
DAY - 3

Event Tracing for Windows (ETW)

● ETW was introduced for application debugging & optimization

● It offers detailed user & kernel level logging without starting / stopping the

processes

● ETW has 3 main components :

○ Controllers : Start/stop event tracing operations. Ex : logman

○ Providers : provide events. Ex : Here

○ Consumers : consumes events Ex : EDR

https://gist.github.com/guitarrapc/35a94b908bad677a7310

Playing with ETW

Configure ETW

Attach
Provider

Assembly Load & Execution

Feed Logs

Exercise 1 : ETW Patching

Demo : https://docs.google.com/document/d/1lDGSms6FHzTC9cTQC_hIbW9nS5k8G-nCPbuVF-UOL9g/

Patch Bytes

Exercise 2 :

Download / Execute Cradle with

AMSI + ETW Bypass

Demo : https://docs.google.com/document/d/1v8ELVt6J2X3B9uH2kpqin4cG89-C4Sna4uZKqBgZdP4/

ETW Patch with XOR Decryption

AMSI Patch with XOR Decryption

https://docs.google.com/file/d/1F7EtfPSnUPUm4TgAQ86iJFvaUmG5jWDr/preview

FUD Payloads

● Payloads are required to be tested in a testing infrastructure

● Open-Source tools like inceptor can be used to obfuscate the code & add time

latency in execution during run time

● Tool can be used to quickly develop a payload with the following capabilities :
○ Encode

○ Obfuscate

○ AV / EDR Bypass Techniques

○ Spoofed code signed certificate

○ PSH, C, C++, C# Artifacts

Table of contents

● EDR (Endpoint Detection & Response)

○ Telemetry collection

○ EDR Capabilities

○ Higher overview of detection pattern in different EDRs
■ McAfee Mvision EPO

■ Comodo

● Lab Setup
○ Tools

● Key Components of EDR from Higher level

○ EDR Agent

○ EDR Cloud Platform

○ EDR Drivers

○ Hooking engine (Dlls)

● How EDR Hooks

● General EDR Evasion Areas

○ EDR Unhooking
■ Unhooking by patching

■ Dll Unhooking

○ Native APIs

○ Direct syscalls

○ Re-using functions [DEMO]

● Bypassing Enterprise Endpoint Defenses
○ Mcafee Mvision Evasion

EDR

● Also known as Endpoint Threat Detection and Response (ETDR)

● EDR continuously monitors endpoint devices for suspicious behaviour/activity and automatically

response to those suspicious behaviour/activity.

● EDR response are rule based i.e., depending upon a severity which is set on the rules for particular

activity, one of these response can happen
○ Just alert the system

○ Alert and block the execution process

○ Alert, block the execution and delete all the files from the disk related to that particular process including the

executable itself

Telemetry Collection

● Telemetry is automatic collection and transmission of data from remote source to the place where is it

monitored and analysed.

● Telemetry is just a raw data collected from multiple data sources, and raw telemetry data itself is not

useful until it’s turned into useful analytics.

● EDR collects huge amount of raw telemetry from the endpoints

Fig: EDR - Higher Overview

EDR Capabilities
● Continuous Monitoring and alerting

● Threat detection

● Automated response

● Behavioral analysis and containment

Higher overview of detection
pattern in different EDRs
(Process Creation)

Detection pattern: McAfee Mvision EPO

● When process is created it is monitored by Real Protect Cloud Scanner

● All the events related to the process is monitored such as:
○ reading or modifying files or registries,

○ writing files

○ writing to another process

○ reading from another process

○ Network events etc.

● McAfee response to the process depending upon the process reputation
○ If the process has reputation value 1, the process will be immediately terminated and completely

deleted from the disk including the events that are performed by the process such as writing

files, modified registries etc.

○ If the process has reputation value 30, the process will be terminated however the file is not

deleted from the disk.

Detection pattern: COMODO EDR

● When process is created, firstly Comodo EDR determines whether the process is trusted or not

● If the process is untrusted process it will run in a container

○ The main objective of putting process into container is to isolate the process instead of detection

○ COMODO container includes shadow copy of the endpoint machine including kernel

● Once the process is contained I/O access to files and registries are restricted

● After that the process will be hooked and monitored

● Since the untrusted processes run inside a container, any harm done by these processes will only affect the

resources in the shadow copy

Labs
● Tools

○ Windows 10 version - any

○ EDR or Antivirus, eg:

■ Bitdefender Total Security

■ McAfee Mvision EPO

○ Visual Studio 2019 or higher

○ Debugger (x64dbg)

○ Process Hacker

● EDR contains 4 important components

○ EDR Agents

○ EDR Cloud Platform

○ EDR Drivers

○ Hooking engine (Dlls)

● Each component plays significant roles from gathering telemetries to detection

and remediation of the malware

Key Components of EDR from Higher level

EDR Agents

● EDR Agents continuously monitors the endpoint and collects all the required data

from running processes, network activity, file accessed events etc.

● All the collected data needs to be stored somewhere

● What could be the better option than the cloud?

● Agent sends all the collected data to the particular EDR cloud platform

EDR Cloud Platform

● All the data transmitted by the EDR agents are received here

● The cloud platform isn't just for data storage

● Cloud Platform also include data analytics and threat intelligence to enhance the detection

● It also provides automated response depending upon rules and policies set

● Kernel Patch Protection is also known as PatchGuard

● PatchGuard is a security feature of 64 bit Microsoft windows which prevents third-party codes from

patching the kernel. More security :)

● But, non-malicious products like EDR, AV and other security products also needs to patch the kernel to

detect and prevent malicious activities/events in the system.

EDR Drivers: Kernel Patch Protection

● PatchGuard's implementation effectively disabled most security products' capabilities

● However, new feature was introduced by Microsoft called Kernel Callbacks

● These kernel callbacks, as well as mini-filters, are now used in current AV/EDR products.

EDR Drivers: Kernel Patch Protection

EDR Drivers: Callbacks

● In windows OS, a kernel driver is allowed to register callbacks for certain events (process/thread

creation and termination, image loads etc)

● This way the driver gets notification whenever the event is occured which helps AV/EDRs to monitor

system activities

● When the callback is triggered, a certain action is taken, such as blocking the process if it’s malicious,

and so on.

EDR Drivers: Callbacks
● Generally used callbacks are:

○ PsSetCreateProcessNotifyRoutine() - notifies the driver when the process is created or

terminated. Mainly use for monitoring processes.

○ PsSetCreateThreadNotifyRoutine() - notifies the driver when the thread is created or deleted.

Mainly use for monitoring threads.

○ PsSetLoadImageNotifyRoutine() - notifies the driver when the image is loaded or mapped into

the memory. Mainly used for monitoring library loading.

○ CmRegisterCallbackEx() - registers a RegistryCallback routine. Mainly used for monitoring

registry access.

● Most of the security products like AV/EDRs use mini-filter driver

● AV/EDRs use mini-filter driver to intercept the file system operations

● Mini-filter drivers registers pre and post callbacks to filter I/O operations

● With the help of mini-filter driver, security products can track and mitigate various types of malware

● One of the best example is: AV/EDR utilizes a mini-filter driver to safeguard their files against virus

deletion or modification.

EDR Drivers: Mini-Filters

● AV/EDR comes with many libraries (DLLs) including hooking libraries also called as Hooking Engine

● Whenever the AV/EDR gets the notification of new process creation, it injects the dll into that process

● In the running process, the injected dll begins hooking certain API calls, commonly known as Userland

API Hooking

● AV/EDR hooks APIs to monitor the suspicious behaviour in the process

● Some of the APIs that mostly AV/EDR hooks are: NtCreateThreadEx, NtWriteVirtualMemory,

LdrLoadDll, VirtualAlloc etc.

Hooking Engine (DLLs)

Fig: All 4 components of EDR

● EDR driver registers the callback using the function PsSetCreateProcessNotifyRoutine

● When new process is created, notification is sent to the windows subsystem and callback is triggered

● Once the callback is triggered, notification is sent to the particular driver (EDR Driver) which has

registered the callback

● EDR Driver injects and load the dll (hooking library/engine) into that newly created process

● Injected dll starts to hook all the specific functions in ntdll.dll, kernel32.dll etc.

How EDR Hooks

Fig: EDR Hooking Process

Fig: EDR Hooking Process

● There are various techniques to evade EDR in both user-land and kernel-land.

● This section will cover some of the most basic user-land techniques.

○ Native APIs

○ EDR unhooking

■ Unhooking by patching

■ Dll unhooking

○ Direct syscalls

○ Re-using functions [DEMO]

● The techniques listed above are the base and starting point to work on any EDR bypass.

General EDR Evasion Areas

Native (NT) APIs

● The Native API is a lower-level interface for interacting with Windows

● These Native APIs are used in early version of Windows NT startup process

● The Native API is located in ntdll.dll in user-land

● This is the last location that EDR/AV monitors before syscall, so these NT APIs are definitely

hooked by EDR

● However, Malware authors are increasingly using Native APIs.

● Few benefits of using Native APIs
○ Using NT APIs in malware could bypass static detection

○ Using NT APIs could also bypass runtime detection, for instance:

■ Common APIs like VirtualAlloc, CreateThread etc. are used by both legit and malicious

applications. If these functions are used incorrectly, the program may be flagged as

malware by AV/EDRs before even reaching “main” code. The use of NT APIs can assist in

avoiding detection in situations like these.

Native (NT) APIs

Native (NT) APIs - steps

● Define the alias for the NT function type

● Retrieve and assign function address using GetProcAddress

● Execute the function

Native (NT) APIs - code

● Unhooking is a technique for restoring EDR patched dll bytes to their original state

● Some of the unhooking techniques are:

○ Unhooking by patching

○ DLL unhooking

EDR unhooking

● EDR patched bytes are re-patched with original bytes

● Mostly EDR hook APIs in ntdll, syscall number should be known before patching to original bytes

● Original patches are applied by hard-coding however can also be done dynamically

EDR unhooking: Unhooking by patching

Exercise : 1

● Identify 5 original bytes that are patched along with syscall number

● Find the hooked function address in memory

● Change the memory protection at function address to RWX

● Patch the hook with original bytes

● Change the memory protection at function address back to RX

Unhooking by patching - steps

Unhooking by patching: code

Unhooking by patching: code

Unhooking by patching: before patching

Unhooking by patching: after patching

● In this technique the text section of hooked dlls is overwritten with the text section from the fresh copy

of dlls.

EDR unhooking: DLL Unhooking

Exercise : 2

● Load and Map the fresh copy of ntdll into process memory

● Loop through the sections to find .text section of hooked ntdll.dll

● Get the virtual address of .text section of both hooked and clean copy of ntdll.dll

● Change the memory protection at .text section of hooked ntdll.dll to RWX

● Copy the fresh copy of .text section of freshly mapped ntdll to the memory (virtual address) location at

.text section of hooked ntdll

● Restore the original memory protection

DLL Unhooking - steps

DLL Unhooking: Code

DLL Unhooking: Code

DLL Unhooking: Code

● The idea of direct syscall is to enter kernel space without touching ntdll.dll
○ Every parameters that are required are pushed into stack or set to registers depending upon the

architecture (x32 or x64)

○ Instead of calling function from ntdll.dll, syscall or int 0x2e command is used with specific syscall

number to enter kernel space

○ “eax” register holds the syscall number

● Userland hooking can be bypassed using direct syscalls

● Some of the Direct Syscall implementation are:
○ SysWishpers

○ Hell’s Gate

○ Halo’s Gate

○ Tartarus’ Gate

Direct syscalls

Exercise : 3

Direct syscalls - code

Direct syscalls - code

Direct syscalls - code

Direct syscalls - output

Fig: Normal syscall flow

Fig: EDR hooked syscall flow

Fig: Direct syscall flow

EDR Recast: code

● In this technique, function from edr-hooking engine library is re-used

● Function with controllable parameters are utilized

● After finding controllable function in edr-hooking engine library, rest is similar as

implementing Native (NT) functions.

● For more information:
○ https://www.cyberwarfare.live/blog/function-recasting-part2

EDR Recast

https://www.cyberwarfare.live/blog/function-recasting-part2

Challenges

● Exercise 1: Perform Classic Remote Process Injection using NTAPIs

● Exercise 2: Unhook APIs & perform classic process injection

● Exercise 3: Implement direct syscall to perform classic process injection

● Exercise 4: EDR function recasting

○ https://www.cyberwarfare.live/blog/function-recasting-part2

References

● https://synzack.github.io/Blinding-EDR-On-Windows/

● https://www.matteomalvica.com/blog/2020/07/15/silencing-the-edr/

● https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++

● https://github.com/jthuraisamy/SysWhispers2

● https://www.cyberwarfare.live/blog/function-recasting-part2

https://synzack.github.io/Blinding-EDR-On-Windows/
https://www.matteomalvica.com/blog/2020/07/15/silencing-the-edr/
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://github.com/jthuraisamy/SysWhispers2
https://www.cyberwarfare.live/blog/function-recasting-part2

