
Basic Terms: System Parts
• Kubernetes: The whole orchestration system

• K8s "k-eights" or Kube for short
• Kubectl: CLI to configure Kubernetes and manage apps

• Using "cube control" official pronunciation
• Node: Single server in the Kubernetes cluster
• Kubelet: Kubernetes agent running on nodes
• Control Plane: Set of containers that manage the

cluster
• Includes API server, scheduler, controller manager,

etcd, and more
• Sometimes called the "master"

Install Kubernetes Locally
• Kubernetes is a series of containers, CLI's, and configurations
• Many ways to install, lets focus on easiest for learning
• Docker Desktop: Enable in settings

• Sets up everything inside Docker's existing Linux VM
• Docker Toolbox on Windows: MiniKube

• Uses VirtualBox to make Linux VM
• Your Own Linux Host or VM: MicroK8s

• Installs Kubernetes right on the OS

Kubernetes In A Browser
• Try http://play-with-k8s.com or katacoda.com in browser

• Easy to get started
• Doesn't keep your environment

http://play-with-k8s.com
http://katacoda.com

Docker Desktop
• Runs/configures Kubernetes Master containers
• Manages kubectl install and certs
• Easily install, disable, and remove from Docker GUI

MiniKube
• Download Windows Installer from GitHub
• minikube-installer.exe
• minikube start
• Much like the docker-machine experience
• Creates a VirtualBox VM with Kubernetes master setup
• Doesn't install kubectl

MicroK8s
• Installs Kubernetes (without Docker Engine) on localhost (Linux)
• Uses snap (rather then apt or yum) for install
• Control the MicroK8s service via microk8s. commands
• kubectl accessable via microk8s.kubectl
• Add CoreDNS for services to work

• microk8s.enable dns
• Add an alias to your shell (.bash_profile)

• alias kubectl=microk8s.kubectl

Kubernetes Container Abstractions
• Pod: one or more containers running together on one Node

• Basic unit of deployment. Containers are always in pods
• Controller: For creating/updating pods and other objects

• Many types of Controllers inc. Deployment, ReplicaSet,
StatefulSet, DaemonSet, Job, CronJob, etc.

• Service: network endpoint to connect to a pod
• Namespace: Filtered group of objects in cluster
• Secrets, ConfigMaps, and more

Kubernetes Run, Create, and Apply
• Kuberentes is evolving, and so is the CLI
• We get three ways to create pods from the kubectl CLI

> kubectl run (changing to be only for pod creation)
> kubectl create (create some resources via CLI or YAML)
> kubectl apply (create/update anything via YAML)

• For now we'll just use run or create CLI
• Later we'll learn YAML and pros/cons of each

Creating Pods with kubectl
• Are we working?

> kubectl version
• Two ways to deploy Pods (containers): Via commands, or via YAML
• Let's run a pod of the nginx web server!

> kubectl create deployment my-nginx --image nginx
• Let's list the pod

> kubectl get pods
• Let's see all objects

> kubectl get all

Pods -> ReplicaSet -> Deployment

Cleanup
• Let's remove the Deployment

> kubectl delete deployment my-nginx

Scaling ReplicaSets
• Start a new deployment for one replica/pod

> kubectl create deployment my-apache --image httpd
• Let's scale it up with another pod

> kubectl scale deploy/my-apache --replicas 2
> kubectl scale deployment my-apache --replicas 2
• those are the same command
• deploy = deployment = deployments

What Just Happened? kubectl scale

Don't Cleanup
• We'll use these httpd containers in the next lecture

Inspecting Deployment Objects
> kubectl get pods
• Get container logs

> kubectl logs deployment/my-apache --follow --tail 1
• Get a bunch of details about an object, including events!

> kubectl describe pod/my-apache-xxxx-yyyy
• Watch a command (without needing watch)

> kubectl get pods -w
• In a separate tab/window

> kubectl delete pod/my-apache-xxxx-yyyy
• Watch the pod get re-created

Cleanup
• Let's remove the Deployment

> kubectl delete deployment my-apache

