
This Section

• All about images, the building blocks of containers 
• What's in an image (and what isn't) 
• Using Docker Hub registry 
• Managing our local image cache 
• Building our own images 
• VOLUME and mounting host data 
• Images for different CPU architectures 
• Windows images and how they differ



What's In An Image (And What Isn't)

• App binaries and dependencies 
• Metadata about the image data and how to run the image 
• Official definition: "An Image is an ordered collection of root 

filesystem changes and the corresponding execution 
parameters for use within a container runtime." 
• Not a complete OS. No kernel, kernel modules (e.g. drivers) 
• Small as one file (your app binary) like a golang static binary 
• Big as a Ubuntu distro with apt, and Apache, PHP, and more 

installed



Image Creation and Storage

• Created Using a Dockerfile 
• Or committing a containers changes back to an image 
• Stored in Docker Engine image cache 
• Move images in/out of cache via: 
• local filesystem via tarballs 
• push/pull to a remote "image registry" (e.g. Docker Hub) 

• Images aren't ideal for persistent data 
• Mount a host file system path into container 
• Use docker volume to create storage for unique/persistent data



Image Highlights

• Images are made up of app binaries, dependencies, and 
metadata 
• Don't contain a full OS 
• Usually use a Dockerfile recipe to create them 
• Stored in your Docker Engine image cache 
• Permanent Storage should be in a Image Registry 
• Image's don't usually store persistent data



This Lecture

• Basics of Docker Hub (hub.docker.com) 
• Find Official and other good public images 
• Download images and basics of image tags



This Lecture: Review

• Docker Hub, "the apt package system for Containers" 
• Official images and how to use them 
• How to discern "good" public images 
• Using different base images like Debian or Alpine 
• The recommended tagging scheme used by Official images



This Lecture

• Image layers 
• Union file system 
• history and inspect commands 
• Copy on write



Image and Their Layers: Review

• Images are made up of file system changes and metadata 
• Each layer is uniquely identified and only stored once on a host 
• This saves storage space on host and transfer time on push/pull 
• A container is just a single read/write layer on top of image 
• docker image history and inspect commands can teach 

us



This Lecture: Requirements

• Know what container and images are 
• Understand image layer basics 
• Understand Docker Hub basics



This Lecture

• All about image tags 
• How to upload to Docker Hub 
• Image ID vs. Tag



This Lecture: Review

• Properly tagging images 
• Tagging images for upload to Docker Hub 
• How tagging is related to image ID 
• The Latest Tag 
• Logging into Docker Hub from docker cli 
• How to create private Docker Hub images



Building Images: Requirements

• Understand container and image basics from previous lectures 
• Cloned the class repository from Section 1 
• Starting in the dockerfile-sample-1 directory



Building Images: The Dockerfile Basics

• Dockerfile basics 
• FROM (base image) 
• ENV (environment variable) 
• RUN (any arbitrary shell command) 
• EXPOSE (open port from container to virtual network) 
• CMD (command to run when container starts) 
• docker image build (create image from Dockerfile)



Assignment: Build Your Own Image

• Dockerfiles are part process workflow and part art 
• Take existing Node.js app and Dockerize it 
• Make Dockerfile. Build it. Test it. Push it. (rm it). Run it. 
• Expect this to be iterative. Rarely do I get it right the first time. 
• Details in dockerfile-assignment-1/Dockerfile
• Use the Alpine version of the official 'node' 6.x image 
• Expected result is web site at http://localhost 
• Tag and push to your Docker Hub account (free) 
• Remove your image from local cache, run again from Hub

http://localhost/

