Virt-ICE: Next-generation Debugger for Malware Analysis

Nguyen Anh Quynh, Kuniyasu Suzaki
National Institute of Advanced Industrial Science and Technology, Japan
Email: (nguyen.anhquynh,k.suzaki)@aist.go.jp

Abstract

Dynamic malware analysis is an important method to an-
alyze malware. The most important tool for dynamic
malware analysis is debugger. However, because debug-
gers are originally built by software developers to de-
bug legitimate software, they have some significant flaws
against malware. First of all, malware can easily detect
the presence of debugger with various tricks. Another
fundamental problem is that because malware run in the
same security domain with debugger, they can poten-
tially tamper with the debugger, and prevent it from func-
tioning correctly. Unfortunately, all of the above draw-
backs are unfixable in the current architecture.

This research presents a new debugger named Virt-
ICE, which is designed to address the problems of cur-
rent malware debuggers. Using virtualization technol-
ogy, Virt-ICE is invisible to malware, thus renders most
available anti-debugging techniques useless. Thanks to
the isolation provided by virtual machine, Virt-ICE is out
of the reach of malware, and cannot be tampered with.
Another advantage of Virt-ICE is that unlike many other
popular debuggers, it can deal with ring-0 code, there-
fore it has no issue handling kernel rootkits. Virt-ICE
also offers a novel event-based method to intercept mal-
ware execution, which can help to improve the debug-
ging efficiency. Finally, Virt-ICE includes some built-in
automatic malware analysis facilities to give the analysts
more information on malware, so they can reduce the
time on the job by focusing their debugging efforts on
important points.

1 Introduction

1.1 Malware Analysis Methods

Understanding what the malware is doing internally is
always the headache for security professions. Two main
methods are proposed, and each offer unique features.

e Static analysis: This method disassembles the mal-
ware binary to analyze it, without running it. An
advantage of static analysis is that it can inspect all
the execution paths of the malware. However, it has
some major problems. One is that most malware are
packed and using various obfuscated tricks to make
the binary code very hard to understand. As a result,
the analyst must unpack and de obfuscate the mal-
ware before actually diving into analyzing it. This
procedure usually takes a lot of time, and requires
advanced skills. Besides, some malware activities
are only visible at run-time, for example by inter-
acting with environment. Consequently, static anal-
ysis cannot give the analyst the full understanding
on the malware.

e Dynamic analysis: This method observes and an-
alyzes malware by executing them. Dynamic anal-
ysis can choose the right time to perform analysis,
for example after the malware already unpacked it-
self. As a result, dynamic analysis suffers less on
packing problem. This method can also defeats
code obfuscation or polymorphic code by monitor-
ing malware behaviour. However, a major problem
of this approach is that we can only analyse the ex-
ecution path exposed when the malware run, thus
might miss other paths.

In general, dynamic analysis is still a favourite
method to inspect malware, because it is much
faster and requires less effort to understand malware
internals.

While each of these two methods have their benefits
and drawbacks, they complement each other and should
be combined to simplify the job of analyst. This re-
search tries to address the outstanding problems of dy-
namic malware analysis tools, focusing on debuggers.

1.2 Problems of Debuggers against Mal-
ware

While dynamic malware analysis can rely on monitoring
malware behaviour, a lot of details on malware internals
can only be revealed thanks to a debugger. In princi-
ple, this approach runs malware under the watch of the
debugger, and the analyst can put breakpoints or watch-
points at important parts inside the malware to closely
inspect it at run-time.

Unfortunately, debuggers suffer many inherent prob-
lems when dealing with malware. The main reason of all
of these issues is that debuggers are originally designed
to debug legitimate software, but not against the malware
trying to evade them, or even tamper with them. Some
major flaws of debuggers against malware are summa-
rized as follows.

e Debugger detection: To debug the malware, de-
bugger must put breakpoints and watchpoints into
malware process. Windows provides some subsys-
tems at several layers to support debugging, and
also provides some official APIs for debugger to
handle debugged events.

Unfortunately, debugging facilities are not origi-
nally designed to be invisible against malware, so
it is trivial for the malware to self-detect that it is
being debugged. Specifically, malware can use the
below methods to detect debuggers ([11], [12]).

1. Detect debugger’s usage: Usually debug-
ger uses the service provided by Windows
to perform debugging. Malware can eas-
ily detect that it is being debugged by us-
ing some Windows APIs, such as IsDebug-
gerPresent(), NtQuerylnformationProcess(),
CheckRemoteDebuggerPresent() or QOutput-
DebugStringA(), or having second process to
debug itself, thus effectively prevent analyst to
attach his debugger to the malware.

2. Detect debugger’s impact on malware: To
debug malware, the debuggers use use the fa-
cilities provided by hardware architecture: on
Intel machine, that is to write INT3 instruc-
tion (opcode OxCC) into process’s code, or
points the hardware breakpoints at the place
of interests. However, hardware breakpoint
method is severely limited because Intel archi-
tecture has only four hardware registers, thus
no more than 4 breakpoints can be established
at the same time. Besides, it is trivial to de-
tect that hardware breakpoints have been set
(and therefore, it is being debugged). Software
breakpoint can support unlimited number of

breakpoints, but it replaces malware code with
breakpoint instruction (opcode 0xCC), thus
can also be detected by malware performing
self-integrity-check on its code at run-time.

3. Detect debugger’s presence: Besides above
two methods, malware can easily search for
the presence of debuggers in the system. They
can either looks for specific windows of de-
bugger, or check for the existence of special
devices, registries, or even hidden backdoors,
setup by debuggers in system.

e Tampering with debugger: To debug the malware,
debugger must execute the malware, thus give mal-
ware a chance to tamper with debugger when it de-
tects the debugger. To avoid this problem, the ana-
lyst must be carefully inspect the malware to nullify
its malicious actions. Again, this step might take a
considerable time and skills to make sure malware
does not cause any damage to the debugger as well
as the working environment.

The worst part of our concerns is that there is no way
to completely solve the discussed issues with the current
design of the debuggers. The fact that the debugger and
malware operate in the same security domain also make
all the problems unfixable. Consequently, analysts must
use many work-around techniques to manually deacti-
vate the anti-debugging tricks in malware, before they
can do the real job of inspecting its internals. However,
the number of tricks have grown quickly, frequently up-
dated, and become more complicated. Again, to deal
with new tricks, analyst must invent novel solutions to
defeat them, and once more, we see the same never-end
mouse-cat game, as in all other parts of computer secu-
rity.

The rest of this paper is organized as follows. The next
section introduces a novel debugger named Virt-ICE, our
solution to the discussed problem. Section 3 evaluates
our debugger. The related work are summarized in sec-
tion 4, and we conclude this paper in section 5. In the
last page, we attach an appendix presenting few com-
mands of Virt-ICE, so readers can imagine how it works
in reality.

2 Solution

Our research proposes a novel approach to solve the dis-
cussed problems of malware debuggers. We design and
implement an interactive debugger named Virt-ICE. This
section presents the goals of Virt-ICE, its approach, then
focuses on its architecture and design.

2.1 Goals

Guided by the above motivation, Virt-ICE aims to
achieve the following goals.

o Invisible to malware: By making the debugger in-
visible to the malware being debugged, we can fix
all the problems on detecting debuggers. If malware
does not see the debugger, it would go on function-
ing normally, rather than behave differently or bail
out, which usually happens currently. As a result,
the analyst does not need to perform manual inspec-
tion to disable the anti-debugging procedures any
more.

e Tamper-resistant against malware: By making
Virt-ICE tamper-resistant, we can make sure that it
is not affected by malware, and always function re-
liably and correctly as expected.

¢ Ring-0 malware: Ring-0 malware, such as kernel
rootkits, are getting more popular. This kind of mal-
ware is significantly harder to deal with (than ring-3
malware) because it runs in the same level with Op-
erating System, thus can use various tricks to defeat
a range of analysis tools. Therefore, it is important
that Virt-ICE must be able to analyze them, without
being tampered by them.

2.2 Approach

Virt-ICE takes advantages of virtualization technology.
We execute to-be-inspected malware inside the virtual
machine (VM), and Virt-ICE outside of the VM, in the
low emulator layer. Figure 1 presents the high level de-
sign of Virt-ICE.

Running malware inside VM offers some natural ben-
efits:

e Sandboxing: Malware is limited by the sandbox
created by VM, and cannot cause problems to the
physical system. We can also put network firewall
to monitor and nullify its damage to the outside net-
works.

e Time saving: After analyzing malware, we can re-
verse the VM to the checkpointed-stage, thus clean
up the VM to work with another malware. This
method saves us a lot of time and effort when we
analyze multiple malware.

Operating at the emulator layer, Virt-ICE takes the
advantage of the dynamic translation feature of VM to
monitor the malware running inside the VM. From there,
by instrumenting the VM at instruction-granularity level,
we can achieve all the proposed goals above, as follows.

Windows 05

Malware

- TCP
Virt-ICE link
44— Virt-ICE client
debugger
Emulator

Figure 1: High-level design of Virt-ICE debugger

o Invisible to malware: Because Virt-ICE runs out-
side of the VM, it is not visible to the malware in-
side the VM, even if the malware runs at kernel
level. Besides, because we instrument the dynamic
translation code of the VM, but not having to use
any software or hardware breakpoints to intercept
malware execution, Virt-ICE never modify the mal-
ware process or in any place in the VM, as hap-
pened with traditional debuggers. Consequently,
our debugger becomes transparent, and most anti-
debugging techniques fail to work against Virt-ICE.

o Tamper-resistant against malware: Naturally,
Virt-ICE runs in a different domain of security with
the malware inside the VM, so by design, malware
cannot attack Virt-ICE.

e Ring-0 malware: Dynamic translation allows us to
dynamic instrument any place in the VM, from bot-
tom layer (ring-0) to application layer (ring-3) of
the VM. As a result, Virt-ICE can debug all kind of
malware, no matter it operates in userspace or ker-
nelspace.

It is also noted that using VM to perform malware
analysis already become de-facto method in industry, so
the fact that Virt-ICE requires VM to work does not
cause any negative change to the current procedure of
analyst.

2.3 Other Benefits

By instrumenting VM at instruction level, Virt-ICE can
also offer debugging events to the analyst, and analyst
can achieve a new level of control to the whole VM. As
a result, debugging can be done a new way, that is event-
based. This novel approach offers some interesting fea-
tures not available to all the other traditional debuggers,
such as followings.

o Before and after action: It is now possible to set
breakpoints or watchpoints so that they are triggered
either before or after an instruction is executed, or
an area of memory is accessed.

e Physical-memory access: It is possible to monitor
access to a physical area of memory. This makes the
difference, because other debuggers usually only
support virtual memory monitoring (again, the rea-
son is because normal debuggers are not originally
built to fight malicious tricks). This feature can help
to monitor some advanced malware using the dual-
mapping evasion techniques [14]

e Interrupt-based event: Analyst can choose to in-
tercept interrupt events, so he can know when a par-
ticular syscall (using INT Ox2E in older version of
Windows) is executed. This low-level of informa-
tion is useful to detect many tricks evading syscall-
monitoring methods, employed by various malware.

o Instruction level: This feature allows to trigger
Virt-ICE when a particular instruction is executed.
For instance, recent Windows might use SYSEN-
TER instruction to execute syscall, so similarly to
above, this is helpful to detect many anti-monitor
techniques at syscall level. Another example is that
it is now easier to know when a next branch instruc-
tion (JMP, CALL or RET) is executed, without hav-
ing to find and set breakpoint on a particular place
on binary code.

e 10 Port-based event: It is possible to set Virt-ICE
to trigger when an access to 1O port (read or write)
happens. This is useful to monitor some advanced
malware manipulating hardware 1O ports.

e Other events Other interesting events such as
changing of CR3 or ring-level switching are avail-
able. The analyst can take advantage of these events
to intercept when a particular process is running, or
when kernel code of malware is executing. Debug-
ging at ring-0 is therefore becoming much easier.

2.4 Architecture and Design
2.5 Challenges

Virt-ICE is not without some significant problems that
we must overcome to realize its design. The most notable
challenges are:

1. Instrumenting VM: The only emulator that natu-
rally provides instrumentation mechanism is Bochs.
We considered Bochs as our emulator, but then re-
jected it because Bochs has too many shortcomings:
it has limited supports to Windows (several Win-
dows OS-es cannot be installed on Bochs due to
some reasons), and it is unacceptably slow that it be-
comes unusable for normal usage. For other emula-
tors, we must build the instrumentation framework
ourself, and this is not a trivial task, especially if we
want minimize the performance penalty caused by
instrumentation.

2. Performance: Though performance is not the most
concerned issue for malware analyst, it is still al-
ways desired to have a good performance system.
Instrumentation at the instruction level might de-
grade the performance of the whole VM to unac-
ceptable degree. It is really tough to design the in-
strumentation framework and application on top of
that to mitigate this problem.

3. Understanding OS semantics of debugged VM:
From outside, Virt-ICE can access to all the phys-
ical memory as well as VM’s context like registers
and so on. However, these raw data does not reveal
OS-semantics information, like which processes are
running, or which kernel modules are loaded in the
VM at the time. Unfortunately, to be able to debug
the malware running inside the VM, Virt-ICE must
understand all of these information as well as the
malware. On the other words, it must have good
visibility on the OS as if it is running inside the
VM, even in fact Virt-ICE operates outside. Be-
cause our debugger operates in a different context
with the VM, we cannot rely on the VM’s OS to
provide these information for us, but we have to
parse the raw data to get the semantic information
ourself. This is the classic “semantic gap” problem
in virtualization research [13].

2.6 Implementation

We considered various open source VMs, and choose
Qemu version 0.12.4 [9], as the emulator to build Virt-
ICE on top of it. Qemu is open source, so we can easily
add instrumentation framework to it. Besides, because
Qemu’s dynamic binary translation is done completely

using a software-based JIT compiler, performing expen-
sive action such as instruction tracing does not cause sig-
nificant performance problem to the VM, if compared
with other hardware-based VMs such as Xen [6] or KVM
(3]

We solved the three major challenges above with some
special designs as follows.

1. Instrumenting VM: We build an instrumentation
framework named Kobuta on top of Qemu. Kobuta
instruments the dynamic translator at the right
places to put its hooks. The framework provides
arange of APIs to outside, so we can build applica-
tions on this framework to have access to the instru-
mentated hooks. The instrumentation is done at in-
struction level, on special events like interrupts and
task switching. Kobuta framework also provides in-
strumentation to memory access, at both physical
and virtual memory level.

To make it easier for applications built with Kobuta,
we make it a shared library, named libkobuta, with
public APIs provided in a header prototype of C
code (kobuta.h). Kobuta also provides a whole
framework, including a set of Makefile templates,
skeleton code and standardized exported functions,
to ease the job of building a Kobuta-enable applica-
tion, called Kobuta module.

2. Performance: Qemu performs dynamic binary
translation using an JIT compiler, thus if done prop-
erly, instrumentation does not degrade the VM per-
formance much. Kobuta is carefully designed to
mitigate the performance overhead as much as pos-
sible. We avoid bottle-neck places, and take advan-
tage of caching mechanism of Qemu. For exam-
ple, we exploit its softmmu mechanism to instru-
ment memory access events: The watchpoints are
put deep inside the TLB caching code path, so we
can avoid the unnecessary translation from virtual
memory to physical memory on every memory ac-
cess. Execution breakpoint is handled is a similar
way.

In fact, the vanilla Qemu has very acceptable per-
formance, so that it is really practical for the job of
malware analyst. We also take advantage of KQemu
[8], a popular Qemu accelerator vastly improve the
VM speed. The idea is that we use KQemu to com-
plement Kobuta whenever possible: if instrumenta-
tion is not required, we disable Kobuta and turn on
KQemu to be benefit from its native code execution
pace. Vice versa, we dynamically turn off KQemu
and switch on Kobuta when instrumentation is re-
quested.

Since KQemu was dropped from Qemu version
0.12, we had to forward-port it to version 0.12.4,
with some minor fixes to make it work again, as well
as cooperate with Kobuta.

3. Understanding OS semantics of debugged VM:
For Virt-ICE to be able to parse the VM’s raw data
to extract out the semantics information, firstly it
must be able to access to the physical memory of
the VM and the VM’s context. We achieved this by
refactoring the Qemu code, combine the related part
into libkobuta and exports some APIs for the above
functions.

Once having access to VM’s context and physical
memory, Virt-ICE accesses to the OS-semantics in-
formation thanks to a framework named EaglEye.
This framework parses the raw memory, and uses
the VM’s context to extract out all the OS’s seman-
tics information such as processes, kernel modules,
syscall table, exported DLLs, open registries,
The implementation of EaglEye relies on various
available research about Windows internals by other
researchers. EaglEye can locate these OS compo-
nents from physical memory, then extract out the
righ fields in OS structures. Relying on the service
provided by EaglEye framework, Virt-ICE can eas-
ily access to debugged VM from outside, with good
visibility as if it is running inside the VM.

One more challenge we had to deal with is that Qemu
is not really designed to be thread-safe: it has some seri-
ous bugs on concurrent access on physical memory. This
is a problem for our architecture, because Virt-ICE needs
to access to VM’s memory at the same time with the VM.
We fixed the bugs by introducing few patches to handle
the concurrency issue.

To take advantage of Kobuta framework, Virt-ICE is
built as an Kobuta module on top of the shared library
libkobuta. At run-time, on-demand, Virt-ICE is loaded
into the Qemu’s process. To support loading external
code into Qemu, we extended Qemu to handle Kobuta
modules, as well as the Qemu monitor interface with
a new command kmodule to load, unload and reload
Kobuta module from external files (The Kobuta mod-
ules must be built with the Kobuta framework mentioned
above to be accepted with kmodule command). Figure
2 presents the connection between the Qemu emulator,
Kobuta, EaglEye and Virt-ICE.

When running inside Qemu, Virt-ICE module opens a
TCP channel to outside. The analyst use a Virt-ICE client
to connect to Virt-ICE module via this channel to interact
with the debugger functions provided in Virt-ICE mod-
ule. Figure 1 presents the link between Virt-ICE module,
Virt-ICE client and the debugged VM.

Virt-ICE debugger
(Kobuta module)

Kobuta Instr fon Fa k

EaglEye framework

QEmu emulator

Figure 2: Architecture of Virt-ICE modoule

When get the requests on debugging from Virt-ICE
client, Virt-ICE module locates the malware thanks to
EaglEye, then set the trigger events with Kobuta. When
the desired event is triggered, information is returned to
the client. At that time, Virt-ICE module also pauses the
VM for the client to come to inspect the VM’s internal
for information. All the inspected commands are also
sent to Virt-ICE module, and Virt-ICE perform the job
(mostly with the help of EaglEye) on behalf of the client,
then sends back the result to the client. When the client is
done with inspection process, it tells Virt-ICE module to
resume the VM and let the malware continues to run in-
side the VM, until the next debugging event is triggered.

3 Evaluations

We evaluated Virt-ICE against various malware employ-
ing anti-debugging techniques presented in [11] and [12].
The result shows that Virt-ICE is invisible to all of
them, except for the execution timing trick, using exter-
nal timer.

Basically, the execution timing technique relies on the
fact that when analyst debugs malware, it takes time to
analyze indivisual instructions. This delay can be mea-
sured using several time sources, like followings.

e Local timer: malware can use RDTSC instruction,
or APIs functions such as GetTickCount(), timeGet-
Time(). However, while this trick is effective against
all the traditional debuggers, it fails on Virt-ICE.
The reason is that when analyst examines the mal-
ware inside the VM - typically after a debugging
event happens - Virt-ICE pauses the whole VM,
thus effectively stops all the local clocks. The an-
alyst can take as much time to inspect the malware
as he wants to. After that, Virt-ICE resumes the VM
- and also the local clocks, to let the malware contin-
ues to run. The malware - and even the VM - is not
aware of the suspend with the system, thus cannot
measure the delay caused by the debugger.

e External timer: malware can use external clock,

such as Network Time service (using NTP protocol
[5]) to measure the delay, without relying on sys-
tem timer. Unfortunately, all the debuggers, includ-
ing Virt-ICE, suffer against this trick. The analyst
must manually disable the time checking procedure
in malware code before continuing his work.

This research proposes to run debugged malware in-
side VM to inspect it. Unfortunately, it is known that
some malware can detect the VM environment, then ei-
ther refuse to run, or behave differently [10]. Though the
amount of these malware are only around 3% [7], this is
still a headache for analyst.

While we are well aware of this problem, we consider
it the issue of all debuggers, not only of Virt-ICE. Indeed,
it has become a common practice for malware analyst
to analyze malware inside VM, and all debuggers suf-
fer when having to deal with anti-virtualization malware.
The analyst must either manually nullify the VM check-
ing procedure of malware, or choose alternative VM that
is known not vulnerable to the malware.

However, notice that the visibility of VM and visibil-
ity of debugger are completely different problems, and
should be solved separately by another research. The fact
is that while malware can detect the VM, it cannot de-
tect the presence of the Virt-ICE hiding behind the VM.
Bottom line, this issue makes no difference to the trans-
parency of Virt-ICE.

4 Related Works

All the debuggers that are commonly used to debug mal-
ware such as IDAPro, OllyDbg, Immunity Debugger,
Windbg and SoftICE suffer from the problems we dis-
cussed in section 1 of this paper: they can be easily de-
tected, and tampered with by the malware. IDAPro, Im-
munity Debugger and OllyDbg can only analyze ring-3
malwere, while Windbg and SoftICE can be used to in-
spect kernel level malware.

Most of these debuggers have some methods, pro-
vided in the shape of plugins or scripts, to defeat anti-
debugging. But as discussed earlier, this approach might
need manual inspection, and it still requires some special
efforts to deal with upcoming anti-debugging tricks.

Some debuggers try to fix a part of the visible prob-
lem of debugger with new approaches. One example is
Obsidian [4], which avoids to use the OS service for de-
bugging: it does not use INT3 instruction, but to write a
loop-equivalent instruction into the debugged process to
set breakpoint. Unfortunately, while this trick defeats the
detection method (1), Obsidian still badly suffers from
methods (2) and (3), presented in section 1.

Readers might wonder if it is possible to solve the
problem by using the remote-debugging features of

Windbg. Indeed, Windbg and Visual SoftICE allows to
perform debugging on one machine from another ma-
chine, and the connection between two machines can
be established using serial port, firewire port or network
protocol. In this case, the debugger can avoid the tam-
pering problem, because it cannot be attacked by the
malware through the connection between two machines.
Unfortunately, this scheme still requires an agent run-
ning inside the machine being debugged, or need special
bootup configuration, thus clearly disclose the presence
of debugger.

Another choice to fix the malware debugger problem
is to use the built-in debuggers available in VM such as
Bochs, Qemu and VMWare. These VMs provide some
primitive debugging features from emulator layers, and
can be used to inspect the VM at run-time. The prob-
lem is that these debuggers only offer very simple, in-
convenient facilities, and only provide raw information,
without any OS-semantic at all. Moreover, they do not
offer advanced features such as event-based triggers like
Virt-ICE.

Other projects such as Anubis [1] and BitBlaze [2]
also use Qemu to analyze malware. However, their work
focus on automatic malware analysis, but not on prob-
lems of interactive debuggers like Virt-ICE.

5 Conclusions

Virt-ICE is the next-generation debugger, built to fix
some outstanding problems of current malware debug-
gers: it is invisible against malware, and cannot be at-
tacked by malware being debugged. Virt-ICE provides
rich feature sets not available in other debuggers, such
as event-based trigger and API monitoring ability. All of
these advanced choices vastly ease the jobs of malware
analyst, and give them new methods to make their job
done more efficiently.

References

[1] Anubis: analyzing unknown binaries. http://
anubis.iseclab.org.

[2] Bitblaze: Binary analysis for computer security.
http://bitblaze.cs.berkeley.edu.

[3] Linux kernel virtual machine. http://wiki.
gemu.org/KQemu/TechDoc.

[4] Obsidian: non-intrusive debugger.
deneke.biz/obsidian.

http://

[5] Rfc 958 - network time protocol.
org/rfcs/rfc958.html.

www. fags.

(6]

(7]

(8]

[9]

(10]

(11]

[12]

[13]

[14]

Xen virtual machine monitor.
xen.ord.

http://www.

U. Bayer, 1. Habibi, and D. Balzarotti. A view on
current malware behaviors. In 2nd Usenix work-

shop on large-scale exploits and emergent threats -
LEET’ 09, 2009.

F. Bellard. Qemu accelerator module. http://
wiki.gemu.org/KQemu/TechDoc.

F. Bellard. Qemu, a fast and portable dynamic
translator. In Proc. USENIX Annual Technical Con-
ference, FREENIX Track, 2005.

X. Chen, J. Andersen, Z. Mao, M. Bailey, and
J. Nazario. Towards an understanding of anti-
virtualization and anti-debugging behavior in mod-
ern malware. In DSN-DCCS, 2008.

N. Falliere. Windows anti-
debug reference. http://www.
symantec.com/connect/articles/
windows—anti-debug-reference.

P. Ferrie. Anti-unpacker series.
pferrie.tripod.com.

http://

T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detec-
tion. In Proc. Network and Distributed Systems Se-
curity Symposium, February 2003.

skape. Using dual-mappings to evade automated
unpackers. http://uninformed.org/?v=
10&a=1.

Appendix

Virt-ICE client provides a console interface to user. This section presents some Virt-ICE commands. (Lines with # are
comments).

From Qemu’s monitor, load Virt—-ICE module into Qemu

monitor> kmodule load /opt/kobuta/virt-ice.km

From the host, run Virt-ICE client to connect to Virt-ICE module

%> virt-ice

In Virt-ICE client, list all the running processes inside the Windows VM
vice> ps

List all kernel modules currently loaded in the Windows VM

vice> kmodules

List all DLL files open by process with pid 134

vice> dlls -p 134

List all registries open by process with pid 134

vice> registry -p 134

Stop the VM when malware.exe is loaded into memory, before it is executed
vice> db -S -p malware.exe

Set breakpoint at WriteProcessMemory () function

vice> db -p malware.exe -s WriteProcessMemory

Set watchpoint at a particular address

vice> db -p malware.exe —-s 0x788120d0

Resume the VM to let the malware to continue to run.

The VM will pause and inform Virt-ICE client when it is hit a breakpoint,
or a watchpoint

vice> db -r

Disassemble a range of memory in malwre.exe process

vice> disasm -p malware.exe —-s 0x7468£fc00

View a range of memory (256 bytes) in hexa and ascii mode

vice> view -p malware.exe —-s 0x7468fc00 -c 256

Search for a string (with regular expression format) in memory of malware
vice> search -p malware.exe -s 0x7468fc00 -c 0x2000 -a "??SICE"

Get the strings of the whole memory of malware.exe, and pipe out

to less to review the result

vice> strings -p malware.exe | less

Dump a range of memory in malware.exe process

vice> dump -p malware.exe -s 0x7881024 -e 0x7985c00 -f

Monitor and output all the calls to Windows registry API, without interrupting
the VM. The list of registry APIs is put in file api.reg

vice> db -M api.reg

Run malware.exe in single-step mode

vice> db -8

Figure 3: Sample commands of Virt-ICE debugger

