
Storage in Kubernetes
• Storage and stateful workloads are harder in all systems 
• Containers make it both harder and easier than before 
• StatefulSets is a new resource type, making Pods more sticky 
• Bret's recommendation: avoid stateful workloads for first few 

deployments until you're good at the basics 
• Use db-as-a-service whenever you can



Volumes in Kubernetes
• Creating and connecting Volumes: 2 types 
• Volumes 

• Tied to lifecycle of a Pod 
• All containers in a single Pod can share them 

• PersistentVolumes 
• Created at the cluster level, outlives a Pod 
• Separates storage config from Pod using it 
• Multiple Pods can share them 

• CSI plugins are the new way to connect to storage



Ingress
• None of our Service types work at OSI Layer 7 (HTTP) 
• How do we route outside connections based on hostname or URL? 
• Ingress Controllers (optional) do this with 3rd party proxies 
• Nginx is popular, but Traefik, HAProxy, F5, Envoy, Istio, etc. 
• Note this is still beta (in 1.15) and becoming popular 
• Implementation is specific to Controller chosen



CRD's and The Operator Pattern
• You can add 3rd party Resources and Controllers 
• This extends Kubernetes API and CLI 
• A pattern is starting to emerge of using these together 
• Operator: automate deployment and management of complex apps 
• e.g. Databases, monitoring tools, backups, and custom ingresses



Higher Deployment Abstractions
• All our kubectl commands just talk to the Kubernetes API 
• Kubernetes has limited built-in templating, versioning, tracking, 

and management of your apps 
• There are now over 60 3rd party tools to do that, but many are 

defunct 
• Helm is the most popular 
• "Compose on Kubernetes" comes with Docker 

Desktop 
• Remember these are optional, and your distro 

may have a preference 
• Most distros support Helm



Templating YAML
• Many of the deployment tools have templating options 
• You'll need a solution as the number of environments/apps grow 
• Helm was the first "winner" in this space, but can be complex 
• Official Kustomize feature works out-of-the-box (as of 1.14) 
• docker app and compose-on-kubernetes are Docker's way



Kubernetes Dashboard
• Default GUI for "upstream" Kubernetes 

• github.com/kubernetes/dashboard 
• Some distributions have their own GUI (Rancher, Docker Ent, 

OpenShift) 
• Clouds don't have it by default 
• Let's you view resources and upload YAML 
• Safety first!

http://github.com/kubernetes/dashboard


Kubectl Namespaces and Context
• Namespaces limit scope, aka "virtual clusters" 
• Not related to Docker/Linux namespaces 
• Won't need them in small clusters 
• There are some built-in, to hide system stuff from kubectl "users" 

> kubectl get namespaces 
> kubectl get all --all-namespaces 

• Context changes kubectl cluster and namespace 
• See ~/.kube/config file 
>kubectl config get-contexts 
>kubectl config set*



Future of Kubernetes
• More focus on stability and security 

• 1.14, 1.15, largely dull releases (a good thing!) 
• Recent security audit has created backlog 

• Clearing away deprecated features like kubectl run generators 
• Improving features like server-side dry-run 
• More and improved Operators 
• Helm 3.0 (easier deployment, chart repos, libs) 
• More declarative-style features 
• Better Windows Server support 
• More edge cases, kubeadm HA clusters



Related Projects
• Kubernetes has become the "differencing and scheduling engine 

backbone" for so many new projects 
• Knative - Serverless workloads on Kubernetes 
• k3s - mini, simple Kubernetes 
• k3OS - Minimal Linux OS for k3s 
• Service Mesh - New layer in distributed app traffic 

for better control, security, and monitoring


