
StealthOps: Red Team
Trade-craft Targeting

Enterprise Security Controls

By - CyberWarFare Labs
© CyberWarFare R&D Pvt. Ltd.

Content Outline

Day 1 : Red Team Resource Development

Module 1 : Initial Access Defenses

Module 2 : Red Team Infrastructure Development

Module 3 : Initial Access Methods

Day 2 : Tradecraft Development for Offensive Operations

Module 1 : C# Basics & Tradecraft Development

Module 2 : Abusing Windows API

Module 3 : Abusing / Evading Host Based Security Controls

Day 3 : Utilizing Tradecraft for Red Teaming in Hardened Environment

Module 1 : ETW & ETW-Ti

Module 2 : EDR World

● EDR Internals

● EDR Evasion

Training Objective & Learning Paths

● Capable to setup Red Team Infrastructure from scratch for Internal / External assessments

● Overview of modern cyber defenses in place

● Capable to map & detect the placement of these defenses during engagements

● Capable to write custom malware to evade detection (highly volatile!)

● Understand telemetry collection & ways to evade / circumvent / leverage them

Commencing our Day - 1

Hope the Environment is ready :)

Module 1
Enterprise Security Controls Architecture

Overview
● Anything that protects an asset from compromise can be categorized as a control

● Understanding the enterprise architecture is a very complicated operation

● Many Devices, Networks, Users & Connections

Security Controls

Host Based

Cloud Based

Network Based

Typical On-Premise Architecture

1.1 Initial Access Security Solutions

● Firewall

○ Monitors incoming & Outgoing traffic

○ First line of defense during attacks

○ Network Segmentation with firewall in-between makes it harder to progress

○ Look for Vulnerable (outdated) software / Public Bypasses (if any)

○ Acts as a gateway between the internet & the local network

○ Improper configured proxy can become a controller of the internal networks for attackers

○ Interesting attack vector is analyzing the EDR network traffic working in conjunction with

Proxies

Web Proxies

Corporate Web Proxies

 Intrusion Detection System (IDS) & IPS

○ IDS monitors networks events & detects the security incidents

○ IPS goes 1 step ahead & prevents the security incidents that might originate

Reference : https://www.okta.com/identity-101/ids-vs-ips/

 Email based Defenses

○ Compilation of various defenses. Some of them are listed below :

■ Sandboxes

■ Emulators

■ Scanners

○ On Top of that, Custom Policies can also be defined as per current scenarios.

○ Examples :

■ Restricting ISO files as an attachment from untrusted location, Internet

■ Domain Reputation based whitelists

 Sandboxes

○ They provide an isolated testing environment which do not affect the OS, Platform or
application

○ Applications / Files / Email Attachments etc can be scanned & run in a sandbox
environment

 Emulators

○ It emulates the sample (scripts / binaries) itself

○ Security Controls generally have emulators which executes files having MOTW flag

○ Apex Tradecrafts uses the following techniques to evade them :

■ Enhanced Time Latency
■ Environment Safe Checks
■ File Encryption etc.

 Scanners

○ Reviews emails for:
■ Domain Reputation
■ Attachments
■ Keywords

○ Solely based on configuration, trusted signatures, file-type etc can be whitelisted as
per organization day-to-day operations

○ Red Team focuses on:
■ Delivering files that do not propagate MOTW flags. Ex ISO, 7z etc
■ Phishing to persist concept (More in this later!)

Reference : https://support.microsoft.com/en-us/windows/stay-protected-with-windows-security-2ae0363d-0ada-c064-8b56-6a39afb6a963

Email Based Defenses

 DNS based Defenses

○ It perform extensive domain reputation checks before resolving any query

○ If the requested domain has SSL/TLS cert, then authority, contents etc will be
checked

○ A thorough check lists will follow:

■ Domain Reputation based on recent Threat Intelligence Feeds
■ Registration Time, Maturity etc
■ Other closed-source checks based on recent breach etc.

○ Threat Actors / Red Team follows :
■ Registering their campaigns with reputed cloud service provider domains
■ Example: Azure Frontdoor CDN, AWS CloudFront, Serverless endpoints
■ For hosting payloads: G Drive, OneDrive, Mega, Dropbox, box etc.

Palo Alto

DNS Based Defenses

● Email Security

○ Policies have strict restriction rules to block extensions like exe, dll etc.

○ The extension that works :

■ HTML, PDF

■ ISO, 7Z, ZIP, IMG, WIM

○ However, organizations following robust policies might try to block the infection based

on trending threat groups tactics (zip & iso etc)

Initial Access Defense Evasion Techniques

● In Present Scenario, the following works:

○ Embed URLs as Hyperlinks

○ Operational Security of Red Team Infrastructure like payload server, redirectors, C2

Server must be taken care of

○ Other than that, the following matters:

■ Domain Reputation & Maturity History

■ Valid SSL/TLS Certification

■ Custom Headers

○ Domain Reputation can be checked against Reputation checkers like Paloalto & others.

○ HTML Smuggling is the WAY! [More on this later]

https://urlfiltering.paloaltonetworks.com/query/

● Proxies Based Defenses

○ Ingress / Egress traffic flows through web proxy & also get analyzed

○ Low reputation domains & MIME type of requested resource are aggressively checked

○ The pointers that works :

■ Mature & Reputed Domain (think Cloud CDNs etc)

■ Good Requested Resource Contents : HTML, Context, JS etc

■ MIME of Requested Resource

○ HTML Smuggling is the WAY! [More on this later]

● DNS based Defenses

○ Low reputation domain is a NO GO!

○ The pointers that works :

■ Mature & Reputed Domain (think Cloud CDNs etc)

■ Cloud based storage (S3, Azure Blob Storage, Mega) for Payload Hosting

■ Serverless Redirectors of Cloud.

HTML Smuggling [HTML <3 JS] : One
Way to Rule them all

● Have the capability to bypass restricted initial security defenses:

○ Email based Security Checks

■ Emulators

■ Sandbox Environment

○ Web Proxies

○ Always remember that Containerization of Payloads is the key.

○ Example : Our Payload is base64 encoded present in JS which is located in plain HTML

file.

One Way to Rule them all : HTML Smuggling [HTML <3 JS]

1) Create JS Blob

2) Create URLs from Blob

3) Simulate a Click using HTMLElement.click method

4) Auto Download Functionality

Test URL : https://icosahedral-dives.000webhostapp.com/smuggle.html

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/click
https://icosahedral-dives.000webhostapp.com/smuggle.html

● Lure in <3 with HTML Smuggling

○ Bypass Sandbox detection:

■ Using Delayed Payload Delivery Method

■ Based on User Interaction

● Mouse Movement

● Identification of Device Type & Location

■ Integration of JS Add-ins like Arrow JS etc can also be added

Demonstration : RTLO Technique

Modern Initial Access Defenses in Place

Phishing Insider Attack

Credential Leak Initial Execution Kill Chain Detection

Incident Response

● Strategies heavily depends on the vendor solution

● How things are setup ?

● Some Examples are mentioned below

Module 2
Red Team Infrastructure Development

Exercise 1 :

Red Team Infrastructure in

AWS Cloud Environment

Setup in AWS Cloud

Module 3
Initial Access Vectors

Modern Initial Access Attack Vectors for Red Teams

Phishing

Through Malicious Links
/ Attachments / Websites

etc

Insider Attack

Information Leak from a
previous / existing

employee

Credential Leak

Credentials Keys /
Tokens leaked to

production environment

Vulnerable
Application

Exploiting Vulnerable
Public Facing Application

Functionality Abuse

Abusing legitimate
functionality / feature of

any entity

Supply Chain Attack

Mis-use Trusted
Application / Software

● Heavily depends on the Scope of Engagement & the target provided to achieve

Initial Access Vectors

● Multiple ways through which Payload Execution can be
performed on a target

● Introducing time latency during payload dropping & Executing

is the key

● Payload Execution can be done using exposed vectors

Options

Win Script Host Components
(WSH)

COM Scriptlets (SCT etc)

Macros (XLSM, DOCM,
PPTM etc)

Executables (DLL, BAT,
CPL, XLL, MSIs etc)

Payload Options for Red Teams

Shortcuts (LNKs)
So HOT right NOW!

Introduction of MOTW

● Mark of the Web is identification of Zone Identifier of a file

● Classification is done on the basis of :

○ Entities downloaded via Browser / Email Attachments

○ Addition of ZoneID values in the attribute

Ways to Evade MOTW

● Understand Enforced Security Policies of Enterprise Applications

● Dropping Macro enabled files in TRUSTED Locations

○ MOTW Check is ignored if a file is opened from a trusted location

Trusted Locations for Office Applications : https://docs.microsoft.com/en-us/deployoffice/security/trusted-locations

Internal Website or shared network

○ Files shared locally are treated as trusted sources, hence do not have MOTW

○ With initial foothold, try to deliver payloads via FILE-SERVER / Internal

Machines to expand access internally

Exercise 2 :

Embedding Payloads in OneNote
■ OneNote (.one) -> JS, CMD, HTA, CHM, XLSM, DOCM, PPTM etc

MOTW Evasion via OneNote

● While attaching the file, location of the attached payload is visible

● Ensure the payload file to be attached from a VM location or place & attach it from the “WDAGUtility”

account

● OneNote (Office Applications) will involve 4 clicks for payload execution

● OneNote for Windows 10 (Local Application) will involve 5 clicks for payload execution

OPSEC Considerations :

● Enough theory, let’s start practical exercises.

● TTPs that works!

○ .NET Serialization using DotNettoJScript / GadgettoJScript

○ Weaponization:

■ MSI (via Backdooring)

■ .LNK to rescue

Crafting WORKING Payloads for Initial Access!

Exercise 3 :

Custom DLL Implant to JS

via Serialization

DOTNET Serialization :
● In DotNet Ecosystem, applications need interoperability to operate in conjunction

● .NET Executable like DLL, EXE etc can be converted into JS / VBS / VBA etc & directly called from

memory

● The executables are serialized in the JS file & can be deserialized upon calling for execution

● Custom executables (exe, dlls) must export NameSpace, Class & a method for execution

C# Code

Calling from JS

DOTNET Serialization

OPSEC Considerations :

● Output JS files needs to be obfuscated before using it for weaponization

● If using JS files in conjunction with VBAs, avoid using Base64 instead of that use AES etc

● ALWAYS go with STAGERS. Deliver payload in stages to target environment

● If using “File Dropper Payloads”, hide the dropped payloads (using exposed attribute)

Exercise 4 :

Backdooring MSIs without breaking

digital signature

MSI Backdooring :

● MSI files are executed using msiexec.exe

● MSIs are structured storage files that contains the following:

○ Files

○ Directory

○ Tables containing information about the files

○ CAB file containing information about files to extract during installation / uninstallation

● Inside an MSI file, we can define our executables like JS, DLL, EXE etc. in the table

“CustomAction”

● The “InstallExecuteSequence” let us define the order of file execution during the

installation / uninstallation action.

CustomAction Type InstallExecuteSequence

JScript 1125 6500 (Before the Installation
Finishes)

VBScript 1126 6500 (Before the Installation
Finishes)

EXE 1218 6500 (Before the Installation
Finishes)

Command Execution 1250 6500 (Before the Installation
Finishes)

Run Dropped File 1746 6500 (Before the Installation
Finishes)

MSI Binary Table

REf : https://learn.microsoft.com/en-us/windows/win32/msi/customaction-table

MSI Backdooring

OPSEC Considerations :

● Remove File Metadata once the Binary is Backdoored

● To installed silently with default parameters:

○ msiexec /q /x evil.msi

● MOTW flag propagates along with the installation, CONTAINERIZE IT !

● Automate it with VBAs:

○ MSI file dropper utility

○ Installation using COM:

Exercise 5 :

.LNK TTP with Parent Process

De-chaining

Crafting XLAM Payload:

● XLAMs are Excel Add-ins that gets loaded once the excel is started.

● Add-In Directory Location :

● Now the point of Auto Execution is interesting, “Auto_Open()” etc are detected. We are using

“Workbook_SheetCalculate”

● Occurs after any worksheet is recalculated or after any changed data is plotted on a sheet

● We can define a “RAND()” function in the workbook, so that it automatically calculates whenever

the workbook is opened.

LNKs as File Copying Utility:

● Create a LNK with RTLO technique which execute the following command:

● The command will copy the XLAM file to the XLSTART folder & Open the PDF File

● We can spawn as many as “conhost.exe” process to dechain the parent child process

relation

● We can make the XLAM & PDF file hidden, only disguised LNK will be present

● Update : Drop XLAM with hidden attribute but remove the hidden flag once copied to

XLSTART location

● Also, make sure to add a sweet little PDF icon in the LNK file.

.LNK to Rescue

OPSEC Considerations :

● During opening of any excel file the macro will auto execute, make sure to handle this out.

● Limit the inclusion of conhost, as it will increase the CPU load

● Package all the files in an ISO, 7z & hosts it in the payload server

