
Section Overview

• Defining the problem of persistent data
• Key concepts with containers: immutable, ephemeral
• Learning and using Data Volumes
• Learning and using Bind Mounts
• Assignments

Container Lifetime & Persistent Data

• Containers are usually immutable and ephemeral
• "immutable infrastructure": only re-deploy containers, never change
• This is the ideal scenario, but what about databases, or unique

data?
• Docker gives us features to ensure these "separation of concerns"
• This is known as "persistent data"
• Two ways: Volumes and Bind Mounts
• Volumes: make special location outside of container UFS
• Bind Mounts: link container path to host path

Persistent Data: Volumes

• VOLUME command in Dockerfile
• Also override with docker run -v /path/in/container
• Bypasses Union File System and stores in alt location on host
• Includes it's own management commands under docker volume
• Connect to none, one, or multiple containers at once
• Not subject to commit, save, or export commands
• By default they only have a unique ID, but you can assign name
• Then it's a "named volume"

Persistent Data: Bind Mounting

• Maps a host file or directory to a container file or directory
• Basically just two locations pointing to the same file(s)
• Again, skips UFS, and host files overwrite any in container
• Can't use in Dockerfile, must be at container run
• ... run -v /Users/bret/stuff:/path/container (mac/linux)
• ... run -v //c/Users/bret/stuff:/path/container

(windows)

Assignment: Named Volumes

• Database upgrade with containers
• Create a postgres container with named volume psql-data

using version 9.6.1
• Use Docker Hub to learn VOLUME path and versions needed to run

it
• Check logs, stop container
• Create a new postgres container with same named volume

using 9.6.2
• Check logs to validate
• (this only works with patch versions, most SQL DB's require manual commands to upgrade

DB's to major/minor versions, i.e. it's a DB limitation not a container one)

Assignment: Bind Mounts

• Use a Jekyll "Static Site Generator" to start a local web server
• Don't have to be web developer: this is example of bridging the gap

between local file access and apps running in containers
• source code is in the course repo under bindmount-sample-1
• We edit files with editor on our host using native tools
• Container detects changes with host files and updates web server
• start container with

• docker run -p 80:4000 -v $(pwd):/site bretfisher/jekyll-
serve

• Refresh our browser to see changes
• Change the file in _posts\ and refresh browser to see changes

