
Displaying Port Scanning and 
Traceroute with Scapy

Sean Wilkins

swilkins@infodispersion.com www.infodispersion.com

Network Engineer & Author



Introduction

Multiple ways to 
send and receive 

packets

Methods can be 
used to do port 
scanning and 

traceroute

Ability to create 
and send packets 

is a vital tool



- Covering the Basics of Send and Receiving 
Packets

- Concepts Demonstration - Sending and 
Receiving Packets

- Discussing How to Perform Port Scanning

- Concepts Demonstration - Port Scanning

- Reviewing the Available Traceroute 
Options

- Concepts Demonstration - Traceroute

Overview



Basics

Need to cover how to send 
and receive traffic.

What steps are needed to 
perform port scans and 

traceroutes?



Start with covering basics of sending and 
receiving packets

Why do you need to know this?

Will need a variety of tools to perform the job

There are many tools available, some are built 
in as well as add ons



Commands

Common Scapy 
commands

Covered 
information will be 

used in further 
modules

send, sendp, sr, sr1, 
srp, and srp1



send(pkt, [inter=0], [loop=0], [count=1], [return_packets=False], 
[iface=conf.iface], [filter=None])

Parameters (Incomplete)

pkt – the packets
inter – time (in s) between two packets (default 0)
loop – send packet indefinitely (default 0 or False)
count – number of packets to send (default None=1)
return_packets – returns a list of the sent packets
iface – the interface to send the packets on
filter - Filters based on BPF statement

send Command



sendp(pkt, [inter=0], [loop=0], [count=1], [return_packets=False], 
[iface=conf.iface], [filter=None])

Parameters (Incomplete)

pkt – the packets
inter – time (in s) between two packets (default 0)
loop – send packet indefinitely (default 0 or False)
count – number of packets to send (default None=1)
return_packets – returns a list of the sent packets
iface – the interface to send the packets on
filter - Filters based on BPF statement

sendp Command



sr(pkt, [inter=0], [timeout=∞], [retry=1], [iface=conf.iface], [filter=None])

Parameters (Incomplete)

sr Command

pkt – the packets

timeout – how much time to wait after the last packet has been sent (Defaults 
to infinity)

inter – time (in s) between two packets (default 0)

retry – if positive, how many times to resend unanswered packets if negative, 
how many times to retry when no more packets are answered (Default is 1)

iface – the interface to send the packets on

multi – whether to accept multiple answers for the same stimulus

filter - Filters based on BPF statement



sr1(pkt, [inter=0], [timeout=∞], [retry=1], [iface=conf.iface], [filter=None])

Parameters (Incomplete)

sr1 Command

pkt – the packets

timeout – how much time to wait after the last packet has been sent (Defaults 
to infinity)

inter – time (in s) between two packets (default 0)

retry – if positive, how many times to resend unanswered packets if negative, 
how many times to retry when no more packets are answered (Default is 1)

iface – the interface to send the packets on

multi – whether to accept multiple answers for the same stimulus

filter - Filters based on BPF statement



srp(pkt, [inter=0], [timeout=∞], [retry=1], [iface=conf.iface], [filter=None])

Parameters (Incomplete)

srp Command

pkt – the packets timeout – how much time to wait after the last packet has 
been sent (Defaults to infinity)

inter – time (in s) between two packets (default 0)

retry – if positive, how many times to resend unanswered packets if negative, 
how many times to retry when no more packets are answered (Default is 1)

iface – the interface to send the packets on

multi – whether to accept mu6ltiple answers for the same stimulus

filter - Filters based on BPF statement



srp1(pkt, [inter=0], [timeout=∞], [retry=1], [iface=conf.iface], [filter=None])

Parameters (Incomplete)

srp1 Command

pkt – the packetsvtimeout – how much time to wait after the last packet has 
been sent (Defaults to infinity)

inter – time (in s) between two packets (default 0)

retry – if positive, how many times to resend unanswered packets if negative, 
how many times to retry when no more packets are answered (Default is 1)

iface – the interface to send the packets on

multi – whether to accept multiple answers for the same stimulus

filter - Filters based on BPF statement



Final Points

Send and receive 
packet commands 

“see” their 
responses

Scapy can miss 
return packets

Use optional 
parameters to 
avoid missed 

returns



send and sendp commands sent out traffic 
quickly

sr, sr1, srp, and srp1 are limited by the timeout

Scapy will wait ~ 2 secs for a response

May need a separate process that responds 
first

arping command is built into Scapy performs 
quicker



Demo

This bullet list 
with 

animations

Scapy Sending and Receiving Packets
- send
- sendp
- sr
- sr1
- srp
- srp1



Let’s look at how these scans 
are performed



Port Scan

Again, why is this information important?

Ability to create, modify, send and receive 
traffic extremely important

The knowledge will be used to perform a 
port scan



Opens ports can give information on device’s 
status

Open port numbers can tell what service types are 
running

Helps determine what applications are used and 
the OS

Should only have ports open for services that are 
required



Port Scans

Common traditionally used port scans
• TCP Scan (half open scan)
• FIN Scan
• NULL Scan
• XMAS Scan
• UDP Scan

Designed to find available ports

May be the same technique used to open a 
port

Others try to find ports that may not show as 
open



TCP Port Scan

SYN

SYN, ACK



TCP Port Scan

SYN

RST, ACK

RST

Or



A SYN port scan is usually the 
most up-front version.



FIN Scan



FIN Scan



NULL Scan



NULL Scan



xMAS Scan



UDP Scan



Demo

This bullet list 
with 

animations

Port Scanning Techniques



Traceroute

Scapy can do 
traceroutes

Essential tool for IT 
workers

Used to map out a 
network’s 
structure



Traceroute

Two main ways to use
- ICMP alone
- Combination of UDP and ICMP

Basics are the same no matter the method 
used
- Series of packets are sent towards a 

destination
- TTL fields sequenced 1-30
- TTL field limits the number of hops



Traceroute

Initial messages will use:

ICMP as echo request

UDP packet

If TTL is exceeded

An ICMP response should be sent back

With both responses combined: the path 
can be determined



TCP

Can be used as 
initial packet Can be slower Helps with 

troubleshooting



Demo

This bullet list 
with 

animations

Traceroute Techniques



- Covering the Basics of Send and Receiving 
Packets

- Concepts Demonstration - Sending and 
Receiving Packets

- Discussing How to Perform Port Scanning

- Concepts Demonstration - Port Scanning

- Reviewing the Available Traceroute 
Options

- Concepts Demonstration - Traceroute

Summary


