The Angle Between Two Vectors

Watch the lecture from this section until this derivation is referred to.

Given two vectors we can use the principles of a right-angle triangle to determine the x and y components where the x component is

```
x = hypotenuse * cos (angle) &
y = hypotenuse * sin (angle)
```

The hypotenuse is this case will be the length of the vector, x will be the length of the adjacent side and y the length of the opposite side. We can then rewrite the vector coordinates with

```
x = length of vector * cos(angle)
y = length of vector * sin(angle)
```

This allows us to rewrite the coordinates for v and w in the diagram above as:
$v=\left(\|v\| \cos \left(\phi_{v}\right),\|v\| \sin \left(\phi_{v}\right)\right)$
$w=\left(\|w\| \cos \left(\phi_{w}\right),\|w\| \sin \left(\phi_{w}\right)\right)$

This can be reduced using further trigonometry to:
$v . w=\|v\|\|w\| \cos \left(\phi_{w}-\phi_{v}\right)$
and finally, to
$v \cdot w=\|v\|\|w\| \cos (\theta)$
or for better ease of coding the angle between two vectors can be found with:
$\theta=\cos ^{-1}\left(\frac{v \cdot w}{\|v\|\|w\|}\right)$

