
 OSWE NOTES BASIC BY JOAS

https://www.linkedin.com/in/joas-antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos

Warning
All content was taken from the internet and has the credits of their respective researchers

and owners, just access the links. The most I did was gather the information based on my

studies for OSWE together with a friend to help the community. There is no owner of the

material, mainly there was no revision or formatting of the lyrics, as it is something done in a

hurry and taken from a notepad for a document.

Sumário
Warning ... 2

Lab Simulation .. 3

Web Traffic Inspection ς Burp Suite .. 6

Web Listerning with Python ... 24

Ruby HTTP Server ... 26

dnSpy... 34

ILSpy .. 37

Reverse Engineering by Valdemar Caroe ... 40

Analyze Encryption and Decryption using DNSPY ... 58

DotNetNuke Vulnerabilities ... 63

DotNetNuke 07.04.00 - Administration Authentication Bypass ... 66

Decompiling Java Classes ... 68

Studying Java Programming ... 75

Vulnerability Challenges ... 76

Atmail Email Server Appliance 6.4 Remote Code Execution... 76

XXE Injection ... 86

Manual SQL Injection ... 117

Session Riding and Hijacking .. 135

JavaScript and NodeJS Studying ... 140

JavaScript Prototype Pollution ... 140

Cross-Origin Resource Sharing (CORS) ... 145

Relaxation of the same-origin policy .. 145

CSRF and OAUTH ... 154

XMLHttpRequest .. 155

PHP Programming ... 178

PHP Type Juggling ... 178

Cross Site Scripting ... 185

Regex ... 189

Server Side Template Injection .. 190

File Upload Restrictions .. 207

SQL Injection and Blind SQL Injection .. 208

Local File Inclusion .. 212

Remote Code Execution ... 220

Insecure Deserialization ... 224

Server Side Request Forgery .. 226

OSWE Exam Preparation .. 229

Lab Simulation
https://pentesterlab.com/

https://www.hackthebox.eu/

https://portswigger.net/academy/labs

https://vulnhub.com/

FALAFEL AND POPCORN

¶ Challenges

o Bypass File Upload Restrictions

¶ Source code analysis requirments

o Nope

VAULT

¶ Challenges

o Enumeration

o Port forwarding

o File sharing with netcat

o Use of PGP

¶ Source code analysis requirments

o Nope

BLOCKY

¶ Challenges

o Use JD-GUI

https://pentesterlab.com/
https://www.hackthebox.eu/
https://portswigger.net/academy/labs
https://vulnhub.com/

o Adapt CVEs Exploits

o Vulnerability Chaining

o Webshells

o Use of PGP

¶ Source code analysis requirments

o Locate credentials within Jar file (1 file)

o Decompile JAR files

¶ 2 methods to gain root, the preferred for me is:

o Use the creds to access phpmyadmin

o change user and password

o Access Wordpress and upload a crafted plugin

o Escalate from www-data to root

ARKHAM

¶ Challenges

o Use cryptsetup to dump/decrypt LUKS disks

o Read Web ApǇƭƛŎŀǘƛƻƴΩǎ 5ƻŎǳƳŜƴǘŀǘƛƻƴ

o Know how to use crypto utility to encrypt a payload

o Know how to use ysoserial to generate an RCE payload via insecure

deserialsiation

¶ Source code analysis requirments

o Documentation reading

VulnHub

PIPE

¶ Challenges

o Know how to exploit PHP insecure deserialisation to achieve RCE

¶ Source code analysis requirements

o Source Code Analysis of 3 PHP files (Boringly simple)

¶ OSWE Style Walkthrough:

o Pipe

https://klezvirus.github.io/Misc/HTB-VH-OSWE/reviews/vulnhub/pipe

RAVEN2

¶ Challenges

o Detect missing input validation

o Debug PHP app via code augmentation [big word, small task]

¶ Source code analysis requirements

o Source Code Analysis of PHPMailer (Important files: 2)

¶ OSWE Style Walkthrough:

o Raven

HOMELESS

¶ Challenges

o Know a bit of hashing functions

¶ Source code analysis requirements

o Source Code Analysis of 3-4 PHP files

¶ OSWE Style Walkthrough:

o Homeless

TED

¶ Challenges

o Know how to exploit PHP Local File Inclusion to achieve RCE

¶ Source code analysis requirements

o Source Code Analysis of a few PHP files

¶ OSWE Style Walkthrough:

o Ted

FLICK2

¶ Challenges

o Understand how APIs work

o Know how to decompile/recompile an APK

o A bit of enumeration

¶ Source code analysis requirements

o Little APK decompiled code analysis

https://klezvirus.github.io/Misc/HTB-VH-OSWE/reviews/vulnhub/raven2
https://klezvirus.github.io/Misc/HTB-VH-OSWE/reviews/vulnhub/homeless
https://klezvirus.github.io/Misc/HTB-VH-OSWE/reviews/vulnhub/ted

¶ OSWE Style Walkthrough:

o Flick2

o Additional Exercise at the end

Web Traffic Inspection ς Burp Suite
https://portswigger.net/burp/documentation/desktop/penetration-testing

Intercepting a request

Burp Proxy lets you intercept HTTP requests and responses sent between your browser and

the target server. This enables you to study how the website behaves when you perform

different actions.

Step 1: Launch Burp's embedded browser

Go to the Proxy > Intercept tab.

Click the Intercept is off button, so it toggles to Intercept is on.

https://klezvirus.github.io/Misc/HTB-VH-OSWE/reviews/vulnhub/flick2
https://portswigger.net/burp/documentation/desktop/penetration-testing

Click Open Browser. This launches Burp's embedded Chromium browser, which is

preconfigured to work with Burp right out of the box.

Position the windows so that you can see both Burp and the browser.

Step 2: Intercept a request

Using the embedded browser, try to visit https://portswigger.net and observe that the site

doesn't load. Burp Proxy has intercepted the HTTP request that was issued by the browser

before it could reach the server. You can see this intercepted request on the Proxy >

Intercept tab.

The request is held here so that you can study it, and even modify it, before forwarding it to

the target server.

Step 3: Forward the request

Click the Forward button several times to send the intercepted request, and any subsequent

ones, until the page loads in the browser.

Step 4: Switch off interception

Due to the number of requests browsers typically send, you often won't want to intercept

every single one of them. Click the Intercept is on button so that it now says Intercept is off.

Go back to the embedded browser and confirm that you can now interact with the site as

normal.

Step 5: View the HTTP history

In Burp, go to the Proxy > HTTP history tab. Here, you can see the history of all HTTP traffic

that has passed through Burp Proxy, even while interception was switched off.

Click on any entry in the history to view the raw HTTP request, along with the corresponding

response from the server.

This lets you explore the website as normal and study the interactions between your browser

and the server afterwards, which is more convenient in many cases.

Sending a request to Burp Repeater

The most common way of using Burp Repeater is to send it a request from another of Burp's

tools. In this example, we'll send a request from the HTTP history in Burp Proxy.

Step 1: Launch the embedded browser

Launch Burp's browser and use it to visit the following URL:

https://portswigger.net/web-security/information-disclosure/exploiting/lab-infoleak-in-error-

messages

When the page loads, click Access the lab. If prompted, log in to your portswigger.net account.

After a few seconds, you will see your own instance of a fake shopping website.

Step 2: Browse the target site

In the browser, explore the site by clicking on a couple of the product pages.

Step 2: Study the HTTP history

In Burp, go to the Proxy > HTTP history tab. To make this easier to read, keep clicking the

header of the leftmost column (#) until the requests are sorted in descending order. This way,

you can see the most recent requests at the top.

Step 3: Identify an interesting request

Notice that each time you access a product page, the browser sends a GET /product request

with a productId query parameter.

Let's use Burp Repeater to look at this behavior more closely.

Step 4: Send the request to Burp Repeater

Right-click on any of the GET /product?productId=[...] requests and select Send to Repeater.

Go to the Repeater tab to see that your request is waiting for you in its own numbered tab.

Step 5: Issue the request and view the response

Click Send to issue the request and see the response from the server. You can resend this

request as many times as you like and the response will be updated each time.

Testing different input with Burp Repeater

By resending the same request with different input each time, you can identify and confirm a

variety of input-based vulnerabilities. This is one of the most common tasks you will perform

during manual testing with Burp Suite.

Step 1: Reissue the request with different input

Change the number in the productId parameter and resend the request. Try this with a few

arbitrary numbers, including a couple of larger ones.

Step 2: View the request history

Use the arrows to step back and forth through the history of requests that you've sent, along

with their matching responses. The drop-down menu next to each arrow also lets you jump to

a specific request in the history.

