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Prerequisites

Compiling and running C++ 
programsC++ syntax and structure

Basics of object-oriented 
programming

Basic concepts: condition 
statements, loops, functions...



Why Learn About "Raw" Pointers?

Legacy

Legacy codebases

C++ is a superset of C

Raw pointers are a common occurrence

To understand the abstractions

Modern C++ uses abstractions, like 
smart pointers

These abstractions are wrappers 
around raw pointers



“People who think they know everything 
really annoy those of us who know we 
don't.”
Bjarne Stroustrup, creator of the C++ programming language



Welcome to the course!



C++ Programs and Memory

Compiled program will get loaded into RAM

Process is an execution of a program

Each process will get its own piece of memory

C++ implements abstractions to simplify 
management of that piece of memory



int x = 2;
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Pointer is a variable that stores 
a memory address.
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RAII
Resource acquisition is initialization



class ComplexClass 
{

ComplexClass()
{ 
// allocate resources 

}

~ComplexClass()
{ 
// deallocate resources 

}
};

int main()
{

ComplexClass x;

// end of scope
}

t Constructor

t Destructor

t Object instantiation, constructor is called

t End of scope, destructor is called



Static (local) variablesGlobal variables
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Summary



Up Next:
Dynamic Memory Allocation


