HideZeroOne INE – Cyber Sec www.hideO1.ir

Incident Handling & Response Professional

Intrusion Detection By Analyzing Flows

Section 02 | Module 03

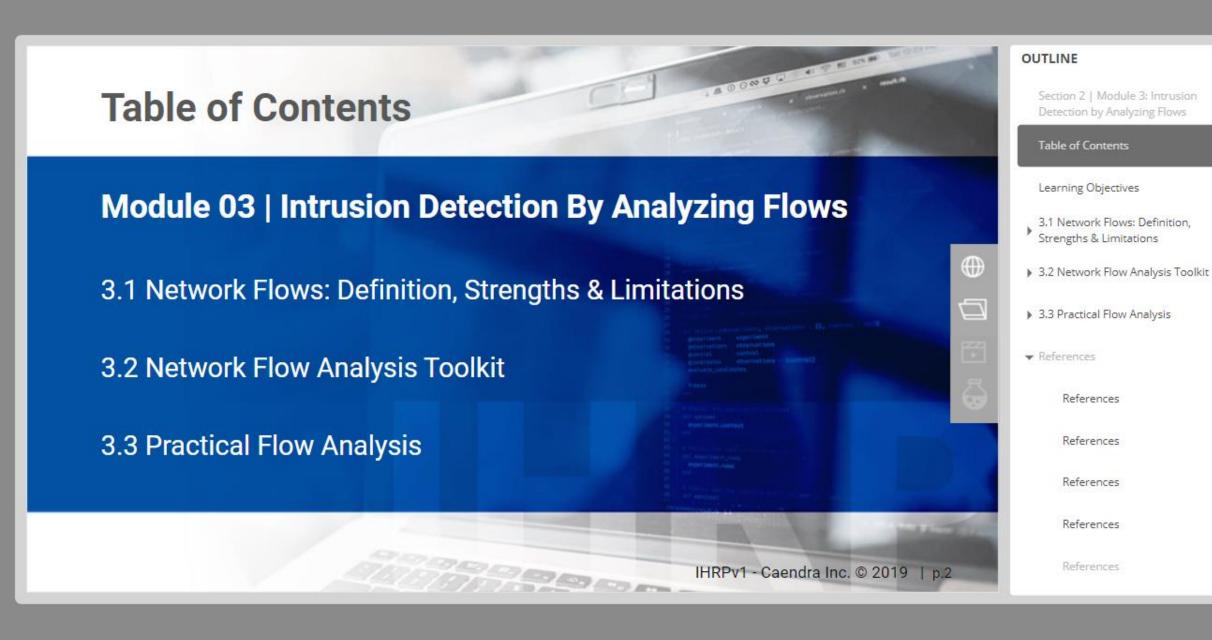
OUTLINE

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

- 3.1 Network Flows: Definition, Strengths & Limitations
- ▶ 3.2 Network Flow Analysis Toolkit
- ▶ 3.3 Practical Flow Analysis
- ▼ References


References

References

References

References

References

Learning Objectives

By the end of this module, you should have a better understanding of:

- Network flow tracking, including its strengths, limitations and tools
- ✓ How to analyze network flows and leverage them for situational awareness
- ✓ How to enrich network flows with other data sources

IHRPv1 - Caendra Inc. © 2019 | p.3

OUTLINE

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

- 3.1 Network Flows: Definition, Strengths & Limitations
- 3.2 Network Flow Analysis Toolkit
- ▶ 3.3 Practical Flow Analysis
- ▼ References

References

References

References

References

References

Network Flows: Definition, Strengths & Limitations

OUTLINE

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

- ▼ 3.1 Network Flows: Definition,

 Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.2 Network Flows: Strengths & Limitations
- ▶ 3.2 Network Flow Analysis Toolkit
- 3.3 Practical Flow Analysis
- ▼ References

References

3.1 Network Flows: Definition, Strengths & Limitations

After an incident has occurred, the faster we identify the attackers and the compromised assets, the quicker we will be able to proceed to the containment and eradication phases.

Collecting evidence inside a heterogeneous network and/or analyzing every captured packet (if there are any) is not only demanding, but time consuming as well.

OUTLINE

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

▼ 3.1 Network Flows: Definition, Strengths & Limitations

3.1 Network Flows: Definition, Strengths & Limitations

- 3.1 Network Flows: Definition, Strengths & Limitations
- 3.1.1 Network Flows: Definition & NetFlow Overview
- 3.1.2 Network Flows: Strengths & Limitations
- 3.2 Network Flow Analysis Toolkit
- 3.3 Practical Flow Analysis
- ▼ References

References

3.1 Network Flows: Definition, Strengths & Limitations

Fortunately, most networking devices nowadays are able to track and export network flows. Well-orchestrated network flow tracking can provide incident responders with a bird's-eye view of all the communications that took (or currently take) place.

Such a view can help incident responders discover not only the attacking as well as the compromised machines but also any abnormal network behavior.

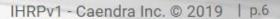

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

- ▼ 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.2 Network Flows: Strengths & Limitations
- ▶ 3.2 Network Flow Analysis Toolkit
- 3.3 Practical Flow Analysis
- ▼ References

References

But what are network flows exactly?

A network flow is essentially a record of a communication between two hosts. A network flow usually contains the source IP address, the destination IP address and the TCP/UDP ports used during a "conversation". Other information, such as the router or switch interface where the flow was spotted, the number of bytes transferred etc. can also be contained in a network flow, as you will see in just a bit.

IHRPv1 - Caendra Inc. © 2019 | p.7

- 3.1.1 Network Flows: Definition & NetFlow Overv...

OUTLINE

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

- 3.1 Network Flows: Definition, ▼ Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations

When it comes to network flow tracking, Cisco's NetFlow technology is the most commonly used one, but other vendors have also approached the network flow tracking topic by adopting jFlow, cFlow, sFlow and IPFIX, which are similar in terms of the provided functionality.

NetFlow reports on traffic statistics, such as sender, receiver, packets, and bytes. It doesn't report the actual protocol payload though.

On your right, you can see the different NetFlow versions.

Version	Comment
v1	First implementation, now obsolete, and restricted to IPv4 (without IP mask and AS Numbers).
v2	Cisco internal version, never released.
v3	Cisco internal version, never released.
v4	Cisco internal version, never released.
v5	Most common version, available (as of 2009) on many routers from different brands, but restricted to IPv4 flows.
v6	No longer supported by Cisco. Encapsulation information (?).
v7	Like version 5 with a source router field. Used (only?) on Cisco Catalyst switches.
v8	Several aggregation form, but only for information that is already present in version 5 records
v9	Template Based, available (as of 2009) on some recent routers. Mostly used to report flows like IPv6, MPLS, or even plain IPv4 with BGP nexthop.
v10	aka IPFIX, IETF Standardized NetFlow 9 with several extensions like Enterprise-defined fields types, and variable length fields.

OUTLINE

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

- ▼ 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3,1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...

http://www.ciscopress.com/articles/article.asp?p=2812391&seqNum=3

Most firewalls, routers and switches can export NetFlow logs to a collecting server.

As already discussed, unlike packet capture, with NetFlow you can't ensure that, for example, the traffic spotted over port 80 is actually HTTP traffic, since it has no visibility into the actual protocol payload.

OUTLINE

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

- ▼ 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...

Some attributes NetFlow can export are:

- IP source address
- IP destination address
- Source port
- Destination port
- Layer 3 protocol type
- Class of service
- Router or switch interface

OUTLINE

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

- ▼ 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - ▼ 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...

NetFlow V5 is the most commonly used version and is supported by numerous different router manufacturers.

The number of fields NetFlow V5 can export are limited though.

ie iii iiiteu

OUTLINE

 \Box

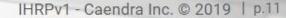

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

- ▼ 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows; Definition & NetFlow Overv...

NetFlow V9, on the other hand, is a template-based flow with no restriction on the number of fields to be exported.

Unlike V5 where the headers are hardcoded, V9 offers a dynamic header. In order for the collector to decode the datagrams, it must receive a template from the NetFlow exporter which defines the headers. The collector cannot decode the datagrams until the corresponding template is received.

IHRPv1 - Caendra Inc. © 2019 | p.12

3.1.1 Network Flows: Definition & NetFlow Overv...

Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

Definition & NetFlow Overv...

Section 2 | Module 3: Intrusion Detection by Analyzing Flows

Table of Contents

Learning Objectives

3.1 Network Flows: Definition, ▼ Strengths & Limitations

> 3.1 Network Flows: Definition, Strengths & Limitations

> 3.1 Network Flows: Definition. Strengths & Limitations

3.1.1 Network Flows: Definition & NetFlow Overview

IPFIX is an open-source implementation based on NetFlow Version 9 and was created to meet the need for a universal standard to export IP flow information from network devices.

It is on the IETF standards, and it is implemented by multiple vendors.

Specifications of IPFIX are documented in RFC 7011, RFC 7015, and RFC 5103.

OUTLINE

Table of Contents

Learning Objectives

- 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

A NetFlow setup for monitoring usually consists of 3 components:

- Exporter: Router, Switch, Firewall, ... etc.
- Collector: Software for receiving and storing NetFlow
- Analysis: Software for analyzing the flow

Learning Objectives

- 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.1 Network Flows: Definition & NetFlow Overv....
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

NetFlow exports data in UDP datagrams.

The NetFlow RFC 3954 does not specify a NetFlow listening port; however, Wireshark and most other solutions assume NetFlow on port 2055 and IPFIX on port 4739.

OUTLINE

- 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1 Network Flows: Definition, Strengths & Limitations
 - 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

IPv4: What NetFlow is mostly interested in

Bit offset	0-3	4-7	8-13		14-15	16-18	19-31
0	Version	Internet Header Length	Differentiated Serv Code Point	ices	Explicit Congestion Notification	Total	l Length
32			Identification			Flags	Fragment Offset
64		Time to Live		Pro	tocol	Header	Checksum
96			Soul	rce IP A	Address		
128			Destin	ation II	o address		
160				Optio	ns		
160 or 192+				Data	a		

₩

 \Box

OUTLINE

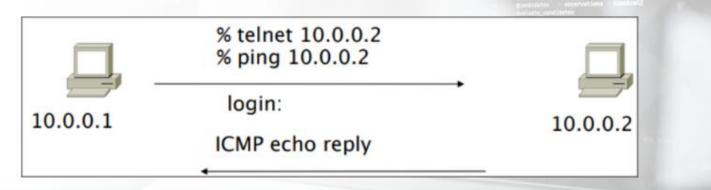
- 3.1 Network Flows: Definition, Strengths & Limitations
- 3.1 Network Flows: Definition, Strengths & Limitations
- 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...

TCP: What NetFlow is mostly interested in

Octet				0)							-									2							;	3			
Bit	0	1	2	3	4	5	6	7	8	9	1	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2	2	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3	3
0							So	urc	e p	ort												0)est	tina	tior	ро	rt					
32														Se	que	enc	e nu	ımb	er													
64											Acl	cno	wle	dgr	nen	t nı	ımb	er ((if A	CK	is	set)										
96		Dat			Re	esen d	ve	NS	C W R	E C E	U R G	A C K	P S H	R S T	S Y N	F I N							Wi	ndo	w s	size						
128							CI	hec	ksu	m										l	Jrge	ent	poi	ntei	r (if	UR	G is	set	()			
160															(Opti	ons	;														
***																90 % (98)																

- 3.1 Network Flows: Definition, Strengths & Limitations
- 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...

UDP: What NetFlow is mostly interested in


Bit Offset	0-15	16-31
0	Source port	Destination port
32	Length	Checksum
64 	Da	nta

OUTLINE

- 3.1.1 Network Flows: Definition & NetFlow Overview
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows; Definition & NetFlow Overv...
 - 3.1.1 Network Flows: Definition & NetFlow Overv...

Network flows can be unidirectional or bidirectional, in terms of representation. Suppose that the below communication occurred. Let's see this "conversation" through the lens of network flows.

OUTLINE

- 3.1.1 Network Flows: Definition & NetFlow Overv....
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

Unidirectional Flow

Active Flows

Flow	Source IP	Destinati on IP	Prot.	srcPort	dstPort
1	10.0.0.1	10.0.0.2	TCP	32000	23
2	10.0.0.2	10.0.0.1	TCP	23	32000
3	10.0.0.1	10.0.0.2	ICMP	0	0
4	10.0.0.2	10.0.0.1	ICMP	0	0

OUTLINE

- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

Bidirectional Flow

Active Flows

Flow	Source IP	Destinati on IP	Prot.	srcPort	dstPort
1	10.0.0.1	10.0.0.2	TCP	32000	23
2	10.0.0.1	10.0.0.2	ICMP	0	0

OUTLINE

- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.2 Network Flows: Strengths & Limitations

Let us now summarize the strengths and limitations of network flow tracking, before we start covering the network flow analysis toolkit.

- 3.1.1 Network Flows: Definition & NetFlow Overv....
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.2 Network Flows: Strengths & Limitations

3.1.2 Network Flows: Strengths & Limitations

Network Flow Tracking Strengths

- Capturing communication information in a storage-effective and time-effective manner
- Still useful even in encrypted communications (when, where, how much and at what time information are still available)
- Useful to baseline an entire environment
- Flows can be obtained from multiple places within the network

Network Flow Tracking Limitations

- Not a substitute of full packet capture, since it does not contain the content of each message that was sent
- always pay dividends
- flow collector needs careful planning

3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

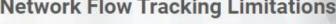
3.1.1 Network Flows:

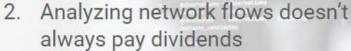
3.1.1 Network Flows:

3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows:

3.1.1 Network Flows:


3.1.1 Network Flows:


Definition & NetFlow Overv...

- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.2 Network Flows: Strengths & Limitations

3. Selecting/deploying the appropriate

OUTLINE

Network Flow Analysis Toolkit

OUTLINE

- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- ▼ 3.1.2 Network Flows: Strengths & Limitations
 - 3.1.2 Network Flows; Strengths & Limitations

3.2 Network Flow Analysis Toolkit

3.2 Network Flow Analysis Toolkit

When it comes to network flow analysis, three (3) tools deserve our attention.

- 1. YAF
- 2. SiLK
- 3. FlowViewer

https://tools.netsa.cert.org/yaf/ https://tools.netsa.cert.org/silk/ https://ensight.eos.nasa.gov/FlowViewer/

OUTLINE

- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.2 Network Flows: Strengths & Limitations
 - 3.1.2 Network Flows; Strengths & Limitations

3.2 Network Flow Analysis Toolkit

3.2.1 Network Flow Analysis Toolkit: YAF

The first tool we will cover from the network flow analysis arsenal is YAF.

YAF is Yet Another Flowmeter. According to its creators, YAF processes packet data deriving from a PCAP traffic capture file or a live capture (from an interface using PCAP) into bidirectional flows and then exports those flows to IPFIX Collecting Processes or in an IPFIX-based file format. YAF's output can be used with the SiLK flow analysis tools, super_mediator, Pipeline 5, and any other IPFIX compliant toolchain.

OUTLINE

3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows:

3.1.1 Network Flows:

3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows:

Definition & NetFlow Overv...

Definition & NetFlow Overv...

Definition & NetFlow Overv...

3.1.2 Network Flows: Strengths & Limitations

▼ 3.2 Network Flow Analysis Toolkit

3.2 Network Flow Analysis Toolkit

3.2.1 Network Flow Analysis
Toolkit: YAF

3.2.1 Network Flow Analysis Toolkit: YAF

YAF's optional features include:

- Application labeling
 - Rules located in /usr/local/etc/yafApplabelRules.conf
- OS detection (supports passive OS fingerprinting via libP0f and DHCP)
 - DHCP fingerprints located in /usr/local/etc/dhcp_fingerprints.conf
 - Output viewed with yaf-file-mediator
- Deep packet inspection
 - Enabled by specifying, --plugin-name=/usr/local/lib/yaf/dpacketplugin.la
 - You can also specify a protocol to perform DPI. --plugin-opts="53 80 21"
 - DPI rule configuration is located in /usr/local/etc/yafDPIRules.conf
 - Output viewed with yaf-file-mediator

https://tools.netsa.cert.org/yaf/applabel.html
http://tools.netsa.cert.org/yaf/yafdhcp.html
https://tools.netsa.cert.org/confluence/display/tt/YAF+2.x+IPFIX+File+Mediator
https://tools.netsa.cert.org/yaf/yafdpi.html

IHRPv1 - Caendra Inc. © 2019

p.27

OUTLINE

- 3.1.1 Network Flows: Definition & NetFlow Overv....
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.2 Network Flows: Strengths & Limitations
 - 3.1.2 Network Flows: Strengths & Limitations
- ▼ 3.2 Network Flow Analysis Toolkit
 - 3.2 Network Flow Analysis Toolkit
 - 3.2.1 Network Flow Analysis
 Toolkit: YAF

3.2.1 Network Flow Analysis Toolkit: YAF

3.2.1 Network Flow Analysis Toolkit: YAF

PCAP -> IPFIX with YAF

>> yaf --in filename.pcap --out filename.yaf

- If you want application labeling add the below
 - --applabel-rules= /usr/local/etc/yafApplabelRules.conf --max-payload 300
- If you want OS detection (via P0f) add the below
 - --p0fprint --p0f-fingerprints /usr/local/etc/ --max-payload 300
- If you want OS detection (via DHCP fingerprints) add the below
 - --plugin-name=/usr/local/lib/yaf/dhcp_fp_plugin.la
- To perform DPI on top on the conversion add the below
 - --plugin-name=/usr/local/lib/yaf/dpacketplugin.la

- 3.1.1 Network Flows: Definition & NetFlow Overv....
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.2 Network Flows; Strengths & Limitations
 - 3.1.2 Network Flows: Strengths & Limitations
- ▼ 3.2 Network Flow Analysis Toolkit
 - 3.2 Network Flow Analysis Toolkit
 - ▼ 3.2.1 Network Flow Analysis
 Toolkit: YAF
 - 3.2.1 Network Flow Analysis
 Toolkit: YAF

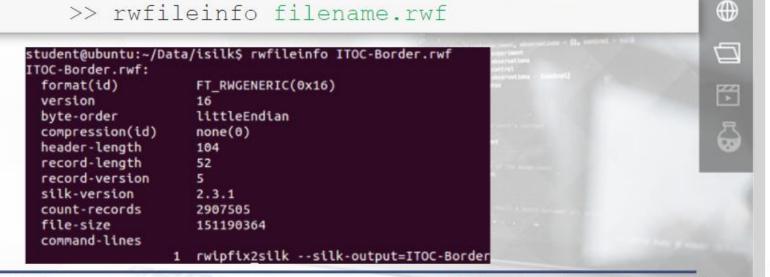
3.2.1 Network Flow Analysis Toolkit: YAF

The definitive tool when it comes to network flow analysis is <u>SiLK</u>. According to its creators, the SiLK tool suite supports the efficient collection, storage, and analysis of network flow data, enabling network security analysts to rapidly query large historical traffic data sets.

OUTLINE

- 3.1.1 Network Flows: Definition & NetFlow Overv....
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.2 Network Flows: Strengths & Limitations
 - 3.1.2 Network Flows: Strengths & Limitations
- ▼ 3.2 Network Flow Analysis Toolkit
 - 3.2 Network Flow Analysis Toolkit
 - 3.2.1 Network Flow Analysis
 Toolkin VAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.2 Network Flow Analysis
 Toolkit: SiLK

Just like Linux commands, SiLK commands are piped to form a workflow. For effectively using SiLK, one should become familiar with crawling with <u>rwcut</u> and walking through flow files with <u>rwcut</u> and <u>rwfilter</u>.



- 3.1.1 Network Flows: Definition & NetFlow Overv....
- 3.1.1 Network Flows; Definition & NetFlow Overv...
- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.2 Network Flows: Strengths & Limitations
 - 3.1.2 Network Flows: Strengths & Limitations
- ▼ 3.2 Network Flow Analysis Toolkit
 - 3.2 Network Flow Analysis Toolkit
 - ▼ 3.2.1 Network Flow Analysis
 Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.2 Network Flow Analysis
 Toolkit: SiLK

3.2.2 Network Flow Analysis Toolkit: SiLK

Let's now cover some important SiLK commands starting with rwfileinfo, that provides metadata information about a SiLK file.

OUTLINE

3.1.1 Network Flows: Definition & NetFlow Overv...

3.1.1 Network Flows; Definition & NetFlow Overv...

3.1.2 Network Flows: Strengths & Limitations

3.1.2 Network Flows: Strengths & Limitations

▼ 3.2 Network Flow Analysis Toolkit

3.2 Network Flow Analysis Toolkit

■ 3.2.1 Network Flow Analysis
Toolkir: YAF

3.2.1 Network Flow Analysis Toolkit: YAF

3.2.1 Network Flow Analysis
Toolkit: YAF

▼ 3.2.2 Network Flow Analysis Toolkit: SiLK


> 3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.2 Network Flow Analysis Toolkit: SiLK

You can view flow records in clear text with rwcut, as follows.

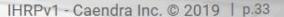
```
>> rwcut --num-rec=10 filename.rwf
>> rwcut --num-rec=10 --
fields=sip,dip,proto,sport,dport,stime filename.rwf
```

Section stands beg before

student@ubuntu:~/Data/isilk\$ rwcut --num-rec=10 --fields=sip,dip,proto,sport,dport,stime ITOC-Border.rwf | SIP| | dIP|pro|sPort|dPort| | sTime| | 10.1.60.203| | 10.1.60.187| 6|50398| 80|2009/04/20T11:35:19.439| | 10.1.60.187| | 80|50398|2009/04/20T11:35:19.440|

IHRPv1 - Caendra Inc. © 2019 | p.32

OUTLINE


₩

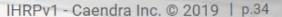
 \Box

- 3.1.1 Network Flows: Definition & NetFlow Overv...
- 3.1.2 Network Flows: Strengths & Limitations
 - 3.1.2 Network Flows: Strengths & Limitations
- ▼ 3.2 Network Flow Analysis Toolkit
 - 3.2 Network Flow Analysis Toolkit
 - ▼ 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.2 Network Flow Analysis
 Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK

You can count how much traffic matched specific keys as well as what protocols were running, as follows. (The two commands are identical)

dent@ubuntu:-	/Data/isilk\$	rwtotalprotoskip-ze	ro ITOC-Border.rwf
protocol	Records	Bytes	Packets
1	5421	54041934	605793
2	1	20	1
3	1	20	1
41	1	20	1
5	1	20	1
6	2849321	505291682	4447354

OUTLINE


₩

 \Box

- 3.1.2 Network Flows: Strengths & Limitations
 - 3.1.2 Network Flows; Strengths & Limitations
- ▼ 3.2 Network Flow Analysis Toolkit
 - 3.2 Network Flow Analysis Toolkit
 - ▼ 3.2.1 Network Flow Analysis
 Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - ▼ 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK

If you want to identify the most common servers and source ports with at least 50 flows, you can do so as follows.

OUTLINE

 \Box

- 3.1.2 Network Flows: Strengths & Limitations
- ▼ 3.2 Network Flow Analysis Toolkit
 - 3.2 Network Flow Analysis Toolkit
 - 3.2.1 Network Flow Analysis
 Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.1 Network Flow Analysis
 Toolkit: YAF
 - ▼ 3.2.2 Network Flow Analysis
 Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK

If you want to see how the distribution of bytes, packets and bytes/packet looks like, you can do so with *rwstats* as follows.

```
>> rwstats --overall-stats filename.rwf
```


₩

 \Box

OUTLINE

- → 3.2 Network Flow Analysis Toolkit
 - 3.2 Network Flow Analysis Toolkit
 - ▼ 3.2.1 Network Flow Analysis
 Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK

104799 3.604431 47.081604

5222

If you want to identify the top 10 destination ports, you can do so with *rwstats* as follows.

```
>> rwstats --fields=dport --count=10 filename.rwf
```

```
student@ubuntu:~/Data/isilk$ rwstats --fields=dport --count=10 ITOC-Border.rwf
INPUT: 2907505 Records for 65536 Bins and 2907505 Total Records
OUTPUT: Top 10 Bins by Records
dPort| Records| %Records| cumul_%|
80| 506112| 17.407090| 17.407090|
55829| 390866| 13.443347| 30.850437|
443| 367123| 12.626737| 43.477174|
```

IHRPv1 - Caendra Inc. © 2019 | p.36

OUTLINE

₩

- 3.2 Network Flow Analysis Toolkit
- 3.2.1 Network Flow Analysis
 Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
- ▼ 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK

<u>rwcount</u> is useful for examining traffic across time. Consider the --load-scheme switch during your investigations.

>> rwcount --bin-size=300 filename.rwf | more

Date	Records	Bytes	Packets
2009/04/20T11:35:00	110.68	73053.09	676.57
2009/04/20T11:40:00	157.49	97584.80	891.19
2009/04/20T11:45:00	143.38	89717.25	843.08
2009/04/20T11:50:00	158.04	92293.02	880.72

IHRPv1 - Caendra Inc. © 2019 | p.37

OUTLINE

₩

- 3.2.1 Network Flow Analysis
 Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
 - 3.2.1 Network Flow Analysis Toolkit: YAF
- 3.2.2 Network Flow Analysis
 Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK

rwfilter is SiLK's go to command for filtering, since there are switches for every flow attribute. For example, to identify top webservers you can execute the below.

```
>> rwfilter filename.rwf --sport=80,443,8080 --protocol=6 -
-packets=4- --ack-flag=1 --pass=stdout | rwstats --
fields=sip --percentage=1 --bytes
```

IHRPv1 - Caendra Inc. © 2019 | p.38

OUTLINE

€

- 3.2.1 Network Flow Analysis
 Toolkit: YAF
- 3.2.1 Network Flow Analysis
 Toolkit: YAF
- 3.2.2 Network Flow Analysis
 Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis
 Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK

Scanning activity can be detected within a SiLK dataset, through the *rwscan* command.

```
>> rwsort --fields=sip,proto,dip filename.rwf |rwscan -- scan-model=2 | more
```

```
student@ubuntu:~/Data/isilk$ rwsort --fields=sip,proto,dip ITOC-.rwf|rwscan --sca
ITOC-Border.rwf ITOC-Netflow.ZIP ITOC-NSA.rwf
student@ubuntu:~/Data/isilk$ rwsort --fields=sip,proto,dip ITOC-NSA.rwf|rwscan --
sip| proto| stime| etime| fl
10.1.10.10| 6| 2009-04-21 08:45:05| 2009-04-24 14:24:50|
```


OUTLINE

3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.1 Network Flow Analysis

3.2.2 Network Flow Analysis

Toolkit: YAF

Toolkit: SiLK

Toolkit: SiLK

Toolkit: SiLK

Toolkit: SiLK

Toolkit: SiLK

3.2.2 Network Flow Analysis

- 3.2.2 Network Flow Analysis Toolkit: SiLK

rwfilter can also detect scanning attempts. For example, one could specify the following criteria: i) size less than 2048 bytes, ii) 1 to 3 packets and iii) no RST or FIN flags.

```
>> rwfilter filename.rwf --bytes=0-2048 --packets=1-3 --
flags-all=/RF --pass=stdout|rwuniq --fields=sip --
values=dip-distinct,records| sort -k 3,3 -n -r -t '|'| head
-n 30
```

```
student@ubuntu:~/Data/isilk$ rwfilter ITOC-NSA.rwf --bytes=0-2048 --packets=1-3 -
-flags-all=/RF --pass=stdout|rwuniq --fields=sip --values=dip-distinct,records| s
ort -k 3,3 -n -r -t '|'| head -n 30
10.1.10.5| 50| 11065|
10.1.30.5| 66| 9729|
```

IHRPv1 - Caendra Inc. © 2019 | p.40

OUTLINE

8

- 3.2.2 Network Flow Analysis
 Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis
 Toolkit: Sil.K
 - 3.2.2 Network Flow Analysis
 Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK
 - 3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.2 Network Flow Analysis Toolkit: SiLK

SiLK has a powerful feature called *IP Sets*. An IP set is a binary representation of an arbitrary collection of IP addresses. IP sets showcase their true potential when used in conjunction with *rwfilter*.

OUTLINE

- 3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.2 Network Flow Analysis Toolkit: SiLK

That being said, one may want to associate a value with each address in an IP set. For example, one may want to associate the IP addresses that engage in web traffic with the volume of flows, packets or bytes of web traffic that each address carries. This can be done through another powerful SiLK feature *IP Bags*.

Bags are essentially extended sets.

OUTLINE

- 3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.2 Network Flow Analysis
Toolkit: SiLK

Let's take for example the command flow below that can detect a scanning attempt.

```
>> rwsort --fields=sip,proto,dip filename.rwf |rwscan -- scan-model=2 | more
```



```
>>rwsort --fields=sip,proto,dip filename.rwf |rwscan --scan-model=2 --no-titles | cut -d '|' -f 1,5 | rwbagbuild -bag-input=stdin > rwscan-output.bag
```

IHRPv1 - Caendra Inc. © 2019 | p.43

OUTLINE

- 3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.2 Network Flow Analysis Toolkit: SiLK

The output can be viewed, as follows.

```
>> rwbagcat rwscan-output.bag | sort -t '|' -k 2,2 -rn | head
```

post common and common common

student@ubuntu:~/Data/isilk\$ rwbagcat rwscan-output.bag | sort -t '|' -k 2,2 -rn | head | 10.1.60.3| 399469| | 10.2.190.249| 262774|

IHRPv1 - Caendra Inc. © 2019 | p.44

OUTLINE

₩

- 3.2.2 Network Flow Analysis Toolkit: SiLK

We barely scratched the surface of SiLK's capabilities. SiLK is an extremely capable and customizable tool. You can learn much more about it by referring to the below resources.

- https://schd.ws/hosted_files/flocon2017/fa/flocon-2016-silk-tutorial.pptx
- https://tools.netsa.cert.org/silk/analysis-handbook.pdf
- RVAsec: Jason Smith Applied Detection and Analysis Using Flow Data

₩

 \Box

- 3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.3 Network Flow Analysis Toolkit: FlowViewer

FlowViewer is a NetFlow analyzer. It is actually a front-end for flow-tools. FlowViewer is great for reporting on historical data.

OUTLINE

- 3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.3 Network Flow Analysis
Toolkit: FlowViewer

3.2.3 Network Flow Analysis Toolkit: FlowViewer

FlowViewer reports are quite clear and straightforward. See an example below.

In this case, we have applied a filter for TCP flags = 27.

NetFlow records contain a field reporting the cumulative OR-ed TCP flags seen on the flow. If we "sum" (using OR) all the flags involved in a TCP connection (SYN [2] + ACK [16] + PSH [8] + FIN [1]) we have 27.

Report: 132		Sort 1	Field: n/a										
Start Time: March 8, 2010 9:00:00 CET					End Time: March 8, 2010 16:20:00 CET								
Device:					Expo	orter:							
Source: 192.168.0.154					Destination: 192.168.1.184								
Source Port:				Destin	ation	Port:							
Source I/F:				Desti	nation	1/F:							
Source AS:				Deat	inatio	n AS:							
TOS Field:					TCP	Flag: 27							
Include if: Any	part of flow in T	ime Pe	eriod		Proto	cols:							
Lines Cutoff: 100				Oct	ets C	itoff:							
Start	End	Sif	SrcIPaddress	SrcP	DIf	DatIPaddress	DetP	1	FI	Pkts	Octeta		
0308.10:34:43.799	0308.10:34:44.995	66	192.168.0.154	1888	59	192.168.1.184	1433	6	3	15	2032		
0308.11:00:31.339	0308.11:00:32.419	66	192.168.0.154	2472	59	192.168.1.184	1433	6	3	15	2034		
0308.11:03:15.899	0308.11:03:16.715	66	192.168.0.154	2533	59	192.168.1.184	1433	6	3	15	2034		
0308.11:18:00.811	0308.11:18:01.719	66	192.168.0.154	2877	59	192.168.1.184	1433	6	3	15	2042		
0308.11:22:52.407	0308.11:22:53.483	66	192.168.0.154	3004	59	192.168.1.184	1433	6	3	15	2034		
0308.11:26:47.751	0308.11:27:28.367	66	192.168.0.154	3107	59	192.168.1.184	1433	6	3	1420	196324		
0308.11:36:46.107	0308.11:36:47.195	66	192.168.0.154	3287	59	192.168.1.184	1433	6	3	15	2034		
0308 11:41:42 115	0308.11:41:43.815	66	192,168,0,154	3297	59	192.168.1.184	1433	6	1 9	15	2034		

OUTLINE

3.2.2 Network Flow Analysis

Toolkit: SiLK

3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.2 Network Flow Analysis Toolkit: SiLK

3.2.3 Network Flow Analysis Toolkit: FlowViewer

> 3.2.3 Network Flow Analysis Toolkit: FlowViewer

IHRPv1 - Caendra Inc. © 2019 | p.48

3.3

OUTLINE

- 3.2.2 Network Flow Analysis Toolkit: SiLK
- ▼ 3.2.3 Network Flow Analysis Toolkit: FlowViewer
 - 3.2.3 Network Flow Analysis Toolkit: FlowViewer

3.3 Practical Flow Analysis

3.3 Practical Flow Analysis

Let's now leverage network flows to detect some real-world attacks. Whenever we are provided with additional data, we will use them to enrich the network flows.

OUTLINE

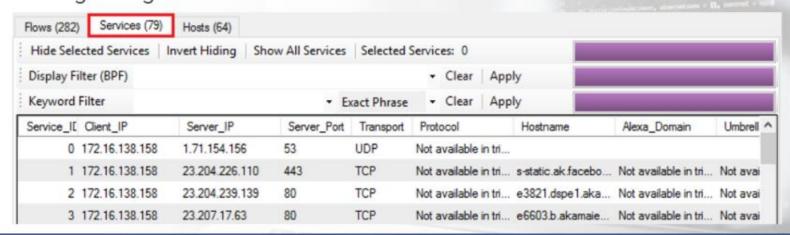
- 3.2.2 Network Flow Analysis Toolkit: SiLK
- 3.2.3 Network Flow Analysis
 Toolkit: FlowViewer
 - 3.2.3 Network Flow Analysis Toolkit: FlowViewer
- ▼ 3.3 Practical Flow Analysis

3.3 Practical Flow Analysis

Case 1: Consider the provided 2015-03-09-traffic-analysis-exercise.pcap file. Try to identify if there is anything suspicious going on by analyzing network flows **only**.

Hint: Load the provided PCAP into CapLoader.

₩


 \Box

- 3.2.2 Network Flow Analysis Toolkit: SiLK
- 3.2.3 Network Flow Analysis
 Toolkit: FlowViewer
 - 3.2.3 Network Flow Analysis Toolkit: FlowViewer
- - 3.3 Practical Flow Analysis

3.3.1 Practical Flow Analysis: Case

Detection

CapLoader provides incident responders with the capability to quickly aggregate and view all the network flows found in a PCAP file. Specifically, each row inside the Services tab represents a unique combination of Client-IP, Server-port and Transport-protocol. Note that one row can be multiple flows merged together.

OUTLINE

₩

 \Box

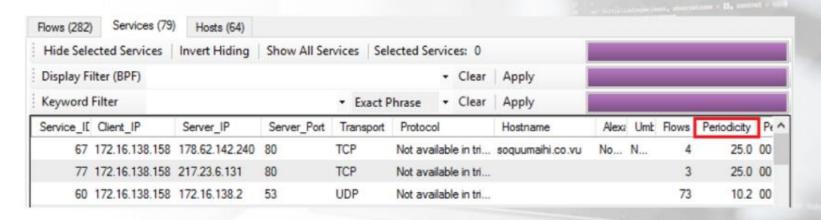
3

3.2.2 Network Flow Analysis Toolkit: SiLK

▼ 3.2.3 Network Flow Analysis Toolkit: FlowViewer

> 3.2.3 Network Flow Analysis Toolkit: FlowViewer

▼ 3.3 Practical Flow Analysis


3.3 Practical Flow Analysis

3.3.1 Practical Flow Analysis; Case

3.3.1 Practical Flow Analysis: Case 1

Detection

CapLoader also features periodic flow detection. This means that one can detect malicious traffic based not on blacklists or IDS signatures but based on the periodicity of flows. You can see the above in action, by sorting the rows inside the *Services* tab based on the *Periodicity* column.

OUTLINE

₩

 \Box

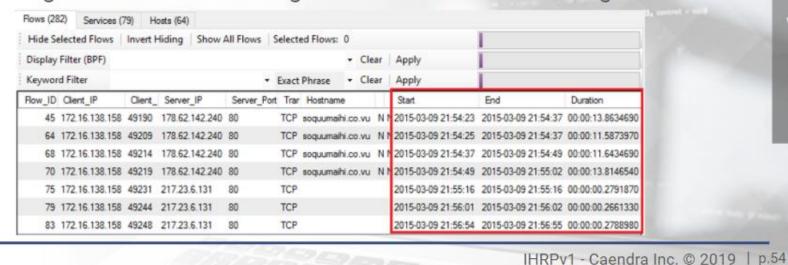
3

- 3.2.2 Network Flow Analysis Toolkit: SiLK
- 3.2.3 Network Flow Analysis
 Toolkit: FlowViewer
 - 3.2.3 Network Flow Analysis Toolkit: FlowViewer
- ▼ 3.3 Practical Flow Analysis
 - 3.3 Practical Flow Analysis
 - 3.3.1 Practical Flow Analysis: Case
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1

Detection

Any Periodicity value greater than 20 can be considered periodic. To analyze the two most periodic entries, you can select both of them, then right click on them and finally, choose *Open Selected Services in Flows Tab*.

Service_I[Client_IP	Server_IP	Server_Port	Transport	Protocol	Hostname	Alexa Umb	Flows	Period	icity	Pe /
67	172.16.138.158	178.62.142.240	80	TCP	Not available it	Transcript of f	irst Flow			5.0 (00
77	172.16.138.158	217.23.6.131	80	TCP	Not available in	Open in Flows				5.0 (00
60	172.16.138.158	172.16.138.2	53	UDP	Not available in	AND A CONTRACTOR OF THE PARTY.	SARREN - Ottoo		1000	0.2 (00
0	172.16.138.158	1.71.154.156	53	UDP	Not available in	Apply as Displ	Section 19		,	0.0	
1	172.16.138.158	23.204.226.110	443	TCP	Not available ir	Prepare as Dis	•	0.0			
2	172.16.138.158	23.204.239.139	80	TCP	Not available in	Select all services Ctrl+A			Д	0.0	
3	172.16.138.158	23.207.17.63	80	TCP	Not available in	Select services	•	0.0			
4	172.16.138.158	31.13.66.1	443	TCP	Not available in	Lookup of 172	.16.138,158			0.0	
5	172.16.138.158	31.170.158.55	80	TCP	Not available ir	Lookup of 178	.62.142.240			0.0	
6	172.16.138.158	46.55.75.171	80	TCP	Not available in	Lookup of soo	uumaihi.co.vu			0.0	
	172.16.138.158	46.185.99.189	80	TCP	Not available in		Services in Flo		G I	0.0	,
						Open selected	services in Fio	WYS TAD			>



₩

- 3.2.2 Network Flow Analysis Toolkit: SiLK
- 3.2.3 Network Flow Analysis
 Toolkit: FlowViewer
 - 3.2.3 Network Flow Analysis Toolkit: FlowViewer
- ▼ 3.3 Practical Flow Analysis
 - 3.3 Practical Flow Analysis
 - 3.3.1 Practical Flow Analysis: Case
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1

Detection

By looking at the flows and their duration, it looks like we are dealing with a beaconing malware. The key phrase here is "looks like". Network flows cannot provide us with solid evidence regarding an incident. They can speed up our analysis though and also serve as a great indicator towards the right direction.

OUTLINE

- 3.2.2 Network Flow Analysis Toolkit: SiLK
- 3.2.2 Network Flow Analysis Toolkit: SiLK
- 3.2.2 Network Flow Analysis Toolkit: SiLK
- 3.2.3 Network Flow Analysis
 Toolkit: FlowViewer
 - 3.2.3 Network Flow Analysis Toolkit: FlowViewer
- ▼ 3.3 Practical Flow Analysis
 - 3.3 Practical Flow Analysis
 - 3,3,1 Practical Flow Analysis: Case
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1

Detection

If you are curious, the provided PCAP contains traffic from a host infected by the Nuclear exploit kit, which is indeed beaconing.

PCAP taken from: http://www.malware-traffic-analysis.net/2015/03/09/

- 3.2.2 Network Flow Analysis Toolkit: SiLK
- 3.2.2 Network Flow Analysis Toolkit: SiLK
- 3.2.3 Network Flow Analysis

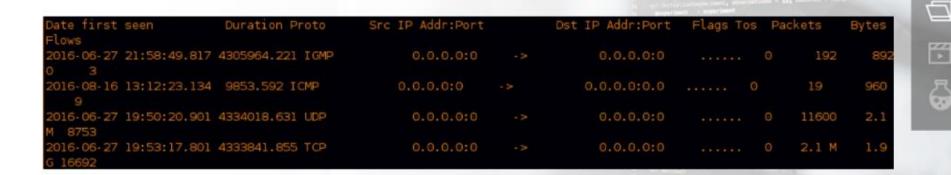
 Toolkit: FlowViewer
 - 3.2.3 Network Flow Analysis Toolkit: FlowViewer
- ▼ 3,3 Practical Flow Analysis
 - 3.3 Practical Flow Analysis
 - 3.3.1 Practical Flow Analysis: Case
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1

Case 2: The organization you work for has tasked you with analyzing some collected NetFlows, to identify the interactions of system 192.168.5.100, which was compromised on August 16th 2016.

Take some time to study *nfdump*'s man page: http://manpages.ubuntu.com/manpages/cosmic/en/man1/nfdump.1.html

OUTLINE

- 3.2.2 Network Flow Analysis Toolkit: SiLK
- 3.2.3 Network Flow Analysis
 Toolkit: FlowViewer
 - 3.2.3 Network Flow Analysis Toolkit: FlowViewer
- ▼ 3.3 Practical Flow Analysis
 - 3.3 Practical Flow Analysis
 - 3.3.1 Practical Flow Analysis: Case
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1


3.3.2 Practical Flow Analysis: Case

Detection

Let's start by using nfdump to see a protocol overview.

>> nfdump -o long -R . -A proto 'ip 192.168.5.100'

IHRPv1 - Caendra Inc. © 2019 | p.57

TARREST OF THE

OUTLINE

- 3.2.3 Network Flow Analysis Toolkit: FlowViewer
 - 3.2.3 Network Flow Analysis Toolkit: FlowViewer
- - 3.3 Practical Flow Analysis
 - 3.3.1 Practical Flow Analysis: Case
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.2 Practical Flow Analysis: Case
 2

3.3.2 Practical Flow Analysis: Case 2

Detection

Let's start by using nfdump to see a protocol overview.

>> nfdump -o long -R . -A proto 'ip 192.168.5.100'

Nothing curious-looking so far.

IHRPv1 - Caendra Inc. © 2019 | p.58

-120000 GT 01

OUTLINE

- 3.2.3 Network Flow Analysis Toolkit: FlowViewer
- ▼ 3,3 Practical Flow Analysis
 - 3.3 Practical Flow Analysis
 - ▼ 3.3.1 Practical Flow Analysis: Case
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2

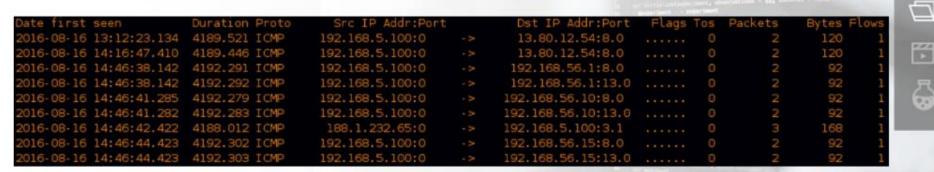
Detection

Let's continue by checking ICMP traffic.

>> nfdump -o long -R . 'ip 192.168.5.100 and proto icmp'

Date first seen	Duration Proto	Src IP Addr:Port	Dst IP Addr:Port	Flags	Tos	Packets	Bytes	Flows
2016-08-16 13:12:23.134	4189.521 ICMP	192.168.5.100:0	13.80.12.54:8.0			2	120	
2016-08-16 14:16:47.410	4189.446 ICMP	192.168.5.100:0	13.80.12.54:8.0			2	120	
2016-08-16 14:46:38.142	4192.291 ICMP	192.168.5.100:0	192.168.56.1:8.0			2	92	
2016-08-16 14:46:38.142	4192.292 ICMP	192.168.5.100:0	192.168.56.1:13.0			2	92	
2016-08-16 14:46:41.285	4192.279 ICMP	192.168.5.100:0	192.168.56.10:8.0			2	92	
2016-08-16 14:46:41.282	4192.283 ICMP	192.168.5.100:0	192.168.56.10:13.0			2	92	
2016-08-16 14:46:42.422	4188.012 ICMP	188.1.232.65:0	192.168.5.100:3.1		0		168	1
2016-08-16 14:46:44.423	4192.302 ICMP	192.168.5.100:0	192.168.56.15:8.0		0	2	92	
2016-08-16 14:46:44.423	4192.303 ICMP	192.168.5.100:0	192.168.56.15:13.0			2	92	

₩


 \Box

- → 3.3 Practical Flow Analysis
 - 3.3 Practical Flow Analysis
 - ▼ 3.3.1 Practical Flow Analysis: Case
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.2 Practical Flow Analysis: Case
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2

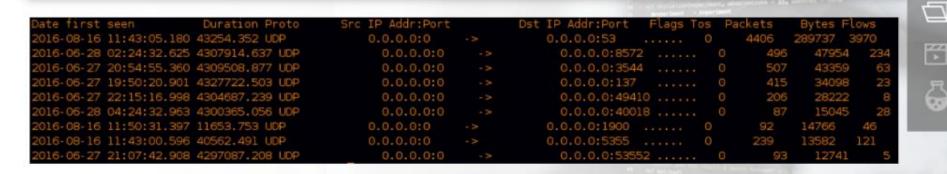
Detection

Let's continue by checking ICMP traffic.

>> nfdump -o long -R . 'ip 192.168.5.100 and proto icmp'

We notice some pings (ICMP type 8, code 0) and two ICMP timestamp requests (ICMP type 13, code 0). We have already covered that ICMP timestamp requests can be used for malicious purposes.

IHRPv1 - Caendra Inc. © 2019 | p.60


OUTLINE

- 3.3 Practical Flow Analysis
- 3.3.1 Practical Flow Analysis: Case
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1
- 3.3.2 Practical Flow Analysis: Case
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2

Detection

Let's look into UDP as well.

>> nfdump -o long -R . -A proto,dstport -O bytes 'ip 192.168.5.100 and proto udp' | head -10

IHRPv1 - Caendra Inc. © 2019 | p.61

OUTLINE

- 3.3.1 Practical Flow Analysis: Case
 - 3.3.1 Practical Flow Analysis: Case 1
 - 3.3.1 Practical Flow Analysis: Case 1
- ▼ 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2

Detection

Let's look into UDP as well.

>> nfdump -o long -R . -A proto,dstport -O bytes 'ip 192.168.5.100 and proto udp' | head -10

We notice MDNS-related, NBNS-related and UPNP-related flows. They seem normal though considering 192.168.5.100 is a Windows system.

IHRPv1 - Caendra Inc. © 2019 | p.62

OUTLINE

- 3.3.1 Practical Flow Analysis: Case 1
- 3.3.2 Practical Flow Analysis: Case
 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2

Detection

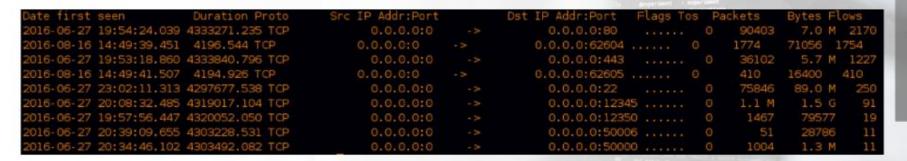
To look into TCP and also sort by the number of flows, we execute:

>> nfdump -o long -R . -A proto,dstport -O flows 'ip 192.168.5.100 and proto tcp' | head -10

Date first seen	Duration Proto	Src IP Addr:Port	Dst IP Addr:Port Fla	gs Tos	Packets	Bytes Flows
2016-06-27 19:54:24.039	4333271.235 TCP	0.0.0.0:0	0.0.0.0:80		90403	7.0 M 2170
2016-08-16 14:49:39.451	4196.544 TCP	0.0.0.0:0	0.0.0.0:62604		1774	71056 1754
2016-06-27 19:53:18.860	4333840.796 TCP	0.0.0.0:0	0.0.0.0:443		36102	5.7 M 1227
2016-08-16 14:49:41.507	4194,926 TCP	0.0.0.0:0	0.0.0.0:62605		410	16400 410
2016-06-27 23:02:11.313	4297677.538 TCP	0.0.0.0:0	0.0.0.0:22		75846	89.0 M 250
2016-06-27 20:08:32.485	4319017.104 TCP	0.0.0.0:0	0.0.0.0:12345		0 1.1 M	1.5 G 91
2016-06-27 19:57:56.447	4320052.050 TCP	0.0.0.0:0	0.0.0.0:12350		0 1467	79577 19
2016-06-27 20:39:09.655	4303228,531 TCP	0.0.0.0:0	0.0.0.0:50006		0 51	28786 11
2016-06-27 20:34:46.102	4303492.082 TCP	0.0.0.0:0	0.0.0.0:50000		0 1004	1.3 M 11

IHRPv1 - Caendra Inc. © 2019 | p.63

OUTLINE


₩

- 3.3.1 Practical Flow Analysis: Case 1
- ▼ 3.3.2 Practical Flow Analysis: Case
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2

Detection

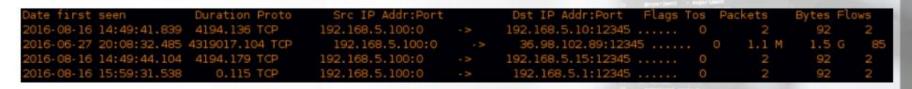
To look into TCP and also sort by the number of flows, we execute:

>> nfdump -o long -R . -A proto,dstport -O flows 'ip 192.168.5.100 and proto tcp' | head -10

Conversations to port 12345 stand out

IHRPv1 - Caendra Inc. © 2019 | p.64

OUTLINE

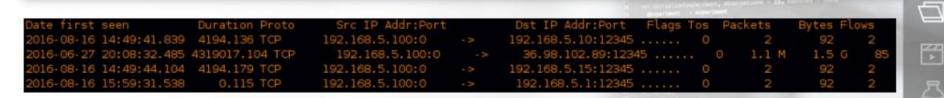

口

- 3.3.1 Practical Flow Analysis: Case 1
- 3.3.1 Practical Flow Analysis: Case 1
- 3.3.1 Practical Flow Analysis: Case 1
- ▼ 3.3.2 Practical Flow Analysis: Case
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2

Detection

To identify with whom 192.168.5.100 exchanged data on port 12345, we execute:

>> nfdump -o long -R . -A proto, srcip, dstip, dstport 'src ip 192.168.5.100 and proto tcp and dst port 12345'


₩

- 3.3.1 Practical Flow Analysis: Case 1
- 3.3.1 Practical Flow Analysis: Case 1
- ▼ 3.3.2 Practical Flow Analysis: Case
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2

Detection

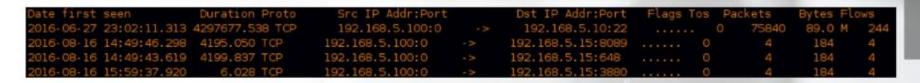
To identify with whom 192.168.5.100 exchanged data on port 12345, we execute:

>> nfdump -o long -R . -A proto, srcip, dstip, dstport 'src ip 192.168.5.100 and proto tcp and dst port 12345'

We notice that 36.98.102.89 is the main destination of the traffic on port 12345. Assume that we have already checked the case of port 12345 being a source port.

IHRPv1 - Caendra Inc. © 2019 | p.66

OUTLINE


₩

- 3.3.1 Practical Flow Analysis: Case 1
- 3.3.2 Practical Flow Analysis: Case
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3,3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2

Detection

Network flows provide us with a bird's eye view of the whole network. Let's leverage that to see all 192.168.5.100 interactions with other machines on the intranet.

>> nfdump -o long -R . -A proto, srcip, dstip, dstport -O flows 'src ip 192.168.5.100 and proto tcp and dst net 192.168.5.0/24' | head -10

OUTLINE

 \Box

- 3.3.2 Practical Flow Analysis: Case
 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2
 - 3.3.2 Practical Flow Analysis: Case 2

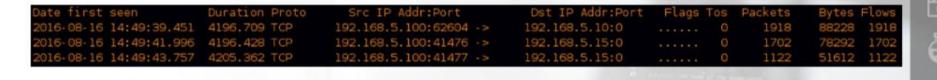
Detection

Network flows provide us with a bird's eye view of the whole network. Let's leverage that to see all 192.168.5.100 interactions with other machines on the intranet.

>> nfdump -o long -R . -A proto, srcip, dstip, dstport -O flows 'src ip 192.168.5.100 and proto tcp and dst net 192.168.5.0/24' | head -10

We notice traffic towards port 22 (SSH) of the 192.168.5.10 host. We should note this host down for further investigation.

IHRPv1 - Caendra Inc. © 2019 | p.68


OUTLINE

- 3.3.2 Practical Flow Analysis: Case 2

Detection

If we try the same as previously and also include source ports, we may gain a better understanding of what happened.

>> nfdump -o long -R . -A proto, srcip, srcport, dstip -O flows 'src ip 192.168.5.100 and proto tcp and dst net 192.168.5.0/24' | head -10

 \Box

- 3.3.2 Practical Flow Analysis: Case 2

Detection

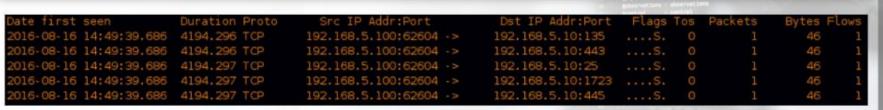
If we try the same as previously and also include source ports, we may gain a better understanding of what happened.

>> nfdump -o long -R . -A proto, srcip, srcport, dstip -O flows 'src ip 192.168.5.100 and proto tcp and dst net 192.168.5.0/24' | head -10

We notice that the majority of the traffic derives from source ports 62604, 41476 and 41477. Each of those source ports connects to one IP address.

OUTLINE

口


- 3.3.2 Practical Flow Analysis: Case 2
- 3,3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2

3.3.2 Practical Flow Analysis: Case 2

Detection

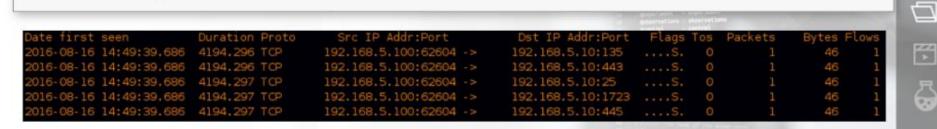
We can list all interactions from source port 62604, as follows.

>> nfdump -o long -R . 'src ip 192.168.5.100 and proto tcp and src port 62604 and dst net 192.168.5.0/24' | head -20

OUTLINE

3.3.2 Practical Flow Analysis:

Case 2


- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2

3.3.2 Practical Flow Analysis: Case 2

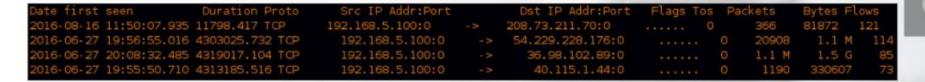
Detection

We can list all interactions from source port 62604, as follows.

>> nfdump -o long -R . 'src ip 192.168.5.100 and proto tcp and src port 62604 and dst net 192.168.5.0/24' | head -20

We notice very short flows and packets having the SYN bit set. No doubt the compromised host is being used to scan the intranet.

IHRPv1 - Caendra Inc. © 2019 | p.72


OUTLINE

- 3.3.2 Practical Flow Analysis: Case 2

Detection

Finally, we can also list connections from the intranet to the internet, as follows.

>> nfdump -o long -R . -A proto, srcip, dstip -O flows 'src ip 192.168.5.100 and proto tcp and ! dst net 192.168.5.0/24' | head -20

OUTLINE

₩

 \Box

- 3.3.2 Practical Flow Analysis: Case 2
- 3,3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2

Detection

By analyzing flows we have identified the following regarding 192.168.5.100.

- 1. Conversations with the 36.98.102.89 host, port 12345
- 2. It scanned some intranet hosts
- 3. It connected to the SSH port of the 192.168.5.10 host

IHRPv1 - Caendra Inc. © 2019 | p.74

OUTLINE

- 3.3.2 Practical Flow Analysis: Case 2
- 3,3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2

Detection

By now, you should have an idea of how we can analyze network flows. But what about enriching them?

Suppose we were also given Squid proxy logs. Let's see how we can leverage them to enrich the provided network flows.

 \Box

- 3.3.2 Practical Flow Analysis: Case 2

Detection

There are usually two important Squid proxy logs, cache.log, which is the internal log of the caching proxy itself and access.log, which contains all the passing URLs.

Let's focus on access.log.

OUTLINE

- 3.3.2 Practical Flow Analysis: Case 2
- 3,3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2

3.3.2 Practical Flow Analysis: Case 2

Detection

For a better understanding let's remove all "benign" entries from access.log, as follows.

```
>> cat access.log | grep -v "ubuntu.com" | grep -v "opensuse" | grep -v "opensuse" | grep -v "novell.com"
```

```
1467994225.265 100 192.168.5.10 TCP_MISS/301 661 GET http://www.dfn-cert.de/index.html - HIER_DIRECT/193.174.13.92 text/html
1467994225.371 96 192.168.5.10 TCP_TUNNEL/200 17744 CONNECT www.dfn-cert.de:443 - HIER_DIRECT/193.174.13.92 -
1467998887.429 3 193.174.12.200 TCP_DENIED/403 3926 GET http://www.heise.de/ - HIER_NONE/- text/html
1468234574.617 266 192.168.5.15 TCP_MISS/200 185310 GET http://www.heise.de/ - HIER_DIRECT/193.99.144.85 text/html
1469198547.567 306 192.168.5.15 TCP_MEFRESH_MODIFIED/200 181483 GET http://www.heise.de/ - HIER_DIRECT/193.99.144.85 text/html
1471356766.997 43 192.168.5.10 TCP_MISS/503 4151 GET http://bl/? - HIER_NONE/- text/html
1471356988.431 59783 192.168.5.10 TCP_MISS/503 4163 GET http://blog.mysportclub.ex/wp-content/uploads/hk/files/binaries-only.zip - HIER_DIRECT/54.229.228.176 text/html
1471357647.942 60185 192.168.5.10 TCP_MISS/503 4143 GET http://54.229.228.176/wp-content/uploads/hk/files/binaries-only.zip - HIER_DIRECT/54.229.228.176 text/html
```

 \Box

OUTLINE

3.3.2 Practical Flow Analysis: Case 2

3,3.2 Practical Flow Analysis: Case 2

3.3.2 Practical Flow Analysis: Case 2

Detection

For a better understanding let's remove all "benign" entries from access.log, as follows.

>> cat access.log | grep -v "ubuntu.com" | grep -v "opensuse" | grep -v "opensuse" | grep -v "novell.com"

```
1467994225.265 100 192.168.5.10 TCP_MISS/301 661 GET http://www.dfn-cert.de/index.html - HIER_DIRECT/193.174.13.92 text/html
1467994225.371 96 192.168.5.10 TCP_TUNNEL/200 17744 CONNECT www.dfn-cert.de:443 · HIER_DIRECT/193.174.13.92 ·
1467998887.429 3 193.174.12.200 TCP_DENIED/403 3926 GET http://www.heise.de/ · HIER_DIRECT/193.99.144.85 text/html
1468234574.617 266 192.168.5.15 TCP_MISS/200 185310 GET http://www.heise.de/ · HIER_DIRECT/193.99.144.85 text/html
1469198547.567 306 192.168.5.15 TCP_MEFRESH_MODIFIED/200 181483 GET http://www.heise.de/ · HIER_DIRECT/193.99.144.85 text/html
1471356766.997 43 192.168.5.10 TCP_MISS/503 4151 GET http://bl/? · HIER_NONE/· text/html
1471356988.431 59783 192.168.5.10 TCP_MISS/503 4163 GET http://blog.mysportclub.ex/wp-content/uploads/hk/files/binaries-only.zip · HIER_DIRECT/54.229.228.176 text/html
1471357647.942 60185 192.168.5.10 TCP_MISS/503 4143 GET http://54.229.228.176/wp-content/uploads/hk/files/binaries-only.zip · HIER_DIRECT/54.229.228.176 text/html
```

A file named *binaries-only.zip* was obviously downloaded by the intranet host 192.168.5.10 from the 54.229.228.176 remote server.

IHRPv1 - Caendra Inc. © 2019 | p.78

OUTLINE

 \Box

- 3.3.2 Practical Flow Analysis: Case 2

Detection

Since we haven't came across this destination when analyzing the network flows. Let's now see what network flows have to say about this destination, as follows.

>> nfdump -o long -R . -A proto, srcip, srcport, dstip 'src ip 54.229.228.176 and proto tcp'

 \Box

- 3.3.2 Practical Flow Analysis: Case 2
- 3,3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2

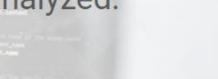
Detection

Since we haven't came across this destination when analyzing the network flows. Let's now see what network flows have to say about this destination, as follows.

>> nfdump -o long -R . -A proto, srcip, srcport, dstip 'src ip 54.229.228.176 and proto tcp'

We notice that the 192.168.5.10 intranet host downloaded something from the 54.229.228.176 remote server, but we already knew that from our Squid log analysis. What we didn't know was that the 192.168.5.100 intranet host also downloaded something from the same server. This is obvious from the number of bytes transferred. In addition, we didn't see the 192.168.5.100 host downloading something when analyzing the Squid logs. The proxy was somehow bypassed, which is quite suspicious.

OUTLINE


 \Box

- 3.3.2 Practical Flow Analysis: Case 2
- 3,3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2

As you saw, the additional Squid proxy logs helped us move our investigation deeper (a.k.a enriched the network flows).

poper teams a specificant and an account team and account team and team and

Credits go to ENISA for the data set we just analyzed.

(III)

- 3.3.2 Practical Flow Analysis: Case 2

Network flow tracking can facilitate the detection of anomalous DNS activity. Examples:

- Categorize DNS packets: DNS requests, DNS responses and unknown.
- Detect large fluctuations in DNS-related packet size per hour
- HTTP flows not preceded by a DNS request

OUTLINE

- 3.3.2 Practical Flow Analysis: Case 2

Detection

Undoubtedly, if an incident responder comes across a flow report like the below, he/she should be concerned.

Source Port: Source I/F: Source AS: TOS Field: Include if: Any part of flow in Time Period Lines Cutoff: 100		Destination Port: 53 Destination I/F: Destination AS: TCP Flag: Protocols: 17 Octets Cutoff:			
Source	Destination	Flows	Octets	Packets	Avg Rate(bps
10.100.100.24	172.24.100.13	7821	3.82 MB	20841	2,304
10.100.100.24	172.24.100.11	6269	2.55 MB	19068	1,982

- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.3 Practical Flow Analysis; Case

3.3.3 Practical Flow Analysis: Case 3

Detection

Undoubtedly, if an incident responder comes across a flow report like the below, he/she should be concerned.

Source Port: Source I/F: Source AS: TOS Field: Include if: Any part of flow in Time Period Lines Cutoff: 100		Destination Port: 53 Destination I/F: Destination AS: TCP Flag: Protocols: 17 Octets Cutoff:			
Source D	estination	Flows	Octets	Packets	Avg Rate(bps)
10.100.100.24	72.24.100.13	7821	3.82 MB	20841	2,304
10.100.100.24 1	72.24.100.11	6269	2.55 MB	19068	1,982

We notice that the 10.100.100.24 intranet host has issued an immense number of DNS requests. Such a behavior is suspicious if and only if the 10.100.100.24 host is an end-user workstation and not a system that performs name resolutions repeatedly by design.

OUTLINE

- 3.3.2 Practical Flow Analysis: Case 2
- 3,3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3

Network flow tracking can facilitate the detection of anomalous SMB activity. For example, consider the following network flow reports.

 \Box

IHRPv1 - Caendra Inc. © 2019 | p.85

- 3.3.2 Practical Flow Analysis: Case 2
- 3,3.2 Practical Flow Analysis: Case 2
- 3.3.3 Practical Flow Analysis: Case
 - 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3

Detection

Flow report regarding inbound SMB traffic to 10.200.100.0/24 VLAN

Source: Source Fort: Source I/F: Source AS: TOS Field: Include if: Any part of flow in Time Period Lines Cutoff: 100		Destination: 10.200.100.0/24 Destination Port: 445 Destination I/F: Destination AS: TCF Flag: Protocols: Octor Cutoff:			
Source	Destination	Flows	Octoba	Packets	Avg Rate(bps
10,100,100,101	10.200.100.97	116	30.42 KB	522	276
10.100.100.101	10.200.100.95	116	30.42 KB	522	276
10.100.100.101	10.200.100.68	116	30.42 KD	522	276
10.100.100.101	10.200.100.65	116	30.42 KB	522	276
10,100,100,101	10.200.100.73	116	30.42 KB	522	276
10.100.100.101	10.200.100.90	116	30.42 KB	522	276
10.100.100.101	10.200,100,02	116	30.42 KD	522	276
10,100,100,101	10,200,100,00	116	30.42 KD	522	276
10,100,100,101	10,200,100,77	116	30.42 KD	522	276
10,100,100,101	10,200,100,99	116	30.42 KB	522	276
10.100.100.101	10.200.100.75	116	30.42 KD	522	276

Flow report regarding outbound SMB traffic from the 10.200.100.0/24 VLAN

Source: 10.200.100.6/24 Source Port: 445 Source I/F: Source AS: TOS Field: Include if: Any part of flow in Time Period Lines Cutoff: 100		Destination: Destination Ports Destination I/Fs Destination AS: TCP Flag: Protocols: Dottes Cutoff:				
Source	Destination	Flows	Octota	Packets	Avg Rate(bps)	
10.200.100.102	10.100.100.101	116	27.13 KB	290	246	
10.200.100.104	10.100.100.101	116	24.07 KB	232	219	
0.200.100.99	10.100.100.101	116	24.07 KB	232	219	
0.200.100.95	18,100,100,101	116	24.07 KB	232	219	
0.200.100.78	10.100.100.101	116	24.07 KB	232	219	
0.200.100.113	10.100.100.101	116	24.07 KB	232	219	
0.200.100.88	10.100.100.101	116	24.07 KB	232	219	
0.200,100.89	10.100.100.101	116	24.07 KB	232	219	
0.200.100.77	10.100.100.101	116	24.07 KB	232	219	
0.200.100.70	10,100,100,101	116	24.07 KB	232	219	
0.200.100.71	10,100,100,101	116	24.07 KB	232	219	

OUTLINE

- 3.3.2 Practical Flow Analysis: Case 2
- ▼ 3.3.3 Practical Flow Analysis: Case
 - 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3
- 3.3.4 Practical Flow Analysis: Case

3.3.4 Practical Flow Analysis: Case 4

Detection

Flow report regarding inbound SMB traffic to 10.200.100.0/24 VLAN

Source: Source Fort: Source I/F: Source AS: TOS Field: Include if: Any part of flow in Time Period Lines Cutoff: 100			Destination: 10.200.100.0/24 Destination Fort: 445 Destination I/F: Destination AG: TCF Flag: Frotocols: Octor Cutoff:		
Source	Destination	Flows	Octobs	Packets	Avg Rate(bps)
10,100,100,101	10.200.100.97	116	30.42 KD	522	276
10.100.100.101	10.200.100.95	116	30.42 KB	522	276
10.100.100.101	10.200.100.68	116	30.42 KB	522	276
10.100.100.101	10.200.100.65	116	30.42 KB	522	276
10,100,100,101	10.200,100.73	116	30.42 KB	522	276
10.100.100.101	10.200.100.90	116	30.42 KB	522	276
10.100.100.101	10,200,100,02	116	30.42 KB	522	276
10,100,100,101	10.200,100.00	116	30.42 %3	522	276
10,100,100,101	10.200.100.77	116	30.42 KD	522	276
10.100.100.101	10.200.100.99	116	30.42 KB	522	276
10.100.100.101	10.200.100.75	116	30.42 KD	522	276

Flow report regarding outbound SMB traffic from the 10.200.100.0/24 VLAN

Source: 10.200.100.0/24 Bource Port: 445 Bource Xf: Source A5: TOS Field: Include if: Any part of flow in Time Period Lines Cutoff: 100		Destination: Destination Fort: Destination I/F: Destination AS: TCP Flag: Protocols: Octess Cutoff:			
Source	Destination	Flows	Octets	Packets	Avg Rate(bps)
10.200.100.102	10.100.100.101	116	27.13 KB	290	246
10.200.100.104	10.100.100.101	116	24.07 KB	232	219
10.200.100.99	10.100.100.101	116	24.07 KB	232	219
10.200.100.95	10.100.100.101	116	24.07 KB	232	219
10.200.100.78	10.100.100.101	116	24.07 83	232	219
10.200.100.113	10.100.100.101	116	24.07 KB	232	219
10.200.100.88	10.100.100.101	116	24.07 KB	232	219
10.200,100.89	10.100.100.101	116	24.07 KB	232	219
10.200.100.77	10.100.100.101	116	24.07 KB	232	219
10.200.100.70	10,100,100,101	116	24.07 KB	232	219
10.200.100.71	10.100.100.101	116	24.07 KB	232	219

In a Windows-based environment, traffic on port 445 (TCP) between workstations or between workstations and file servers is common. In this case though, we notice a machine reaching port 445 (TCP) on numerous other workstations.

We can't be certain that something is wrong, but note that such behavior has been spotted in the past by malware, such as the devastating conficker worm that used port 445 (TCP) to spread.

In addition, the small number of packets and their "distribution" across the VLAN is also curious-looking.

OUTLINE

₩

- 3.3.2 Practical Flow Analysis: Case 2
- ▼ 3.3.3 Practical Flow Analysis: Case
 - 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3
- 3.3.4 Practical Flow Analysis: Case
 - 3.3.4 Practical Flow Analysis: Case 4
 - 3.3.4 Practical Flow Analysis: Case 4

Visualizing network flow data can oftentimes result in quicker and more efficient intrusion detection. A great tool for analyzing as well as visualizing network flow data is iSiLK. iSiLK is essentially a graphical front-end for the SiLK suite of tools.

OUTLINE

- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3
- 3.3.4 Practical Flow Analysis: Case
 - 3.3.4 Practical Flow Analysis: Case 4
 - 3.3.4 Practical Flow Analysis: Case 4

Let's take for example, the SiLK command flow we used to identify top webservers.

```
>> rwfilter filename.rwf --sport=80,443,8080 --protocol=6 -
-packets=4- --ack-flag=1 --pass=stdout | rwstats --
fields=sip --percentage=1 --bytes
```

IHRPv1 - Caendra Inc. © 2019 | p.89

OUTLINE

 \Box

- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.3 Practical Flow Analysis: Case
 - 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3
- ▼ 3.3.4 Practical Flow Analysis: Case
 - 3.3.4 Practical Flow Analysis: Case 4
 - 3.3.4 Practical Flow Analysis: Case 4
- 3.3.5 Practical Flow Analysis: Case
 5
 - 3.3.5 Practical Flow Analysis: Case 5

Let's do the same through iSiLK.

- http://tools.netsa.cert.org/isilk/isilk-admin-guide.pdf
- http://tools.netsa.cert.org/isilk/isilk-user-guide.pdf

OUTLINE

3,3.4 Practical Flow Analysis: Case 4

3.3.2 Practical Flow Analysis:

3.3.2 Practical Flow Analysis:

3.3.2 Practical Flow Analysis:

3.3.3 Practical Flow Analysis:

3.3.3 Practical Flow Analysis:

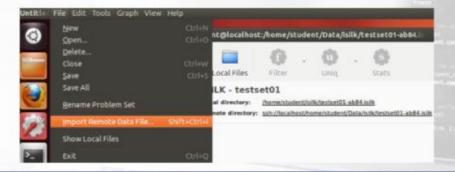
3.3.3 Practical Flow Analysis: Case

Case 2

Case 2

Case 2

Case 3

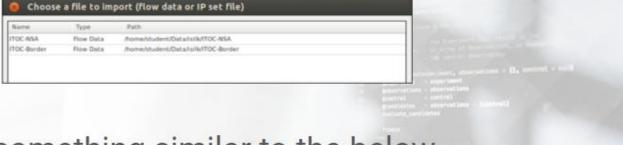

Case 3

- 3.3.4 Practical Flow Analysis: Case 4
- ▼ 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5

First, execute the below to start iSiLK.

>> python isilk.py

Then, click on File -> Import Remote Data File


IHRPv1 - Caendra Inc. © 2019 | p.91

OUTLINE

abla

- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.3 Practical Flow Analysis: Case
 - 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3
- ▼ 3.3.4 Practical Flow Analysis: Case
 - 3.3.4 Practical Flow Analysis: Case 4
 - 3.3.4 Practical Flow Analysis: Case 4
- 3.3.5 Practical Flow Analysis: Case
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5

Choose the file you want to import and click OK. Example:

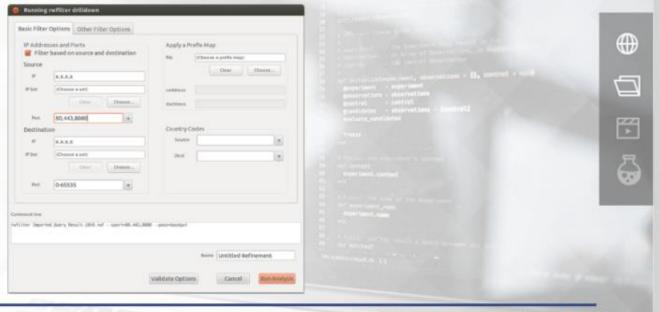
You should see something similar to the below.

IHRPv1 - Caendra Inc. © 2019 | p.92

OUTLINE

abla

- 3.3.2 Practical Flow Analysis: Case 2
- 3.3.3 Practical Flow Analysis: Case
 - 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3
- ▼ 3.3.4 Practical Flow Analysis: Case
 - 3.3.4 Practical Flow Analysis: Case 4
 - 3.3.4 Practical Flow Analysis: Case 4
- ▼ 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5


To replicate the first SiLK command, click on Filter.

OUTLINE

- 3.3.3 Practical Flow Analysis: Case
 3
 - 3.3.3 Practical Flow Analysis: Case 3
 - 3.3.3 Practical Flow Analysis: Case 3
- 3.3.4 Practical Flow Analysis: Case
 - 3.3.4 Practical Flow Analysis: Case 4
 - 3.3.4 Practical Flow Analysis: Case 4
- ▼ 3.3.5 Practical Flow Analysis: Case
 - 3,3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5

Then, specify the wanted source ports.

OUTLINE

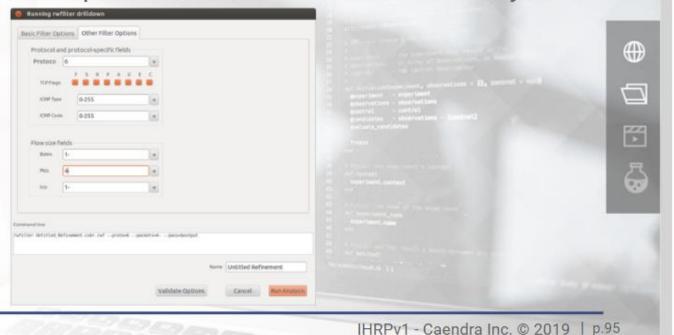
3.3.3 Practical Flow Analysis: Case 3

3.3.3 Practical Flow Analysis: Case 3

▼ 3.3.4 Practical Flow Analysis: Case

3.3.4 Practical Flow Analysis: Case 4

3.3.4 Practical Flow Analysis: Case 4


3.3.5 Practical Flow Analysis: Case

3.3.5 Practical Flow Analysis: Case 5

3,3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

Also, specify the other filter options as follows and click Run Analysis.

OUTLINE

3.3.3 Practical Flow Analysis: Case 3

3.3.4 Practical Flow Analysis: Case

3.3.4 Practical Flow Analysis: Case 4

3.3.4 Practical Flow Analysis: Case 4

▼ 3.3.5 Practical Flow Analysis: Case

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

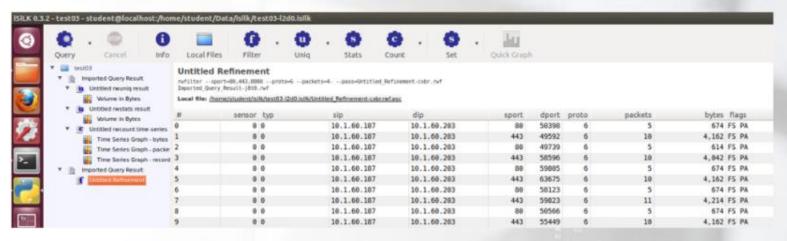
3,3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

You will see something similar to the below. Click on it...

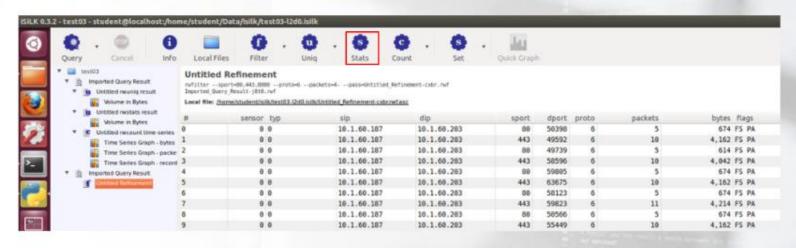


IHRPv1 - Caendra Inc. © 2019 | p.96

OUTLINE

- 3.3.4 Practical Flow Analysis: Case
 - 3.3.4 Practical Flow Analysis: Case 4
 - 3.3.4 Practical Flow Analysis: Case 4
- 3.3.5 Practical Flow Analysis: Case
 5
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5

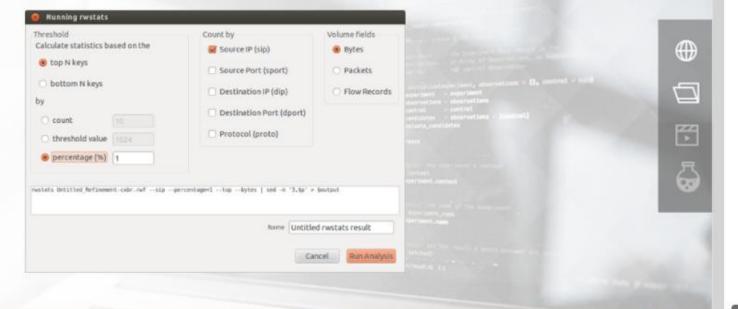
The rwfilter's result will appear.



OUTLINE

- 3.3.4 Practical Flow Analysis: Case 4
- 3.3.4 Practical Flow Analysis: Case 4
- 3.3.5 Practical Flow Analysis: Case
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3,3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5
 - 3.3.5 Practical Flow Analysis: Case 5

Now, to replicate the second part of the command flow, click on Stats.


OUTLINE

3.3.4 Practical Flow Analysis: Case 4

3.3.5 Practical Flow Analysis: Case

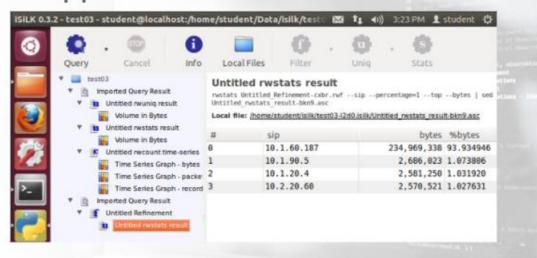
3.3.5 Practical Flow Analysis: Case 5

Finally, specify the running rwstats and click Run Analysis.

IHRPv1 - Caendra Inc. © 2019 | p.99

OUTLINE

3.3.5 Practical Flow Analysis: Case 5

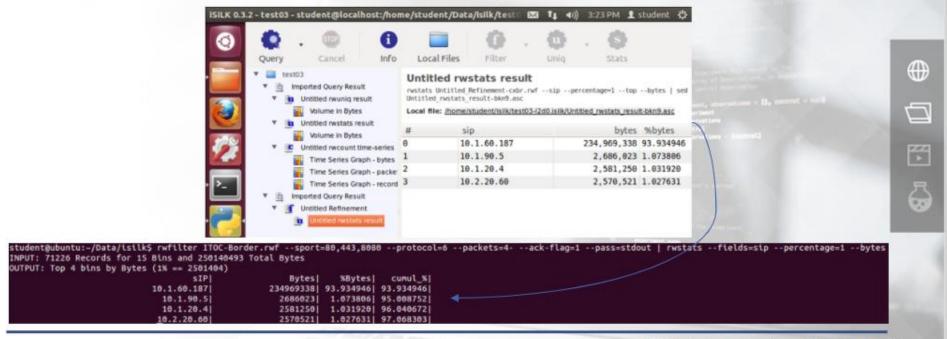

3,3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

If you now click on the remote file that was created, the final results will appear.


OUTLINE

abla

- 3.3.5 Practical Flow Analysis: Case 5

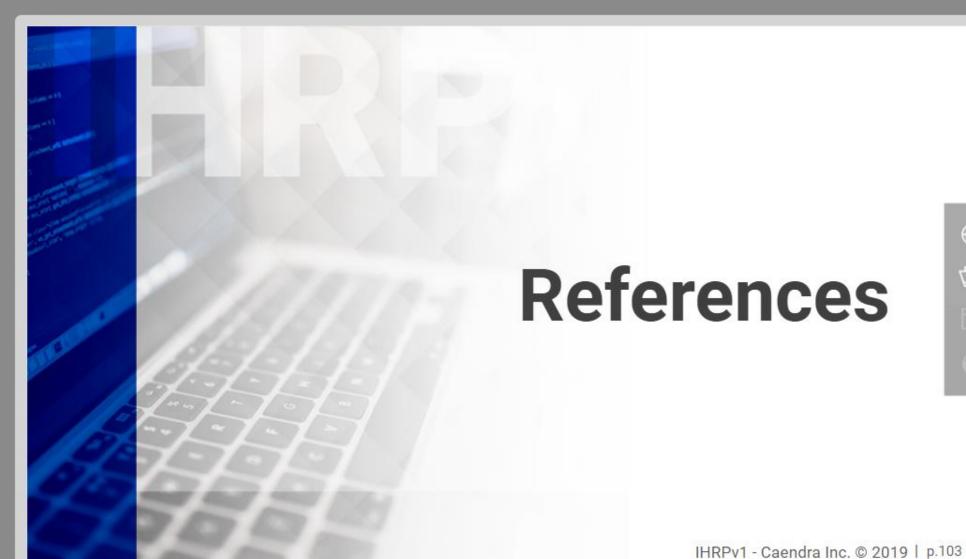
3.3.5 Practical Flow Analysis: Case 5

The results are the same as the ones create by SiLK.

IHRPv1 - Caendra Inc. © 2019 | p.101

OUTLINE

- 3.3.5 Practical Flow Analysis: Case 5


iSiLK has many network visualization features and is great for learning SiLK. Spend some time to get comfortable with it.

- 3.3.5 Practical Flow Analysis: Case 5
- 3,3.5 Practical Flow Analysis: Case 5
- 3.3.5 Practical Flow Analysis: Case 5
- 3.3.5 Practical Flow Analysis: Case 5
- 3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

OUTLINE

3.3.5 Practical Flow Analysis: Case 5

▼ References

NetFlow

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

NetFlow for Cybersecurity

http://www.ciscopress.com/articles/article.asp?p=2812391&seqNum=3

YAF

https://tools.netsa.cert.org/yaf/

SiLK

https://tools.netsa.cert.org/silk/

OUTLINE

- 3.3.5 Practical Flow Analysis: Case 5

▼ References

References

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis:

Case 5

Case 5

Case 5

Case 5

Case 5

Case 5

- 3.3.5 Practical Flow Analysis: Case 5
- 3.3.5 Practical Flow Analysis: Case 5

▼ References

OUTLINE

References

References

FlowViewer

https://ensight.eos.nasa.gov/FlowViewer/

Application labeling

https://tools.netsa.cert.org/yaf/applabel.html

DHCP

http://tools.netsa.cert.org/yaf/yafdhcp.html

yaf-file-mediator

https://tools.netsa.cert.org/confluence/display/tt/YAF+2.x+IPFIX+File+Mediator

OUTLINE

3.3.5 Practical Flow Analysis: Case 5

▼ References

References

References

References

Deep packet inspection

https://tools.netsa.cert.org/yaf/yafdpi.html

rwcut

https://tools.netsa.cert.org/silk/rwcut.html

rwfilter

https://tools.netsa.cert.org/silk/rwfilter.html

rwfileinfo

https://tools.netsa.cert.org/silk/rwfileinfo.html

OUTLINE

3.3.5 Practical Flow Analysis: Case 5

▼ References

References

References

References

References

rwstats

https://tools.netsa.cert.org/silk/rwstats.html

rwcount

https://tools.netsa.cert.org/silk/rwcount.html

rwscan

https://tools.netsa.cert.org/silk/rwscan.html

Network Traffic Analysis - SiLK

https://schd.ws/hosted_files/flocon2017/fa/flocon-2016-silk-tutorial.pptx

Network Traffic Analysis with SiLK

https://tools.netsa.cert.org/silk/analysis-handbook.pdf

RVAsec: Jason Smith - Applied Detection and Analysis Using Flow Data

https://www.youtube.com/watch?v=ndfcfHiszHY

FlowViewer

https://ensight.eos.nasa.gov/FlowViewer/

flow-tools

https://github.com/adsr/flow-tools

OUTLINE

3.3.5 Practical Flow Analysis: Case 5

▼ References

References

References

References

References

References

CapLoader

https://www.netresec.com/?page=CapLoader#trial

PCAP: Traffic Analysis Exercise

http://www.malware-traffic-analysis.net/2015/03/09/

nfdump's man page

http://manpages.ubuntu.com/manpages/cosmic/en/man1/nfdump.1.html

Squid proxy

http://www.squid-cache.org/

References

OUTLINE

3.3.5 Practical Flow Analysis: Case 5

▼ References

References

References

References

References

References

References

ENISA

https://www.enisa.europa.eu/

conficker worm

http://www.csl.sri.com/users/vinod/papers/Conficker/

iSiLK

https://tools.netsa.cert.org/isilk/index.html

Development & Deployment Guide for iSiLK Version 0.1.2

http://tools.netsa.cert.org/isilk/isilk-admin-guide.pdf

IHRPv1 - Caendra Inc. © 2019 | p.110

OUTLINE

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis:

▼ References

References

References

References

References

References

References

References

IHRPv1 - Caendra Inc. © 2019 | p.111

OUTLINE

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

3.3.5 Practical Flow Analysis: Case 5

▼ References

References

References

References

References

References

References

References

References