
Exposing Containers
• kubectl expose creates a service for existing pods 
• A service is a stable address for pod(s) 
• If we want to connect to pod(s), we need a service 
• CoreDNS allows us to resolve services by name 
• There are different types of services 

• ClusterIP 
• NodePort 
• LoadBalancer 
• ExternalName



Basic Service Types
• ClusterIP (default) 

• Single, internal virtual IP allocated 
• Only reachable from within cluster (nodes and pods) 
• Pods can reach service on apps port number 

• NodePort 
• High port allocated on each node 
• Port is open on every node’s IP 
• Anyone can connect (if they can reach node) 
• Other pods need to be updated to this port 

• These services are always available in Kubernetes



More Service Types
• LoadBalancer 

• Controls a LB endpoint external to the cluster 
• Only available when infra provider gives you a LB (AWS ELB, etc) 
• Creates NodePort+ClusterIP services, tells LB to send to NodePort 

• ExternalName 
• Adds CNAME DNS record to CoreDNS only 
• Not used for Pods, but for giving pods a DNS 

name to use for something outside Kubernetes 
• Kubernetes Ingress: We’ll learn later



Creating a ClusterIP Service
• Open two shell windows so we can watch this 

> kubectl get pods -w 
• In second window, lets start a simple http server using sample code 

> kubectl create deployment httpenv --image=bretfisher/httpenv 
• Scale it to 5 replicas 

> kubectl scale deployment/httpenv --replicas=5 
• Let's create a ClusterIP service (default) 

> kubectl expose deployment/httpenv --port 8888



Inspecting ClusterIP Service
• Look up what IP was allocated 

> kubectl get service 
• Remember this IP is cluster internal only, how do we curl it? 
• If you're on Docker Desktop (Host OS is not container OS) 

> kubectl run --generator=run-pod/v1 tmp-shell --rm -it --image 
bretfisher/netshoot -- bash 

> curl httpenv:8888 
• If you're on Linux host 

> curl [ip of service]:8888



Cleanup
• Leave the deployment there, we'll use it in the next Lecture



Create a NodePort Service
• Let's expose a NodePort so we can access it via the host IP 

(including localhost on Windows/Linux/macOS) 
> kubectl expose deployment/httpenv --port 8888 --name httpenv-

np --type NodePort 
• Did you know that a NodePort service also creates a ClusterIP? 
• These three service types are additive, each one 

creates the ones above it: 
• ClusterIP 
• NodePort 
• LoadBalancer 



Add a LoadBalancer Service
• If you're on Docker Desktop, it provides a built-in LoadBalancer 

that publishes the --port on localhost 
> kubectl expose deployment/httpenv --port 8888 --name httpenv-

lb --type LoadBalancer 
> curl localhost:8888 

• If you're on kubeadm, minikube, or microk8s 
• No built-in LB 
• You can still run the command, it'll just stay at 

"pending" (but its NodePort works)



Cleanup
• Let's remove the Services and Deployment 

> kubectl delete service/httpenv service/httpenv-np 
> kubectl delete service/httpenv-lb deployment/httpenv



Kubernetes Services DNS
• Starting with 1.11, internal DNS is provided by CoreDNS 
• Like Swarm, this is DNS-Based Service Discovery 
• So far we've been using hostnames to access Services 

> curl <hostname> 
• But that only works for Services in the same Namespace 

> kubectl get namespaces 
• Services also have a FQDN 

> curl <hostname>.<namespace>.svc.cluster.local



Assignment: Explore run get and logs
• Dry Run 

> kubectl create deployment nginx --image nginx --dry-run 
• Run does different things based on options 

> kubectl create deployment nginx --image nginx --dry-run --port 80 --
expose 

• Only create a simple Pod, not a Deployment, 
ReplicaSet, etc. 
> kubectl run nginx-pod --generator=run-pod/v1 --

image nginx 
• Get a shell in new Pod, remove on exit 

> kubectl run shell --generator=run-pod/v1 --rm -it --
image busybox



Assignment: Explore run get and logs
• Create a Deployment and ClusterIP Dervice in one line 

> kubectl run nginx2 --image nginx --replicas 2 
• Get multiple resources in one line 

> kubectl get deploy,pods 
• Get all pods, in wide format (gives more info) 

> kubectl get pods -o wide 
• Get all pods and show labels 

> kubectl get pods --show-labels 
•



Assignment: Explore run get and logs
• Better log viewing with stern 

• github.com/wercker/stern 
> kubectl run mydate --image bretfisher/date --replicas 3 
> kubectl logs deployment/mydate 
> stern mydate



Cleanup
• Let's remove everything but the service/kubernetes 

> kubectl get all 
> kubectl delete deployment/nginx2 pod/nginx-pod


