
https://exploitreversing.com

1 | P a g e

Malware Analysis Series (MAS):
Article 4

by Alexandre Borges
release date: MAY/12/2022 | rev: A

1. Introduction

Welcome to the fourth article of MAS (Malware Analysis Series). After I have posted three articles that,

hopefully, provided you with relevant concepts, techniques and some new knowledge on malware

analysis, so let’s move forward to learn new and interesting aspects of other well-known malicious

Windows binaries available for downloading from public sandboxes such as Malware Bazaar, Triage,

Polyswarm, Malshare, Hybrid Analysis, Virus Total and other ones.

Just in case you haven’t read the previous articles, you can download them from:

▪ MAS_1: https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/

▪ MAS_2: https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/

▪ MAS_3: https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/

Throughout this text I will refresh concepts explained in previous articles, but I don’t have any plan for

getting into details, so it’s recommended to read them once again just in case you need it. Of course, in

practical terms and along the time, many explained techniques, approaches and concepts will be repeated

over and over again to provide you with further experience about proposed topics.

In this fourth part of this series, we’ll scratch the surface of .NET malware analysis, which sometimes

might present difficulties for analysts due to several and different techniques and tricks. We have excellent

tools available for helping us such as dnSpy and ILSpy, which make an excellent job in decompiling code to

MSIL (Microsoft Intermediate Language) and offering an approximate code to the original in high-level

.NET language, but in some cases isn’t still enough due to customized encoding and encrypted data, which

force us to use different techniques to be able to proceed and tackle the binary.

I’ll try to provide a minimal theory about the subject to ensure you understand the basic information

required while reversing .NET code. No doubts, .NET malware analysis a quite extensive topic and we will

return to this subject in future articles of this series.

As you’ll during all analysis of managed code threats, most of the time will came up additional stages also

written in .NET, and some of them are protected with a packer, obfuscator or even a modern protector. At

end of day, our mission is handling each of these stages, decrypting them and moving forward to the next

one, until being able to find the final payload, which could not be so easy to get it.

Like binary malware threats, in .NET malware analysis we also search for persistence techniques, C2

communication, evasion techniques, data exfiltration, clear text URLs, credentials and all sort of IOCs

that might help us to identify similar threats. Certainly we will encounter a wide spectrum of challenges

https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/
https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/
https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/

https://exploitreversing.com

2 | P a g e

and obstacles to analyze managed code (.NET code), and this task might be harder yet than native code

because it’s necessary to have much of knowledge learned from native binary analysis and know specific

concepts about .NET architecture and manage several issues (obfuscation and cryptography, as usual) to

get good results from the analysis. As you will see, .NET malware threats are in everywhere and are

heavily used in many threat campaigns nowadays.

Now we’re ready to proceed to setup a lab environment and refresh key concepts.

2. Lab Setup

We’ll be using the following environment during this article and future articles focused on .NET reversing

and, this time, I’m going to focus only on .NET related tools: :

▪ DnSpy: it’s a .NET assembly editor and debugger, but this project was archived, unfortunately. You

can download/clone it from: https://github.com/dnSpy/dnSpy.

▪ DnSpyEx: This is the revival of the original dnSpy project and has been constantly updated:

https://github.com/dnSpyEx/dnSpy

▪ De4dot: it’s a .NET deobfuscator and unpacker. You can download/clone it from:

https://github.com/de4dot/de4dot. It’ uses dnlib (below) to read and write assemblies.

Additionally, de4dot is also available in many Linux distributions and to install it execute: apt get

install de4dot.

▪ dnlib: it’s a module used to manipulate (read/write) .NET assemblies. Clone it: git clone

https://github.com/0xd4d/dnlib

▪ ILSpy: It’s an open-source .NET assembly browser and decompiler. It can be downloaded/cloned

from: https://github.com/icsharpcode/ILSpy

We won’t use all of the mentioned tools in this article, but it would be recommended to install them on

their Windows virtual machines for future binary analysis. To any external de-obfuscator necessary during

the analysis, so I’m going to indicate the proper URL to download it.

3. .NET Concepts

Definitely learning programming in several languages such as C, C++ and C# is not quite critical to perform

reverse engineering, but certainly this knowledge takes you up to a next level and helps to acquire a better

understanding of the code before taking decisions during any analysis.

Thus, and based on this premise, I’ll review key concepts related to .NET programming in this section. Of

course, I won’t explain how to program any code, but I will only expose relevant concepts about .NET for

helping readers to become a bit more comfortable while analyzing .NET malware samples.

https://github.com/dnSpy/dnSpy
https://github.com/dnSpyEx/dnSpy
https://github.com/de4dot/de4dot
https://github.com/0xd4d/dnlib
https://github.com/icsharpcode/ILSpy

https://exploitreversing.com

3 | P a g e

Probably we’ll find malware samples written in .NET Framework and .NET Core and, as you probably

already know, .NET code is a managed code, which needs a .NET runtime

(https://github.com/dotnet/runtime) to be executed. These. NET binaries are basically composed by MSIL

(Microsoft Intermediate Language) instructions and metadata. Of course, probably you rarely handle IL

(Intermediate Language) instructions (though it is required in some obfuscated samples) and, if you want,

you can list all .NET runtimes and SDKs by executing: dotnet --list-runtimes / dotnet --list-sdks.

While malware samples compiled in .NET Framework assemblies, which also contains metadata

(manifest), can be either .dll or .exe file, .NET Core samples are always compiled as a .dll file (usually

compiled using: dotnet <assembly>.dll). Another subtle difference is that .NET Core doesn’t use the GAC

(Global Assembly Cache) like .NET Framework used as a common installation directory for framework

libraries.

If you already analyzed .NET threats previously, so probably you also found encrypted payloads in

embedded .NET resources, which can be unpacked using distinguished approaches as dumping the

unpacked resource (a .NET module, for example) from the memory using common tools like dnSpy or

specific programs to accomplish the same task.

Similar to any native binary, a .NET malware threat might also unpack another .NET malware (a .dll module

or .exe file) or a native code to be injected into a running process, and this injected malicious binary could

be a downloader to the next stage, which can download a native or managed code and start the real

infection. Even worse, some .NET malicious payload are able to attack the own .NET runtime and

compromise the entire environment.

In a daily malware analysis job, you probably will find .NET malware samples obfuscated using well-known

obfuscators such ConfuserEx, .NET Reactor, Dotfuscator, babelfor.NET, Agile, and so on, or even a

customized protectors, so it could demand some time to unpack and de-obfuscate such sample due the

existence of so many distinguished approaches. Depending on used obfuscating techniques, you can wait

for different tricks such as:

▪ Methods signatures, fields and metadata renaming.

▪ Encrypted strings.

▪ Junk code

▪ Control Flow obfuscation.

▪ Cross-Reference obfuscation

▪ Obfuscated Implementation methods.

▪ Obfuscated/hidden cross references

Any .NET code (included malware binaries, of course) can interact with the system using class from

System.Diagnostics namespace such as Process, ProcessModule, ProcessThread,

ProcessThreadCollection, ProcessStartInfo, and so on. Furthermore, there’re different methods such as

Start(), Kill(), GetProcesses(), GetCurrentProcess(), GetProcessById() etc, which are applied to the

Process type mentioned in this paragraph and interact directly with a running system. As a programming

concepts, remember that to compile assemblies with System.Diagnostics namespace, programmers will

need System.Linq namespace, so that’s an additional clue about what readers should expect for.

.NET applications (composed by one or more assemblies) are hosted within an application domain, which

can be accessed using AppDomain.CurrentDomain static property. These assemblies can be accessed

https://github.com/dotnet/runtime

https://exploitreversing.com

4 | P a g e

using System.Reflection namespace and this is a critical stuff for malware analysts to learn because we’ll

find .NET Reflection methods being use in the most of the .NET malware samples.

 A very short list of well-known methods from System, System.Reflection and also other namespaces,

which could be used by .NET malware threats, follows below and, as you’ll learn, these methods are

interesting targets to set up a breakpoint during dynamic analysis:

▪ Activator.CreateInstance: this method is used to create an instance of a specified type by using a

technique named “late binding”, which provides the possibility of creating an instance of a given

type and, better, invoking any of its member at runtime without having any pre-determined

reference to the member of given an external assembly in the code.

▪ Assembly.CreateInstance: this methods locates a type from this assembly and creates an instance.

▪ Assembly.GetExecutingAssembly: this method gets the assembly that contains the code that’s

currently executing.

▪ Assembly.GetEntryAssembly: this method gets the process executable in the default application

domain.

▪ Assembly. GetFile: this method returns a FileStream for the specified file in the file table of the

manifest of this assembly.

▪ Assembly.GetModule: this method gets the specified module in the given assembly.

▪ Assembly.GetType: this method gets the type given a string, for example.

▪ Assembly.Load: this method loads an assembly.

▪ Assembly.LoadFile: this method loads the content of an assembly file.

▪ Assembly.LoadFrom: this method loads the content of an assembly file.

▪ Assembly.LoadModule: this method loads the module internal to the given assembly.

▪ Assembly.GetLoadedModules: this method gets all the loaded modules that make part of the given

assembly.

▪ AssemblyDependencyResolver.ResolveAssemblyToPath: this method resolves a path to an

assembly given an assembly’s name.

▪ AppDomain.GetAssemblies: this method gets assemblies that have been loaded into the

application domain context.

▪ ConstructorInfo.Invoke: this method invokes the constructor given by the instance.

▪ System.Reflection.AssemblyName GetAssemblyName: this method gets the AssemblyName for a

given file.

▪ Module.GetField: this method returns a specified field.

▪ Module.GetFields: this method returns the global fields on a given module.

▪ Module.GetMethod: this method returns a method given a string name.

▪ Module.GetMethods: this method returns the global methods defined on the module.

▪ Module.IsResource: this method determines whether the given object is a resource or not.

▪ MethodBase.Invoke: this method invokes the method or constructor.

▪ ResourceManager class: it represents a resource manager, which offers access to culture

resources.

▪ Module.GetMethodImpl: this method returns an implementation of a method.

A .NET malware binary contains the following structure:

▪ File header

https://exploitreversing.com

5 | P a g e

▪ Common Language Runtime (CLR) file header

▪ Manifest

▪ IL code (managed code)

▪ Embedded Resources

▪ Type metadata

I’ve only mentioned few classes (types) like Assembly and Module related to Reflection, but there are

many other such as AssemblyName, EventInfo, FieldInfo, MemberInfo, MethodInfo, PropertyInfo and so

on. At the same way, other type classes as System.Type offers properties (IsClass, IsArray, IsCOMObject,

IsEnum, …) and methods (GetMembers(), GetType(), GetMethods(), GetProperties(), GetFields(),

InvokeMember(), etc…) that could be used for getting information of the types that are returned by using

System.Reflection.

It’s suitable to explain that metadata are merely descriptors for structure components of the application

such as classes, delegates, interfaces, enumerations, structures and so on, and each type is referenced by

a TypeDef token that’s exactly a pointer to full metadata definition of the referenced type (TypeRef).

Furthermore, readers should remember that, when we talk about CLR (Common Language Runtime), we

are considering loaders and the JIT compiler.

Metadata is organized as a relational database by using cross-references and making viable to find classes

that each one comes from. How is metadata represented? It’s represented by named streams, which are

classified as metadata heap and metadata table.

[Figure 1] Structure of a classes and methods (metadata) organized in tables.

Remember that managed resources are included in the .text section and not .rsrc section.

Scratching the surface of .NET internals, metadata heap can be:

▪ GUID heap: contains objects of size equal to 16 bytes.

▪ String heap: contains strings.

slot 1: Class A -- methods at slot 1

slot 2: Class B -- methods at slot 3

slot 3: Class C -- methods at slot 5

slot 4: Class D -- methods at slot 6

slot 5: Class E -- methods at slot 8

slot 1: Method 1 - Classe A

slot 2: Method 2 - Classe A

slot 3: Method 1 - Classe B

slot 4: Method 2 - Classe B

slot 5: Method 1 - Classe C

slot 6: Method 1 - Classe D

slot 7: Method 2 - Classe D

slot 8: Method 1 - Classe E

https://exploitreversing.com

6 | P a g e

▪ Blog heap: contains arbitrary binary objects aligned on 4-byte boundary.

There’re 6 possible named streams:

▪ #GUID: contains global unique identifiers.

▪ #Strings: contains names of classes, methods, and so on.

▪ #US: contains user defined strings.

▪ #~: contains compressed metadata stream.

▪ #-: contains uncompressed metadata stream.

▪ Blob: contains metadata from binary objects.

As a side note, compressed and uncompressed named streams are mutually exclusive.

About metadata tables, there’re more than 40 of them and it’d take so much time to cover all of them,

though some of them such as ImplMap, MethodImpl, MethodDef, ModuleRef, ManifestResource,

TypeRef, TypeDef, Field, Property, Member, MemberRef, Method and File table are very interesting for

our purpose. Both native file headers and CLR headers can be checked by using the following command

and visualized in the following pictures :

▪ File header: dumpbin /headers filename.dll

▪ CLR header: dumpbin /clrheader filename.dll

Note: in my system dumpbin.exe is located at: C:\Program Files (x86)\Microsoft Visual

Studio\2019\Community\VC\Tools\MSVC\14.29.30133\bin\Hostx64\x64\dumpbin.exe

[Figure 2] CLR Header for a usual .NET sample

https://exploitreversing.com

7 | P a g e

[Figures 3] Header composition of a manage module.

In most of cases, .NET malware threats have one or more class constructor (.cctor()) and instance

constructors (.ctor()). The .cctor() class constructor is called/run before executing the main method, class

initializers or even getting to the entry point. While using tools such as dnSpy, you always should examine

them because .cctor() and .ctor() are one of preferred places to put [de]obfuscating .NET code.

There was the possibility of controlling the JIT by hijacking the ICorJitCompiler::getJit() +

ICorJitCompiler::compileMethod(), which allowed us to manipulate the final resulting code , but this issue

was fixed and included into Windows Defender. Other advanced malware threats try to change the

runtime library (in IL code level) or even hooking it. If they are successful, so certainly it will be lethal for

many applications and, of course, compromise the entire system.

I am not going into deeper details on .NET internals details involving MSIL code because this knowledge is

not really required for understanding this article. Eventually, readers might get further information from

my slides on DEF CON USA 2019:

▪ https://exploitreversing.files.wordpress.com/2021/12/alexandreborges_defcon_2019-3.pdf

4. General Procedure

Certainly one of most common questions from professionals while examining .NET malware threats is:

what details and clues should I take note while analyzing a .NET sample?

Of course, there aren’t fixed rules here and some considerations should be taken:

▪ Determine whether the malware code is really a .NET code.

PE Header

Native Code /
Data

CLR Header

CLR Data
(ILcode, metadata,

managed resources)

DOS Header

PE Header

Data Directories
(size and location of CLR header)

Section Headers

.text
(includes MSIL and metadata)

.idata

.data

Remaining sections

https://exploitreversing.files.wordpress.com/2021/12/alexandreborges_defcon_2019-3.pdf

https://exploitreversing.com

8 | P a g e

▪ Try to identify whether the malware is packed. Even the presence of embedded resources are a

fair indication that there might be some malicious code hidden (and obfuscated).

▪ Discover the real Entry Point (pay attention to .cctor and .ctor constructors).

▪ Examine the code and try to identify possible obfuscator’s presence.

▪ Tools such as de4dot (better editing capabilities when executed on PowerShell) and other

customized ones will help you to de-obfuscate the code.

▪ How do you plan to unpack it? You should consider a mix of static and dynamic approach.

▪ Most .NET malware are really large, so don’t try to analyze all of them line-by-line. Most of time, it

isn’t worth, though in few cases you don’t have another alternative (knowing C# could help you).

▪ If you use dynamic analysis (probably also using dnSpy), so try to set up breakpoints on critical

methods listed previously.

▪ While analyzing methods, pay attention to non-used parameters.

▪ While using dnSpy, debugger’s tabs such Local, Call Stack and Modules are incredibly useful.

▪ Remember that malicious modules are loaded anytime and you always can dump them from

memory.

▪ There’re .NET malware samples that result to a final .NET malware and other ones that result to a

native malicious binary. Therefore, don’t make any conclusion in advance.

5. Collecting .NET information

Certainly one of more outstanding approaches to collect information useful information about .NET

samples is by using System.Reflection namespace on PowerShell. As readers already know, there’re

dozens of excellent references about the topic on the Internet and I don’t have any plan to go into details,

but maybe a quick explanation might be useful.

PowerShell offers endless options to access and collect information by using .NET static and instance

methods, and every executed command demands to understand the method’s syntax to invoke methods

and property’s syntax to read/write properties.

Therefore, few well-known syntaxes are:

▪ [Class Name]::PropertyName

▪ $ObjectReference.PropertyName

▪ [Class Name]::MethodName(arguments list)

▪ $ObjectReference.MethodName(arguments list)

If you check the page 4, we have a short list of classes and methods that could be called using the referred

syntax examples above to discover useful information about a .NET malware or even executing a specific

method from the malware that might help us along a de-obfuscation process.

Any of next commands can be used with while collecting basic information of a .NET binary and, of course,

it’s necessary to adapt them to each case:

List all loaded assemblies.
PS C:\ > [appdomain]::currentdomain.GetAssemblies() | ft Location | Select-Object -First 10
Location

https://exploitreversing.com

9 | P a g e

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\mscorlib.dll
C:\WINDOWS\Microsoft.Net\assembly\GAC_MSIL\Microsoft.PowerShell.ConsoleHost\v4.0_3.0.0.0__31bf
3856ad364e35\Microsoft.PowerShell.ConsoleHost.dll
C:\WINDOWS\Microsoft.Net\assembly\GAC_MSIL\System\v4.0_4.0.0.0__b77a5c561934e089\System.dll
C:\WINDOWS\Microsoft.Net\assembly\GAC_MSIL\System.Core\v4.0_4.0.0.0__b77a5c561934e089\Syste
m.Core.dll
C:\WINDOWS\Microsoft.Net\assembly\GAC_MSIL\System.Management.Automation\v4.0_3.0.0.0__31bf3
856ad364e35\System.Management.Automation.dll
C:\WINDOWS\Microsoft.Net\assembly\GAC_MSIL\Microsoft.Management.Infrastructure\v4.0_1.0.0.0__3
1bf3856ad364e35\Microsoft.Management.Infrastructure.dll
C:\WINDOWS\Microsoft.Net\assembly\GAC_MSIL\System.Management\v4.0_4.0.0.0__b03f5f7f11d50a3a
\System.Management.dll
C:\WINDOWS\Microsoft.Net\assembly\GAC_MSIL\System.DirectoryServices\v4.0_4.0.0.0__b03f5f7f11d50
a3a\System.DirectoryServices.dll

Load an specific assembly (.NET malware).
PS C:\> $Malware_Assembly =
[System.Reflection.Assembly]::LoadFile("C:\Users\Administrator\Desktop\MAS\MAS_4\malware_dotne
t.bin")

Get all loaded modules from a specific assembly.
PS C:\ > $LoadedModules = $Malware_Assembly.GetLoadedModules()
PS C:\ > $LoadedModules

MDStreamVersion : 131072
FullyQualifiedName : C:\Users\Administrator\Desktop\MAS\MAS_4\malware_dotnet.bin
ModuleVersionId : 53d49999-e4ad-4b0b-be7a-8497530feeda
MetadataToken : 1
ScopeName : WaitCallb.exe
Name : malware_dotnet.bin
Assembly : WaitCallb, Version=1.7.3.0, Culture=neutral, PublicKeyToken=null
CustomAttributes : {}
ModuleHandle : System.ModuleHandle

Get all modules from a specific assembly.
PS C:\ > $Malware_Assembly.GetModules()

MDStreamVersion : 131072
FullyQualifiedName : C:\Users\Administrator\Desktop\MAS\MAS_4\malware_dotnet.bin
ModuleVersionId : 53d49999-e4ad-4b0b-be7a-8497530feeda
MetadataToken : 1
ScopeName : WaitCallb.exe
Name : malware_dotnet.bin
Assembly : WaitCallb, Version=1.7.3.0, Culture=neutral, PublicKeyToken=null
CustomAttributes : {}
ModuleHandle : System.ModuleHandle

Get the “FullName” property of the assembly.

https://exploitreversing.com

10 | P a g e

PS C:\ > $Malware_Assembly.FullName
WaitCallb, Version=1.7.3.0, Culture=neutral, PublicKeyToken=null

Get the Runtime Version of the assembly.
PS C:\ > $Malware_Assembly.ImageRuntimeVersion
v4.0.30319

Get the entry-point method of the assembly.
PS C:\ > $Malware_Assembly.EntryPoint

Name : MapVisitor
DeclaringType : WaitCallb.Filter.GlobalValueFilter
ReflectedType : WaitCallb.Filter.GlobalValueFilter
MemberType : Method
MetadataToken : 100663315
Module : WaitCallb.exe
IsSecurityCritical : True
IsSecuritySafeCritical : False
IsSecurityTransparent : False
MethodHandle : System.RuntimeMethodHandle
Attributes : PrivateScope, Private, Static, HideBySig
CallingConvention : Standard
ReturnType : System.Void
ReturnTypeCustomAttributes : Void
ReturnParameter : Void
IsGenericMethod : False
…

List all classes of the Assembly.
PS C:\ > $Malware_Assembly.GetModules().gettypes()|?{$_.isPublic -AND $_.isClass}

IsPublic IsSerial Name BaseType
-------- -------- ---------- ---------------
True False ReponseListState System.Windows.Forms.Form
True False MappingValueFilter System.Windows.Forms.Form
True False InterceptorExpressionMessage System.Windows.Window
True False Singleton System.Windows.Window
True False ObjectAttributePool System.Windows.Window
True False DicMethodAnnotation System.Windows.Application
True False OrderValueFilter System.Object
True False ParamsHelperRole System.Object
True False Definition System.Object
True False Tag System.Object
True False Getter System.Object
True False Pool System.Object
True False StubTokenizerImporter System.Object
True False MerchantExpressionMessage System.Object
True False MessageAttributePool Tourield.Messages.MerchantExpressionMessage

https://exploitreversing.com

11 | P a g e

True False Interceptor Tourield.Messages.MerchantExpressionMessage
True False Bridge System.Object
…

List all resources’ names of the assembly.
PS C:\ > $Malware_Assembly.GetManifestResourceNames()

WaitCallb.g.resources
WaitCallb.States.ReponseListState.resources
WaitCallb.Filter.MappingValueFilter.resources
aR3nbf8dQp2feLmk31.lSfgApatkdxsVcGcrktoFd.resources
Tourield.Properties.Resources.resources

Get Information of a given resource
PS C:\ >
$Malware_Assembly.GetManifestResourceStream("aR3nbf8dQp2feLmk31.lSfgApatkdxsVcGcrktoFd.reso
urces")

CanRead : True
CanSeek : True
CanWrite : False
Length : 5650
Capacity : 5650
Position : 0
PositionPointer :
CanTimeout : False
ReadTimeout :

List all referenced assembly by our loaded assembly.
PS C:\ > $Malware_Assembly.GetReferencedAssemblies()

Version Name
------- --------------------------------
4.0.0.0 mscorlib
4.0.0.0 PresentationFramework
4.0.0.0 System.Windows.Forms
4.0.0.0 System
4.0.0.0 System.Drawing
4.0.0.0 PresentationCore
4.0.0.0 System.Xaml
4.0.0.0 WindowsBase
4.0.0.0 System.Core

PS C:\ > $MyClass = $Malware_Assembly.GetModules().gettypes()|?{$_.Name.equals("Interceptor")}
List declared methods for a given class.

PS C:\ > $MyClass.DeclaredMethods | Out-String -stream | Select-String "^Name”

https://exploitreversing.com

12 | P a g e

Name : InsertProcess
Name : RunProcess

List public methods for a given class
PS C:\ > $MyClass.GetMethods() | Select-Object Name

Name

Equals
GetHashCode
GetType
ToString

List return non-public, instance methods.
PS C:\ > $MyClass.GetMethods([Reflection.BindingFlags]::NonPublic -bor
[Reflection.BindingFlags]::Instance) | Select-Object Name

Name

Finalize
MemberwiseClone

List declared constructors for a given class.
PS C:\ > $MyClass.DeclaredConstructors | Out-String -stream | Select-String "^Name"
Name : .ctor

List all member types for a given class.
PS C:\ > $MyClass.GetMembers() | ft memberType, Name -auto
 Member Type Name
 ------------- ---------------
 Method Equals
 Method GetHashCode
 Method GetType
 Method ToString
Constructor .ctor
 Field m_Merchant
 Field _Server
 Field _Listener
 Field producer
 Field database

Get a list of public instance methods.
PS C:\ > $MyClass.GetMethods([Reflection.BindingFlags]::Public -bor [Reflection.BindingFlags]::Instance)
| Select-Object Name | ft -HideTableHeaders

Equals
GetHashCode
GetType

https://exploitreversing.com

13 | P a g e

ToString

Get a list of non-public instance methods.
PS C:\ > $MyClass.GetMethods([Reflection.BindingFlags]::NonPublic -bor
[Reflection.BindingFlags]::Instance) | Select-Object Name | ft -HideTableHeaders

Finalize
MemberwiseClone

Get a list of non-public static methods.
PS C:\ > $MyClass.GetMethods([Reflection.BindingFlags]::NonPublic -bor
[Reflection.BindingFlags]::Static) | Select-Object Name | ft -HideTableHeaders

InsertProcess
RunProcess

Get a list of public static methods.
PS C:\ > $MyClass.GetMethods([Reflection.BindingFlags]::Public -bor [Reflection.BindingFlags]::Static) |
Select-Object Name | ft -HideTableHeaders

Get a list of non-public instance fields.
PS C:\ > $MyClass.GetFields([Reflection.BindingFlags]::NonPublic -bor
[Reflection.BindingFlags]::Instance) | Select-Object Name | ft -HideTableHeaders

Get a list of non-public static fields
PS C:\ > $MyClass.GetFields([Reflection.BindingFlags]::NonPublic -bor [Reflection.BindingFlags]::Static) |
Select-Object Name | ft -HideTableHeaders

We’re also able to invoke any method of a .NET malware during our analysis, but we’re going to return to

this topic in next articles.

During .NET malware analysis we will encounter Dynamic Assemblies, which concept is quite different

from Static Assemblies. The latter are loaded from a file on disk while dynamic assemblies are created on

memory (at runtime) using a special naming space named System.Relfection.Emit that offers the

possibility of creating assemblies, modules, performing CIL implementation, etc, during runtime.

This System.Relfection.Emit namespace has several members such as:

▪ AssemblyBuilder: this class is used to create an assembly at runtime.

▪ TypeBuilder: this class to control the creation of interfaces, delegates, structures and, of course,

classes in a module.

▪ ModuleBuilder: this class is used to define a module within a given assembly.

▪ MethodBuilder: this class defines and represents a method/constructor.

▪ EnumBuilder: this class is used to create a .NET enumeration type.

It’s required to use ILGenerator class and its associated methods such as Emit, EmitCall, BeginScope,

DeclaredLocal and so on to emit raw CIL opcodes and, dynamically, make the entire assembly.

https://exploitreversing.com

14 | P a g e

Although this article isn’t about programming, further details that could help readers interested in learning

a bit more about the topic follow:

▪ System.Reflection.Emit NuGet package should be installed.

▪ System.Reflection and System.Reflection.Emit name spaces should be imported.

▪ You should use AssemblyName() constructor (from AssemblyName class) to describe an

assembly's unique identity (ex: MASassembly)

▪ Create an assembly: var mybuilder = AssemblyBuilder.DefineDynamicAssembly(varMASassembly,

AssemblyBuilderAccess.Run). Take care: varMASassembly would be a AssemblyName variable that

contains an assembly definition named “MASassembly”.

▪ Define the module’s name: ModuleBuilder mymodule =

mybuilder.DefineDynamicModule(“MASassembly”)

▪ Setup a public class named “MASclass”: TypeBuilder masClassExample =

mymodule.DefineType(“MASassembly.MASClass”, TypeAttributes.Public)

From this point onward, It’s possible to define .cctor(), setup new variables and emit the code using

GetILGenerator() + Emit() methods.

The information above could also help you while analyzing .NET malware threats and, eventually, make

easier to detect instructions related to Dynamic Assembly, which is not a so well-known topic for many

professionals.

If you like to follow an operational approach, you might use the excellent Mono framework to get useful

information from a .NET binary.

To install it on Linux (REMnux / Ubuntu 20.04):

▪ sudo apt install gnupg ca-certificates

▪ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys

3FA7E0328081BFF6A14DA29AA6A19B38D3D831EF

▪ echo "deb https://download.mono-project.com/repo/ubuntu stable-focal main" | sudo tee

/etc/apt/sources.list.d/mono-official-stable.list

▪ sudo apt update

▪ sudo apt install mono-devel

▪ sudo apt install mono-complete

To install it on Windows:

▪ Download it from: https://download.mono-project.com/archive/6.12.0/windows-installer/mono-

6.12.0.107-x64-0.msi

▪ Add “C:\Program Files\Mono\bin” to the PATH environment variable.

Once it’s installed, we’re able to list metadata tables and additional information as shown below:

https://download.mono-project.com/archive/6.12.0/windows-installer/mono-6.12.0.107-x64-0.msi
https://download.mono-project.com/archive/6.12.0/windows-installer/mono-6.12.0.107-x64-0.msi

https://exploitreversing.com

15 | P a g e

[Figure 4] Gathering metadata table information from a .NET binary (part 1)

Of course, we’re able to get much more information from metadata tables and, as you see below, we can

download embedded resources easily:

[Figure 5] Gathering metadata table information from a .NET binary (part 2)

https://exploitreversing.com

16 | P a g e

[Figure 6] Gathering metadata table information from a .NET binary (part 3)

Quick observations follow:

▪ The ImplMap table seems to be empty. This effect might be a consequence of packers,

obfuscation, Dynamic Assembly or many other possible reasons.

▪ We were able to list all methods, interfaces, type definitions and manifest’s content.

▪ We were able to dump all managed resources.

▪ There’re other good information such as module name and exported types, which hold several

types’ entries defined within modules of assembly and exported to external assemblies.

All mentioned procedures are quite useful to collect first information from a given .NET malware before

starting the analysis itself and having an idea about what we should expect for. Of course, nothing replaces

the analysis of the code using static and mainly its dynamic analysis, and tools like dnSpy (or dnSpyEx) are

able to perform a great work.

6. Threat information

The sample that will be analyzing in this article is SHA 256:

▪ 7cb92356a0170028fabc20f0cb9736b149efab01824ab1173b3277340a6a2ec4

You can download the sample from Malware Bazaar:

https://exploitreversing.com

17 | P a g e

[Figure 7] Downloading sample from Malware Bazaar

Checking details about the sample on Malware Bazaar, we have:

[Figure 8] Gathering information about the sample from Malware Bazaar

https://exploitreversing.com

18 | P a g e

[Figure 9] Gathering information about the sample from Malware Bazaar (continuation)

Evaluating the given sample on Virus Total we also have:

https://exploitreversing.com

19 | P a g e

[Figure 10] Gathering information about the sample from Virus Total

There’s good information from Figures 7, 8, 9 and 10 that we could consider about this sample:

▪ Its “original name” seems to be tup.exe.

▪ Likely it performs code injection (WriteProcessMemory + SetThreadContext).

▪ It seems to “escalate privileges” during the execution (AdjustPrivilegeToken).

▪ It apparently uses hooking technique (SetWindowsHookEx).

▪ It enumerates processes (EnumeratesProcess) for, maybe, picking up one to inject code.

▪ WMI is used by the malware. Infinite probabilities: anti-vm, anti-debugging, and so on.

▪ A new process is launched, which might be a native one.

▪ A file is created.

https://exploitreversing.com

20 | P a g e

▪ The sample is the AgentTesla (or one of its variants) and written in .NET (mscoree.dll).

▪ The .text section entropy is too high (7.91), so maybe hiding or “packing” something. However,

remember: on .NET, the embedded resources make part of the .text section, so the high entropy

could be reflecting possible embedded resources.

It’s relevant to underscore that all considerations above are only possibilities and first information.

Remember that the malware is likely packed/obfuscated, so there’re many artifacts to be discovered.

To check possible existence of packers/obfuscators in a .NET malware, readers could use Exeinfo PE

(https://github.com/ExeinfoASL/ASL) or DiE (https://github.com/horsicq/Detect-It-Easy), which are great

tools to check existence of packers and obfuscators:

[Figure 11] Checking packers through Exeinfo PE and Detect It Easy (DiE)

https://github.com/ExeinfoASL/ASL
https://github.com/horsicq/Detect-It-Easy

https://exploitreversing.com

21 | P a g e

Both tools tell us a possible existence of .NET Reactor, though we need to confirm whether there is a

packer or not by analyzing the code.

A last tool that’s always recommended while analyzing .NET samples is pestudio

(https://www.winitor.com/download/). I’m using the free version of pestudio and the paid one has much

more features:

[Figure 12] Gathering information through pestudio

We’re able to collect several nice information from pestudio such as used blacklisted functions, libraries,

visualize first bytes of resources and dump them, list the manifest and so on. It’s worth, definitely.

https://www.winitor.com/download/

https://exploitreversing.com

22 | P a g e

7. Analysis

That’s the start point of our analysis and comprehensive understanding of the threat. As you’ll remember

about .NET analysis, most of samples have embedded resources (managed resources), which might be a

binary (managed module or binary) to be unpacked in real time. From those ones, few of them work as a

simple downloader of an external resource that is the real malicious payload to be executed.

Nonetheless, that’s the crucial point. There’re three well-known approaches to unpack a .NET malware:

a. using an specialized debugger and assembly editor for .NET such as dnSpy / dnSpyEx and

proceeding manually doing the analysis.

b. using a native debugger and some associated tricks to do it semi-automatically.

c. using a specialized tool to accomplish this task automatically.

Actually, using the term “unpacking” could be imprecise in some cases because resource could be only

encoded (or even in plain text), but certainly we can continue using the term without any lost of meaning.

Due to motivation in highlighting few concepts presented in previous sections, we’re taking the first

approach and, in next articles, we’ll try the other two possibilities.

Although readers already know, remember that over any debugging session (even a managed one) the

system can and likely will be infected, so don’t forget to disable networking communications, disable

shared folder and, mainly, take a snapshot.

Thus, open the malware (mas_4.bin) on dnSpy and let’s make some notes about the sample:

[Figure 13] First view on dnSpy 32-bit

We have few considerations here:

https://exploitreversing.com

23 | P a g e

▪ There’re five embedded resources.

▪ The entry point is WaitCallb.Filter.GlobalValueFilter.MapVisitor.

▪ If readers open Type References, readers will see:

o Classes

o Enumerations

o Structures

o Delegations

▪ The Assembly Name is WaitCalib.

▪ The Module name is WaitCallb.exe.

▪ Two <Module> classes (<Module> @02000001 and <Module>{FFAD4D1F-94F7-4211-ACBA-

FABE281ED9F5}), which could contain a module initializer that’s a feature from CLR. At end, it

works as a constructor for the module. In general, static constructors of <Module> are executed

only once during the assembly loading, though classes have its own class constructors (.cctor).

There were are our first impressions and information that we were able to collect from dnSpy. Examining

the entry point, we have:

https://exploitreversing.com

24 | P a g e

[Figure 14] Entry Point Method: MapVisitor

According to the code above, there’re few interesting methods to analyze:

▪ Application.EnableVisualStyles()

▪ Application.SetCompatibleTextRenderingDefault(false)

▪ RecordParam.SelectConfig()

▪ Application.Run(new ReponseListState())

Each one of these methods may take us to hundreds lines of code and, no doubts, it could take a quite long

time to analyze. Readers could notice there’s a variable (num) controlling the execution flow and, at start,

it’s set up to 4, so the first function to be executed is EnableVisualStyles(), which gets the full path of the

own loaded Assembly. The method (EnableVisualStyles) calls Application.EnableVisualStylesInternal:

[Figure 15] EnableVisualStyles method

https://exploitreversing.com

25 | P a g e

As readers can verify, this method is using two arguments: text, which receives exactly the Assembly

Location (line 994) and 101. Going into this method, we have:

[Figure 16] EnableVisualStylesInternal method

According to the code above we learned that:

▪ its first argument is the name of Assembly file.

▪ its second argument is a native resource ID (in this case, it’s using 101).

▪ it’s using a very particular class named UnsafeNativeMethods and calling one of its methods

named CreateActivationContext().

The UnsafeNativeMethods class is used to access and call native methods and, as readers are able to

notice, the code is invoking CreateActivationContext() to create and setup data structures in memory

which will hold information that will be used to load specific DLL modules or COM object instance, for

example. Of course, there’re many functions associated with activation context such as ActivateActCtx(),

QueryActCtxW(), ReleaseActCtx() and so on.

Soon after Application.EnableVisualStyles() has been called, the num variable is set to 3 and other two

methods such as Application.SetCompatibleTextRenderingDefault() and RecordParam.SelectConfig() are

called, but there isn’t any really important on them to comment.

As the break instruction has been executed, so the next method to be called is Application.Run(new

ReponseListState()) (Figure 14 / line 47), which provide us with a clear path to follow over our analysis. A

remaining note about this entry point class (GlobalValueFilter) is that methods QueryProcess() and

SearchProcess() don’t do anything except returning “true”. The ReponseListState class has the following

instance constructor:

https://exploitreversing.com

26 | P a g e

[Figure 17] ReponseListState constructor called by Run()

https://exploitreversing.com

27 | P a g e

Once again, we have a kind of state variable (num) that determines which piece of code will be executed

and, initially, it’s set to 6, so next methods to be invoked are RecordParam.SelectConfig() and

ReponseListState.PostProcess().

Before proceeding, we’re able to see several methods being called inside a for-loop:

▪ RecordParam.SelectConfig()

▪ ReponseListState.PostProcess()

▪ Invoke(obj, parameters)

▪ GetMethod("InvalidCast")

▪ CompareVisitor()

Anyway, as num variable has been set to 6, so the next methods to be executed are:

▪ RecordParam.SelectConfig (line 34)

▪ ReponseListState.PostProcess (line 36)

▪ And, num is will be set to 2 (line 35), and the execution will jump to IL_0C label.

Method SelectConfig() doesn’t do anything and PostProcess() only returns “false”, so the “continue”

instruction (line 40) executes and the code flows to IL_0C label anyway. Therefore, the next method to be

executed will be CompareVisitor(), though an instance constructor (.ctor) is executed right before of it. If

the reader go inside CompareVisitor(), there is a long switch case (17 cases) with many graphic-related

methods being executed and, apparently, there isn’t anything strange. However, the first impression is

wrong! The trigger to the second stage (another .NET module) is hidden exactly inside of this method

because, soon after it, there’s the instruction: this.Text = “Form 1” (line 258). The “Text” property is

associated to an accessor/mutator , which is overridden by other accessor/mutator on line 292:

[Figure 18] ResetVisitor() method being called within on overriding accessor (getter/setter)

https://exploitreversing.com

28 | P a g e

If readers are not used to working with dnSpy, it’s possible to get a list of methods that overrides, are

overridden, have dependencies (Uses) and dependents (Used by) through right clicking on any method

and choosing Analyze (CTRL+SHIFT+R). In this case, I showed the view from overriding mutator, but we

could have done the same analysis from the overwritten mutator’s point of view, as shown below:

[Figure 19] Pointer overriding

Actually WaitCallb.States.ReponseListState.set_Text(string) : void @06000005 method overrides

System.Windows.Forms.Form.set_Text(string) : void @0600234C (line 2260), which calls its base mutator

for property public virtual string Text on line 3784.

Once ResetVisitor() is called , the ResourceManager class is instantiated and the managed resource

“Vargo” is loaded into the array variable, which now contains the encoded .NET module (second stage)

that will be loaded and executed.

Before “Vargo” managed resource being decoded, the malware sets “text” variable to

"P7C455RF8EBCYHA8URJ585" (it’s the XOR key) on line 340 and num2 to 92182 (it’s the resource size) on

line 349. Finally, the decoder is called on line 323 from ResetVisitor() as shown below:

https://exploitreversing.com

29 | P a g e

[Figure 20] ResetVisitor method and the decoder of Vargo managed resource.

Of course, we can easily write a Python / PowerShell script to decode manually this managed resource, but

it isn’t worth because there could be many encrypted resources. Thus, let’s set up a breakpoint on line 323

(for example) and following a dynamic approach using a debugger, which is best approach to save time.

If you don’t know about hotkeys on dnSpy, the most important ones are:

▪ F11 for stepping-in

▪ F10 for stepping over

▪ SHIFT+F11 for stepping out

▪ F9 to set / clear a breakpoint

If you don’t want to use the hotkeys, so you can access the Debug menu and have access to the same

commands. Therefore, set the breakpoint on line 323 and start the debugging process. The debugger is

going to stop the execution exactly on line 323 before the managed resource being decoded, so it’s time to

wait a minute. Within this same method (ResetVisitor()), there’s a critical instruction on line 370 that

really loads the Vargo managed resource:

▪ ReponseListState.DefineVisitor(Assembly.Load(array), 11);

We’ve listed the Assembly.Load() method on page 4 and at this point we can imagine that the Load

method will load the decoded resource (Vargo) and it will use methods from this new module. Therefore,

set up a breakpoint on the Load() method above and resume the execution. Just in case your dnSpy

environment doesn’t show the Modules window, so go to Debug → Windows → Modules as explained

below:

https://exploitreversing.com

30 | P a g e

[Figure 21] Enabling the Modules window

[Figure 22] Decoded array: pay attention to 0x4D, 0x5A bytes (MZ)

https://exploitreversing.com

31 | P a g e

Below I show you the list of modules before and after the new module (SharpStructures) being loaded:

[Figure 23] Loaded modules: before and after view

Readers can notice that at the last line the SharpStructures module is loaded InMemory (the column is

marking “yes”), so we can easily save this module by right clicking it and choosing “Save Module” as

SharpStructures.dll:

[Figure 24] Saving a module from memory on dnSpy

Remember, you should keep the debugger stopped on line 370 because first we’re going to check the

saved module.

As I mentioned previously, many .NET malware samples have several stages before revealing the main

payload and, usually, these intermediate stages are encrypted, so we should check them before

proceeding and one of recommended tools to accomplishing it is Exeinfo PE:

https://exploitreversing.com

32 | P a g e

[Figure 25] Extracted modules being checked by Exeinfo PE

The extracted module is obfuscated with SmartAssembly Obfuscator. To confirm that there’s code

obfuscation, verify the loaded module on dnSpy, as shown below:

[Figure 26] Obfuscated module

We are able notice several Unicode notations that also indicate the code is really obfuscated. Additionally,

on the left, readers can confirm that there’re attributes related to SmartAssembly.

https://exploitreversing.com

33 | P a g e

No doubts, we are able to de-obfuscate this code and there’re several available techniques and tools that

can be used accomplish this task, though the de4dot (https://github.com/de4dot/de4dot) is one of the

most recommended tools. Of course, de4dot is able to de-obfuscate / unpack many different types of .NET

malware samples, but not all of them and, in some cases, we need to search for a specific unpacker,

though is not a hard task. Anyway, let’s try to de-obfuscate the extracted module:

[Figure 27] de4dot output

After de-obfuscating the extracted module using de4dot we have:

[Figure 28] De-obfuscated method on dnSpy

Of course, it’s much better than code shown in Figure 26. There’re other ways to improve this code, which

is far from being perfect, but it’s enough to be analyzed for now. I’d like to highlight that it’d be possible to

proceed without manually cleaning it (as we did using de4dot) because the sample could have its own

decoding routine that make the job for us, but debugging it would be a bit more complicated.

https://github.com/de4dot/de4dot

https://exploitreversing.com

34 | P a g e

Returning to the malicious code, if we continue debugging after having extracted the second stage (a .NET

module) from memory, soon the MapVisitor() will be called and, so afterwards, it will call

ReponseListState() constructor from ResponseListState class. If you check the Stack windows, it confirms

our statement:

[Figure 29] Calling a method from the next stage

The GetMethod() function tries to get the InvalidCast method, which makes part of the new and

extracted .NET module (obfuscated, as readers already might expect for):

[Figure 30] InvalidCast() from the stage 2

https://exploitreversing.com

35 | P a g e

A well-known approach to manage cases like that is replacing the content of obfuscated module on

memory, before it being loaded, by our de-obfuscated one. It’s seems weird, but provide us good and

practical results because debugging it becomes easier than handling obfuscation issues. How can we do it?

There’re many options and, probably, it’s a matter of taste: some professionals prefer using a hexadecimal

editor + Notepad++ and other ones prefer using CyberChef. Personally, I prefer the latter one. Thus, we

need to stop the debug session (because the module was already loaded) and set up a breakpoint on the

instruction responsible for loading the second stage module that, in our case, it’s the one from Figure 22,

and on the first instruction calling a method from the second stage:

▪ ReponseListState.DefineVisitor(Assembly.Load(array), 11); (from ResetVisitor() method)

▪ methodInfo = ((Type)ReponseListState.param).GetMethod("InvalidCast"); (from

ReponseListState() method)

Using CyberChef (https://gchq.github.io/CyberChef/) we can load the cleaned version of the second stage

(resulting from de4dot.exe), use From Hex recipe and remove all spaces (None) as shown below:

[Figure 31] De-obfuscated and extracted module loaded onto CyberChef

Copy the hexadecimal content to the clipboard (fourth icon – marked on figure above).

Launch the dnSpy in debugging mode again (Debug → Start Debugging or only click on Play button). Don’t

forget: you should remember of setting the two breakpoints mentioned previously.

The debugger will stop at first instruction -- ReponseListState.DefineVisitor(Assembly.Load(array), 11); --

and, viewing the Modules window, readers will notice that the SharpStructures module (second stage) is

not loaded yet. In Locals window, right click on array variable, which holds the PE format content, go to

Show In Memory menu → Memory 1 and you’re going to see the next two screens:

https://gchq.github.io/CyberChef/

https://exploitreversing.com

36 | P a g e

[Figure 32] Steps to visualize the memory of array variable

[Figure 33] Memory content of array variable

Put the cursor at beginning of the executable (4D 5A), right click → Paste Special → Paste. All content of

the cleaned module copied to clipboard from CyberChef will overwrite the memory region.

Proceed with the debugging session and the execution will stop at second breakpoint (methodInfo =

((Type)ReponseListState.param).GetMethod("InvalidCast"). Additionally, the cleaned module should have

been loaded and, when you visualize the InvalidCast() method then you will see the following image:

https://exploitreversing.com

37 | P a g e

[Figure 34] InvalidCast() method in the loaded and cleaned module

So far it’s everything going well. We’ve replaced the obfuscated module by a cleaned one on memory right

before it has been loaded. There few important points here:

▪ Readers should always look for any instance constructor (.ctor) and class constructor (.cctor)

before starting the analysis.

▪ Readers should set a breakpoint at start of the InvalidCast method (from

SharpStructures.Sorting.SortHelper class) to keep the control of the execution.

▪ It’s recommended take a snapshot of your virtual machine before proceeding.

▪ Expect for a new obfuscated code, as shown the Exeinfo PE, in our previously “cleaned” module:

 [Figure 35] InvalidCast() method in the loaded and cleaned module

https://exploitreversing.com

38 | P a g e

Readers could also are asking how to find the right InvalidCast method because there’re two methods with

the same name, but that belong to different classes:

▪ SharpStructures.Main.SortHelper class

▪ SharpStructures.Sorting.SortHelper class

If you’re continue debugging (F10 – step over), the answer comes automatically in the FullName property:

[Figure 36] Finding the correct InvalidCast() method to set up a breakpoint

Therefore, set a breakpoint on the correct InvalidCast(), keep debugging (F10 – step over) and the

“transition” to the InvalidCast() should occur on lines shown below:

[Figure 37] Transition to InvalidCast method from the replaced module

The actual transition is performed by the Invoke() method on the methodBase variable, which hold the

right InvalidCast() method: Invoke → Invoke → UnsafeInvokeInternal → InvalidCast.

The targeted SharpStructures.Sorting.SortHelper.InvalidCast method has the following instructions:

https://exploitreversing.com

39 | P a g e

[Figure 38] InvalidCast method

If readers analyze the first instructions, so interesting details will be found and we should consider them:

▪ A delay is established at first two instructions

▪ There’re a class named Class0, which contains relevant methods.

▪ Methods from Class0 that should be analyzed such as DemandResources, smethod_[1,4,5,6],

ConstructionResponse

▪ A final Exit(0) method.

▪ Many other “hidden” sub-methods under all of these mentioned methods.

 Our analysis of the stage 2 starts now. The recommended step is to check the Class0 class to get first

information about its available methods and associated details:

https://exploitreversing.com

40 | P a g e

https://exploitreversing.com

41 | P a g e

[Figure 39] Class0 content

 We have the following observations of the Class0 content (Figure 39):

▪ smethod_0 and smethod_1 are manipulating an array and they are identical.

▪ smethod_2 and smethod_4 are being used for invoking a method and they are identical.

▪ smethod_5 and smethod_7 are constructing a string and they are identical.

▪ smethod_3 and smethod_6 are loading an Assembly and they are identical.

According to our notes about InvalidCast(), so we can assume (for while) that it’s:

▪ Constructing a string (smethod_5)

▪ Manipulating an array (smethod_1)

▪ Loading an assembly (smethod_6)

▪ Invoking a method from this assembly (smethod_4)

Returning to InvalidCast() method (Figure 38), another interesting method is DemandResources(), which

has the following content:

[Figure 40] DemandResources method

The DemandResources() is instantiating the ResourceManager class, which provides access to resources,

for reading a given resource name resulting from the smethod_5().

Examining the ConstructionResponse() method (Figure 41 – next page), which is called on line 26 from

InvalidCast method (Figure 38), it provides us few details:

▪ It receives a byte-array from smethod_1().

▪ To those recovered bytes, it proposes a UTF-16 format that uses the big endian byte order.

▪ Performs a XOR operation using its last byte and the number 112.

▪ Allocates a new byte array (named array).

▪ Reads each of its bytes and does a double XOR operation.

▪ Resizes the resulting byte array.

▪ Returns the final array.

 The content of ConstructionResponse() method is shown below:

https://exploitreversing.com

42 | P a g e

[Figure 41] ConstructionResponse method

So far we have an idea about what’s happening:

▪ A sequence of bytes is read (smethod_5) from a resource, which the respective name is given as

the return of smethod_1.

▪ All read bytes are decoded by the ConstructionResponse(). The content of the resulting array is a

module (third stage).

▪ The resulting array is loaded by the smethod_6().

▪ All types (class, interface, array, value, enumeration and so on) are returned from the loaded

assembly, and one of them is chosen (a class).

▪ At same way, for the type returned with GetTypes(), all public methods are returned using

GetMethods(), and one of them is picked up.

▪ Finally, the chosen method is invoked by Invoke() method from smethod_4().

Therefore, a reasonable approach is:

▪ Setting a breakpoint (F9):

o on line 26 of InvalidCast() (Figure 38), when we will able to analyze the content of the

byte_ array and, probably, we will find a new module there.

o on line 27 of InvalidCast(), where smethod_6() is being called.

o on Assembly.Load() within smethod_6().

o on line 30 before the discovered method to be invoked.

▪ Extracting the module loaded into byte_ array variable.

▪ Using Exeinfo PE or Die to check for the presence of any obfuscator/packer.

▪ If there’s an obfuscator/packer, trying to remove it using de4dot or any other deobfuscator.

▪ Discovering the name of the class (line 29) and method being invoked on line 30.

▪ Renaming the saved module and replacing it on memory.

https://exploitreversing.com

43 | P a g e

▪ Taking a snapshot of the virtual machine after having done this setup because you might want to

be able to repeat this procedure if it’s necessary.

 Of course, it wouldn’t be necessary to set up four breakpoints and only executing the code using F10

(step-over) would be enough. Anyway, you can decide the best approach for you.

Therefore, we have the following breakpoints setup:

[Figure 42] InvalidCast method including breakpoints

Running the code we got the following information about the new stage loaded into byte_ array variable:

[Figure 43] PE Format file loaded into byte_ array

https://exploitreversing.com

44 | P a g e

For now, right click the _byte array → Save… . Choose a name (stage_3.bin, but we’re going to rename it

later) and save it. Use the Exeinfo PE or Die to check possible obfuscators/packers, as shown below:

[Figure 44] Checking packers/obfuscators presence on stage_3.bin

Further information about the execution:

▪ The name of the new loaded module is DotNetZipAdditionalPlatforms.dll and its version is

v2.0.50257.

▪ The type variable (a class) hold the string "LajJueXX7RvrQwTLPl.XcuCxUwDbNNwbx89AI"

(namespace + class), which is an obfuscation indicator.

▪ The method’s name being invoked is RrRUhxJmfM().

[Figure 45] New module (DotNetZipAdditionalPlatforms) loaded onto memory

As we’ve learned, the module loaded onto memory and extracted using dnSpy is obfuscated using .NET

Reactor. As most of these obfuscators use class constructors (.cctor) or instance constructors (.ctor) to

manipulate or even de-obfuscate/unpack some information, it’s worth to see the obfuscated version:

https://exploitreversing.com

45 | P a g e

[Figure 46] Method from third stage being called for the second stage

There’re many classes (not shown in this figure above), but each one has a respective .cctor() method.

Additionally, the XcuCxUwDbNNwbx89AI class has its own class constructor and an instance constructor

that calls the .ctor() constructor. Additionally, the function being called (RrRUhxJmfM) from the

InvalidCast() is also obfuscated and has several switch cases (not showed above).

Now we have some useful information, we can try to de-obfuscate the extracted module (the third stage)

to replace the obfuscated module loaded on memory by this one. Once again, we can try to use de4dot to

accomplish this job:

[Figure 45] Extracted module de-obfuscated by de4dot

This time the de-obfuscation process wasn’t been perfect, but you’ll see that it’s enough for our purposes.

We can repeat similar steps that we did previously to replace the obfuscated module on memory for the

de-obfuscated one, and the best approach to do it is manipulating the byte_ array variable before the

module being loaded by smethod_6.

Thus, let’s repeat the procedure once again:

https://exploitreversing.com

46 | P a g e

▪ De-obfuscate the saved module using de4dot.

▪ Open it up on CyberChef, pick up the ToHex recipe and don’t leave spaces (no spaces).

▪ Copy the result from CyberChef to the clipboard.

▪ Right the byte_ array variable → Show in Memory Windows → Memory 1

▪ Right click at start of the executable (MZ / 4D 5A) → Paste Special → Paste

▪ Continue debugging by using F10 (step-over) until the line 28 (after assembly has been loaded).

Check whether it was actually loaded.

▪ Proceed with the execution up to line 30 and collect information such as the class name and

method being called from the third stage.

After replacing the content of the byte_ array variable on memory and stepping-over the execution until

the line 30, we have the following scenario:

[Figure 47] Calling the de-obfuscated third module

From the picture above, we learned that:

▪ The type variable holds a class type.

▪ The class’s name is Class12, which belongs to the namespace ns0.

▪ The targeted method on lines 29 and 30 is smethod_10.

▪ The Class12 also has its own .cctor (class constructor).

▪ Few native APIs references have come up such as GetProcessAddress() and LoadLibrary(), but

there’re other ones.

Therefore readers have to set up two breakpoints on:

▪ line 8 of the .cctor() class constructor.

▪ line 6 of the smethod_10().

Once readers have set up the breakpoints, so proceed the execution using F10 (step over).

https://exploitreversing.com

47 | P a g e

If everything goes smoothly, the execution will hit the breakpoint in .cctor(). Welcome to the stage 3,

whose the first method being called has the content shown below:

https://exploitreversing.com

48 | P a g e

[Figure 48] Calling the de-obfuscated third module

There’re good points to underscore in the figure above:

▪ As the malware is executed on a 64-bit system, so its code retrieves the context of a WOW64

thread (32-bit thread) using Wow64GetThreadContext().

▪ The smethod_8 is using GetDelegateForFunctionPointer() to convert a native (unmanaged)

function pointer to a delegate, which can be cast to any delegate type.

https://exploitreversing.com

49 | P a g e

▪ About delegates in .NET, a delegate type is sort of object (data structure / class) that provides a

reference (as a pointer) to a method or list of methods that can be invoked anytime. Actually,

delegate type can be interpreted as a structure because it holds the address of a method (similar

a function pointer), its respective parameters and return type. Therefore, we could create a

delegate type to any function accepting two strings as arguments and returning another string, for

example. Furthermore, when we use delegate keyword to define a delegate type, we are creating a

class (data structure) to hold all necessary information to the delegate.

▪ Delegate types can be used to send notifications (as a callback) to the invoking function whether

any specific condition is triggered, but it is not the main purpose of the malware code.

▪ In our case, GetDelegateForFunctionPointer() is used for marshaling a pointer to a native function

into a delegate type that can be invoked inside the .NET code.

▪ Malware is performing code injection because the usage, through delegating, of native functions

such as VirtualAllocEx, WriteProcessMemory, SetThreadContext and ResumeThread.

▪ As readers know, CreateProcessA (via delegate) is being used to create a process, but we need to

get additional information about it.

▪ In fact, .cctor() in this sample is being used only to create delegates (references) to native

functions because, according to page 46, the stage 2 is really calling the smethod_10, which calls

many methods and many of them using these mentioned delegates.

Therefore, the recommended approach would be to:

▪ set up breakpoints on key functions / methods inside the smethod_10 (not within .cctor()).

▪ filter relevant methods by using Analyze feature, which bring us methods being used by our

analyzed method and methods that use the analyzed method.

The .cctor uses Class12, which has 9 delegates, and you get them by using the Analyze feature:

[Figure 49] Calling the de-obfuscated third module

As mentioned, about smethod_10 (the real method being called from stage 2), there’re many methods

being invoked by it and we must filter the most relevant ones:

https://exploitreversing.com

50 | P a g e

[Figure 50] smethod_10: used methods

Finishing our quick analysis .cctor(), our unique goal is to make a list of all delegates being created within

it because all of them will be used by smethod_10:

https://exploitreversing.com

51 | P a g e

▪ Class12.delegate0_0 → "ResumeThread"

▪ Class12.delegate1_0 → "Wow64SetThreadContext"

▪ Class12.delegate2_0 → "SetThreadContext"

▪ Class12.delegate3_0 → "Wow64GetThreadContext"

▪ Class12.delegate4_0 → "GetThreadContext"

▪ Class12.delegate5_0 → "VirtualAllocEx"

▪ Class12.delegate6_0 → “WriteProcessMemory"

▪ Class12.delegate7_0 → "ReadProcessMemory"

▪ Class12.delegate8_0 → "ZwUnmapViewOfSection"

▪ Class12.delegate9_0 → "CreateProcessA"

And we have a good surprise: all of delegates are being used in smethod_9, as shown below:

[Figure 51] All delegates being read by smethod_9()

https://exploitreversing.com

52 | P a g e

It’s great! The smethod_9() is responsible for using several delegates related to native functions, but the

smethod_9 is not called directly by smethod_10 (the first method being executed after .cctor()). Once

again, we should use Analyze feature to find out the sequence of calls:

[Figure 52] Sequence of methods up to calling smethod_9

From the figure above, we learned that: smethod_10 → smethod_12 → smethod_9.

To take control on the execution of these native functions, go to smethod_9() and set up a breakpoint on

every delegate being used, which should seem something similar to the image below:

[Figure 53] Breakpoints on all delegates being used in smethod_9

That’s great! Now, make sure you’ve set up a breakpoint on the first instruction of smethod_10 and

resume the debugging execution until hitting the smethod_10 by using the Play button.

As readers can check, the smethod_10() is really long and would take time to understand each piece of

code, so the general idea is to use the Analyze feature once again to understand which method contains

interesting code.

https://exploitreversing.com

53 | P a g e

Therefore, let’s do a quick analysis of each smethod_#, one by one. Starting in smethod_0(), we have:

[Figure 54] smethod_0: some methods being used

The only the well-known FindWindow(), which is used by many malware threats to detect tools being

used during analysis, is interesting, but there are also good indicators of sandbox detection code here:

▪ if ((int)Class1.FindWindow("Afx:400000:0", (IntPtr)0) != 0)

▪ bool flag2 = Operators.CompareString(string_0, "C:\\file.exe", false) != 0;

▪ num2 = ((((int)Class1.GetModuleHandle("SbieDll.dll") == 0)

▪ num2 = ((((int)Class1.GetModuleHandle("SbieDll.dll") == 0)

▪ bool flag6 = string_0.ToUpper().Contains("SAMPLE")

▪ bool flag7 = Operators.CompareString(stringBuilder.ToString().ToUpper(), "SANDBOX", false) ==

0;

▪ bool flag9 = Operators.CompareString(stringBuilder.ToString().ToUpper(), "MALWARE", false) ==

0;

▪ num2 = (string_0.ToUpper().Contains("SANDBOX")

▪ bool flag = string_0.ToUpper().Contains("\\VIRUS")

Analyzing methods being used within smethod_1(), we have good indicators and artifacts:

[Figure 55] smethod_1: virtual machine detection

https://exploitreversing.com

54 | P a g e

The method HeGwfEiyF() is called several times and its strings, used as argument, tell us that its purpose is

virtual machine detection.

VMWARE:

▪ bool flag3 = Class1.HeGwfEiyF("SOFTWARE\\VMware, Inc.\\VMware Tools",

"InstallPath").ToUpper().Contains("C:\\PROGRAM FILES\\VMWARE\\VMWARE TOOLS\\");

▪ bool flag5 = Operators.CompareString(Class1.HeGwfEiyF("SOFTWARE\\VMware, Inc.\\VMware

Tools", ""), "noValueButYesKey", false) == 0

▪ bool flag6 = Class1.HeGwfEiyF("HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port 0\\Scsi Bus 0\\Target

Id 0\\Logical Unit Id 0", "Identifier").ToUpper().Contains("VMWARE");

▪ bool flag7 = Class1.HeGwfEiyF("SYSTEM\\ControlSet001\\Control\\Class\\{4D36E968-E325-11CE-

BFC1-08002BE10318}\\0000\\Settings", "Device Description").ToUpper().Contains("VMWARE");

▪ bool flag8 = Class1.HeGwfEiyF("HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port 1\\Scsi Bus 0\\Target

Id 0\\Logical Unit Id 0", "Identifier").ToUpper().Contains("VMWARE");

▪ bool flag12 = Class1.HeGwfEiyF("SYSTEM\\ControlSet001\\Control\\Class\\{4D36E968-E325-

11CE-BFC1-08002BE10318}\\0000", "DriverDesc").ToUpper().Contains("VMWARE");

▪ bool flag13 = Class1.HeGwfEiyF("HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port 2\\Scsi Bus 0\\Target

Id 0\\Logical Unit Id 0", "Identifier").ToUpper().Contains("VMWARE");

▪ num = (Class1.HeGwfEiyF("SYSTEM\\ControlSet001\\Services\\Disk\\Enum",

"0").ToUpper().Contains("vmware".ToUpper()) ? 4010111179U : 2868294220U);

▪ num4 = ((Operators.CompareString(managementObject["Description"].ToString(), "VMware

SVGA II", false) == 0)

VIRTUALBOX:

▪ bool flag10 = Class1.HeGwfEiyF("HARDWARE\\Description\\System",

"VideoBiosVersion").ToUpper().Contains("VIRTUALBOX");

▪ bool flag4 = Operators.CompareString(Class1.HeGwfEiyF("SOFTWARE\\Oracle\\VirtualBox Guest

Additions", ""), "noValueButYesKey", false) == 0;

▪ bool flag = Class1.HeGwfEiyF("HARDWARE\\Description\\System",

"SystemBiosVersion").ToUpper().Contains("VBOX");

▪ bool flag11 = Class1.HeGwfEiyF("HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port 0\\Scsi Bus 0\\Target

Id 0\\Logical Unit Id 0", "Identifier").ToUpper().Contains("VBOX");

▪ num4 = (((Operators.CompareString(managementObject["Description"].ToString(), "VM

Additions S3 Trio32/64",false) == 0)

▪ bool flag15 = Operators.CompareString(managementObject["Description"].ToString(),

"VirtualBox Graphics Adapter", false) == 0;

QEMU:

▪ num = ((!Class1.HeGwfEiyF("HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port 0\\Scsi Bus 0\\Target Id

0\\Logical Unit Id 0", "Identifier").ToUpper().Contains("QEMU")) ? 3150288510U : 2854005095U);

▪ bool flag9 = !Class1.HeGwfEiyF("HARDWARE\\Description\\System",

"SystemBiosVersion").ToUpper().Contains("QEMU");

https://exploitreversing.com

55 | P a g e

WMI queries are involved in gathering system information to be able to check all details related to virtual

machines. Anyway, we can conclude that the main purpose of smethod_1() is detecting virtual machine

environments, so we might nullify any instruction invoking it. Nonetheless, you’ll see that it isn’t necessary

in this sample.

Next method, smethod_2(), is very simple and only starts a thread given by smethod_3() by using the

instruction:

▪ new Thread(new ThreadStart(Class12.smethod_3));

Therefore, both are related to each other and there’s none additional facts about them.

The smethod_4() and smethod_5() manage ACLs through APIs such as:

▪ DirectorySecurity

▪ SetAccessControl

▪ SetAccessRuleProtection

▪ setAttributes

▪ FileSystemAccessRule

▪ AddAccessRule

The smethod_6 is a bit more interesting because it handles tasks using schtasks.exe and even temporary

file creation on disk to support it. The base64 string below represents only a XML template to define and

control an application using tags such as RunLevel, Triggers, Settings, StartWhenAvailable,

AllowStartOnDemand and so on, and it’s used by schtasks.exe during the scheduling of a task:

[Figure 56] smethod_6: base64 string used for persistence with schtasks.exe

https://exploitreversing.com

56 | P a g e

 [Figure 57] smethod_6: using schtasks.exe for some persistence

We could easily decode strings on PowerShell, but let’s use CyberChef once again (choose recipes “From

Base64”) to decode and prove that we actually have a XML file:

[Figure 58] Decode XML from base64

The next method, smethod_7(), is interesting because it suggests a download from the Internet:

https://exploitreversing.com

57 | P a g e

[Figure 59] smethod_7: supposedly downloads a file from the Internet

The smethod_8(), which is invoked by .cctor() and not by smethod_10(), use the well-known

LoadLibraryA() and GetProcAddress() to find native API addresses to be used through delegates:

[Figure 60] smethod_8: resolves native API addresses

The smethod_9() invokes the already mentioned native APIs by using delegates:

[Figure 61] smethod_9: invokes native APIs through delegations

The smethod_11() is quite relevant due to the fact it loads a new assembly, so we can set a breakpoint on

Assembly.Load() line because this new module might be the next stage or a support module (resources):

[Figure 62] smethod_11: loads a

new assembly

https://exploitreversing.com

58 | P a g e

The smethod_12() is a proxy method for the smethod_13(), which invokes a member of the new loaded

assembly, but also provides the following lines of code (and strings) for our analysis:

▪ string text = Path.Combine(path, "RegSvcs.exe");

▪ string text = Path.Combine(path, "MSBuild.exe");

▪ string text = Path.Combine(path, "vbc.exe");

[Figure 63] smethod_12 and smethod_13: operation related to the new loaded module

There, as a summary of methods, we have:

▪ smethod_0: sandbox detection

▪ smethod_1: virtual machine detection

▪ smethod_2: starts a thread

▪ smethod_3: provides the application to be started as a thread

▪ smethod_4 and smethod_5: manages ACLs

▪ smethod_6: schedules new tasks with schtasks.exe

▪ smethod_7: supposedly downloads a file from the Internet

▪ smethod_8: resolves native API addresses

▪ smethod_9: involved with native API calls.

▪ smethod_10: the main method (dispatcher).

▪ smethod_11: loads a new assembly.

▪ smethod_12 and smethod_13: operations related method invocation.

We have to set up some breakpoints, and a list of few possible lines follows below:

▪ smethod_1: (line 488) Start of the loop

▪ smethod_3: (line 186)

o Process.Start(Class12.string_10)

▪ smethod_7: (line 583)

o webClient.DownloadFile(string_11, text)

▪ smethod_11: (line 1490)

o Assembly assembly = Assembly.Load(Class12.byte_0);

https://exploitreversing.com

59 | P a g e

▪ smethod_13:

o (line 1617) string path =

(string)typeof(RuntimeEnvironment).InvokeMember("GetRuntimeDirectory",

BindingFlags.InvokeMethod, null, null, null);

o (line 1633) string text = Path.Combine(path, "RegSvcs.exe");

o (line 1654) string text = Path.Combine(path, "MSBuild.exe");

o (line 1664) string text = Path.Combine(path, "vbc.exe");

▪ smethod_9:

o (line 776 / WriteProcessMemory) num6 = (((!Class12.delegate6_0(struct2.intptr_0, num10

+ num11, array, array.Length, ref num4)) ? 1777126585U : 974911055U) ^ num3 *

3593627777U)

o (line 803 / WriteProcessMemory) bool flag5 = !Class12.delegate6_0(struct2.intptr_0,

num13 + 8, bytes, 4, ref num4)

o (line 859 / VirtualAllocEx) int num10 = Class12.delegate5_0(struct2.intptr_0, num14,

length, 12288, 64)

o (line 867 / CreateProcessA) bool flag10 = !Class12.delegate9_0(string_11, string.Empty,

IntPtr.Zero, IntPtr.Zero, false, 134217732U, IntPtr.Zero, null, ref @struct, ref struct2)

o (line 880 / WriteProcessMemory) num6 = ((!Class12.delegate6_0(struct2.intptr_0, num10,

byte_1, bufferSize, ref num4)) ? 1884772482U : 172468949U);

o (line 895 / GetThreadContext) num6 = ((Class12.delegate4_0(struct2.intptr_1, array2) ?

1127022864U : 23477936U) ^ num3 * 3000738847U);

o (line 921 / ReadProcessMemory) bool flag6 = !Class12.delegate7_0(struct2.intptr_0, num13

+ 8, ref num16, 4, ref num4);

o (line 929 / Wow64GetThreadContext) bool flag11 = !Class12.delegate3_0(struct2.intptr_1,

array2)

o (line 941 / ZwUnmapViewOfSection) num6 = (((Class12.delegate8_0(struct2.intptr_0,

num16) != 0) ? 3120432759U : 2659671650U) ^ num3 * 1247483263U);

o (line 984 / SetThreadContext) bool flag13 = !Class12.delegate2_0(struct2.intptr_1, array2);

o (line 1035 / Wow64SetThreadContext) bool flag4 = !Class12.delegate1_0(struct2.intptr_1,

array2);

o (line 1045 / ResumeThread) bool flag12 = Class12.delegate0_0(struct2.intptr_1) == -1;

After setting the mentioned breakpoints readers should take a snapshot of the virtual machine just in case

to be necessary to start over.

Resuming the execution, few breakpoints will be hit and other ones don’t:

▪ smethod_13:

o (line 1617) @"C:\Windows\Microsoft.NET\Framework\v4.0.30319\"

o (line 1633) @"C:\Windows\Microsoft.NET\Framework\v4.0.30319\RegSvcs.exe"

▪ smethod_9:

o (line 867 / CreateProcess):

▪ lpApplicationName:

@"C:\Windows\Microsoft.NET\Framework\v4.0.30319\RegSvcs.exe"

https://exploitreversing.com

60 | P a g e

▪ dwCreationFlags: 134217732U == 0x 0x08000004 == CREATE_SUSPENDED

o (line 895 / GetThreadContext): nothing important

o (line 921 / ReadProcessMemory):

▪ lpBuffer: 0x00C50000
▪ nSize: 4
▪ *lpNumberOfBytesRead: 4

o (line 859 / VirtualAllocEx):

▪ hProcess: 0x354 (handle to RegSvcs.exe)

▪ lpAddress: 0x00400000
▪ dwSize: 0x0003A000
▪ flProtect: 64 == 0x40 == PAGE_EXECUTE_READWRITE

o (line 880 / WriteProcessMemory):

▪ hProcess: 0x354 (handle to RegSvcs.exe)

▪ lpBaseAddress: 0x00400000

▪ lpBuffer: contains the executable to be injected

▪ nSize: 0x00000200

o (line 776 / WriteProcessMemory):

▪ hProcess: 0x354 (handle to RegSvcs.exe)

▪ lpBaseAddress: num10 + num11 = 0x00400000 + 0x00002000 = 0x00402000

▪ lpBuffer: contains the the second session of executable to be injected

o (line 776 / WriteProcessMemory):

▪ hProcess: 0x354 (handle to RegSvcs.exe)

▪ lpBaseAddress: num10 + num11 = 0x00400000 + 0x00036000 = 0x00436000

▪ lpBuffer: contains the the second session of executable to be injected

o (line 776 / WriteProcessMemory):

▪ hProcess: 0x354 (handle to RegSvcs.exe)

▪ lpBaseAddress: num10 + num11 = 0x00400000 + 0x00038000 = 0x00438000

▪ lpBuffer: contains the the second session of executable to be injected

o (line 984/ SetThreadContext): nothing important

o (line 1045/ ResumeThread): nothing important

I tried making things easier and wrote down some parameters (as shown above) during the debugging

execution for helping you to understand what’s happening over the stage_3.bin’s instructions.

Additionally, I left some API parameter as support stuff and, as you could notice, many breakpoints haven’t

been hit as we expected (nor not), and it looks like good:

https://exploitreversing.com

61 | P a g e

[Figure 64] CreateProcessA() – credits: Microsoft (MSDN)

[Figure 65] WriteProcessMemory() – credits: Microsoft (MSDN)

Additionally, I’ve run “C:\MAS_4>handle -p 4452 -a” command (from SysInternals) to reveal the process

associated to the the given handle:

[Figure 66] Handle command from SysInternals

https://exploitreversing.com

62 | P a g e

Based on information collected from the debugging session through those breakpoints, we can make some

considerations:

▪ The malware execute GetRuntimeDirectory() to find the current .NET Runtime directory.

▪ Depending on the result of GetRuntimeDirectory(), which is related to .NET runtime version, the

malware loads one of available and legal applications. In my environment, It’s loaded RegSvcs.exe,

which is an installation tool for .NET services.

▪ The malware injects a malicious code into the loaded module (RegSvcs.exe). However, it doesn’t

do it at once to include the entire malicious code, but it does a section-by-section copy.

▪ Due to the fact that the malicious code is injected section-by-section, it isn’t practical to use dnSpy

to save each part of the code being injected because we would need to concatenate everything

later, and it isn’t worth to spend time doing it.

▪ The most recommended approach is to visualize memory addresses of the process (RegSvcs.exe)

and search for a RWX section, which likely starts at 0x400000. These both information can be

confirmed using collected parameters on line 859 (VirtualAllocEx) of page 60.

To save a memory region from Process Hacker tool, double-click the region, which confirms it’s an PE

executable and click on “Save…” button:

[Figure 67] Process Hacker: identify and save the injected code

If you open the saved binary in PE Bear to check Imports, so you’ll find everything messed up and,

apparently, there isn’t any useful information.

https://exploitreversing.com

63 | P a g e

The reason is that we dumped the binary from memory, so it’s in mapped format and we need to convert

it to unmapped format:

[Figure 68] PE Bear: messed Import table

[Figure 69] PE Bear: unaligned sections

Although readers already know how to do the transformation from mapped to unmapped format, and I

already explained it in previous articles, but it’s worth to repeat steps again:

https://exploitreversing.com

64 | P a g e

▪ At Section Hdrs tab, for each section, copy the Virtual Address to the Raw Address.

▪ Calculate the size of each section by subtracting the address of next section from the current one

and alters the Raw Size using the result.

▪ After you have changed the Raw Size, copy the Raw Size value to the Virtual Size field.

▪ Save the binary by right-clicking on the binary’s name (top-left) and provide it a new name.

[Figure 70] PE Bear: unaligned sections

[Figure 71] PE Bear: unaligned sections

https://exploitreversing.com

65 | P a g e

Once the saved binary has been fixed, search for possible packers/obfuscators using DiE and Exeinfo PE:

[Figure 72] DiE: checking packers and/or obfuscators

[Figure 73] Exeinfo PE: checking packers and/or obfuscators

It’s seems that our fourth stage is obfuscated using Obfuscar, which is one of many available packers for

.NET and we’ll proceed with our analysis using dnSpy and try to de-obfuscate it using de4dot or any

available deobfuscator. Anyway, before proceeding, it’s interesting to show you handles opened by this

https://exploitreversing.com

66 | P a g e

new stage because, apparently, it tries to communicate via network, according to \Device\Afd handle

name:

[Figure 74] Possible network communication based on handles related to WinSock.

Let’s start to analyze the fourth stage and, my first recommendation, is to take a snapshot of the virtual

machine to make possible to revert it whether something goes wrong.

As usual, we should try to open this stage on dnSpy because it is a .NET binary (remember: it imports

mscoree.dll) and check what’s happening:

[Figure 75] dnSpy: fourth stage

https://exploitreversing.com

67 | P a g e

According to the entry-point, namespaces, class names and methods, this stage seems to be also

obfuscated and, as we learned from Die and Exeinfo PE, apparently the packer is Obfuscar.

Readers can navigate to Entry Point or by clicking on last “A” on line 4 from last figure or right-clicking on

the Assembly name and choosing “Go to Entry Point”:

[Figure 76] dnSpy: going to entry point

[Figure 77] dnSpy: entry point of stage 4

Readers are also able to see the first effect of the obfuscation, where there’re classes such “b” and “C”,

and methods named at same way like “A()” .

https://exploitreversing.com

68 | P a g e

Anyway, a method C.A() is called and, afterwards, an Application.Run() method is called. Going into the

A() method, we have:

[Figure 78] dnSpy: A.C.A() and A.C.A.A() methods

We have some methods names, but we don’t have any string. For example, on line 50, where we should

see a string, we see something like “4AE7E02E-291A-4676-9641-A6E499CD2831.aw()”, which seems to be

<class.method()> and not a string. Clicking on the first one, the dnSpy take us to the following code:

[Figure 79] dnSpy: Part of the decryption routine

https://exploitreversing.com

69 | P a g e

The routine, partially shown in the figure above, contains a class containing a main method (private static

string <<EMPTY_NAME>>(int A_0, int A_1, int A_2)) and several methods calling a decryption routine.

Apparently, the malicious code dynamically decodes and build up a string table with 767 strings and, once

they are decoded then the malware picks up the string from there according to the given index. All this

process occurs in the .cctor(), where is a long sequence of elements (11566 elements) and, at end, a for-

loop reading each one and decoding them using the own element index and a value (170).

Our first step is using de4dot, which doesn’t offer support for Obfuscar, to try de-obfuscate all possible

symbols:

[Figure 80] De-obfuscating possible symbols with de4dot

After using de4dot, we can open it on dnSpy and, though we see it has renamed some classes and so on,

strings weren’t decrypted yet, as shown below:

[Figure 81] Stage 4 after de-obfuscated by de4dot

https://exploitreversing.com

70 | P a g e

To decrypt strings we have two possible paths: we can use another de-obfuscator tool or try to do it using

other available options from de4dot. A working de-obfuscator for Obfuscar is

https://github.com/DarkObb/DeObfuscar-Static.

To use, reader should clone and compile it using Visual Studio 2019 or Visual Studio 2022, and building the

solution is clean and direct:

[Figure 82] Building DeObfuscar-Static using Visual Studio 2019/2022

Its usage is very simple and produces immediate results:

[Figure 83] De-obfuscating the fourth stage (already cleaned by de4dot) with DeObfuscar-Static

Opening stage_4_decrypted-Dec.exe on dnSpy, we have:

[Figure 84] De-obfuscated strings by DeObfuscar-Static

That’s perfect! Now we’re able to see strings where previously we saw <class>.<method>, so we can

analyze this fourth stage without further problems.

https://github.com/DarkObb/DeObfuscar-Static

https://exploitreversing.com

71 | P a g e

Readers could ask about reasons of namespaces, classes and method haven’t been recovered neither using

de4dot nor DeObfuscar-Static tool. The cause is that, during the obfuscation process, all information

about names of namespace, classes, methods, and so on, were lost. However, it isn’t an issue for us

because everything else is present within the sample. Additionally, the whole

<PrivateImplementationDetails>{A78A1E33-EFB4-4B39-84DB-A2C18EC95E34} namespace could be

deleted without any problem because the malware won’t need it anymore, but it’s a personal decision.

Another approach would be use the own de4dot to de-obfuscate strings from this sample, but using non-

conventional options that usually works very well for several unknown obfuscators.

To understand what will do here, return to Figure 78 and pay attention to the following:

▪ 4AE7E02E-291A-4676-9641-A6E499CD2831.aw()

From this instruction, we have:

▪ 4AE7E02E-291A-4676-9641-A6E499CD2831 ➔ class

▪ aw() ➔ method

Therefore, as we mentioned previously, this class contains all methods used to decrypt scripts and, if we

can dynamic use them, so decrypting strings issue is solved. Checking the method above, we have:

[Figure 85] String decrypting methods

https://exploitreversing.com

72 | P a g e

There’re many decrypting methods and the most important part for us are their respective tokens, where

the first one is 0x060001F8 and the last one is 0x060004F6 (please, check the code).

The de4dot options we are looking for are reported in its help:

▪ --strtyp TYPE String decrypter type

▪ --strtok METHOD String decrypter method token or [type::][name][(args,...)]

In few words, de4dot provides us with options to dynamically call all decrypting methods by referring to

their respective tokens. Thus, the syntax to decrypt all strings is:

▪ de4dot --strtyp delegate –strtok <method token> –strtok <method token> --strtok…

The only issue is that there’re too many tokens (and methods associated) because, as we mentioned

previously, there’re 767 strings and, of course, the command line will be very long, but we can manage it.

Using Python + Jupyter Notebook, I wrote few line of code to generate our command line:

[Figure 86] Script to generate command line for decrypting strings

https://exploitreversing.com

73 | P a g e

As readers are able to see, the script only puts several parts of the necessary command together and

generates an output including all required tokens and options. As the Python range() function excludes

the last element, so I added one to include it. You should copy the whole command to a PowerShell

terminal and execute it there as shown below (I’m sorry for the dark background, please):

[Figure 87] Customize de4dot command line on PowerShell

Finally, open it on dnSpy:

[Figure 88] Stage 4 with decrypted strings through de4dot

https://exploitreversing.com

74 | P a g e

It has worked perfectly, again. There’re some comments that, eventually, could be useful here:

▪ Remember that de4dot is able to run Windows and Linux (apt install de4dot) and you could test

the command on these systems.

▪ Usually I prefer run commands and tools for .NET in recent version of Windows (10 or 11) to avoid

encountering any unexpected surprise. Once again, it’s a matter of personal preference.

▪ It’s recommended to compile your own version of de4dot because, usually, it will include updated

components.

▪ Prefer using PowerShell window because its editing capabilities are much better than Command

Prompt.

▪ If you have any problem while using de4dot to run the produced long command then you should

try a newer version of Windows system using your own compiled version.

From this point onward, finally there isn’t further obfuscation in the binary and it’s only a task of reading

code, analyzing APIs and structures, though you’ll find some encrypted data yet. I’m going to leave only

three pieces of code here, but readers really must parse several methods (there’re a lot of them) to learn

all capabilities offered by AgentTesla malware.

One of the possible approaches, mainly while analyzing obfuscated codes, would be to examine the Table

Streams to locate interesting functions, mainly native APIs, which provides an idea of some characteristics

of the malware. Of course, there’re other tables, but ImplMap table might help you here:

[Figure 89] ImplMap table

As reader can verify, there’re well known APIs which are used in native malwares such as

SetWindowsHookEx, CallNextHookEx, UnhookWindowsHookEx, GetKeyboardState, GetKeyboardLayout,

EnumProcessModules, SetClipboardViewer and so on.

It doesn’t mean that only these 42 APIs from ImplMap table are important, but maybe they could help you

providing a starting point. You could use CTRL+F and search for them in each class of this stage.

https://exploitreversing.com

75 | P a g e

You should always the notation on dnSpy: <namespace>.<class>.<subclass>.method(), though in many

cases there isn’t any subclass.

[Figure 90] Establishing persistence

 [Figure 91] Contacting an external website to upload information and/or download tools

[Figure 92] Downloading TorBrowser

Sincerely, I could comment dozens of lines and piece of code here because this trojan contains a wide

range of capabilities spread over dozens of methods, but I don’t think it’s necessary and it would be a bit

out of the context. As readers could notice, several clues came up using only three figures and exposed

that the malware uses Tor, contacts an external website to post information and eventually downloads

tools, and of course, uses classical persistence mechanisms.

https://exploitreversing.com

76 | P a g e

Finally, a question remains: can we use IDA Pro, which it’s used for analyzing native binaries, shellcodes,

raw files and UEFI firmware, to analyze a .NET (managed) malicious code? Of course, we can.

IDA Pro doesn’t show the high-level representation of the binary, but its IL (Intermediate Language)

interpretation, which already helped me understanding what was happening in the code over many

situations and, additionally, it has the well-known graph representation that makes easier to navigate

through the MSIL code:

[Figure 93] IDA Pro: view of the final .NET payload (AgentTesla)

Initially, you could think it wouldn’t be appropriate using IDA Pro to analyze managed code (.NET code)

because MSIL representation doesn’t seems too easy, but I’ve used it in many cases:

▪ To understand eventual obfuscation tricks.

▪ To quickly find all called natived APIs.

▪ To figure out the sequence of called functions using the graph mode.

Additionally, I have used IDA Pro to analyze final payloads and get quick directions of executed actions by

observing the function list, following code through the graph-mode and, as we’ve used in dnSpy,

performing text searches through ALT+T and CTRL+T. If you don’t know about MSIL then, once again, I

recommend you reading my slides from DEF CON USA 2019.

At the end of day, it’s a personal choice using tools and different approaches to analyze .NET malware

samples, but it’s always recommended to use any available tool that to make things clearer and faster.

https://exploitreversing.com

77 | P a g e

8. Conclusion

As I already mentioned previously, there’re dozens (or hundreds) of methods and functions to be analyzed,

which certainly would take many additional pages. We could, for example, have tracked a more complete

malware profile by:

▪ searching for other mechanisms of persistence

▪ collecting information from system

▪ studying hooks and keyloggers

▪ analyzing all network communications

My goal keep being to offer a review of malware analysis and, if it’s possible, helping reverse engineers to

learn something new, providing a guideline to follow and search for something when it’s necessary.

I could have chosen a more complex malware sample, but it wasn’t not the idea. The general context is to

explain key concepts, strategies, techniques and approaches used during malware analysis of different

threats and, in this scenario, proposing hard examples wouldn’t help anyone and it would be useless, in my

opinion.

This article certainly will have typos and errors, but it isn’t big deal. Soon I find them, I’ll release a new

revision of this document.

9. Acknowledgments

I’d like to publicly thank Ilfak Guilfanov (@ilfak) and Hex-Rays (@HexRaysSA) for supporting this project

by providing me with a personal license of the IDA Pro.

Although I haven’t used IDA Pro in this specific article, it doesn’t change anything because without having

the support from Ilfak and HexRays certainly I wouldn’t be able to write this series of articles.

As I promised him, I will keep writing this series of articles in the next months and years. Certainly, my

gratitude for his help is endless.

Once again: thank you for everything, Ilfak.

Just in case you want to keep in touch:

▪ Twitter: @ale_sp_brazil

▪ Blog: https://exploitreversing.com

Keep reversing and I see you at next time!

Alexandre Borges

https://exploitreversing.com/

