-l‘l\o =
e T _mod.use , _

EEEE APPLICATION
==SE SECURITY
_ob-select- INTRODUCTION

.:text -scene.objects.actiw
W "Selected” + str(modifies -

#eirror_ob.select = @
bpy - context.selected objs
Aata.objects[one.name].sc-:~ O V E RVI E W
—

srint("please select exacthy W%

- OPERATOR CLASSES --

Joas Antnio

operafgr) " selectedl 8

’ 'v;’(e:'i th
- x
‘ject.nirr‘or—“rror’
reror
. p t .
"’"textz;iv - object ** no
ac =

This pdf brings some concepts and study
materials for those who want to get

Details started in the field of application security.

https://www.linkedin.com/in/joas-
antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos

AT TACKS AND
VULENERABILITIES

https://www.linkedin.com/in/joas-antonio-dos-santos

Most
Commons
Application
Attacks -
XSS

A recent study by Precise Security found that the XSS attack
Is the most common cyberattack making up approximately
40% of all attacks. Even though it’s the most frequent one,
most of these attacks aren’t very sophisticated and are
executed by amateur cyber criminals using scripts that
others have created.

Cross-site scripting targets the users of a site instead of the
web application itself. The malicious hacker inserts a piece
of code into a vulnerable website, which is then executed by
the website’s visitor. The code can compromise the user’s
accounts, activate Trojan horses or modify the website’s
content to trick the user into giving out private information.

You can protect your website against XSS attacks by setting
up a web application firewall (WAF). WAF acts as a filter that
identifies and blocks any malicious requests to your website.
Usually, web hosting companies already have WAF in place
when you purchase their service, but you can also set it up
yourself.

https://www.tripwire.com/state-of-

security/featured/most-common-website-security-

attacks-and-how-to-protect-yourself/

https://www.precisesecurity.com/articles/cross-site-scripting-xss-makes-nearly-40-of-all-cyber-attacks-in-2019/
https://www.tripwire.com/state-of-security/featured/most-common-website-security-attacks-and-how-to-protect-yourself/

XSS (Cross
Site
Scripting) -
Types

Stored XSS (AKA Persistent or Type |)

Stored XSS generally occurs when user input is stored on the target server,
such as in a database, in a message forum, visitor log, comment field, etc. And
then a victim is able to retrieve the stored data from the web application
without that data being made safe to render in the browser. With the advent of
HTMLS5, and other browser technologies, we can envision the attack payload
being permanently stored in the victim’s browser, such as an HTML5 database,
and never being sent to the server at all.

Reflected XSS (AKA Non-Persistent or Type Il)

Reflected XSS occurs when user input is immediately returned by a web
application in an error message, search result, or any other response that
includes some or all of the input provided by the user as part of the request,
without that data being made safe to render in the browser, and without
permanently storing the user provided data. In some cases, the user provided
data may never even leave the browser (see DOM Based XSS next).

DOM Based XSS (AKA Type-0)

As defined by Amit Klein, who published the first article about this issue [1],
DOM Based XSS is a form of XSS where the entire tainted data flow from
source to sink takes place in the browser, i.e., the source of the data is in the
DOM, the sink is also in the DOM, and the data flow never leaves the browser.
For example, the source (where malicious data is read) could be the URL of the
page (e.g., document.location.href), or it could be an element of the HTML, and
the sink is a sensitive method call that causes the execution of the malicious
data (e.g., document.write).

https://owasp.org/www-

community/Types of Cross-Site Scripting

https://owasp.org/www-community/attacks/xss/#stored-xss-attacks
https://owasp.org/www-community/attacks/xss/#reflected-xss-attacks
https://owasp.org/www-community/attacks/DOM_Based_XSS
https://owasp.org/www-community/Types_of_Cross-Site_Scripting

Most
Commons
Application
Attacks -

Injection

The Open Web Application Security Project (OWASP) in
their latest Top Ten research named injection flaws as the
highest risk factor for websites. The SQL injection method
Is the most popular practice used by cyber criminals in this
category.

The injection attack methods target the website and the
server’s database directly. When executed, the attacker
inserts a piece of code that reveals hidden data and user
inputs, enables data modification and generally compromises
the application.

Protecting your website against injection-based attacks
mainly comes down to how well you’ve built your codebase.
For example, the number one way to mitigate a SQL injection
risk is to always use parameterized statements where
available, among other methods. Furthermore, you can
consider using a third-party authentication workflow to out-
source your database protection.

https://www.tripwire.com/state-of-
security/featured/most-common-website-security-
attacks-and-how-to-protect-yourself/

https://owasp.org/www-project-top-ten/2017/
https://www.hacksplaining.com/prevention/sql-injection
https://www.tripwire.com/state-of-security/featured/most-common-website-security-attacks-and-how-to-protect-yourself/

Most
Commons
Application
Attacks -
Unvalidated
Redirects and

Forwards

This category of vulnerabilities is used in phishing
attacks in which the victim is tricked into navigating
to a malicious site. Attackers can manipulate the
URLs of a trusted site to redirect to an unwanted

location.

https://securityintelligence.com/the-10-most-
common-application-attacks-in-action/

https://securityintelligence.com/the-10-most-common-application-attacks-in-action/

Most
Commons
Application
Attacks -
SQL

Injection

An SQL injection attack is when attackers inject malicious SQL
scripts! into a web application to gain access to the database
stored in the server. A common way for hackers to do that is
by injecting hidden SQL queries? in web forms (e.g. login
form). Usually, when a user inputs their information in the
form and hits the “login” button, an SQL query would be sent
to the database to request that user’s information. However,
when hackers inject a malicious SQL query, they could
request all kinds of data from the database. By then, the
hacker would be able to easily view, change, or delete data
and potentially paralyze the entire system from functioning.
Since most web applications have databases stored in their
servers, these applications become attractive targets for SQL
injection, leading to breaches of sensitive information.

https://www.pentasecurity.com/blog/top-7-
common-types-cyberattacks-web-applications/

https://www.pentasecurity.com/blog/top-7-common-types-cyberattacks-web-applications/

SQL
Injection -

Types

In-band SQLi

The attacker uses the same channel of communication to launch
their attacks and to gather their results. In-band SQLi’s simplicity
and efficiency make it one of the most common types of SQLi
attack. There are two sub-variations of this method:

*Error-based SQLi—the attacker performs actions that cause the
database to produce error messages. The attacker can potentially
use the data provided by these error messages to gather
information about the structure of the database.

*Union-based SQLi—this technique takes advantage of the UNION
SQL operator, which fuses multiple select statements generated
by the database to get a single HTTP response. This response
may contain data that can be leveraged by the attacker.

https://www.imperva.com/learn/application-
security/sal-injection-sqli/

https://www.imperva.com/learn/application-security/sql-injection-sqli/

SQL
Injection —
Types 2

Inferential (Blind) SQLi

The attacker sends data payloads to the server and observes the response and
behavior of the server to learn more about its structure. This method is called blind
SQLi because the data is not transferred from the website database to the attacker,

thus the attacker cannot see information about the attack in-band.

Blind SQL injections rely on the response and behavioral patterns of the server so
they are typically slower to execute but may be just as harmful. Blind SQL injections

can be classified as follows:

*Boolean—that attacker sends a SQL query to the database prompting the
application to return a result. The result will vary depending on whether the query
is true or false. Based on the result, the information within the HTTP response will
modify or stay unchanged. The attacker can then work out if the message generated

a true or false result.

*‘Time-based—attacker sends a SQL query to the database, which makes the
database wait (for a period in seconds) before it can react. The attacker can see
from the time the database takes to respond, whether a query is true or false.
Based on the result, an HTTP response will be generated instantly or after a waiting
period. The attacker can thus work out if the message they used returned true or
false, without relying on data from the database.

https://www.imperva.com/learn/application-
security/sal-injection-sqli/

https://www.imperva.com/learn/application-security/sql-injection-sqli/

SQL
Injection —

Types 3

Out-of-band SQLi

The attacker can only carry out this form of attack when
certain features are enabled on the database server used
by the web application. This form of attack is primarily
used as an alternative to the in-band and inferential SQLi

techniques.

Out-of-band SQLi is performed when the attacker can’t use
the same channel to launch the attack and gather
information, or when a server is too slow or unstable for
these actions to be performed. These technigues count on
the capacity of the server to create DNS or HTTP requests

to transfer data to an attacker.

https://www.imperva.com/learn/application-
security/sal-injection-sqli/

https://www.imperva.com/learn/application-security/sql-injection-sqli/

Most
Commons
Application
Attacks -
Path

Traversal

A path traversal (or directory traversal) attack is an
application attack that targets the root directory of

an application. Normally a result of a manipulated
dot-slash sequence, path traversal attacks trick
applications into allowing access into server files
where all of the information within a system rests.
Accessed data can include user credentials, access
tokens, and even entire system backups that hold
everything from sensitive data to system access
controls.

https://www.contrastsecurity.com/knowledge-
hub/glossary/application-attacks

https://www.contrastsecurity.com/knowledge-hub/glossary/path-traversal-or-directory-traversal?hsLang=en
https://www.contrastsecurity.com/knowledge-hub/glossary/application-attacks

Most
Commons
Application
Attacks -
Session

Hijacking

A session hijacking attack tampers with session

IDs. This unique ID is used to label a user’s time
online, keeping track of all activity for faster and
more efficient future logins. Depending on the
strength of the session ID, attackers could capture
and manipulate the session ID, launching a session
hijacking attack. If successful, attackers will have
access to all information passed through the server
for that particular session, getting ahold of user
credentials to access personal accounts.

https://www.contrastsecurity.com/knowledge-
hub/glossary/application-attacks

https://www.contrastsecurity.com/knowledge-hub/glossary/session-hijacking?hsLang=en
https://www.contrastsecurity.com/knowledge-hub/glossary/application-attacks

Most
Commons
Application
Attacks -
CSRF

Cross-Site Request Forgery (CSRF) is an attack that
forces an end user to execute unwanted actions on a web
application in which they’re currently authenticated. With
a little help of social engineering (such as sending a link
via email or chat), an attacker may trick the users of a
web application into executing actions of the attacker’s
choosing. If the victim is a normal user, a successful
CSRF attack can force the user to perform state changing
requests like transferring funds, changing their email
address, and so forth. If the victim is an administrative
account, CSRF can compromise the entire web
application.

https://owasp.org/www-community/attacks/csrf

https://owasp.org/www-community/attacks/csrf

Most
Commons
Application
Attacks -
DDoS

The DDoS attack alone doesn’t allow the malicious hacker to breach the
security but will temporarily or permanently render the site

offline. Kaspersky Lab’s IT Security Risks Survey in 2017 concluded that
a single DDoS attack costs small businesses $123K and large enterprises
$2.3M on average.

The DDoS attack aims to overwhelm the target’s web server with
requests, making the site unavailable for other visitors. A botnet usually
creates a vast number of requests, which is distributed among previously
infected computers. Also, DDoS attacks are often used together with
other methods; the former’s goal is to distract the security systems while
exploiting a vulnerability.

Protecting your site against a DDoS attack is generally multi-faceted.
First, you need to mitigate the peaked traffic by using a Content Delivery
Network (CDN), a load balancer and scalable resources. Secondly, you
also need to deploy a Web Application Firewall in case the DDoS attack
is concealing another cyberattack method, such as an injection or XSS.

https://www.tripwire.com/state-of-
security/featured/most-common-website-security-
attacks-and-how-to-protect-yourself/

https://usa.kaspersky.com/about/press-releases/2018_ddos-breach-costs-rise-to-over-2m-for-enterprises-finds-kaspersky-lab-report
https://aws.amazon.com/shield/ddos-attack-protection/
https://www.tripwire.com/state-of-security/featured/most-common-website-security-attacks-and-how-to-protect-yourself/

Most
Commons
Application
Attacks -
IDOR

Insecure Direct Object Reference (called IDOR from
here) occurs when a application exposes a
reference to an internal implementation object.
Using this way, it reveals the real identifier and
format/pattern used of the element in the storage
backend side. The most common example of it
(although is not limited to this one) is a record
identifier in a storage system (database, filesystem
and so on).

https://cheatsheetseries.owasp.org/cheatsheets/Ins
ecure Direct Object Reference Prevention Cheat

Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html

Most
Commons
Application
Attacks -
CRLF

The term CRLF refers to Carriage Return (ASCII 13, \r)
Line Feed (ASCII 10, \n). They’'re used to note the
termination of a line, however, dealt with differently in
today’s popular Operating Systems. For example: in
Windows both a CR and LF are required to note the end
of a line, whereas in Linux/UNIX a LF is only required. In
the HTTP protocol, the CR-LF sequence is always used
to terminate a line.

A CRLF Injection attack occurs when a user manages to
submit a CRLF into an application. This is most
commonly done by modifying an HTTP parameter or URL.

https://owasp.org/www-
community/vulnerabilities/CRLF Injection

https://owasp.org/www-community/vulnerabilities/CRLF_Injection

Most
Commons
Application
Attacks -
Race
Condition

In any computing system, there are some tasks that need to be completed in a
specific order. For example, before allowing someone to log in, a security
system first receives their username and password and then checks it against a
database before allowing access. Attackers can exploit this fact by interfering
with processes to access secure areas and content in what's known as a race

condition attack.

Race condition attacks (also called Time of Check to Time of Use, or TOCTTOU
attacks) take advantage of the need that computing systems must execute
some tasks in a specific sequence. In any such sequence, there is a small
period of time when the system has carried out the first task but not started
on the second. If this period is long enough or the attacker is lucky and
knowledgeable, a race condition vulnerability exists where an attacker can
trick the system into carrying out unauthorized actions in addition to its

normal processes.

https://www.veracode.com/security/race-condition

https://www.veracode.com/security/race-condition

Most Commons
Application
Attacks -
Insecure

Deserialization

Insecure deserialization is when user-controllable data is deserialized by
a website. This potentially enables an attacker to manipulate serialized
objects in order to pass harmful data into the application code.

It is even possible to replace a serialized object with an object of an
entirely different class. Alarmingly, objects of any class that is available
to the website will be deserialized and instantiated, regardless of which
class was expected. For this reason, insecure deserialization is
sometimes known as an "object injection" vulnerability.

An object of an unexpected class might cause an exception. By this time,
however, the damage may already be done. Many deserialization-based
attacks are completed before deserialization is finished. This means that
the deserialization process itself can initiate an attack, even if the
website's own functionality does not directly interact with the malicious
object. For this reason, websites whose logic is based on strongly typed
languages can also be vulnerable to these techniques.

https://portswigger.net/web-security/deserialization

https://portswigger.net/web-security/deserialization

Common
Reasons for
Existence of
Application
Vulnerabilities

Most of the software development related curriculum often do not address security issues

Mo proper guidance provided to relevant stakeholders at different phases of the project development

Failure to gather application security requirements in the inception phase

Improper application of security principles in the design phase

Insecure coding technigues give space to various vulnerabilities

Lack of security testing in the testing phase

Security negligence in the deployment phase

An application vulnerability is a system flaw or weakness in an
application that could be exploited to compromise the security
of the application. Once an attacker has found a flaw, or

CO m m 0 n application vulnerability, and determined how to access it, the
attacker has the potential to exploit the application
vulnerability to facilitate a cyber crime. These crimes target the

Rea So N S fo B confidentiality, integrity, or availability (known as the “CIA
triad”) of resources possessed by an application, its creators,

_ and its users. Attackers typically rely on specific tools or

E X Ste N Ce Of methods to perform application vulnerability discovery and
compromise. According to Gartner Security, the application
layer currently contains 90% of all vulnerabilities.

Application

Vulnerabilities

ww.veracode.com/security/application-
vulnerability-code-flaws-insecure-code

.com/security/10-most-
common- web -security-vulnerabilities

https://www.toptal.com/security/10-most-common-web-security-vulnerabilities
https://www.veracode.com/security/application-security-vulnerability-code-flaws-insecure-code

Most
Commons
Application
Attacks -
Failure to
Restrict URL

If your application fails to appropriately restrict URL access, security can be
compromised through a technique called forced browsing. Forced browsing can
be a very serious problem if an attacker tries to gather sensitive data through
a web browser by requesting specific pages, or data files.

Using this technique, an attacker can bypass website security by accessing
files directly instead of following links. This enables the attacker to access
data source files directly instead of using the web application. The attacker
can then guess the names of backup files that contain sensitive information,
locate and read source code, or other information left on the server, and
bypass the "order" of web pages.

Simply put, Failure to Restrict URL Access occurs when an error in access-
control settings results in users being able to access pages that are meant to
be restricted or hidden. This presents a security concern as these pages
frequently are less protected than pages that are meant for public access, and
unauthorized users are able to reach the pages anonymously. In many cases,
the only protection used for hidden or restricted pages is not linking to the
pages or not publicly showing links to them.

https://www.veracode.com/security/failure-restrict-
url-access

https://www.veracode.com/security/failure-restrict-url-access

Why Why should we care about application security?

Due to its globally accessible nature, applications are becoming more popular targets for attackers to compromise an
organization’s security

W’
3W's v o s st seanty

| |
A p p I I C a t I O n A constant security vigilance at various phase of the application development lifecycle

S e C u r I ty Who Who is responsible for application security?

Managers, Architects, Developers, Testers, and Administrators

Most
Commons
Application
Attacks -
XXE

XML external entity injection (also known as XXE) is a web
security vulnerability that allows an attacker to interfere with
an application's processing of XML data. It often allows an
attacker to view files on the application server filesystem,
and to interact with any back-end or external systems that
the application itself can access.

In some situations, an attacker can escalate an XXE attack
to compromise the underlying server or other back-end
infrastructure, by leveraging the XXE vulnerability to
perform server-side request forgery (SSRF) attacks.

https://portswigger.net/web-security/xxe

https://portswigger.net/web-security/ssrf
https://portswigger.net/web-security/xxe

Most
Commons
Application
Attacks -
SSRF

Server-side request forgery (also known as SSRF) is a web
security vulnerability that allows an attacker to induce the
server-side application to make HTTP requests to an
arbitrary domain of the attacker's choosing.

In a typical SSRF attack, the attacker might cause the server
to make a connection to internal-only services within the
organization's infrastructure. In other cases, they may be
able to force the server to connect to arbitrary external
systems, potentially leaking sensitive data such as
authorization credentials.

https://portswigger.net/web-security/ssrf

https://portswigger.net/web-security/ssrf

M OSt Command injection is an attack in which the goal is execution of arbitrary

commands on the host operating system via a vulnerable application.
Command injection attacks are possible when an application passes
unsafe user supplied data (forms, cookies, HTTP headers etc.) to a

CO m m O n S system shell. In this attack, the attacker-supplied operating system
commands are usually executed with the privileges of the vulnerable
application. Command injection attacks are possible largely due to
insufficient input validation.

|| |
Ap p I Icat I o n This attack differs from Code Injection, in that code injection allows the

attacker to add their own code that is then executed by the application.
In Command Injection, the attacker extends the default functionality of

the application, which execute system commands, without the necessity
Attacks - e et

Command

https://owasp.org/www-

I nj eCti on community/attacks/Command Injection

https://owasp.org/www-community/attacks/Code_Injection
https://owasp.org/www-community/attacks/Command_Injection

APPLICATION
/ SECURITY

https://wwwi.linkedin.com/in¥joas-

f

’ .
antonjo-dosasantos
.

https://www.linkedin.com/in/joas-antonio-dos-santos

Security Software Development Process

Security

Requirement Design Development Testing
S o ft W a r e @ Security @ Security €@ Secure Coding € Secure Code @ Secure @ Security Patch
Requirements Requirements Standards Review Deployment Updates

| @ SerureCoding @ Secure Design | @ Vulnerability |
D I m n t Standards Patterns and Assessment
eve 0 p e @ Threat Modeling Frameworks @ Penetration
@ Security 5] Secur.eCoding Testing
Architecture Practices

Process

/9

Development

.

Secure Coding Standards

Secure Design Patterns and
Framewaorks Secure Deployment

Security Requirements

Requirement \ \ 3

Secure Coding
Practices

Securily Reqguirements Testing

Maintenance

Security Patch Updates

Secure Coding Secure Code Review
Standards

Threat Modeling

Vulnerability Assessment

Security
Architecture

OWASP Top 10 - 2013

A1-Injection

OWASP Top 10 - 2017

A1:2017-Injection

A2-Broken Authentication and Session Management A2:2017-Broken Authentication

OWASP TOP -osete i 3

Ad-Insecure Direct Object References [Merged+A7]

1 O AS5-Security Misconfiguration

A6-Sensitive Data Exposure

A3:2017-Sensitive Data Esposure
A4:2017-XML External Entities (XXE) [NEW]
A5:2017-Broken Access Control [Merged]
A6:2017-Security Misconfiguration
A7-Missing Function Level Access Contr [Merged+Ad4] A7:2017-Cross-Site Scripting (XSS)
A8-Cross-Site Request Forgery (CSRF) A8:2017-Insecure Deserialization [NEW, Community]

A9-Using Components with Known Vulnerabilities A9:2017-Using Components with Known Vulnerabilities

X || clVNlglecle| v ¥ P

A10-Unvalidated Redirects and Forwards A10:2017-Insufficient Logging & Monitoring [NEW, Community]

https://www.synopsys.com/glossary/what-is-
owasp-top-10.html

https://www.synopsys.com/glossary/what-is-owasp-top-10.html

WASC Threat

Abuse of Functionality
Brute Force

Buffer Overfiow
Content Spoofing

Craedentizl/Session Pradiction

Cross-Site Scripting
Cross-Site Reguest Forgery
Denizl of Service
Fingerprinting

Format String

HTTP Response Smuggling
HTTP Response Splitting
HTTP Request Smuggling
nteger Overflows

LDAP Injection

Mail Command Injection

Null Byte Injaction

0S Commanding

Path Traversal

Predictable Resource Location

Remota File Inciusion [RFI)
Routing Detour
Session Fixation

SOAP Array Abuse

SS! Injection

SQL Injection

URL Redirector Abuse
XPath Injection

XML Attribute Blowup
XML Externzl Entities
XML Entity Expansion
(ML Injection

Xuery Injection

Application Misconfiguration
Directory Indexing

Improper File system Permissions
mproper Input Handling
improper Cutput Handling
nformation Leakage

Insecure Indexing

Insufficient Anti-automation
Insufficient Authentication
Insufficient Authorization
Insufficient Password Recovery
Insufficient Process Validation
Insufficient Session Expiration
Insufficient Transport Layer Protection

Server Misconfiguration

Software Assurance Maturity Model

Our mission is to provide an effective and

measurable way for you to analyze and improve

your secure development lifecycle. SAMM supports the

complete software lifecycle and is technology and
SA M M process agnostic. We built SAMM to be evolutive and

risk-driven in nature, as there is no single recipe that

works for all organizations.

https://owasp.org/www-project-samm/

https://owasp.org/www-project-samm/

The Building Security In Maturity Model (BSIMM,
pronounced “bee simm”) is a study of existing software
security initiatives. By quantifying the practices of many
different organizations, we can describe the common

ground shared by many as well as the variations that
BSI M M make each unique.

BSIMM is not a how-to guide, nor is it a one-size-fits-all

prescription. Instead, it is a reflection of software
security.

https://www.bsimm.com/about.html

https://www.bsimm.com/about.html

BSIMM vs
SAMM

Descriptive model

Has 12 security practices consisting of 112 activities

Based on things actually followed in an organization

Has an active community that enables the
organizations to understand the security features
followed in other organizations

Prescriptive model

Has 12 security practices consisting of 72 activities

Based on certain list of activities developed for
software security

Do not have any active community activities

BSIMM vs
SAMM

Descriptive model

Has 12 security practices consisting of 112 activities

Based on things actually followed in an organization

Has an active community that enables the
organizations to understand the security features
followed in other organizations

Prescriptive model

Has 12 security practices consisting of 72 activities

Based on certain list of activities developed for
software security

Do not have any active community activities

Security
Requeriment

Have you ever heard the old saying “You get what you get
and you don’t get upset”? While that may apply to after-
school snacks and birthday presents, it shouldn't be the
case for software security. Software owners don't just
accept any new software features that are deployed,;
features must go through a strategic process of critique,
justification, and analysis before being deployed. Your
teams should treat security with the same attention to
detail. After all, secure software doesn't just happen out of
nowhere—it has to be a requirement of the strategic
development process. To deploy secure software

effectively, you need clear, consistent, testable, and
measurable software security requirements.

https://www.synopsys.com/blogs/software-
security/software-security-reguirements/

https://www.synopsys.com/blogs/software-security/software-security/
https://www.synopsys.com/blogs/software-security/software-security-requirements/

Good
Requeriment

Security

Specific

Wording of the software requirement should be cdear and precise. ltshould not be vague and all-encompassing

Measurable/Testable There should be a dear way to test whether the specific requirement was met or not
Actionable Developer should get clear understanding of what they exactly need to do to satisfy the requirements of the client
Realistic It should be implementable in real time considering all the constraints

Timely

It should be of high priority when it is decided to implement

Types
Security

Requeriment

If you're entrenched in the requirements or contracting
world, you're already aware of the basic kinds of
requirements: functional, nonfunctional, and derived.
Software security requirements fall into the same
categories. Just like performance requirements define
what a system has to do and be to perform according to
specifications, security requirements define what a
system has to do and be to perform securely.

When defining functional nonsecurity requirements, you
see statements such as “If the scan button is pressed, the
lasers shall activate and scan for a barcode.” This is what
a barcode scanner needs to do. Likewise, a security
requirement describes something a system has to do to
enforce security. For example: “The cashier must log in
with a magnetic stripe card and PIN before the cash
register is ready to process sales.”

https://www.synopsys.com/blogs/software-
security/software-security-reguirements/

https://www.synopsys.com/blogs/software-security/software-security-requirements/

Types
Security

Requeriment

Functional requirements describe what a system has to
do. So functional security requirements describe
functional behavior that enforces security. Functional
requirements can be directly tested and observed.
Requirements related to access control, data integrity,
authentication, and wrong password lockouts fall under
functional requirements.

Nonfunctional requirements describe what a system has
to be. These are statements that support auditability and
uptime. Nonfunctional security requirements are
statements such as “Audit logs shall be verbose enough
to support forensics.” Supporting auditability is not a
direct functionality requirement, but it supports
auditability requirements from regulations that might

apply.

https://www.synopsys.com/blogs/software-
security/software-security-reguirements/

https://www.synopsys.com/blogs/software-security/software-security-requirements/

1. Agree on 6. Elicit Security

7. Categorize
Definitions Requirements

Requirements

#

2. Identify Security 5. Select Elicitation 8. Prioritize
Goals Technigues Reguirements

SRE Phases

4, Perform Risk
Assessment

9. Inspect

3. Develop Artifacts Requirements

https://www.softscheck.com/en/security-
consultancy/security-reguirements-engineering/

https://www.softscheck.com/en/security-consultancy/security-requirements-engineering/

SRE Phases,
Analysis and

Priorization

1. Agree on 6. Elicit Security
Definitions Requirements

7. Categorize
Requirements

|" I"

2. Identify Security 5. Select Elicitation 8. Prioritize
Goals Technigues Reguirements

- 4, Perform Risk ‘ 9. Inspect I
SolEman s Assessment Requirements

https://www.softscheck.com/en/security-
consultancy/security-reguirements-engineering/

https://www.researchgate.net/publication/2762849
84 Security Reguirements Engineering Analysis a
nd Prioritization

https://www.softscheck.com/en/security-consultancy/security-requirements-engineering/
https://www.researchgate.net/publication/276284984_Security_Requirements_Engineering_Analysis_and_Prioritization

SRE Phases,
Analysis and

Priorization

1. Agree on 6. Elicit Security
Definitions Requirements

7. Categorize
Requirements

|" I"

2. Identify Security 5. Select Elicitation 8. Prioritize
Goals Technigues Reguirements

- 4, Perform Risk ‘ 9. Inspect I
SolEman s Assessment Requirements

https://www.softscheck.com/en/security-
consultancy/security-reguirements-engineering/

https://www.researchgate.net/publication/2762849
84 Security Reguirements Engineering Analysis a
nd Prioritization

https://www.softscheck.com/en/security-consultancy/security-requirements-engineering/
https://www.researchgate.net/publication/276284984_Security_Requirements_Engineering_Analysis_and_Prioritization

SRE Phases 2

Requirement engineer will not be abdle to identified all security requirements due to lack of

Requirements knowledge of modern elicitation technigues or does not include all the relevant stakeholder
Elicitation . .
during requirement phase
hequiremaents The identified requirements are directly specified without any analysis or modeling
Analysis
H&ql.{irem.ents The identified requirements is not SMART
Specification
::::;::::t: The identified requirements is not prieritized or scheduled properly

https://www.softscheck.com/en/security-

consultancy/security-reguirements-engineering/

https://www.researchgate.net/publication/2762849

84 Security Requirements Engineering Analysis a

nd Prioritization

https://www.softscheck.com/en/security-consultancy/security-requirements-engineering/
https://www.researchgate.net/publication/276284984_Security_Requirements_Engineering_Analysis_and_Prioritization

Abuse Cases
Application
Security

https://cheatsheetseries.owas
p.org/cheatsheets/Abuse Cas
e Cheat Sheet.html

https://www.synopsys.com/bl
ogs/software-security/abuse-
cases-can-drive-security-
requirements/

Assume sys admin identity }
Tamper with client data]
Disgruntied
Employee Tamper with application }
(Exploit poor account mgmt I-—
(' Exploit poor password mgmt Seript
Kiddie
(Exploit OS vulnerability

(Install software snitfer

(Install hardware sniffer —

Competitor

https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html
https://www.synopsys.com/blogs/software-security/abuse-cases-can-drive-security-requirements/

SQUARE
(System
Quality
Requeriments

Enginering)

Requirements problems are the primary reason that projects are
significantly over budget and past schedule, have significantly
reduced scope, and deliver poor-quality applications that are little
used once delivered, or are cancelled altogether.

One source of these problems is poorly expressed or analyzed
quality requirements, such as security and privacy. Requirements
engineering defects cost 10 to 200 times more to correct during
implementation than if they are detected during requirements
development. Moreover, it is difficult and expensive to significantly
improve the security of an application after it is in its operational
environment.

Security Quality Requirements Engineering (SQUARE) is a nine-step
process that helps organizations build security, including privacy,
into the early stages of the production lifecycle. Instructional
materials are available for download that can be used to teach the
SQUARE method.

https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=484884

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484884

SQUARE
(System
Quality
Requeriments
Enginering) -
Process

Agree on definitions

Identify assets and

security goals

Develop artifacts to

support security
requirements
definition

Perform risk
assessment

Candidate definitions
from |IEEE and other
standards

Definitions, Candidate
goals, Business drivers,
Policies and
procedures, Examples

Potential artifacts (e.g.:

scenarios, misuse
cases, templates,
forms)

Misuse cases,
scenarios, goals

Structured
nterviews, focus
group

Facilitated work

3ession, surveys,
nterviews

Work session

Risk assessment

method, analysis of

anticipated risk
against

organizational risk
tolerance, including

risk analysis

Stakeholders,
requirements
engineer

Stakeholders,
requirement
engineer

Requirements
engineer

Requirements
engineer,
stakeholder, risk
expert

Agreed to
definitions

Assets and goals

Needed artifacts:
scenarios, misuse
cases, models,

templates, forms

Risk assessment
results

OCTAVE

OCTAVE is a flexible and self-directed risk assessment
methodology. A small team of people from the
operational (or business) units and the IT department
work together to address the security needs of the
organization. The team draws on the knowledge of many
employees to define the current state of security,
identify risks to critical assets, and set a security
strategy. It can be tailored for most organizations.

Unlike most other risk assessment methods the OCTAVE
approach is driven by operational risk and security
practices and not technology. It is designed to allow an
organization to:

« Direct and manage information security risk
assessments for themselves

* Make the best decisions based on their unique risks
« Focus on protecting key information assets

« Effectively communicate key security information

https://technology.ku.edu/octave-method-security-

assessment

https://technology.ku.edu/octave-method-security-assessment

OCTAVE

The OCTAVE method is based on eight processes that are
broken into three phases. In the higher education

organizations, it is usually preceded by an exploratory
phase (known as Phase Zero) to determine the criteria

that will be used during the application of the Octave
method.

The three phases of OCTAVE are:

* Phase 1: Develop initial security strategies

* Phase 2: Technological view — ldentify infrastructure
vulnerabilities

* Phase 3: Risk analysis — Develop security strategy and
plans

https://technology.ku.edu/octave-method-security-

assessment

https://technology.ku.edu/octave-method-security-assessment

APPLICATION
_SECURITY -
/ DESIGN

https://wwwi.linkedin.com/in}joas-

’ .
antonjo-dosdsantos
.

https://www.linkedin.com/in/joas-antonio-dos-santos

Security
Design

https://www.researchgat

e.net/figure/10-Logical-

security-framework-of-

an-application-security-
provider fig2 284509993

Single System Application Security

Service Provisioning

Security Services
Authentication || Authorization || Monitoring | [Auditing Wegeiil;;.'t;oes Man:gegment Privacy
Protocols Handlers
HTTP | [HTTPS| | OCSP |...| |Serviet|| EJB || NOP || SAAJ || ~8%
Identity Management
Identity Policy
Credentials AttLrJiii:es Administration Roles D:f?:i?i)::-n Efe?:ILiJct?ron

https://www.researchgate.net/figure/10-Logical-security-framework-of-an-application-security-provider_fig2_284509993

Security
Design -
OWASP

https://patchstack.com/security-

design-principles-owasp/

The OWASP Security Design Principles have been created to
help developers build highly secure web applications.

The OWASP security design principles are as follows:

Asset clarification

Before developing any security strategies, it is essential to
identify and classify the data that the application will handle.
OWASP suggests that programmers create security controls
that are appropriate for the value of the data being managed.
For example, an application processing financial information
must have much tighter restrictions than a blog or web forum.

Understanding attackers

OWASP recommends that all security controls should be
designed with the core pillars of information security in mind:
*Confidentiality — only allow access to data for which the user is
permitted

Integrity — ensure data is not tampered or altered by
unauthorised users

*Availability — ensure systems and data are available to
authorised users when they need it

https://patchstack.com/security-design-principles-owasp/

Security
Principles

http://www.csun.edu/~je
ffw/Courses/COMP424/Le
ctures/Lecturell1/HTML/i
mg39.html

Security Principles

— Least Privileges: only allow the minimum

— Economy of mechanism: keep it simple

— Open Design: avoid security through obscurity
— Complete mediation: check every access

- Permission based: deny by default

— Separation of privilege: multiple checks

- Least common mechanism: avoid sharing

- Ease of use: protection should be easy to use.

http://www.csun.edu/~jeffw/Courses/COMP424/Lectures/Lecture11/HTML/img39.html

Security
Principles

https://searchsecurity.tec

htarget.com/feature/Secu

rity-for-applications-
What-tools-and-
principles-work

Application security
competency framework

DESIGN SECURITY IN ..

- PROTECY

FROM WITHOUT
App firowalis
Host hardening
Network/distributed
decsal of service
Detection
Respanse

A A A A A R PREy
Secure hosting platform

Tools

Security training

Software development lifecycle

Governance

Management commitment

https://searchsecurity.techtarget.com/feature/Security-for-applications-What-tools-and-principles-work

Fundamental
Security
Design

Principles

https://binaryterms.com/fundamenta

|-security-design-principles.html

The security design principles are considered while
designing any security mechanism for a system. These
principles are review to develop a secure system which
prevents the security flaws and also prevents unwanted
access to the system.

Below is the list of fundamental security design principles
provided by the National Centres of Academic Excellence
in Information Assurance/Cyber Defence, along with the
U.S. National Security Agency and the U.S. Department of
Homeland Security.

https://binaryterms.com/fundamental-security-design-principles.html

Fundamental
Security
Design

Principles

https://binaryterms.com/fundamenta

|-security-design-principles.html

1.Economy of Mechanism
2.Fail-safe Defaults
3.Complete Mediation
4.0pen Design

5.Separation of Privilege
6.Least Privilege

/.Least Common Mechanism
8.Psychological Acceptability
9.Isolation

10.Encapsulation
11.Modularity

12.Layering
13.Least Astonishment

https://binaryterms.com/fundamental-security-design-principles.html#EconomyofMechanism
https://binaryterms.com/fundamental-security-design-principles.html#Fail-safeDefaults
https://binaryterms.com/fundamental-security-design-principles.html#CompleteMediation
https://binaryterms.com/fundamental-security-design-principles.html#OpenDesign
https://binaryterms.com/fundamental-security-design-principles.html#SeparationofPrivilege
https://binaryterms.com/fundamental-security-design-principles.html#LeastPrivilege
https://binaryterms.com/fundamental-security-design-principles.html#LeastCommonMechanism
https://binaryterms.com/fundamental-security-design-principles.html#PsychologicalAcceptability
https://binaryterms.com/fundamental-security-design-principles.html#Isolation
https://binaryterms.com/fundamental-security-design-principles.html#Encapsulation
https://binaryterms.com/fundamental-security-design-principles.html#Modularity
https://binaryterms.com/fundamental-security-design-principles.html#Layering
https://binaryterms.com/fundamental-security-design-principles.html#LeastAstonishment
https://binaryterms.com/fundamental-security-design-principles.html

Security Design

‘
|}
@ Security through obscurity - @ Protect sensitive data
|}
P r i n C i p I e S €@ Secure the weakest link i @ Exception handling
. . . . '
@ Use least privilege principle ! @ Secure memory management
|}
@ Secure by default E @ Protect memory or storage secrets
’ |}
® Fail securely - € Fundamentals of control granularity
s I
@ Fpply defensein depth i @ Faulttolerance
|}
€ Do not trust user input :)
- € Fault detection
@ Reduce attack surface :
i € Fault removal
@ Enable auditing and logging :
- € Fault avoidance
@ Keep security simple !
@ Loose couplin
@ Separation of duties E i
! High cohesi
@ Fix security issues correctly : @ Hevahesun
] "
@ Apply security in design phase ' @ Change managementand version control
|}
]
4

Fundamental
Security
Design

Principles

https://binaryterms.com/fundamenta

|-security-design-principles.html

1.Economy of Mechanism
2.Fail-safe Defaults
3.Complete Mediation
4.0pen Design

5.Separation of Privilege
6.Least Privilege

/.Least Common Mechanism
8.Psychological Acceptability
9.Isolation

10.Encapsulation
11.Modularity

12.Layering
13.Least Astonishment

https://binaryterms.com/fundamental-security-design-principles.html#EconomyofMechanism
https://binaryterms.com/fundamental-security-design-principles.html#Fail-safeDefaults
https://binaryterms.com/fundamental-security-design-principles.html#CompleteMediation
https://binaryterms.com/fundamental-security-design-principles.html#OpenDesign
https://binaryterms.com/fundamental-security-design-principles.html#SeparationofPrivilege
https://binaryterms.com/fundamental-security-design-principles.html#LeastPrivilege
https://binaryterms.com/fundamental-security-design-principles.html#LeastCommonMechanism
https://binaryterms.com/fundamental-security-design-principles.html#PsychologicalAcceptability
https://binaryterms.com/fundamental-security-design-principles.html#Isolation
https://binaryterms.com/fundamental-security-design-principles.html#Encapsulation
https://binaryterms.com/fundamental-security-design-principles.html#Modularity
https://binaryterms.com/fundamental-security-design-principles.html#Layering
https://binaryterms.com/fundamental-security-design-principles.html#LeastAstonishment
https://binaryterms.com/fundamental-security-design-principles.html

J Fail Securely Apply Defense in Depth J J Do Not Trust User Input J
S l t \ ihh ‘ \ |
e C u r I y €@ The developer should not give €@ The architects and developers @ Protect the application from all
application secrets by default error should consider all the levels of malicious inputs coming from the
messages the software to impose security user input to the application
vhile developing software
= @ Application that discloses ! e : - o
e S I g n confidential information on failure . - e Fonsnder all inputs as.‘:-a malicious
assists attackers in creating an e lmpl.ement security me;hamsms input and apply sgcunty
at different layers that include measures to restrict them

network layer, kernel layer,
physical layer, and the file system
layer

@ When an application fails,
determine what may occur and
ensure that it does not threaten
the application

Principles

@ Provide logical and useful error
messages to the users and store
the details in the log file

f
]
]
i
:
]
'
]
]
]
i
]
]
]
]
:
]
i attack
H
]
]
-
]
1
]
:
]
]
]
i
]
]
]
]
]

Threat Model

1 Identify

Security
Objectives
5. Identify 2. Application
Vulnerabilities Overview
4. Identify 3. Decompose

Threats Application

Application
Security
Mechanism

https://www.researchgate.net/fiqure/

Applicable-Security-
Mechanisms tbl4 221095013

Mechanisms

Types

Description

Related
Threats

Anti-Virus
Solution

Add-on Application,
System Add-on

Anti-virus solutions scan files,
memory, SMS, MMS, emails and
URLs

Anti-virus solutions can prevent
malwares and also prevent access to
phishing site

T1, T6,
(T8)

Firewall

System Modification

Firewall blocks and/or audit un-
allowed connections from/to device
Firewall can prevent network attacks
by denying access to untrusted
wireless network

T3, (T8)

Secure API

System Add-on

Secure API provide cryptographic
functionalities for application
developer

Application developer can implement
secure functionality using secure
APIs

T1, T2,
(T8)

Access Control

System Modification

Access control limits access of
processes and user to resources and/or
services

Access control can limit risk from
malicious/exploited application

T1, T7

Authentication

System Modification

User should be authenticated to use
device

Authentication process can prevent
unauthorized use of device

T7

Spam Filter

System Add-on,
Application Add-on

SPAM filtering applications blocks
MMS, SMS, emails and calls from
unwanted origin
SPAM filtering applications can
prevent SPAM

Tl

Pre-Testing

System Modification

Pre-Testing guarantee applications
and authorizes developer

Pre-Testing can prevent malware and
ensure security of applications

T1, T4,
TS5

Regular Update

System Modification

Regular update for platform and
smartphone application

T5

Remote Access
Control

System Modification

Remote access control includes
remote configuration and
management of smartphone(remote
blocking, remote reset)

When user lose his/her smartphone,
remote access control can reduce
damage by lost smartphone

17

https://www.researchgate.net/figure/Applicable-Security-Mechanisms_tbl4_221095013

Engineering-Based Data Flow Diagram
T % ﬁARQx /

Store \

/ Appli?{ion ~»| Fraud | }) /
HTTPs /7 _ Callg{.do) ..\\Detect-o} /
User! ~Request Zz 4 X 3 72 // XML!HTTPS /,
Browser § / ¢ Web Serve / o ' inanci
\ ﬁl “ B o oiSes: Financial
Ps /ﬁz’:l'::::: f XMUHTTPS /;}-—-Q\ ,Transactions(ACH, wires
\ / / P - £ D 45 external transfe
Respon;es / 3 | [Messaging' | ./ > !
/ -1 Message % | g,¢ || T \
- -] L2 // xmLims |\ Pl e
;. o I3 Appllcatio ¥’ / \ /1
] = / -— I Server | J -) 9
: N / 2 / \._, Service j W
| - / > \\ ,// ~ Message 0 u
h o | T ; Response ! 3 2 V)
I -4 I w | o @ Vi
i 2 I o \ I =3 I/
- / 3 | ‘wa J
I o o | \ 5 = Y
I = ! 2 ' \ I 8 ® ==
ph i > : SQL Query Call | s e gz §
! d | © AuthData JDBC 1 g z '/ Financial
| 3 \ ° | I = (f Transaction | |
l‘ = | 2 1 gis W Processing ||
@ | o = MainFrame
1 o , ! = //
1 c \ © N\ y | ¢<D \\]
= \ w o \ Y
‘\ 2 \ 3 Authentication \ g’
\ 3 \ ¢<, Credential \ e
— - =
a
>y)
B <
a K-
o \
< \

https://threatmodeler.com/data-flow- . \
diagrams-process-flow-diagrams/ \ \ \

-

https://threatmodeler.com/data-flow-diagrams-process-flow-diagrams/

Application
Security DFD

https://threatmodeler.com/data-flow-

diagrams-process-flow-diagrams/

System engineers developed data flow diagrams to
provide a high-level visualization of how an application
works within a system to move, store and manipulate data.
The intended use of DFDs was to provide engineers a way
of efficiently communicating their structured system
analysis. Security professionals added the concept of trust
boundaries to DFDs in the early 2000s to make them more
applicable for threat modeling.

Since then many attempts have been put forward by
various groups to create a more mature DFD-based
process, especially for development environments
employing an Agile methodology. Despite the valiant and
prolonged effort, DFDs fundamentally remain a means of
communicating analysis of a structured system. Hence they
have limited capacity to adequately address applications
which are created for platform independence and
deployed in a highly interconnected environment.

https://threatmodeler.com/data-flow-diagrams-process-flow-diagrams/

Application
Security DFD

https://threatmodeler.com/data-flow-

diagrams-process-flow-diagrams/

Furthermore, with DFDs, high volumes of documentation
were the expected norm. This, of course, makes them
unwieldy for Agile sprinting developers who minimize
documentation and any other activity they deem non-
productive. Without developer acceptance, organizations
will find significant challenge scaling threat modeling
processes enterprise-wide.

DFD-based threat modeling fundamentally looks at how
data is designed to move through a system. The approach
cannot, therefore, provide a means to inherently analyze
how an application appears to a potential attacker. Since a
DFD cannot analyze an application from the perspective of
an attacker, any predictive capacity regarding possible
attack vectors, entry points, or exfiltration points, requires
significant speculation on the part of the user.

As applied to threat modeling, DFDs are typically used to
identify broad categories — usually based on the STRIDE
threat classification scheme — of potential threats such as
elevation of privilege or Distributed Denial of Service. The
list of threats identifiable through such methods is rather
limited and provides a poor starting point for producing
actionable outputs.

https://threatmodeler.com/data-flow-diagrams-process-flow-diagrams/

Application
Security DFD

https://threatmodeler.com/data-flow-

diagrams-process-flow-diagrams/

DFD-based threat modeling leaves a threat modeling
practice with fundamental weaknesses:

*DFDs do not accurately represent the design and flow of
an application

*They analyze the operational component and how the
data is flowing, rather than on how users interact and
move through the application features;

*Data flow diagrams are hard to understand because they
require security expertise. The developer community does
not embrace DVD-based threat models because they are
vague, and complex

*DFD-based threat modeling has no standard approach —
different people tend to create different threat models
with entirely different outputs

*The DFD process is fundamentally focused on very high-
level system issues. It cannot, therefore, to help developers
understand the relevant threats and their mitigating
controls

https://threatmodeler.com/data-flow-diagrams-process-flow-diagrams/

Application
Security DFD -
Process Flow

https://threatmodeler.co
m/data-flow-diagrams-

process-flow-diagrams/

b4

Forgot

Passwo ‘l
rd Stateme

i T

E’: Wﬂimg

Use ‘
| Login
H

Registra
tion

L“"”_¥

y
= Credit Verification

-

' = Credit Agency - External Boundary !

Logout

HIT

>

" ACH

Trans fer

0o

e
ThreatModeler

Security by Design

https://threatmodeler.com/data-flow-diagrams-process-flow-diagrams/

The advantages
of utilizing
process, or
application flow
diagrams

*Creating threat models with developer-level application details of
communication protocols and employed coding elements intrinsically
included allowing more efficiency identifying potential threats;
*Creation of a “process map,” showing how individuals move through an
application. Security professionals and developers can then view the
application from the attacker’s vantage, resulting in more efficiently
prioritizing potential threats;

*An easy to understand threat model that promotes collaboration
across all organizational stakeholders, regardless of an individual’s level
of security expertise;

Standardization of the threat modeling process resulting in consistent,
actionable output regardless of who created the threat model.

Process flow diagrams are the result of a maturing threat modeling
discipline. They genuinely allow incorporation of developers in the
threat modeling process during the application design phase. This helps
developers working within an Agile development methodology initially
write secure code. The threat modeling initiative then becomes a means
of enhancing the developer’s ability to sprint to production. This will
significantly help the organization in scaling threat modeling processes.

CREATE A
SECURITY

PROFILE

.J To create security profile for an
application, focus on:

@ \arious design and implementation
approaches of an application which can be
most susceptible to vulnerabilities

@ \arious areas of applications which can be
most susceptible to vulnerabilities

-J Document the security profile for
application depending on the area of
vulnerabilities

Security Profile

~ Trust
‘Boundaries
LS w
Data Flow
%
Assets

STRIDE Threat Model

Spoofing identity

« lllegally accessing and then using another
user’s authentication information

Tampering with data
Malicious modification

Unauthorized changes

Repuc
Deny performing an malicious action

Non-repudiation refers to the ability of
a system to counter repudiation threats

wation of privilege

Unprivileged user gains privileged access
to compromise the system

Effectively penetrated and bacome part
of the trusted system

Deny service to valid users
Threats to <ystem availability and reliability

Exposure of information to individuals not
supposed to access

STRIDE
MODEL

Elements

Description

Rationale

Evaluated

Damage

Aireraft flight

sereens, computer monitors for check-in at check-in

computer systems, information
counters, radio systems to stop working. More than
100 flights delayed. Over 400 thousand the airlines’

customer database was stolen and made public on

the internet

Infringement on
availability requirement.
Confidentiality of
information is

compro ”“;-'if'l’f

6 to & point

Affected users

More than 100 flights were affected, of which dozens
of flights were delayed by 15 to 60 minutes. Staff
and passengers checked in the flight in manually,
using the portable speaker to announce the flight to

the PASSENGETS

Admin, power users,
group, user, and public.
All five groups were

affected

7 to 8 point

Reproducibility

The website Airlines has been re-
activated, but according to security experts have not

and the risk of

of Vietnam

yet patched the wvulnerabilitics

TECUTTENCE

Moderate or simple

Ezploitability

This is a Attackers used

malicious

attack.
detected by

sophisticated
code that not antivirus

software.

Ezxzpert Or Jowrneyman

8 to 9 point

Discoverability

According to Vieltnam security experts, the

vulnerability on the VNA eCommerce website have

warned long before the incident

Easy or moderate

T to 4 point

Range of Risk Exposure score

5.6 to 6.8 point means Important

Providing secure

Authenticating configuration

users Handling
_ exceptions
Denial of 1 L
service N
Concurrency .
— & Application
Protecting
sensitive
data
Preventing Preventing Coarse input
parameter session validation

manipulation hijacking

b

Fine input
validation

£ Application

Authorizing
users

Auditing and
logging

Protecting
sensitive data

g e

—

Database

BISSILE]\
SECURITY

APPLICATION
ARCHITECTURE

<X

OUTSIDE THREAT
PROTECTION

PERIMETER SECURjTy
Secunty
(anti-virus, ant-malware)
Secure DMZs Hoaeypet
NETWORK SECURITY

NAC Enferprise

Wed Proxy Conlent Fiklering Measage Secunity

Enterprise
Wireless Securty

P_\cA‘\’ION SEcuery
WAF

pP
Database
Dynamic App Testing aEe Monitoring/Scanning
TA URy
0" Identity & ry Database
Acceas 3 Secure Gateway
e < Management Classification (Shield)
ac Data Integnty
Data Wipiog Monitering DLP
Cleansing
Encryption

SECURITY

DESIGN &
TESTING

How to Preserve Data Integrity

VALIDATE VALIDATE
INPUT . DATA

DAY A
SUPOCATE BACKUP INTEGRITY

DATA

ALWAYS
KEEP AN
AUDIT TRAIL

CONTROLS

/)
ACCESS 0 5
V)

https://www.varonis.com/blog/data-integrit

https://www.varonis.com/blog/data-integrity/

Certifications
and Courses

https://www.eccouncil.org/programs/appli

cation-security-training/

https://shehackspurple.ca/

https://www.pluralsight.com/

https://application.security/

https://www.securitvinnovation.com/traini

ng/software-application-security-courses/

https://www.isc2.orqg/Certifications/CSSLP

http://elearnsecurity.com/

https://www.offensive-security.com/awae-

oswe

https://www.eccouncil.org/programs/application-security-training/
https://shehackspurple.ca/
https://www.pluralsight.com/
https://application.security/
https://www.securityinnovation.com/training/software-application-security-courses/
https://www.isc2.org/Certifications/CSSLP
http://elearnsecurity.com/
https://www.offensive-security.com/awae-oswe/

