Assembly Language Basics

For Malware Analysis of Native Exe




What is the Stack?

 LIFO (Last In First Out) Data Structure

 Stores local variables, and return
addresses for functions

e Accessed through push, pop, call and ret

e RAM memory layout:

 Starts at higher addresses and as more values
are pushed, smaller addresses are used

Lower Addresses

Stored EAX
Returned address
Variable 2

Variable 1

Stored EBP

Returned address

Higher Addresses




W | I at I S t e e a p ° C @ docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtlallocateheap

= Microsoft | Docs Documentation Learn Q&A Code Samples

Windows Hardware Developer Explore v Downloads ~ Events Samples Support

* Globally stored memory
All functions can access it e RtlAllocateHeap function (n

NLUANUCaAleAndinuanLgdu iancuun
11/26/2019 » 2 minutes to read

RtlAllocateHeap function

o Ty p i Ca I Iy Sto re d i n t h e D ata RtlAppendStringToString function The RtlAllocateHeap routine allocates a block of memory from a heap.

. RtlCaptureContext function
S e Ct I O n Of a p rog ra m RtlCaptureStackBackTrace fu'\cticljn SyntaX
RtlCompareMemoryUlong function
RtlCompressBuffer function Cr+

RtlCompressChunks function

* RtlAllocateHeap can be used to o
Create a Heap RtlConvertSidToUnicodeString function E\ES,IJZ Eizg‘fndle’

RtlCopyLuid function STZE T Size

RtlCopySid function )

* Malware use heap as storage
area for anything it is going to
use



CPU Registers

Reqgisters | Purpose

EAX

Accumulator (Anthmetic)

Base (Pointer to Data)

Counter (Shift/Rotate instructions + loops)

Data (Arithmetic and 1/O)

Source Index (Pointer to Source in stream operations)

Destination Index (Pointer to Destination in stream

operations)

Base Pointer (Pointer to Base of Stack)

Stack Pointer (Pointer to top of Stack)

Instruction Pointer (Address of next instruction to exec)

Segment Registers

Stack Pointer
Code Pointer
Data Pointer

Exira Data
Pointer

Extra Data
Pointer

Extra Data
Pointer




Accessing parts of a register

EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP (32 bits)

AX, BX, CX, DX, SI, DI, BP, SP
(16 bits)

AH, BH, CH, DH | AL, BL, CL, DL
AX: 0x5678 (8 bits) (8 bits)

AH: AL:
0x56 0x78

dword = 4 bytes (32 bits), word = 2 bytes (16 bits), byte = 8 bits



Flags Register

* register where each bit acts as flag, containingaloraO0

Purpose

Carry Flag - Set when the result of an operation is too large for the
destination operand

Zero Flag - Set when the result of an operation is equal to zero

Sign Flag - Set if the result of an operation is negative

Trap Flag - Set if step by step debugging - only one instruction will be
executed at a time




Assembly Language Instructions

* Three main categories:
e Data transfer (mov)
e Control Flow (push, call, jmp ...)
* Arithmetic/Logic (xor, or, and, mul, add ...)



Examples of Data Transfer Instructions

Instruction | Purpose

mov
movzXx
lea

xchg

Move

Move-Zero-Extended

Load Effective Address

Exchange (Swap)

Format

mov dest, src
movzx dest, src
lea dest, src

xchg dest, src

Example

mov eax, [edx]
movzx eax, 0x123
lea edx, [ebp-0x40]

xchg eax, ebx




Examples of Control Flow Instructions
(function calls)

Instruction
call

push

POp

ret

Purpose

Execute function
Push value to stack
Pop value off stack

Return from function

Format

call function
push value
pop register

ret

Example

call sub _3B18CO0

push ecx
pop ebx

ret




Examples of Control Flow Instructions (Jumps)

Instruction | Purpose Format Example
jmp Unconditional Jump Jmp address jmp [eax]
je Jmp if Equal (ZF = 1) Je address je loc

Jmp if Not Zero (ZF = 0) Jnz address jnz loc_3B162F

jnb Jmp if Not Below (CF=0) | jnb address jnb [edXx]

Each jump is preceded by either a test or a cmp instructions. However, jmp is an unconditional jump and
not preceded by anything test or cmp.



Examples of Arithmetic Instructions

Instruction | Purpose

add

sub

imul

Add src to dest

Subtract src from dest

Multiply src by val and
store in dest

Increment register by 1

Format
add dest, src
sub dest, src

Imul dest, src, val

inc register

Example

add eax, 0x10

sub eax, ebx

imul ebx, eax, 5

INC ecx




Examples of Logic Instructions

Instruction | Purpose

XOor

shi

and

ror

Performs Bitwise XOR

Shift dest left by src bits

Performs Bitwise AND

Rotate dest right by src bits

Format

xor dest, src

shl dest, src

and dest, src

ror dest, src

Example

Xor eax, eax (Zeroes)
XOor eax, ebx (xor’s)

shl ebx, ecx
and edx, eax

ror ecx, edx




test and cmp instructions

Instruction | Purpose Format Example

test Performs a Bitwise AND on the | test arg1, arg2 test eax, edx
two operands
If result is 0, ZF is set
Often used with conditional
jumps, though less than cmp

Compares first operand with cmp arg1, arg2 @ cmp eax, 0
second operand by subtraction

Jump instructions always come immediate after a test or cmp



Return Values

* EAX register is used to hold the return value of a function call

* The return value could be an integer, eg O or 1 or -1 (FFFFFFFF), or,
even an address eg, 0Ox3FA593D3



Thank you



