Burp Suite Pro version content discovery

Directory brute forcing 6

There are a lot of options in here that most people don't ever touch which is a big
shame! Ofcourse the default options are fine, but i am a big proponent of tweaking your
attack strategy for every target. This includes setting custom settings for our attack
tools, blindly running the same tool against a range of different targets is not a good
idea. Let's have a look at what we can tweak here.

Start directory: We can play with this if we don't want to test the root of a website for
example

Discover: Here we can pick if we want to find only files, directories or both (Default
option), The recursive subdirectories option allows us to set how deep the spider
will crawl. By default if the spider has gone 16 links deep into a website it will stop
but we can tweak this.

Filenames: Burp suite has some filename lists built in by default and it will use the
short and long list by default which makes the scan quite lengthy if the spider can
go 16 levels deep. I usually start out with the small list and if i don't find what i need,
i will go on to the big list, and ofcourse we can never forget about custom lists
either. They are the diesel to our engines!

Directory brute forcing 7

File extensions is something you ALWAYS have to tune to your target, just open it,
open wappalyzer(browser plugin) and see what server is running. Don't waste time
trying to brute force ASPX servers with PHP files. Don't be a dumbass.

Discovery engine: This will determine how the crawler engine will behave towards
your target. The default options are good here unless you know for sure your target
is case (in)sensitive. The number of threads determine how many children burp
suite will spawn (that sounds brutal) to start crawling and discovering content. If
your target requires you to keep it low and slow, ofcourse do change these values.

When everything is configured correctly, burp suite can start running.

Wfuzz
Wfuzz is a fuzzer that provides us with a multitude of useful options. We will go over the
most useful ones. We can do this either in the CLI in a command or we can import it into
our python scripts but we will be focussing on the CLI option. It is important to know that
wfuzz can do much more than just fuzzing. It has

A payload generator

Encoder/decoder

Library for python

I will not explain the basic usage as it's self explanatory over at
https://wfuzz.readthedocs.io/en/latest/user/basicusage.html#fuzzing-paths-and-files

$ wfuzz -w wordlist/general/common.txt --hc 404 http://testphp.vulnweb.com/FUZZ

Where the —hc flag stands for which status code mean an error. If you see that you are
constantly getting 500 error codes, wfuzz will not block them by default and you'd have
to change the command

$ wfuzz -w wordlist/general/common.txt --hc 404,500 http://testphp.vulnweb.com/FUZZ

https://wfuzz.readthedocs.io/en/latest/user/basicusage.html#fuzzing-paths-and-files

