

What is Ransomware?

 Ransomware is malware that employs encryption to hold a victim's information at ransom. A user or organization's critical data is encrypted so that they cannot access files, databases, or applications. A ransom is then demanded to provide access. Ransomware is often designed to spread across a network and target database and file servers, and can thus quickly paralyze an entire organization. It is a growing threat, generating billions of dollars in payments to cybercriminals and inflicting significant damage and expenses for businesses and governmental organizations.

Types of Ransomware

Common Types of Ransomware Attacks

- 1 Crypto ransomware
- 2 Locker ransomware
- 3 Scareware
- 4 Ransomware as a Service (RaaS)
- 5 Doxware/Leakware

Types of Ransomware

1. Crypto ransomware

• The goal of crypto ransomware is to hack and encrypt the sensitive files located on the victim's computer, such as documents, pictures, or videos. While cybercriminals withhold access to these files, they don't go as far as interfering with basic computer functions like other types of ransomware. Hackers want to create a sense of panic within the user by allowing them to see their files without the ability to open their information.

2. Locker ransomware

- Locker ransomware is unique in that it solely aims to lock victims out of their computers. Hackers do this by disabling all basic computer functions with an exception for minor mouse and keyboard capabilities. Leaving the mouse and keyboard somewhat operable lets the user fulfill the demands of the cybercriminal to gain access back into their device.
- A common trend with locker ransomware is that it generally doesn't target specific files. So, the likelihood of data destruction is lower compared to other types of ransomware attacks. However, there are no guarantees when dealing with cybercriminal masterminds.

Types of Ransomware

3. Scareware

- Scareware is a malicious software created to make false claims about viruses infecting a
 user's computer or device. A payment is typically requested from the owner to solve the
 falsified issues. While some types of scareware can lock a user out of their device, others will
 only go as far as flooding the screen with countless pop-ups to overwhelm the user.
- 4. Ransomware as a Service (RaaS)
- Ransomware as a Service (RaaS) is a dark web business model created to help ransomware hackers streamline their attacks. Developers created this software to automatically carry out all aspects of a ransomware attack for the cyberthief, from sending out the ransomware to collecting payments and restoring user access.
- 5. Doxware or leakware
- Doxware, also known as leakware, threatens the distribution of sensitive data online, targeting people and businesses alike. Since hackers know people, and especially businesses, will do almost anything to prevent confidential and personal data from falling into the wrong hands, they often demand compensation to prevent its release.

Ransomware Report

Ransomware in 2022

https://www.blackfog.com/the-state-of-ransomware-in-2022/

https://therecord.media/ransomware-tracker-the-latest-figures/

https://www.trendmicro.com/vinfo/us/security/news/ransomware-by-the-numbers/lockbit-conti-and-blackcat-lead-pack-amid-rise-in-active-raas-and-extortion-groups-ransomware-in-q1-2022

Commons Ransomware

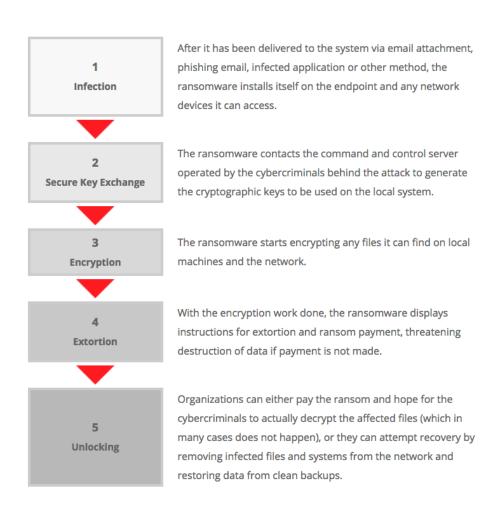
- Cerber
- Bad Rabbit
- CryptoWall
- Crysis
- LockerGoga
- LeChiffre
- Petya
- NotPetya
- KeRanger
- Jigsaw
- GoldenEye

- CTB-Locker
- Maze
- Locky
- WannaCry
- **ZCryptor**
- TorrentLocker
- TeslaCrypt
- Spider
- Ryuk

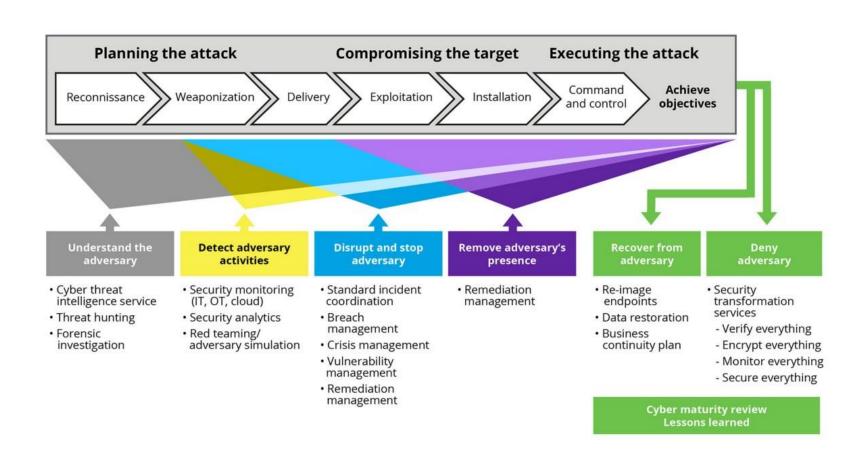
INVESTIGATION RANSOMWARE

APT Groups

 Groups are sets of related intrusion activity that are tracked by a common name in the security community. Analysts track clusters of activities using various analytic methodologies and terms such as threat groups, activity groups, threat actors, intrusion sets, and campaigns. Some groups have multiple names associated with similar activities due to various organizations tracking similar activities by different names. Organizations' group definitions may partially overlap with groups designated by other organizations and may disagree on specific activity.


APT Groups – List and Report

- https://attack.mitre.org/groups/
- https://www.mandiant.com/resources/insights/apt-groups
- https://cybersophia.net/cyber-threat-intel/advancedpersistent-threat-apt-groups/
- https://adversary.crowdstrike.com/en-US/?L=32
- https://www.crowdstrike.com/resources/reports/globalthreat-report/


RANSOMWARE INCIDENT RESPONSE

Ransomware Process

Ransomware Attack and Recovery

OSINT – What is?

- By gathering publicly available sources of information about a particular target an attacker or friendly penetration tester can profile a potential victim to better understand its characteristics and to narrow down the search area for possible vulnerabilities. Without actively engaging the target, the attacker can use the intelligence produced to build a threat model and develop a plan of attack. Targeted cyber attacks, like military attacks, begin with reconnaissance, and the first stage of digital reconnaissance is passively acquiring intelligence without alerting the target.
- Gathering OSINT on yourself or your business is also a great way to understand what information you are gifting potential attackers. Once you are aware of what kind of intel can be gathered about you from public sources, you can use this to help you or your security team develop better defensive strategies. What vulnerabilities does your public information expose? What can an attacker learn that they might leverage in a social engineering or phishing attack?

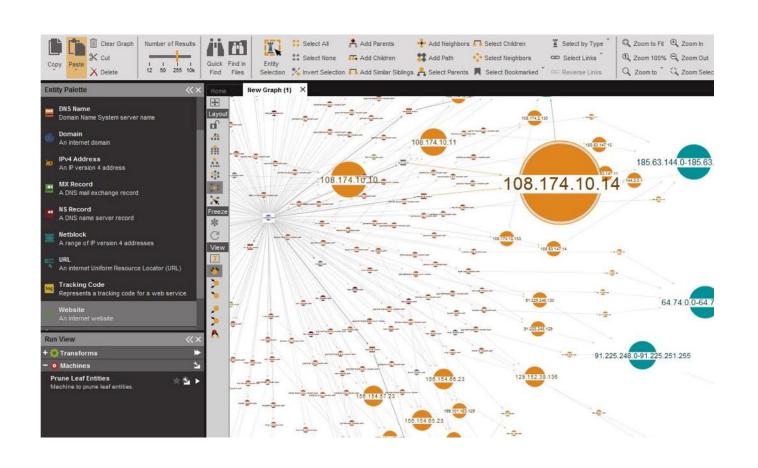
OSINT Framework – What is?

- Gathering information from a vast range of sources is a time consuming job, but there are many tools to make intelligence gathering simpler. While you may have heard of tools like Shodan and port scanners like Nmap and Zenmap, the full range of tools is vast. Fortunately, security researchers themselves have begun to document the tools available.
- A great place to start is the OSINT Framework put together by Justin Nordine. The framework provides links to a large collection of resources for a huge variety of tasks from harvesting email addresses to searching social media or the dark web.

Malware Database

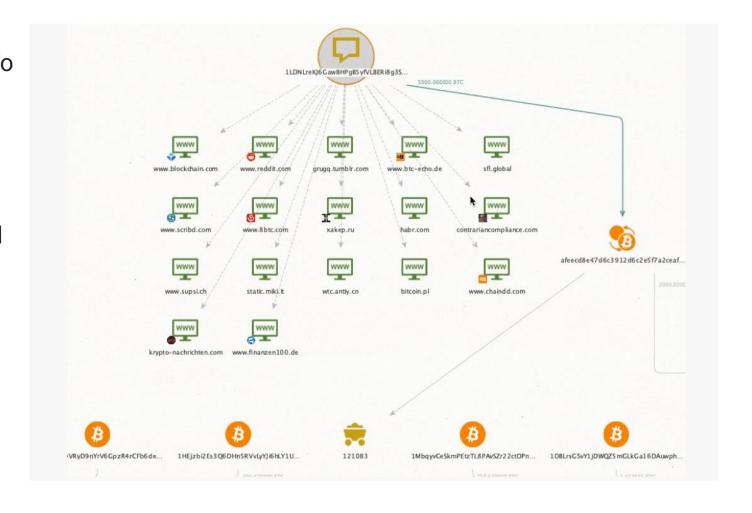
- https://github.com/Endermanch/MalwareDatabase
- https://github.com/Pyran1/MalwareDatabase
- https://github.com/acastillorobles77/MalwareDatabase
- https://github.com/sophos/SOREL-20M
- https://virusshare.com/
- https://labs.inquest.net/
- https://bazaar.abuse.ch/
- https://www.hybrid-analysis.com/
- https://urlhaus.abuse.ch/
- https://beta.virusbay.io/
- https://www.virustotal.com/

Malware Samples


- https://github.com/jstrosch/malware-samples
- https://github.com/fabrimagic72/malware-samples
- https://github.com/ytisf/theZoo
- https://github.com/mstfknn/malware-sample-library

Create Lab

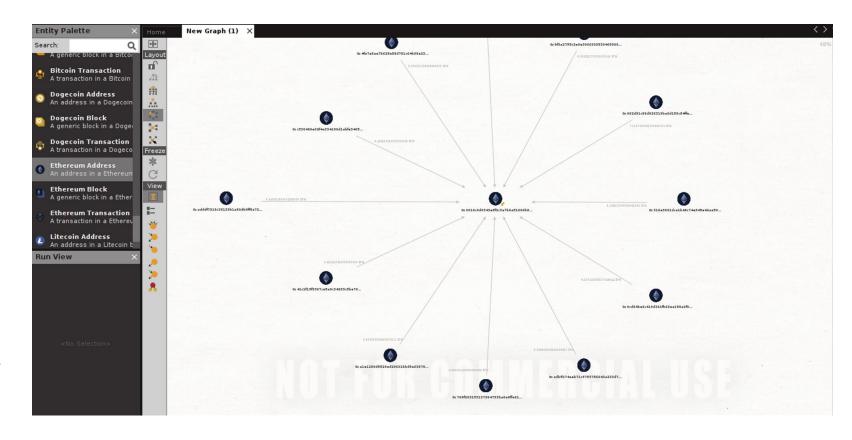
- Install Windows 7 and 10
- Install Linux or preference Kali Linux
- https://www.sentinelone.com/labs/building-a-custommalware-analysis-lab-environment/
- https://www.youtube.com/watch?v=GE aSVq8ZnQ
- https://www.youtube.com/watch?v=fLJifLf_fRE
- https://www.youtube.com/watch?v=bBvOiADXjEQ

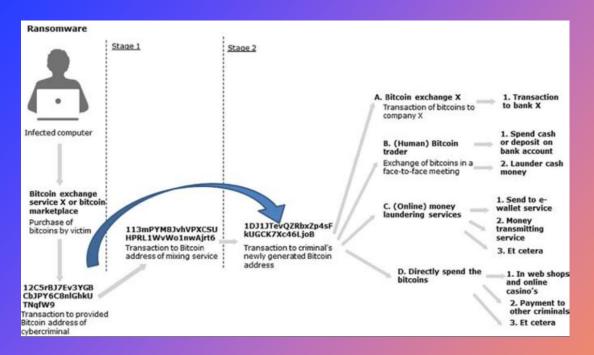

OSINT – Maltegoce Transforms

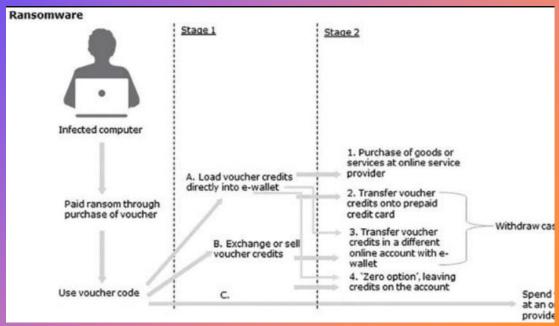
- Intezer Analyze Transforms for Maltego;
- Abuse.ch URLhaus;
- AbuseIPDB;
- ATII Hades Darkweb;
- Virus Total Premium;
- Cybersixgill;
- Att&ck MISP;
- Threat Crowd;
- Shodan;
- Crowdstrike Intel;
- Recorded Future;
- Hyas insight;
- Flashpoint;
- Hybrid Analysis;
- Threat Miner;
- Blockchain.info
- Cipher Trace;
- Tatum Blockchain;

OSINT – Maltegoce Cryptocurrency 1

Blockchain.com (formerly Blockchain.info) is a provider of cryptocurrency blockchain explorer services. It's a platform that offers ways to buy, hold, and use cryptocurrency. It creates a financial system for the internet that empowers anyone in the world to control their money. Over 50+ million customers have signed up to use the Blockchain.com platform. It's a fast and easy way to buy bitcoin, trade crypto, send, receive, secure, and borrow digital currencies.




OSINT – Maltegoce Cryptocurrency 2


https://sociallinks.io/webinars/analysing-cryptocurrencies-and-investigating-blockchains

https://www.youtube.c om/watch?v=A7XhEvA gYz4

https://alphasec.io/how -to-visualize-ethereumtransactions-usingmaltego/

Model for the Money laudering of Ransomware

- Anonymity: Bitcoin provides anonymity when payments are received and when they are cashed out. That's because bitcoin accounts and money transfers are difficult to trace and depend largely on the cybercriminal being sloppy with operations security.
- Global Currency: Hackers typically prey on out-of-country targets and need a fast, untraceable method to transfer funds across nations without worrying about account freezes. Bitcoin is used as a global currency because you don't need to worry about the exchange rates between your home country's currency and US dollars.
- Ease of Payments: In the past, hackers used to rely on gift cards for payment. This was troublesome on many levels for instance, gift cards can't be used globally, and criminals needed to come up with a mailing addresses that can't be traced. Bitcoin and the higher profile of cryptocurrency have contributed to the rise in ransomware, as well as hackers' ability to use extortion to elicit payments. One example occurred after the Ashley Madison website breach, when hackers threatened some users with a bitcoin ransom or have their identities revealed as adulterers. Another tactic involved using malicious emails to threaten a distributed denial-of-service attack on an organization's network unless a bitcoin payment was made.

Analyzing Wallet Addresses using Blockchain Explorers

- In cryptocurrency investigations, blockchain ledgers play a significant role. To render it simpler to comprehend and make sense of the information, investigators use Wallet explorers to conduct analysis on wallet addresses and transactions.
- Transaction analysis is crucial in cryptocurrency investigations since it not merely permits investigators to follow the money, but also determine the source and what sort of tools the suspect employed
- One of the more known Explorers is Blockchain.com. It allows us to look up the wallet address and see all of its past transactions. It also shows how much currency it currently holds. Blockchain transactions are simple to track in the case of public ledgers like Bitcoin or Ethereum.
- WalletExplorer
- BitcoinWho'sWho
- BitcoinAbuse
- IntelX

Wallet explorers usually update in real-time with the details of each transaction, comprising of:

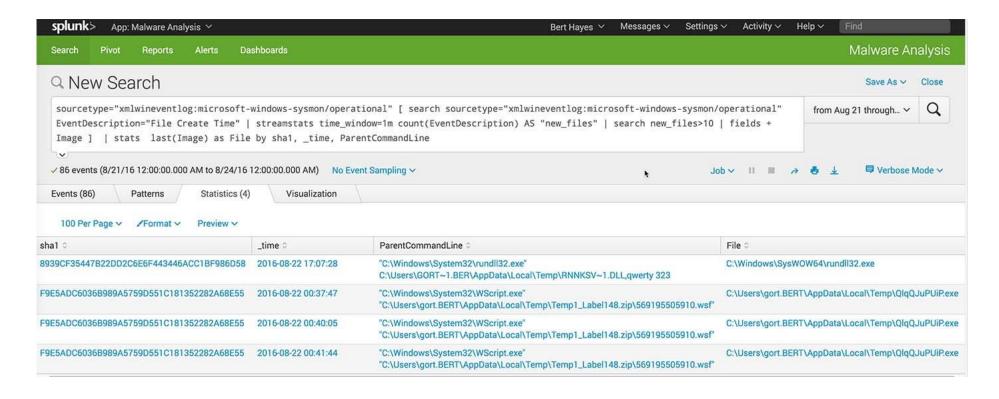
- Hash: The transaction ID which serves as a way to look up a particular transaction on the blockchain. (Not to be confused with Cryptographic Hashes)
- From/To: The sender's address and the recipient's address.
- Time Stamp: Each block includes the precise time for when the transaction entered the blockchain. Thus, the time the block was mined.
- Actual Cost/Fee: The price of the transaction.
- Transaction Receipt Status: Confirmation of the transaction's status.
- Value: How much cryptocurrency was sent and the equivalent USD value.

IoCs Ransomware

- Indicators of compromise (IoCs) are clues and evidence of a data breach in the form of digital breadcrumbs.
 These indicators can tell us whether a cyberattack has occurred, who was behind them and what tools may
 have been used. This information is generally obtained from software, including anti-malware and antivirus
 systems.
- Some of the most common IoCs to watch for are:
- 1. Unusual traffic patterns between internal systems
- 2. Unusual usage patterns for privileged accounts
- 3. Administrative access to your network from unsuspected geographical locations
- 4. A spike in database read volumes
- 5. A high rate of authentication attempts and failures
- 6. Unusual configuration changes
- 7. C2 Servers lps
- 8. Ethereum or Bitcoin Wallets
- 9. Hashes File

https://www.packetlabs.net/posts/indicators-of-compromise-ioc/

Example IoCS Ransomwar: https://github.com/sophoslabs/loCs/blob/master/Ransomware-Ryuk.csv


Wallet trace transactions

	Address	Min Hop Depth (1-based)	Max Hop Depth (1-based)	Amount received	Currency symbol	Address type	Address annotatio
1	1KHD1zT1EhqKjytEepkFGSfEGEBwKGs6QN	10	10	1.780452	BTC	pubkeyhash	
2	1NDyJtNTjmwk5xPNhjgAMu4HDHigtobu1s	3	10	0.644469	втс	pubkeyhash	Binance,Exchange Wallet
3	1NWJd7BfJLJrEcfGiGfFqbhyaiusWwaZS1	1	4	0.544072	BTC	pubkeyhash	
4	36BruGMJkQRFjpPKVnYVpjzkaGx1wodioX	5	10	0.404585	BTC	scripthash	
5	3EAXp9ZL7TH8qDtG8KEysefDw5yA9dYhjE	9	10	0.396799	BTC	scripthash	
6	1DHs9JWt3YjGoHDqxqpbWwjuxD4EgoAFyY	9	10	0.291171	BTC	pubkeyhash	
7	3Joez1Ws1mBU1DTM5z4JwjWe2HyNn8ZVkJ	6	10	0.266479	BTC	scripthash	
8	3FePGNNaZcY51i9gtGFsKy9c9R2yTQAE2e	6	10	0.219587	BTC	scripthash	
9	37JnxyGBpy4dq32siHaD4oPpZsdVuY2eRC	8	10	0.155851	BTC	scripthash	
10	3EH5knUe7oy8fjHUpBGwekL6cBmi4UNxpG	10	10	0.151085	BTC	scripthash	

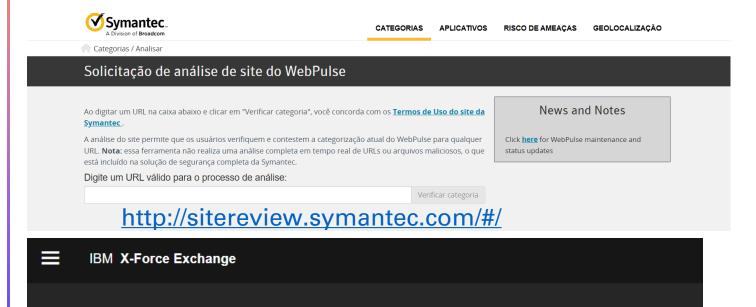
Visual tools are beneficial when investigating addresses and transactions. Using Coinpath® technology, anyone can build visual tools to understand the money flow. We have built one on our Bitquery explorer. You can visualize all the incoming and outgoing transactions from the hacker's address here.

Today, bitcoin blockchain confirms ~10 million transactions every month. All these transactions are visible on the bitcoin blockchain. However, the blockchain only store addresses, public keys, and not real-world identities. Therefore, Virtual asset service providers (VASP) are the primary way to link real-world identities with bitcoin transactions. For example, VASPs such as Exchanges, wallets, custodians provide cryptocurrency services to retail users and businesses. Most of these services implement KYC (Know-your-customer) solutions. Therefore, linking real-world identity with bitcoin addresses and transactions.

SIEM Splunk Investigation

https://www.splunk.com/en_us/blog/industries/detecting-ransomware-attacks-with-splunk.html

Capturing Windows Memory Using Winpmem


- Winpmem is a part of the Pmem Suite, a suite of memory acquisition tools for Windows, Linux, and Mac OS. You can download the latest release of winpmem from here: https://github.com/Velocidex/c-aff4/releases.
- Run Winpmem
- First, after I staged my malicious activity, I downloaded winpmem 3.3 RC3 onto the victim Windows machine. From there, I opened a command-line terminal and executed the program:
- C:\ winpmem_v3.3.rc3.exe --output memdump.raw --format raw --volume_
- The --output mem.raw option was used to name the output as memdump.raw. The --format raw and --volume_format raw options were used to output the memory in raw format (as opposed to something like aff4). After several minutes, the memory dump finished. I then transferred the raw memory file, memdump.raw, to my Kali machine.
- https://blog.cyberhacktics.com/memory-forensics-on-windows-10-with-volatility/
- https://github.com/Velocidex/c-aff4/releases

- Identifying Malicious Processes (python3 vol.py -f <filename> pslist)
- Below are the keys headers from 'pslist' that you will need to understand when you begin using the tool:
 - PID Process ID number
 - PPID Parent process ID number
 - ImageFileName Name of the running process
 - Offset Hexadecimal value representing the location in memory the process is running
 - CreateTime Time process started
 - ExitTime Time process ended

https://book.hacktricks.xyz/generic-methodologies-and-resources/basic-forensic-methodology/memory-dump-analysis/volatility-examples#installation
https://github.com/volatilityfoundation/volatility/wiki/

P	PID	PPID	ImageFi	leName	Offset(\	/)	Threads	Handles	Session	Id	Wow64	CreateTime	Exi	tTime		
4	ļ.	0	System	0xbe0a5	74ac040	153		N/A	False	2021-05-	20 07:28	8:25.000000	N/A			
*	312	4	smss.ex		0xbe0a58		2		N/A	False		-20 07:28:2		N/A		
*		312	smss.ex			98cd080			1	False		-20 07:28:3			5-20 07:28:4	0.000000
*		492	winlogo		0xbe0a59				1	False		-20 07:28:40		N/A		
*	**** 664		584	userini		0xbe0a5a		0		1	False	2021-05-20			2021-05-20	07:31:49.00000
*	**** 10	900	664	explore		0xbe0a5		112		1	False	2021-05-20			N/A	
*		5384	1900	MSASCuil		0xbe0a5		5			False	2021-05-20			N/A	
*	*****	5408	1900	chrome.		0xbe0a5		26		1	False	2021-05-26			N/A	
*	*****	6112	5408	chrome.		0xbe0a60	94ae200	10		1	False	2021-05-26			N/A	
*	*****	1028	5408	chrome.	exe	0xbe0a58	35fc800	6		1	False	2021-05-26	12:27:17	.000000	N/A	
*	*****	1832	5408	chrome.	exe	0xbe0a5	ba3080	12		1	False	2021-07-06	17:14:35	.000000	N/A	
*	*****	4112	5408	chrome.	exe	0xbe0a59	9b65080	13		1	False	2021-05-26	12:27:23	.000000	N/A	
*	*****	8116	5408	chrome.	exe	0xbe0a5	eb4800	8		1	False	2021-05-26	12:27:16	.000000	N/A	
*	*****	4856	5408	chrome.	exe	0xbe0a5	f63080	6		1	False	2021-05-26	12:27:19	.000000	N/A	
*	*****	6780	5408	chrome.	exe	0xbe0a5	Fb90300	22		1	False	2021-05-26	12:27:17	.000000	N/A	
*	*****	5428	1900	vmtools	l.exe	0xbe0a5a	ae07800			1	False	2021-05-20	07:32:06	.000000	N/A	
		6648	1900	Processi	Hacker.	0xbe0a5a	9f4800	18		1	False	2022-01-13	09:52:53	.000000	N/A	
*	**** 924	4	584	dwm.exe	0xbe0a59	ab84c0	11		1	False	2021-05-	-20 07:28:4	4.000000	N/A		
*	*** 516	492	csrss.e	xe	0xbe0a59	9900280	15		1	False	2021-05-	-20 07:28:3	9.000000	N/A		
*	2228	4	MemComp	ression	0xbe0a59	9446040	24		N/A	False	2021-05-	-20 07:28:4	6.000000	N/A		
4	28	412	csrss.e	xe	0xbe0a59	9215080	11		0	False	2021-05-	-20 07:28:3	6.000000	N/A		
5	600	412	wininit	.exe	0xbe0a59	98c2080	1		0	False	2021-05-	-20 07:28:3	9.000000	N/A		
*	652	500	lsass.e	xe	0xbe0a59	99cb080	8		0	False	2021-05-	-20 07:28:4	1.000000	N/A		
*	636	500	service	s.exe	0xbe0a59	99a2800			0	False	2021-05-	-20 07:28:4	1.000000	N/A		
*	* 4356		svchost	•exe	0xbe0a66				0	False	2021-05-	-26 12:20:3	5.000000	N/A		
*	* 2056		VGAuthS	ervice.	0xbe0a59	9cb1800	2		0	False	2021-05-	-20 07:28:4	5.000000	N/A		
*	* 648	636	sedsvc.	exe	0xbe0a59		7		0	False	2021-05-	-20 07:30:50	0.000000	N/A		
	* 1804		MsMpEng		0xbe0a59		13		0	False		-20 07:28:4		N/A		
*	0740		svchost		0xbe0a61		7		0	False		-13 09:53:19		N/A		
	* 2064			vice.ex	0xbe0a59				0	False		-20 07:28:4		N/A		
*	*** 2384		2064		/ice.ex			2		1		2021-05-20			N/A	
*	* 3600		sppsvc.			1135280			0	False		-13 09:53:29		N/A		
	* 1684		spoolsv		0xbe0a59		14		0	False		-20 07:28:4		N/A		
	* 1948		svchost		0xbe0a59		15		0	False		-20 07:28:4		N/A		
*	* 800	636	svchost		0xbe0a59		28		0	False		-20 07:28:4		N/A		
*	* 2724		dllhost		0xbe0a59		12		0	False		-20 07:28:4		N/A		
*	* 1452		svchost			3de7300			0	False		-20 07:28:4		N/A		
*	*** 6188	8	1452	audiodg	exe	0xbe0a5	ee59080	7		0	False	2021-07-06	17:16:18	.000000	N/A	hnoods
_													- 11+	TEALLY		

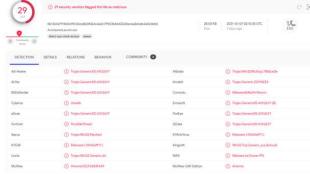
 Using 'pstree' is a great way to spot these malicious processes masquerading as legitimate Windows processes. (python3 vol.py -f <filename> pstree)

Research, Collaborate and Act on threat intelligence

Search by Application name, IP address, URL, Vulnerability, MD5, #Tag...

https://exchange.xforce.ibmcloud.com/

- To view the network connections associated with the RAM dump that is being analyzed use the following command: (python3 vol.py -f <filename> netscan)
 - Offset Location in memory
 - Proto Network protocol used by process
 - LocalAddr Source address of network connection
 - LocalPort Source port of network connection
 - ForeignAddr Destination address of network connection
 - ForeignPort Destination address of network connection
 - State State of network connection i.e. established, closed or listening
 - PID Process ID of associated process
 - Owner Account associated with process
 - Created Time network connection has initiated

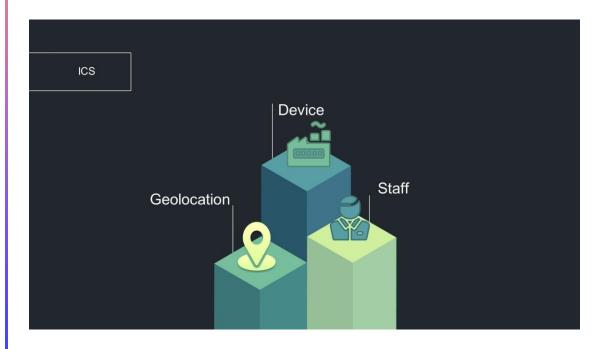

```
oot@MeilFoxDellxP5:-/volatility3# is procdump/
11e.exdb8983699990.exdb8988424db0.imageSectionObject.ntdll.dll.img
11e.exdb898599990.exdb8988424db0.imageSectionObject.ntdll.dll.img
11e.exdb8981430609.exdb8981432710.imageSectionObject.ntdll.dll.img
11e.exdb898121470.exdb8981242b0.imageSectionObject.rptd.dll.img
11e.exdb8981212460.exdb898122b0.exdb898122b0.imageSectionObject.sWictore.dll.img
11e.exdb898122b0.exdb898122b0.exdb898122b0.imageSectionObject.sWictore.dll.img
11e.exdb89812553d0.exdb89812563d0.exdb898125b10.imageSectionObject.swictore.dll.img
11e.exdb898128b0.exdb898122b0.exdb898122b0.imageSectionObject.wowd6xtor.dll.img
11e.exdb898128b0.exdb898122b10.imageSectionObject.wowd6xtor.dll.img
11e.exdb898128b126e0.exdb898122b10.imageSectionObject.wowd6xtor.dll.img
11e.exdb898128f10.exdb898128b10.exdb89812b10.imageSectionObject.wowd6xtor.dll.img
11e.exdb898128f10.exdb898128b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.exdb89812b10.
```


- Using the commands covered in this article should put you in a good position to start identifying potential malware running in memory on a device. Using 'netscan' I was able to identify a process named 'smsfwder.exe' that was making some malicious network connections to known C2 infrastructure. As part of my investigation using Volatility, I can extract this process for further analysis using a feature called 'procdump'.
- python3 vol.py -f <filename> -o <Directory to dump process> dumpfiles -pid <PID>

```
Volatility Foundation Volatility Framework 2.4
                                       Result
ImageBase
                                       Error: PEB at 0x0 is unavailable
----- System
0x0000000047c50000 smss.exe
                                      OK: executable.256.exe
                                      OK: executable.348.exe
0x000000004a3e0000 csrss.exe
0x0000000ff9c0000 wininit.exe
                                      OK: executable.400.exe
                                      OK: executable.408.exe
0x000000004a3e0000 csrss.exe
0x0000000ffa10000 winlogon.exe
                                      OK: executable.444.exe
[snip]
```

- To dump a process's executable, use the procdump command. Optionally, pass the --unsafe or -u flags to bypass certain sanity checks used when parsing the PE header. Some malware will intentionally forge size fields in the PE header so that memory dumping tools fail.
- python3 vol.py -f memory.dmp -profile=Win7SP1x64 procdump --dumpdir=OUTDIR/

Upload executable in virus total for analyze



Essential Critical Infrastructure Workers

- It's perfect moment to remind about MITRE ATTACK for ICS, it describes every step of attack on SCADA/ICS devices.
- https://collaborate.mitre.org/attackics /index.php/Initial Access
- https://www.offensiveosint.io/offensive-osint-s01e03-intelligence-gathering-on-critical-infrastructure-in-southeast-asia/

Geolocation IP

- A Geolocation OSINT Tool. Offers geolocation information gathering through social networking platforms.
- https://www.geocreepy.com/
- MaxMind is one of the leading providers of IP intelligence and online fraud detection tools.
 MaxMind provides IP intelligence through their GeoIP brand. Over 5,000 companies use GeoIP data to locate their internet visitors and show them relevant content and ads, enforce digital rights, and efficiently route internet traffic.
 Businesses can obtain additional insights into their customers' connection speeds, ISPs, and more using GeoIP data.
- https://www.maltego.com/transform -hub/maxmind/
- https://github.com/libresec/geo-ipmaltego

Dark Web Investigation

- Ahmia one of the oldest and most reliable .onion search engines, accessible both from the darknet and the clearnet.
- Onion Search Engine for searching onion sites. It comes with browser extensions for Chrome and Firefox. Various supported search options include images, videos, maps and pastes.
- Tor Taxi a launchpad website with links to multiple different onion domains. It has a handy colour-coded system for displaying websites that are currently down.
- <u>Darkweb Wiki</u> a somewhat chaotic and not frequently updated list of onion sites still, a valuable resource.
- Hunchly provides daily darkweb reports of what onion domains are up / down, in the form of a spreadsheet.
- <u>IACA Darkweb Tools</u> free resources provided by the International Anti Crime Academy.
- **Reddit communities** many subreddits dedicated to various aspects of the darkweb can be found, some of which are hit and miss. However, there are 3 that are consistently good and up to date:
- https://www.reddit.com/r/darknet/
- https://www.reddit.com/r/TOR/
- https://www.reddit.com/r/onions/
- **Discord** an up-and-coming alternative to Reddit for budding online communities and niche topics, Discord already dominates in some aspects. While I have not yet found a publicly available channel worthy of a recommendation, you can darknet-keyword search the <u>available Discord servers</u>.

Dark Web Investigation 2

- Ahmia as mentioned above, but specifically for Tor:
- http://juhanurmihxlp77nkq76byazcldy2hlmovfu2epvl5ankdibsot4csyd.onion
- Haystak the self appointed "darknet's largest search engine", with thousands of indexed onion domains including some historical ones.
- http://haystak5njsmn2hqkewecpaxetahtwhsbsa64jom2k22z5afxhnpxfid.onion/
- **Kilos** darknet market search engine allowing to search for vendors, listings, reviews, forums and forum posts. Useful for conducting broad keyword-based searches across multiple darkweb entities.
- http://mlyusr6htlxsyc7t2f4z53wdxh3win7q3qpxcrbam6jf3dmua7tnzuyd.onion/search
- TOR66 on top of the standard search, this enables the "fresh onions" and "random onions" matches; tread with caution, these can bring you to some truly random sites.
- http://tor66sewebgixwhcqfnp5inzp5x5uohhdy3kvtnyfxc2e5mxiuh34iid.onion/

Dark Web Investigation 3

- First and foremost, awesome list of tools by Apurv Singh Gautam is available here (but just a caveat, I have not used or tested all of those – yet).
- Onioff a Python tool for searching .onion URLs.
- Onion Ingestor for scraping and collecting darkweb intelligence works with Kibana dashboards.
- Onion Search tool for scraping .onion URLs from darkweb search engines.
- <u>The Devils Eye</u> for extracting .onion site links and descriptions without connecting to Tor.
- <u>TorBot</u> onion crawler, with many additional features still in active development.

Dark Web Investigation 4

- AuCyble
- DarkDotFail
- darktracer_int
- darkowlcyber
- ido_cohen2
- josephfcox
- RansomAlert
- Torproject

Emails Analyzer

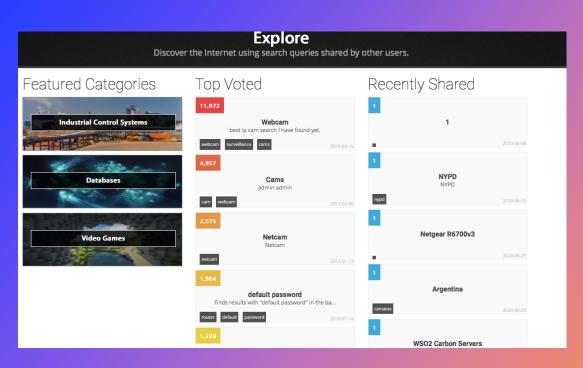
- Whenever an email is sent, information is transmitted with that email and the route the email takes across a network is recorded. This information is known as the 'Extended Header'.
- The extended header can be of great use to the researcher and when used correctly, provides an insight into the sender, their software and hardware and potential recipients.
- The extended header information potentially includes the senders IP address, email client, return address and the route the email has taken to reach its destination. This is useful in identifying and investigating 'spoof' or 'phishing' emails.

Emails Analyzer - Tools

Google Hacking;
 site:organisation.com intext:@organisation.com
 site:bbc.co.uk intext:@bbc.co.uk
 intext:"boris.johnson.mp@parliament.uk" filetype:pdf

Sherlock;

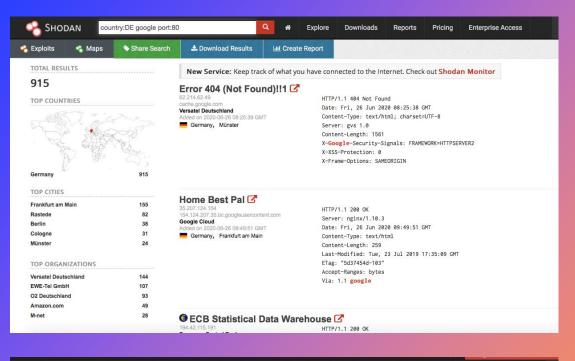
Emails Analyzer – Tools 2

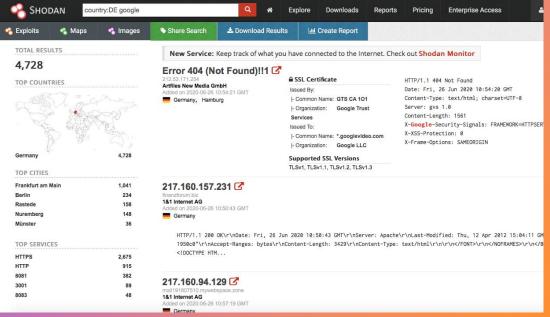

- Pastebin;
- Have I been pwned?
- Emailrep.io;
- Hunter.io;
- Whitepages;
- Twitter;
- Mxtoolbox;
- Spiderfoot;
- ProtOsint;
- https://github.com/bitsofinfo/comms-analyzer-toolbox

Threat Intelligence Platform

- MISP;
- OpenCTI;
- IBM X-Force Exchange;
- ManageEngine;
- Anomali ThreatStream;
- LogRhytm TLM;
- Mandiant Threat Suite;
- Recorded Future;
- Virus Total Intelligence;
- Shodan;

Shodan Malware Hunter


- https://malware-hunter.shodan.io/
- Malware Hunter is a specialized Shodan crawler that explores the Internet looking for command & control (C2s) servers for botnets. It does this by pretending to be an infected client that's reporting back to a C2. Since we don't know where the C2s are located the crawler effectively reports back to every IP on the Internet as if the target IP is a C2. If the crawler gets a positive response from the IP then we know that it's a C2.



Shodan OSINT

 Shodan is a search engine that lets the user find specific types of computers (webcams, routers, servers, etc.) connected to the internet using a variety of filters. Some have also described it as a search engine of service banners, which are metadata that the server sends back to the client. This can be information about the server software, what options the service supports, a welcome message or anything else that the client can find out before interacting with the server.

Shodan OSINT 2

- To select a specific country type: country: <Country Symbol>
- To search for a specifit operating system(OS) type: os: <OS_HERE>

https://www.blueteamsacademy.com/shodan/

Using Maltego to Identify and Investigate on C2 Malware in Your Network

- Maltego has a number of data integrations especially helpful for cybersecurity professionals and threat hunters seeking to identify hidden threats in the organization's network and trace the origin of said threats. In this tutorial, we will demonstrate how you can use Transforms from ATT&CK - MISP, VirusTotal Public API, and ZETAlytics Massive Passive to acquire threat intel, find hashes related to certain domains and IPs, and uncover threat actor network.
- Step 1: Identify Whether Hashes are False Alerts
- Step 2: Find Out Relevant IP Addresses using MISP Transforms
- Step 3: Investigate on Suspicious IP Addresses using ZETAlytics Transforms
- Step 4: Identify How the Malware Entered the Company Network
- Step 5: Deep-Dive into Malicious Domains to Find the Source of Malware Entry

https://www.maltego.com/blog/identify-c2-malware-and-phishing-threats-with-maltego/

Ransomware Playbook

https://github.com/counteractive/incident-response-plantemplate/blob/master/playbooks/playbook-ransomware.md

References

- https://www.trellix.com/en-us/security-awareness/ransomware/what-is-ransomware.html
- https://us.norton.com/internetsecurity-malware-types-of-ransomware.html
- https://h11dfs.com/9-step-ransomware-incident-response-plan/
- https://dxc.com/us/en/insights/perspectives/paper/ransomwaresurvival-guide---recover-from-an-attack-
- https://www.sentinelone.com/cybersecurity-101/open-sourceintelligence-osint/
- https://www.researchgate.net/figure/Model-for-the-money-laundering-of-ransomware-and-cryptoware-profits-via-bitcoins_fig2_343009039
- https://bitquery.io/blog/trace-bitcoin-transaction-and-address
- https://www.secjuice.com/osint-daily-dose-of-malware/