
Enumeration of errors and stack traces 1

🔴
Enumeration of errors and stack 
traces

Introduction
Stack traces and errors often contain valuable information about the targets we are 
testing. They often expose some internal workings of the websites we testing and might 
give us an idea on what we need to do to get our attack scenario to work. Things we 
might find in stack traces and errors can include:

Dependencies being used

Some source code being used

Implementations of programming principles

What values you are allowed to enter

Why your value was wrong

If the error says "Account not found" and "password incorrect" it is way to verbose

Version numbers

Memory dumps

Ip addresses from the internal network of the server

Introduction
Test objective
Testing for these errors and stack traces

How to test web servers
How to test websites

Error handling and what to log when
Extra resources



Enumeration of errors and stack traces 2

Test objective
Besides the obvious objectives of "Identify existing error output" and "Identify existing 
error output" as defined by OWASP, we want to make sure we understand every 
parameter the application uses and what kind of value is expected. We want to identify 
the unexpected inputs (such as too much characters or a string instead of an integer) 
and we want to make sure we try them all. The more "Rainy day scenario's" (Scenario's 
which the application does not expect) we can think of, the better. 

You may have noticed by now that errors and stack traces will seldom gather us a direct 
attack vector but the information contained in them can be of vital importance.

Make sure you also test for reflected XSS if the page contains a reflection of the 
tampered parameters. (For example 404 - Page /<img src=x onerror=alert()> not found 
if we visit the URL "localhost/<img src=x onerror=alert()>" which might pop an XSS). 

Testing for these errors and stack traces
We are going to make a distinction between web servers and websites as both can 
generate errors which can manifest in different ways. 

How to test web servers
Test 404 pages

Test 403 pages (tip: .htaccess might trigger 403 even if it does not exist)

Requests that breaks the HTTP RFC

How to test websites
Find all the user controlled parameters

Find out what input is expected. Pay attention to number of characters, data type, 
negative numbers, incorrect formatting on things like email,...

Execute all unexpected scenario's that the tester can think of, preferably based on 
requirements coverage if the requirements are available to avoid spending infinite 
time testing everything 

https://tools.ietf.org/html/rfc7231


Enumeration of errors and stack traces 3

Understand any errors that are being generated and see if you can manipulate the 
input to generate more errors

On testing environments debugging logging might be enabled to more easily trace 
any issues. This has to be disabled on production environments. 

Error handling and what to log when
Error handling is a sensitive topic since the developers want as much information as 
possible to debug any issues that occur but we don't want to give any attacker 
information about our system architecture. For this reason it's important that we log the 
correct things at the correct priviledge levels. 

Internal systems that can not be viewed from the internet can contain a very detailed 
logging line per defect that occurs but we need to ensure these errors never reach the 
end user. The end user needs to only see a generic error message to ensure they do 
not get a glimpse into the internal workings of our application. 

To achieve this we can create an error handling class which will trigger at the moment 
any error occurs and which will translate the error message or stack trace into a human 
readable generic text. Furthermore logging frameworks should be used and secured on 
all levels. This includes the storage of the logs and the logging framework itself. 

Extra resources
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html

Any 403 error messages give away that a resource exists. Preferably show a 
generic error message to the user

https://www.veracode.com/security/error-handling-flaws-information-and-how-fix-
tutorial

https://owasp.org/www-community/Improper_Error_Handling

https://pentestbook.six2dez.com/others/web-checklist#error-handling

https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
https://www.veracode.com/security/error-handling-flaws-information-and-how-fix-tutorial
https://owasp.org/www-community/Improper_Error_Handling
https://pentestbook.six2dez.com/others/web-checklist#error-handling

