
kubectl apply
• Remember the three management approaches? 
• Let's skip to full Declarative objects 
>kubectl apply -f filename.yml 
• Why skip kubectl create, kubectl replace, kubectl edit? 
• What I recommend ≠ all that's possible



Using kubectl apply
• create/update resources in a file 

> kubectl apply -f myfile.yaml 
• create/update a whole directory of yaml 

> kubectl apply -f myyaml/ 
• create/update from a URL 

> kubectl apply -f https://bret.run/pod.yml 
• Be careful, lets look at it first (browser or curl) 

> curl -L https://bret.run/pod 
• Win PoSH? start https://bret.run/pod.yml



Kubernetes Configuration YAML 
• Kubernetes configuration file (YAML or JSON) 
• Each file contains one or more manifests 
• Each manifest describes an API object (deployment, job, secret) 
• Each manifest needs four parts (root key:values in the file) 

apiVersion: 
kind: 
metadata: 
spec:



Building Your YAML Files
• kind: We can get a list of resources the cluster supports 

> kubectl api-resources 
• Notice some resources have multiple API's (old vs. new) 
• apiVersion: We can get the API versions the cluster supports 

> kubectl api-versions 
• metadata: only name is required 
• spec: Where all the action is at!



Building Your YAML spec
• We can get all the keys each kind supports 

> kubectl explain services --recursive 
• Oh boy! Let's slow down 

> kubectl explain services.spec 
• We can walk through the spec this way 

> kubectl explain services.spec.type 
• spec: can have sub spec: of other resources 

> kubectl explain 
deployment.spec.template.spec.volumes.nfs.server 

• We can also use docs 
• kubernetes.io/docs/reference/#api-reference



Dry Runs With Apply YAML
• New stuff, not out of beta yet (1.15) 
• dry-run a create (client side only) 

> kubectl apply -f app.yml --dry-run 
• dry-run a create/update on server 

> kubectl apply -f app.yml --server-dry-run 
• see a diff visually 

> kubectl diff -f app.yml



Labels and Annotations
• Labels goes under metadata: in your YAML 
• Simple list of key: value for identifying your resource later by 

selecting, grouping, or filtering for it 
• Common examples include tier: frontend, app: api, env: prod, 

customer: acme.co 
• Not meant to hold complex, large, or non-

identifying info, which is what annotations are for 
• filter a get command 

> kubectl get pods -l app=nginx 
• apply only matching labels 

> kubectl apply -f myfile.yaml -l app=nginx



Label Selectors
• The "glue" telling Services and Deployments which pods are theirs 
• Many resources use Label Selectors to "link" resource dependencies 
• You'll see these match up in the Service and Deployment YAML 
• Use Labels and Selectors to control which pods go to which nodes 
• Taints and Tolerations also control node placement 



Cleanup
• Let's remove anything you created in this section 

> kubectl get all 
> kubectl delete <resource type>/<resource name>


