
pentest report example 1

🔏
pentest report example
Heading page
Summary
Attack narrative
Findings

BAC on viewusers.php
Steps to reproduce
Expected result
Actual result

BAC on new.php
Steps to reproduce
Expected result
Actual result
Score

IDOR on the editing of posts
Steps to reproduce
Expected result
Actual result
Score

IDOR on the deletion of posts
Steps to reproduce
Expected result
Actual result
Score

No HTTPOnly flag defined on session cookie
Missing CSP header
Reflected XSS on search page leads to account takeover

Steps to reproduce
Expected result
Actual result
Score

No CORS headers defined
Self XSS chained into full XSS with CSRF

Steps to reproduce
Creation of PoC
Expected result
Actual result
Score

There is no rate limiting on the login/register pages. Same goes for anything.
Score

pentest report example 2

Heading page

Cheesebook

15/12/2021

Testers:

The XSS rat - info@thexssrat.com

BE0508.999.580

0476876632

Summary
We were able to identify several high severity vulnerabilities, some of which can easily lead to account
takeover. Security seems to be lacking in a few key areas and it's recommended to go through each
item and see if remidiation is required.

Attack narrative
In this assignment, we are testing in accordance to the OWASP top 10 web vulnerabilities. We are
looking for each item on the list and following the OWASP web testing guide:

https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/07-
Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion

Findings

BAC on viewusers.php

Conclusion
Recommendations
Cleanup/retention steps
GO/NOGO

Extra examples

https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion

pentest report example 3

There seems to be a BAC since everyone can open up viewUsers.php and see the contents of the user
list.

Steps to reproduce
Make sure to be logged out.

Navigate to https://hackxpert.com/pentest/viewUsers.php

Expected result
Only admins can view a list of users

Actual result
One does not have to be logged in to view the list of users

BAC on new.php
There seems to be a BAC since everyone can open up viewUsers.php and see the contents of the user
list.

Steps to reproduce
Make sure to be logged out.

Navigate to https://hackxpert.com/pentest/new.php

Expected result
Only logged in users can make a post

Actual result
One does not have to be logged in to make a post

Score
10/10 PII is leaked

IDOR on the editing of posts
By directly going to the page to edit a post and entering any identifier, we can edit posts that do not
belong to us.

Steps to reproduce
Log into the application

Go to https://hackxpert.com/pentest/edit.php?id=108

Fill in the ID of a post of another user

https://hackxpert.com/pentest/viewUsers.php

pentest report example 4

Expected result
We get an error message

Actual result
We can see the edit page and actually edit a post

Score
7/10

IDOR on the deletion of posts
By directly going to the page to edit a post and entering any identifier, we can edit posts that do not
belong to us.

Steps to reproduce
Log into the application

Go to https://hackxpert.com/pentest/delete.php?id=108

Fill in the ID of a post of another user

Expected result
We get an error message

Actual result
We can delete a post that is not ours

Score
8/10 This can be very annoying to users driving them away

No HTTPOnly flag defined on session cookie
This always needs to be defined if possible, see the next issue.

Missing CSP header
This always needs to be defined if possible, see the next issue.

Reflected XSS on search page leads to account takeover
When searching for a XSS attack vector, no posts will be found but a reflected XSS will be triggered due
to the reflection of the search parameter.

Steps to reproduce

pentest report example 5

Search ""

Expected result
We get a message no results have been found but no reflection is done.

Actual result
An XSS attack vector will trigger. You can steal the cookies due to not having the HTTPOnly flag
enabled. This can lead to full account takeover. This is made even worse because there is no CSP
header which makes it very easy to smuggle out data.

Score
10/10 account takeover of anyone

No CORS headers defined
These should always be defined when possible

Self XSS chained into full XSS with CSRF
In the user panel, if you make a post with a XSS attack vector title, it will pop up but since this is only in
your own account panel, this is self XSS.

We can however upgrade this because there is no CSRF token on the creation of a post. This means
we can make anyone create a post with a XSS attack vector via CSRF and when they visit their account
panel, we can again steal their session cookies.

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/b6534a7b-3ec9-4dbd-a8d0-e4a8
d4390646/csrfPoc_(9).html

CSRF PoC with XSS provided.

Steps to reproduce
Log in

Click on the PoC

Go to the user panel

You now have a XSS attack pop up

Creation of PoC
XSS Vector is encoded with https://www.urlencoder.org/

XSS PoC is generated with https://security.love/CSRF-PoC-Genorator/

https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fb6534a7b-3ec9-4dbd-a8d0-e4a8d4390646%2FcsrfPoc_(9).html?table=block&id=39951aff-2195-43f2-bafc-9c0b52768dbd&spaceId=7bd7fce6-6aa7-40bd-8321-d35749a8a8df&userId=baea0d4f-4d5f-4eeb-81bc-86fc17be2ff0&cache=v2
https://www.urlencoder.org/
https://security.love/CSRF-PoC-Genorator/

pentest report example 6

Settings:

Data
title=%3Cimg%20src%3Dx%20onerror%3Dalert%28%29%3E&description=test&cat=3&submit=Post

URI: https://hackxpert.com/cheesebook/new.php

Method: POST

Encode: application/x-www-url-encoded

Expected result
The HTML is filtered properly and the user sees their post. It's not possible to insert a post via CSRF
due to a token being present that is needed to be verified. This token is not there.

Actual result
An XSS attack vector will trigger. You can steal the cookies due to not having the HTTPOnly flag
enabled. This can lead to full account takeover. This is made even worse because there is no CSP
header which makes it very easy to smuggle out data.

Score
10/10 Account takeover

There is no rate limiting on the login/register pages. Same goes
for anything.
This allows attackers to easily perform attacks such as credentials stuffing in which they will attempt to
log in with a list of usernames and passwords they gained from hacking other applications. Attackers
can also spam by sending a lot of requests to create new posts. In combination with new.php not being
secure and the attacker not even having to log in, this issue is severe.

Score
8/10

Conclusion
The application contains a lot of weaknesses of high severity still and being able to chain them can get
use some very impactful results. This application is not production ready.

Recommendations
Add authorization and authentication checks to viewUsers.php and new.php

Add authorization checks to edit.php and delete.php

Do not reflect user values, if you must, filter them properly

https://hackxpert.com/cheesebook/new.php

pentest report example 7

Add CSRF tokens to every form that is put behind a login screen and verify it

Add CSP and CORS headers

Add rate limiting

...

Cleanup/retention steps
We deleted all posts that were used in the pentest and not required for the report.

GO/NOGO
No go based on previous advice

Extra examples

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/5fd66925-1247-4d10-9098-5c7c1
90cf93c/Pentesting.docx

https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F5fd66925-1247-4d10-9098-5c7c190cf93c%2FPentesting.docx?table=block&id=648ba47a-f78e-46a7-bfdf-11b4aeda5695&spaceId=7bd7fce6-6aa7-40bd-8321-d35749a8a8df&userId=baea0d4f-4d5f-4eeb-81bc-86fc17be2ff0&cache=v2

