
PowerShell Functions for Security
Analysis
PowerShell Uses for Security Analysis

Liam Cleary
Microsoft MVP and Microsoft Certified Trainer

@helloitsliam www.helloitsliam.com

Overview
Goal: Understand Why PowerShell Is
a Core Security Tool
- Why should you use PowerShell for

security tasks?
- What security tasks can PowerShell

handle?
- Using PowerShell for network analysis,

incident response, forensics, and malware
analysis

Why Should You Use PowerShell for
Security Tasks?

Why Attackers Choose PowerShell?

Default

Remote

Analysis

Common

Memory

Whitelisting

Online Repositories
Many locations online with readily available scripts. Multiple
repositories with sample code, including malicious. Multiple security
testing and hacking frameworks are available to download for
PowerShell.

Download Files from the Internet

Using out-of-the-box commands, you can
stream files from the internet
- Invoke-WebRequest
- Invoke-RestMethod
- Start-BitsTransfer
- .NET Library (System.Net.WebClient)

Downloading Files

$file = "file.zip"
$url = http://files.domain.com/$file
$destination = "C:\Temp\Files"

Download using "Invoke-WebRequest"
Invoke-WebRequest -Uri $url -OutFile "$destination\$file"

Download using "Start-BitsTransfer"
Start-BitsTransfer -Source $url -OutFile $destination

Download using "Invoke-RestMethod"
Invoke-RestMethod -Uri $url -OutFile "$destination\$file"

http://files.domain.com/$file

Downloading Files

$file = "file.zip"
$url = http://files.domain.com/$file
$destination = "C:\Temp\Files"

Download using ".NET Class"
$client = [System.Net.WebClient]::new()
$client.DownloadFile($url, "$destination\$file")

http://files.domain.com/$file

Why Use PowerShell for Security Tasks?

Built-in Command Line Tool
No need to even check if a command line tool exists

Runs in Memory not on Disk
PowerShell executes within memory, allowing potential bypass of anti-virus providers

Included with every version of Windows
If the target machine is windows, it will contain a version of PowerShell

Ability to leverage .NET Libraries
Existing .NET libraries can be imported and utilized within scripts

Built-in Commands for Remote Execution
Native commands exist to allow remote execution across windows clients and
servers, as well as other devices that support PowerShell

Why Use PowerShell for Security Tasks?

Command Line

Parameters

Monitoring

Operating System

Downloader

Hidden

What Security Tasks Can PowerShell Handle?

What Security Tasks Can PowerShell Handle?

Log and File
Analysis

Security
Configuration and

Management

Information
Gathering

(Operating System
and Network)

Task Automation
and Scheduling

Log and File Analysis

Parse event logs from Windows operating systems

Retrieve file contents and associated metadata

Perform advanced queries within files, logs, and other types of
contents

Information Gathering

Computer name

Domain membership

Operating system

Hardware type

IP address

Physical location

Task Automation

Single tasks Scheduled tasksMultiple tasks Remote tasks

Security Configuration

Multiple Security
Frameworks are available
that provide PowerShell

configuration options

PowerShell DSC can be
used to harden Windows

operating systems

You can use direct
PowerShell commands to
implement security best

practices

Using PowerShell for Security Analysis

Using PowerShell for Security Analysis

Log Analysis ForensicsMalware
Inspection

Network
Analysis

Example: Retrieving Log Entries

Retrieve Log Entries using the Event ID 102 from Saved Event Log
$id = "102"
$events = Get-WinEvent -FilterHashtable @{

Path = "C:\Users\Administrator\Downloads\pwsh.evtx";
Id = $id

}
$events | Select ID, Message

Example: Capture Network Traffic

Capture Network Traffic
$cim = New-CimSession -ComputerName "WIN10"

New-NetEventSession `
-Name "Net-Session-001" `
-CimSession $cim `
-LocalFilePath "C:\Temp\Files\Traffic.etl" `
-CaptureMode SaveToFile

Add-NetEventProvider `
-CimSession $cim `
-Name 'Microsoft-Windows-SMBClient' `
-SessionName "Net-Session-001"

Start-NetEventSession -Name "Net-Session-001" -CimSession $cim

Summary Goal: Understand Why PowerShell Is
a Core Security Tool
- Why you can use PowerShell for Security

analysis
- Tasks you can perform using PowerShell

for Security analysis
- Discussed PowerShell commands

Up Next:
Installing and Remotely Connecting Using
PowerShell

