
@onwebsecurity https://www.onwebsecurity.com

LEAD PENETRATION TESTER
Peter Mosmans

Automating Code Security Testing

“Where should we start when
performing tests?”

“Let’s start with testing our own
code”

“Using the right tools can make a lot
of difference”

Scenario

Maeve Jennifer

Automated Security Testing Overview

Automated Security Testing

PerformingApproaching Implementing

Third Party
Libraries ContainersCode Infrastructure

Automated Security Testing Overview

Automated Security Testing

PerformingApproaching Implementing

ContainersCode InfrastructureThird Party
Libraries

Automated Security Testing Overview

Automated Security Testing

PerformingApproaching Implementing

ContainersCode Infrastructure

SecretsLinters Code
Quality

Third Party
Libraries

Automated Security Testing Overview

Automated Security Testing

PerformingApproaching Implementing

ContainersCode Infrastructure

SecretsLinters Code
Quality

Third Party
Libraries

This bullet list
with

animations Using linters

Demo:
- Using a linter

Detecting secrets

Demos:
- Detecting existing secrets
- Using pre-commit hooks
- Detecting secrets in a pipeline

Using code quality metrics systems

Demos:
- Installing and using a code quality

metrics system

Module
Overview

Linting Code

What Can Linting Do?

Detect errors

Detect formatting or styling issues

Suggest best practices

Increases overall quality of the code

Makes maintenance of code easier

Issues With Linters

Not every language has “quality” standard linter tools available

Different versions or configurations can lead to different results

Information overload can lead to focusing on “unimportant” issues

Shift Left

Penetration
testing

Dynamic
application

security testing

Define Design Develop Deploy Maintain

Static application
security testing

Where Security Tests Can Be Performed

Commit

Pre-commit

Build Push Deploy

Where and When to Use Linters

Commit

Pre-commit

Build Push Deploy

Tool That Will Be Demo-ed

Haskell Dockerfile Linter (hadolint)
- Dockerfile linter enforcing best practices

Demo

This bullet list
with

animations

Linting a Dockerfile
- Use linter on command-line
- Use linter in build pipeline
- Modify Jenkins job to conditionally

push Docker image

Workflow for Linters

Agree upon tooling
- Create list of current linter issues
- Audit the list of issues
• Is it a false positive or an issue?

Add configuration file to repository

Use configuration with every scan
- Warn or fail build for new issues

Update configuration when necessary

Advantage

Linters

Improves readability
Improves consistency

Compatibility

Depends on linter,
programming language,
and “quality” of linter

Trialability

Easy to employ in
Continuous Integration

pipelines

Detect errors
Detect formatting or styling issues
Suggest best practices

For All Tools: Iterative Process

Select

Implement
Analyze

Improve

https://github.com/hadolint/hadolint

https://github.com/PeterMosmans/tools-image/

More Information

https://github.com/hadolint/hadolint
https://github.com/PeterMosmans/devsecops-lab/

Detecting Secrets

Why Detecting Secrets?

Should not be hardcoded

Should not be unencrypted

Should not be stored in source code

Or…
- Should be validated

Where and When to Detect Secrets

Commit

Pre-commit

Build Push Deploy

Tools That Will Be Demo-ed

truffleHog
- Searches through git repositories for

secrets

pre-commit
- A framework to manage pre-commit git

hooks

detect-secrets
- Detects secrets with options for setting

baselines

Demo

This bullet list
with

animations

Detecting existing secrets
- Install truffleHog
- Run truffleHog on tools-image
- Clone juice-shop project
- Run truffleHog on juice-shop

Demo

This bullet list
with

animations

Detecting new and existing secrets
- Install and run detect-secrets
- Install pre-commit
- Configure pre-commit

Demo

This bullet list
with

animations

Detecting new secrets during automated
security testing
- Set up pipeline for juice-shop
- Use detect-secrets in the Jenkins

CI/CD pipeline

Workflow for Detecting Secrets

First generate a baseline:
- Create list of current secrets
- Audit the list of secrets
• Is it a false positive or a secret?

Add baseline to repository

Compare every scan with the baseline
- Warn or fail build when detecting new

secrets

Update baseline when necessary

Advantage

Detecting Secrets

Quick wins
Creates an overview of

the current status
Makes it easy to

gradually rollover

Compatibility

Most tools understand
git

Works with plaintext files

Trialability

Easy to employ in
Continuous Integration

pipelines
Not much prerequisites

Detects secrets in repositories
Pluggable architecture
Highly customizable

https://github.com/dxa4481/truffleHog

https://pre-commit.com/

https://github.com/Yelp/detect-secrets

https://github.com/bkimminich/juice-shop

More Information

https://github.com/PeterMosmans/devsecops-lab/
https://github.com/PeterMosmans/devsecops-lab/
https://github.com/PeterMosmans/devsecops-lab/
https://github.com/bkimminich/juice-shop

Using Code Quality Systems

Wat Can A Code Quality Metrics System Do?

Detect formatting or styling issues

Suggest best practices

Gives an “objectified” view of the state of
the code
- ..as well as over time

Makes quality of code visible

Increases overall quality of the code

Makes maintenance of code easier

Issues With Code Quality Metrics Systems

Often resource-intensive and slow

Information overload can lead to focusing on “unimportant” issues

Metrics can give a false sense of (in)security

Where and When to Use Code Quality Systems

Commit

Pre-commit

Build Push Deploy

Tool That Will Be Demo-ed

SonarQube
- Code quality metrics tool

Demo Lab

Client

GitLab Jenkins

gitlab.demo.local
80 7722 8080

Registry

registry.demo.local
5000

SonarQube

sonarqube.demo.localjenkins.demo.local

9000

Demo

This bullet list
with

animations

Installing a code quality metrics system:
- Run and configure SonarQube
- Configure Jenkins

Demo

This bullet list
with

animations

Using a code quality metrics system:
- Use SonarQube in a Jenkins CI/CD

pipeline

Workflow for Code Quality Metrics Systems

Select a system with support for
application’s language and frameworks

Let system generate a list of current issues

Audit the list of issues
• Is it a false positive or an issue?
• Should it be shown?

Configure rules

Compare every scan with previous results

Advantage

Code Quality Metrics System

Graphical dashboard on
code quality

Gives insight into impact
of changes

Compatibility

Depends on language

Trialability

Set up moderately easy
Configuring and

interpreting results is
time-consuming

Makes quality of code visible
Gives an objective view of the “state” of the code
Suggest best practices

https://www.sonarqube.org

https://github.com/PeterMosmans/devsecops-lab/

More Information

https://github.com/PeterMosmans/devsecops-lab/
https://github.com/PeterMosmans/devsecops-lab/

Do not underestimate the
time it takes to

properly configure
security testing tools

This bullet list
with

animations

Linting
- Can give quick feedback
- Use strict versioning for linters

Detecting secrets
- Quick wins: Easy to implement

Code quality metrics systems
- Advanced reporting metrics
- Time-consuming to configure and use

Summary

Maeve Jennifer

Next Up

“Some tools were
easier to use than
expected!” “Great to hear that”

“Are you also interested in
automating third party

libraries security testing?”

“Absolutely, let’s go!”

