

Enterprise Protection Against Botnet Breaches

Serial Variant Evasion Tactics
Techniques Used to Automatically Bypass Antivirus Technologies
Gunter Ollmann, VP of Research, Damballa

Introduction
Creators of malicious software and botnet agents use a broad spectrum of tools and
techniques to create one-of-a-kind packages that easily bypass traditional antivirus
technologies. Armed with either the source code or a compiled version of their
favorite malware, the cyber-criminal can selectively apply manipulation technologies
that radically alter the fabric of malware. The result is a stealthy threat that evades
signature-based detection systems, static analysis tools, behavioral monitoring
environments and sandbox technologies. And yet, the malware retains the same core
malicious functionality and remote control mechanisms.

This paper examines the tools and techniques cyber-criminals use to automate the
generation of new variants of malware and bypass enterprise detection technologies.
One of the most critical of these concepts is based upon serial variant malware
production.

The Botnet Players
Organized crime and malicious code authorship collided some time ago to create a
hybrid breed of cyber-criminals and an entire ecosystem of malware production and
service delivery capabilities. Each member of the cyber-criminal fraternity plays a
specific role in propagating attacks and the siphoning of ill gotten gains.

The result is a complex web of criminal relationships, tool development specialists and
fraud delivery services that can be difficult to understand. For the sake of clarity, these
can often be summarized as follows:

Malware author – Original malware creator(s) that provide “off-the-rack”, do-it-
yourself (DIY) malware construction kits and custom malware solutions.

Botnet master – Individuals or criminal teams that own botnets and maintain
ultimate control over the distributed Command-and-Control (CnC) infrastructure.
The botnet master may assume the role of botnet operator or rent the botnet to
criminal operators.

Botnet operator – Sets up botnets by leveraging malware and other tools, and
then monitors/manages botnets for ongoing fraud or attack operations.

Criminal operator – The individual or team actually using the botnet to conduct
malicious activities and financial gain.

Serial Variant Evasion Techniques

Page 2

Serial Variants
The process of automatically churning out new variants of malware on a massive scale
has been ongoing for quite some time. The Storm worm was perhaps the most famous
botnet to employ the tactic of creating multiple variants of a particular malware agent
in advance of the attack, and then releasing each new variant at scheduled intervals to
constantly remain ahead of antivirus protection updates.

Serial variant production has evolved into a streamlined business process since Storm.
Botnet creators and malware authors now employ an arsenal of tools and
technologies through which they automate the production of these variants. A wide
assortment of off-the-shelf commercial software protection tools and specialized anti-
antivirus manipulation tools have standardized the process and commoditized its
pricing.

The serial variant production systems now in operation by malware developers and
botnet operators can be broken down in to several distinct stages:

Figure: Serial variant production

There are four key production steps for creating serial variants capable of bypassing
most common antivirus detection technologies:

1. Code metamorphism
2. Noise insertion (Code)
3. Compiler settings
4. Noise insertion (Binary)

Code Metamorphism Noise Insertion CompilersOriginal Malware

Noise Insertion

Serial Variant Evasion Techniques

Page 3

Code Metamorphism
Code metamorphism (including polymorphism) is a common tactic that attempts to
bypass pattern recognition systems employed by antivirus, intrusion prevention
systems (IPS) and data leakage prevention (DLP) technologies.

Automated tools seek to manipulate the structures of the source code of the bot
malware – altering their “shape” – by reordering and replacing common
programmatic routines. For example:

• Swapping of equivalent code constructs
• Converting one loop type in to another – e.g. For…Next becomes If…While

or even Case…When
• Assigning variable values in different ways – e.g. i=1++ versus i=i+1
• Clearing memory and registers

• Changing the order of the code
• Swapping registers
• Reordering instructions
• Defining functions in a different order

Figure: Equivalent loop constructs (courtesy Wikipedia)

Noise Insertion (code)
“Noise” refers to redundant code that either does nothing or is interpreted as doing
nothing, and has no negative impact upon compiled code the malware author wishes
to execute. Noise code is designed to help the malware bypass signature-based
detection systems – but may also be used to thwart basic behavioral and heuristics
based detection systems (e.g. by identifying the framework or operating system in
which the malware is executed within, and performing different functions depending
upon the specific environment).

Serial Variant Evasion Techniques

Page 4

Examples of noise insertion tactics include:

• Whitespace and noise instructions
• Code constructs that do nothing and incur no load to the compiled

application – e.g. if 1=1 or even sleep(0)
• NOP/NOOP

• For example i+1;
• Unused functions and procedures

• Inclusion of code with use exceptions that will never occur or will never be
called – for example, calculate Pi of var.A is not equal to var.A.

• Unused variables and arrays
• The definition of variables and arrays that are not used in the malicious code

segments.

Compiler Settings
The compiler(s) used by the malware author or botnet master can have a significant
effect on the final output code. Different compilers, different versions of compiler and
even different compiler settings can result in substantially different binary code
output.

Minor tweaks to compiler settings are easy to automate and provide a reasonable
degree of flexibility in the creation of serial variants. Scripts and automation
frameworks are often used by malware authors to speed up this compiler-oriented
variant production process.

In general, the number of compiler parameters that can be tweaked and used to
create malware variants that continue to work under the most common operating
systems is finite and often restrictive in scope. For this reason, serial variant authors
often combine compiler setting modulation with other techniques.

Noise Insertion (binary)
Malware authors can also insert noise into a compiled malicious binary. This noise is
typically applied to the beginning or end of the binary, rather than the functional
malicious code in the middle.

This binary noise (often non-interpretable garbage) is very easy to add and can be
used to grow a malicious binary to any size a botnet master wants. For example, the
author may want to seed Torrent networks with fake movies that happen to be exactly
the same size as the real ones, but actually contain the malicious bot agent.

Serial Variant Evasion Techniques

Page 5

Serial Variant “Protection”
Increased competition amongst malware authors continues to drive change in the
way these groups seek to protect their “investment” in the malicious code they
produce. It’s no longer enough to just increase the sophistication of a bot agent. Now,
authors seek to protect their investment from copy-cat competition and reverse
engineering by security researchers.

The techniques used by cyber-criminals have been publicly available for well over a
decade, originating within the commercial software sphere as copyright protection for
games and digital rights management (DRM) for a range of media. Now, these same
protection strategies have been applied to the automated production of malware. In
almost all cases, this automated process extends the diversity of serial variant malware
production – although the core purpose remains to evade advanced automated
detection systems (e.g. behavioral and heuristic analysis) and the manual reverse
engineering techniques used by threat analysts.

While the previous discussion of serial variant production focused upon the
manipulation of malware or bot agent source code, other manipulation techniques
focus upon compiled binary files, utilizing distinct technologies that protect and
obfuscate file content as well as substantially increase the diversity of serial variants
that can be produced.

Figure: Automated bot agent production

There are a number of distinct processes and tools that can be (and are) used by
criminal operators that enhance the robustness of malware (serial variant or
otherwise) from dynamic detection technologies and analysis processes. These steps
typically fall into the following categories:

Original Malware PackersCryptors Protectors

QA
Binders

Serial Variant Evasion Techniques

Page 6

1. Crypters
2. Protectors
3. Packers
4. Binders
5. Quality Assurance

”Quality Assurance” normally entails verifying that each malware sample cannot be
detected by dozens of different commercial antivirus engines. It is often provided as a
managed service to malware authors by other cyber-criminals.

Crypters
Crypters (or “Cryptors”) encrypt malware so that signature detection systems and
static analysis processes are ineffectual. Crypters typically encrypt the contents of the
malware executable, and then only decrypt sections of code that are in the process of
being executed on the victim’s computer.

This technique means that host-based detection technologies cannot inspect the
executable content prior to it being loaded from disk and into memory. It also means
that popular reverse engineering tools such as IDA Pro will struggle with their analysis
without full knowledge of the decryption algorithm in order to work properly.
Similarly, signature-based antivirus products work by sifting the executable code of
the malware for atypical coding markers, and then search for pre-defined regular
expressions. If antivirus detects known malicious strings, it will delete or quarantine
the suspicious file. Crypters prevent antivirus scanners from seeing these key coding
markers.

Figure: Common crypter tools

Serial Variant Evasion Techniques

Page 7

Crypter tools such as the examples shown above make the process of employing
cryptographic routines and memory protection algorithms a trivial task. Many tools
allow a cyber-criminal to select their own cryptographic algorithm and encryption
keys to encode the malicious. In many cases Crypters have also added packer
functionality. As such, several popular “packer” and “binder” tools in use by malware
builders and bot masters also include encryption capabilities.

Protectors
Protectors are a relatively new class of evasion employed by malware authors. The
“protector” technology was originally designed for commercial use to protect online
games from abuse (e.g. reverse engineering that led to game stats manipulation, etc.)
and as a DRM protection technology. Ironically it is now more commonly employed by
criminals.

Figure: Anti-debugging features of Protectors

Protectors automatically add specific anti-debugging features to malware that prevent
security researchers and automated sandbox analysis technologies from dissecting
samples. As seen in the screen captures above and below, the list of anti-debugging
features can be quite extensive.

Serial Variant Evasion Techniques

Page 8

Figure: Protector & Crypter combination tool

In standard operation, protectors detect the use of debuggers or virtualization
techniques. If seen, the malware then causes different operations to occur – often
hiding the malicious intentions of the malware or intentionally causing the particular
debugging technology to falter and fail in its analysis.

Figure: Commercial software protectors - Themida

Cyber-criminals also make use of commercial software protection technologies to
protect malware investments. Many hacking sites provide detailed tutorials on how to
leverage commercial software protection to produce malware serial variants. By way
of example, Themida, produced by Orleans Technologies, appears to be a popular
commercial tool now used by malware authors – and an extensive array of guides and

Serial Variant Evasion Techniques

Page 9

tutorials can be found on hacking sites that specialize in malware production and
botnet management, along with pirated copies of the tool.

Newer generations of malware creation tools (i.e. DIY Malware Kits) increasingly
incorporate protector functionality. Authors simply click a checkbox for the desired
functionality. Advanced protectors may also include “hack-back” routines designed to
identify whether the malware is operating within a sandbox or virtual environment. If
so, the malware then knows to use known exploit code in an attempt to compromise
the host machine by breaking out of the sandbox.

Packers
Packers have had the longest and most successful criminal dual-use career. Packers
were originally designed to make binary files and installation kits smaller and more
portable, which made them quicker to download over dialup and slow Internet
connections. However, malware authors discovered that smaller packages sped up the
infection process while also making it much more difficult for antivirus to detect the
malicious payload.

“Packers” now are a core technology for botnet masters. It enables malware to bypass
both antivirus signature and hash-matching algorithms. There are literally hundreds of
different packers in widespread use. Only a handful of them are also commonly used
for legitimate commercial business. Some of the most advanced packers employ
polymorphic output capabilities, which mean that the malware binary is structurally
different every time the packed version is executed.

The most popular packer technology in operation today is UPX (screenshots below). It
is a popular commercial packing technology, but is also a preferred packer of choice
amongst malware authors.

Serial Variant Evasion Techniques

Page 10

Figure: UPX packer in operation and headers visible in a file HEX editor

Binders
Binders are an old technology typically used by malware authors to “embed” and
Trojan other software packages. These tools are a method for aiding propagation of
the malware component, tricking victims into executing a popular file or something
that looks legitimate.

Binders have proved popular with botnet masters that use Torrent networks and
newsgroups to spread their malware. The malicious code is embedded inside files that
are frequently searched for and downloaded. Binders are also used to create the
packages that malware downloaders automatically install on victims of drive-by
attacks – thereby increasing the breadth of potential victims and the probability of
successful compromise.

Serial Variant Evasion Techniques

Page 11

Figure: Binders in action

Quality Assurance
It is important to understand that malware authors and botnet operators also invest
considerable time and effort in their quality assurance practices. Malware created
using the tools and processes described above are typically passed through multiple
commercial antivirus products to verify that they will not be detected prior to their
criminal deployment.

Forums dedicated to malware and botnet development frequently extol the virtues of
checking antivirus coverage, and provide advice on how best to do it – including the
review of online antivirus checking portals and discussions as to whether they send
any submitted samples to antivirus vendors afterwards.

Figure: AV testing tools for botnet authors

Serial Variant Evasion Techniques

Page 12

Newer DIY tools speed up the QA process by automatically downloading trial versions
of antivirus products, or use “keygens” to create working license credentials and
register antivirus products, manage signature updates, stream new serial variants
through dozens of antivirus tools, and modify detectable malware binaries for greater
stealth.

Future Serial Variant Updates
Serial variants are a proven technique for evading malware detection technologies at
both the network and host level. Most deployments of auto-generated malware have
been focused upon the initial compromise vector of the victim’s host. For example,
drive-by-download infection engines often have the capability to generate and serve
one-of-a-kind malware variants for each potential victim in a process sometimes
referred to as “server-side polymorphism” and “x-morphic exploitation”.

Given the continued advances in guest operating system (OS) security and the
resultant increases in difficulty in initially compromising a host through vulnerability
exploitation (excluding social engineering tactics), it is reasonable to expect that
botnet masters will place an growing emphasis on retaining control of the systems
that have already been compromised.

A consequence of this trend will be the adoption of serial variant bot agent updates
being sent to the compromised host at regular intervals. Botnet masters already
update bot agents regularly to add new functionality and fraud capabilities on an ad
hoc schedule. The next step is for botnet masters to schedule serial variant bot agent
updates to be applied to already compromised hosts in order to keep ahead of
updates to “competing” host-based detection technologies.

Meanwhile, fierce competition between professional malware authors and tool
producers will continue to drive a fast-paced evolution of the technologies used in
serial variant production. The technologies that are likely to have the biggest impact in
cyber-criminal serial variant production lines over the next few years include:

• Identification of malware being operated within a monitored system. Today
several tools can implant the capability of identifying whether the malware is
operating within a virtual or sandboxed environment, and then cause different
code paths to be executed. Future advances in this area will likely encompass
more sensitive checks to see if a real person/victim is interactively using the host
rather than an automated analysis engine.

• Cryptors that unencrypt and execute smaller sections of malware code at any
point in time to better evade memory inspection, as well as to disguise non-
executed encrypted code as benign data that can bypass heuristic-based
detection systems.

Serial Variant Evasion Techniques

Page 13

• Identification of whether the malware is being studied by an automated
analysis engine (either behavioral or static analysis) and the exploitation of
known vulnerabilities within these engines to cause the overall host integrity to
fail.

• Custom packers that appear to be common commercial packers, but will
unpack different coded payloads depending on whether the malware unpacked
itself or an “unauthorized” external static analysis/debugger tool unpacked the
malware.

• Managed QA services that include many more (if not all) commercial antivirus,
IPS and DLP products, which will enable a cyber-criminal to upload and test
batches of newly produced serial variant strains of malware for successful
evasion, and then automatically alter detected the samples to ensure future
evasion.

• Enhanced anti-debugger and DRM technologies to prevent automated and
manual static analysis of malware samples captured by security vendor
investigators.

Conclusions
Malware authors adopted serial variant construction as a means of evading detection.
As long as they can release newer versions of their malware faster than antivirus
companies can release detection updates to their customers (i.e. the malware author’s
victims), these criminal operators will continue to have the upper-hand.

In response, antivirus vendors have enhanced their capabilities to obtain new malware
samples (e.g. spam traps, customer uploads, honeypots, etc.) and sought to quicken
the pace at which they develop and distribute new detection signatures or algorithms.
Today, many traditional antivirus vendors have launched (or are about to launch) new
cloud-based systems in an effort to minimize content distribution delays and make it
easier to collect malware samples.

In the past it may have taken between three to five business days to process a
particular malware sample, develop a new signature, test and QA the update, and
finally make it available to customers through a product update mechanism. By
operating a “cloud” service, many of these antivirus vendors seek to compress this
process to 24 hours or less.

Unfortunately all the malware creator or botnet operator needs to do to evade these
new and improved detection update mechanisms is to continue to release serial
variants fractionally faster than the antivirus vendors release their protection updates.
If it takes an antivirus vendor 24 hours to turn-around a new detection signature, the
botnet operator just needs to ensure that he releases a new serial variant every 23
hours.

Serial Variant Evasion Techniques

Page 14

Any detection technology that requires a malware sample to be acquired before a
signature can be created will always be playing catch-up. Cyber-criminals understand
this advantage, and serial variant production techniques will continue to evolve in
order to maintain this lead.

Relative Effectiveness
Botnet masters have an extensive array of tool and techniques that be used to bypass
traditional AV technologies. The following table provides a comparison of the various
techniques discussed in this paper and their effectiveness against standard malware
detection technologies

 Fi
le

 c
he

ck
su

m
s

Re
gE

x
Si

gn
at

ur
es

Fi
le

 H
eu

ris
tic

s

Be
ha

vi
or

al
 A

na
ly

si
s

D
eb

ug
ge

r A
na

ly
si

s

St
at

ic
 F

ile
 A

na
ly

si
s

Re
ve

rs
e

En
gi

ne
er

in
g

Code Metamorphism
Noise Insertion (code)
Compiler Settings
Noise Insertion (binary)
Crypters
Protectors
Packers
Binders
 = Relative effectiveness in bypassing the detection/analysis technique

Additional Reading
“X-morphic Exploitation”, IBM, Gunter Ollmann, 2007,
http://www.technicalinfo.net/papers/Xmorphic.html

“The Botnet vs. Malware Relationship”, Damballa, Gunter Ollmann, 2009,
http://www.damballa.com/downloads/d_pubs/WP%20Many-to-
Many%20Botnet%20Relationships%20(2009-05-21).pdf

The Botnet vs. Malware Relationship

 Page 15

About Damballa, Inc.
Damballa closes the botnet security gap by rapidly identifying and disrupting
the open communications channels that online criminals use to infiltrate
enterprise networks. These products and services integrate easily with existing
infrastructure for accurate, cost-effective protection against hidden security
breaches that easily evade other solutions. Damballa stops botnet breaches
through high-fidelity detection, powerful mitigation guidance for botnet
malware, and simple integration with workflow and event management
applications. The result is a smarter, more flexible security infrastructure that
responds to a wider range of current and future online threats. Damballa is
privately held and headquartered in Atlanta, Georgia.

Copyright © 2009, Damballa, Inc. All rights reserved worldwide.

This page contains the most current trademarks for Damballa, Inc., which include
Damballa and the Damballa logo. The absence of a name or logo on this page does not
constitute a waiver of any and all intellectual property rights that Damballa, Inc. has
established in any of its products, services, names, or logos. All other marks are the
property of their respective owners in their corresponding jurisdictions, and are used here
in an editorial context, without intent of infringement.

	Serial Variant Evasion Tactics
	Techniques Used to Automatically Bypass Antivirus Technologies
	Introduction
	The Botnet Players
	Serial Variants
	Code Metamorphism
	Noise Insertion (code)
	Compiler Settings
	Noise Insertion (binary)

	Serial Variant “Protection”
	Crypters
	Protectors
	Packers
	Binders
	Quality Assurance

	Future Serial Variant Updates
	Conclusions
	Relative Effectiveness
	Additional Reading

	About Damballa, Inc.

