
Calculator Tests

You can see how testing this DLL would be a manual effort - make a change, build the project, load the DLL, call each method (perhaps with
multiple sets of test data), and figure out if the output is correct or not. This is where automated testing comes into play.

Make sure you're back in the mycalculator directory and create a new test project.

PS C:\Tools\mycalculator> dotnet new xunit -n Calculator.Tests
The template "xUnit Test Project" was created successfully.

As before, add the test project to the main solution.

PS C:\Tools\mycalculator> dotnet sln add .\Calculator.Tests\
Project `Calculator.Tests\Calculator.Tests.csproj` added to the solution.

Move into the Calculator.Tests directory and add a reference to the main Calculator project.

PS C:\Tools\mycalculator> cd .\Calculator.Tests\

PS C:\Tools\mycalculator> dotnet add reference ..\Calculator\Calculator.csproj
Reference `..\Calculator\Calculator.csproj` added to the project.

Rename UnitTest1.cs to CalculatorTests.cs and open it for editing.

 xUnit is a free unit testing framework.

PS C:\Tools\mycalculator\Calculator.Tests> ls

Directory: C:\Tools\mycalculator\Calculator.Tests

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 14/11/2022 14:53 obj
-a--- 14/11/2022 14:53 1006 Calculator.Tests.csproj
-a--- 14/11/2022 14:53 112 UnitTest1.cs
-a--- 14/11/2022 14:53 19 Usings.cs

PS C:\Tools\mycalculator\Calculator.Tests> move .\UnitTest1.cs .\CalculatorTests.cs
PS C:\Tools\mycalculator\Calculator.Tests> code .

To keep the code short, I'm only going to implement tests for the Add method.

namespace Calculator.Tests;

public class CalculatorTests
{

[Theory]
[InlineData(5, 5, 10)]
[InlineData(-5, -5, -10)]
[InlineData(-5, 5, 0)]
[InlineData(int.MinValue, -1, int.MaxValue)]
public void AddTests(int num1, int num2, int expected)
{

var calculator = new Calculator();
var result = calculator.Add(num1, num2);

Assert.Equal(expected, result);
}

}

I don't want to dive too deep into what's happening, but here's a brief explanation. The body of AddTests is quite self-explanatory - we
instantiate a new instance of Calculator , call the Add method and capture the output in a variable called result . The value of result is
then compared against the value of expected .

If they match, the test passes. Otherwise, it will fail.

Furthermore, AddTests takes in num1 , num2 and expected , which are provided by the InlineData declarations above it. This means this
test will run a total of 4 times, each time with a different set of values.

To execute the tests, run dotnet test .

PS C:\Tools\mycalculator\Calculator.Tests> dotnet test

Starting test execution, please wait...
A total of 1 test files matched the specified pattern.

Passed! - Failed: 0, Passed: 4, Skipped: 0, Total: 4, Duration: 6 ms - Calculator.Tests.dll (net6.0)

We can see that all 4 tests passed, and the process is much faster and more accurate than manual tests. As you can imaging, this benefit
increases the more complex the project becomes.

Commit this project to GitLab.

PS C:\Tools\mycalculator> git add . && git commit -m "create calculator tests"
PS C:\Tools\mycalculator> git push -u origin main

https://xunit.net/

	 Calculator Tests

