
Intro to Software Protection
CrackingLessons.com

Contents

 What is Software Protection?

 What is EXE Packing?

 Purpose of Packing EXE

 How to defeat Software Protection

 What is Unpacking?

 Detection of Packer

 Execution of Packed EXE Program

 Standard Process of Unpacking EXE

 Anti Anti-Debugging Plugins

What is Software Protection?

 Protection of software against piracy, overuse, and reverse engineering

Ways to protect software:

 Anti debugging (Prevent debuggers from attaching or analyzing)

 Exe Packing (Compress a software whilst retaining its ability to execute)

What is EXE Packing/Protecting?

 EXE Packing:

Compressing the Executable to a smaller Size

 EXE Protecting:

Using Anti-Debugging Techniques to prevent Reversing

In Reversing world, both Packer & Protector is commonly referred as Packer.

Examples of Packers: UPX, AsProtect, Armadillo, VMProtect etc.

Purpose of Packing EXE

 Prevent Reverse Engineering [Crack License, Serial Key etc.]

• Defeat Static Disassembling

• Make Dynamic Debugging Difficult

 Reduce the size of Executable file

How to defeat Software Protection?

Unpacking:

Let the program uncompress itself into memory, then extract the original exe from memory and
dump it into a new exe file. Then patch the new exe.

Using Loaders:

This is also known as runtime patching. Here, you patch the process in memory instead of
patching the file. Use a loader to start the program and wait for it to uncompress itself into
memory. Loader will then patch the process whilst it is still running in memory.

What is Unpacking?

 Extracting the Original Binary from the Packed Executable File.

 Automatic Unpackers available for popular Packers.

• May not work with different versions

• Not available for Complex packers

 Involves Live Debugging by Defeating Anti-Debugging techniques

Detection of Packer

 Packer Detectors like PEiD, DIE, etc

• Detect the popularPackers

• Show the version of Packer also

 PE Viewer Tools like PEditor, PEview

• Look at SectionTable

• Look at ImportTable

Packer Detectors

Structure of Packed EXE

Before Packing After Packing

Types of Packers

Type I
The simplest type of packer that employs a single unpacking routine being executed
before control transferred to the unpacked program. An example is UPX.

Type II
It contains multiple unpacking layers, individually executed sequentially to reveal the
subsequent routine. Once reconstruction of the original code is completed, the control is
transferred back to it at the last transition.

Type III
Similar to the previous type of packer, the variation lies in that the execution of the
unpacking routines are not in a straight line, involving more complex structures, such as
loops. The original code may not be necessarily resided in the last (deepest) layer.
Different codes like integrity checks, anti-debugging, or portioning of the obfuscated
code of the packer may be found in the last layer. Examples include PE
Compact, ASPack, FSG, ASProtect, NSPack, and Upack.

Types of Packers
Type IV
This type of packer is either single- or multilayer packer, in which a portion of the packer
code, not responsible for unpacking, is interleaved with the execution of the original
program. The complete unpacking of the entire original code can be found in the memory,
with the possibility of code jumping between different layers at the the Final execution. An
Example is ACProtect 1.09.

Type V
An interleaved packer, with the unpacking code is inter-weaved with the original program.
Multiple frames are usually found in thelayer embodied in the original code, being
unpacked one after another. Although only a single frame of code is unfolded, all the
executed code may be extracted at the end of execution. An example this type is
Beria.

Types of Packers

Type VI
The most complex type of packer, this type unpacks fragments of code at any given time
during the execution of the binary code. An example is Armadillo 8.0.

Type VII
Virtualization packers use instruction translation to avoid the
original code being exposed in the memory at all.
Examples are Themida, VMProtect.

Execution of Packed EXE Program

 Execution starts from new OEP (Original Entry Point)

 Saves the Register status using PUSHAD or PUSH EBP instruction

 All the Packed Sections are Unpacked in memory

 Resolve the import address table (IAT) of originalexecutable file.

 Restore the originalRegister Status using POPAD or POP EBP instruction

 Finally Jumps to OEP to begin the actual execution

Execution of Packed EXE Program

 A single PUSHAD instruction is equivalent to:

 Push EAX

 Push ECX

 Push EDX

 Push EBX

 Push ESP

 Push EBP

 Push ESI

 Push EDI

Execution of Packed EXE Program

 A single POPAD instruction is equivalent to:

 Pop EAX

 Pop ECX

 Pop EDX

 Pop EBX

 Pop ESP

 Pop EBP

 Pop ESI

 Pop EDI

Standard Process of Unpacking EXE

www.SecurityXploded.com

 Debug the EXE to find the real OEP (Original Entry Point)

 At OEP, Dump the fully Unpacked Program to Disk

 Fix the Import Table

 Fix the PE Header

http://www.SecurityXploded.com/

Unpacking using x64dbg

 Load the packed EXE file into the x64dbg

 Start tracing the EXE, until you encounter a PUSHAD, or PUSH EBP
instruction.

 Put a Hardware Breakpoint on the EBP address in the stack

Unpacking UPX using x64dbg (contd)

 Next press F9 to continue the Execution.

 You will break on the instruction which is immediately after POPAD or on

POP EBP instruction [based on the method you have chosen]

 Now start tracing with F8 and soon you will encounter a JMP instruction

which will Jump to OEP in the original program.

 At OEP, dump the whole program using x64dbg Scylla Plugin

 Then fix the IAT

Anti Anti-Debugging Plugins

Here are useful x64dbg Plugins for Anti Anti-Debugging

 ScyllaHide

 SharpOD

Thank you

CrackingLessons.com

