Explore PowerShell

To complete the labs for this class you will need to create a virtual machine as described in the lab environment setup instructions here.

In this lab, we will explore the PowerShell command shell, the place where you can run scripts and interactively enter commands. PowerShell is easy to use when you understand the basic building blocks and how they work together.

Start the PowerShell application using the shortcut on the desktop of your lab VM.
[image: Graphical user interface, text, application, website

Description automatically generated]
Starting PowerShell this way starts PowerShell with normal user privileges (not admin privileges). Start a second PowerShell command shell by right-clicking on the PowerShell desktop shortcut and choosing “Run as Administrator”. Click “yes” when prompted to allow PowerShell to start with admin privileges.
[image: Graphical user interface, text

Description automatically generated]
Notice that the PowerShell application that you “Ran as Administrator” has the word “Administrator” in the title. There are several times throughout the labs that you will need to use an administrative PowerShell prompt, so pay close attention to the instructions and the screenshots.
Variables
Let’s explore some of the features of the PowerShell command shell. Variables in PowerShell start with a $ sign. Try defining some variables and then echoing them back onto the screen either by entering only the variable name and pressing enter or by using the Write-Host function.
[image: Graphical user interface, text, application

Description automatically generated]
PowerShell has many predefined variables built-in, and it can seem like magic when you see them used. For example, we can refer to the $PSVersionTable variable to view information about the current PowerShell version we are using.
[image: Graphical user interface, text

Description automatically generated]
We are using PowerShell version 5.1 in class. This is the version that comes installed by default on Windows 10 and 11.

To view all of the variables we have available to use, including built-in variables and any that we may have defined, you can use the Get-Variable function.
[image: A picture containing text

Description automatically generated]
The list below shows some of the more interesting variables you are likely to make use of.

· Home - The current user’s home directory
· Null - compare your own variables to $null to test if they are undefined.
· Profile - The path to a custom PowerShell script that will be loaded every time you start PowerShell
· PWD - “Print Working Directory” will display the path of the folder that you are currently working from.
· PID - The process ID of your current PowerShell session.
[image: Text

Description automatically generated]
Note: PowerShell is a case-insensitive language, and you can refer to functions and variables using any combination of upper and lowercase letters. For example, enter $PWD, $pWd or $pwd will all have the same result.

The cd function is an alias for the Set-Location function in PowerShell. Notice how it was used to return the $home directory without having to type C:\Users\IEUser, which is a nice shortcut.
Session History
For convenience, the PowerShell command prompt also maintains a list of all the commands you have run in the current session. You can access this list using the Get-History function (or just h for short).
[image: Graphical user interface, text

Description automatically generated]
The session history is only maintained for the current PowerShell session (think of the current command shell window you are using). If you start a new PowerShell window, the session history will be blank.

Use the Invoke-History command to execute a specific line number from your session history. The ihy and r commands are shortcuts, or aliases, for the Invoke-History Command.
[image:]
Start a PowerShell window and run the Get-History command. Do you see any session history? No, the session in this case will be empty because we have started a new session. If we are wanting to reference commands from our command history across sessions, or even computer restarts, we need to use the file-base history as discussed next.
History File
In addition to the session history, there is also a file-based history that persists from session to session. This file-based history is provided by a PowerShell module called PSReadline. The PSReadline module is installed by default with PowerShell. This module supports to use of the up and down arrow keys to iterate through the history.
[image: Text

Description automatically generated with medium confidence]
We can view and set the configuration for the PSReadline module using the Get-PSReadlineOption and Set-PSReadlineOption commands.
[image: Text

Description automatically generated with medium confidence]
You can use the following command to print the contents of the history file to the screen.

cat (Get-PSReadLineOption).HistorySavePath

Try setting some of the PSReadline options with the Set-PSReadlineOption command. If you set the save style to SaveNothing, do any of your commands show up in the history file?
[image:]
Providers
PowerShell uses Providers to make working with “file-like” systems convenient and consistent. View the providers with the Get-PSProvider function.
[image:]
You can make use of Providers with functions like Get-ChildItem, Set-ChildItem and more. We are accustomed to using FileSystem providers such as the C:\ drive on a computer as shown below.
[image: Text

Description automatically generated with low confidence]
However, PowerShell has several more Providers for working with other similar data structures like the registry. We can read and write registry keys using the “Local Machine” registry provider HKLM or the “Current User” registry provider HKCU as shown below.
[image: Graphical user interface, text

Description automatically generated]
Above you can see how we used PowerShell’s registry provider to list Control Panel setting for the current user (HKCU). The image to the right shows the same registry setting displayed in the Registry Editor tool for comparison.

Did you notice the Variable provider?
[image:]
View the content of the variable drive using the following command.

Get-ChildItem variable:

You will notice the output is the same as when we used the Get-Variable function. This is because the Get-Variable function simply prints the data in the variable drive.

Now let’s take a closer look at the Alias and Env providers/drives.
Aliases
Aliases are shortcuts to functions. There are many built-in and you can also create custom ones. View the aliases in the current session with the Get-Alias function. Of course, you could also use Get-ChildItem alias: because it is one of PowerShell’s built-in Providers.
[image: Timeline

Description automatically generated with low confidence]
Here we see that we can use the cls or clear shortcuts to clear the screen or the cat shortcut to get-content from a file. This just saves us some typing and might match better with commands you already knew from other command shells.

Use the Set-Alias function to create your own aliases. Here I create an alias for Get-Date so I can simply type gd to get the date.
[image: Text

Description automatically generated]
If you want to set an alias for something more complex, you can create an alias to a function as follows.
[image: Graphical user interface, text

Description automatically generated]
Note: Aliases only persist for the current session. If you want them to be available every time you use PowerShell, you will need to add them to your PowerShell profile which you will learn about soon.
Environment Variables

The Environment Provider gives us the env: drive which we can use to view and set environment variables used by the operating system. How do you think we can view this drive? You guessed it …
[image:]
One of the environment variables you will see used in PowerShell often is TEMP, which is the path to the temporary directory.

The env drive is implemented is such a way that you can refer to it using the following short hand. This makes it very convenient to use.
[image: Text

Description automatically generated with medium confidence]
PowerShell Profile
The profile variable contains the path to a PowerShell script to be run every time a new PowerShell command shell is started. By default, the profile file does not exist, therefore nothing extra is executed when PowerShell starts. However, you can create this file and add things to it, such as your custom aliases that you want to always be available.
In the example below, we create a simple PowerShell profile to add our Get-Date alias, and then use it to print the date on the screen in any future PowerShell sessions that we start.
[image: Graphical user interface, application, Word

Description automatically generated]
Save your new profile in notepad and then start a new PowerShell session to see the effect.
[image: Graphical user interface

Description automatically generated]
Now that you’ve run several commands, experiment with the history feature by using the arrow keys to go back through your previously executed commands. Use ctrl + R and start typing part of a command you ran previously to find it in your history. Press ctrl + R again if the wrong version of the command you are looking for is matched.
Execution Policy

PowerShell utilizes an Execution Policy to help users avoid unintentionally running a script. The four policies are as follows:

© 2022 DC8 LLC	Page 1
· Bypass
· Restricted
· Unrestricted
· RemoteSigned
· AllSigned
· Default
· Undefined

The default execution policy for Windows 10 clients is Restricted but for some reason the Microsoft test VMs for our labs has it set to RemoteSigned.

Use the Get-ExecutionPolicy command to list the current policy settings.
[image:]
Try running the BasicScript from the class samples directory. Then set the execution policy to block script execution. Finally, use the Bypass flag to subvert this protection mechanism on the fly.

[image: Text

Description automatically generated]
[image: Graphical user interface, application

Description automatically generated]
In our lab environment, we don’t need to fight with the execution policy setting but here is the link to 15 ways to bypass PowerShell execution policy if you find yourself in need of that in the future. Remember that the execution policy should not be relied upon for blocking purposeful execution of malicious code.

This completes the PowerShell exploration lab. Hopefully you learned something new and are ready to learn some more about PowerShell in the coming lectures and labs.
image2.png
&

Recycle Bin

Q

Google
Chrome:

Y

Windows PowerShell
PowerShell Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Users\IEUser>

L

Command
Dramnt

image3.png
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Users\IEUser> vershell

dows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Windows\system32>

image4.png
PS \Users\IEUser> $x=5

PS C:\Users\IEUser> $x

5

PS C:\Users\IEUser> Write-Host $x
X is: 5

PS C:\Users\IEUser> _

image5.png
PS C:\Users\IEUser> $PSVersionTable

Name

PSVersion

PSEdition
PSCompatibleVersions
BuildVersion

CLRVersion
WSManStackVersion
PSRemotingProtocolVersion
SerializationVersion

5.1.17763.316

Desktop

{1.0, 2.0, 3.0, 4.0...}
10.0.17763.316
4.0.30319.42000

BN W
P wo

image6.png
PS C:\Users\IEUser> Get-Variable

Name

$
?

N

args

ConfirmPreference

ConsoleFileName
DebugPreference

Error

{}
High

SilentlyContinue
{3

image7.png
PS C:\Users\IEUser> cd .\PowerShellForInfoSec\
PS C:\Users\IEUser\PowerShellForInfoSec> $pwd

Path

C:\Users\IEUser\PowerShellForInfoSec

PS C:\Users\IEUser\PowerShellForInfoSec> cd $home

PS C:\Users\IEUser> $pid

1924

PS C:\Users\IEUser> $profile
C:\Users\IEUser\Documents\WindowsPowerShell\Microsoft.PowerShell profile.psl
PS C:\Users\IEUser> $something -eq $null

True

image8.png
:\Users\IEUser> Get-History

Id CommandLine
1 $x=5
2 $x
3 Write-Host $x
4 cls

image9.png
PS C:\Users\IEUser> Invoke-History 3
Write-Host $x
5

PS C:\Users\IEUser> ihy 3
Write-Host $x

5

PS C:\Users\IEUser> r 3
Write-Host $x

5

image10.png
PS C:\Users\IEUser> Get-Module

ModuleType Version

Manifest
Manifest
Script

Name
Microsoft.Powershell.Management
Microsoft.Powershell.Utility

PSReadline

image11.png
PS C:\Users\IEUser>

EditMode /

AddToHistoryHandler
HistoryNoDuplicates
HistorySavePath \

N

Windows

True
C:\Users\IEUser\AppDat
a\Roaming\Microsoft\Wi
ndows\PowerShell\PSRea
dLine\ConsoleHost_hist
ory.txt

image12.png
PowerShell o

PS C:\Users\IEUser> SaveNothing

image13.png
PS

Name
Registry
Alias
Environment
FileSystem
Function
Variable
Certificate
WSMan

:\Users\IEUser> Get-PSProvider

Capabilities
ShouldProcess, Transactions
ShouldProcess
ShouldProcess

Filter, ShouldProcess, Cred...

ShouldProcess
ShouldProcess
ShouldProcess
Credentials

{HKLM, HKCU}
{Alias}
{Env}

{C, D}
{Function}
{variable}
{Cert}
{WSMan}

image14.png
PS C:\Users\IEUser> Get-ChildItem C:\Users\IEUser\PowerShellForInfoSec\

Directory: C:\Users\IEUser\PowerShellForInfoSec

Mode LastWriteTime
10/1/2022 10:09 PM
10/1/2022 10:09 PM
10/1/2022 10:10 PM

Length Name

AttackTools
Samples
Tools

image15.png
PS C:\Users\IEUser>

Hive: HKEY_CURRENT_USER\Control Panel

Name

Accessibility
Appearance

Bluetooth
Colors

Property

MessageDuration
MinimumHitRadius

5
2]

SchemeLangID : {9, 4}

NewCurrent
Current

ActiveBorder

B Registry Editor

File Edit View Favorites Help

v = Computer Name
> | HKEY_CLASSES_ROOT b} (Default)

v | HKEY_CURRENT_USER { MessageDuration

§| MinimumHitRadius

> | Console
v | Control Panel
> Accessibility
> | Appearance
> | Bluetooth
1 Colors

Type Data

RE.. (value not set)
RE.. 0x0000000S (5)
RE.. 0x00000000 (0)

image16.png
PS C:\Users\IEUser> Get-PSProvider

Name Capabilities Drives
Registry ShouldProcess, Transactions {HKLM, HKCU}
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess, Cred... {C, D}
Function ShouldProcess {Function}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {Cert}
WSMan Credentials {WSMan}

image17.png
PS C:\Users\IEUser> Get-Alias

CommandType Name

Alias % -> ForEach-Object

Alias ? -> Where-Object

Alias ac -> Add-Content

Alias asnp -> Add-PSSnapin
INEER cat -> Get-Content

Alias cd -> Set-Location

Alias CFS -> ConvertFrom-String
Alias chdir -> Set-Location
Alias clc -> Clear-Content
Alias clear -> Clear-Host

Alias clhy -> Clear-History
Alias cli -> Clear-Item

Alias clp -> Clear-ItemProperty
Alias cls -> Clear-Host

s e v N s e

image18.png
PS C:\Users\IEUser> Set-Alias gd Get-Date
PS C:\Users\IEUser> gd

Saturday, October 1, 2022 10:51:46 PM

image19.png
PS C:\Users\IEUser> function myfunction {cd C:\Users\IEUser\PowerShellForInfoSec\Samples\}
PS C:\Users\IEUser> Set-Alias gts myfunction

PS C:\Users\IEUser> gts

PS C:\Users\IEUser\PowerShellForInfoSec\Samples> _

image20.png
PS C:\Users\IEUser> Get-ChildItem env:

Name

ALLUSERSPROFILE
APPDATA
ChocolateyInstall
ChocolateylLastPathUpdate
CommonProgramFiles
CommonProgramFiles(x86)
CommonProgrami6432
COMPUTERNAME

ComSpec

DriverData

HOMEDRIVE

HOMEPATH

LOCALAPPDATA

C:\ProgramData
C:\Users\IEUser\AppData\Roaming
C:\ProgramData\chocolatey
131974752962431440

C:\Program Files\Common Files
C:\Program Files (x86)\Common Files
C:\Program Files\Common Files

PS41

C:\Windows\system32\cmd.exe
C:\Windows\System32\Drivers\DriverData
G
\Users\IEUser
C:\Users\IEUser\AppData\Local

image21.png
PS C:\Users\IEUser> $env:TEMP
C:\Users\IEUser\AppData\Local\Temp
PS C:\Users\IEUser> $env:USERNAME
IEUser

PS C:\Users\IEUser> $env:HOMEDRIVE
C:

image22.png
PS C:\Users\IEUser>
PS C:\Users\IEUser>

| Microsoft.PowerShell_profile.ps1 - Notepad

File Edit Format View Help

Set-Alias gd Get-Date
gd

image23.png
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Saturday, October 1, 2022 11:25:02 PM

image24.png
PS C:\Users\IEUser> Get-ExecutionPolicy -lis

Scope ExecutionPolicy

MachinePolicy Undefined
UserPolicy Undefined
Process Undefined
CurrentUser Undefined

LocalMachine RemoteSigned

image25.png
PS C:\Users\IEUser> .\PowerShellForInfoSec\Samples\BasicScript.psil
Basic Script

PS C:\Users\IEUser> Set-ExecutionPolicy Restricted CurrentUser
PS C:\Users\IEUser> .\PowerShellForInfoSec\Samples\BasicScript.psil

image26.png
PowerShell

—————————————
PS C:\Users\IEUser> bypass .\PowerShellForInfoSec\Samples\Basic

Script.psl
Basic Script
Pe Fe\lleame\ TEllcars

