

www.kaspersky.com

Malicious Code
Detection
Technologies

By Alisa Shevchenko
Virus Analyst, Kaspersky Lab

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. i

Preface

Just like every other type of technology, malicious code has grown
increasingly sophisticated and complex. The antivirus industry must try to stay
one step ahead, especially since it is often easier to produce malicious code
than it is to detect it. This white paper provides an overview of the evolving
combat tactics used in the antivirus battle, giving both simplified explanations
of technological approaches as well as a broad chronological perspective.

Many of the technologies and principles discussed in the paper are still current
today, not only in the antivirus world, but also in the wider context of
computer security systems. The early malicious code detection technology was
based on signatures – segments of code that act as unique identifiers for
individual malicious programs. Using signatures is a relatively primitive and
repetitive technology which requires little explanation and is widely
understood.

As viruses have evolved, the defense technologies also had to evolve. Now
they involve the use of more advanced approaches, such as heuristics and
behavior analyzers, that we collectively refer to as “nonsignature” detection
methods. This paper focuses primarily on these nonsignature technologies. It
will define terms such as “heuristic,” “proactive detection,” “behavioral
detection,” and “HIPS”; it will explain how they are related; and identify some
of the advantages and disadvantages of each. Some of the technologies
currently used by the antivirus industry – such as unpacking packed programs
and streaming signature detection – were intentionally not included in this
paper to allow for a more in-depth discussion of nonsignature detection
methods.

This paper was developed for readers who have a very basic understanding of
antivirus technologies, but who are not experts in the field. Its aim is to
systematically and objectively examine issues surrounding the use of malicious
programs and the defense techniques that are essential for protection from
them.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. ii

Table of Contents

Preface .. i

Malicious Program Defense Systems – A Model .. 1

The Technical Component ... 2

Scanning Files ... 3

Emulation ... 3

Virtualization – The Sandbox .. 4

Monitoring System Events ... 5

Scanning for System Anomalies .. 5

The Analytical Component .. 6

Simple Comparison .. 6

Complex Comparison .. 6

Expert Systems ... 7

Real Technologies at Work ... 7

Signature Detection, Emulators, and Sandboxes .. 9

Heuristics .. 9

Behavioral Detection, Proactive Detection, and HIPS ... 10

The Pros and Cons of Different Detection Methods .. 10

Practical Facets of the Technical Component .. 10

Practical Facets of the Analytical Component ... 11

How to Choose Nonsignature Protection .. 13

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 1

Malicious Program Defense Systems – A Model

Let‘s begin by defining a model for discussing malicious program detection
technologies that will help simplify and clarify some of the explanations. This
model operates on the basic premise that any defense technology can be
separated into two components – a technical component and an analytical
component. In reality, these components may not be clearly separable at the
module or algorithm level within every malicious program. However, in terms
of function, their differences are significant and important.

The technical component is a collection of program functions and algorithms
that selects the data that will be analyzed by the analytical component. This
data may be anything – from text strings within a file, to a specific action the
program performs, to a full sequence of actions that the program performs,
and more.

The analytical component serves as the decision-making system. It assesses
the data provided by the technical component using one or more algorithms
and then issues a verdict about the data. The security program will then use
the verdict to take action on the malicious program according to the security
policy that has been set in the security program. For example, a few of the
possible actions that could occur based upon the verdict might be –

 Notifying the user

 Requesting further instructions from the user

 Placing a file in quarantine

 Blocking unauthorized program actions

Here’s how the model applies to one of the simplest security program
techniques – signature detection. The technical component collects
information about the file system, files, and file contents; it then passes that
information on to the analytical component. The analytical component
compares byte sequences in the data provided against byte sequences known
to be suspicious or malicious, and issues a verdict accordingly.

Most of today’s security programs are exceedingly complex, but it helps to
“break them apart” conceptually into these two types of components to
understand how they work. Separating the components also helps us explain
how components relate to one another and the pluses and minuses of each.
For example, we’ll explore later in this paper how the heuristics method is
only one type of analytical component, rather than an independent technology
itself. Similarly, HIPS (Host Intrusion Prevention System) is just a type of
technical component (a way to collect data) and not an independent
technology itself. This lets it become more apparent that heuristics and HIPS
are neither contradictory nor mutually exclusive technologies, because their

Accept this premise:
Any defense
technology can be
separated into two
components – a
technical component
and an analytical
component.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 2

basic functions within a security program are fundamentally different. The
beauty of the model used in this white paper is that it allows us to discuss
heuristics without specifying exactly what data is being analyzed, and we can
talk about a HIPS system and the data it collects without knowing anything
about the principles that cause certain verdicts to be issued.

Figure 1, below, identifies many of the key concepts that will be discussed in
this white paper. The horizontal axis positions technical components along a
continuum and shows how they overlap. The vertical axis helps to suggest the
level of sophistication of analytical components – from simple comparisons to
detailed analysis. You’ll understand and be able to use Figure 1 more easily
once you better understand some of the technical components.

The Technical Component

As explained earlier, the technical component of a malicious program
detection system is the data collection system that provides the data that
needs to be analyzed. Before talking about data collection, though, it is
important to understand that there are different and important “views” of a
malicious program. It can be evaluated or viewed as a long string of data, as a
series of instructions, or by the effect it has on the operating system. These
different views help to explain why there are so many different approaches
and possibilities for data collection, even before any analysis begins.

These are some of the most common methods used for collecting the data
that will be used to identify malicious programs –

 Treat the file as a mass of bytes.

Figure 1 – A Model for Assessing Methods of Detecting Malicious Code

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 3

 Emulate the program code. (Emulation means placing the program in a
different environment and “tricking” it into behaving as if it’s in its
intended environment so that the results can be preserved.)

 Launch the program in a sandbox.. (Provide a safe environment and
launch the program to determine if it “plays nicely with others.”)

 Monitor system events.

 Scan the system for anomalies.

These methods are listed in terms of increased levels of abstraction. It is
simple and straightforward to think of a malicious program as a collection of
bytes, a bit more abstract to think of it as a sequence of actions (behaviors),
and still more abstract to think of it as a collection of effects that it has within
an operating system.

To combat malicious programs today, greater and greater levels of abstraction
are required. For that reason, our list of methods also provides a simple
chronology of the emergence of malicious program detection techniques. It
should be noted that the methods listed above are not so much completely
separate technical approaches as they are points on a continuum of
technology that can be used to collect data for analysis in detecting malicious
programs. Technical approaches to malicious code detection gradually evolve
and intersect with one another. This will become more apparent as we
examine each of these methods in greater detail.

Scanning Files

The very first antivirus programs analyzed file code as simple byte sequences.
This “analysis” was a simple comparison of byte sequences in the file against
known signatures (specific byte sequences that are representative of each
known virus). However, we are currently focusing not on the analysis, but on
the technical component which provides the data. Scanning merely refers to
extracting data from files, structuring that mass of bytes in a specific way, and
then transmitting those structured bytes to the analytical component.

While this data collection method is relatively old and does not take into
account any of the behavior of the program, it is still used by all modern
antivirus software. It is no longer the sole, or even the main, method used
today; it is used as a complement to other technologies.

Emulation

The emulation approach is a step between treating a program as a collection
of bytes (scanning) and processing a program as a particular sequence of
actions.

Technical approaches
to malicious code
detection gradually
evolve and intersect
with one another.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 4

An emulator breaks down the program's byte code into commands, and then
launches each command in a virtual environment, which emulates the
computer environment. The use of this virtual environment allows security
solutions to observe program behavior without posing a threat to the real
operating system or user. Think of emulation as a nanny putting a child into a
big plastic bubble to isolate it from the real world, and then observing to
make sure the child (the virus) doesn't do anything that might cause harm in
the real world.

While an emulator still works with a file, its primary focus is on events rather
than inanimate bytes of data per se. Emulators are used in many, and possibly
all, major antivirus products. They may be used as a basic, core-level
protection engine, or as “insurance” for a more abstract and sophisticated
engine, such as a sandbox.

Virtualization – The Sandbox

Virtualization is a logical extension of emulation, and a sandbox is one form
of virtualization. To continue the nanny metaphor, the plastic bubble is gone,
and the sandbox is part of the real world. However, before the child is
allowed to play in the sandbox, many rules have been established and will be
enforced by the nanny with respect to the way the child is permitted to behave
in the sandbox. In the context of information security, the operating system is
the world, and the malicious program is the rambunctious child, and the rules
are the restrictions on interactions with the operating system. One such rule
might be a ban on modifying the system directory. If a program tries to
modify the system directory, it may be fed a virtual copy of the system
directory so that it can continue to operate without impacting the operating
system.

The line between emulation and virtualization may be a fine one, but it is a
clear one. Emulation occurs in a fully contained, controlled, and separate
environment – the plastic bubble. Virtualization occurs in the real world (the
operating system), but under careful rules and guidance. The child plays in the
real world, but may be handed a plastic cup (a virtual copy of a system
resource), rather than a glass cup (a real, breakable system resource) when he
requests refreshment.

Sandboxing, like emulation, isn’t used extensively in antivirus products, mainly
because it requires a large amount of resources. It's easy to tell when an
antivirus program uses a sandbox, because there will always be a time delay
between when the program is launched and when it actually starts to run. (Or,
if a malicious program is detected, there will be a delay between the program's
launch and the virus detection notification.) At the moment, sandbox engines
are used in only a handful of antivirus products because of the performance

While an emulator still
works with a file, its
primary focus is on
events rather than
inanimate bytes of
data per se.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 5

issues. However, a great deal of research is underway on hardware
virtualization, which could remove that performance issue in the near future.

Monitoring System Events

While an emulator or sandbox observes each program separately, monitoring
system events is the next level of abstraction. It involves the simultaneous
observation of all programs to understand their impact on the operating
system. Data is collected by intercepting operating system functions. By
intercepting calls to various system functions, information can be obtained
about exactly which program is doing something to the system. Over time, the
monitor collects statistics on these actions and transfers them to the analytical
component for analysis.

This technology approach is currently the most rapidly evolving one.
Monitoring of system events is used as the technology component in several
major antivirus products and as the main component in individual system
monitoring utilities such as Prevx, ThreatFire (formerly CyberHawk) and a
number of others. However, given that it is possible to defeat any form of
protection, this detection method carries special risks because the programs
are always being launched in a real environment, allowing damage to
potentially occur before the detection does. To some extent, this might be
likened to sending several children to play in the sandbox without any rules or
training, while the nanny waits on the park bench to observe problems as they
arise – a limited overhead approach, but a high-risk one.

Scanning for System Anomalies

Included here as the final, logical extension of other technology approaches,
scanning for system anomalies is the most abstract method used to collect
data about a potentially infected system. This method relies on three basic
principles –

 An operating system, together with the programs running within that
system, is an integrated system.

 The operating system has an intrinsic “system status.”

 If malicious code is run in the environment, then the system will have an
“unhealthy" status. This differs from a system with a "healthy" status, in
which there is no malicious code.

These principles are used to help determine a system's status, and the
approach requires analysis that compares the status to a standard and/or
investigates all system parameters as a single, composite entity.

Monitoring system
events might be
likened to sending
several children to
play in the sandbox
without any rules or
training, while the
nanny waits on the
park bench.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 6

To detect malicious code effectively using the system anomalies method, a
relatively complex analytical system, such as an expert system or neural
network, is required. The obvious challenges imposed by this approach
include defining what a “healthy” status is, determining which discrete
parameters need to be tracked, and deciding how they should be analyzed. In
keeping with our metaphor, this might be likened to a mother sending her
children to the sandbox to play, without the protection of a nanny, but instead
relying on her own intuition about a problem arising. A mother's intuition can
be likened to the neural network or expert system – difficult to explain exactly
how it works, but also proven to be quite effective at times.

Due to its complexity, the system anomalies technology is still classified as an
emerging technology. For the most part, it has emerged in the form of anti-
rootkit utilities. (Certain Trojans, for example, are known for going
undetected, because they gain “root” access to the computer. That means that
they run at the most basic level of the machine and have unusual powers, such
as the ability to hide files.)

The Analytical Component

Now that we've explored the technical component, we turn to the analytical
component. As Figure 1 indicates, the degree of sophistication of decision-
making algorithms varies as you traverse the vertical axis. Generally speaking,
decision-making algorithms can be divided into three different categories,
although these analytical categories merely represent three different points on
a continuum of sophistication.

Simple Comparison

Technologies that fall into this category issue a verdict based on the
comparison of a single object to an available sample. The result of the
comparison is binary – a clear “yes” or “no.” An example is the identification
of malicious code by locating a specific byte sequence. Another higher level
example is identifying a suspicious program through its use of a single action
that it takes, such as creating a record in a critical section of the system
registry or in a folder that would cause it to automatically run.

Complex Comparison

In a complex comparison, a verdict is rendered based on the comparison of
one or multiple objects with corresponding samples. The templates for these
comparisons can be flexible and the results will be probability based. An
example of this is identifying malicious code by using several byte signatures,
each of which is non-rigid; that is, the individual bytes are not determined.

Due to its complexity,
the system anomalies
technology is still
classified as an
emerging technology.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 7

This analytical approach could be likened to the identifying a criminal using
imprecise but fairly detailed witness descriptions (female, dark hair, light eyes,
a mole on the left side of her face, slight limp). The probability of it actually
being the criminal rises as more factors are positively matched during the
analysis. Another higher level example is identifying malicious programs based
on the calls it makes to other programs (not necessarily in sequential order), as
well as the parameters that it passes to those other programs when the calls
are made. To further the criminal analogy, this would be similar to scouring a
suspect's phone records for calls to certain people, and then listening to a
wiretap of how each conversation began to determine the likelihood that the
suspect committed a crime.

Expert Systems

Expert systems issue a verdict only after a sophisticated analysis of data. An
expert system may include elements of artificial intelligence. One example of
an expert system is identifying malicious code not by a strict set of parameters,
but by the results of a multifaceted assessment of all of its parameters at once,
taking into account the “potentially malicious” weighting of each parameter
and calculating the overall result.

Using our criminal suspect identification analogy, an expert system might be
able to identify a criminal taking a composite view of the various types of
evidence surrounding a case. Each type of evidence considered alone may
suggest different suspects committed the crime. Evidence might include
conflicting eye-witness reports, each suspect's last known location prior to the
crime, each suspect's prior criminal behavior, whether the victim knew the
suspect from school or some other venue, and somewhat confusing polygraph
results. In this case, an expert system (one that assigned probabilities to all the
different evidence types and considered all the evidence as a unified set of
data) might issue a verdict that confirmed with relatively high certainty that
one suspect was guilty, while also being able to eliminate the “false positives”
represented by the other suspects.

Real Technologies at Work

Now that we've fully explored the simplified model for discussing malicious
code detection technologies, we will look at some of the actual technologies
available.

Typically, security software producers market the new technologies they
provide under names intended to build confidence, but which offer no
indication of the actual technologies being applied. Common examples
include Proactive Protection in Kaspersky Anti-Virus, TruPrevent from
Panda, and DeepGuard from F-Secure. One advantage of this approach is
that the technologies aren't automatically pigeon-holed in narrow technical

One example of an
expert system is
identifying malicious
code not by a strict set
of parameters, but by
the results of a
multifaceted
assessment of all of its
parameters at once.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 8

categories. Nevertheless, product descriptions that are aimed at purchasing
decision-makers are typically laden with general and commonly recognized
terms, such as “heuristic,” “emulation,” “sandbox,” and “behavior blocker.”

This is where the tangled web of terminology begins. These terms, which are
ones that some deem to be more user-friendly, are used liberally in marketing
literature and reviews, do not all have precise meanings. Ideally, there would
be one clear definition for each term, so that one person would not interpret a
term in a completely different way from someone else. Furthermore, the
definitions used by those who have authored the descriptions of the user-
friendly terms used to describe malicious code detection are often very
different from the definitions used by the experts in the antivirus industry.
This helps to explain why the descriptions of technologies on developer
websites may be heavily laden with technical terminology while still missing
the mark in providing information about how the technology works that
would facilitate an unbiased assessment of the technology being sold.

For example, some antivirus software manufacturers say their products are
equipped with a host intrusion protection system (HIPS), proactive
technology, or nonsignature technology. A user’s understanding of HIPS,
based on a user-friendly definition that describes HIPS as “a monitor that
analyzes system events for malicious code” would be very imprecise, and the
description is one that could mean almost anything in the security world, such
as an emulator engine that is equipped with a heuristic analysis system.
“Heuristic” is another term which, when used alone, provides inadequate
detail to understand what type of technology is actually being used.

This is not to say that developers are trying to deceive prospective customers.
Remember, even the technical and analytical approaches discussed earlier in
this paper are not crisp categories, but rather points on a continuum that help
to describe variations in the approach. So it's easy to see how those who write
about technologies, both inside and outside the companies, can get the
terminology confused, especially when they try to adapt the descriptions to
use the “user-friendly” terminology. For this reason, those who make
purchase decisions for security software solutions must be wary of some of
the descriptions they read in the literature.

Figure 1 positions the more commonly used terms against the terms we used
in the simplified, two-dimensional model we explained in the earlier sections
of this paper. Their placement with respect to the axes is also indicative of
their relative level of sophistication. We will now explore each of the common
terms, whether precise or imprecise, in the context of the earlier definitions of
components that exist in our model.

The definitions used
by those who have
authored the
descriptions of user-
friendly terms used to
describe malicious
code detection are
often very different
from the definitions
used by the experts in
the antivirus industry.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 9

Signature Detection, Emulators, and Sandboxes

Fortunately, there are a few commonly used terms that cause little or no
confusion. We'll begin with those. First of all, there are few variations in the
meaning of the term signature detection. From a technical perspective, it means
working with file byte code, and from an analytical point of view, it is a
primitive means of processing data, usually by using simple comparison. As
mentioned earlier, while it is old technology, it is also highly reliable. That’s
why antivirus software companies continue to incur the considerable costs
associated with keeping signature databases up to date.

There aren't many possible interpretations of the terms emulator or sandbox,
either. When those terms are used, people are relatively consistent with the
definitions of those technical approaches as described in an earlier section of
this paper. The analytical component used in conjunction with this type of
technology can be an algorithm of any complexity, ranging from simple
comparison to expert systems.

Heuristics

The term heuristics is less transparent. According to Ozhegova-Shvedovaya, the
definitive Russian dictionary, “heuristics is a combination of research methods
capable of detecting what was previously unknown.” Heuristics are first and
foremost a type of analytical component in protection software, but not a
clearly defined technology. Outside a specific context, in terms of problem-
solving, it closely resembles an “unclear” method used to resolve an unclear
task.

When antivirus technologies, as well as the term heuristic itself, first began to
emerge, the term referred to a distinct technology – one that would identify a
virus by using several flexibly assigned byte templates. That is, it was a system

While signature
detection is old
technology, it is also
highly reliable. That's
why antivirus software
companies continue to
incur the considerable
costs associated with
keeping signature
databases up to date.

Figure 1 – A Model for Assessing Methods of Detecting Malicious Code

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 10

with a technical component (working with files) and an analytical component
(using complex comparison). Today the term heuristic is usually used in a
much broader sense to refer to technology being used to search for unknown
malicious programs. In other words, when speaking about heuristic detection,
developers are usually referring to a protection system with an analytical
component that uses a fuzzy search to find a solution. This is the equivalent
of saying that the analytical component involved uses either complex analysis
or an expert system. And the technical component (the part that collects the
data for this analysis) can range from simply working with files up to working
with events or the status of the operating system.

Behavioral Detection, Proactive Detection, and HIPS

Behavioral detection and proactive detection are terms that are far from being clearly
defined. They can refer to a wide variety of technologies, ranging from
heuristics to system event monitoring.

The term HIPS is also frequently used in descriptions of antivirus
technologies, but not always appropriately. In spite of the fact that the
acronym stands for Host Intrusion Prevention System, those words do not
reflect the essential nature of the technology in terms of antivirus protection.
In one context, the technology can be very clearly defined as a type of
protection with a technical component based on the monitoring of system
events. The analytical component of the protection software may be of any
type, ranging from coinciding separate suspicious events to complex analysis
of a sequence of program actions.

One must note, however, that in practice, the term HIPS is often used to
describe a wide variety of things. It has been used to refer to primitive
protection for a few registry keys, to a system that provides notification of
attempts to access certain directories, to a more complex system that analyzes
program behavior, and even to another type of technology that relies on
system event monitoring.

The Pros and Cons of Different Detection Methods

If we use the model introduced in this paper to examine malicious code
detection technologies as a group rather than individually, an interesting
picture of the tradeoffs that have to be made in both developing and selecting
a malicious code detection system begins to emerge.

Practical Facets of the Technical Component

The technical component controls three important facets of the malicious
code defense system that affect its desirability for a particular user or
environment –

One must note,
however, that in
practice, the term HIPS
is often used to
describe a wide variety
of things, ranging from
protection of a few
registry keys…to
technology that relies
on system event
monitoring.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 11

 Resource consumption is the share of processor time and RAM required
either continually or periodically to ensure protection. If the technical
approach being used requires a lot of resources, it may slow down system
performance. Emulators run slowly; regardless of implementation, each
emulated instruction will create several instructions in the artificial
(plastic bubble) environment. The same is true for virtualization. System
event monitors also slow system performance, but the extent to which
they do so depends on the implementation. Similarly, with file detection
or system anomaly detection, the load on the system is entirely
dependent on the implementation.

 Security is the level of risk that the operating system and user data will
be subjected to during the process of identifying malicious code. This risk
is always present when malicious code is run in an operating system. The
architecture of system event monitors means that malicious code has to
be run before it can be detected, whereas emulators and file scanners
may detect malicious code before it is executed in the real system
environment.

 Protection is the extent to which a technology may be vulnerable, or
how easy it may be for a malicious program to avoid detection. Packing
files, polymorphism, and rootkit technologies are a few approaches that
virus writers use to combat file detection. It's a little tougher to
circumvent emulators, but it is still possible. Because emulators may react
to certain commands a little differently from the actual processor, virus
writers can sometimes detect and circumvent an emulator. On the other
hand, it's very difficult for malicious programs to hide from a system
event monitor, because it's nearly impossible to mask a behavior.

In summary, the implications of these three facets of the technical component
are: 1) the less abstract the form of protection, the more secure it will be, 2)
the less abstract the form of protection, the easier it will be for malicious
programs to circumvent it, and 3) resource consumption must always be
factored into the equation.

Practical Facets of the Analytical Component

The analytical component of a technology also has three important facets that
must be taken into consideration in evaluating a solution –

 Proactivity - refers to a technology’s ability to detect new, not-
previously-identified malicious programs. For example, the simplest type
of analysis (simple comparison) represents the least proactive
technologies. That's why signature detection is only an approach to
detecting known malicious programs. The more complex an analytical

It's very difficult for
malicious programs to
hide from a system
event monitor,
because it's nearly
impossible to mask a
behavior.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 12

system is, the more proactive it is. Proactivity is directly linked to how
frequently updates need to occur. For example, signature databases have
to be updated frequently; more complex heuristic systems remain
effective for longer periods of time; and expert analytical systems can
function successfully for months without an update.

 The false positive rate is also directly related to the complexity of a
technology’s analytical component. If malicious code is detected using a
precisely defined signature or sequence of actions, as long as the
signature (be it byte, behavioral, or other) is sufficiently long,
identification will be absolute. The signature will only detect a specific
malicious program, and not others. The more programs an analytical
component attempts to identify, the less definitive it becomes. The less
definitive it becomes, the more likely it is to indict a non-malicious
program – an occurrence which the industry refers to as a false positive.

 The level of user involvement is the extent to which a user needs to
participate in defining protection policies – creating rules, exceptions,
blacklists, and white lists. It also reflects the extent to which the user
participates in the process of issuing verdicts by confirming or rejecting
the suspicions of the analytical system. The level of user involvement
depends on the implementation. However, as a general rule, the more
complex the analysis, the more false positives there will be to review and
correct. Correcting false positives always requires user input.

Summarizing the impact of these three facets of the analytical component, we
can conclude that 1) the more complex the analytical system, the more
powerful the antivirus protection is and 2) increased complexity means an
increased number of false positives, which in turn places a dependency on
user involvement.

Hopefully, understanding this model and the facets of each component makes
it easier to evaluate the pros and cons of any technology. Consider, for
example, an emulator with a complex analytical component. This form of
protection is very secure because it does not require the file to be launched in
the real environment. However, a certain percentage of malicious programs
will go undetected, either due to anti-emulator tactics used by the malicious
code or due to deficiencies in the emulator itself. However, this type of
protection has great potential; if carefully implemented it will detect a high
percentage of unknown malicious programs, albeit at the expense of system
resources.

As a general rule, the
more complex the
analysis, the more false
positives there will be
to review and correct.
Correcting false
positives always
requires user input.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 13

How to Choose Nonsignature Protection

Currently, most security solutions combine several different technologies.
Classic antivirus programs often use signature detection in combination with
some form of system event monitoring, an emulator, and a sandbox. So what
should buyers look for to find protection that best suits their specific needs?

First of all, let’s dispel the myth that there is a universal solution or a “best”
solution. Each technology has advantages and drawbacks. For example,
monitoring system events continually consumes a great deal of processor
time, even though it’s one of the toughest approaches for malicious program
writers to crack. Malicious code can circumvent an emulator by using certain
commands in its code, but if those commands are used, the malicious code
will be detected preemptively, leaving the system untouched. Simple decision-
making rules require a lot of user input (sometimes, too many burdensome
questions), while more complex decision-making rules require little user input
but can yield many false positives.

Selecting the appropriate technologies is a bit like finding the golden mean.
That is, the best protection solution must take into account the specific but
variable demands and conditions that the business environment and/or
individual users place on the system. For example, if end-users are responsible
for installing patches on their own systems (and probably won't find the time)
and are allowed to run whatever browser plug-ins and scripts that they wish,
they are highly vulnerable. The right tradeoff to make for that user might be a
solution that provides a sandbox-type system with a quality analytical
component. This type of system offers maximum security, but will also
consume enough RAM and processor time that it could slow the operating
system beyond acceptable levels on certain machines and for users for whom
fast response is critical.

On the other hand, expert users who want to control all critical system events
and protect themselves from unknown malicious programs will do well with a
real-time system monitor. This kind of system works steadily, but with
relatively low overhead on the operating system. However, it does require user
input to create rules and address exceptions.

Finally, a user who either has limited resources or does not want the system
overhead associated with constant monitoring, and who prefers not to be
bothered with creating rules, may be best served by simple heuristics.

Ultimately, it’s not a single component that ensures quality detection of
unknown malicious programs, but the security solution as a whole. A
sophisticated analytical component can help compensate for using simpler
technical components.

The best protection
solution must take into
account the specific
but variable demands
and conditions that
the business
environment and/or
individual users place
on the system.

Malicious Code Detection Technologies

© 2008, Kaspersky Lab, Inc. All rights reserved. 14

In choosing a new product, the best advice is to understand user
characteristics, and then rely on your own personal evaluation and
independent test results.

© 2008, Kaspersky Lab, Inc. All rights reserved.

Kaspersky Lab, Inc. • 500 Unicorn Park • Woburn, MA 01801
phone: (781) 503-1800 • fax: (781) 503-1818
www.kaspersky.com

Kaspersky Lab delivers the world’s most immediate protection against IT
security threats, including viruses, spyware, crimeware, hackers, phishing
and spam. Kaspersky Lab products provide superior detection rates and the
industry’s fastest outbreak response time for large enterprises, SMBs, home
users and the mobile computing environment. Kaspersky® technology is
also used worldwide inside the products and services of more than 100 of
the industry’s leading IT security solution providers.

For the latest on antivirus, anti-spyware, anti-spam and other IT security
issues and trends, visit www.viruslist.com.

Learn more at www.kaspersky.com

