
Working with Pointers and
Arrays in C++ 20
Pointing to an Address in Memory

Mateo Prigl
Software Developer

Prerequisites

Compiling and running C++
programsC++ syntax and structure

Basics of object-oriented
programming

Basic concepts: condition
statements, loops, functions...

Why Learn About "Raw" Pointers?

Legacy

Legacy codebases

C++ is a superset of C

Raw pointers are a common occurrence

To understand the abstractions

Modern C++ uses abstractions, like
smart pointers

These abstractions are wrappers
around raw pointers

“People who think they know everything
really annoy those of us who know we
don't.”
Bjarne Stroustrup, creator of the C++ programming language

Welcome to the course!

C++ Programs and Memory

Compiled program will get loaded into RAM

Process is an execution of a program

Each process will get its own piece of memory

C++ implements abstractions to simplify
management of that piece of memory

int x = 2;

Memory

124

int x = 2;

x

125123122 126

Identifier

Memory
addresses

Memory

124

int x = 2;

&x; // 124
// & - address-of operator

2

x

125123122 126

Identifier

Memory
addresses

Pointer is a variable that stores
a memory address.

Memory

124

int x = 2;

int *addr_of_x = &x;

*addr_of_x

125123

2

122 126

x

Memory

124

int x = 2;

int *addr_of_x = &x;

*addr_of_x

125

123

123

2

122 126

x

Memory

124

int x = 2;

int *addr_of_x = &x;

*addr_of_x

125

123

123

2

122 126

x

Memory

124

int x = 2;

int *addr_of_x = &x;

*addr_of_x
// * - dereference operator

*addr_of_x

125

123

123

2

122 126

x

Memory

124

int x = 2;

int *addr_of_x = &x;

*addr_of_x // 2
// * - dereference operator

*addr_of_x

125

123

123

2

122 126

x

Memory

124

int x = 2;

int *addr_of_x = &x;

*addr_of_x // 2
// * - dereference operator

*addr_of_x = 5;

*addr_of_x

125

123

123

2

122 126

x

*

Memory

124

int x = 2;

int *addr_of_x = &x;

*addr_of_x // 2
// * - dereference operator

*addr_of_x = 5;

*addr_of_x

125

123

123

5

122 126

x

*

RAII
Resource acquisition is initialization

class ComplexClass
{

ComplexClass()
{
// allocate resources

}

~ComplexClass()
{
// deallocate resources

}
};

int main()
{

ComplexClass x;

// end of scope
}

t Constructor

t Destructor

t Object instantiation, constructor is called

t End of scope, destructor is called

Static (local) variablesGlobal variables

References

Summary

Up Next:
Dynamic Memory Allocation

