
Web hacking 1

🥇
Web hacking

Tags checklist web

Property

Information gathering
Search engine hacking

🔎 Search engine investigation

We work exclusively, not inclusively. This means we start at the base
site:target.com and exclude results we viewed. This ensures we don't miss
things. We ALSO work inclusively, but it's only after working exclusively

Webserver fingerprint + Source code investigations

👇 Fingerprinting a webserver + finding new web applications

Asset discovery

Information gathering
Whitebox techniques
Exploits

Login system
Input validation
General exploits
Business logic flaws
XSS

General
Reflected XSS
Stored XSS
DOM XSS

Extras

https://www.notion.so/380c3bc8b56846108ce78f0062bed869

Web hacking 2

👚 User emulation

Endpoint discovery

Enumerate any admin interfaces

gobuster

ffuf

discover content from burp suite pro

Google dorks

Alternative server ports

Look for admin interface references in the source code

Testing HTTP methods

Testing HTTP methods

Testing HTTP methods

If PUT is supported, try to PUT a file on the server (send OPTIONS call to find
out)

try to GET that file

Enumeration of errors and stack traces

Repository recon

github dorking

Fingerprint the application

Map the application architecture

Map out integration points

Find

Data flows

Paths

Race's

https://www.notion.so/26817a66a1c74bbab24739237f3747bf
https://www.notion.so/d674a6447f4a49b7a9b0a6bccb95ed51

Web hacking 3

Whitebox techniques
Check in the console if anything is being logged that should not be

Check internal logging to see if it complies to policy

Pay special attention to security logging

If there is a WAF or firewall or ACL (access control list), review the ruleset

Review the system configuration

Preferably a mix of automated and manual testing

Check if a file integrity check is enabled

Exploits

Login system
Test the JWT token

Signature Verification

The none signing algorithm sometimes is accepted

Weak HMAC Keys

HMAC vs Public Key Confusion

Web hacking 4

https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/06-Session_Management_Testing/10-
Testing_JSON_Web_Tokens

Login bypass

Directory brute force

SQLi

Session ID prediction

Remember me functionality might be able to abuse

XPath Injection authentication bypass

LDAP Injection authentication bypass

https://book.hacktricks.xyz/pentesting-web/login-bypass/sql-login-bypass

Username enumeration

Does system return different response if username exists?

Does the system take longer to process if username is correct?

Credentials transported over HTTP

Default credentials

Issues in the registration process

Tokens sent over plaintext?

DoS by entering too many characters

Register a user with XSS attack vector in every input field, use for further
testing

Weak password systems

Test password reset systems

Add second email parameter with email of attacker

Any tokens sent over HTTP

Weak predictable tokens

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/10-Testing_JSON_Web_Tokens
https://book.hacktricks.xyz/pentesting-web/login-bypass/sql-login-bypass

Web hacking 5

Is the user forced to reauthenticate

SessionID in URL

Logout should invalidate session tokens

Validate that a hard session timeout exists.

Weak lockout

Is there any alternative login system

Oauth

Mobile login

Token login with weak tokens

Testing for session puzzling

https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/06-Session_Management_Testing/08-
Testing_for_Session_Puzzling

Session hijacking

Request from attackers website to victims bank for example to login. The bank
will possibly return session vars if bad config. This leads to attackers owning
session vars now.

https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/06-Session_Management_Testing/09-
Testing_for_Session_Hijacking

Input validation
XSS (See XSS topic)

SQLi

XXE

Command injection

SSTI/CSTI

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/08-Testing_for_Session_Puzzling
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/09-Testing_for_Session_Hijacking

Web hacking 6

Insert ${7*7} into every field you see, if it resolves, investigate further

SSRF

Add burp collaborator URL in everywhere that URL resolves

HTTP parameter polution

https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/07-Input_Validation_Testing/04-
Testing_for_HTTP_Parameter_Pollution

LDAP injection

SSI (server side includes injection)

XPath injection

Clickjacking

GraphQL testing

General exploits
RFI/LFI

BAC

Insecure session management

Subdomain takeover

Check if user role is user controllable (Can you make yourself admin)

Authentication bypass

Default accounts

Password quality checks

No blank passwords allowed

Ensure strong passwords are required

Test the cookies attributes

Sensitive cookies should have secure and httponly flag

Domain and path need to be set right

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/04-Testing_for_HTTP_Parameter_Pollution

Web hacking 7

Expires in timely manner

SameSite Attribute

CSRF testing

Only on sensitive functions, not on login/logout

File upload testing

Uploading of malicious content

File upload restrictions

Changing mimetype

Using nullbytes

Test integration points for overextended priviledges

Test if the browser caches sensitive information

Use the back button after logout timer

Click around after login timer

Check cache headers on sensitive pages

There should not be any weak encryption used anywhere

Search for the following keywords to identify use of weak algorithms: MD4,
MD5, RC4, RC2, DES, Blowfish, SHA-1, ECB

Business logic flaws
Data validation

example may be if I use my credit card at multiple locations very quickly it may
be possible to exceed my limit if the systems are basing decisions on last
night’s data.

Identify data injection points.

Validate that all checks are occurring on the back end and can’t be bypassed.

Attempt to break the format of the expected data and analyze how the
application is handling it.

Web hacking 8

Test for hidden parameters that you can change with impact.

For example changing account type from consumer to business

Check for things that are only hidden in the front-end

Check for disabled fields that are only front-end disabled

Integrity checks

Review the project documentation for components of the system that move,
store, or handle data.

Determine what type of data is logically acceptable by the component and what
types the system should guard against.

Determine who should be allowed to modify or read that data in each
component.

Attempt to insert, update, or delete data values used by each component that
should not be allowed per the business logic workflow.

Test functions that can only be used a limited amount of times

For example a coupon code that you should only be applying one time but that's
just a front-end check

If something gets added to account and should be withdrawn again, check if it is.

For example if you order an item but cancel the order, your loyatee points
should go down as well.

XSS

General
All XSS must also be viewed via an admin interface if that is available

'"> into every field or your own attack vector as soon as you register to
passively test a little bit for HTMLi, HTML tag injection and JS injection

Blind XSS is just stored XSS that the user can not view the result of

Cheat sheet available

https://www.notion.so/5c643ce56d1e4ed9871fdd909ded017e

Web hacking 9

Reflected XSS
Design step

Find a foothold

Identify ALL the user controlleable parameters

HTTP parameters

POST parameters

POST data

Hidden fields

Predefined radio or selection value

Identify where a value is reflected on the page

Pay attention to the context

JS context

\n (new line)

\r (carriage return)

' (apostrophe or single quote)

" (double quote)

\ (backslash)

\uXXXX (unicode values)

HTML injection

> (greater than)

< (less than)

& (ampersand)

' (apostrophe or single quote)

" (double quote)

HTML tag attribute

> (greater than)

Web hacking 10

' (apostrophe or single quote)

" (double quote)

` (backtick)

...

Craft an attack vector for the specific context

Attacker creates and tests an offending URI

Sometimes filters are in place

Figure out what filters exist

See if we can get around them

Sometimes <script> might be filtered

But %3cscript%3e not
where
%3c = <

%3e = >

Social engineering step

Attacker gets victim to click link and execute XSS

Execution step

Make sure the XSS has impact and be realistic

Specific exploit gets executed

I.E. cookie stealing

I.E. executing JS function

I.E. Stealing data on a page

Stored XSS
Design step

Find a foothold

Identify the stored input and where it is reflected in the client side

Web hacking 11

Hidden fields

POST parameters

headers

cookies

...

Tester must define all user controller variables and parameters

Identify where a value is reflected on the page

Pay attention to the context

JS context

\n (new line)

\r (carriage return)

' (apostrophe or single quote)

" (double quote)

\ (backslash)

\uXXXX (unicode values)

HTML injection

> (greater than)

< (less than)

& (ampersand)

' (apostrophe or single quote)

" (double quote)

HTML tag attribute

> (greater than)

' (apostrophe or single quote)

" (double quote)

` (backtick)

Web hacking 12

...

Craft an attack vector for the specific context

Attacker creates and tests an offending URI

Sometimes filters are in place

Figure out what filters exist

See if we can get around them

Sometimes <script> might be filtered

But %3cscript%3e not
where
%3c = <

%3e = >

Social engineering step

Attacker gets victim to click link and execute XSS

Execution step

Make sure the XSS has impact and be realistic

Specific exploit gets executed

I.E. cookie stealing

I.E. executing JS function

I.E. Stealing data on a page

DOM XSS
See DOM XSS

Extras
Contact form

Rate limiting (spammer prevention)

CAPTCHA bypass (spammer prevention)

https://www.notion.so/5e31c327eca54f2c84e07fd5e46df88a

Web hacking 13

Application level DoS

Enter big input one time

Enter decent size input many times

Application lockout should apply on sensitive areas such as login

Application lockout may not be triggered by users for others

🔴 Enumeration of errors and stack traces

